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Planning for agricultural adaptation and mitigation has to lean on informed decision-making processes. Stake-
holder involvement, consensus building and the integration of comprehensive and reliable information represent
crucial, yet challenging, pillars for successful outcomes. The spatially-explicit multi-criteria decision support
framework “targetCSA” presented here aims to aid the targeting of climate-smart agriculture (CSA) at the national
level. This framework integrates quantitative, spatially-explicit information such as vulnerability indicators (e.g. soil
organic matter, literacy rate andmarket access) and proxies for CSA practices (e.g. soil fertility improvement, water
harvesting and agroforestry) as well as qualitative opinions on these targeting criteria from a broad range of stake-
holders. The analytic hierarchy process and a goal optimization approach are utilized to quantify collective,
consensus-oriented stakeholder preferences on vulnerability indicators and CSA practices. Spatially-explicit vulner-
ability and CSA data are aggregated and coupled with stakeholder preferences deriving vulnerability and CSA suit-
ability indices. Based on these indices, relevant regions with the potential to implement CSA practices are identified.
“targetCSA” was exemplarily applied in Kenya exploring group-specific and overall consensus-based solutions of
stakeholder opinions on vulnerability and CSA under different consensus scenarios. In this example, 32 experts
from four stakeholder groups who participated in two surveys were included. The subsequent analyses not only
revealed consistently regions with high CSA potential but also highlighted different high potential areas depending
on the applied consensus scenario. Thus, this framework allows stakeholders to explore the consequences of
scenarios that reflect opinions of the majority and minority or are based on a balance between them. “targetCSA”
and the application example contribute valuable insights to the development of policy and planning tools
to consensually target and implement CSA.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Addressing climate change is crucial to safeguard food provisioning
from agricultural systems. Hence, planning efforts are urgently needed
to target and implement agricultural adaptation and mitigation options
in line with governmental strategies, such as national climate change
action plans (Preston et al., 2011; Conway and Mustelin, 2014).
Climate-smart agriculture (CSA) as a global development goal was
introduced to guide the transformation of agricultural systems integrating
adaptation, mitigation and food security (FAO, 2013). Alleviating
vulnerability and fostering resilience of agricultural systems to
climate change to secure the sustainable provisioning of food while
reducing greenhouse gas (GHG) emissions are the major objectives
of CSA (Harvey et al., 2014a).
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support robustly the decision-making on targeting CSA. To the authors'
knowledge, such a framework has not been published so far.

The aim of this study was to develop a decision support framework
for the spatially-explicit targeting of CSA, named “targetCSA", which
includes multiple stakeholders, vulnerability indicators and suitable
CSA practices. The applicability of this framework is demonstrated
through an example fromKenya. Large parts of the country are character-
ized by arid or semi-arid climatewith agricultural production dominated
by smallholder farming. Erratic weather patterns, frequent droughts and
reduced growing seasons are threats that will increase the vulnerability
of the agricultural sector in Kenya (Molua et al., 2010; Gachathi and
Eriksen, 2011). The national climate change action plan recently passed
by the Kenyan government calls for urgent implementation of CSA prac-
tices, thus, rendering “targetCSA” highly relevant for the development of
policy and planning instruments (Government of Kenya, 2012).

2. Methods

2.1. Conception of the decision support framework “targetCSA”

2.1.1. Background
Supporting decision makers in their assessment of options based on

several criteria can be achieved through multi-criteria decision-making
(MCDM) analyses (Romero and Rehman, 2003). MCDM aims to elicit
transparently individual and subjective stakeholder judgments, aggre-
gate them to collective preferences andhelp to explore their implications
for decision-making processes (Greene et al., 2011). Spatial information
has to be integrated into MCDM since implementing CSA involves land-
scape planning. Geographic information systems (GIS) can be applied to
link the spatial attributes of criteria to stakeholder preferences
(Boroushaki and Malczewski, 2008). MCDM is based on a well-
established set ofmethods that have been frequently applied to different
planning contexts such as the targeting of projects on the mitigation of
GHG-emissions or the design of ecological reserves and corridors (cf.
Ferretti and Pomarico, 2013; Lin et al., 2014; Tammi and Kalliola, 2014).

Adaptation and mitigation planning is the centrepiece of coping
strategies for climate change such as action plans passed by national
governments (Preston et al., 2011). The decision support framework
proposed here is designed to aid planners and decision makers that
aim to implement CSA at the regional or national level. Such a planning
process involves several sectors such as governmental institutions, civil
society, science and the private sector making it mandatory to involve
respective stakeholder organizations (FAO, 2013). Therefore, the frame-
work integrates multi-sectoral stakeholder groups to contribute expert
knowledge on the selection and importance of vulnerability indicators
as well as CSA practices that fit into a country's or regional profile due
to prevailing environmental and socio-economic conditions. However,
stakeholder perceptions on what is important might differ and result
in conflicting judgements and trade-offs among decision options
(Nordström et al., 2012). Hence, an adequate decision support frame-
work should allow the exploration of trade-offs and minimize dissent.
Integrating expert knowledge and spatial information into MCDM is
crucial for informed and robust decisions based on evidence and accep-
tance (Preston et al., 2011). “targetCSA” uses an optimization-based
approach developed by González-Pachón and Romero (2007) that
applies distance minimization algorithms to reduce disagreement
among the stakeholders' opinions and to facilitate the exploration of
different consensus scenarios. Moreover, consensus-oriented opinions
from stakeholders are coupled with quantitative and spatially-explicit
vulnerability and CSA data building the factual foundation for decisions
onwhere to target CSA. “targetCSA” is structured into threemain stages
(Fig. 1).

2.1.2. Climate change vulnerability and climate-smart agriculture
The vulnerability of a system to stressors such as droughts or floods

depends on its sensitivity to perturbations, the degree of exposure, and
its capacity to adapt on the impact (Challinor et al., 2007; Abson et al.,
2012). Climate change is expected to increase the vulnerability of
farmers by threatening their livelihood strategies as well as entire
food productions systems (Challinor et al., 2007; Harvey et al., 2014b;
Thornton et al., 2014).

The concept of CSA couples climate change and food security
through the integration of adaptation and mitigation measures. It aims
to reduce vulnerability by improving the adaptive capacity of agricultural
systems to climate stress and, hence, securing the provision of foodwhile
reducing GHG-emissions from agricultural practices and land uses
contributing to climate change (Scherr et al., 2012; Campbell et al.,
2014; Harvey et al., 2014a). Thus, a short (adaptation) and long term
(mitigation) perspective are integrated into the CSA concept which
should be considered in proper targeting and planning processes.

By explicitly including the vulnerability concept into CSA-targeting,
a demand-based perspective is taken, meaning that regionswith higher
climate change vulnerability require more urgently interventions that
strengthen their adaptive capacity. The vulnerability of the agricultural
sector to climate change is influenced by environmental and socio-
economic factors (Abson et al., 2012; Fellmann, 2012). Thus, informa-
tion about relevant biophysical (e.g. climate), social (e.g. education)
and economic (e.g. market access) dimensions should be taken into
account to inform an assessment of where specific CSA practices are
suitable.

2.1.3. Stage 1: structuring the decision-making problem

2.1.3.1. Stakeholder involvement and data collection. Relevant stake-
holders should be identified at the beginning of the planning process
(Nordström et al., 2010). During the first stage (Fig. 1), meetings with
cross-sectoral stakeholders are conducted, e.g. from governments, civil
societies, science and private sectors to develop a structured catalogue
of context-specific vulnerability indicators and CSA practices (cf. Patt
et al., 2010; Fellmann, 2012; Scherr et al., 2012). Related datasets can
be obtained from publicly available geo-databases such as the FAO
GeoNetwork, HarvestChoice and GEO-Wiki branches or compiled and
made spatially-explicit based on sub-national census data using GIS.

2.1.3.2. The analytic hierarchy process. The analytic hierarchy process
(AHP) is widely used in MCDM with numerous applications (Wind
and Saaty, 1980; Saaty, 1994; Nordström et al., 2012). A complex
problem is decomposed into pairs of criteria (decision options) through
pair-wise comparisons (PC),where two criteria are comparedwith each
other at a time (Wind and Saaty, 1980). Stakeholders assign numerical
preference weights as expression of their opinion to one of the paired
criteria that are compared on a measurable scale known as the Saaty
scale (Saaty, 1977). It orders the importance of potential judgments
from 1 = equal preference to 9 = extreme preference towards one of
the paired criteria. Finally, the individual stakeholder preferences are
aggregated deriving a normalized vector of overall preferences for
considered criteria (Saaty, 1977).

2.1.4. Stage 2: eliciting stakeholder preferences and consensus building

2.1.4.1. Multi-criteria decision-makingmodel. The second stage integrates
and aggregates formalized stakeholder opinions (Fig. 1). Individual
preference weights are queried through PC questionnaires that are
administered through workshops, expert surveys or interviews (cf.
Diaz-Balteiro et al., 2009; Sae-Lim et al., 2012).

A commonly used technique to aggregate individual stakeholder
preferences in group decision-making processes is to calculate overall
priority vectors (Eigenvectors) through geometric or arithmetic
mean methods (Ishizaka and Labib, 2011; Nordström et al., 2012).
“targetCSA”, however, utilizes a goal programming (GP) approach
by implementing a set of MCDM models that are based on linear
optimization. These models were developed by González-Pachón



Fig. 1. Conceptual overview of the decision support framework “targetCSA”.
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and Romero (2007) and applied by Diaz-Balteiro et al. (2009) as well
as Gebrezgabher et al. (2014). The GP approach has two advantages
compared to the conventional Eigenvector-based aggregation
methods: i) stakeholder preferences do not have to be consistent
throughout the PC questionnaire (González-Pachón et al., 2003;
González-Pachón and Romero, 2007) and ii) the MCDM models are
designed to minimize distances among obtained PC questionnaires
enabling the search for a collective consensus. Hence, this approach
offers integrated support for participatory management and planning
processes that rely on consensus (Sae-Lim et al., 2012; Gebrezgabher
et al., 2014).

In a nutshell, the GP approach computes a consensus matrix that
shows minimized differences to the input PC matrices attained from
the questionnaires and infers the consensus preferences from this
matrix using a distance minimization algorithm. During this process,
optimization can be controlled following different consensus scenarios
moving along a trade-off curve betweenmajority andminority consen-
sus (González-Pachón and Romero, 2011). The majority consensus
represents the closest solution to all stakeholder preferences whereas
the solution based on theminority consensus seeks to satisfy preferences
of the stakeholder far apart from the majority. The MCDMmodels were
numerically programmed in R (v. 3.1.1) using the linear programming
library ‘lpsolve’ (v. 5.6.10). A detailed description of the models can be
found in the Appendix (A1–3).

2.1.4.2. Eliciting stakeholder preferences. Stakeholder preferences repre-
sent a source of uncertainty in the decision making process (Mosadeghi
et al., 2013). Therefore, it is recommended to elicit preferences iteratively
(Nordström et al., 2010). The iterations allow to capture, assess and to
reduce the variability of preferences which result from adjusted stake-
holder opinions that might affect the targeting outcome (Mosadeghi
et al., 2013). Evaluating the robustness of preferences is important to
obtain a transparent measure of how reliable the included expert knowl-
edge is for final decision-making (Xu and Zhang, 2013).

2.1.5. Stage 3: spatial aggregation and coupling of vulnerability and CSA
indices

2.1.5.1. Deriving vulnerability and CSA suitability indices. The third stage
combines elicited preferences with spatial data representing quantita-
tive vulnerability indicators and data reflecting CSA practices (Fig. 1).

Weighed linear combination (WLC) is a widely applied aggregation
rule where high values of one criterion can be offset by low values of
another criterion (Eastman et al., 1995; Greene et al., 2011; Lin et al.,
2014). In “targetCSA”, values of standardized spatially-explicit criteria
aremultipliedwith related stakeholder preferences and finally summed
up deriving combined vulnerability and CSA suitability scores using
WLC. Spatial information of constraints, such as regions with legal
restrictions or a lacking relevance are masked and excluded from the
decision-making process.

Finally, two standardized and spatially-explicit indices depicting
climate change vulnerability and CSA suitability are generated. Subse-
quently, a re-scaling of both indices into low,mid and high vulnerability
as well as CSA suitability allows to superimpose them and to assess
overlaying classes for the identification of areas with high potential
for selected CSA practices. Maps showing these indices can be used to

Image of Fig. 1
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explore the consequences of different consensus scenarios on the CSA
targeting and guide decision-making.

2.1.5.2. Validation. If stakeholder preferences are elicited at several
occasions they can be used to validate the robustness of the calculated
spatial indices (Fig. 1). This is crucial to assess how reliable and, hence,
how useful the vulnerability and CSA suitability indices are as source
of information in a decision-making process (Delgado and Sendra,
2004). Several sets of aggregated and coupled indices can be spatially
compared. Large differences in areas of CSA potential could point to
high uncertainties associated to blurred stakeholder opinions and
knowledge gaps which have to be addressed (Nordström et al., 2010;
Mosadeghi et al., 2013).

2.2. Application example from Kenya

2.2.1. Study area
Kenya covers a total area of 581,881 km2 and has a population of

about 38 million people (Fig. 2) (Wiesmann et al., 2014). While the
most productive land is situated in the central and western, sub-humid
Fig. 2. Maps show the spatial distribution of consistently re-scaled datasets used to represent
maps, dark red colour means highly vulnerable, for the CSA suitability, dark blue colour mea
proxy datasets explained in Table 1.
parts of Kenya, about 80% of Kenya is characterized as semi-arid or arid
lands with erratic rainfall, droughts and sporadic floods (Molua et al.,
2010; Gachathi and Eriksen, 2011). The agricultural sector plays a pivotal
role for food provisioning and the country's economy. However, it suffers
from recurring crop failure, livestock mortality and food insecurity
(Grace et al., 2014). A large part of Kenya's labour force works in the ag-
ricultural sector, which makes about 75% of the national gross domestic
product (Odera et al., 2013). The vulnerability of the mainly rainfed
agricultural sector to climate change is marked by its exposure and
sensitivity to harsh biophysical factors relating to climate and soil as
well as low adaptive capacity determined by the socio-economic
context, e.g. poverty, poor access to education and health facilities
as well as to markets (Eriksen and O'Brien, 2007).

2.2.2. Selection of stakeholders, vulnerability indicators and CSA practices
The CSA targeting process started in 2013 through discussions

between theKenyanMinistry of Environment,Water&Natural Resources
and the Research Program on Climate Change, Agriculture and Food
Security (CCAFS). Stakeholders were selected from four
groups representing governmental organizations (GOs), civil society
(A) vulnerability indicators and (B) CSA practices ranging from 0-1. For the vulnerability
ns highly suitable for the selected CSA practice. Included CSA practices are reflected by

Image of Fig. 2


Table 1
Overview of the stakeholder-based selection of climate change vulnerability indicators and CSA practices for the application example in Kenya, including descriptions as well as linkages between indicators and practices.

Indicators of climate change vulnerability Data description and sources Linkages climate change vulnerability — CSA

Biophysical
Annual precipitation Annual precipitation based on the period: 1950–2000 (Hijmans et al., 2005). ‘Annual precipitation’ was selected as indicator for water availability and ecosystem

productivity. The availability of water largely determines agricultural productivity. The
improvement of water harvesting and management and the introduction of drought
tolerant crop varieties represent viable CSA practices to deal with vulnerability to water
shortages (Harvey et al., 2014a).

Soil organic matter Organic carbon content in the top soil layer, up to 30 cm depth, contained in
(decomposed) plant and animal residues, tissues and cells (Nachtergaele et al., 2012).

‘Soil organic matter’ is an indicator of soil fertility and, thus, ecosystem productivity.
Regions with low soil organic carbon need CSA practices that alleviate nutrient depletion
such as measures to stop erosion to build up soil carbon through organic fertilizers and
integrated practices such as agroforestry (Lal et al., 2011).

Social
Percentage of households with access to safe water
sources

Proportion of households per county with access to safe water sources such as: boreholes,
protected wells and springs, piped water and collected rainwater (Government of Kenya,
2009; Wiesmann et al., 2014).

‘Percentage of households with access to safe water sources’ was selected as an indicator
of household well-being. Required CSA practices should, thus, improve the management
of water that is used for agricultural purposes as well as drinking water and thereby
safeguard its availability (Harvey et al., 2014a).

Literacy rate Proportion of the population (aged 15+) per county that is able to read and write
(Government of Kenya, 2013).

‘Literacy rate’ is an education indicator. High illiteracy reflects reduced capabilities
(adaptive capacity) of making informed decisions regarding viable coping strategies
under climate change (Atela et al., 2014). Thus, it reflects obstacles for implementing CSA
due to lack of knowledge and information. CSA practices in turn have to contribute
necessary knowledge, thus, help to reduce information gaps as well as facilitate relevant
practical skills.

Economic
Female participation in economic activities Active female labour force divided by the total female labour force per county

(Government of Kenya, 2009; Wiesmann et al., 2014).
‘Female participation in economic activities ‘is understood as an indicator for women
empowerment and economic development. Gender inequality increases the
susceptibility to sudden changes and threats as such climate change. Integrated CSA
practices such as conservation agriculture and agroforestry have the potential to promote
gender equality and improve livelihoods for women and men while supporting
mitigation and adaptation (Beuchelt and Badstue, 2013).

Connectivity through transport infrastructure Degree of connection between places across Kenya, based on time needed for travelling
to the next city N50,000 inhabitants (Uchida and Nelson, 2009).

‘Connectivity through transport infrastructure’ indicates farmers' accessibility to markets
for selling farm produces and buying inputs as well as accessing extension services such
as vaccination. A reduced access adds additional risks for farmers under climate change
(Abson et al., 2012). CSA practices are supposed to support farmers to deal with the
impacts of climate shocks such as losses of livestock or crop failures. CSA examples are
insurance schemes and drought tolerant varieties/breeds improved soil and water
management (Harvey et al., 2014a; Vrieling et al., 2014).

CSA practices Examples, proxy datasets and assumption of use Link to indicators of climate change vulnerability
Improvement of soil fertility and soil management Example: low-cost soil fertility enhancement options, such as green manures, legumes,

composting, and animal manure management, improved fallows and conservation agriculture
Proxy dataset: low nutrient capital reserves (Sanchez et al., 2003)
Assumption: depleted nutrient stocks in soils call for improved soil fertility management
through CSA.

Biophysical: ‘soil organic matter’
Social: ‘literacy rate’

Identification and distribution of drought tolerant
cereal crops

Example: sorghum, millet and maize
Proxy dataset: suitability of rainfed cereal crops assuming an improved management scenario
in terms of labour, fertilizer use, pest control and conservationmeasures (van Velthuizen et al.,
2007)
Assumption: The biophysical suitability for cereals under region-specific farm management
reflects the potential to grow drought tolerant cereal varieties.

Biophysical: ‘annual precipitation’
Social: ‘literacy rate’

Reduction of greenhouse gas emissions from the
livestock sector

Example: manure management, more efficient breeds, species, feeds and biogas technologies
Proxy dataset: methane and nitrous oxide emissions from livestock per kg protein, including
cattle, sheep, goats, pigs and poultry (Herrero et al., 2013)
Assumption: high livestock-based emission intensities show high demand for GHG mitigation
practices.

This is a mitigation practice that, in a long-term perspective, reduces the vulnerability to
climate change in general. Therefore, it links to all vulnerability indicators included here.

Improvement of water harvesting and water Example: community water pans, micro-catchments and dams constructed to harvest, Biophysical: ‘annual precipitation’
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(NGOs), scientific institutions and the private sector (Table B1). A
stakeholder workshop was held in early 2014 to select vulnerability
indicators and CSA practices. Subsequently, related quantitative data
were collected, compiled and processed in ArcGIS (v. 10.1). All
datasets were derived from publicly accessible databases or censuses
conducted by governmental institutions in Kenya. Resulting grid
data were resampled tomatch a consistent resolution of approximately
10 × 10 km. A subset of six vulnerability indicators and CSA practices
was selected, suitable to test the applicability of “targetCSA” (Table 1).

This choicewas based on three criteria. First, the selection of vulner-
ability indicators was based on the scientific vulnerability literature
dealing with climate change in Africa (cf. Challinor et al., 2007; Abson
et al., 2012; Atela et al., 2014). Selected CSA practices are also listed in
a catalogue that is part of the Kenyan National Climate Change Action
Plan (Government of Kenya, 2012). Second, the data quality was
ensured through peer-reviewed published datasets and consultation
of experts. Third, there was no high collinearity among vulnerability
and CSA datasets (Spearman's rho b 0.75).

There was no information about the effectiveness of selected CSA
practices on alleviating vulnerability of the agricultural sector in Kenya.
Therefore, this application example represents a spatially-explicit ex-ante
assessment that explores the potential to target CSA practices
consensually by focusing on regions that are shown to be vulnerable
and suitable.

2.2.3. Expert survey
The designed questionnaire comprised two parts. The first part dealt

with the pair-wise comparison of six selected vulnerability indicators,
while the second part focused on comparing the six selected CSA
practices. The number of PC itemswas restricted to six avoiding potential
reductions in consistency and quality of the answers (Saaty, 1977). The
leading questions in both parts were formulated to elicit preference
weights according to the relative importance of the items compared to
each other. For this application example, a slightly reduced rating scale
was used compared to the original Saaty scale, ranging from 1 to 7,
based on results from a pre-test. In order to separate the different intensi-
ties of possible preferencesmore clearly, theywere defined as: 1= equal
preference, 3 = slight preference, 5 = moderate preference and 7 =
strong preference. Five different versions of the questionnairewere creat-
ed differing in their sequence of comparisons based on randomization to
prevent a possible bias resulting from a fixed order of comparisons
(Podsakoff et al., 2003).

The survey took place between September and November 2014
interviewing eight experts from each of the four stakeholder groups
(n=32). Each interview took approximately 20 min. Before an inter-
view started, the questionnaire was explained and put into the CSA
targeting context to avoid misguided judgments due to potential mis-
conception of queried items (Keeney, 2002).

During a stakeholderworkshop conducted inNovember of 2014, the
survey results were presented and preferences re-elicited using the
identical PC questionnaire for the validation of spatial indices. Further-
more, the questionnaire was sent to stakeholders that could not attend,
including supplementary information about the workshop results.
Finally, 16 validation questionnaires were filled covering 50% of each
originally sampled stakeholder group.

2.2.4. Multi-criteria decision-making model
Applying the GP optimization approach developed by González-

Pachón and Romero (2007) allowed us to explore both conflicting
group interests and consensus solutions regarding stakeholder prefer-
ences for vulnerability indicators and CSA practices. The MCDMmodels
were fitted i) to aggregate group specific preferences separately keeping
the experts in each group as individuals and ii) to search a consensus
based on the entire set of included expert opinions, referred to as the
overall consensus, assuming a collective interest in striving for consen-
sus in a decision-making process.



240 P. Brandt et al. / Agricultural Systems 151 (2017) 234–245
The ability of the MCDMmodels to move towards mutually exclusive
majority or minority oriented consensus scenarios was tested by
González-Pachón and Romero (2007). In this example, three scenarios
were applied to explore results that reflect the preferences of the
i)majority, ii)minority, and iii) the optimal trade-off indicating the con-
sensus solution that is most balanced in representing the stakeholder
opinions (González-Pachón and Romero, 2011). The latter is especially
interesting in a decision-making context where no information is
available about the socially desired outcome of the negotiation process.
A detailed description of the applied optimization model used to find
the consensus with the most balanced trade-off can be found in the
Appendix (A4). The modelling procedure was applied on stakeholder
preferences obtained fromboth expert surveys enabling the assessment
of changes in opinions among stakeholders.

2.2.5. Spatial aggregation and coupling of weighted vulnerability and CSA
suitability indices

The WLC rule was used to combine linearly each of the two sets of
spatial data (Table 1), excluding constraints such as protected areas,
forests, lakes and settlements, with preferences inferred from the
overall consensus deriving combined vulnerability and CSA suitability
indices (Eastman et al., 1995). Spatial datasets reflecting these
constraints were obtained during the initial data collection process. A
detailed description of theWLC rule can be found in the Appendix (A5).

By overlaying the indices of vulnerability and CSA suitability, it was
possible to assess the targeting potential of selected CSA practices
based on their suitability in regions that bear high vulnerability. The
indiceswere computed for three different consensus scenarios (majority,
minority, and the most balanced trade-off) to explore differences in
regions with high CSA potential. For validation, the CSA potential was
computed based on stakeholder preferences derived from both surveys
applying the consensus scenario with the most balanced trade-off.
Through comparison of CSA potentials, areas where the survey results
(dis)agree were investigated.

3. Results

3.1. Vulnerability indicators and CSA practices

Both biophysical indicators, ‘annual precipitation’ and ‘soil organic
matter’ show relatively high vulnerability in Northern and Eastern
parts of Kenya (Fig. 2A). The social indicator ‘households with access
to safe water sources’ reveals a more heterogeneous pattern of vulnera-
bility than the indicator ‘literacy rate’ which shows higher illiteracy in
the North and, thus, elevated vulnerability compared to the rest of the
country. The two economic indicators depict a contrasting pattern.
Whereas ‘female participation in economic activities’ highlights the
South-Eastern regions as more vulnerable, the indicator ‘connectivity
through transport infrastructure’ emphasizes the North and partially
the East as more remote and, hence, potentially more vulnerable.

Focusing on CSA practices, the dataset on soil nutrients shows a
scattered pattern of areas in the North-East, West and South of Kenya
where CSA practices relating to the ‘improvement of soil fertility and
soilmanagement’ are potentially suitable (Fig. 2B). For the ‘identification
and distribution of drought tolerant cereal crops’ regions in Western,
Central and coastal Kenya indicate favourable conditions using the
dataset on suitability for cereal crops. The arid areas in the North and
East are shown as not ormarginally suitable for cereals due to prevailing
biophysical conditions rendering crop-based agriculture impossible in
general, except for the narrow belts along rivers that are not captured
by this dataset due to its grid cell resolution of 10 × 10 km. Relatively
high methane and nitrous oxide emissions due to livestock production
identify Western, Central and partially Eastern as well as Southern
regions as suitable for mitigation interventions focusing on the ‘reduc-
tion of GHG-emissions from the livestock sector’. Increased aridity in
the entire North and North-East of Kenya compared to its Western and
Central regions reveal areas for the ‘improvement of water harvesting
and water management’. The percentage of croplands, constrained by
low tree cover, used as proxy for the ‘identification and establishment
of agroforestry practices' delineates Western and Central regions from
the rest of the country emphasizing them as suitable for related
interventions. Insurance premium rates for livestock mortality as
proxy for the ‘implementation of livestock insurances’ reveals Northern
and Eastern areas as prone to higher risks offering eligible conditions for
implementing this practice.

3.2. Aggregated group-specific and overall consensus-based preferences

The distribution of preferenceweights inferred from each stakeholder
group separately and based on the overall consensus, including all
experts, are shown for vulnerability indicators (Fig. 3A) and CSA practices
(Fig. 3B). Illustrated preferences result from the consensus scenario that
shows the most balanced trade-off between majority and minority. The
results for majority and minority scenarios can be found in the Appendix
(Fig. B1–2). Stakeholder groups differed in their preferences for each of
the vulnerability indicators and CSA-practices indicated by across group
standard deviation (SD) ranging from 0.02-0.09 for vulnerability indica-
tors and from 0.00-0.12 for CSA practices. However, the vulnerability
indicator and CSA practice that were weighed low across all groups,
namely ‘connectivity through transport infrastructure’ and ‘implementa-
tion of livestock insurances’, show a relatively homogenous pattern of
preferenceswith the lowest across group SD. Highly preferred vulnerabil-
ity indicators across stakeholder groups are ‘annual precipitation’ and
‘households with access to safe water sources’. These indicators relate to
the biophysical and social dimensions of vulnerability to climate change.
The economic vulnerability indicator ‘connectivity through transport
infrastructure’ and the social indicator ‘literacy rate’ were weighed low
throughout the stakeholder groups except for the science group, which
assigned slightly lower preferences to ‘female participation in economic
activities’. For CSA-practices, high preferenceswere assigned to ‘improve-
ment ofwater harvesting andwatermanagement’ and ‘identification and
distribution of drought tolerant cereal crops’. Yet, NGOs deviated from
this pattern giving higher importance to ‘identification and establishment
of agroforestry practices'. Low weighed CSA practices across stakeholder
groups are ‘implementation of livestock insurances’ and ‘reduction of
GHG-emissions from the livestock sector’.

The preferences based on the overall consensus largely resemble the
distribution of group-specific preferences. However, they rank within
the ranges of group preferences for each of the indicators and CSA
practices except for ‘implementation of livestock insurances’ indicating
minimized distances among stakeholder opinions by using consensus
matrices to infer the overall consensus.

3.3. CSA potential: coupling spatial indices of vulnerability and CSA suitability
under different consensus scenarios

The combined indices for vulnerability and CSA suitability derived
from the overall consensus preferences, including all experts, as well
as CSA potential maps that resulted from coupling the indices are
shown for the majority (Fig. 4A), minority (Fig. 4B) and the most
balanced trade-off (Fig. 4C) consensus scenarios. In general, high
vulnerability to climate change based on the included indicators is
shown for the North and to some degree in Eastern parts of Kenya
whereas high CSA suitability is indicated for Western, Central, coastal
and partly in Northern parts throughout applied consensus scenarios.
However, there are differences in vulnerability among the consensus
scenarios at county level. Themajority consensus led to higher vulnera-
bility for Turkana and Kitui counties than theminority consensus which
identified the same counties as medium or marginally vulnerable. In
contrast, the minority consensus indicated higher vulnerability for
Wajir and Tana river counties. The consensus scenario with the most-
balanced trade-off shows a pattern of vulnerability intensities that lays



Fig. 3. Preferenceweights for each stakeholder group and the overall consensus, including all experts, resulting from the consensus scenario showing themost balanced trade-off between
majority and minority for (A) vulnerability indicators and (B) CSA practices.
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between those indicated by majority and minority for these counties.
Differences in CSA suitability between the consensus scenarios are less
pronounced, yet obvious in several parts of Kenya.

Overlaying CSA suitability on top of high vulnerability regions
reveals areas with high CSA potential in Baringo, Mandera and Wajir
counties in agreement with all three consensus scenarios. The consen-
sus scenarios disagree on areas of high CSA potential in Turkana, Kitui
and Marsabit counties. Comparing majority and minority consensus
scenarios, these differences become most obvious for Turkana and
Kitui counties. The most-balanced trade-off consensus reflects areas
with high CSA potential whose extents rank between those indicated
in the majority and minority consensus scenarios.

3.4. Validation

The preferences inferred from the overall consensus based on two
expert surveys differed as shown for vulnerability indicators (Fig. 5A)
and CSA practices (Fig. 5B) under the consensus scenario with the
most-balanced trade-off between majority and minority. These differ-
ences are less pronounced for vulnerability indicators than for CSAprac-
tices indicated by mean differences between the preferences from the
two surveys of 0.08 and 0.13 respectively. However, Wilcoxon signed-
rank tests did not reveal significant median difference among the two
sets of vulnerability indicators and CSA practices (pN0.05).

Mapping theCSApotential based on the two sets of vulnerability and
CSA suitability indices under the consensus scenario with the most-
balanced trade-off depicts agreement among surveys on areas with
high CSA potential in the North and North-East of Kenyamainly located
in Wajir and Mandera counties (Fig. 5C). Areas of disagreement due to
differing stakeholder preferences derived from the two surveys are
distributed across the North and Central-East of Kenya.

4. Discussion

4.1. Informing decisions with “targetCSA” using spatially-explicit
vulnerability and CSA suitability indices

The combined and spatially-explicit indices reveal a picture ofwhere
to target stakeholder selected CSA practices to reduce agricultural
vulnerability to climate change at the national level. For Kenya,
areas of high vulnerability contrast with areas potentially suitable
for implementing CSA practices based on the empirical information
included here. This study showed that regions of high vulnerability
in Kenya mainly coincide with semi-arid and arid climate resulting
in harsh biophysical conditions, confounded by low availability of
education and health infrastructure as well as reduced access tomarkets
(Odera et al., 2013;Wiesmann et al., 2014). High vulnerability to climate
change for arid and semi-arid areas was also reported at the global scale
(Allen et al., 2007). In contrast, high suitability for selected CSA practices
concentrated around sub-humid, to some degree semi-arid areas and is
discontinuously spread across arid climate (Grace et al., 2014). Never-
theless, areas of high CSA potential were identified and could be targeted
for CSA pilot projects. The Western and Southern parts of Mandera
county in the North-West of Kenya represent an example of high CSA
potential consistently shown for specific areas across different consensus
scenarios as well as expert surveys. The introduction of drought tolerant
cereals on moderately suitable lands, the improvement of water
management in areas of high aridity, or the implementation of livestock

Image of Fig. 3


Fig. 4. Maps show the spatially-explicit indices of vulnerability and CSA suitability as well as the CSA potential for high vulnerability regions based on consensus scenarios of the
(A) majority, (B) minority and (C) most-balanced trade-off. Underlying stakeholder preferences were inferred from the overall consensus, including all experts. Classes of vulnerability
and CSA suitability indices (low, mid and high) resulted from quantile splits to preserve equal n sizes per class.
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insurances addressing high mortality risk may represent promising CSA
measures (Fig. 4). By coupling the computed spatial indices, the original-
ly unrestricted space could be narrowed to specific regions of high CSA
potential enabling a targeted exploration of areas of interest, potentially
leading to decisions that are informed by quantitative data and expert
opinions.

4.2. CSA-targeting as a consensus-driven approach

Climate change adaptation planning calls for stakeholder participa-
tion integrating perceptions and opinions from a broad range of stake-
holders to strive for legitimate decisions and sustainable planning
solutions (Conway and Mustelin, 2014; Krellenberg and Barth, 2014).
However, stakeholder integration may lead to dissent about the impor-
tance of planning objectives reflected by measurable preferences on
multiple AHP-criteria as shown in this example (Fig. 3). This has also
been reported for group decision processes in forest planning (Linares
and Romero, 2002; Kangas et al., 2010). Different interests, highly
complex problems and resulting uncertainties are common causes of
dissent in multi-criteria decision-making applications (Nordström
et al., 2010). Approaching consensus solutions by finding a PC matrix
that shares the highest degree of similarity with the stakeholder-
derived PC matrices reduces discrepancy and hence dissent inherent
to group-specific preferences.

The question of what is the appropriate consensus scenario should
be asked in a certain decision-making context though. Following
different consensus scenarios, changes the patterns of inferred pref-
erences, which determine the location of regions with high potential
for targeting selected CSA practices (Fig. 4). Other studies have
shown similar effects on the distribution of stakeholder preferences
(Diaz-Balteiro et al., 2009; Nordström et al., 2012). The ability to
choose between consensus scenarios and to explore their potential
impact on decisions grants higher flexibility and legitimacy to the
democratic modes that shape group decision-making processes.

Image of Fig. 4


Fig. 5. Comparison of preferences inferred from the overall consensus (including all experts) based on two expert surveys for (A) vulnerability indicators and (B) CSA practices under the
consensus scenario with the most-balanced trade-off. Inset map (C) illustrates agreement on low, mid and high CSA potential in areas with high vulnerability among the two expert
surveys under the same consensus scenario. Regions where the surveys disagreed on CSA potential are coloured in orange.
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Relying on themajority could be a proper principlewhen all stakeholders
possess similar influence on decisions. Instead, givingmore weight to the
minority might be suitable when marginalized stakeholders such as
indigenous people are involved who usually have low influence on
decision-making. If no agreement on opting for the majority or minority
principle is achievable, a compromise solution, such as the one adopted
here, is to select themost balanced trade-off between these twomutually
exclusive alternatives (González-Pachón and Romero, 2011). Hence, the
explicit role of “targetCSA” is to structure decision-making problems
and to facilitate the exploration as well as the discussion of discrepancies
among stakeholder opinions to eventually achieve consensual solutions
that aid decision-making processes where a broad range of stakeholders
are involved.

4.3. Sticking points of a decision support framework for targeting CSA

4.3.1. Capturing and reducing uncertainty from stakeholder preferences
Stakeholder opinionsmay vary over time, as shown here (Fig. 5) and

represent a source of uncertainty for decision-making processes (Xu
and Zhang, 2013). The detected discrepancies regarding the preferences
for some of the CSA practices are most likely an effect of shifts in stake-
holder opinions due to changes of knowledge or interests. A reduction
of this uncertainty is attainable through an iterative mode of preference
elicitation, e.g. by following the Delphimethod (Chung et al., 2014). Yet,
this might be unfeasible in very conflict prone decision-making
situations that are not consensually manageable or due to time and
budget constraints (Nordström et al., 2010). Alternatively, additional
experts may be involved in case of controversial situations to
integrate specific knowledge that was missing but has the potential
to mitigate such situations. An approach to analyse and understand
social dynamics behind preference changes and their effects on
decision-making systems is the use of agent-based models
(Bousquet and Le Page, 2004).

4.3.2. Applicability of “targetCSA”
This example demonstrated the applicability of the presented decision

support framework for targeting selected CSA practices. For instance,
“targetCSA” could be used in different CSA related planning initiatives at
national level such as Kenya’s national CSA framework or the Nationally
Appropriate Mitigation Action (NAMA) that is currently developed for
the dairy production sector in Kenya to support the decision-making on
the prioritization of adaptation and mitigation options. The framework
is applicable on a stratified, regional scale, capturing the heterogeneous
characteristics within a given country by involving region-specific
stakeholders, vulnerability indicators and CSA practices. Furthermore,
the restricted sets of vulnerability indicators and CSA practices that
were chosen for this application example are easily extendable and
adoptable to other countries differing in their biophysical, social and

Image of Fig. 5
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economic conditions. This includes vulnerability indicators that reflect
projected changes of temperature and precipitation, e.g. trends of
decreasing precipitation and increasing temperature would translate
into higher vulnerability and vice versa.

Themain objective of “targetCSA” is to support decisions for adapta-
tion andmitigation planning at the national and regional level by struc-
turing decision-making problems as well as exploring and building
consensus among different stakeholder groups. However, several scales
have to be integrated eventually into a comprehensive planning for
adaptation and mitigation (FAO, 2013; Conway and Mustelin, 2014).
Hence, this framework could be coupled with bottom-up approaches
to properly deal with local realities and to allow for fine-scale planning
(Rosenstock et al., 2014; Chaudhury et al., 2014).
4.4. Further research

Research efforts should be invested into elucidating the impact of
CSA practices on vulnerability alleviation and analyses of synergies
and trade-offs among adaptation and mitigation options in specific
areas, including assessments of implementation costs and benefits for
farmers (Harvey et al., 2014a). Information that links the implementa-
tion of CSA practices to their local effects could be derived from house-
hold surveys and exhaustive meta-analyses of CSA case studies relating
costs and profitability to biophysical and social conditions prevailing in
regions of interest. The resulting spatially upscaled indices of CSA costs
and benefits would represent further layers of information supporting
the decision-making on CSA prioritization together with the aggregated
vulnerability and CSA suitability indices.Moreover, vulnerability indica-
tors need to be further elaborated to meet the needs of the planning
process and to allow for quantitative analyses of interactions and feed-
back mechanisms between biophysical indicators mostly pointing to
exposure and sensitivity aswell as social and economic indicatorsmain-
ly determining the adaptive capacity of agricultural systems (Fellmann,
2012). Shedding light on how to couple the national top-down
approach of CSA-targeting with bottom-up initiatives is necessary
to synchronize local and broad scale adaptation planning (Conway
and Mustelin, 2014).
5. Conclusions

Climate change adaptation and mitigation efforts need to be
coordinated through national planning processes that implement
properly climate change action plans. Related decisions should be made
in accordance with relevant stakeholders and guided by quantitative
information including biophysical, social and economic conditions.
Especially the latter point might be challenging in data-deficient regions,
yet, the exemplary application of “targetCSA” in Kenya showed that it is
potentially feasible.

The main benefits of “targetCSA” for decision-makers are:

1. Problem structuring and complexity reduction by using AHP and pair
wise comparison methods.

2. Spatially-explicit indices are built upon consensual preferences from
cross-sectoral stakeholders on multiple criteria reflected by included
vulnerability indicators and CSA practices.

3. The ability to choose between different consensus scenarios and to
explore their potential effects on decisionsmay lead tomore sustain-
able planning outcomes due to higher acceptance.

4. By using a three-dimensional concept of vulnerability, including
biophysical, social and economic factors a demand-based assessment
of CSA potential becomes possible.

5. Its transferability to other countries makes the applicability of the
framework highly flexible.
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