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Abstract This paper aims to use mixture models to produce predictions from
time series data. Given data of the form (ti,yi), i = 1, . . . ,T , we propose a mix-
ture model localized at time point tT with the k-th component as yi =mk(ti)+εik
with mixing proportions πk(ti) such that 0 ≤ πk(ti) ≤ 1 and ∑

K
k=1 πk(ti) = 1,

where K is the number of components. The mk(·) are smooth unspecified re-
gression functions, and the errors εik ∼ N(0,σ2) are independently distributed.
Estimation of this model is achieved through a kernel-weighted version of the
EM-algorithm, using exponential kernels with different bandwidths (neighbour-
hood sizes) hk as weight functions. By modelling a mixture of local regressions
at a target time point tT but with different bandwidths hk, the estimated mixture
probabilities are informative for the amount of information available in the
data set at the scale of resolution corresponding to each bandwidth. Nadaraya-
Watson and local linear estimators are used to carry out the localized estimation
step. For prediction at time point tT+1, adequate methods are provided for each
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local method, and compared to competing forecasting routines. The data under
study give the energy use for Bolivia, Lebanon, and Greece from 1971 to 2011.

1 Introduction

Mixture models play an important role in the statistical analysis of data
thanks to their flexibility to model a wide variety of random phenomena. They
have been successfully employed in marketing and econometrics (Frühwirth-
Schnatter, 2001) as well as biology and epidemiology (Green and Richardson,
2002), to name a few out of a huge number of fields of application.

One useful type of mixture models is the mixture of regression models. Mix-
tures of regression models are appropriate to use when the observations are
from several subgroups with missing grouping identities, and in each subgroup,
the response has a linear relationship with one or more other recorded variables.
Many efforts have been made to extend such models as finite mixtures of gener-
alized linear models which are comprehensively discussed by McLachlan and
Peel (2004). Bayesian approaches for mixture regression models are summa-
rized by Frühwirth-Schnatter (2006). Mixture models continue to be a topic of
intense research activity, with special issues being edited in close succession
(Böhning et al, 2014; Hinde et al, 2016). A large proportion of articles in those
special issues discusses variants of mixture regression models, such as Poisson
regression, spline regression, or regression under censoring.

Recently, mixtures of nonparametric regression models, which relax the lin-
earity assumption on the regression functions, have gained particular attention.
For example, Young and Hunter (2010) use kernel regression to model covariate-
dependent proportions for mixtures of linear regression models, an idea which
was further developed into a semi-parametric approach by Huang and Yao
(2012). Huang et al (2013) have proposed a nonparametric finite regression
mixture model where the mixing proportions, the mean functions, and the vari-
ance functions are all nonparametric, with application on the U.S. house price
index (HPI) data. However, to our knowledge, there is no statistical method
for prediction from time series based on mixture models and nonparametric
regression. Nonparametric regression is a technique for modelling (possibly
non-linear) trends in data. One approach to nonparametric regression is lo-
cal modelling which locally estimates the mean function m(t) using a set of
parametric models. One of the most popular estimators of m(t) is the Nadaraya-
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Watson estimator or local constant regression estimator which is a special case
of local polynomial regression (Fan and Gijbels, 1996).

The paper presented here aims to use a mixture of non-parametric regression
models to produce predictions from time series data. Estimation of this model
is achieved through a kernel-weighted version of the EM-algorithm, using ex-
ponential kernels with different bandwidths as weight functions. Nadaraya-
Watson and local linear estimators are used to carry out the localized estimation
step. In the first model, this forecast can be calculated directly from histori-
cal data as a local average of observed past values, with the size of the local
neighborhood and the specific weights on the values defined by an exponential
kernel. In the second model, the forecast is based on the fitted intercept and
slope in the local neighborhood preceding the forecast point.

The rest of this paper is structured as follows. We present the main concepts
in Sect. 2. In particular, in Sect. 2.1 we explain two popular estimators for
nonparametric regression, which are the Nadaraya-Watson estimator and the
local linear estimator. We define mixture models in Sect. 2.2, and we show in
Sect. 3 how they can be used for prediction. In Sect. 4, we consider real data
giving the energy use (kg of oil equivalent per capita) for Bolivia, Lebanon
and Greece from 1971 to 2011 (recorded by the IEA1), and will compare our
results to point forecasts obtained by Holt’s exponential smoothing and ARIMA
models. Finally, we provide conclusions in Sect. 5.

2 Main concepts

2.1 Non-parametric regression

In nonparametric regression models, restrictive assumptions on the functional
form of the regression function are avoided. In simple words, we estimate
the regression function by using data to find out more about it. An important
special case of the general model is nonparametric simple regression, where
there is only one predictor, that is yi = m(ti)+ εi, where m(·) is the regression
function and the errors εi are assumed to be normally distributed with mean 0
and constant variance σ2.

Among the many ways to formulate an estimator m̂(·) of m(·), an attractive
technique is local fitting. The estimators of m(·) considered here depend on

1 International Energy Agency, Available at: http://www.iea.org/
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kernel regression, where localization is achieved through the use of a kernel
(or weight) function W and a bandwidth parameter h, which controls the size
of the local neighborhood and can be chosen to be constant or to depend on
location. Kernel regression can be viewed as a method of computing weighted
averages of the response variable in a fixed neighborhood around a target point,
say tT , the width of this neighborhood being governed by the bandwidth h. The
exact form of weighting is determined by W that weights observations nearby
tT more heavily, and might be such that observations that are far away get zero
weight (Fan and Gijbels, 1996).

2.1.1 Nadaraya-Watson estimator

The Nadaraya-Watson (or local constant) estimator is a special case of a larger
class of kernel regression estimators which corresponds to a local constant least
squares fit. It can be seen as a weighted local average of the response variables
yi. It shares this property with several other smoothing techniques (Fan and
Gijbels, 1996).

Let Wh = W (·/h)/h be a weight function and h > 0 be a bandwidth. The
Nadayara-Watson kernel regression estimator is given by

m̂(t) =
∑

n
i=1Wh(ti− tT )yi

∑
n
i=1Wh(ti− tT )

.

2.1.2 Local linear estimator

The local linear estimator applies the linear regression model locally to a frac-
tion of the data around a given point tT . Then the model is

yi = β0(tT )+β1(tT )(ti− tT )+ εi

where the dependence of the parameters β0 and β1 on tT is emphasized. Then,
the estimated regression curve at point tT is (Fan and Gijbels, 1996)

m̂(tT ) =
∑

n
i=1 wiyi

∑
n
i=1 wi

where wi =Wh(ti− tT ) [Sn,2− (ti− tT )Sn,1] and Sn, j = ∑
n
i=1Wh(ti− tT )(ti− tT ) j.



Mixture Models for Prediction from Time Series 5

2.2 Mixture models

Assume a random variable Y with density f (y) is described as a finite mixture
of K probability density functions fk(y), k = 1, . . . ,K, such that

f (y) =
K

∑
k=1

πk fk(y)

with masses (or mixing proportions) π1, . . . ,πK with 0≤ πk≤ 1 and ∑
K
k=1 πk = 1.

We refer to fk(·), which may depend on a parameter vector θk, as the k-th
component of the mixture of probability density functions.

3 Prediction using mixture models

In this section, mixture models are developed to forecast one-step-ahead and
multi-step-ahead using two kinds of non-parametric estimators for the localized
estimation step. The local constant estimator and local linear estimator are used.
We refer to these models as mixture model using local constant smoothers
(MLC) and as mixture model using local linear smoothers (MLL).

3.1 Mixture models using local constant kernel estimators (MLC)

For a time series of the form (t,y) ∈ {(ti,yi) : i = 1, . . . ,T} we consider a local-
ized mixture of K nonparametric regressions mk(ti), k = 1, . . . ,K. At time point
tT , we define a locally constant model mk(ti)≈ mk(tT ), where the mk(tT ) play
the role of parameters and are denoted as βk(tT ) henceforth. Then the model
can be written as

yi =


β1(tT )+ εi1, with probability π1(tT );
...
βK(tT )+ εiK , with probability πK(tT );

where K is a constant number of components, β1(tT ), . . . ,βK(tT ) are constants
which depend on the target point tT , πk(tT ) is the proportion of the k-th com-
ponent such that 0 ≤ πk ≤ 1 and ∑

K
k=1 πk = 1, and the errors εik ∼ N(0,σ2)



6 Najla M. Qarmalah et al.

are independently distributed. For ease of notation, we will often suppress the
dependence of the parameters on tT .
For given component k, we wish to obtain estimators of πk, βk and σ at time tT .
In the estimation step, the Expectation-Maximization (EM) algorithm is used
which is a common method for mixture models. Let G be the random vector
which draws a class k ∈ 1, . . . ,K, where

Gik =

{
1, if observation i belongs to component k;
0, otherwise.

We know that P(G = k) = πk. Denoting

fik ≡ P(yi|G = k) =
1√

2πσ2
exp
(
−(yi−βk)

2

2σ2

)
,

we also know that

P(yi,G = k) = P(yi|G = k)P(G = k) = fikπk.

We introduce one-sided component-wise weight functions Wk anchored at tT as
follows:

Wk(ti, tT ) =

 exp
(

ti−tT
hk

)
hk

ti− tT ≤ 0

0, otherwise.
(1)

Assume now that, for an observation yi, the value of G is known, i.e. we know to
which of the K components the i-th observation belongs. This gives “complete”
data (yi,Gi1, . . . ,GiK), i = 1, . . . ,n, with local probability

P(yi,Gi1, . . . ,GiK) =
K

∏
k=1

( fikπk)
GikWk(ti,tT ).

Then, the corresponding local likelihood function, which is called complete
local likelihood, is

L∗(θ |y1, . . . ,yT ) =
T

∏
i=1

K

∏
k=1

( fikπk)
GikWk(ti,tT ).

The log local likelihood function is

`∗ = logL∗ =
T

∑
i=1

K

∑
k=1

GikWk(ti, tT ) logπk +GikWk(ti, tT ) log fik.
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Interpreting the πk as ‘prior’ probability of class membership, then posterior
probabilities of class membership are produced via Bayes theorem, that is

rik = P(Gik = 1) =
πk fk(yi)

∑
K
`=1 π` f`(yi)

. (2)

Equation (2) is identical to the E-step of the EM-algorithm. The posterior
probabilities rik using the current estimates of πk, βk and σ are then given as

rik =
πk exp

(
−1

2(
yi−βk

σ
)2
)

∑
K
`=1 π` exp

(
−1

2(
yi−β`

σ
)2
) .

In the M-step, for the πk, one needs to apply a Lagrange multiplier since
∑

K
k=1 πk = 1 by setting

∂

(
`∗−λ (

K

∑
k=1

πk−1)

)
/∂πk = 0, k = 1, . . . ,K

and one obtains

π̂k =
∑

T
i=1 rikWk(ti, tT )

∑
T
i=1 ∑

K
k=1 rikWk(ti, tT )

.

In addition, by setting ∂`∗/∂βk = 0 and ∂`∗/∂σ = 0, the estimates are

β̂k =
∑

T
i=1 rikWk(ti, tT )yi

∑
T
i=1 rikWk(ti, tT )

,

σ̂
2 =

∑
T
i=1 ∑

K
k=1 rikWk(ti, tT )(yi−βk)

2

∑
T
i=1 ∑

K
k=1 rikWk(ti, tT )

.

Forecasting using MLC
The m-step-ahead forecast equation is obtained by solving the minimisation
problem which is

ŷT+m = min
a

T

∑
i=1

K

∑
k=1

rikWk(ti, tT+m)(yi−a)2.

Then, we have the following m-step-ahead forecast equation

ŷT+m =
∑

T
i=1 ∑

K
k=1 rikWk(ti, tT+m)yi

∑
T
i=1 ∑

K
k=1 rikWk(ti, tT+m)

.
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3.2 Mixture models using local linear kernel estimators (MLL)

We have generalized the MLC model by using local linear kernel smoothing
rather than local constant smoothing to carry out the localized estimation step.
The kth regression function at time point tT can be approximated as mk(ti) ≈
mk(tT )+m′k(tT )(ti− tT ), motivating the localized model

yi =


β01(tT )+β11(tT )(ti− tT )+ εi1, with probability π1(tT );
...
β0K(tT )+β1K(tT )(ti− tT )+ εiK , with probability πK(tT );

where β0k and β1k are fixed unknown coefficients which depend implicitly on
a fixed time tT , and the errors εik ∼ N(0,σ2) are independently distributed.
For given tT , the data are weighted by exponential kernels for each component
which is defined in (1). In the estimation step, the EM-algorithm is used to
estimate the parameters πk, β0k, β1k and σ for each component k. The posterior
probabilities are found in the E-step as follows

rik =
πk exp

(
−1

2(
yi−β0k−β1k(ti−tT )

σ
)2
)

∑
K
`=1 π` exp

(
−1

2(
yi−β0`−β1`(ti−tT )

σ
)2
) .

In the M-step, the estimators of πk, β0k ,β1k and σ are

π̂k =
∑

T
i=1 rikWk(ti− tT )

∑
T
i=1 ∑

K
k=1 rikWk(ti− tT )

,

β̂0k =
Sk,T,2S∗k,T,0−Sk,T,1S∗k,T,1

Sk,T,2Sk,T,0−S2
k,T,1

, β̂1k =
Sk,T,0S∗k,T,1−Sk,T,1S∗k,T,0

Sk,T,2Sk,T,0−S2
k,T,1

,

where Sk,T, j = ∑
T
i=1Wk(ti− tT )rik(ti− tT ) j and S∗k,T, j = ∑

T
i=1Wk(ti− tT )rikyi(ti−

tT ) j, and

σ̂
2 =

∑
T
i=1 ∑

K
k=1 rikWk(ti− tT )(yi− β̂0k− β̂1k(ti− tT ))2

∑
T
i=1 ∑

K
k=1 rikWk(ti− tT )

.
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Forecasting using MLL
The m-step-ahead forecast equation is obtained by the fitted mixture as follows

ŷT+m =
K

∑
k=1

π̂k

[
β̂0k(tT )+ β̂1k(tT )(tT+m− tT )

]
.

4 Examples

In this section real data examples are presented to investigate the performance
of the MLC and MLL models in forecasting compared to other time series
models such as Holt’s exponential smoothing and ARIMA models. The data
discussed in these examples come from the International Energy Agency (IEA)
and represent the annual energy use (in kg oil equivalent per capita) between
1971 and 2011. Due to the nature of the data, which are restricted to the positive
range and feature several countries with extremely large energy use, a log-
transformation will be applied in all further analyses. While the full data set
contains more than 130 countries, we choose three countries with representative
patterns for this presentation. Figure 4 displays the time series of log energy use
of Bolivia, Lebanon and Greece. It can be seen that the time series of Bolivia
(left) has two features (which are shared by the large majority of countries in
this data base): it shows an overall increasing linear trend, but still considerable
variability. The other two time series illustrate extreme cases where one of these
features is more pronounced: in the case of Lebanon (middle) we have very
strong variability, and in the case of Greece (right) we have a very consistent
linear trend with little variability.

The log energy use data of these countries are fitted at target points tT =
1990, . . . ,2007, in order to obtain m-step ahead forecasts (m= 1, . . . ,4) for each
time point tT by different models. Hence, we have 18 forecasts for each model
and forward lag. For the MLC model and the MLL model, K = 2 components
are used to fit the data, where two different settings of bandwidths, (h1,h2) =
(1,5) and (h1,h2) = (1,20), are considered, in order to capture different short-
and long-term trends prevailing in these data sets.

To assess the performance of the forecasts using these models, we consider
the sum of square relative error (SSRE) of forecasts and the sum of absolute
relative error (SARE) of m-step ahead forecasts which are defined as
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Fig. 1 Time series of Bolivia, Lebanon and Greece (from left to right). The horizontal axis denotes
the calendar year (from 1971 to 2011), and the vertical axis gives the annual energy use (natural log
of kg oil equivalent per capita).

SSRE(m) =
∑

b
T=a (ŷT+m− yT+m)

2

∑
T=b
T=a y2

T+m
; SARE(m) =

∑
b
T=a |ŷT+m− yT+m|

∑
b
T=a |yT+m|

;

where a is the first time point and b is the last time point, which for our analysis
take the values a = 1990 and b = 2007, respectively.

Tables 1, 2 and 3 summarize the results2 of m-step ahead forecasting (m =
1, . . . ,4) according to the SSRE and SARE criteria. From Table 1, we see that
the MLC model has performed well for all forward lags, and has produced
smaller errors than all other methods, except in the case when h2 = 20 and
m = 1. In this case MLL has shown a better performance than MLC, due to
its ability to model the long-term linear trend. Further insight is provided by
Fig. 4, which shows the time series of Bolivia, as well as the fitted parameters
and predictions (top and bottom left), and the fitted mixture probabilities (top
and bottom right) for tT ,T = 1990, . . . ,2007 for one-step ahead prediction from
the MLC model. One can observe that the long-term component seems to
become close to irrelevant for the MLC from around tT = 2002 on, an effect
which is not observed for the MLL (Fig. 4 right). In most cases, the proportion
of the short-term component settles at about 80% which is plausible since
recent information is considered more relevant. The additional information
provided by the long-term component in the MLL model is useful for short-
term prediction, but this advantage vanishes for m > 1 due to the increased
variance.

For the Lebanon data, the errors in Table 2 are overall of larger magnitude
than for Bolivia, due to the larger variability of the data themselves, but oth-

2 All values in tables are to be divided by 1000.



Mixture Models for Prediction from Time Series 11

Table 1 The SSRE and SARE of forecasting for Bolivia from 1991 to 2008.

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
(h1,h2) = (1,5)

MLC 0.09 0.08 0.09 0.09 7.11 7.34 7.78 7.87
MLL 0.12 0.24 0.48 0.87 8.64 11.56 18.38 25.49

(h1,h2) = (1,20)
MLC 0.15 0.17 0.20 0.22 10.07 10.97 12.19 13.13
MLL 0.14 0.31 0.59 1.06 9.50 14.84 21.04 27.09
Holt 0.14 0.44 0.90 1.50 8.85 17.60 26.33 34.20
ARIMA 0.12 0.33 0.59 0.85 8.74 14.62 21.38 25.86

Table 2 The SSRE and SARE of forecasting for Lebanon from 1991 to 2008.

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
(h1,h2) = (1,5)

MLC 0.16 0.18 0.18 0.17 10.95 11.51 11.48 10.75
MLL 0.24 0.70 1.21 1.67 11.70 19.02 27.07 31.55

(h1,h2) = (1,20)
MLC 0.30 0.32 0.35 0.35 15.95 16.62 17.13 16.83
MLL 0.24 0.60 1.05 1.40 12.24 17.76 24.38 29.05
Holt 0.34 0.69 0.95 1.07 15.26 21.25 26.88 28.19
ARIMA 0.31 0.71 1.05 1.26 14.05 20.94 26.92 27.66

Table 3 The SSRE and SARE of forecasting for Greece from 1991 to 2008.

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
(h1,h2) = (1,5)

MLC 0.03 0.02 0.02 0.02 5.11 4.43 3.92 3.64
MLL 0.01 0.03 0.07 0.14 2.71 3.53 5.68 8.32

(h1,h2) = (1,20)
MLC 0.12 0.11 0.11 0.10 10.71 10.42 9.98 9.67
MLL 0.02 0.04 0.10 0.20 2.82 4.13 6.29 9.04
Holt 0.02 0.04 0.09 0.17 3.14 4.44 7.11 10.20
ARIMA 0.02 0.05 0.12 0.22 3.27 5.42 8.20 11.28

erwise the picture obtained previously is confirmed: MLC leads generally to
favorable results, with the MLL becoming competitive only for m = 1 and
a large long-term bandwidth. Holt and ARIMA can compete with the MLC
model only for m = 1.

For the data from Greece the situation is different due to the nature of this
time series which shows an increase which is close to linear. Here the ability
to model a local linear trend can play a strong role at enhancing the prediction,
and due to the stability of this trend, this continues to hold for forecast lags
m > 1.
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Fig. 2 For data from Bolivia, parameters β̂k(tT ) fitted using MLC and resulting forecasts at ŷT+1
(left); and fitted parameters π̂k(tT ) (right).

Summarizing, the examples have given some evidence for the superiority
of the MLC method, especially for higher lags and smaller bandwidths. Re-
markably, the performance of the MLC method almost does not depend on the
forward lag. Here an apparent ‘weakness’ of the MLC method — namely the
non-adaptability to linear trends — seems to turn into an advantage, as the
technique does not ‘learn’ the direction of these local trends, and so avoids
overshooting once the data take a turn. For the MLC method, the bandwidth
choice h2 = 5 produced generally better results than h2 = 20. For the MLL this
interpretation is less clear-cut, but it is right to say that our results, using MLL
with h2 = 20, where generally comparable to those obtained using the ARIMA
and Holt methods. It appears that the MLL method is only recommendable
when m = 1 and h2 is large.
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Fig. 3 For the time series from Bolivia, parameters β̂0k(tT ) fitted using MLL and resulting forecasts
at ŷT+1 (left); and fitted parameters π̂k(tT ) (right).

5 Conclusion

This paper presents a novel approach to forecasting based on localized mixtures
of nonparametric regressions. Nonparametric regression allows a forecast to
be calculated directly from historical data as a local average of observed past
values. In the first model which is named MLC, local constant estimators are
used to carry out the localized estimation step. In the second model which is
referred to as MLL, the MLC is generalized using local linear estimators. Es-
timation of these models is achieved through a kernel-weighted version of the
EM-algorithm, using exponential kernels with different bandwidths as weight
functions. In order to forecast, several approaches for prediction at time tT+m,
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m = 1, . . . ,4 from these models were investigated. The results suggest that mix-
ture models can improve predictions from time series data compared to Holt’s
exponential smoothing and ARIMA models, though further forecasting meth-
ods should be investigated for this comparison. Currently, further consideration
is given to optimal bandwidth choice for forecasting, and a simulation study to
assess the accuracy of forecasting using MLC and MLL.
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