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Abstract

The increasing demand for electricity caused by a growing number of elec-

tric vehicles (EV) is a major challenge for future energy systems. For an

integration of the electricity demand from EV, a comprehensive knowledge

of its characteristics is essential. The analysis of charging behavior patterns

of EV and resulting load profiles become important premises for this crucial

task. Three electric mobility studies in Germany’s southwestern region (Get

eReady, iZEUS, and CROME) deliver comprehensive data of EV use for this

purpose. In this paper we analyze and discuss the mobility and charging

characteristics of this data in detail. We derive empirical EV load profiles

and show how they are affected by charging management as well as charg-

ing power. We present a model to simulate EV loads based on statistical

characteristics of the conducted studies. The resulting charging load profiles

show similar patterns as other EV studies. The developed simulation model

and its results (see supplementary data available online) allow a realistic
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Figure 1: Graphical abstract

representation of EV demand in analyses of future energy systems.

1. Introduction

An increasing demand for energy, and electricity in particular, decreasing

fossil energy source stocks and the necessity to act against climate change

leads to a multitude of new policy objectives and measures. Supporting

electric mobility is a major objective and leads to a shift from oil to electricity

as an energy carrier particularly in the private transport sector. This will

increase the impact of the transport sector on electricity systems. Yet, the

current share of electric vehicles (EV) in Germany and most other countries is

relatively low (below 1 % in January 2015 (EVI-IEA, 2016)). In consequence

there is currently no demand for EV load forecasting by electricity suppliers

(Linssen et al., 2009). However, various forecasts assume a rapidly increasing

share of EV in the private transportation sector (e. g. Kieckhäfer et al.

(2016)). In future, the energy system has to cope with this additional load.

This adaptation requires precise forecasts of the load caused by electric

mobility. Charging can only be controlled and regulated based on a good
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knowledge of future electric mobility pattern. This knowledge will enable

the full potential of possible grid services (Habib et al., 2015) and market

supporting measures (Drude et al., 2014). These measures are highly relevant

in the context of energy transition and concomitant increase in renewable

electricity generation (REG) as well as decentralized generation in general.

To address this need, this paper provides load profiles and a model for

generating synthetic load profiles that are based on real EV mobility and

charging data of three mobility studies with a total of about 30,000 recorded

charging operations by more than 400 EV. To be able to fully understand

the nature of the EV load we give detailed insights into characteristics of

the underlying EV mobility data. As a consequence we give answers to

the following research questions: (i) How can EV mobility and charging

data be processed to create descriptive EV load profiles and what are the

characteristics of these EV load profiles? (ii) How can EV load profiles be

simulated using empirical charging data? (iii) What are the characteristics

of these simulated EV load profiles?

The complete approach of this paper is shown in fig. 1. In a first step we

give a literature overview of existing analyses of EV fleet studies, the subse-

quent performed simulation of EV load profiles and their applications (c.f.

part 2). Following, the data basis from three field trials (c.f. part 3) and

their statistical characteristics, filtering and preparation of these data sets

(c.f. part 4) are addressed. Based on these data sets a subsequent empirical

load profiles for various scenarios are derived (c.f. part 5). Moreover, the

used methods and assumptions for the load profile generation are discussed.

Subsequently, we present the simulation model that allows generating weekly
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or daily charging load profiles for a given number of EV based on the pre-

sented EV mobility data (c.f. part 6). The paper concludes by comparing

the results with findings from other studies as well as validating and critically

assessing the overall results of this paper (c.f. part 7).

2. Literature overview

Before presenting our EV load simulation model, its underlying data and

studies that provided data we give an overview on EV load studies. First

we discuss other EV field tests and their characteristics. Subsequently, we

focus on the generation of EV load profiles and look into approaches of

how to simulate EV loads at different aggregation levels. Finally, we give an

overview on analyses that use simulated EV loads to study the impacts of

EV on energy systems.

2.1. EV fleet studies

Driven by the political goal to decrease (local and global) emissions of the

transportation sector vehicle manufacturers started to push development

of EV since 2010 (EVI-IEA, 2016). First battery electric vehilces (BEV)

and plug-in hybrid electric vehicles (PHEV) were already available on the

market. Models of large original equipment manufacturers (OEM) followed.

Correspondingly the need for field fleet tests that studied EV, their users,

necessary context of electric mobility and impacts of this new technology

increased. Often, installation of public and private charging infrastructure

accompanied these field tests. A multitude of EV fleet tests has been per-

formed worldwide. Instead of entering into details of various studies we refer

to review papers and studies treating a multitude of fleet tests: Hildermeier
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(2016) compares all EV projects co-funded by the European Union between

2007 and 2013 showing that solely few projects created new or alternative

mobility patterns instead of basing their research on conventional mobility.

Leurent and Windisch (2011) give an overview on Londons EV delivery plan,

Germany’s model regions and the project VLOTTE in Austria concluding

that public policy intervention but also technical, industrial and economic

factors have great influence on electric mobility. Corchero Garcia et al.

(2014) provides information on the green eMotion project, that gathered

data from several EV fleet studies all over Europe. This allowed them to

detect that EV ownership and usage are crucial input parameters for studies

on electric mobility. Additionally they proved that locations of charging sta-

tions influence charging behavior like parking times, charging durations and

consumed energy. Smart et al. (2013) give insights into early results of an

EV project conducted in 18 US cities deploying about 12,500 public and

residential charging stations and 8,650 PHEV. In their analysis they iden-

tified a potential of driving in electric mode for PHEV of 73 % (assuming a

fixed electric range of 55 km) based on driving and charging behavior.

2.2. Synthetic EV load profiles

A multitude of simulation models of EV load profiles use for their analy-

sis representative mobility data of conventional vehicles or general mobility

patterns. The German Mobility Panel (MOP, BMVBS (2010)) and the Mo-

bility in Germany study (MiD, Lenz et al. (2010)) are databases that allow

to deduce EV charging behavior of German households. Motor Traffic in

Germany (KiD) focuses on German commercial mobility. Similar studies are

available for other countries, for example the national survey on transport
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and travel (ENTD) for France (Windisch, 2014), the study of the Austrian

motorized individual mobility (Litzlbauer, 2010) the Regional Travel House-

hold Interview Survey (RTHIS) and the 2000 Census Transportation Plan-

ning Package (CTPP) for the US. Pasaoglu et al. (2013) compare simulated

EV load profiles of six European countries based on different mobility data

sources. These studies have oftentimes been used to deduce EV charging load

profiles (e. g. Babrowski et al. (2014)). However, results and conclusions of

these studies lack EV specific mobility characteristics. Few simulations of

EV load profiles actually base their models on real EV charging data. One

example is shown by Wieland et al. (2015) who use data from charging sta-

tions in Graz (E-mobility Graz, 2013) to model charging behavior of EV

under consideration of locations. The simulations by Wieland et al. (2015)

provide information on the expected energy usage, locations and number of

electric charging stations.

2.3. Applications of the synthetic EV loads

The EV load profile generated can be used to analyse the impact of EV

charging activities on a specific electricity system or the energy system in

general (e. g. Mills and MacGill (2014)). Making use of charging flexibility

and load shift potentials of EV, charging requires intelligent and controlled

charging (Hahn et al., 2013). With more knowledge on EV (and their

batteries) models using the simulated EV loads may focus on optimal in-

tegration into day-ahead and real-time wholesale energy markets (Valentine

et al., 2011) for example by using the vehicle to grid (V2G) functionality

(Loisel et al., 2014). Further analyses make assumptions concerning mobility

behavior and use normally distributed parameters. They rather put their
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focus on optimal charging control than realistic detailed EV charging data

(e. g. Ahn et al. (2011)). However, when looking at applications of simu-

lated EV loads for further analysis in a large part of literature underlying

input data for EV load profiles is not transparent and mainly derived from

general, conventional mobility patterns.

3. Electric mobility data basis

An appropriate and comprehensive data basis is necessary to analyze elec-

tric mobility charging behavior and allows developing an extensive model to

generate EV charging load profiles. As explained before, using general (con-

ventional) mobility data requires assumptions on the characteristics of charg-

ing processes (e. g. locations, behavior, active power or driving efficiency)

which may reduce the quality of the result. To minimize these assumptions,

the following analysis and simulations use primary EV mobility and charging

behavior data of three field trials conducted in Southwest Germany. Each

field trial was part of a mobility project. Each was conducted by a consor-

tium of industry and research partners. To give an overview on the different

trials’ contexts and their data collection approach, scope and quality they

are briefly described in the following three subsections.

3.1. Cross border mobility for electric vehicles (CROME)

The project CROME was a French-German project carried out between

2011 and 2013 funded by federal ministries of both countries (Schäuble et al.,

2016b). Aim of the project was to design, enable and analyze border-crossing,

secure, user-friendly and reliable electric mobility between France and Ger-

many. More than 100 EV were part of the CROME field trial, equipped with
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on-board data loggers and smartphones to track mobility behavior of the

EV users. The on-board data loggers installed by the OEM recorded tech-

nical data during the trips and during the charging processes. In addition,

smartphones distributed to the EV users permitted to track the trips via

GPS and to add meta data via a questionnaire for e. g. the purpose of the

trip on a voluntary basis. Most of the cars were part of company car fleets

and were used by several users. In the field trial several EV models were

used: 53 Smart fortwo electric drive phase two (Smart ed2), seven Renault

Kangoo Z.E., 11 Peugeot iOn/Citron C-ZERO. Additionally two prototype

Porsche Boxster e, three Porsche Panamera S Hybrid and four Toyota Prius

Plug-In Hybrid were part of the fleet. In total 3,160 valid charging events

where recorded and extracted from the collected data in CROME.

3.2. Intelligent Zero Emission Urban System (iZEUS)

The project iZEUS conducted between 2012 and 2014 had the aim to de-

velop recommendations to promote standardization for energy and charging

management of EV. Several different field trials and data collecting methods

were used. Over 50 mainly privately used Smart fortwo electric drive phase

three (Smart ed3) and six PHEV (five Toyota Prius and one Opel Ampera)

as well as few other cars like commercial Mercedes Benz Vito E-CELL took

part in the field trial. The cars were equipped with on-board data loggers

and tablets that were used to track GPS data and get user information.

Additional e-Bike field trials with students were performed and real-user ex-

periences of controlled discharging and vehicle-to-home at the KIT energy

smart home lab (ESHL) with an Opel Meriva EDI analyzed. However, the

e-bike and ESHL data are not part of this analysis. All participants of the
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field trials were equipped with tablets which could be used on a voluntary

basis. The tablets provided a routing application including special EV fea-

tures. Also trip tracking based on GPS location was included and a short

user questionnaire before and at the end of the trip for additional meta trip

data was provided by the drivers. All smart ed3 were equipped with on-board

data loggers which collected data at each trip start, trip end, charging start

and charging end. The field trial was conducted over a period of one year

(though some participants joined the field test later). 6,088 valid charging

events were recorded and extracted.

3.3. Operator model for electric fleets in Stuttgart (Get eReady)

In the framework of the project Get eReady funded by the Federal Min-

istry for Economic Affairs and Energy a large-scale fleet trial including 109

organizations, 327 EV and a regional charging network with 181 connected

charging points was set up between 2013 and 2015 in order to analyze suc-

cess factors for EV adoption of organizations in the south-western part of

Germany. The organizations participated in the project between 7 and 27

months, 16 months on average. They received a monthly compensation of

expenses for participating, for the still existing economic disadvantages of EV

and for providing data on charging events within the projects charging net-

work. 75 % of the participating organizations were small and medium-sized

companies. Further information characterizing the fleet test participants is

available in Ensslen et al. (2016a). Information on the charging events were

automatically recorded in the charging points and saved in the charging in-

frastructure backend. Between November 2013 and December 2015 19,696

charging events with 344 different EV drivers (identified by RFID cards)
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of which 288 could be attributed to specific EV were recorded. 21 different

types of EV models were used by the participating organizations and charged

at 155 different charging locations.

3.4. Consequential empirical data basis

The different data collection approaches of the fleet tests resulted in dif-

ferences concerning data formats, file types, content, quality and reliability.

The different data sets available consist of vehicle trip data and electric ve-

hicle supply equipment (EVSE) log data in different resolutions (e. g. 5 s,

5 min, per event, per trip, per 50 W). Additionally, not all information were

available for every charging event (e. g. locations in categories or via GPS,

parking times only available for 90 % of the data sets). Where possible faulty

data sets have been corrected, otherwise ignored. In total 29,262 valid charg-

ing events were used for the following analyses and as input for simulating

EV charging load profiles. A single data set represents a single charging

event. During the event the charging may be interrupted, however the vehi-

cle remains plugged-in and unmoved. We distinguish the data according to

the following three groups which had to be prepared differently:

• Continuous: Data with continuous measurements

(e. g. state of charge (SOC)) during charging process with a sufficiently

high time resolution.

• Basic: Data includes the SOC values (SOCinit and SOCend) for charg-

ing start time tc,init and end time tc,end.

• Basic+Parking: Additional the starting time and end time for parking

(tp,init and tp,end) are given.
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Continuous measurements include values for each single timestamp. This

results in time series with a multitude of timestamp entries for each charging

process. The time series had to be checked for inconsistencies (e. g. false

timestamps or SOC values). Subsequently we reduced the data volume to

the necessary scope and removed faulty entries. Some of the time series of

the CROME Kangoo vehicles had to be treated individually. Charging times

had to be adjusted (reduced) to the times with SOC entries which were in

some few cases incomplete. These adjustments reduced the charging times

by some minutes and depth of charging slightly. We did not extrapolate

the SOC values in these cases. Few of the resulting charging processes were

fragmentary, nevertheless included into the further analyses. The continuous

time series allow to evaluate the charging processes concerning active power

charging curves with a high time resolution (s. part 5.2).

Data collections of basic charging events solely include information on

start and end times as well as SOC of the charging processes. They do not

include additional data collected during the charging processes. Additional

assumptions to deduce corresponding charging load profiles are in these cases

required. The basic charging data had to be checked for inconsistencies

(e. g. SOCinit < 0 %, SOCend > 100 % or missing values). We removed

data sets with false measured values. As parking times were not implied

in most of the data collections, we deduced them from the end time of the

previous trip and the starting time of the following trip. Inconsistencies were

handled as follows. If the following trip started less than 5 minutes before

the end of the charging process, we used the start of the following trip as

tc,end and tp,end. If several charging events occurred before a following trip
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the parking time was merged to an aggregated charging of all single charging

processes. These assumptions (concerning inconsistent times) were used for

other data sets including parking times as well. To harmonize the data

collections, we extracted the necessary information of start and end times

including SOC values from the continuous charging data. Few temporal

inconsistencies appeared as a single offset within a charge. All subsequent

lines may have an incorrect time stamp. Correction of such errors have been

dispensed. As a result, these charging processes are partially incomplete.

Due to this, the filtering was carried out primarily according to the measured

difference between the initial SOC and final SOC value: If the fraud was

below 1 % or more than 100 %, the corresponding charging process was

discarded. The same applied to incomplete or inconsistent charging data.

The duration of a charging operation was not explicitly given in some cases,

but was calculated using the time difference between two days. If this resulted

in a trip starting during a charging process the data set was neglected for

the analyses. Multiple charges during one parking period were aggregated.

4. Data characteristics

In the following section we present the analyzed electric mobility patterns

- especially the charging behavior - based on the previously presented data

basis (c.f. section 3). First we briefly highlight general characteristics of

the data. If the time resolution h of the following analysis is lower than

the granularity of the survey data (e. g. h = 1h) the average value of the

corresponding parameter for the time slot between t−h and t is used. Some

data specifications are not available within all data sources (e. g. no implicit

SOC values for the get eReady data), in this case the analyses refer to the
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data subset (indicated by the total number n) that contains the necessary

data. Second, specific and extensive insights into charging behavior during

the day follow. We used Matlab R© R2015b in connection with a MySQL

Database for data processing.

4.1. General charging behavior characteristics

The first charging operation was recorded on the 3rd November, 2011 the

last on the 31st December, 2015 (1,519 days). During this period the number

of active (i.e.

recorded and regularly charging) EV varied (c.f. fig. 2, top). From the

31st January, 2013 until the end of the recording period more than 15 EV

were permanently active. Recorded charges increase with the number of ac-

tive EV, however a fluctuating charging behavior can be observed (c.f. fig 2,

center and bottom). Effects of different sudies’ time periods are likely to be

marginal compared to differences of the field tests. For example MiD 2002

and MiD 2008 differ little, whereas there are larger differences between KiD

and MiD/MOP.
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Figure 2: Number of active EV (top), charging processes per month (center) and charges
per EV and month (bottom)

The weekly distribution of charging operations (c.f. fig. 3) shows a rel-

atively constant level of 15 to 20 % for all the studies during the weekdays
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(Mon.-Fri.). However, the share of EV charging at the weekend is signifi-

cantly lower.
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Figure 3: Percentage of charging processes per weekdays

Average values on charging processes per weekday

(Charging processes per weekday in average are: Mon: 0.35; Tue, Wed,

Thu: 0.37; Fri: 0.34; Sat: 0.11; Sun. 0.08) indicate that the EV are not

charged equally distributed over the week. For data originating from charg-

ing stations it has to be considered that users may have charged at charging

points that were not part of the fleet test. Additionally, few vehicle were

parked for longer periods, i. e. 1-2 weeks which reduces the average. An EV

is on average charged every third to fourth day (0.2857 times per day). The

EV are charged significantly less often on weekends. When charged during

a day, the EV are usually not charged any more at the same day (c.f. fig.

4). To calculate the days without a charging event, we assumed a vehicle

to be in (fleet-)usage from its first to the last recorded charging event (c.f.

fig 2, bottom). However, charging operations may not have been registered,

which leads to an understated number of the actual charging events per day.

Observations of the studies’ data indicate a change of the charging be-

havior over a longer period. Fig. 4 shows the changes of charging behavior

indicated by the average number of charges per day at which a vehicle was
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charged for the observed years. As shown in fig. 2 starting in last quarter

of 2011 only few vehicles were recorded for which reason 2011 is not shown

in fig. 4 for reasons of comparability. The average number of charges per

day decreased over the years for most of the days of the week, although some

new participants entered the fleet trials belatedly and the fleet tests started

at different times. This may lead to the assumption that EV users charged

their vehicles less often with an increasing holding period of their EV. The

allover mean values for all years and weekdays are the following:

1. The mean charging events per vehicle and per day at which a vehicle

charges is at lph=24h = 1.5378 (cf. table 2).

2. The mean of all vehicles’ mean charging events per day at which at

least one vehicle was charged is at 1.3788. When taking into account

the days when no vehicle was charged,

3. the mean of the charging events per vehicle and per day is at 1.2947.

4. The mean of all vehicles’ mean charging events per day is at 0.2857.
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Figure 4: Yearly variation of the average number of charges per vehicle and weekday (at
which the vehicle was charged)
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4.2. Charging locations

Some of the data sets include information on the parking location (e. g.

iZEUS via tablet, Get eReady via location of the charging station) which can

be classified in categories (like private or company). Fig. 5 illustrates the

main parking locations during the day which are private parking locations

especially during nighttimes (about 60 %) and parking at the company during

working hours. Public parking is used less often but still has a share of over

15 % during the whole day. In combination with the available charging

infrastructure and their characteristics (e. g. maximum power, cf. part 6.4)

this data allows to analyse and simulate EV charging load profiles.
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Figure 5: Shares of EV parking places during the course of the day, data gathered with
tablets in the iZeus project

4.3. State of charge

The composition of the values for the SOC at the beginning of the charg-

ing operation (SOCinit) differs in the course of a day (c.f. fig. 6). The low

number of observed charging starts during the night imply a limited valid-

ity concerning inference for these hours. Aggregating the values provides a

better indication and leads to a median of q0.5 = 58.8 % for the SOCinit
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values from midnight to 5 a.m. (n=141), and to q0.5 = 66 % from 23 p.m. to

6 a.m. (n=321). The SOCinit are in general lower in the morning (from 7 to

9 a.m.) and during the night (aggregated periods). In contrast, the SOC at

the end of the charging operations (SOCend) (c.f. fig. 7) show no significant

dependence to the time of day and are throughout high. Slightly lower quar-

tiles (q0.25 = 76.5 % from 8 to 9 a.m.) can be observed in the morning and

afternoon. However, values of the SOCend are distributed to a greater extend

in each hour than SOCinit (e. g. in the period from 6 a.m. to midnight the

standard deviation σ(SOCinit) is 14.2 % compared to σ(SOCend) of 24 %).

4.4. Time of charging

The number of starting charging operations varies over a day and is shown

in fig. 6. Merely 1.8 % of the charging operations are initiated between

midnight and 6 a.m. Beginning at 6 a.m. the number of charging events

increases. Peaks can be observed in the early morning between 7-8 a.m., the

late morning between 10-11 a.m. and from 1-2 p.m. when about 10 % of

all charges are initiated. During the afternoon the numbers stay high with

a peak in the evening from 5-6 p.m. and following decreasing numbers of

initiated charging operations. The number of ending charging operations

per hour depends highly on the starting time of the charging operations

(tc,init) and the charging durations tc,diff . This interdependency is described

implicitly in the following section.

4.5. Charged energy

Fig. 8 provides histograms of the charged energy and the SOC difference

SOCdiff for the data source which does not provide initial and end SOC

values but the charged energy (few charged energy values over 60 kWh are

17



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t [h]

0

10

20

30

40

50

60

70

80

90

100

S
O
C

[%
]

SOCinit, h = 1h

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

n=9566, min(n(t))=15, max(n(t))=953

0

200

400

600

800

n

Figure 6: Hourly distribution of SOCinit (box plot) and the corresponding number of
starting charging operations for one day (histogram)
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Figure 7: Hourly distribution of SOCend (box plot) and the corresponding number of
ending charging operations for one day (histogram)

not shown in the diagram). The SOC difference has been calculated using

the EV battery capacity, the charged energy and an assumed efficiency of

η=90 %. Most of the charging operations charge less than 20 kWh due to

the small battery capacity of most vehicles but also due to the fact that EV

are charged with high initial SOC (indicated by the other studies).

The median of the charged energy, dependent on the hour of the charging

start time, is highest in the early morning hours and lowest after noon. De-

tailed information on the dependency between charged energy and charging

18



0 10 20 30 40 50 60

Charged energy in kWh

0

500

1,000

1,500

2,000

2,500

N
u
m
b
er

o
f
ch
a
rg
es

0 20 40 60 80 100

SOCdiff in %

0

500

1,000

1,500

N
u
m
b
er

o
f
ch
a
rg
es

Figure 8: Histograms of charged energy and SOC difference for data sources without SOC
values (n=16,604)

duration can be found in the appendix.

4.6. Number of parkings

The distribution of the parking start tp,init over a day (c.f. fig. 9) shows

similarities with the characteristics of the distribution of the charging times

over the day tc,init. However, the distribution of parking end times tp,init

(departing EV) shows a slightly similar trend with a shifted peak to the

afternoon. This reflects the fact that EV are more likely to depart and arrive

during the day than during the night.

00:00 06:00 12:00 18:00 00:00
0

500

1,000

1,500

2,000

2,500

3,000

tp,init

tp,end

Figure 9: Number of parking start and end times over a day

4.7. Parking and charging duration

The evaluation of the parking durations in comparison with the charging

durations is based on the data which covered all charging processes with

information on charging and parking time (n = 6,278 in total) and with

parking durations smaller than seven days. The average charging process
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duration is longer when charging processes were started in the evening than

when they were started in the morning. It can be observed that almost

all vehicles are completely recharged at at the end of parking. The visible

gray area in fig. 10 depicts the potential for shifting charging operations

(load shifting). This shifting potential is highest for vehicles parked in the

afternoon around 4 p.m. to 8 p.m. and during the night between around

11 p.m. to 3 a.m.
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Figure 10: Charging durations ordered first by starting time and second by length (black)
and the corresponding parking duration (gray, cut when greater than three days analo-
gously ordered)

5. Empirical load profiles

This part provides an answer of the first research question of this paper.

Empirical load profiles resulting from the EV charging characteristics are

presented. These load profiles are time series of power values (usually with

a resolution of a quarter of an hour). We solely use the CROME and iZeus

charging operations (n=9,395) as they provide the necessary information

(without assumptions) on the SOC values at the start and the end of the

charging operations. We first explain the applied methods for the creation
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of the load profiles. Subsequently we provide a standardization factor that

allows to compare the load profiles of the different data sets. In the following

we explain how we represented and approximated the active power charging

curves. After this introducing information we present the empirical load

profiles generated with the given data and with additional assumptions on

maximal charging power and charging start times.

5.1. Methods of load profile creation

In this paper we use a direct and an indirect method to create load profiles.

The choice of the method applied mainly depends on the underlying data.

Both methods allow to produce load profiles for a given time frame. The

direct method uses all data of each individual charging process. However,

data may originate from different sources like time-dependent SOC, charging

power logged by the battery management system of the vehicle or by the

charging power outlet. To obtain the load profiles, the data is converted to

active power time series with assumptions on charging losses. The indirect

method requires information on start and end times of charging events as

well as the corresponding (initial and final) SOC. With assumptions on the

power and energy requirements during the charging processes a charging

profile can be generated. When the data is used as input for the simulation

model (explained in part 6), the empirical density functions (in contrast to

compositions of continuous density functions (Dickert and Schegner, 2011)

spanning the time frame of the load profile (usually of one day) are used.

Significance of the data increases with a higher number of charging processes

and is higher for the direct method due to conceptual reasons. The direct

method requires measuring equipment in the vehicle or measuring equipment
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attached to the charging point. In contrast, the indirect method requires

solely one charging data set per vehicle and charging type as well as values

of three parameters per charge. The higher precision of the direct method

may be used to validate the quality of generated data of the indirect method.

The number of data records for the direct method exceeds the data records for

the indirect method for more than one dimension. Characteristic and fixed

active power charging curves of the EV are required by the indirect method

and were used for the calculations of the load profiles described in this part.

Despite the different data qualities the load profiles of the indirect and direct

method compared in fig. 11 are similar. The curves are standardized load

profiles, with a charged energy per day of E(24 h) = 4.44 kWh. In contrast

to the direct method, the indirect method offers the advantage to insert

different assumptions for the calculation of a load profile when data is not

available or to simulate alternative scenarios (e. g. fast charging).
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Figure 11: Comparison of standardized (E24h = 4.44 kWh) load profiles for data edited
with the indirect and direct method
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5.2. Active power charging curves

Active power charging curves (apcc) are characterized by the chronolog-

ical sequence of charging power during the charging process of the EV. The

indirect method requires knowledge of these curves to trace the course of

charging. Fig. 12 depicts two empirical apcc (with a maximal active power

of 3.7 kW) of an EV, each equipped with a 20 kWh lithium-ion battery, and

their approximation. Charging of this battery technology is performed ap-

plying constant current constant voltage (CCCV) charging. The main charg-

ing period uses constant current charging which results in a nearly constant

charging power until the final charging voltage is reached and the charging

process switches to constant voltage charging with rapidly falling charging

power. Due to different influences (e. g. ambient or internal cell temperature)

this process may vary. This variation implies a reduction of the charging cur-

rent during constant current charging. In order to generate load profiles we

use approximations (linear for the constant part, exponentially decreasing

for the non-constant part, cf. fig. 12) of representative measured charging

curves for the different EV models of the studies. The measured values of

the apcc are either tracked active power or deduced from SOC values. The

two different measured values imply additional considerations of electricity

losses. Active power Pa is metered at the power outlet for the charging cable

(outside the car). In this case all losses Pl before battery are included and

represent the gross electricity demand from grid. SOC is metered by the

battery management system (BMS) and does not include charging losses Pl

before battery. With a nominal battery capacity Cn the active power Pa

(demand from grid) can be calculated as follows.
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SOC =

∫ t
0 Pa(t) − Pl(t)dt

Cn
(1)

Main sources of losses are the inverter and the thermal management of

the battery packs (Richardson et al., 2012). An inverter has an efficiency η

between 95 % and 98 %. Different sources state various values for battery

chargers ranging from 90 % (Litzlbauer, 2010) to 97 % (Schuster, 2009).

Further efficiency values for thermal management are not given. For the

creation of the apcc (from SOC values) we used an efficiency of η = 90 %.
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Figure 12: Empirical active power charging curves (lines) and their approximation (dots)
for charging with a max. active power of 3.6 kW and a battery capacity of 20 kWh

5.3. Standardization

To compare the various data sets and assumptions and for the creation

of standardized load profiles a standardization factor a is introduced. a

is defined by the amount of charged energy of an EV that charges a SOC

difference of SOC∆,h, lph times per observation period h and has an efficiency

of η. Wh represents the average charged energy of an EV with an average

battery capacity.

∫ h

0
aP (t)dt

!
= Wh =

lph C SoCdiff,h

η
=
lph E

η
(2)

The mean charging events per vehicle and per weekday at which a vehicle

charges lph=24h (c.f. fig. 3 and 4), the average SOC difference SOC∆,h and
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Table 1: Nomenclature: Standardization of the load profiles

h unit of the observation period
lph av. number of charging operations in h
C av. nominal battery capacity
η charging efficiency (0.9)
SOCdiff,h av. SOC difference
Wh av. amount of charged energy in h
P (t) load profile
a standardization factor

the average charged energy Eh=24 for the different weekdays are shown in

table 2. Results of the MiD 2008 (Lenz et al., 2010) (c.f. part 2) indicate an

average daily traveled distance of 39 km. Together with an assumed average

consumption of 12.49 kWh/100 km this results in an average energy demand

Wh=24 h of 5.412 kWh (Wh = 1
η
· 39 km · 12.49 kWh/100 km, charged energy

of E = 4.87 kWh). This value is slightly higher than the data of the CROME

study suggests and about half as high as the average energy demand in the

Get eReady study (c.f. table 2).

Table 2: Mean charging events per vehicle and per weekday at which a vehicle charges
lph, SOC difference SOC∆,h024h and charged energy Eh=24

Mon Tue Wed Thu Fri Sat Sun

lph
a 1.69 1.66 1.78 1.85 1.86 1.71 1.46

lph
b 1.36 1.31 1.28 1.33 1.42 1.14 1.21

SoCdiff
c 25.6 25.9 26.9 25.5 26.2 22.9 26.2

Eh
d 10.6 9.2 9.4 9.5 9.3 10.8 11.5

a: Data from CROME study
b: Data from Get eReady study
c: in % for data from CROME study (C = 16, 94kWh)
d: in kWh for data from Get eReady study
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5.4. Load profiles

The aggregated load profile of the 9,566 charging operations of the iZEUS

and CROME study, for which SOCinit and SOCend are known are presented

in fig. 13. Within 1,061 days the EV have been charged during 9,395 charging

operations with 41.051 MWh. This aggregated load profile is similar to the

distribution ofthe starting times (tinit) (c.f. histogram in fig. 6). When stan-

dardized (c.f. part 5.3) the resulting load curve may be used as standardized

load profile of EV charging with a peak at 376.9 W at 6:15 p.m.

Fig. 13 shows the charging operations mentioned before distributed over

a week according to the weekday of charging and the starting time (tinit).

Weekdays (Monday to Friday) show similar characteristics. The profiles of

Saturday and Sunday show the same power level, however a different char-

acteristic.
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Figure 13: Load profile projected on a week (n=9,395)

Differences in resulting charging load curve depending on the year of the

fleet tests (2011 to 2014) may allow to derive EV drivers’ behavior and their

adaptation to the new technology. The load profiles in fig. 14 show the

relative load profiles of the years for one day. For a better comparability of

the periods the profiles were weighted with the total charged energy per year

(821.3 MWh in 2014, 1,474.5 MWh in 2013, 155.13 MWh in 2012, 12.41 MWh

in 2011). In the latter years of the fleet test users started to briefly charge
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in the early afternoon and to use night hours for longer charging operations

which results in flatter load profiles.
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Figure 14: Load profiles for one day for the years 2011 to 2014 weighted with the total
charged energy per year (n=9,395)

5.5. Fast charging

The previous analysis considered an actual maximum charging power of

3.7 kW of the EV. Solely few of the vehicles had the ability to be charged with

a maximum charging power of 22 kW. On the hypothesis that each charging

event (except PHEV, c.f. below) is performed with a maximum charging

power of 50 kW e. g. Chademo, (Schäuble et al., 2016a) the (standardized)

load profiles change as depicted in fig. 15. For this analysis, charging oper-

ations of PHEV still have a maximal charging power of 3.7 kW. For PHEV

the relevance of fast charging is considerably lower due to their significantly

smaller battery capacity (compared to BEV) and the available internal com-

bustion engine (ICE). The individual charging processes were based on the

approximation (c.f. part 5.2) of a measured CCCV charging profile with

a maximum charging power of 50 kW for each vehicle model. The higher

the maximum charging power, the shorter the charging duration. And, the
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higher are the similarities between charging power and starting times of

the charging operations (correlation coefficients for 3.7 kW and 50 kW load

profiles are 0.596 and 0.733). By shortening the individual charging time,

the charging load decreases to nearly zero from 2:30 am to 5:30 am. Though,

higher charging powers result in load fluctuations as well as distinct peaks.

h

Figure 15: Synthetic load profile for one day with a maximum charging power of 50 kW
(n=9,395)

5.6. Load shift potential

Based on the hypothesis that the charging power is always adapted to

the available charging time, the load profile changes significantly. Fig. 16

shows the (standardized) load profile under the assumption of an equally

distributed charging power level that allows to cover the necessary amount

of energy over the available charging duration for each individual charging

operation. Assuming that all EV are applying this charging strategy results

in a levelized load profile with higher minima and lower maxima.

In most cases, parking duration considerably exceeds charging duration

which can be used for a controlled charging process. In the following, three

different charging strategies (all with the actual maximum charging power of

3.7 kW or 22 kW) are considered for the temporal distribution of the actual
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Figure 16: Load profile for one day with an equally distributed, individual maximum
power rate (Dotted line shows the stacked profile for hours greater than 24h) (n=9,395)

charging time over the parking periods:

A. The charging operation starts immediately at the beginning of the park-

ing period until a SOC equivalent to a range of 20 km is reached. The

remaining SOC difference is charged at the very end of the parking

period.

B. The entire parking duration minus five minutes (This value corresponds

to the period in which about 75 % of all charging operations have

been initiated after having parked the car) is used to charge at a con-

stant charging power. In this charging strategy the charging power is

adapted to the available parking time (s. part 5.6).

C. The charging operation is performed at the end of the parking period

so that charging end and departure of the following trip match.

Fig. 17 shows the weighted load profiles of the three different strategies

(n = 6,115) and the basic load profile (n = 9,395) in comparison. Parking

times were not available for all of the charging operations with SOC values.

This is the reason why the profiles have been weighted with the total charged

energy. Solely few initial SOC are lower than the predefined equivalent of
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20 km range, resulting in a similar curve for strategies A and C. Differences

around midnight may be explained by differences in the number of departing

and parked vehicles. As explained before, the load profile for strategy B

is similar to the balance of departing and parked vehicles and results in a

levelized curve. If there are more vehicles on the road than there are parked,

the charging load decreases.

h

Figure 17: Load profiles of different charging scenarios weighted with the total charged
energy

6. Synthetic load profile generation

This part intends to answer the second and third research question of this

paper. The development and results of the simulation model for generation

of standardized, daily load profiles of EV charging are presented. In a first

step main model inputs, parameters and outputs are highlighted. Subse-

quently the simulation process is explained in detail. The thereby simulated

load profiles are subsequently presented before scenarios for the maximum

power rate are described and a discussion of simulation runs considering these

scenarios is presented. The simulation was developed in Matlab R© R2015b in

connection with a MySQL Database.
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6.1. Model input

The data originating from the e-mobility field tests described in section

3 of this paper provide a statistically relevant number of data sets with

charging operations which are used as input for the simulation model. Using

the empirical model parameters, the developed model algorithm simulates

a load profile c for a given period P and a given number of EV n. The

simulation model uses EV parameters like capacity Cev and an approximation

of the apcc that depends on the maximal charging power as well as on the

duration and parameters of the constant and nonlinear power part. The

number of charges per EV ξd and P , initial SOC level SOCinit dependent

on the charging start time, final SOC levels SOCn and charged energy Ech

(dependent on the available empirical data) are used to calculate the load

profile.

6.2. Model process

Fig. 18 gives an overview on the following model process.

1. Given a predefined number of EV n and a max charging power pmax the

model simulates a charging profile based on the presented empirical e-

mobility data over a predefined period P which may either be a specific

day of the week, a general day or an entire week (fig. 18:1).

2. The EV characteristics (Cev and apccev) are drawn randomly from the

30 EV models of the studies (fig. 18:2). The apcc is dependent on the

either predefined or randomly drawn maximum charging power pmax.

When not predefined pmax is drawn from the probability distributions

of the scenarios described in part 6.4 (s. table 4).
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Table 3: Model nomenclature

Input
n Number of EV
P Observation period
pmax(tinit) Max. charging power in tinit

a

Parameter
Cev EV battery capacity in kWh
apccev apcc of the EV
ξd Average number of chargesb

ξd(n) Number of charges (rand. Var.)
tinit = tp,init or tc,init Start time of charging
SOCinit(hour(tc,init)) Initial SOC in kWh
SOCend Final SOC value in kWh
Ech Charged energy in kWh

Output
tend Charging end time
cop(t) Number of charging EV
c Load profile

a: Input for case I, parameter for case II (c.f. fig. 18:1 and 5a/5b)
b: Divided into ξd,e for data with information on initial and final SOC values and and ξd,s
for data with information on the charged energy without knowledge of the SOC

3. Subsequently the number of charges ξd per day and n EV for each day

(either one or seven) of the period P is determined (fig. 18:3, c.f. also

fig. 4). This may be the calculated average values of part 4.1 and

table 2 (ξd = lph=24h = 1.5378) or a random variable drawn from the

empirical distribution of charges for n EV ξd(n).

4. Because of the heterogeneous database (c.f. part 3) ξd is divided pro-

portionally to the data sources’ size into ξd,e and ξd,s (fig. 18:4). The

data source is divided into two parts: one with information on initial

and final SOC values (represented by ξd,s) and another that solely pro-
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vides information on the charged energy without knowledge of the SOC

(represented by ξd,e).

5. After the initialisation of the model loop for each ξd the independent

initial charging time is drawn from the empirical data (fig. 18:5a and

5b).

6. For ξd,s charges the initial SOC is drawn dependent on the hour of the

initial charging time (fig. 18:6, c.f. fig 6 and part 4.4).

7. Subsequently , a final SOC value is drawn independently (c.f. fig 7 and

part 4.4) for all ξd charges (fig. 18:7).

8. For all ξd,s drawn SOC values are checked for consistency (SOCend ≥

SOCinit), if inconsistent another end SOC value is drawn (fig. 18:8).

9. With EV capacity , given initial and end SOC the energy to charge can

be calculated Ech =

Cev(SOCend − SOCinit) for all ξd,s (fig. 18:9b). In contrast, for all

ξd,e the energy to charge is drawn from the empirical data dependent

on the hour of initial charging time (fig. 18:9a).

10. If the drawn end SOC value is less than 100% the apcc has to be cut

off at the end. Dependent of SOCend the cut may occur in the linear

or nonlinear part of the apcc. The SOCinit (implicitly through Ech)

determines if the apcc front part has to be cut (fig. 18:10, c.f. fig. 12).

11. With tinit and a trapezoidal numerical integration over the cut apcc

the charging end time tend is determined (fig. 18:11).

12. The following step performs the check if for any

timestep t (granularity: minutes) of P the number of charging vehi-

cles cop(t) is less than the number of all EV n (fig. 18:12). If this is
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true the last charging operation is skipped and the loop starts with

another charging starting time (fig. 18:3a or b).

13. Otherwise, the iterator is incremented an the calculated and trimmed

apcc is added to the load profile c (fig. 18:13).

Figure 18: Model process

6.3. Simulated load profiles

Dependent on the input and model parameter variations a multitude of

different simulation results can be generated. A collection of simulation runs
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is made available online: The collection of the simulation runs including all

parameters can be downloaded from Schäuble et al. (2017).

Fig. 19 and fig. 20 show the spectra of 250 simulated load profiles of

charging operations of 100 EV that charge at least once every day with pmax

= 3.6 kW (shown in fig. 19) and pmax = 50 kW (shown in fig. 20) using

the mean number of charging events per vehicle and per day (154). For

pmax = 3.6 kW the spectrum stays below 150 kW and the mean (light area)

shows a characteristic bell-shaped profile that extends over a large part of

the following day. When stacking the mean of the following day on the mean

of the first day (dark area) the resulting mean profile shows a minimum at

around 5 a.m. The spectrum for the simulations with pmax = 50 kW (fig.

20) however show peaks up to 300 kW. Charging activities do not extend to

the following day which leads to a low electricity demand during the night

(midnight to 4 a.m.). Fig. 21 exemplary depicts three individually simulated

load profiles for 100 EV that charge at least once every day with a maximum

charging power of pmax = 3.6 kW using the mean number of charging events

per vehicle and per weekday.

6.4. Scenarios for the maximum power rate

As there are different types and modes of charging infrastructure for dif-

ferent areas of public and private locations, the parking locations may serve

as indicator for the maximum charging power rate pmax. The German Na-

tional Electric Mobility Platform (NPE) identified three main locations for

EVSE (Nationale Plattform Elektromobilität (NPE) (2014)) and forecasts

the number of charging points for the year 2020. Based on these projec-

tions on the relative numbers of EVSE, probabilities are set for the use of a
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Figure 19: Spectrum of 250 simulated load profiles of charging operations of 100 EV that
charge at least once every day with pmax = 3.6 kW using the mean number of charging
events per vehicle and per day (ξd = 1.54), the mean (solid black line) and the mean of
the following day stacked on the mean of the first day (dotted black line).

h

Figure 20: Spectrum of 250 simulated load profiles of charging operations of 100 EV that
charge at least once every day with pmax = 50 kW using the mean number of charging
events per vehicle and per day (ξd = 1.54), the mean (solid black line) and the mean of
the following day stacked on the mean of the first day (dotted black line).

particular pmax dependent on the parking location (Scenario P0). The rela-

tive numbers (probabilities) of pmax are combined with the probability of the

parking location that depends on the time of day (c.f. fig. 5) which results

in probabilities for different maximum charging rates depending on the time

of day (with respect to the chosen resolution). Categories for the parking

locations are semipublic (e. g. supermarkets), companies (co.), curbside and
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Figure 21: Three simulated load profiles over a week, starting on Monday, for 100 EV that
charge at least once every day with pmax = 3.6 kW using the mean number of charging
events per vehicle and per weekday (Number of charges: Mon 154, Tue 151, Wed 158, Thu
163, Fri 157, Sat 153, Sun 144)

private (priv.) sites. Two comparative projections (Sc. P1 and P2) with

higher shares of faster pmax are taken into consideration additionally to il-

lustrate the influence of the use of different charging power rates. Table 4

shows a comparison of the three scenarios.

Table 4: Scenarios for probabilities of pmax in 2020

Sc. [kW] Semipub. Curbs. Co. Priv.

3.7 0 0.9 1 1
P0 22 0.94 0.1 0 0

50 0.06 0 0 0

3.7 0.4 0.4 0.7 0.79
P1 22 0.5 0.3 0.2 0.2

50 0.1 0.3 0.1 0.01

3.7 0.04 0.05 0.55 0.65
P2 22 0.90 0.2 0.40 0.30

50 0.06 0.75 0.05 0.05

According to the probabilities given in Table 4, the simulated standard-

ized load profiles show different proportions of the three maximum charging

power rates (3.6 kW, 22 kW and 50 kW) dependent on the chosen scenario.

The profiles show similar characteristics compared to the profiles of the em-

pirical data analysis with the assumtion on the maximum charging power
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pmax. This may lead to the conclusion that the distribution of the number

of initial charging operations has the greatest impact on the load curve char-

acteristics. Though, influence of the number of higher charging power rates

and SOC difference per charge are less important.

7. Discussion and conclusion

Despite the following comparison of simulated and empirical load profiles

that provides an evaluation and valuation of the attained results, a final

validation remains difficult as the underlying data sources differ considerably.

Additionally filtering, processing and usage of this data has to be reviewed

critically as several assumption are included in these processes.

7.1. Validation

The simulated EV load profiles in Pasaoglu et al. (2013) generally show

similar characteristics to the simulations of this work, e. g. the working days

differ from the weekend and and all have several power peaks across the

day. The uncontrolled commercial public charging scenario of Qian et al.

(2011) however shows a less distinct load in the afternoons compared to our

results. The comparison of the spectra of the EV load profiles of Litzlbauer

(2010) (based on data of Kirnbauer et al. (2007)) and our results show similar

profiles during the evening and the night (from 6 p.m. to 8 a.m.) though

diverge significantly during the day. The reason for this difference may pri-

marily be due to the different groups of EV users our simulations are based

on. A detailed description of the EV user groups - mainly commercial fleet

users - can be found in literature. According to Ensslen et al. (2016a) 75 %

of the organizations participating in the Get eReady fleet test were small
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and medium-sized companies with up to 250 employees. The study presents

fleet managers answers on relevance and willingness to pay for e-mobility

services. Ensslen et al. (2016b) characterizes two different case studies of EV

adoption in Get eReady. The first case study focuses on criteria relevant for

the participating organizations’ car purchase decisions by analyzing survey

data. The second case study characterizes the participating organizations

by analyzing protocols from sales activities. Besides technical and juridical

aspect of the CROME project, Schäuble et al. (2016b) describe the EV users

participating in the field test based on data originating from standardized

surveys and guided interviews. Ensslen et al. (2013) compare EV user ac-

ceptance between French and German participants in the CROME project

as well as between participants living in rather urban and rather rural areas.

Ensslen et al. (2016c) compare the CROME field trials participants socio-

demographic as well as attitudinal characteristics with the characteristics of

participants of five other field trials. According to the results presented in

this study EV adopters tend to have a high level of income, have more than

one car and travel high distances, not necessarily by car. Possibilities to ex-

perience EV (e. g. by test drives) seem supportive to EV adoption. Specific

information on the user characteristics of the iZEUS field test however are

not published. When comparing the results of this paper with accompany-

ing research of the project VLOTTE described in Schuster et al. (2010) it

can be noted that the load profile has a low difference between the global

maximum and minimum. The charged amount of energy per EV and day is

significantly higher (11.8 kWh) which may be caused by longer average dis-

tances. However similar patterns can be identified: a strong increase in the
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load in the morning from 6 a.m. to 9 a.m. and local maxima at 2 a.m. The

load profiles simulated in Gozel et al. (2012) based on data of the Ultra Low

Carbon Vehicle Demonstrator Programme (Everett et al., 2011) show differ-

ent characteristics. Peaks occur between 9 p.m. and midnight and around

6 a.m. The EV load profile from EV charged at work of Gozel et al. (2012)

shows similarities with maxima around 2 p.m. and 6 a.m. The comparison

of the different simulated load profiles highlights the necessity of a distinc-

tive analysis taking into account user group, location and maximum charging

power.

In order to provide an answer to the the first research question on how

EV mobility and charging data should be processed to create descriptive EV

load profiles and what the characteristics of these EV load profiles are, the

analysis and prepossessing of the inhomogeneous EV mobility and charging

data of the studies had been an important task within the process of creating

meaningful descriptive EV load profiles. First a consequential data basis had

to be created, that subsequently served as main input data for the analysis

of the characteristics of EV load profiles. Data characteristics are presented

for all fleets in general (e. g. charging processes per month and weekdays

etc.) and their evolution in time. However, this data has to be looked at

in detail to understand the characteristics of individual charging events (e.g.

time of charging, location, state of charge, etc.). The empirical load profiles

derived integrate all the characteristics (using active power charging curves)

and present them in single load profiles. The fact that we provided a de-

tailed description of the characteristics of the input data that served to build

these synthetic load profiles allows to have a better understanding of these
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synthetic load profiles when they are used as input parameters in further

analysis. However, due to the specific data formats available in the three

field tests we can only generalize our approach to a certain extent. In order

to answer the second research question on how EV load profiles can be sim-

ulated using empirical charging data, we further analyzed the pre-processed

data to derive simulated synthetic load profiles of the population consid-

ered. This simulation model allows to create a multitude of characteristic

and synthetic EV load profiles that may serve as input parameters for further

analyses. Finally, we provided an answer to the third research question treat-

ing the characteristics of the simulated EV load profiles by analyzing three

different scenarios concerning charging power rates at different locations. We

observed that the distribution of the number of initial charging operations

has the greatest impact on the load curve characteristics. It has to be noted

the simulated load profiles are based on data originating from EV that were

predominantly used as pool vehicles in organizations. Possibilities for gen-

eralizations, particularly concerning potential claims for representativeness,

are with these data limited.

7.2. Critical appraisal

Prior to processing, the data had to be checked for plausibility. If possible

data sets were corrected based on assumptions. This may lead to records that

partially lack information (c.f. part 3.4). E. g. a filtering of the measured

SOC differences was performed. All values greater 100 % of the correspond-

ing charging process were ignored. The same applies to incomplete (e. g.

solely initial SOC value) or inconsistent records. The parking duration was

not given explicitly for all of the data records and had to be defined as the
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duration between two trips, when necessary. A trip start during an ongoing

charging process was considered as data error. The corresponding parking

duration was then omitted. Repeated charging during parking has been ag-

gregated to one (the first) charging operation. As the fleet studies took place

in a limited geographic scope, the data base consists of charging events that

solely occurred at specific locations. In addition to that the data collection

methods differed between the field trials. A generalization of the models

is not per se possible, also due to the limited size of the recorded charging

events. The conclusions drawn should consider these limitations.

7.3. Outlook

The comparison of this paper’s load profiles with results presented by

other authors (c.f. part 7) shows similar patterns in general. However, as-

sumptions of other authors lead to different results. This reveals challenges

that have to be addressed in future. A detailed analysis of the differences

between charging locations (e. g. home, work, public EVSE) may lead to

important information on the geographical load distribution.

Concluding, the detailed description of EV load profiles on the basis of

a comprehensive data base in this paper provides precise projections of the

electricity demand of this new technology and helps to better integrate EV

into future energy systems.
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Graz). Technical report, Graz, Austria.

Ensslen, A., Gnann, T., Globisch, J., Plötz, P., Jochem, P., and Fichtner,
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Appendix
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Figure 22: Interdependency of SOCinit, SOCdiff and tc,diff (scattered points) in com-
parison with the number of observed charging operations (grid)

Figure 22 shows the interdependency of SOC at charging start (SOCinit),

charged SOC (SOCdiff = SOCend−SOCinit) and charging duration in min-

utes

(tc,diff = tc,end − tc,init). It can be observed that most of the charging op-

erations end at a high SOCend (SOCend ≥ 90 % for 79 % of all charging

operations) and start with a high SOCinit (cf. box plot of figs. 6 and 7)

which results in small SOCdiff (SOCdiff ≤ 10 % for 37 % of all charging
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operations). The charging duration tc,diff linearly correlates negative with

the SOC at charging start SOCinit. The linear coefficients are the different

charging power level p during the charging operation (mainly about 8, 4.5

and 3.5 % SOC per min). With increasing SOCinit SOCdiff decreases in

total by definition. However, the relative value of SOCdiff (corresponding to

100 − SOCinit which is the amount to fully charge the EV) does not depend

significantly on SOCinit (r2 = 0.0104).
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