
Architectural Run-time Models for Performance and
Privacy Analysis in Dynamic Cloud Applications∗

Robert Heinrich
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

robert.heinrich@kit.edu

ABSTRACT

Building software systems by composing third-party cloud
services promises many benefits such as flexibility and scal-
ability. Yet at the same time, it leads to major challenges
like limited control of third party infrastructures and run-
time changes which mostly cannot be foreseen during de-
velopment. While previous research focused on automated
adaptation, increased complexity and heterogeneity of cloud
services as well as their limited observability, makes evi-
dent that we need to allow operators (humans) to engage
in the adaptation process. Models are useful for involv-
ing humans and conducting analysis, e.g. for performance
and privacy. During operation the systems often drifts away
from its design-time models. Run-time models are kept in-
sync with the underlying system. However, typical run-time
models are close to an implementation level of abstraction
which impedes understandability for humans.

In this vision paper, we present the iObserve approach to
target aforementioned challenges while considering operation-
level adaptation and development-level evolution as two mu-
tual interwoven processes. Central to this perception is
an architectural run-time model that is usable for autom-
atized adaptation and is simultaneously comprehensible for
humans during evolution. The run-time model builds upon
a technology-independent monitoring approach. A corre-
spondence model maintains the semantic relationships be-
tween monitoring outcomes and architecture models. As an
umbrella a megamodel integrates design-time models, code
generation, monitoring, and run-time model update. Cur-
rently, iObserve covers the monitoring and analysis phases
of the MAPE control loop. We come up with a roadmap to
include planning and execution activities in iObserve.

Keywords

Architectural Run-time Model, Performance Model, Usage
Profile, Palladio Component Model, Privacy

1. INTRODUCTION
Two major trends continue to shape the way software en-

gineers build and maintain future long-living software sys-
tems [24]: (I) Software systems will be built by selecting,
configuring, and composing third-party software-defined ser-
vices, providing access to application software, cloud com-
pute and storage facilities, internet-connected things, as well
as data. Software-defined services separate ownership, main-
tenance and operation from usage of software. Service users
do not need to deploy and run software on their own. They
use software executed by third parties that can be remotely
accessed through service interfaces [12]. (II) Software will
be deployed on virtualized, remote compute infrastructures,
such as cloud infrastructures, software-defined network de-
vices, as well as Internet-of-Things devices. These deploy-
ment models result in software that will increasingly be de-
ployed on hardware resources and on top of middleware that
is owned and operated by third parties. The use of third
party services and cloud infrastructures promises many ben-
efits, such as flexibility, scalability, reusability and economic
use of resources. Yet at the same time, it leads to major
challenges (e.g., see [42]) such as those described hereafter.

Third party services are subject to changes at run-time in
their execution environment not under the control of soft-
ware engineers and, in most cases, cannot be foreseen dur-
ing development. Examples include service changes, such as
new versions, un-provisioning of existing services and fluc-
tuations in quality characteristics like performance.

As a consequence of using software and infrastructure that
is owned, hosted and maintained by third-parties, software
engineers will have limited visibility. In most cases services
can only be observed through scattered interfaces offered by
the service provider. The architecture or code of the soft-
ware service will not be known by engineers at the side of the
service consumers and integrators. Also, the utilization and
load distribution of the infrastructure in realistic application
settings will not be published by the provider.

In addition to decentralizing functionality, future software
system will also distribute and decentralize their data. As an
example, data-intensive applications may require deploying
the data analytics tasks to several compute nodes. As those
nodes may be dynamically migrated and replicated, this can
lead to privacy concerns when distributing data across differ-
ent legal systems (i.e. geographical locations) with different
regulations for privacy and data proliferation (cf. [55]). In
the cloud context performance and privacy are closely inter-
related. The application usage impacts on the application’s
performance. Continuously appraised elasticity rules trigger

the migration and replication of cloud application’s software
components among geographically distributed data centers.
Both, migration and replication, may increase performance
yet lead to violation of privacy policies and increasing costs.

Increased complexity and heterogeneity of cloud services
as well as their limited observability, will bring fully auto-
matic adaptation to its limits [24]. For instance, business
decisions, such as sales campaigns, lead to an intensive ap-
plication usage which cannot be anticipated by the system
by monitoring data alone. Fully capturing and formalizing
the knowledge required to take autonomous adaptation de-
cisions may just become infeasible or face prohibitive costs.

While, in recent years, the research focus for adaptation
was on driving further its automation (e.g., see [2]), it be-
comes evident that we need to allow operators (humans) to
engage in the adaptation process. An open question is how
to facilitate such operator-in-the-loop adaptation.

While changes in cloud application requirements (such as
supporting a new feature) provoke human software evolu-
tion activities, changes in cloud infrastructures (such as vir-
tual machine migration, data replication) and variations in
the application workloads may be addressed by the appli-
cation in a self-adaptive way (e.g., see [8]). In our work,
we understand evolution as a longer sequence of modifica-
tions to a software system over its life-time applied manually
by software engineers (cf. [38]), while we understand (self-)
adaptation to be single or a few related modifications by the
system performed in an automated way (cf. [41, 49]).

This vision paper takes a model-based stance by propos-
ing architectural run-time models as a means for combining
automated adaptation as well as the human inspection of
cloud services. While run-time models have shown their
effectiveness for self-adaptation, using run-time models dur-
ing software evolution and to put the operator in the loop
has been neglected so far [26, 24]. As commonly observed,
design-time models often drift away from the actual system
[46]. In contrast, run-time models are kept in-sync with the
underlying system. Thus run-time models may serve as valu-
able basis for evolution activities. However, typical run-time
models are close to an implementation level of abstraction
[61]. While being useful for self-adaptation, such low level of
abstraction impedes understandability for humans. In addi-
tion, owing to various modifications during the life-time of a
system, run-time models may grow in detail or become un-
necessarily complex, which severely limits understandability
of this kind of run-time models for humans during software
evolution (e.g., see [62]).

The iObserve1 approach targets aforementioned challenges
of long-living, cloud-based software systems by the notion
of architectural run-time models to facilitate the automated
analysis, as well as the human inspection to detect, in par-
ticular, performance and privacy anomalies. Architectural
run-time models are kept up-to-date via dynamic process-
ing of monitoring data [21]. As an umbrella to integrate
design-time models, code generation, monitoring, analysis,
and run-time model update, iObserve introduces a concise
megamodel. The megamodel reflects the relationships of
models, meta-models and transformations [15]. Various pre-
processed monitoring data are used to update the architec-
tural run-time model based on relationships specified in the
megamodel. Subsequently the updated model takes part

1 https://sdqweb.ipd.kit.edu/wiki/iObserve

in existing analysis of performance (e.g., [50]) and privacy
(e.g., [55]) which may trigger adaptation or evolution activ-
ities. Contributions of iObserve so far focus on monitoring
and analyzing cloud-based software applications. Next we
list these contributions reported in the paper.

• Architectural run-time model, which reflects updates
of component structures, deployments, and applica-
tion usage caused by changes in the cloud application
and its environment at run-time. In contrast to related
work this architectural run-time model targets to be
usable for automatized adaptation and is simultane-
ously comprehensible for humans during evolution.

• Instrumentation model, which facilitates model-driven
instrumentation and monitoring of cloud applications
and infrastructures. In contrast to related work this
model provides a record structure that is independent
of a specific monitoring framework and allows for the
injection of monitoring probes in an application or in-
frastructure independent of its specific technology.

• Correspondence model, which is a novel approach to
define the transition between low-level monitoring data
and component-based architecture models. Thereby it
maintains the semantic relationships between the sys-
tem and the run-time models while keeping the models
understandable for humans.

• Megamodel, which serves as an umbrella to integrate
design-time architecture models, generator models, in-
strumentation models, correspondence models and run-
time architecture models.

• Further, we propose a roadmap for extending iObserve
to planning and execution of adaptation activities.

The remainder of the paper is structured as follows. Sec. 2
gives an overview of the iObserve approach. Sec. 3 discusses
changes to cloud applications at run-time before we present
our approach to run-time architecture modeling in Sec. 4.
Sec. 5 exemplifies the application of iObserve. We describe
the roadmap to further extensions of iObserve in Sec. 6.
Sec. 7 discusses relate work. The paper concludes in Sec. 8.

2. OVERVIEW OF IOBSERVE
iObserve [26, 22] addresses the challenges of distributed

cloud-based software systems by following the widely adopted
MAPE (Monitor, Analyze, Plan, Execute) control loop model.
MAPE is a feedback cycle for managing system adaptation
[66]. iObserve extends the MAPE loop with shared mod-
els to ease the transition between adaptation and evolution.
For adaptation, the state of the software system is deter-
mined by monitoring, analyzed to detect anomalies and pre-
dict deviations, used as input for planning the adaptation
to mitigate anomalies, and finally to execute. Fig. 1 gives
an overview of iObserve. The figure is inspired by Oreizy et
al. [48]. Parts in the focus of this paper are marked blue.
The cloud application life-cycle, underlying the iObserve ap-
proach, considers evolution and adaptation as two mutual,
interwoven processes that influence each other [22]. The evo-
lution activities are conducted by human developers, while
the adaption activities are performed fully automatically by
predefined strategies.

Central to this perception is an architectural run-time
model that is usable for automatized adaptation and is si-
multaneously comprehensible for humans during evolution.
iObserve builds upon a model driven engineering approach
[22] that models the software architecture and deployment

�������	
����������

�
�
�
��
�
�	

�
�
��
�
�
�

�
�
�
��
�
��
�

��
�
��
�

���������	

�����������

����������

���		�	�

��������	 ����������	

	������

��������������

��������	
�������

Figure 1: iObserve cloud application life-cycle: Considering
adaptation and evolution as two interwoven processes.

in a component-oriented fashion and generates the artifacts
to be executed during run-time. The cloud application is
instrumented with monitoring probes to keep the run-time
model causally connected with application and infrastruc-
ture. The run-time model is analyzed to determine problems
and thus triggering adaptation. When adaptation cannot be
done fully automatically, the human operators or developers
will be involved.

3. CHANGES AT RUN-TIME
Cloud-based software systems are subject to a wide range

of run-time changes (C). This section lists run-time changes
to software applications and their environment taken from
literature [65, 18, 59, 6] and discusses how to observe them
in a cloud context.

Workload characterization changes (C1): The workload
intensity faced by the application and the user behavior may
change which may affect the system performance (cf. [33]).
The amount of users concurrently using the software appli-
cation (closed workload [50]), the users’ arrival rate at the
system (open workload [50]), and the invoked services are
contained in observable user sessions [59].

The deployment of a software systems may change, e.g.
to address performance issues by migration or replication of
components, which, however, may cause violations to pri-
vacy constraints. These changes may either be triggered
actively by an adaptation mechanism or can be performed
autonomously by the observed system.

Migration (C2): moves a software component from one
execution context, e.g. an application server, to another.
While there have been first attempts to move running code,
in practice the transfer is realized by undeploying the com-
ponent on one execution context, and creating a new in-
stance of the same component type on another context [65].
If necessary internal state is also transfered. In consequence
migration is in essence the combination of one undeployment
and one deployment operation of a component of the same
type on different execution contexts.

Replication (C3): duplicates a running component in-
stance in a way that the workload can be distributed among
the deployed instances. At heart this operation is based on
the deployment operation. If necessary some state must be

copied or shared between the components. Replication can
only be performed if the architecture allows for distributing
requests among components.

Dereplication (C4): is the inverse operation to C3. It is
in essence the undeployment of a component instance which
has been replicated before.

The changes C2 to C4 all rely on deployment and unde-
ployment operations. However, solely based on the observa-
tion of deployment and undeployment events, it is not pos-
sible to detect this operations with total accuracy without
further information. To be able to distinguish these types
of changes, component instances must have unique identi-
fiers. Based on these identifiers, a sequence of deployment
and undeployment operations of the same component type
with the same instance identifier can be clearly identified as
migration. While replication creates a new instance with a
new identifier of the same component type.

(De)-allocation (C5/C6): appears when execution con-
texts become available (allocation), or disappear (de-allocation)
[65]. The observation of both is highly technology depen-
dent. However, three ways to observe (de)-allocation can be
distinguished. First, the system controlling the allocation
and de-allocation provides information to the monitoring
system directly. Second, the allocation and de-allocation do
not create observable events, e.g., when the cloud infrastruc-
ture service controller only accepts requests, but does not is-
sue events. In that case the monitoring system must actively
poll the controller for allocation and de-allocation informa-
tion. And third, in systems where deployment and unde-
ployment of component instances is handled autonomously,
the allocation and de-allocation is often performed implicitly
without creating distinct events. However, as a deployment
always requires an existing execution context, such deploy-
ment events imply the necessary allocation event. The same
applies to the undeployment of components.

4. RUN-TIME ARCHITECTURE MODEL-

ING IN IOBSERVE
In contrast to related run-time modeling approaches (dis-

cussed in Sec. 7), iObserve utilizes the same architecture
meta-model at design-time and run-time to provide rich
models at run-time which are comprehensible for developers
and operators, and which can be fed back into software evo-
lution without the need of conversion and the risk of loss of
knowledge. We do not target the extraction of a completely
new run-time model from monitoring data but update spe-
cific parts of an existing design-time model. Therefore, inter-
linking design-time and run-time artifacts on model and im-
plementation level is required. iObserve updates the design-
time model by single parameters (e.g., usage properties or
deployment contexts) and also reflects structural changes
(e.g., replicated components or new execution containers)
to address aforementioned run-time changes. A megamodel
(Sec. 4.1) covers all involved artifacts and their relationships.
The three key elements of the megamodel are (i) a meta-
model for architectural run-time models (Sec. 4.2), (ii) at the
heart a model defining the correspondence between obser-
vation data and the architectural run-time model (Sec. 4.3),
and (iii) model-driven monitoring (Sec. 4.4).

4.1 iObserve Megamodel
Megamodels provide a notation for the relationships of

�
�
�
�
��
�
�
�
�
� 	
�

���������	
����

��������

�����������

�

�����

�����������
�������

	�
�
��
�
�
�
�
��
�
�

�
�
�
�
�

	��

	�������������

�����

���������	
����

�������

������������

����������

���������	
���� ���������	
����

�
����������

�
���

�
���

�

�� ����������

��� ��������

�����

��� ��������

�������������

����������!

�������"�����

�������������

�
#���������

�$

"�%

������������

"���������

��%���

��������$���&

�� ��

�������

$�����������

�������

���

�������

�������

��� ��������

���������

����������

�����������

�����������

�� ���

#������"���

������
������

#���������

"��������
������

�
#�����

�
#���������

Figure 2: Overview of the iObserve megamodel in context of Java Enterprise Technology.

models, meta-models and transformations [15]. The iOb-
serve megamodel depicted in Fig. 2 is divided into four
sections defined by two dimensions: one for design-time
vs. run-time, and one for model vs. implementation level.
At design-time the megamodel shows how an architecture
model is combined with our model-driven monitoring ap-
proach [32] and used for code generation. On the run-time
side, monitoring data which relates to implementation ar-
tifacts is associated with architectural run-time model el-
ements based on the run-time architecture correspondence
model (RAC) [27].

The RAC is depicted in Fig. 2 below the architecture
meta-model. It is the central element of the megamodel and
crucial for the use of an architectural model at design-time
and run-time. The RAC relates model nodes to implemen-
tation artifacts, like classes, methods, and XML files. It
is initialized during code generation by the transformation
TApp. The RAC is also used in the TMonitoring transfor-
mation for generation and configuration of probes by our
model-driven monitoring approach [32]. Monitoring data
can be described as an infinite model [11] and resembles a
continuous data stream. As monitoring may produce large
amounts of data (i.e. millions of events per second in large
enterprise applications [16]), iObserve first filters and aggre-
gates the monitoring data regarding the six types of run-time
changes (cf. Sec. 3) using the TPreprocess transformation.
Second, iObserve relates the implementation level monitor-
ing data to architecture model elements using the semantic
relationships in the RAC. Finally, iObserve applies the ag-
gregated information to drive architectural run-time model
update using the TRun−time Update transformation. The sin-
gle parts of this approach are further detailed hereafter.

4.2 Architecture Meta-Models
Prospective architecture meta-models to be part of our

megamodel must satisfy requirements (R) that result from
the aforementioned run-time changes. It is important to re-
call at this point that, in the context of our research, we
consider an architecture model already exists at design-time
for doing predictions by probably making assumptions for
information not available at design-time. It then becomes
an architectural run-time model by updating certain parts
of the model by observation data. Hence, combining design-
time and run-time properties is straightforward since they

rely on the same meta-model. (R1) For identifying C1, the
architecture meta-model must reflect the application’s us-
age profiles in terms of workload intensity and user behavior
(e.g., services invoked by the users, paths the users traverse).
(R2) The architecture meta-model must reflect the struc-
ture of the application and its environment in a component-
based fashion to analyze the effect of reconfigurations (i.e.
C2 to C6) and to ensure comprehensibility by humans dur-
ing software evolution. (R3) Prospective architecture meta-
models must allow for analyzing performance and privacy.
This means quality-relevant properties of the software com-
ponents and their context (e.g., branch propabilities in the
usage profile, geo-location and processing rate of resources
in the execution environment) must be represented in the
architecture meta-model. Furthermore, associated analyz-
ers for performance and privacy must be available.

Next we discuss how various candidates of meta-models
satisfy the requirements. Layered Queueing Networks (LQNs)
[51] and Queueing Petri Nets (QPNs) [3] are established pre-
diction formalisms for software systems (e.g., [34]). They al-
low for conducting performance predictions based on system
usage profiles (partly satisfy R1) and performance-relevant
properties of the environment (partly satisfy R3). Yet, since
they are general-purpose formalisms, they do not provide
the specific modeling constructs for representing component-
based software architectures. Thus, they do not satisfy R2
and are inadequate for analyzing the geo-location of compo-
nents for privacy audits.

Meta-models for modeling software components, e.g. in
the UML or Enterprise JavaBeans context, typically lack
modeling of usage profiles (do not satisfy R1) and quality-
relevant properties (do not satisfy R3). Some of these meta-
models allow for quality annotations, e.g. UML SPT profiles
[47]. However, they do not come along with analyzers for
performance or privacy.

The Palladio approach [50] is tailored to component-based
software architecture analysis. It relies on a comprehen-
sive domain-specific meta-model – the Palladio Component
Model (PCM). The PCM consists of several partial meta-
models tailored to represent different aspects of a software
system such as usage profile (satisfies R1), component struc-
ture (satisfies R2), deployment context, and execution envi-
ronment as well as corresponding quality properties (satisfies

���������	��

���

����������

�
���

�	����������������	������������������
���

����������

������

���������	���
���

���������������������

���������	���

�	�������
���

������������

��������������

�
�	�������������

Figure 3: Overview of the Run-time Architecture Corre-
spondence Model within the iObserve megamodel.

R3). Furthermore, the PCM is comprehensible to humans
as the study in [39] indicates. There are several meta-models
related to the PCM, such as the Descartes Meta-Model [7],
and those surveyed by Koziolek [35]. These models have in
common that they represent a detailed architecture speci-
fication in a component-oriented fashion. They are param-
eterized to explicitly capture the influences of the compo-
nents’ execution context, such as usage profile and hard-
ware configuration [7]. In iObserve, we choose the PCM as
a representative of these component-based meta-models, as
it is established in the community and offers the most ma-
tured tool support. The PCM is applied as an architecture
meta-model (see Fig. 2). The PCM provides all the mod-
eling constructs to fulfill the aforementioned requirements
[50] except for geo-location. However, it is straightforward
to support geo-location by adding an attribute to execution
environment model elements.

4.3 Run-time Architecture Correspondence
The record types model within the iObserve megamodel

(lower left side of Fig. 2) exhibits a flat (i.e. non-hierarchical)
structure where all records are contained in a large collec-
tion [11] and distinguished only by their type and their at-
tributes. Monitoring events adhering to this collection re-
flect code artifacts which correspond to elements of the ar-
chitecture model. Knowledge about this correspondence is
lodged with the RAC depicted in Fig. 3.

The RAC bridges the divergent levels of abstraction be-
tween application monitoring outcomes on implementation
level and component-based architecture models. It keeps the
mapping between one or more source code artifacts (i.e. ap-
plication elements) and elements of the architecture model.
It provides these correspondence information for updating
the run-time architecture model based on observations. An
example is given in Sec. 5.

During the initial application development code is gener-
ated from the architecture model (TApp). While generating
the code, the semantic relationships between the generated
artifacts (e.g., Java classes) and the architecture model ele-
ments (e.g., logical components) are automatically recorded
and stored in the RAC.

Once deployed, the application and the entire cloud sys-
tem face various changes at run-time (cf. Sec. 3). These
changes require the initial architecture model to be updated
to continuously reflect the current system state at run-time.
The model is updated by single parameters (e.g., usage prop-
erties or deployment contexts of migrated components) and
structural elements (e.g., replicated components or new ex-
ecution containers). While updating the model using the
transformation TRun−time Update the RAC is applied to iden-
tify model elements to be modified, replicated or removed.

Therefore, the RAC establishes the correspondence between
monitored events at implementation level and the architec-
ture model (e.g., between objects arose from Java classes and
logical components in the model). Larger changes to the sys-
tem architecture trigger evolution activities which require a
human developer to change the architecture models. Sub-
sequently, code is regenerated and recorded relationships in
the RAC are updated.

Updating the architecture model by implementation level
observations must not deviate its component-based fashion
and, thus, its usefulness for humans during long-term evo-
lution. In iObserve, the level of abstraction of the initial
architecture model and the updated model (i.e. the archi-
tectural run-time model) is maintained, due to (a) both,
the initial architecture model and the architectural run-time
model, rely on the same meta-model, and (b) the decom-
position of a design model element in one or more source
code artifacts is recorded in the RAC while code generation
and (c) restored while transforming monitoring events re-
lated to the source code artifacts to the component-based
architectural run-time model. Thereby, identity is ensured
by unique identifiers of the elements recorded in the RAC.
The level of abstraction of the initial model does not affect
the mapping in the RAC. Therefore, in analogy to existing
component models, we do not predetermine the abstraction
level used in the architecture model. Consequently, owing
to the correspondence between model and code specified in
the RAC, the abstraction level of the model cannot deviate
from one update to another.

4.4 Model-driven Monitoring
For gathering information required to update architec-

tural run-time models with respect to usage and deployment,
the monitoring approach of iObserve integrates several in-
strumentation and monitoring technologies. As this requires
different types and procedures to realize monitoring, we pro-
vide a model-based abstraction of instrumentation probes
and data collection [26].

Monitoring is a run-time activity used to observe vari-
ous system properties. Whereas the specification of what,
how, and where to monitor is conducted at design-time. In
iObserve, instrumentation probes are injected into the code
while generation. Monitoring is perceived as a cross-cutting
concern and realized as an aspect by means of aspect-oriented
modeling [14]. Fig. 4 shows the point cuts used to express
the locations of probes. Required information about the
relationship of architecture model elements and their imple-
mentation is expressed in the RAC. Furthermore, the tech-
nology used to the probe realization is determined by a look
up in the RAC to ensure the correct selection of probe gen-
erator or implementation. For example, the transformation
requires information whether the advice must realize an in-
terface of a JEE interceptor or generate an AspectJ artifact.

The definition of the monitoring aspect is realized through
three models for the point cuts, the advices, and the data
model for the observed information. The data model con-
forms to the Instrumentation Record Language (IRL) [32]
to provide an implementation independent record specifi-
cation which can be used across different technologies and
programming languages. This record specification is realized
by record types. The specification of point cuts and advices
form an Instrumentation Aspect Model that conforms to the
Instrumentation Aspect Language (IAL) [32]. Based on the

������

�����	��
���

�����

��
���
���
������������

�������

��
���
���

�
�

�
�

�

�
�
�
�
�

��
�

��
�

�

�

��

�

�
�
�
�
�

������������

�����

�������

�����	��
���

��� !�� �"� !��
�� !�� # "
�
 # �# �� # "
�
 # �# ��

������
���

"
�
 # �# ��

�
���

�
�������

�
��������$

��������
����������������

$
�

�����

�
������

Figure 4: Overview of the models, transformations and code
artifacts in the model-driven monitoring approach.

����������	
��
���

��������������

���������
���������������

��������������

���������
���������������

��������������

���������
���������������

�	��������
������ �	��������
������ �	��������
������

���������
�	
��� ��	�� !�

Figure 5: Actual (solid line) and conceivable (dashed line)
component deployments within a global reach of prospective
cloud providers in the experiment scenario.

models, transformations are used to generate the relevant
implementation artifacts. As the IAL also supports native
advices, which have been implemented by hand, not all of
the advices must be generated supporting the possibility to
use existing advices or include advices utilizing technologies
not supported by the transformations.

5. FEASIBILITY EXAMPLE
This section gives a concrete application example of iOb-

serve to demonstrate its feasibility for addressing challenges
of modern cloud-based systems by handling run-time changes.

5.1 Application Scenario
The application example builds upon the established com-

muity case study CoCoME [53] and an associated evolution
scenario [23]. CoCoME resembles a trading system as it may
be applied in a supermarket chain. It implements processes
at a single cash desk as well as enterprise-wide administra-
tive tasks. CoCoME uses a database service hosted on data
centers that are distributed around the globe, as shown in
Fig. 5. The figure illustrates the CoCoME core application
and the global reach of prospective cloud providers that of-
fer Database-as-a-Service (DBaaS). Conceivable component
deployments are illustrated by dashed lines. The supermar-
ket chain is located within the European Union (EU). Thus,
common privacy standards of the EU must be followed. Ac-
cording to these privacy standards sensitive data must not
leave the EU during component migration or replication due
to high risk of data leakage in other countries, e.g. the USA.

An advertisement campaign of the supermarket chain leads
to an increased amount of sales and thus to variations in the
application’s usage profile (C1). Increased usage intensity
causes an upcoming performance bottleneck due to limited
capacities in the given service offering of the cloud provider
currently hosting the database. Migrating (C2) or replicat-
ing (C3) the database from one data center to another may
solve the scalability issues, however, may cause privacy is-
sues [23]. Thus, the scenario addresses aforementioned chal-
lenges of decentralized data, limited visibility, and fluctua-
tion in quality not foreseen during development.

The application example is realized with Java enterprise
technologies (JEE), i.e. Enterprise JavaBeans and Java Serv-
lets. It is deployed on the application server Glassfish which
is compliant to JEE and widely used in productive settings
such as in OpenStack cloud infrastructures. According to
the challenge of limited visibility we assume in this scenario
the platform service is rented. Thus, we cannot instrument
Glassfish or use its internal monitoring system. We can only
use probes inserted in our EAR bundle containing CoCoME
which we can deploy over a service interface. The system
utilizes a remote database node realized as a PostgreSQL
database which provides appropriate features for migration
and replication. Both nodes use a VirtualBox cloud image
executed on OpenStack cloud infrastructures. As technical
basis for monitoring, we choose the fast and reliable Kieker
framework [28].

5.2 Applying iObserve
In the following we exemplify the filtering and processing

of a sales operation (i.e. sale() depicted in Fig. 5) as well
as the migration and replication of a database service. We
assume code has been generated initially and the correspon-
dences between model elements and source code artifacts has
been stored in the RAC. Further, the application is deployed
and running.

�����������	�

�����������

������

������������� ���������������
����������

����������� ���������������
����������

��������������������� �����������������

Figure 6: Excerpt of the transformation chain for monitoring
data in TPreprocess.

Fig. 6 illustrates the inner structure of the TPreprocess

transformation shown in Fig. 2. While observing the run-
ning system Kieker produces a stream of heterogeneous mon-
itoring events. Increased usage intensity in the scenario pro-
vokes changes in the model’s workload specification (C1).
iObserve filters out single entry and exit events to operations
of the application (e.g., the sales operation) and aggregates
them to sequences of events. Based on the sequences the
new usage intensity is calculated and then transformed to
the PCM workload specification.

The selection of entry and exit events from the stream
of heterogeneous monitoring events is based on constraints
kept in the filter FTrace. Applying Kieker, monitoring data
of the type BeforeOperationEvent are considered as entry
level operations only if their related TraceMetadata has the
value null in its parentTraceId attribute. Since this is the
case for the sales operation it is considered as an entry level
operation for further processing.

The TEntryCall transformation listens to the event stream
of entry level operations and creates an entry call event
for the sales operation. Based on user session informa-
tion contained in the monitoring events TEntryCallSequence

aggregates the sales operation together with other entry
calls (e.g., for login). All observed user sessions are com-
bined in a graph based entry call sequence model which
is input to the TRun−time Update transformation shown in
Fig. 2. Usage-related properties like path probabilities or
usage intensity are calculated based on the sequence model.

TRun−time Update applies transformations according to the
architecture meta-model (here the PCM) to update the ar-
chitectural run-time model. As in the scenario we observe in-
creased invocations to the sales operation, TRun−time Update

modifies the model by an increased workload specification.
As there might be various usage profiles in the model, the
RAC is required for the transformation to identify which
workload specification to be updated for the sales operation.

The updated model is then applied for performance sim-
ulation in Palladio (cf. [50]) which reveals an upcoming
performance bottleneck. According to the scenario a plan-
ning routine automatically adapts the system by migrat-
ing (C2) or replicating (C3) the database service to another
OpenStack instance located in the USA to address the per-
formance issue. This evokes deployment and undeployment
events observed by Kieker. These events among others con-
tain information about associated classes. TPreprocess filters
out deployment and undeployment events (FDeployment in
Fig. 6). Identifiers (cf. Sec. 3) are used to detect migration
or replication in the stream of events. TRun−time Update is
applied to update deployment contexts (migration) of the
database service components or copy the components (repli-
cation) in the PCM instance. Therefore, the RAC refers
to components in the model corresponding to the observed
events. Afterwards privacy checks (e.g., [55]) are applied
which recognize privacy violations as the database has been
moved outside the EU.

As exemplified, iObserve is able to cope with limited vis-
ibility of third party services, performance fluctuation, and
supports the identification of privacy issues caused by decen-
tralized data. More intelligent routines discussed in Sec. 6
may avoid the privacy issue by privacy-driven planning be-
fore migration or replication.

6. ROADMAP TO PLANNING AND EXE-

CUTION PHASES
iObserve so far is focused on monitoring and analysis of

cloud-based software applications. Addressing planning and
execution phases of the MAPE control loop requires facing
various challenges due to the complex and heterogeneous
nature of cloud services. While different directions of further
development are possible, we consider the following three
pillars taken from [24] as next steps for evolving iObserve.

First, the global reach of cloud services requires putting
special emphasis on privacy-driven planning. Second, the
complexity of cloud services and the complexity of effects of
external events lead to major challenges in finding an appro-
priate system design. Therefore, design space exploration
may target performance and privacy based on architectural
run-time models to be explored for solutions. Third, restric-
tions in fully automatic adaptation need to allow human
operators to engage in the adaptation process. Operator-in-
the-loop adaptation may overcome limitations of automatic
adaptation. For all three pillars architectural run-time mod-
els (either used descriptively or prescriptively) are key arti-
facts as depicted in Fig. 7 [24].

According to the figure, if any performance or privacy
issues are identified in the analysis phase, adaptation can-
didates are generated and specified as candidate prescrip-
tive run-time models during the planning phase. Due to
the different nature of performance and privacy, planning is
performed by distinct techniques. The generated candidates

������� ���	
�� ������

������������������������	

�������������	�

�������������������������	

�������������	�

�	��

���������	��
���������

��������	����������������

������
���	��
�����	�����

�
���������
�����	�����

�������� ����������������

������������	������

���������� 	����!

�������������!

"�� 	��������������

��
	���	������
�����

������������������	��

�����������������������������

Figure 7: Illustration of the planning and execution phases
in context of the MAPE control loop.

aim for solving the root cause that led to the raised issues.
As part of the design space exploration, candidate models
are evaluated and ranked (e.g., with respect to performance)
building upon existing techniques [1]. Subsequently, these
models are operationalized by deriving concrete tasks of an
adaptation plan for the execution phase [52]. When select-
ing one concrete model among the candidates or deriving
an adaptation plan cannot be done fully automatically, the
human operator (cf. Fig 7) choses among the presented
adaptation alternatives. In cases where no candidate could
be created, e.g., due to lack of information or criticality of
decision, the operator will also be involved. Realizing this
approach requires tackling the following areas.

Privacy-driven planning requires techniques for determin-
ing degrees of freedom for adaptation that allow to resolve or
mitigate privacy violations. They are defined around three
key facets: (i) The identification and specification of ap-
propriate cloud adaptation mechanisms which need to be
included in the descriptive architectural run-time models
in order to empower the adaptation routines for carrying
out privacy-aware adaptations. (ii) Constraint-based gener-
ation of adaptation alternatives under consideration of the
available mechanisms. And (iii) impact analysis of privacy
related adaptations on multiple application characteristics.

Many cloud-based applications serve thousands if not mil-
lions of users whose behavior cannot be fully understood
at design-time, as it varies over time, e.g. in case of sales
campaigns. Furthermore, service offers and cloud products
change over time in performance and cost. In combination
with privacy concerns, this yields a complex problem space
where multiple solutions can be computed forming a de-
sign space. Design space exploration is based on multiple
criteria representing different dimensions for architectural
adaptations of cloud applications during design-time and
exploit this specification for generating and evaluating de-
sign alternatives during run-time. First, to determine the
different degrees of freedom in the design-space, several in-
put models are required beside the descriptive architectural
run-time model, including cloud profiles and workload char-
acterization models. The behavior model generation in iOb-
serve will be extended to support behavior mixes based on
different detected behavior patterns. Second, adaptation
plans are translated into detailed adaptation tasks realiz-
ing the transformation of the present architecture into the
target architecture. For task identification we build upon
architecture-based assessment techniques [52].

Operator-in-the-loop adaptation can be split into two main
activities. First, the introduction of information on external
events, and second, the selection of adaptation plans from
the design-space exploration. External parties come up with
external events, such as sales campaigns, which cannot be

foreseen at design-time. Therefore, the operator must be
able to introduce new cloud profiles, data handling policies,
and workload models at run-time. As workload models are
complex, operators want to base them on observed behav-
ior. Hence, iObserve will provide the ability to extract and
modify intensities and behavior pattern. The design-space
exploration might provide multiple adaptation candidates
all representing a different element of a Pareto optimum.
Human operators must assess and select adaptation plans
which is supported by views and analyses. Therefore, we
investigate the creation of views on the system that provide
operators with up to date information about the actual cloud
application derived from the architectural run-time models
of iObserve, the different adaptation candidates, and the
associated adaptation tasks.

7. RELATED WORK
While software adaptation and evolution is an architec-

tural challenge [36] existing approaches dealing with the
interplay between adaptation and evolution (e.g., [45, 48])
lack continuous modeling and updating of software archi-
tectures in component-based fashion and the engagement
of human operators. Work related to iObserve can be dis-
tinguished into four major categories. First, work related to
our architectural run-time models which can be separated in
approaches for reusing design-time models at run-time and
approaches for model extraction. Second, privacy-driven
planning which is tackled from two different angles in re-
lated work – privacy-by-design and privacy audits. Third,
approaches to design space exploration. Fourth, work on
operator-in-the-loop adaptation.

Work on reusing design-time models during run-time (e.g.,
[43, 30, 9]) employs design-time models as foundation for
reflecting software systems during run-time. [4] gives an
overview of run-time modeling and analysis approaches. The
work in [43] reuses sequence diagrams created during run-
time to verify running applications against their specifica-
tions. However, the approach does not include any updating
mechanisms that changes the model whenever the reflected
systems is being alternated. Consequently, run-time changes
are not supported. Other than this, the run-time models in
[30, 9] are modified during run-time. These approaches em-
ploy workflow specifications created during design-time in
order to carry out performance and reliability analyses dur-
ing run-time. The approaches update the workflow models
with respect to quality properties (e.g., response times) of
the services bound to the workflow. However, these ap-
proaches do not reflect component-based software architec-
tures. Further, this work updates the model with respect
to single parameters and does not change the model’s struc-
ture, which is required to reflect, e.g., C3 and C4.

Work on model extraction creates and updates model con-
tent during run-time. Approaches such as [56, 54, 58] estab-
lish the semantic relationships between executed applica-
tions and run-time models based on monitoring events (for
a comprehensive list of approaches see [57]). Starting with a
“blank” model, these approaches create model content dur-
ing run-time from scratch, e.g. by observing and interpret-
ing operation traces. Therefore, they disregard information
that cannot be gathered from monitoring data, such as de-
sign perspectives on component structures and component
boundaries. For instance, the work in [58] exploits process
mining techniques for extracting state machine models from

event logs. Without knowledge about the component struc-
ture developed during design-time, the extracted states can-
not be mapped to the initial application architecture. In
consequence, the model hierarchy is flat and unstructured,
which hinders software developers and operators in under-
standing the current situation of the application at hand.
Further, the work reflects processes but neither components
nor their relationships (cf. C2-4). Other than this, the work
in [54] extracts components and their relationships from ob-
servations for architecture comparison. With this approach
we share the application of transformation rules to update
a run-time model based on monitoring events. The result-
ing model in [54] is coarse-grained, which is sufficient for
their purposes. However, when conducting performance and
privacy analyses the observation and reflection of resource
consumptions is crucial. Reflecting the consumption by the
means of usage profiles requires processing event sets rather
than single events, which outruns the capacity of this ap-
proach (cf. C1). Further, the observation and analysis of
usage and component changes causes complex relationships
between the investigated applications, probe types, and run-
time models, which is not discussed in [54].

To summarize, design-time models reused at run-time pro-
vide good comprehensibility to humans, but are not updated
with respect to structural changes yet. However, structural
updates are required to reflect the run-time changes listed
in Sec. 3. Work on model extraction automatically creates
run-time models from scratch. As design-time decisions on
application architectures cannot be fully derived from mon-
itoring events the resulting models lack understandability.

Related work on privacy-by-design employs two main con-
cepts – access control and deployment resp. elasticity rules.
Research on access control mechanisms (e.g., [13]) investi-
gates how to equip components with mechanisms that per-
mit or grant data access. However, access control mecha-
nisms face difficulties whenever the controlled component is
migrated (C2) or replicated (C3) across data centers. Rules
defined during design-time may not accurately capture geo-
location constraints at run-time as they cannot consider the
actual data storage and transfer.

Approaches for privacy audits of cloud services (e.g., [20])
use host geo-location and data possession to evaluate the
compliance of privacy regulations. Host geo-location can be
checked based on ping round trip times for a service interface
utilizing different ping origins. However, the components be-
hind the interfaces might be migrated or replicated. [55] pro-
poses fundamentals for facilitating privacy-driven planning.
Yet, existing work focuses on the identification of privacy vi-
olations and does not cover planning or adaptation aspects.
Quality aware planning techniques exploit the proportional
relation between allocated hardware and performance. For
instance, calibrated run-time models [29] are used to steer
planning activities and adjust hardware nodes to reach the
desired performance. However, resolving privacy violations
is inherently different from resolving performance issues.

To summarize, related work on privacy-driven-planning
neglects two essential characteristics of cloud applications,
(1) the dynamic migration and replication of cloud applica-
tion components (cloud elasticity) across data centers; (2)
the limited control and visibility of cloud elasticity by cloud
customers (shared ownership).

Design space exploration relies on various aspects of the
design space in model form, e.g. workload characterization

and cloud profiles, to be explored for solutions. Workload
characterization approaches used for adaptive systems and
workload generation [64] focus on the construction of work-
load intensity patterns. However, the intensity alone is not
sufficient. Therefore, a wide variety of methods are used to
model user behavior and workloads (e.g., [40, 60]). Current
work addresses complex user behavior [63] and the business
impact on system usage [25]. However, the discrimination
of different user behaviors and the aggregation of similar be-
haviors is complicated. The BEAR approach [19] addresses
the construction and analysis of such behavior models. How-
ever, BEAR focuses on analysis at design-time and its user
distinction based on IP addresses is not unique. Cloud pro-
files describe properties of cloud services including resources
and cost, like in the CloudMIG approach [18]. Based on
these models, design space exploration can be performed.
An overview of design space exploration methods is given
in [1]. CDOXplorer [17] assesses the fitness of cloud de-
velopment options based on cloud profiles. To summarize,
related work on design space exploration neglects the differ-
entiation of user behavior and trade-off decisions between
different quality attributes.

To the best of our knowledge, the combination of au-
tomatic and operator-in-the-loop adaptation is not covered
in related work on self-adaptive systems as the main goal
was to automate adaptation and eliminating human involve-
ment. Other research areas however came up with related
approaches. Control systems [5] involve humans in the op-
eration of large scale distributed industrial plants and in-
frastructure networks. Recommendation systems [44] derive
knowledge from source code or issue trackers to support de-
velopers in architecture comprehension [37], software migra-
tion [18], and performance optimizations [10]. CloudAdvisor
[31] and CloudMIG [18] support multi-objective optimiza-
tion. ExplorViz [16] provides 3D architecture visualization
based on monitoring data. To summarize, while we could
not find combinations of automatic and operator-in-the-loop
adaptation, control and recommendation systems provide
foundations to involve humans in the control loop.

8. CONCLUSION AND FUTURE WORK
This paper presented the iObserve approach to support

adaptation and evolution of cloud-based software applica-
tions. The approach takes a model-based stance by propos-
ing architectural run-time models for combining automated
adaptation and human inspection. As an umbrella to in-
tegrate design-time models, code generation, monitoring,
analysis, and run-time model update, we proposed a con-
cise megamodel. An exemplary application of iObserve in-
dicates its feasibility to handle run-time changes. Currently,
iObserve supports the monitoring and analysis phases of the
MAPE control loop model. We come up with a roadmap to
consider planning and execution activities in the future.

Besides following the roadmap we plan to extend the eval-
uation of iObserve. As a next step we will conduct further
experiments for evaluating the architectural run-time mod-
els of iObserve with respect to fidelity [4] and usefulness for
human inspection and extend first scalability experiments.

9. REFERENCES
[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and

I. Meedeniya. Software architecture optimization methods: A
systematic literature review. Software Engineering, IEEE
Transactions on, 39(5):658–683, 2013.

[2] B. H. C. Cheng et al. Software engineering for self-adaptive
systems: A research roadmap. In Software Engineering for
Self-Adaptive Systems, pages 1–26. Springer, 2009.

[3] F. Bause. Queueing petri nets - a formalism for the combined
qualitative and quantitative analysis of systems. In 5th Int’l
Workshop on Petri nets and Performance Models, pages
14–23. IEEE, 1993.

[4] N. Bencomo, R. France, B. H. C. Cheng, and U. Amann.
Models@run.time. Springer, 2014.

[5] S. A. Boyer. Scada: Supervisory Control And Data
Acquisition. International Society of Automation, 2009.

[6] F. Brosig, N. Huber, and S. Kounev. Automated extraction of
architecture-level performance models of distributed
component-based systems. In P. Alexander, C. S. Pasareanu,
and J. G. Hosking, editors, ASE, pages 183–192. IEEE, 2011.

[7] F. Brosig, N. Huber, and S. Kounev. Modeling parameter and
context dependencies in online architecture-level performance
models. In 15th Symposium on Component Based Software
Engineering, CBSE ’12, pages 3–12. ACM, 2012.

[8] A. Bucchiarone, C. Cappiello, E. Di Nitto, S. Gorlatch,
D. Mailänder, and A. Metzger. Design for self-adaptation in
service-oriented systems in the cloud. In D. Petcu and
J. Vásquez-Poletti, editors, European Research Activities in
Cloud Computing. Cambridge Scholars Publishing, 2012.

[9] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. A
framework for QoS-aware binding and re-binding of composite
web services. Journal of Systems and Software,
81(10):1754–1769, 2008.

[10] C. Chambers and C. Scaffidi. Impact and utility of smell-driven
performance tuning for end-user programmers. Journal of
Visual Languages & Computing, 28(0):176 – 194, 2015.

[11] B. Combemale, X. Thirioux, and B. Baudry. Formally defining
and iterating infinite models. In R. B. France, J. Kazmeier,
R. Breu, and C. Atkinson, editors, Model Driven Engineering
Languages and Systems, volume 7590 of LNCS, pages 119–133.
Springer, 2012.

[12] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive
service-based applications. Automated Software Engineering,
2008.

[13] U. e Ghazia, R. Masood, and M. Shibli. Comparative Analysis
of Access Control Systems on Cloud. In 13th Int’l Conference
on Software Engineering, Artificial Intelligence, Networking
and Parallel Distributed Computing, pages 41–46, 2012.

[14] T. Elrad, O. Aldawud, and A. Bader. Aspect-oriented
modeling: Bridging the gap between implementation and
design. In D. Batory, C. Consel, and W. Taha, editors,
Generative Programming and Component Engineering,
volume 2487 of LNCS, pages 189–201. Springer, 2002.

[15] J.-M. Favre. Foundations of model (driven) (reverse)
engineering – episode i: Story of the fidus papyrus and the
solarus. In Dagstuhl post-proccedings, 2004.

[16] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz: Visual
runtime behavior analysis of enterprise application landscapes.
In 23rd Europ. Conference on Information Systems. AIS,
2015.

[17] S. Frey, F. Fittkau, and W. Hasselbring. Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud. In 35th Int’l Conference on Software Engineering,
pages 512–521. IEEE Press, 2013.

[18] S. Frey and W. Hasselbring. The CloudMIG approach:
Model-based migration of software systems to cloud-optimized
applications. Int’l Journal on Advances in Software, 4(3 and
4):342–353, 2011.

[19] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli. Mining
behavior models from user-intensive web applications. In 36th
Int’l Conference on Software Engineering, 2014.

[20] M. Gondree and Z. N. Peterson. Geolocation of data in the
cloud. In 3rd conference on Data and application security and
privacy, pages 25–36. ACM, 2013.

[21] W. Hasselbring. Reverse engineering of dependency graphs via
dynamic analysis. In Proceedings of the 5th European
Conference on Software Architecture: Companion Volume,
pages 5:1–5:2. ACM, 2011.

[22] W. Hasselbring, R. Heinrich, R. Jung, A. Metzger, K. Pohl,
R. Reussner, and E. Schmieders. iObserve: integrated
observation and modeling techniques to support adaptation
and evolution of software systems. Technical Report 1309, Kiel
University, Kiel, Germany, 2013.

[23] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner,

K. Schneider, B. Paech, and J. Jürjens. A platform for
empirical research on information system evolution. In 27th
Int’l Conference on Software Engineering and Knowledge
Engineering, pages 415–420. KSI Research Inc., 2015.

[24] R. Heinrich, R. Jung, E. Schmieders, A. Metzger,
W. Hasselbring, R. Reussner, and K. Pohl. Architectural
run-time models for operator-in-the-loop adaptation of cloud
applications. In IEEE 9th Symposium on the Maintenance
and Evolution of Service-Oriented Systems and Cloud-Based
Environments. IEEE, 2015.

[25] R. Heinrich, P. Merkle, J. Henss, and B. Paech. Integrating
Business Process Simulation and Information System
Simulation for Performance Prediction. Intl. Journal on
Software & Systems Modeling, 2015.

[26] R. Heinrich, E. Schmieders, R. Jung, W. Hasselbring,
A. Metzger, K. Pohl, and R. Reussner. Run-time architecture
models for dynamic adaptation and evolution of cloud
applications. Technical Report 1503, Kiel University, Kiel,
Germany, 2015.

[27] R. Heinrich, E. Schmieders, R. Jung, K. Rostami, A. Metzger,
W. Hasselbring, R. Reussner, and K. Pohl. Integrating run-time
observations and design component models for cloud system
analysis. In 9th Int’l Workshop on Models@run.time, pages
41–46. CEUR Vol-1270, 2014.

[28] A. v. Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and dynamic
software analysis. In 3rd Int’l Conference on Performance
Engineering (ICPE 2012), pages 247–248. ACM, 2012.

[29] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. S/T/A: Meta-modeling Run-time Adaptation in
Component-Based System Architectures. In 9th Int’l
Conference on e-Business Engineering, pages 70–77. IEEE,
2012.

[30] D. Ivanovic, M. Carro, and M. Hermenegildo. Constraint-based
runtime prediction of sla violations in service orchestrations. In
Service-Oriented Computing, pages 62–76. Springer, 2011.

[31] G. Jung, T. Mukherjee, S. Kunde, H. Kim, N. Sharma, and
F. Goetz. Cloudadvisor: A recommendation-as-a-service
platform for cloud configuration and pricing. In IEEE 9th
World Congress on Services, pages 456–463, 2013.

[32] R. Jung, R. Heinrich, and E. Schmieders. Model-driven
instrumentation with Kieker and Palladio to forecast dynamic
applications. In Symposium on Software Performance, pages
99–108. CEUR Vol-1083, 2013.

[33] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload
characterization and prediction in the cloud: A multiple time
series approach. In Network Operations and Management
Symposium, pages 1287–1294. IEEE, 2012.

[34] S. Kounev. Performance modeling and evaluation of distributed
component-based systems using queueing petri nets.
Transactions on Software Engineering, 32(7):486–502, 2006.

[35] H. Koziolek. Performance evaluation of component-based
software systems: A survey. Performance Evaluation,
67(8):634–658, 2010.

[36] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Future of Software Engineering,
pages 259–268, 2007.

[37] S. Lee, S. Kang, S. Kim, and M. Staats. The impact of view
histories on edit recommendations. Software Engineering,
IEEE Transactions on, 41(3):314–330, 2015.

[38] M. M. Lehman and L. A. Belady, editors. Program Evolution:
Processes of Software Change. Academic Press Professional,
Inc., 1985.

[39] A. Martens, H. Koziolek, L. Prechelt, and R. Reussner. From
monolithic to component-based performance evaluation of
software architectures. Empirical Software Engineering,
16(5):587–622, 2011.

[40] D. A. Menasce and V. Almeida. Capacity Planning for Web
Services: Metrics, Models, and Methods. Prentice Hall, 2001.

[41] A. Metzger and E. Di Nitto. Addressing highly dynamic
changes in service-oriented systems: Towards agile evolution
and adaptation. In Agile and Lean Service-Oriented
Development: Foundations, Theory and Practice. IGI Global,
2012.

[42] A. Metzger (Ed.). Software engineering: Key enabler for
innovation. NESSI White Paper, 2014.

[43] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and
A. Solberg. Models@run.time to support dynamic adaptation.
IEEE Computer, 42(10):44–51, 2009.

[44] M.P. Robillard. Recommendation systems for software

engineering. Software, IEEE, 27(4):80–86, 2010.

[45] H. Müller and N. Villegas. Runtime evolution of highly
dynamic software. In Evolving Software Systems, pages
229–264. Springer, 2014.

[46] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion
models: bridging the gap between design and implementation.
IEEE Transactions on Software Engineering, 27(4):364–380,
2001.

[47] Object Management Group. UML profile for schedulability,
performance, and time specification. Technical report, 2005.

[48] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime software
adaptation: Framework, approaches, and styles. In Companion
of the 30th Int’l Conference on Software Engineering, pages
899–910. ACM, 2008.

[49] M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger, editors.
Service Research Challenges and Solutions for the Future
Internet: S-Cube – Towards Mechanisms and Methods for
Engineering, Managing, and Adapting Service-Based
Systems, volume 6500 of LNCS. Springer, 2010.

[50] Reussner, Ralf H. et al., editor. Modeling and Simulating
Software Architectures – The Palladio Approach. MIT Press,
2016. ISBN: 978-0-262-03476-0.

[51] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE
Trans. Softw. Eng., 21(8):689–700, 1995.

[52] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner.
Architecture-based assessment and planning of change requests.
In 11th Int’l Conference on Quality of Software Architectures,
pages 21–30. ACM, 2015.

[53] S. Herold et al. CoCoME – the common component modeling
example. In The Common Component Modeling Example,
pages 16–53. Springer, 2008.

[54] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan.
Discovering architectures from running systems. IEEE
Transactions on Software Engineering, 32(7):454–466, 2006.

[55] E. Schmieders, A. Metzger, and K. Pohl. Runtime model-based
privacy checks of big data cloud services. In 13th Int’l
Conference on Service Oriented Computing. Springer, 2015.

[56] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun, and
H. Mei. Supporting runtime software architecture: A
bidirectional-transformation-based approach. Journal of
Systems and Software, 84(5):711–723, 2011.

[57] M. Szvetits and U. Zdun. Systematic literature review of the
objectives, techniques, kinds, and architectures of models at
runtime. SoSyM, 2013.

[58] W. van der Aalst, M. Schonenberg, and M. Song. Time
prediction based on process mining. Information Systems,
36(2):450–475, 2011.

[59] A. van Hoorn, M. Rohr, and W. Hasselbring. Generating
probabilistic and intensity-varying workload for web-based
software systems. In SPEC Int’l Performance Evaluation
Workshop, LNCS, pages 124–143. Springer, 2008.

[60] A. van Hoorn, C. Vögele, E. Schulz, W. Hasselbring, and
H. Krcmar. Automatic extraction of probabilistic workload
specifications for load testing session-based application
systems. In 8th Int’l Conference on Performance Evaluation
Methodologies and Tools, pages 139–146. ICST, 2014.

[61] T. Vogel and H. Giese. Adaptation and abstract runtime
models. In Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pages 39–48. ACM, 2010.

[62] T. Vogel and H. Giese. On unifying development models and
runtime models (position paper). In 9th Int’l Workshop on
Models at run.time. CEUR, 2014.

[63] C. Vögele, R. Heinrich, R. Heilein, H. Krcmar, and A. van
Hoorn. Modeling complex user behavior with the palladio
component model. In Symposium on Software Performance,
2015. accepted, to appear.

[64] J. von Kistowski, N. R. Herbst, D. Zoller, S. Kounev, and
A. Hotho. Modeling and Extracting Load Intensity Profiles. In
10th Int’l Symposium on Software Engineering for Adaptive
and Self-Managing Systems, 2015.

[65] R. von Massow, A. van Hoorn, and W. Hasselbring.
Performance simulation of runtime reconfigurable
component-based software architectures. In ECSA, volume
6903 of LNCS, pages 43–58. Springer, 2011.

[66] Y. Brun et al. Software engineering for self-adaptive systems.
chapter Engineering Self-Adaptive Systems Through Feedback
Loops, pages 48–70. Springer, 2009.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Heinrich, R.
Architectural run-time models for performance and privacy analysis in dynamic cloud
applications.
2016. ACM SIGMETRICS performance evaluation review, 43.
doi: 10.5445/IR/1000066778

Zitierung der Originalveröffentlichung:

Heinrich, R.
Architectural run-time models for performance and privacy analysis in dynamic cloud
applications.
2016. ACM SIGMETRICS performance evaluation review, 43 (4), 13–22.
doi:10.1145/2897356.2897359

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000066778
https://publikationen.bibliothek.kit.edu/1000066778
https://publikationen.bibliothek.kit.edu/1000066778
https://publikationen.bibliothek.kit.edu/1000066778
https://publikationen.bibliothek.kit.edu/1000066778
https://dl.acm.org/doi/10.1145/2897356.2897359
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

