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Abstract To analyse very high dimensional data, or large data volumes, we
study random projection. Since hierarchically clustered data can be scaled
in one dimension, seriation or unidimensional scaling is our primary objec-
tive. Having determined a unidimensional scaling of the multidimensional data
cloud, this is followed by clustering. In many past case studies we carried out
such clustering, using the Baire, or longest common prefix, metric and, simulta-
neously, ultrametric. In this paper, we examine properties of the seriation, and
of the induction of the clustering on the data summarization, through seriation.
Simulations are described as well as a small, illustrative example using Fisher’s
iris data.

1 Introduction

The Baire, or longest common prefix, metric, that is also an ultrametric, was
used by us in astronomy, on spectrometric and photometric redshift values for
half a million objects. For high dimensional spaces, random projection can be a
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most effective, and efficient way, to prepare data for clustering that is based on
that same principle. Examples of this included clusterwise or nearest neighbour
regression on 34,352 proposal documents, crossed by 10,317 other such docu-
ments, based on document similarity. A further case was using chemistry data
crossing 1,219,553 chemical structures coded through 1052 presence/absence
values. In this paper, we aim to exemplify and illustrate the principles of clus-
tering, based on random projection. While small data sets are used, these case
studies are intended as being both illustrative of applications and of implemen-
tation.

Let us consider scalar numbers, defined by a sequence of digits. For ease of
description, and of reproducibility, let each number be ≥ 0,< 1. The Baire or
longest common prefix metric, (Contreras and Murtagh, 2012), allows direct
reading of the clusters. Just consider the first partition, using the most significant
digit, so that for real values, and not binary nor any other number system, we
have 10 clusters labelled 0 to 9. From these clusters, we next look at the next
significant digit, and again can read off, for all 10 clusters at the first level, at the
second level, 100 clusters. In this way, we can build up a set of partitions, and
define a hierarchical clustering. The Baire, or longest common prefix metric, is,
by definition, also an ultrametric.

While what has been described is using just scalar numbers, we can benefit
very much from properties of high dimensional spaces. Chief among these
is the particular importance, and summarizing ability, of random projections.
Unlike the work of others that is focused on dimensionality reduction (see
discussion in Murtagh and Contreras (2016, 2015)), instead our main interest,
with demonstrated success, is how we can determine and make use of a single
set of projections, that is, on one axis. Our work has a different focus compared
to application of random projection for low dimensional subspace mapping,
used in, for example, Bingham and Mannila (2001).

This article sets out foundations of this methodology. The mean set of projec-
tions collected from a large number of random axes is examined. We examine
relationships between such a mean axis and the dominant eigenvector. The
clustering properties of the projections on this mean axis are our primary in-
terest. We seek to describe this work in terms of seriation, or unidimensional
scaling. We demonstrate considerable success in the case studies, many of them
simulations, that are employed.

In Sect. 2, we study data concentration, through employment of random
axes. Sections 3 and 4 consider the inducing of a clustering, in particular a
hierarchical clustering. Section 5 relates to data input and hence the context
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of the implementation. Section 6 considers a central aspect of implementation.
Section 7 considers clustering, with an illustrative case study. All work was
carried out in R (version 3.2.0).

2 The Mean Random Projection Approximates the Marginal Sum

Our given data is denoted xIJ , that is, {xi j|i ∈ I, j ∈ J},n = |I|,m = |J|. As a
random projection, we use uniformly distributed values in [0,1], denoted u1

J ,
that is {u1

j | j ∈ J}. (The superscript, Fig. 1, is used since this is our first, of
many, random projections.) A random projection is the matrix-vector product
r1

I = xIJu1
J . Another random axis is generated, and the projection on it is de-

termined: r2
I = xIJu2

J . A third random axis is generated, and the projection on
it is determined. This continues in this particular experiment for 100 random
projections. Thus we have random projections r1

I ,r
2
I ,r

3
I , . . . ,r

100
I .

Our interest is in the mean of the random projection vectors. The motivation
for this is that if the random projections are well correlated, as we have found
to be the case for high dimensional data clouds, then the mean is a suitable
consensus. So we look at the succession of mean projection vectors: For K =
1,2, . . . ,100: 1

K ∑
K
k=1 rk

I . The random axis used on each occasion, k = 1,2, . . . ,K,
was newly generated.

The marginal sums, xI = {∑m
j=1 xi j|i ∈ I} are a constant times the mean

vector. The cloud is the point set, xiJ for i ∈ I. We can expect the mean random
projection to approximate very well the cloud mean. That is to say, we have (1)
the cloud’s mean vector, and (2) the randomized clouds that consist of randomly
generated points that are a linear combination of the cloud’s given points.

The uniformly distributed random axes result in the projection values being
non-negative, when the initial, given data, are non-negatively valued. In this par-
ticular study, for expository reasons, we used a 25×12 data array, of uniformly
distributed values in [0,1]. Then a second study uses an initial 25× 12 data
array of Gaussian distributed values, of mean 0 and standard deviation 1. This
second study uses both positive and negative valued input data and projections.

Our input data values are not constrained to be non-negative in value. We
note this because, in Correspondence Analysis, we are dealing with marginal
distributions that are mass distributions of row (observations, I) cloud and col-
umn (attributes or properties, J) cloud. Thus in Correspondence Analysis, we
must consider non-negative valued, given data.
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Fig. 1 Correlations between mean random projection, and the marginal sums. The two input data
tables used were of dimensions 25×12. Maximum and minimum values of the input data tables are,
respectively, 0.9991,0.0012 and 2.6479,−3.0277.

Figure 1 demonstrates clearly how the mean random projection (with uni-
formly distributed random axes) very well approximates the marginal sums, for
a sufficient number of random axes. The latter, the marginal sums vector, is
proportional to the mean of the point cloud, I ⊂ Rm. (Here, the cloud’s coordi-
nates are real-valued, in the space of dimensionality m = |J|.) To illustrate the
degree of approximation, that is displayed in Fig. 1, the final three correlation
values are as follows. That is, these are correlations between the marginal row
sums and the means of 98, 99 and 100 random projections. We have for the two
data sets used, respectively, 0.9985497, 0.9985972, 0.9984356, and 0.9985829,
0.9986338, 0.9984509.

This study will serve as important background for our further work. To sum-
marize the outcome: the mean of 40 or more projections of the point cloud
on uniformly distributed axes, approximates very well the marginal sums of
the point set. The 40 or more projections finding is observed in Fig. 1 and in
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Table 1 Means of 98 random projections, of 99 random projections, and of 100 random projections.
The correlation between the mean random projection, and the row sum, is shown here. Parametric and
non-parametric correlations are used. In the normalized cases, both the mean of the projections, and
the row sum, are normalized, to have maximum value = 1, and to have L2 norm = 1.

k = 98 k = 99 k = 100
Pearson 0.9985497 0.9985972 0.9984356
Spearman 0.9961538 0.9961538 0.9953846
Kendall 0.9733333 0.9733333 0.9666667
Pearson/max normalized 0.9985769 0.9986095 0.9984502
Pearson/L2 norm normalized 0.9985652 0.9985888 0.9984162

many other experiments. The projections on uniformly distributed axes are of
the point cloud, that is not centred, or normalized in any way. The uniformly
distributed axes means that these axes are defined, as uniformly distributed
coordinates, in the given, real, m-dimensional space, Rm. The marginal sums
of the point set are directly proportional to the means of the point coordinates.
I.e., each point’s marginal sum is xi = ∑

m
j=1 xi j = m 1

m ∑
m
j=1 xi j. Hence we have

m times the mean of xi’s coordinate values.
Apart from the Pearson correlation, we looked for any important differences

when using non-parametric correlation, e.g. Spearman and Kendall rank cor-
relations between mean random projection, and the marginal sums. We find
the Pearson correlation to be the highest in value, followed by the Spearman
correlation, that is followed in turn by the Kendall correlation. Nonetheless,
the approximation is very good in all cases. For Pearson and Spearman, it is
observed to be, with sufficient random axes, 0.99 in all cases. For the Kendall
correlation, it is around 0.97.

There are very limited differences when random projections are normalized
to unit norm, as we will now show. Assessment is carried out, for normaliza-
tions, using the L∞ or max norm, or Chebyshev norm; and using the L2 norm.
Table 1 shows very little difference between the approaches used.

For the normalized random projection values, the scale will differ, depending
on the normalization used. Nonetheless, we do observe a very similar outcome.
See Fig. 2.
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Fig. 2 For the (top to bottom) Pearson correlation, projections not normalized; projections normalized
by maximum value (i.e., L∞ or Chebyshev metric); projections normalized to unit L2 norm. Correla-
tions between mean random projection, and the marginal sums. Input data: uniformly distributed, of
dimensions 25×12.

3 Clustering Properties of the Row Sums, and Mean Random
Projection

In this section we use a small dataset, which is very widely used for test pur-
poses, in order to explain clearly, and to illustrate, the foundations for our
methodology. We want to consider the clustering of the data, and the clustering
properties of the marginal sums, which, as has been shown, is well approxi-
mated by the mean random projection.

Using the hierarchical clustering in Fig. 4, from which the ultrametric dis-
tances are shown in Table 2, then in Fig. 3 there is a visual display of the data
in that table. This visualization allows structure in the distance array to be seen.

Just as the terminal nodes of the hierarchy in Fig. 4 require a particular
ordering for this hierarchical representation, so also an appropriate ordering,
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Fig. 3 A visualization of the ultrametric matrix
of Table 2, where bright colour = high value, and
dark colour = low value.
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Fig. 4 Hierarchical clustering of 7 iris flowers –
the first 7. No data normalization was used. The
agglomerative clustering criterion was the mini-
mum variance or Ward criterion.

or permutation, of rows and columns in Fig. 3 is required. Since this ultra-
metric distance matrix, derived from the hierarchy, is symmetrical, it follows
that the order, i.e. the permutation, of rows and of columns, must be the same.
In Murtagh (2009), there is discussion of row and column permuting in the
original data table, to achieve such a structure.

Table 2 Ultrametric matrix derived from the dendrogram in Fig. 4.

2 7 3 4 6 1 5
2 0.000 0.436 0.436 0.436 1.271 1.271 1.271
7 0.436 0.000 0.316 0.316 1.271 1.271 1.271
3 0.436 0.316 0.000 0.245 1.271 1.271 1.271
4 0.436 0.316 0.245 0.000 1.271 1.271 1.271
6 1.271 1.271 1.271 1.271 0.000 0.707 0.707
1 1.271 1.271 1.271 1.271 0.707 0.000 0.141
5 1.271 1.271 1.271 1.271 0.707 0.141 0.000

In Lerman (1981), there is specification of the block diagonal structure that
respects the ultrametric inequality. This specifies how, as shown in Fig. 3,
values away from the main diagonal increase in value, while respecting the
block structure. The ultrametric distance matrix is a symmetric, positive definite
matrix, with zero-valued main diagonal entries.
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Block structure, as is defined in the above specification, and displayed as in
the figure, is a way to express the clustering of the data. That is, by achieving
such a block structure, we are hierarchically clustering our data. Such block
clustering is used in 2-mode, viz. rows and columns, data clustering, also named
biclustering (Vichi, 2015).

The important aspect of this, for our purposes here, is that there is an order-
ing of terminal nodes in the hierarchy, shown in Fig. 4, and that ordering, a
permutation of the object set that we are clustering, is also the ordering of rows
and of columns in the display in Fig. 3. That ordering, or permutation, is our
major interest. We seek to have our aggregated, or mean or consensus, random
projection, to represent well this ordering, or permutation.

In Sect. 7 we will return again to this ordering or permutation, especially
relating this to the work of Critchley and Heiser (1988), that a hierarchical
clustering, as a hierarchy or tree structure, “can be perfectly scaled in one
dimension”.

4 Power Iteration Clustering

For Principal Components Analysis, Correspondence Analysis or any other
eigen-decomposition, the processing can be carried out iteratively as follows.
For a matrix, A, we seek to solve: Au = λu. The solution is the first (largest)
eigenvalue, λ , associated with the eigenvector, u. A random, non-0, initial vector
is chosen: t0. Then define t1, t2, . . . as follows:

At0 = x0, t1 = x0/
√

x′0x0

At1 = x1, t2 = x1/
√

x′1x1

At2 = x2, t3 = x2/
√

x′2x2

. . .

The normalization to unit L2 norm can be viewed as preventing the vector tk
from getting too large (Lin and Cohen, 2010). However Lin and Cohen (2010)
alternatively use the L1 norm. A justification for the L2 norm is Principal Com-
ponents Analysis or Correspondence Analysis where the factor space, defined
by the eigenvalue and eigenvectors, is endowed with the Euclidean, L2 metric.
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We halt the iterations where there is convergence: |tn− tn+1| ≤ ε . At con-
vergence, we have the approximation of: tn = tn+1. Therefore, Atn = xn. Since
tn+1 = xn/

√
x′nxn we may substitute terms in Atn = xn to give: Atn =

√
x′nxn tn+1.

Since tn = tn+1, that allows us to conclude that tn is the eigenvector u, and the
associated eigenvalue λ is

√
x′nxn.

We can partial out the first eigenvector and eigenvalue in order to proceed
to the next eigenvector and eigenvalue. (What we do is to redo the analysis on
the matrix, A(2) = A−λu1u′1.) We will not do this here since our interest is in
the first eigenvector. This iterative solution is described in Murtagh and Heck
(1987) (Sect. 2.2.6).

In Lin and Cohen (2010), this approach is used with a data table that is
normalized through division by the row sum. This furnishes the set of row
(object) profiles. For a data table, xIJ = {xi j|i∈ I, j∈ J}, the profile is {xi j/xi|i∈
I, j∈ J}, where xi =∑ j∈J xi j. In Correspondence Analysis, frequencies are used:
fi j = xi j/∑i∈I, j∈J xi j, where xi j ≥ 0. Similarly we have fi = xi/∑i∈I fi. In tensor
notation (Einstein tensor notation, used in Benzécri (1976)), the row profile is
f i
J = { fi j/ fi| j ∈ J}. Now, working with row profiles means that the row sums,

∑ j∈J fi j/ fi = 1. The row sums are constant. In seeking to solve f I
J uJ = λuJ

we have that uJ = 1J where the latter term is a |J|-length vector of 1s. The
expression we want to solve then requires λ = 1. This is the so-called trivial
first eigenvector and eigenvalue in Correspondence Analysis. It is due to the
centering of the cloud of row points and column points. Since this is trivial in
value, Lin and Cohen (2010) present the case for iterating towards the solution
but stopping at a local optimum with regard to convergence. Rather than the
first eigenvector, an “intermediate vector” is obtained. The iterative scheme
“converges locally within a cluster”.

We come now to clustering. Yan et al (2013) note how power iteration clus-
tering can be based on the dominant eigenvalue/eigenvector described above.
That points to the relevance of the data array used. It has been noted above how
row profiles were used in Lin and Cohen (2010). In Yan et al (2013), reference
is made in particular to spectral clustering, described as “a family of methods
based on the eigendecomposition of affinity, dissimilarity or kernel matrices”.
Such spectral clustering is core to Correspondence Analysis, which induces a
hierarchical clustering, for example, from the factor space endowed with the
Euclidean metric. K-means clustering (partitioning) is used in Lin and Cohen
(2010).

Further application of Lin and Cohen (2010) is carried out in Lohk et al
(2013). By means of the dominant eigenvector found using the power iteration
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eigenreduction approach, Lohk et al (2013) use both row and column sets. This
allows row and column (of the data array) permutation to yield a block clustered
view of the data array. A wide-ranging review of row and column permutation
for clustering is in Liiv (2010).

In Lohk et al (2013), comprehensive use is presented of row and column
permuting, using power iteration clustering (Lin and Cohen, 2010) applied
successively to the rows and to the columns. The input data array used in Lohk
et al (2013) is the sums of squares and cross products matrix. I.e. for initial (non-
negative dependency values, described in graph terms) matrix, X , this input for
row and column permutation is X ′X .

5 Input Data for Eigen-Reduction

For Correspondence Analysis, we have the following. In Benzécri (1982), there
is discussion of analysis of data sets that are unbounded in number of rows
(an infinite set), with possibly 1000 columns. For given data k, and factor G on
the set J, the eigenvalue and eigenvector decomposition is the solution of this
equation:

∑
j′∈J

((
∑
i∈I

ki j′

ki

ki j

ki

)
Gα( j′)

)
= λαGα( j) (1)

That, therefore, relates to the column profiles. Following determination of
the factors, G, on J, the transition formula relationship allows the determination
of the factors on I (denoted F).

The full eigen-reduction, determining the full set of factors, is described in
Benzécri (1982, 1997). In the latter, there is discussion of the extensive use
by Ludovic Lebart of stochastic approximation of factors and associated con-
tributions to inertia, defined from the eigenvectors and associated eigenvalues.
Chapter VI of Lebart et al (1984) provides a comprehensive description, with
this eigen-reduction termed a “direct reading” implementation. In Benzécri
(1982), since the set of eigenvectors and associated eigenvalues is the objective,
a matrix of trial vectors is initialized and converged, in the sequence of itera-
tions, to the desired outcome. (See Eq. (6), page 391, of Benzécri (1982).) This
is as in the approach carried out in Clint and Jennings (1970).

In Benzécri (1992), it is to be noted that there is a short review of an alter-
native approach to efficient processing by finding subtables of the given input
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data table. Cf. Sect. 3 above. For a subset Js of J, analyses are carried out on
these I× Js subtables. This work was primarily due to Brigitte Escofier. For
one I× Js subtable, there can be added (juxtaposed) a “rest” column with the
accumulation of all columns in the set J− Js. In this case, one has a Euclidean
representation, i.e. the factor space, of the cloud N(J) that is the same as the
analysis carried out on the I× J table, but relative to axes that are adjusted
to the sub-cloud, N(Js). While the full analysis can be re-assembled from the
analyses of the subtables, it may be the case that the subtable analyses are more
interesting in their own way. The global analysis, it is stated, may be perturbed
by such singular modalities of variables, in particular missing values. While,
it is stated, the views of N(J), adjusted to well-chosen sub-clouds N(Js) can
better show the global structure.

For Principal Components Analysis (PCA), depending on applied, the matrix
to be diagonalized is one of: the sums of squares and cross-products matrix, the
variance-covariance matrix, or the correlation matrix. See, e.g., Murtagh and
Heck (1987) for a discussion of these inputs for PCA.

6 Implementation: Equivalence of Iterative Approximation and
Batch Calculation

It has been noted in Sect. 4 how a limited number of iterations may be used,
rather than convergence. Let us also look now at where and how a fixed number
of iterations may be beneficial, as an alternative to convergence.

We use the following illustrative and motivational example from Benzécri
(1982). This example relates to estimating the mean of the, potentially un-
bounded, set of values x1,x2,x3, . . . ,xn, . . . . If the number of such values is
known, denoting it N, then that leads to just determining the estimated mean
on all the data. If there were weights involved, then an unbounded sequence
becomes more problematic. Now, it can be shown that two successive values in
the estimation have this relationship: µn+1 = µn +((xn+1−µn)/(n+1)). It is
seen that the (n+1)th value can be considered as correcting the estimate at that
iteration. Also we see that if µn+1 = µn, then that correction to the estimate at
that iteration would be equal to 0. (It is acknowledged in Benzécri (1982) that
successive updates, carried out in this way, may lead to accumulation of round-
ing errors. On the other hand it is considered that any exceptional or outlying
value of x would be very clearly indicated.)
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In practice, the iterative estimation can be useful and relevant as an approach
to determining the mean, especially of an unbounded sequence. An assumption,
to be considered in each case, is the underlying distribution of the x terms.

We conclude the following from this small, illustrative case study. Given
an underlying distribution, we can either (i) iterate until convergence, or (ii)
assume a fixed value of N and carry out the computation for the sequence of
values (or vectors) that are from 1 to N.

7 Inducing a Hierarchical Clustering from Seriation through
Unidimensional Representation of Our Observations

The following is based on Critchley and Heiser (1988), which establishes the
foundations for inducing a hierarchical clustering from a newly represented, or
newly encoded, mapping of our data. This very important result allows us to
seek a seriation in order to hierarchically cluster our data in a very computa-
tionally efficient manner.

Consider a dendrogram and the terminal nodes in a sequence, π(I), a
permutation of the object set, I. For i ∈ I, i = 1,2,3, . . . ,n = |I|, consider
πi, i.e. π1,π2, . . . ,πn. Now define the (n− 1)-vector, t, with general element
t j = x j+1−x j. Such a one-dimensional ordering, t, is compatible with the given
dendrogram ordering if j ≤ k implies x j ≤ xk. Then we define a matrix of inter-
point distances in the unidimensional ordering as follows: d j j = 0; j < k −→
dk j = d jk = ∑

k−1
l= j tl .

As noted in Benzécri (1997), although quite likely to be fully justified in
practice, any iterative refinement algorithm is unable to deliver an optimal
solution. The non-uniqueness of the seriation or unidimensional scaling, that
can be the starting point for inducing a hierarchical clustering, is a limitation in
practice, since many alternatives may (or may not) be relevant for the hierarchy
to be induced.

Using our approach on the Fisher iris data, (Fisher, 1936), 150 flowers
crossed by petal and sepal width and breadth, provides the following outcome.
We determine row sums, of the initial 150×4 data matrix, and the mean random
projection of projections on 100 uniformly generated axes. From our previous
results, we know that these are very highly correlated. We construct hierarchi-
cal clusterings on (i) the original 150× 4 data matrix, (ii) the mean random
projection, and (iii) the row sums. The cophenetic correlation coefficient is de-
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termined. (This uses ultrametric distances derived from the hierarchical tree, or
dendrogram.) We find the cophenetic correlation of the hierarchies constructed
on the row sums, and on the mean random projection, to be equal to 1 (as
anticipated). Then between the hierarchy constructed on the 150×4 data ma-
trix, and the mean random projection, the cophenetic correlation coefficient is
0.8798. For the given data and the row sums, it is 0.9885. The hierarchical clus-
tering used was the average method; and other methods, including single link,
provided very similar results. The distance used, as input to the hierarchical
agglomerative clustering, was the square root of the squared Euclidean dis-
tance. Other alternatives were looked at, from the point of view of the distance
used, and from the point of view of the agglomerative hierarchical clustering
criterion.

All in all, these results are both supportive of our overall perspectives, and
they are consistent with our overall perspectives, as discussed in this work.

We also looked at uniformly distributed, on [0,1], data of dimensions 2500×
12. The correlation between row sums and mean of 100 random projections was
0.99. However, for the correlation between the hierarchical clustering on the
original data, and the mean random projection, this correlation was 0.58. The
correlation with the row sums was 0.578. The performance on this randomly
generated data is seen to be not as good as that on the real valued, Fisher
data. For data which is not strongly clustered, quantization is relevant. In the
k-means clustering (partitioning) context, see e.g. Lloyd (1982). Descriptively
expressed, in quantization, in addition to cluster compactness, approximating
identical cluster sizes is an objective.

We conclude this practical case study with the following remarks. (i) For
real data, we found a very good result. (ii) The lack of uniqueness of the seri-
ation (or unidimensional representation) means that various possibilities may,
or may not, be most appropriate. But (iii) we determined a good outcome, that
respected (correlation between induced hierarchical clusterings of around 0.88)
the clustering properties in the data.

8 Conclusions

We have set out the following objectives, algorithms, and implementations. In
all cases important properties and characteristics have been discussed. Our case
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studies were chosen primarily for expository reasons. We conclude with the
following practical outcomes.

1. The use of iterative approximation, to convergence; to optimally summarize
the data cloud by means of the dominant eigenvector.

2. Data cloud centroid, for its role in summarizing the cloud, and relationships
with the dominant eigenvector.

3. How such summarization induces seriation of our data cloud.
4. General clustering properties of such a seriation. This is motivated by the

awareness that an ultrametric topological embedding of our data cloud in
a space of arbitrary dimensionality (alternatively expressed: a hierarchical
structuring of our data) can be perfectly scaled in one dimension.

5. Noting the importance of the following: no approximate scheme can be
guaranteed to provide an optimal outcome (emphasized in Benzécri (1997));
selection of data table normalization plays an important role; convergence,
consistency and stability properties of implementations.

Current work, pursuing this work, includes the following. Murtagh (2016b)
seeks to address challenges in computation and in storage requirements. In
Murtagh (2016a), it is sought to exploit the dual space relationship of the point
cloud in observation (or row) space, and the point cloud in attribute (or column)
space, in order to cluster massive numbers of row points in moderate to small
dimensions.
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