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We compute the next-to-leading order (NLO) QCD corrections to the gg → W +W − → l+1 ν1l−2 ν̄2 process, 
mediated by a massless quark loop, at the LHC. This process first contributes to the hadroproduction of 
W +W − at O(α2

s ), but, nevertheless, has a sizable impact on the total production rate. We find that the 
NLO QCD corrections to the gg → W +W − process amount to O(50)%, and increase the NNLO QCD 
cross sections of pp → W +W − by approximately two percent, at both the 8 TeV and 13 TeV LHC. 
We also compute the NLO corrections to gluonic W +W − production within a fiducial volume used 
by the ATLAS Collaboration in their 8 TeV measurement of the W +W − production rate and find that 
the QCD corrections are significantly smaller than in the inclusive case. While the current experimental 
uncertainties are still too large to make these differences relevant, the observed strong dependence of 
perturbative corrections on kinematic cuts underscores that extrapolation from a fiducial measurement 
to the total cross section is an extremely delicate matter, and calls for the direct comparison of fiducial 
volume measurements with corresponding theoretical computations.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The production of electroweak di-bosons, pp → V V , is amongst 
the most important processes studied at the LHC. The Higgs de-
cay mode H → V V will be central to precision measurements of 
the Higgs quantum numbers and couplings during Run II [1–8]. 
This requires extremely good control over the large pp → V V
background, including in the Higgs off-shell region [9], which 
can be exploited to constrain H V V couplings [10] or the Higgs 
width [11–13]. Additionally, di-boson production probes the na-
ture of the electroweak interactions, allowing New Physics effects 
to be either discovered or constrained through studies of anoma-
lous gauge couplings. Finally, di-boson production serves as an 
important testing ground for our understanding of QCD in a col-
lider environment.

At leading order (LO), weak boson pair production pp → V V
occurs only through the qq̄ partonic channel. The next-to-leading 
order (NLO) QCD corrections to this process have been studied ex-
tensively in the past [14–22]; recently the next-to-next-to-leading 
order (NNLO) QCD corrections have also been computed [23–28]. 
At this order, the gg partonic channel starts contributing [29–34]

* Corresponding author.
E-mail addresses: fabrizio.caola@cern.ch (F. Caola), kirill.melnikov@kit.edu

(K. Melnikov), raoul.roentsch@kit.edu (R. Röntsch), lorenzo.tancredi@kit.edu
(L. Tancredi).
http://dx.doi.org/10.1016/j.physletb.2016.01.046
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
and, thanks to a relatively large gluon flux at the LHC, its contri-
bution can be expected to be large. This is exactly what happens: 
the gluon fusion process contributes 60% of the NNLO QCD cor-
rections in Z Z production, and 35% of the NNLO QCD corrections 
in W +W − production. Radiative corrections to the gluon fusion 
channel formally contribute at next-to-next-to-next-to-leading or-
der (N3LO) but are expected to be significant [35]. Indeed, we 
showed recently that NLO QCD corrections to gg → Z Z increase its 
contribution to pp → Z Z by almost a factor of two making them 
important for phenomenology of Z Z production [36]. Moreover, 
the magnitude of these corrections exceeds the scale variation un-
certainty of the NNLO QCD result which is commonly used to 
estimate the residual uncertainty of the theory prediction. The aim 
of this Letter is to report the results of a similar calculation for 
gg → W +W − .

Run I measurements of the W +W − cross section undertaken 
by both ATLAS [37] and CMS [38,39] showed a discrepancy at 
the level of O(2–2.5) standard deviations compared to the Stan-
dard Model (SM) prediction. This deviation has been studied in 
the context of physics beyond the Standard Model (BSM) [40–45], 
but there has also been a concerted effort from the theory com-
munity to understand the source of this discrepancy in terms of 
QCD effects. This includes the calculation of the total W +W − cross 
section to NNLO in QCD [26], as well as the examination of ambi-
guities caused by an extrapolation from the fiducial region to the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Representative Feynman diagrams that contribute to gluon fusion process gg → ν1�+
1 �−

2 ν̄2 through NLO in perturbative QCD.
total cross section, either in the context of parton showers [46] or 
through resummations [47–50]. As a consequence of these efforts, 
the discrepancy seems to have been resolved without recourse to 
BSM effects, but these developments underlined the importance of 
comparing theoretical and experimental results for fiducial volume 
measurements, avoiding uncertainties related to the extrapolation. 
Motivated by these considerations, we also study the NLO QCD 
corrections to gg → W +W − in the fiducial region defined by the 
ATLAS cuts.

We begin by summarizing the technical details of the calcula-
tion, and refer the reader to Ref. [36] for a more extensive discus-
sion. In Fig. 1 we present representative Feynman diagrams that 
are required for the calculation of the gluon fusion process gg →
W +W − through NLO in perturbative QCD. The required two-loop 
contributions to gg → W +W − scattering amplitudes have been 
calculated in Refs. [51,52]; we use the C++ code developed in 
Ref. [52] in our computation. We calculate the relevant one-loop 
real-emission amplitudes gg → W +W − + g using a combination 
of numerical [53] and analytic [54] unitarity methods.1 The vir-
tual and real-emission contributions are combined using both the 
qT [58] and the FKS [59] subtraction schemes, allowing for a check 
of the numerical stability of the final results and the consistency 
of the implementation in a numerical program.2

Throughout the paper, we consider leptonic decays of the 
W -bosons, gg → W +W − → ν1�

+
1 �−

2 ν̄2. We note that if the lep-
tons are of the same flavor and off-shell contributions are allowed 
then, strictly speaking, it is impossible to distinguish off-shell 
W +W − production from off-shell Z Z → �+�−νν̄ production, so 
that both contributions need to be included. We do not consider 
this issue here and postpone its investigation to the near future.

We will now comment on the various contributions to gg →
W +W − amplitudes. In addition to typical box-type amplitudes 

1 Results for the one-loop gg → W W g amplitudes exist in the literature [55–57]. 
For our computation however we require fast numerical evaluation and stable re-
sults in almost unresolved kinematics configurations. For these reasons, we decided 
to perform a dedicated calculation.

2 With a qT cut of 1 GeV, the cross sections computed with the qT and FKS 
methods differ by less than 0.1 fb.
shown in Fig. 1(a), we need to consider amplitudes where gluons 
couple to Z∗ and/or γ ∗ through the quark loop, see Figs. 1(c),(d). 
However, it was shown in Ref. [60] that the sum of these triangle 
diagrams vanishes to all loop orders for on-shell colliding gluons. 
This implies that we only have to consider Z/γ ∗-mediated ampli-
tudes if an additional gluon is radiated, cf. Figs. 1(e)–(f). Note that 
we also include the singly-resonant amplitudes in our calculation, 
see Fig. 1(f).

The most important difference with respect to our previous 
work is the treatment of the massive quark loops. In Z Z produc-
tion, it is possible to separate the contribution of bottom and top 
loops, if one neglects the contribution of vector-axial triangle dia-
grams which are suppressed by the top mass. One can then con-
sider gluon-initiated Z Z production through loops of five massless 
quark flavors. On the other hand, if W bosons are radiated from 
the quark loop, such a separation is obviously not possible since 
W -bosons mediate transitions within a given generation and mix 
the contributions of bottom and top quarks. Since we cannot com-
pute two-loop diagrams with internal masses, for gg → W +W −
amplitudes we neglect the contribution of the third generation 
entirely, and consider only massless quarks of the first two genera-
tions. However, for real-emission amplitudes which involve a Z/γ ∗
boson attached to the quark loop (Figs. 1(e) and (f)), we adopt 
our previous approach and also include massless bottom quarks in 
the loop. We expect that the accuracy of this approach is O(10%); 
this estimate is based on the observation that the inclusion of the 
third generation in the computation of the gg → W +W − lead-
ing order cross section changes the result by approximately this 
amount [61,62]. We have checked that the ratio of leading order 
cross sections σ 3gen

gg→W +W −/σ
2gen
gg→W +W − ≈ 1.1 is practically inde-

pendent of the collision energy and the kinematic cuts that we 
use later on to identify the fiducial volume cross section. This ob-
servation offers a simple way to account for the effect of the third 
generation: although we present the numerical results below omit-
ting the contribution of the third generation, it can be included in 
an approximate way by increasing all our results by ten percent. 
This is the best one can do as long as the NLO QCD corrections to 
gg → W +W − process, mediated by a massive quark loop, remain 
unknown.
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We now present the results for gg → W +W − → νee+μ−ν̄μ

cross sections. To perform the computation, we take the masses 
of the W and Z bosons to be mW = 80.398 GeV and mZ =
91.1876 GeV, their widths to be �W = 2.1054 GeV and �Z =
2.4952 GeV and the Fermi constant G F = 1.16639 GeV−2. We use 
μ = μ0 = mW as the central value for the renormalization and 
factorization scale, and estimate the effect of the scale variation 
by calculating the cross section at μ = 2μ0 and μ = μ0/2. We 
use LO and NLO NNPDF3.0 parton distribution functions [63], ac-
cessed through LHAPDF6 [64] and one- and two-loop running of 
the strong coupling, for our LO and NLO results, respectively. We 
do not include the contribution from Higgs-mediated amplitudes. 
Unless stated otherwise, W bosons are produced on the mass shell. 
We also do not include contributions coming from qg → W +W −q
processes mediated by fermion loops. This is because at O(α3

s )

there are several other contributions to the qg channel other than 
one-loop squared amplitudes, and we don’t have any argument for 
why the former should be sub-dominant with respect to the latter. 
In our large gluon approximation, such approach is fully justified. 
At 

√
s = 8 TeV, we find the inclusive cross sections at LO and NLO 

to be

σ W +W −
gg,LO = 20.9+6.8

−4.8 fb, σ W +W −
gg,NLO = 32.2+2.3

−3.1 fb, (1)

where the superscript (subscript) refers to the value at μ = μ0/2
(μ = 2μ0). We note that the NLO QCD corrections increase the 
gluon fusion cross section by a factor of 1.24–1.80, with an increase 
by a factor of 1.54 for the central scale choice. This is similar to 
what was found in Ref. [36] for gg → Z Z production, when one 
takes into account the different choice made there for the central 
scale.

In order to put these results into context, we would like to es-
timate their impact on the NNLO QCD prediction for the pp →
W +W − process at 

√
s = 8 TeV presented recently in Ref. [26]. The 

results reported in Ref. [26] were obtained for stable W -bosons; 
to compare them with our results, we have to multiply them by 
the branching fractions for W decays into leptons. With the in-
put parameters described above we find Br(W → �νl) = 0.108, 
in good agreement with experimental measurements. Then, taking 
the cross sections from Ref. [26] at μ = μ0, we obtain

σNLO = 638.84 fb; σNNLO+gg,LO = 697.97 fb. (2)

It is stated in Ref. [26] that about 35% of the NNLO QCD corrections 
is due to the gluon fusion channel; this implies that the gg →
W +W − → 2�2ν cross section used in Ref. [26] is O(21) fb which 
compares well with our result in Eq. (1). We now substitute the 
NLO QCD result for the gluon fusion cross section instead of the 
LO one and obtain3

σNNLO+gg,NLO ≈ 710 fb. (3)

Therefore, inclusion of the NLO corrections to the gluon-initiated 
partonic channel increases the total NNLO QCD cross section by 
about 2% percent. This shift is comparable to the residual theoret-
ical uncertainty on the NNLO QCD prediction for pp → W +W − , 
which is quoted as O(2%) in Ref. [26]. We also note that the shift 
is much larger than the off-shell cross section for Higgs boson pro-
duction gg → H∗ → W +W − → 2�2ν which we estimate to be 
O(1) fb using the MCFM program [65].

We note that gluon fusion contributions both at leading and 
next-to-leading order are less important for pp → W +W − com-
pared to pp → Z Z . Indeed, in the latter case the corrections to 

3 We note that including contributions of the third generation would increase this 
cross section by approximately 2 fb.
Fig. 2. The transverse momentum of the positron p⊥,�+ (upper plot) and the invari-
ant mass of the dilepton system m�+�− (lower plot) in gg → W +W − → νee+μ−ν̄μ

process at the √s = 8 TeV LHC. LO results are shown in yellow, NLO results are 
shown in blue. The central scale is μ = mW ; the scale variation bands correspond 
to scale variations by a factor of two in either direction. The lower panes show the 
ratios of the LO and NLO distributions at each scale to the LO distribution at the 
central scale. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

the gluon fusion process were found to increase the NNLO correc-
tions by approximately 50% [36] and move it beyond the estimated 
uncertainty of the NNLO result. The reason gluon fusion is more 
important for Z Z than for the W +W − final state is a consequence 
of the fact that the quark initiated production cross section for 
pp → W +W − and the uncertainties of the final result are about 
a factor of seven larger than the quark initiated cross section for 
pp → Z Z , while the gluon fusion contribution to W +W − process 
is only three times larger.

We repeat the calculation for proton–proton collisions at 
13 TeV. For the gg → W +W − → νee+μ−ν̄μ process, we find the 
LO and the NLO cross sections,

σ W +W −
gg,LO = 56.5+15.4

−11.5 fb, σ W +W −
gg,NLO = 79.5+4.2

−5.9 fb. (4)

The NLO corrections increase the cross section by a factor of 
1.2–1.6, with an increase of 1.4 at the central scale. The relative 
size of QCD radiative corrections is, therefore, similar to that at 
8 TeV. The consequences of this increase for the NNLO QCD pre-
diction of pp → W +W − cross sections are again similar to what 
was described earlier for the 8 TeV case; the NLO QCD corrections 
to gg → W +W − increase the full NNLO cross section by about 2%
which, roughly, corresponds to the scale uncertainty of the NNLO 
QCD computation [26].

Next, we discuss kinematic distributions. We present results for 
the 8 TeV LHC. We have also studied kinematic distributions at 
13 TeV and found a qualitatively similar behavior. A representa-
tive sample for the 8 TeV LHC is shown in Figs. 2 and 3. In Fig. 2
we display the positron transverse momentum distribution p⊥,�+
and the distribution of the invariant mass of the dilepton system 
m�+�− . In Fig. 3 we present the distribution of the azimuthal open-
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Fig. 3. The azimuthal angle between the charged leptons �φ�+�− (upper plot), 
and the transverse mass of the W +W − system mT ,W W (lower plot), in gg →
W +W − → νee+μ−ν̄μ process at the √s = 8 TeV LHC. LO results are shown in 
yellow, NLO results are shown in blue. The central scale is μ = mW ; the scale vari-
ation bands correspond to scale variations by a factor of two in either direction. The 
lower panes show the ratios of the LO and NLO distributions at each scale to the 
LO distribution at the central scale. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

ing angle between the charged leptons �φ�+�− and the transverse 
mass of the W +W − system defined as

mT ,W W =
√

2p⊥,�+�− E⊥,miss(1 − cos φ̃). (5)

In the definition of the transverse mass, we introduced the follow-
ing notation: p⊥,�+�− is the transverse momentum of the �+�−
system, E⊥,miss is the missing transverse energy, and φ̃ is the az-
imuthal angle between the direction of the �+�− system and the 
missing momentum. We observe that for all kinematic distribu-
tions shown in Figs. 2 and 3, with the exception of the mT ,W W

one, the NLO results can be obtained from the LO results by re-
scaling the latter by the constant factor determined by the NLO 
QCD effects in the total cross section. The situation is different 
for the mT ,W W distribution, where the LO distribution vanishes 
at low values of mT ,W W , leading to an infinite relative correction 
in this kinematic regime. This behavior is easily understood. In-
deed, vanishing of mT ,W W requires all leptons in the final state 
to be collinear. This is not possible at LO but may occur at NLO 
when the W +W − system as a whole recoils against an additional 
jet in the final state.4 We also note that the �φ�+�− distribu-
tion is remarkably uniform at LO, and this uniformity is main-
tained at NLO.5 This is an interesting feature since the Higgs-
mediated process gg → H∗ → W +W − → 2l2ν produces a larger 

4 This interpretation is of course independent of the initial state; therefore, this 
effect should be seen in qq̄ → W +W − at NLO, if no cuts are placed on the leptons. 
We have checked that this is indeed the case using the program MFCM [65].

5 The apparent different behavior in the last bin is because the last bin is smaller 
than the others, since �φ < π .
Table 1
LO and NLO gluon-initiated fiducial cross sections for in the ee, μμ, and eμ decay 
channels. The kinematic cuts are defined in Ref. [66]. The central value corresponds 
to μ = μ0; the upper (lower) value to μ = 0.5μ0 (2μ0), respectively. We remind 
the reader that these numbers do not include contributions from the third genera-
tion, see text for details.

σμμ,8 TeV σee,8 TeV σeμ,8 TeV

σgg,LO [fb] 5.94+1.89
−1.35 5.40+1.71

−1.23 9.79+3.13
−2.24

σgg,NLO [fb] 7.01−0.36
−0.17 6.40−0.32

−0.16 11.78−0.46
−0.34

number of charged lepton pairs with a small relative opening an-
gle �φ�+�− .

We now turn to the discussion of the fiducial cross sections de-
fined by a set of cuts used by the ATLAS Collaboration [66] for 
measurements with ee, μμ, and eμ + μe final states.6 These cuts 
are displayed in a concise way in Table 1 of Ref. [46] and we do 
not repeat them here. However, we note that these cuts include a 
veto on events with jets with the transverse momentum that ex-
ceeds 25 GeV. This is an important cut since it reduces the amount 
of real radiation at NLO and, therefore, is expected to reduce the 
magnitude of radiative corrections compared to the inclusive cross 
section case.

In Table 1, we present the fiducial volume cross sections for the 
gluon-initiated process at LO and NLO QCD in these three chan-
nels. In order to accurately account for the cuts, these results are 
computed allowing the W -bosons to be off the mass shell. The 
NLO QCD values for fiducial cross sections appear to be maximal 
at the central scale. For our choice of the central scale, the NLO 
corrections increase the fiducial cross sections by 18%–20%, inde-
pendent of the decay channel. This is substantially smaller than 
the relative size of radiative corrections found for the inclusive 
cross section. As already mentioned, this large difference between 
corrections to inclusive and fiducial volume cross sections is ex-
plained by the presence of a jet veto in the ATLAS cuts which 
removes real-emission contributions with a hard gluon. Since the 
hard gluon radiative cross section is positive, the NLO cross sec-
tion with a jet veto is smaller than the cross section without it. 
A similar effect is known in Higgs production in gluon fusion [67].

Our observation of smaller radiative corrections in the fiducial 
volume cross section is important since it points towards poten-
tial problems with extrapolating fiducial volume cross sections to 
their inclusive values. In the case of gg → V V such extrapolations 
completely ignore all the subtleties related to the gluon fusion 
channel since NLO QCD corrections to this mechanism of vector 
boson production are not included in Monte Carlo event genera-
tors.7 Matching our computation to existing NLO parton shower 
event generators is then desirable. While this may be challeng-
ing technically since the LO process is loop-induced, it does not 
require any conceptual modification of existing techniques to com-
bine fixed order computations and parton showers.

We would like to examine the effects of the NLO corrections to 
the gg channel shown in Table 1 on the existing theoretical cal-
culations of the fiducial cross sections. We compute these fiducial 
cross sections using MCFM [65] and the cuts from Ref. [46]. In-
cluded in this calculation are the qq̄ contributions8 at NLO QCD, 

6 As we have mentioned, we don’t include contributions coming from Z exchange 
in the ee and μμ channels. The fiducial region considered here requires same-flavor 
lepton pairs to have |m�� − mZ | > 15 GeV, so we expect the numerical effect of 
these contributions will be negligible.

7 Merged results for gg → W W + 0/1 jet are however known [57].
8 Although we consistently talk about qq̄ contributions, the qg initiated processes 

are, of course, included, following the standard routine of perturbative QCD compu-
tations.
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the Higgs production pp → H → W +W − at NLO QCD and the LO 
gg contributions through quark loops of all flavors, with the top 
mass taken as mt = 172.5 GeV and the Higgs signal/background 
interference at LO QCD. We then replace the LO massless gg cross 
sections in the fiducial volume with the corresponding NLO values. 
The 8 TeV cross sections (in fb) for the μμ, ee and eμ + μe decay 
channels become9

σ
qq̄+H+gg,NLO
μμ,ee,eμ+μe = (72.0+1.3

−2.1, 66.3+1.2
−1.7, 337.3+6.3

−4.5). (6)

Theoretical results in Eq. (6) should be compared with results 
of the ATLAS 8 TeV measurement

σμμ,ee,eμ+μe = (74.4+8.1
−7.1, 68.5+9.0

−8.0, 377.8+28.4
−25.6), (7)

where we combined statistical, systematic and luminosity uncer-
tainties in quadratures. We see that the electron and muon chan-
nels agree perfectly whereas the central value of the eμ + μe
channel differs by about 1.5 standard deviations. However, this 
picture is somewhat misleading, since we have not included the 
NNLO QCD corrections to the qq̄ channel in the theory predictions 
in Eq. (6). While these corrections are unknown in the fiducial 
region, it is perhaps interesting to see what happens if one esti-
mates them by re-scaling NNLO QCD corrections to the inclusive 
cross section by the ratio of fiducial and inclusive cross sections. 
In this case we find that the missing NNLO QCD corrections can 
increase the cross sections in Eq. (6) by O(4–20) fb for ee(μμ)

and eμ + μe channels, respectively. Such an increase would make 
the theory prediction and experimental results agree to within one 
standard deviation for each of the three channels. Going beyond 
this estimate would require properly combining the NNLO result 
in the fiducial region, our NLO result for the gg channel and jet 
veto resummation. We leave this for future investigations.

In summary We have calculated the NLO QCD corrections to 
the gg → W +W − → l+1 ν1l−2 ν̄2 process at the LHC. These correc-
tions increase the gluon fusion cross section by 20%–80%, depend-
ing on the center-of-mass energy and the scale choice. The impact 
of these corrections on the pp → W +W − production cross sec-
tion is moderate; they increase the NNLO QCD theory prediction 
by about two percent, which is comparable to the current estimate 
of the theoretical uncertainty at NNLO. We have also calculated 
the gg → W +W − cross section through NLO in perturbative QCD 
subject to kinematic cuts used by the ATLAS Collaboration to mea-
sure the pp → W +W − cross section. For the fiducial cross section, 
we found a smaller increase of around 20% for our central scale 
choice. Nevertheless, this contribution further increases the fidu-
cial volume cross section, moving the theoretical result closer to 
the experimental one.
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