

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature

Thomas Emmerich, Carsten Schroer

KARLSRUHE INSTITUTE OF TECHNOLOGY – INSTITUTE FOR APPLIED MATERIALS

KIT - The Research University in the Helmholtz Association

www.kit.edu

Overview

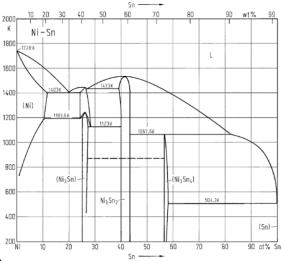
Introduction

Liquid tin

Motivation

- Evaluation of liquid tin corrosion
 - Tested materials
 - Setup and procedure of corrosion experiments
 - Analysis of liquid tin corrosion
- Development of protective surface layers
 - Properties and production of surface layers
 - Analysis of layer behaviour in liquid Sn

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature 7th Annual Congress on Materials Research and Technology, February 20-21, 2017


Introduction

Application of liquid Sn as heat transfer medium

- □ Large liquid temperature range 232 2620 °C
- Allows high heat flux
- □ Not volatile or toxic J. Pacio et al., Sol. Energy 93 (2013) 11–22.
- Corrosion of metallic materials
 - Solution of alloying elements
 - Formation of intermetallic phases with Sn (stannides)
- Compatible materials
 - Rhenium, tungsten, quartz-glass, ceramics, graphite
- Alternative
 - Protective surface layers on steels or Ni-based alloys

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature 7th Annual Congress on Materials Research and Technology, February 20-21, 2017

B. Predel, Ni-Sn (Nickel-Tin), in: O. Madelung , Ni-Np – Pt-Zr. Landolt-Börnstein - Group IV Physical Chemistry. 5I, Springer-Verlag, Berlin/Heidelberg, 1998, 1–4

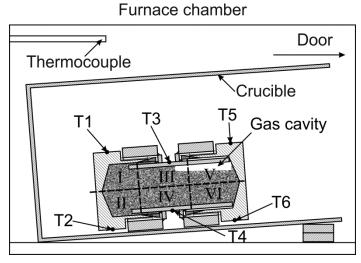
R.N. Lyon, Liquid-metals Handbook, U.S. Government Printing Office, 1950.

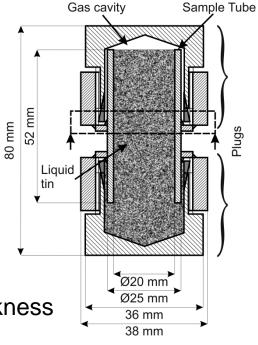
E.L. Reed, J Am Ceram Soc 37 (1954), 146-153.

H. Shimotake et al., T Am Nucl Soc 10 (1965), 141-146.

Evaluation of liquid tin corrosion Tested materials

Austenitic steels (1.4301, 1.4571) at 500 and 700 °C
Ni-based alloys (2.4650, 2.4663) at 700 and 1000 °C


Material	AI	С	Со	Cr	Fe	Мо	Si	Ti	Ni
1.4301	-	≤ 0.07	-	17.5- 19.5	Bal.	-	-	-	8-10.5
1.4571	-	≤ 0.08	-	16.5- 18.5	Bal.	2-2.5	-	5x C≤ Ti≤ 0.7	10.5- 13.5
2.4650	0.45	0.05	19.8	20	0.44	5.9	0.09	2.1	Bal.
2.4663	0.99	0.06	11.7	21.97	1.09	8.53	0.13	0.41	Bal.


Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys

and first tests on possible protective surface layers at high temperature

Evaluation of liquid tin corrosion Setup and procedure of the corrosion experiments

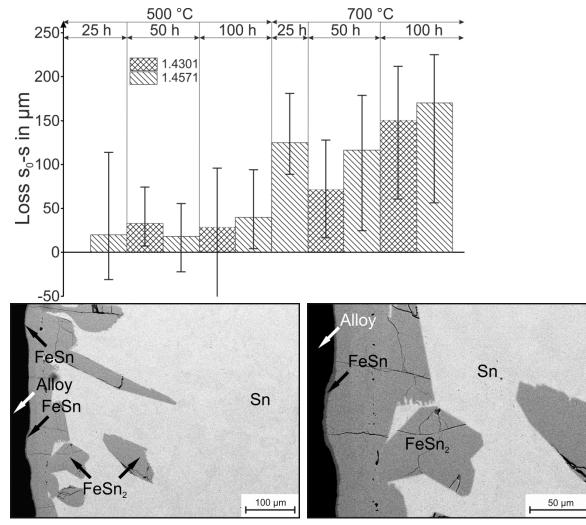
Preparation

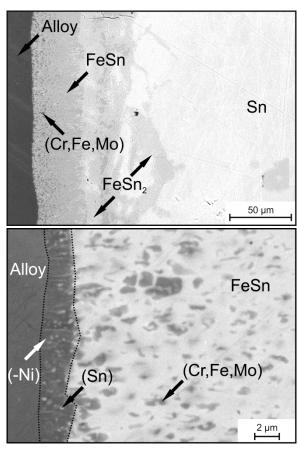
- Determination of the average wall-thickness
- □ Filling in Ar-atmosphere

Testing

- □ Exposure at 500, 700 and 1000 °C for 25, 50 und 100 h
- Measurement of the temperature distribution

Post-test analysis

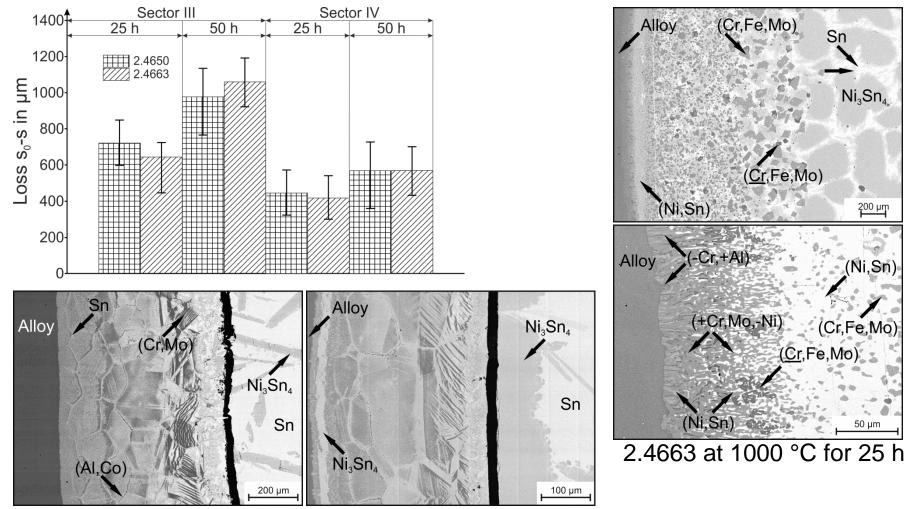

OM, SEM, EDX


Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature 7th Annual Congress on Materials Research and Technology, February 20-21, 2017

Evaluation of liquid tin corrosion

Steels after corrosion experiments

1.4571 at 700 °C for 25 h


1.4301 at 500 °C for 100 h

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys

and first tests on possible protective surface layers at high temperature

Evaluation of liquid tin corrosion Ni-based alloys after corrosion experiments

2.4663 at 700 °C for 25 h

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys

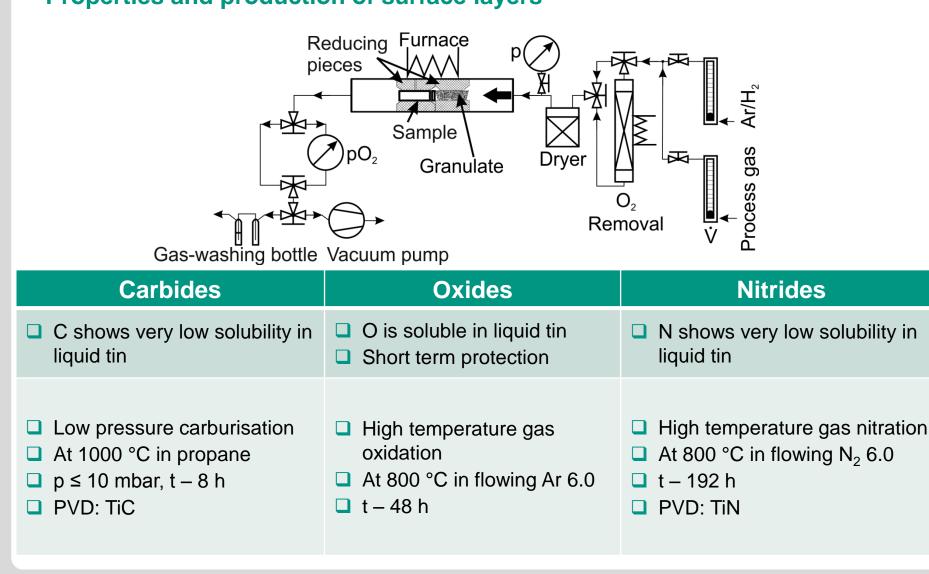
and first tests on possible protective surface layers at high temperature

Evaluation of liquid tin corrosion Conclusions from corrosion experiments in liquid tin

□ Solution based corrosion

- High solubility of Ni causes selective leaching of Ni and higher material losses of Ni-based alloys than of steels
- \square Less soluble Cr, Fe and Mo form α -, σ or similar phases

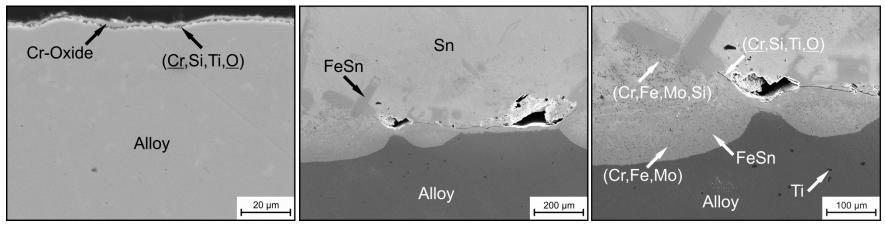
Growth of stannides


- Precipitate from locally saturated melt
- Re-precipitation of solutes leads to further material consumption
- Solid state diffusion through layers allows corrosion to continue

Consequences

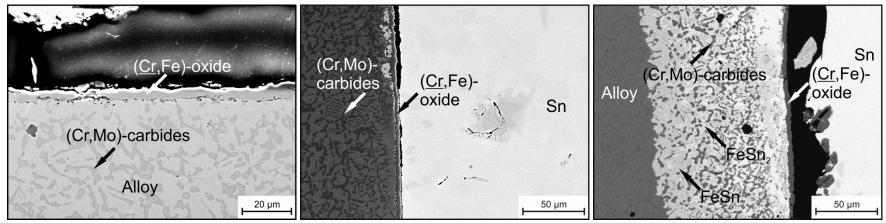
- Dense protective surface layers necessary
- □ Short grace periods especially at 1000 °C
- Precise corrosion monitoring necessary

Development of protective surface layers Properties and production of surface layers



Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys

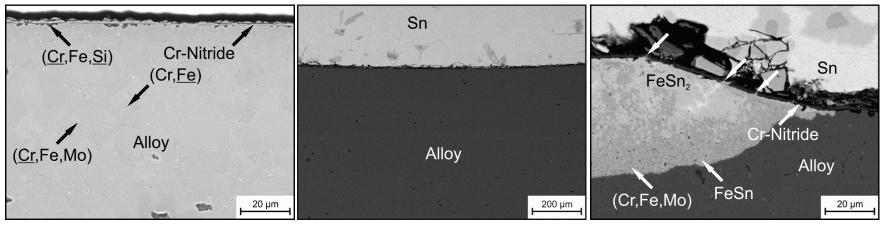
and first tests on possible protective surface layers at high temperature


Development of protective surface layers Corrosion experiments on oxide layers

Oxidised

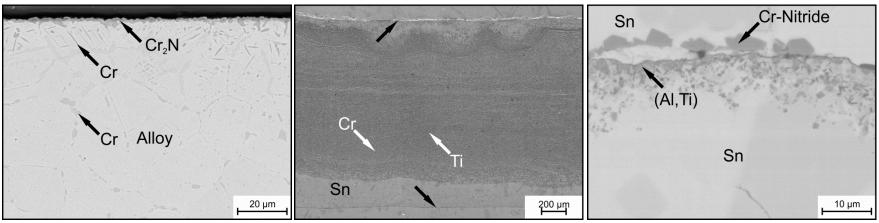
1.4571 at 700 °C for 100 h

Carburised


1.4571 at 700 °C for 100 h

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys

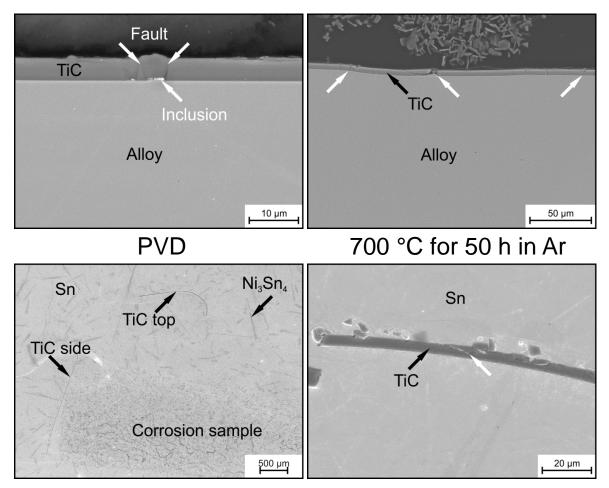
and first tests on possible protective surface layers at high temperature


Development of protective surface layers Corrosion experiments on nitride layers

Nitrided

1.4571 at 700 °C for 100 h

Nitrided


2.4642 at 700 °C for 50 h

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys

and first tests on possible protective surface layers at high temperature

Development of protective surface layers Corrosion experiments on PVD layers

2.4642 at 700 °C for 50 h

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature

Development of protective surface layers

Conclusions from corrosion experiments on surface layers

Oxides

- Dissolution of thin Cr-oxide layers underline limited stability
- □ Thicker layers necessary for protection against liquid tin

Carbides

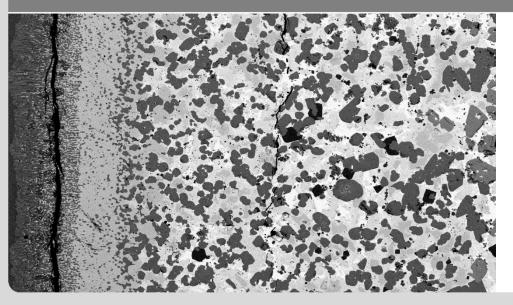
- Carbides show stability against liquid tin
- No reduction of corrosion as network
- Deposition as complete carbide layers required

Nitrides

- Formed continuous layers and protected wide sample areas
- Penetration of liquid tin only through cracks in the layer
- □ Increase of chemical stability by higher alloying content of AI or Ti than Cr
- Most promising approach
 - Preferably nitrides for thermo-chemical layer formation
 - Compensation of different thermo-mechanical properties for deposited coatings by functionally graded layers
 - Layers of chemical stable compounds like AI- or Ti-nitrides to prevent transformation by alloying elements

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature

Thank you for your attention!


Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature 7th Annual Congress on Materials Research and Technology, February 20-21, 2017

Evaluation of liquid tin corrosion on austenitic steels as well as nickel-based alloys and first tests on possible protective surface layers at high temperature

Thomas Emmerich, Carsten Schroer

KARLSRUHE INSTITUTE OF TECHNOLOGY – INSTITUTE FOR APPLIED MATERIALS

KIT - The Research University in the Helmholtz Association

www.kit.edu