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UPWIND DISCONTINUOUS GALERKIN SPACE DISCRETIZATION
AND LOCALLY IMPLICIT TIME INTEGRATION FOR LINEAR
MAXWELL’S EQUATIONS*

MARLIS HOCHBRUCK! AND ANDREAS STURMT

Abstract. This paper is dedicated to the full discretization of linear Maxwell’s equations,
where the space discretization is carried out with a discontinuous Galerkin (dG) method on a locally
refined spatial grid. For such problems explicit time integrators are inefficient due to their strict
CFL condition stemming from the fine mesh elements in the spatial grid. In the last years this issue
of so-called grid-induced stiffness was successfully tackled with locally implicit time integrators. So
far, these methods were limited to unstabilized (central fluxes) dG methods. However, stabilized
(upwind fluxes) dG schemes provide many benefits and thus are a popular choice in applications. In
this paper we construct a new variant of a locally implicit time integrator based on an upwind fluxes
dG discretization on the coarse part of the grid. In contrast to our earlier analysis of a central fluxes
locally implicit method, we now use an energy technique to rigorously prove its stability and provide
error bounds with optimal rates in space and time.

Key words. locally implicit methods, time integration, upwind fluxes discontinuous Galerkin
finite elements, error analysis, energy techniques, Maxwell’s equations
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1. Introduction. We consider the full discretization of Maxwell’s equations fol-
lowing the method of lines technique. In this approach the continuous problem is first
discretized in space and subsequently integrated in time. For the space discretization
discontinuous Galerkin (dG) methods are a popular choice since they exhibit many
attractive features, cf. [7, 17]. For example, they easily allow one to handle com-
plex geometries and composite media by using unstructured, possibly locally refined
meshes. In addition, dG methods lead to block diagonal mass matrices which in
combination with an explicit time integrator result in a fully explicit scheme.

However, the spatial discretization of Maxwell’s equations results in a system of
stiff ODEs. For such problems explicit time integrators suffer from severe stability
issues. In fact, in order to guarantee stability, the time step of these methods is
subject to a strong limitation (CFL condition). For Maxwell’s equations we have to
ensure that the time step satisfies 7 < Ay, where i, denotes the smallest diameter
of the elements in the spatial grid. Because of this limitation explicit time integrators
perform poorly when the space discretization is carried out on a locally refined grid,
i.e., a grid that consists of only a few fine elements with a very small diameter but a
large number of coarse elements. This occurs for example if the underlying continuous
problem is given on a complex geometry or if the solution locally lacks regularity in
a small part of the domain (e.g., in corners). The few fine elements lead to a strong
CFL condition (grid-induced stiffness) which enforces a small time step size. The large
number of tiny time steps yields an approximation with temporal error being much
smaller than the space discretization error, since the dominant part of the latter stems
from the coarse elements. This renders explicit time integrators inefficient. Applying
suitable implicit time integrators eliminates this restriction. However, in each time
step, implicit methods require the solution of a linear system of equations involving
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2 A LOCALLY IMPLICIT METHOD FOR MAXWELL’s EQUATIONS

all degrees of freedom in the spatial grid. A single time step with an implicit scheme is
significantly more expensive than for explicit methods. For large 3d problems implicit
methods might even be unfeasible.

As a remedy to the shortcomings of both explicit and implicit time integrators
locally implicit time integration schemes have been proposed [4, 5, 6, 11, 21, 24, 26, 27].
These methods apply an implicit time integrator for the fine mesh elements — thus
avoiding a restrictive CFL condition — while retaining an explicit time integration for
the coarse mesh elements. An alternative is to use local time stepping methods, cf.
[1, 3, 8,9, 13, 14, 15, 18].

So far, locally implicit time integrators were limited to an unstabilized spatial dis-
cretization of Maxwell’s equations, a so-called central fluxes dG discretization. How-
ever, a stabilized dG discretization (upwind fluxes dG method) provides many benefits
such as an improved stability behavior and a higher spatial convergence rate. In this
paper we extend the locally implicit time integrator from [21] to an upwind fluxes dG
space discretization. This locally implicit scheme was motivated by [27] and comprises
the explicit Verlet (or leap frog) method and the implicit Crank—Nicolson method. We
show that this novel method retains the efficiency of the underlying locally implicit
time integrator while gaining the benefits of an upwind fluxes space discretization. In
particular, we provide a rigorous stability and error analysis of the full discretization
showing that

(a) the method is stable under a CFL condition that solely depends on the coarse

elements in the spatial grid, and

(b) that the full discretization error is of order two in the time step and of order

k4 1/2 and k in the space discretization parameter in the coarse elements

and in the fine elements, respectively, if we use polynomials of order k£ (and

in a few elements of order &k + 1).
It turns out that the techniques developed in [21] are not appropriate to show the
improved stability and convergence of the full discretization of the locally implicit
upwind fluxes scheme. In fact, in order to reveal the benefits of an upwind fluxes
dG method our analysis is based on an energy technique as presented in [19] for
fully implicit Runge-Kutta discretizations of the linear Maxwell’s equations. This
technique renders the analysis far more involved compared to [21]. Last, we point
out that as a byproduct we obtain a stability and error analysis for an upwind fluxes
Verlet-type fully explicit time integrator.

We organize our paper as follows. In Section 2 we present the main ideas of
the construction and the results of the locally implicit method which we elaborate in
the remaining paper. We begin in Section 3 with a short overview of the continuous
linear Maxwell’s equations and their well-posedness. Section 4 is dedicated to the
spatial discretization of Maxwell’s equations. In particular, we decompose the spatial
mesh into explicitly and implicitly treated elements. On this basis we construct
split discrete operators that we use in Section 5 to derive our locally implicit time
integrator. Subsequently, we examine the stability behavior of the method and carry
out its error analysis. Combining these results leads to our main result which is given
in short form in Theorem 2.1 and with all details in Theorem 5.10. Last, in Section 6
we present numerical experiments verifying our theoretical results. A careful study
of the efficiency of the locally implicit method for large problems, in particular in
comparison with local time stepping methods, is ongoing work and will be presented
elsewhere.
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2. Locally implicit scheme. In this section we present the main ideas of this
paper and elaborate the details in the subsequent sections.

Let Q c R?%, d = 1,2,3, be an open, bounded Lipschitz domain and let 7" > 0 be
a finite time. We consider the linear Maxwell’s equations in a composite medium with
permeability u : Q@ — R, permittivity € : 2 — R and a perfect conduction boundary,

o H = — curl E, (0,T) x Q,

e E = curlH — J, (0,T) x £,

@1) H(0)=H", E(0)=E° Q,
nx E=0, (0,T) x 05

Here, the unknowns H,E : (0,7) x Q — R? are the magnetic and electric field,
respectively, and J : (0,T) x Q — R? is a given electric current density. Furthermore,
n denotes the unit outer normal vector of the domain €. It is well-known that the
solution (H(t),E(t)) of (2.1) preserves the electromagnetic energy

(22) e ) = 3 (IHI + |BJ?),

i.e., for vanishing source term J(t) = 0 we have £(H(t), E(t)) = £(H°, E°) for ¢ > 0.
We discretize (2.1) in space using a dG method. This results in the semidiscrete
problem,

atHh(t) = _CEEh(t) - OéSHHh(t), (O’T)7
(2.3) 6tEh(t) = CHHh(t) — OéSEEh(t) — Jh(t), (0,7),
Hh(o) = H(I)m Eh(o) = E%v

where Cg and Cyg denote the spatially discretized curl-operators, Sy and Sg are
stabilization operators and « € [0,1] is the parameter controlling the stabilization.
The boundary condition (n x Ep(t))|sq = 0 is weakly enforced within the definition
of Cg, see (4.8b) below.

For a = 0 our dG method is not stabilized, which renders it a central fluxes dG
discretization. Such a method is convergent with order k, if we employ polynomials
of degree k in our spatial discretization. Similar to the continuous Maxwell’s equa-
tions the semidiscrete Maxwell’s equations (2.3) preserve the electromagnetic energy
E(Hp,Ep) in the case of a central fluxes dG discretization. On the other hand, if
we choose a € (0, 1], we obtain a stabilized dG space discretization, which is usually
referred to as an upwind fluxes dG method. In contrary to the central fluxes method
such a space discretization is dissipative, i.e., it decreases the electromagnetic energy
E(H},, Ey) if time evolves. This dissipative behavior is beneficial in view of enhanced
stability and a higher convergence rate k 4+ 1/2 of the upwind fluxes method.

In this paper we consider the case where the space discretization is carried out
with a locally refined mesh 7y, i.e., a mesh that consists of mostly coarse elements
and a few fine elements. We collect the coarse elements in 7, . and the fine elements
in Tp ¢ so that

(2.4) Tn = Thye U Th,f, card(7Tp,5) < card(7h,c).

In order to obtain a fully discrete numerical scheme, the semidiscrete problem
(2.3) has further to be integrated in time. If the space discretization relies on a
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locally refined grid, locally implicit time integrators are an appealing choice. For
these schemes we decompose the mesh T, subject to

7—h = 777,,6 U 771,1’7 ﬁz,f C 77L,’i7 77L,e C 77L,ca

where Tp, . contains the explicitly treated elements and 7 ; contains the implicitly
treated ones. Based on this decomposition we constructed in [21] explicit and implicit
discrete curl-operators Cg and Ci;, respectively, which enabled us to merge the explicit
Verlet (or leap frog) method and the implicit Crank—Nicolson method following an
idea of [27] to a locally implicit time integrator. The resulting locally implicit scheme
agrees with the scheme (2.5) below with « = 0. Here, 7 denotes the time step size.
However, this method could not treat the stabilization operators Sy and Sg from
(2.3). We extend it with the following two ideas: First, in order to inherit the efficiency
of the central fluxes locally implicit scheme, we integrate the stabilization operators
explicitely (i.e., we do not include them into the Crank—Nicolson scheme). Second, we
retain a CFL condition independent of the fine part of the mesh by stabilizing only on
the explicitly treated elements. We realize these ideas by using explicit stabilization
operators Sy, Sg instead of the full stabilization operators Sy, Sg. This results in
the following locally implicit scheme:

(2.5a) H Y2 _Hy = — %CEEZ - gas;IH;;,

(2.5D) Bt - Bj =rCiHy Y 4 SCh (H) T+ HY) - raSpE}
- %(JZH +37),

(2.5¢) HyH - H T = chEz+1 - %aSIe_IHZ.

The details of the construction of the stabilization operators will be given below.
Our main result is the following error bound for the fully discrete scheme.

THEOREM 2.1. Let the solution (H,E) of (2.1) be sufficiently smooth. Then, for
a € (0,1] the error the numerical scheme (2.5) satisfies

n n k+1/2
| ) — (HLB)) < CT(r° + maxe Wi+ max b)),

if T satisfies a CFL condition depending on the coarse mesh only.

The precise formulation of this theorem including the regularity assumptions together
with its proof is given in Theorem 5.10 below. Here, we only stress that the technique
to prove these bounds cannot be transfered directly from [21] and is considerably
more involved. Last, let us mention that dG methods easily allow one to choose the
polynomial degree differently in every mesh element. As we will show below by using
polynomials of order k + 1 for a small set of elements (the coarse neighbors of the fine
elements) we can obtain the more favorable bound

n n k+1/2
(G, BR) — (LE)| < T (7 + max b+ max i),

which shows convergence of order k + 1/2 on all coarse elements.

3. Analytic setting. We begin by introducing some notations. For a set K C (2
and vector fields U,U,V,V (in R3) we denote the L?(K)-inner product and the
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L?(F)-inner product, F C K, by
(U,0), :/ U-Ude, (UU),= / Ulp - Ulp do,
K F

respectively. For u = (U, V), u = (IAJ,\A/') and uniformly positive weight functions
wr,ws : 2 — Ry we write the weighted inner products as

(31) (U’U)wl,K = (OL')I-I;J—7-[J—)I(7 (u’ a)wlxw2,K = (U’U)wl,K + (V7V)w2,K'
By || llw, and || - [l xw, we denote the corresponding norms. We abbreviate (-,-) =
(, )Q and || - || = | - o and analogously for the weighted inner products and norms.

Next, we cast Maxwell’s equations (2.1) into a more compact form. In fact, by
introducing the combined field u = (H, E) we can write (2.1) equivalently as

(3.2) dru(t) = Cu(t) +(H),  u(0) =,

where the source term is j = (0, —e~!J) and where C is the so-called Maxwell operator
given by

) 206 (0 —Ce\ _ 0 —p ! curl
(3.3a) C:D(C)— L*(2)°, C= (CH 0 ) = (61 curl 0 ,
and endowed with the domain
(3.3b) D(C) = D(Cu) x D(Cg) = H(curl, Q) x Hy(curl, Q).

In both (2.1) and (3.2) we omitted the so-called divergence conditions and the bound-
ary condition for H since they can be neglected in examining the time evolution of
Maxwell’s equations. In fact, they only have to ensured for the initial values H?, E°,
cf. [22].

We make the following assumptions on the data: For the initial value and the
current density we assume

(3.4) u’ € D(0), J e CY0,T;L%()3) or J € C(0,T; D(Cg)),
respectively, and for the material coefficients we demand

(3.5) wu, e € L*°(Q), e >0 >0,

for a constant § > 0. These assumptions guarantee that there exists a unique solution

u= (H,E) € C0,T; L*(Q)®)NC(0,T; D(C)) of (3.2) [25, Corollaries 2.5, 2.6] which
is bounded by

T+1 [
(3. ) e < (01 + 5 [ 13017 as).

It is well-known that the Maxwell operator C is skew-adjoint w.r.t. (-, -)#XE, which

can be expressed in terms of the curl-operators Cy, Cg as

(37) (CHH,E)E = (H7CEE)H» He D(CH)7 E € D(CE)
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4. Spatial discretization. In this section we discretize (2.1) in space with a
dG method, see the textbooks [7, 17]. As a first step, we give the discrete setting in
which the dG discretization can be formulated.

4.1. Discrete setting. We assume that ) is approximated by a polyhedron
in R which we denote by Q again, for simplicity. We equip © with a simplicial
mesh 7, = {K} consisting of elements K. We point out that the restriction to
simplicial meshes can be dropped and all following results hold true for more general
meshes satisfying the shape and contact regularity assumptions from [7, Section 1.4.1].
We denote with hx the diameter of a mesh element K and refer to the maximal
diameter by h = maxgeT, hx. Moreover, we collect the faces of the mesh elements
in F, = Fint U FPnd | where the first set collects the interior faces and the second set
the boundary faces. By

Ny = d{F F K
5 }{nea%bcar{ € Fn | FCOK}

we denote the maximum number of mesh faces composing the boundary of a mesh
element. For simplicial meshes Ny is a constant. For every interior face F' € F, ,ilnt we
choose arbitrarily one of the outer unit normals of the two mesh elements composing
the face F'. We fix this normal and denote it with np. For the remaining paper we
will refer to the two neighboring elements sharing the face F' by K and Kr whereby
the unit normal np points from K to Kp. For a boundary face the orientation of npg
is always outwards.
We use the discrete approximation space

(4.1) Vi, = {vn € L*(Q) | vnlx € P(K) for all K € T}’

where Py denotes the set of polynomials of degree at most k. Because we have
Vh2 ¢ D(C) our space discretization is non-conforming. Similarly, we write

(4.2) HY(Ty) = {veL*(Q) | v|xk € HYK) for all K € Ty, }, q €N,

for the broken Sobolev spaces fitting to the mesh 7j. These spaces are Hilbert spaces
when endowed with the norm

q
(4.3) lollf =D "1l Wla= >0 =D o)

Jj=0 KeTh KeTh
Furthermore, we define the spaces
(4.4a) VB =D(Cu)nH (TS, VE=DCg)NH (TH)?, V.=VHXVE
and

(4.4b) VE =VHE+V,, VE =VE+V,, Vi =VH, x VE.

ASSUMPTION 4.1. We suppose that the coefficients i and € are piecewise constant
and that the mesh Ty is matched to them such that plx = px and el = ex are
constant for each K € Ty,.
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The L2-orthogonal projection 7, : L?(Q)3 — V}, onto Vj, is defined such that for
V € L?(Q)?

(4.5) (V -V, <ph) =0 for all ¢y € V.

For piecewise constant coefficients we then have

(4.6) (V —m,V, Lph)p = (V -V, <ph)s =0, for all p € V.

For the data in (2.3) we use the L2-projection of the continuous initial value and of
the source term, i.e., H) = m,H", EY = m,E? and J), = m,(e71J).

Given a piecewise constant weight function w, w|g = wg for all K € Tj, we define
the weighted average of a function v over an interior face F' € Fi"* as

v Wr|K)|F + Wk, (VK| F
{{U}F =
WK + WKp

b

and the jump of v over F as

[v]r = (vlkr)lF — (vlx)lF.
For vector fields these operations act componentwise.

4.2. Discrete curl and stabilization operators. We follow [16, 20] for the
succeeding definitions. Let

1 1 )
(4.72) ap=————"79Z¥—, bp= for all Fe ]—",‘f‘t,
EKCK + EKpCKp UKCK + UKrCK g
1
(4.7b) bp = forall — Fe Fpmd
HKCK

For (Hy,Ep) € V2 and (¢n,¢n) € V;2 we define the discrete curl-operators Cy, Ck :
Vi — Vj as

(4.8a)  (CuHp,vn), = Z (curl Hy, ¢hp) . + Z (np < [H]p, £ }5) 5

KeTn FeFin
and
(CEEh,éf)h)H = Z (curl Ep, én)
(4.8b) wen .
+ Z (np < [Enlr, {on i) o — Z (np X Ep, ¢n) , -
FeFimt FeFbnd

Moreover, we introduce the stabilization operators Sy, Sg : Vi, — Vj, by
(4.9a) (SuHp, ¢n), = Z ap(nr % [Bulr,nr % [¢n]F) o »
FeFjm

and

(SEEn, ¥n), = Z be(np X [Ex]e,ne % [n]r)

FeF™

+ Z bF(nF X Ep,np Xl/)h)F .

FeFprd

(4.9b)
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We collect the above introduced operators in

o 0 —Cg _ S 0
fa o) (T s)
The operators given in (4.8), (4.9) are also well-defined on V! and VF, respectively,

ie., Cu, S : VHE — V), Cg,Sg : VE — Vj,. Since functions in these spaces have
vanishing tangential jumps,

(410) ng X [[H]]F =nr X [[EHF =0, He V*H, E e V*E,
the following consistency properties hold true
(4.11) CyH = m,CuH, CgE=m,CgE, SuH=SgE=0, HeVH EcVE

The next lemma gives a partial integration formula for the discrete curl-operators Cyy
and CE

LEMMA 4.2. Let (H,E) € VE x VE, and (¢, ¢n) € V2. Then, we have that

(CaH,¢n)_ = Z (curlepn, H)

KeTh
(4.12a) .
+ Z (nF X [['l/}h]]F’{H}}%)F B Z (nF X 77Zjh’H)F ’
FeFn FeFpnd
and
(4.12Db) (CEE, ¢n), = > (curlgn, B), + Y (nr x [onlr, {E}F), -
KeTn FeFint
Proof. Partial integration (see the proof of [21, Lemma 2.2]). O

This lemma and (4.8) show that the discrete curl-operator C preserves (on the space
V) the skew-adjointness of the continuous Maxwell operator (3.7). In fact, for u, =
(Hy,Ep) € V2 we have

(4.13) (CuHy, Ep)_ = (Hp, CeEy) (Cup,up) =0

W’ nxe

The stabilizationA operators Su, Sk are symmetric and positive semidefinite on V,,
i.e., for Hy, Ep, Hy, Ep € V), we have

(4.14a) (SHthﬁh)M = (Hy,, SuH,,) (SEEhaEh)E = (En, SeEy)

w &)

and

(4.14b) (SHHh, Hh)# >0, (SEEh,Eh)E > 0.

4.3. Splitting of discrete operators. Recall that we are interested in the
situation where the mesh is split into a coarse and a fine part, and where the number
of fine elements is small compared to the number of coarse ones, see (2.4). As pointed
out in [21] it is necessary to treat the fine elements and their neighbors implicitly
in order to obtain a scheme with a CFL condition independent of the fine part 7p, .
This lead to the decomposition of T, = Tp; U Tp e, where

Thi={K €T, | 3Ks € Thy : volg_1(0K NIOKy) # 0}, The =Th \ Th,is
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see [21, Definition 2.3]. The elements in 7}, ; are treated implicitly and the ones from
Th,e can be integrated explicitly. In the following we will frequently use the set of
implicitly treated elements which share a face with at least one explicitly treated
element

Thei ={IK; € Thi | 3Ke € The = volg_1(0K. NOK;) # 0}.

We note the following relations between the sets of mesh elements:

771,8 C 771,0; 777,,f C 777.,1'; 777,,2' N 771,6 7& Q)a 771.,ci C 771,0 N 777,,i~
Analog to [21, Definition 2.4] we decompose the interior mesh faces into
(4.15a) Ft = FN O B O R

where f}:‘f contains the faces between implicitly treated elements, .7-';;12 the faces
between explicitly treated elements and }';L“Zz the faces bordering an explicitly and
an implicitly treated element. We use the convention that for a face F' € ‘F;anz the
normal ny is directed from the implicit element K; towards the explicit element K.

Similar to the decomposition of F}L“t the set F}E’”d is partitioned into
(4.15b) Fprd = Fnd o B

so that 4 contains the boundary faces of implicitly integrated elements and Fpm
the boundary faces of explicitly treated elements. Moreover, we set

(4.15¢) Five = Fie U Fileis

Observe that the set ]:;an only contains faces bordering two coarse elements.

We denote by x; and x. the indicator functions on 7 ; and Tj ., respectively. As
proposed in [21, Definition 2.6] we use these indicator functions to define split versions
of the discrete curl-operators Ciy, Ciy : V.5, — Vi, and Cg, C : VE, — Vj, by

(4.16) Ch=Cuoxs, Ch=xp0Cg, Dbe{ie}.

For the definition of the split discrete curl-operators the usage of the indicator func-
tions is a convenient choice. However, it is not appropriate to split the stabilization
operators. From (4.9) we observe that the stabilization operators solely take values
of the functions on faces into account. Hence, it is natural to construct explicit sta-
bilization operators by replacing the sums over all faces by sums over faces belonging
to explicitly treated elements, i.e., by the sets F,** and f;l;réd. This motivates the
following definition. 7 7

DEFINITION 4.3. We define the explicit stabilization operators Sty : th — Vi
such that for all ¢, € Vy,

(4.17a) (SIe—IHaQi)h)M = Z ap (HF x [H]p,nr x [[¢h]]F)F )
FeFirt
and Sg, : Vf‘h — Vi, such that for all ¢y, € Vp,
(SEE, ¥n), = Z br(np x [E]r, ne x [Yn]F) 5

Fe]:int

hyc

+ Z bF(TLF X E,ngp X(/)h)F ,

(4.17D)
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where ap and bp were defined in (4.7). Moreover, we define

(4.17c) S :Vip — Vi3 sc— (Sn Oe .
’ 0 S8g

Let us give some properties of the above introduced operators: For the split curl-
operators we have that

(4.18) Cu=Cih+C4, Ce=Ch+Ch  ChCe=CHCh be{eil.

Furthermore, observe that by (4.10) the operators Cg, Ci and 8, Sg preserve the
consistency of the full operators (4.11). In particular, for the stabilization operators
we have

(4.19) SGgH=SgE=0, HcVH EcVE

Last, all operators preseve the adjointness and the symmetry properties on Vj, of the
full operators (4.13) and (4.14a), respectively, i.e., for Hy, Ej,, Hy,, Ej, € V), we have

(CH©, Ey)_ = (Hy, CLEy)
(SEEh,ﬁh)E = (Eh,s}egﬁh)

(420&) (CIB—IHhaEh)E = (Hh,CEEh)H,
(4.20D) (SI‘EIHh,IA{h)# = (H,,85H,,)

w
W e

Moreover, Sf; and Sy, also inherit the positive semi-definiteness of S and Skg,
respectively. This motivates to introduce seminorms associated with the explicit sta-
bilization operators.

DEFINITION 4.4. For u= (H,E) € V, ;, we define the seminorms

2 _ 2
(4.21a) Hg, = Y aplne x [H]s|}
FeFint
(4.21b) Elz, = Y belne x [Eleli+ > brllne xE[F .
FeFrt FeFpnd

Moreover, we set

(4.21¢) |u|?se = |H|‘25e + \E\?Se .
H E

For u, = (Hp,Ep) € Vh2 we have that

|Hh\?Sg = (SfIHh,Hh)M , |Ep

2 _ e
(4.22) 5. = (SEEn En), ,

unlse = (S un,wi) . -
HXE

4.4. Bounds on discrete operators. We end this section by providing bounds
on the explicit split discrete curl-operators and on the explicit stabilization operators.
Both operators act on the mesh elements and on the mesh faces of the spatial grid,
so these bounds will require a certain quality of our spatial mesh [7, Definition 1.38].

ASSUMPTION 4.5. We assume that the mesh Ty is shape regular, which means
that there exist constants p, p. > 0 independent of h such that

h h
7K SP; Ke’]dh, 7K Spm Keﬁl,cv
K TK

where ri denotes the radius of the largest ball inscribed in K.
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We have p > p. and for locally refined meshes we might have p > p.. By Assump-
tion 4.5 we can bound the average of the diameters of the neighboring elements by
the maximum and the minimum diameter of the elements,

h h
(423)  p'max(hg,hg,) < % < pmin(hg,hg,), K, Kp €T
On the coarse grid 7p . this inequality holds true with p. instead of p. Two crucial
inequalities for functions in V}, are the inverse inequality

(4.24) | curl Up||x < Civhx' |Unllk, K € T, Uy € Vi,
and the discrete trace inequality
(4.25) [ULllF < Cohid | Unllk,  F€Fn UpeVi,

see [7, Lemmas 1.44, 1.46]. The bound (4.25) also holds for K. The constants Ciny
and C}, depend on the mesh regularity constant p, the polynomial degree k and the
dimension d. On the coarse mesh 7}, . these inequalities hold true with dependency
on p., k and d. We denote the corresponding constants by Ciny . and Ciy c.

Let

Coo.c = Max cCg, Coo = MAax ¢

°0,e KeTh,e K > KeTy K
be the maximum speed of light in the coarse grid and in the whole grid, respectively.
For u;, = (Hy, Ej,) we introduce the following ¢P-L?-norms scaled with the order ¢ of
the approximation

(4.26a)  HL|D 5 o= > BRHLE 4, IEAIL 7 g = O WEIERL &,
KeTy KeTn
(4.26D) ”uh”iXaT;um = ”HhHZﬂ';unq + HEh”Qﬂup,q'

Moreover, for v € H™(T,) we define the weighted broken ¢P- H™-seminorm as

(4.26¢) |’U|£7,,Th,p,q = Z hz;g |’U|Z1,K'
KeTy,

Note that for our H™(7p,)-seminorm we have |v|n, = |0|m,7, 2,0, see (4.3). Now, we
give two boundedness results, one for the L2-norm of the explicit curl-operators C§
and Cg, and one for the explicit stabilization seminorm |- |ge. It is crucial to observe
that these bounds hold true independent of the fine mesh 7y, f.

THEOREM 4.6. For Hy,E;, € V), we have the bounds

(4.27a) ICe e < Chnd,cCoo el Hal

(427b) HCEEhHM < Cbnd,ccoc,c”Eh

#:Th,e2,— 1

€, Th,e,2,—1:
Furthermore, for u, € V;2 we have

1/2‘

(4.28) |U-h‘.se < (abnd,ccoo,C) ‘uhHuXE,Th,c,Qﬁ%'

The constants are given by Cpnd,c = Cinv,c + 2C2% Npp. and ébnd,c =2C2 _Nj.

r,c tr,c
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Proof. The bounds (4.27) are shown in [21, Theorem 2.7] and (4.28) is proven in
the appendix. 0

Last, we provide a bound on terms involving an inner product of a projection error
e, =u—mpu, u €V, with a dG function ¢;, € Vh2.

THEOREM 4.7. Let u € V, N H**L(T},)5. Then, for all ), € V;? we have

(Cewﬁﬂh)uxe §C7r,c|90h\se|U|k+1,’rh,,eu’rh,c7¢,2,k+%

(4.29) °
+ Crllenlluxe, 7 [alkt1,75 .2,k

and

(4.30) (8%, 0n) e < Crelenlselulerm T co2kr s

The constants are given by Cr . = (2Nacoo7c)l/2a1pp and éﬂ = 2éappC’trNacoop.

REMARK 4.8. The bound (4.29) yields only the convergence rate k on the (few)
coarse elements in Tp ;. It also might happen that a small amount of coarse mesh
elements belongs to Tn; \ Th,ei (e.9. if a coarse mesh element possesses only fine
neighbors). However, an advantage of dG methods is their flexibility in choosing a
different polynomial degree on each mesh element. As a consequence, if we choose the
polynomial degree k + 1 on the (small number of ) mesh elements in Tp,c N Ty, we
obtain the rate k + 1/2 on the whole coarse set. Particularly, we obtain

(4.31)  (Cer,¢n),, . < Crclonlseluliir g, 2mes + Crllonlluxe s [ulkir 2.0,
and
(4.32) (See,r, (ph)uxs < C‘n-,c|80h|5‘i|u|k+1,7';hu,2,k+%'

In the following we will use (for a shorter notation) the bounds (4.29) and (4.30)
w.r.t. the set Tp . instead of Th.eUTh ci, and leave it to the reader to recall that by the
above idea they can be sharpened to (4.31) and (4.32), respectively.

Proof. Appendix ]

5. Full discretization. In the last section we established the space discretiza-
tion of Maxwell’s equations (2.1). So it remains to discuss the time integration. We
base our time integrator on a dissection of the time interval [0,7] into equidistant
intervals [t,,tn41] of length 7, where t, = n7. We refer to 7 as the time step. Now,
we have all ingredients such that the fully discrete scheme (2.5) is well-defined. The
aim of this section is to give a stability and convergence analysis for this scheme. We
point out that by choosing 7p . = 75, the locally implicit scheme (2.5) transfers to a
fully stabilized, fully explicit Verlet-type method. Related ideas for the Verlet method
on a staggered time grid have been presented in [2, 23]. However, the stability and
convergence analysis are — to the best of our knowledge — new.

5.1. Stability and energy dissipation. Our first step in the analysis of the
upwind fluxes locally implicit scheme (2.5) consists in casting it into a more compact
form.

LEMMA 5.1. The numerical scheme (2.5) can be written as

T ten o
(5.1a) ’R,LuZ'H = Rpruj — TaS8%u; + §(Jh+1 —I—Jh),
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where ji = (0,J%) = (0,J(t,)) and where the operators Ry, Rr are defined as
T 2 T 2 0 0
51b) Rp=Z—--C— —D° Rr=Z+-C——D° D= .
(5:1b) Re 2t T RrmEERtm Y (0 c;ICE>
Proof. Adding (2.5a) and (2.5¢) yields

-
H ™ - H = —Ce(ELT + Ef) - TaSKH],

which is the first component of (5.1a). For the second component we subtract (2.5¢)
from (2.5a):

n 1
H P2 = 5 (H T+ HE) + %cE (Bp T —Ep).
Inserting this into (2.5b) we infer

T 72 T
By - B = ZCa(HG 4 HY) + ChCu(B] Y — BY) — raSER] — (I3t + 1),
by using C§ + Ci; = Ca, see (4.18). O
In [21, Lemma 3.2] we already elaborated the following properties of the operators

RL and RR:

(52&) (’RLuh, ﬁh)uxe = (uh,’RRﬁh) for uy, ﬁh S VhQa

puxe’

2
.
(52b) (’RLuh,uh) || h”yxs — Z”CEEhHZ’ for uy, = (Hh,Eh) S th

nxe

Next, we give an energy identity which allows us to prove the stability of (5.1a) under
the following CFL condition:
20

5.3a 7< ——— min hg,

( ) o C’bnd ,cCoo,c KeTh,c K
where 0 < 6 < 1 is a fixed parameter which satisfies

(5.3b) 0:=60%+af <1.
Note that the CFL condition depends on the stabilization parameter . For larger «
we obtain a method with a stricter CFL condition.

LEMMA 5.2. The approzimation uj = (H}, E}) obtained from (5.1a) satisfies the
energy identity

2
-
||u"+1||#xsfz||cgE;+1|| faf\u"H 2 +a—- Z "t up .
(5 4) m=0
=Hu2|\ZXE— IICEE 12— fluh o+ = Z (R m“+uh)ﬂxs~

If we assume that the CFL condition (5.3) is satisfied, the following stability result
holds true

(1= 0)up ™| ng+0< Zlum+1+uh

Srj
(5.5)
. T+1
<2 O+ — =T 3 T2
6(1 - 9) 4 m=0
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form=1,2,... N.
Observe that the bound deteriorates for 6 S

REMARK 5.3. In case of the central fluzes locally implicit scheme from [21] the
CFL condition only requires the condition 6% < 1. The additional term af entering
(5.3b) stems from the (explicit) integration of the stabilization operators.

n+1

Proof. We take the p x e-inner product of (5.1a) with u;™" + uZ and obtain

(RLUZ+ - RRuZauZ+ + uZ)uXE = ( TaS"uh +35 ( e +Jh) + uh)#XE.

2
The adjointness of Rz, Rg from (5.2a) and furthermore (5.2b) imply

(Rewy™ = Rpuy, it +uiy) = [up R — (gl .
Thus, we conclude

(5.6) [[up ™ 15— a5 et ra (S up, uy ™ +uy) —2(”+1+Jh, upt ul)

puxe puxe "
Moreover, we have that
(Sellh, n+1 +uh) ( Se( n+1 +u )7 786( n+1 7112) n+1 +uh)
uxe X
1
\u”“ +uplse — S E - upls).

Here, we used the definition of |- |se and the symmetry of 8¢, see (4.22) and (4.20Db),
for the second equality. Inserting this identity into (5.6) and summing yields the
energy identity (5.4).

For the stability bound (5.5) we use the boundedness results for C¢ and | - |s
obtained in Theorem 4.6 in combination with the CFL condition (5.3) to infer

(5.7) 7||CEEH+1||2 +ag \un“ S0 < OB 2 + aflug R < Ollap

pxe = wXer

Here, we further used Cbnd’c < Chnd,e- Using this bound in (5.4) and moreover
applying the Cauchy—Schwarz inequality and the weighted Young’s inequality with
weight v > 0 gives

(L= O) a5 + Z S < [lugllf. + Z 13+ 351 e

m=0
+73 Z (a2 e + g2 ) -

We choose the weight v = (1 — 6)/(T + 1), so that the discrete Gronwall lemma is
applicable (Lemma A.1 with A = 1/(T + 1)). This yields the result. |

Besides the stability of our numerical scheme the energy identity (5.4) also implies
that it is dissipative w.r.t. the following perturbed electromagnetic energy

~ 7—2 T
EHp, Ep) = E(Hp, Ep) — §\|CEEh||Z - a1|uh 5

Indeed, we have that

n—1

(5.8)  E(H},E}) = EHY Z|um+1+uhm\?ge, n=1,2,... N.
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5.2. Error analysis. In this section we prove the convergence of the scheme
(2.5) using an energy technique. The main result is stated in Theorem 5.10.

For the exact solution u™ = (H",E"™) = (H(t,), E(t,,)) of (2.1) at time ¢,, and its
discretization uy = (H}}, E}') ~ u” given by (2.5) we introduce the full discretization
error

(5.92) e" =u" —uj, = (efy, eg) = (H" — Hy, E" — E}),
and split it into
(5.9b) e"=el —ej = (u" —mpu") — (up — Tpu").

Assumption 4.5 implies that our mesh 7} has optimal polynomial approximation
properties in the sense of [7, Definition 1.55]. Thus, for H,E € H¥(K)3, K € Ty,
F e Fp, F C OK, we have

(5.108)  [lex sl < Capphlc Hlis1. i, lex Elle.x < Capphid™ [Blita,x,

A k+1/2 A k+1/2
(5.10b) e mllur < Copphl” P Hlirrne,  llengller < Copphie*[Elisi i,

~

with constants Cypp, Capp Which depend on p but are independent of both the mesh
element K and its size hg, cf. [7, Lemmas 1.58, 1.59]. Thus it remains to examine
ep.

5.2.1. Error recursion. In the next lemma we prove that the error e} satisfies
the recursion (5.1a) of the approximation u} where the source term %(jZ‘H +jp) is
substituted by a defect.

LEMMA 5.4. Letu € C(0,T;Vi)NC3(0,T; L*(Q)%) be the exact solution of (2.1).
The error e} definied in (5.9b) satisfies

(5.11a) Rre} ™! = Rre — TaS) +d", e =0.
The defect d" = d} 4 d} is given by

2
n __ _I n+1 n e n __ L 0
(5.11b) dr = 2(:(e,r +el) + TaS‘e! 1 (CECE(erEl _ e’;,E)) ;
and
2
n __ .2 n __ L 0
(5.11c¢) d; = 7m0 1 (CﬁﬂhAﬁ) ,
where
(=t ) (b1 — fra
(5.11d) 0" = / ( ")2( ot = Dogsay dr, A = / OPHL(t) dt.
tn T tn
Proof. First, we observe that the recursion (5.1a) can be written as
2
n+1 n T n+1 n e..n T ren+1 n T 0
- uy = §C(uh+ +up) —raSuy + §(Jh+ +jn) + T <C§ICE(EZ+1 B Eﬁ)) .

Next, we insert the projected exact solution into this recursion,

mp (" — u™) :%th (u""‘1 + u") — raS°mTu”

2

z a1 on L 0 _an
(5'12) + 2(Jh +Jh) + 4 <CIe_ICEﬂ.h(En+1 _ En)) d”.
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Subtracting these two equations yields (5.11a). It remains to determine the defect
d”. By using a Taylor expansion of u”+/2 around t, and around t¢,,; we deduce
that

(5.13) W= (ot o) - 7,

where the remainder is given in (5.11d). Projecting Maxwell’s equations (3.2) onto V;?
and applying the consistency property (4.11) of the discrete curl-operators we obtain

mropu(t) = Cu(t) + ju(t).

Using this identity and S¢u™ = 0, which follows from the consistency of the explicit
stabilization operators (4.19), the projection of (5.13) onto V;? can be written as

T fu”) — raStu + (it 4 ) — rPmon.

(5.14)  mp(u"tt —u") = 5 5

Comparing (5.12) and (5.14) we infer

2

n__z n+1 n e,n 2 n L 0
d" = 2(3(e,r +el)+raS% ;) + mompd" + 1 (CIiICEwh(E”JrlE”))'

As in [21, Proof of Lemma 5.1] one can show
C4HCemp(E"T — E™) = —ChmpAYy — Cf{CE(eZ:;)l —erg);

which finishes the proof. ]

For the central fluxes case we pointed out in [21] that a naive convergence proof
involving the recursion (5.11) only leads to an error bound of order 1.5. The problem
lies in the defect %C%?ThATIL{, which suffers from an order reduction from 73 to 72-5.
This problem also occurs in the here considered uwpind fluxes case. In [21] we resolved

this problem by splitting the quadrature defect dj into

(515) dz = 7-27Th6n + (RL - RR)gnv gn = I;LI = z Xeﬂ-hAH .
35 4 0

Here, (R — Rr)E™ contains the problematic defect %Cﬁlﬂ'hAﬁ. Then, using this
particular representation of the defect we could show that its contribution to the
global error is of order two in time. However, the error analysis provided in [21] does
not rely on an energy technique that is needed in the upwind fluxes case to show the
improved spatial convergence order k + 1/2. Unfortunately, it turns out that even the
energy technique applied directly to (5.11), (5.15) fails to give the desired temporal
convergence order. The essential idea — besides the energy technique — is to consider
a modified error e} instead of e}. A related idea has been presented in [27]. In
the following lemma we introduce this modified error and give the associated error
recursion.

LEMMA 5.5. Under the assumptions of Lemma 5.4 the modified error
(5.16a) ef=ey — " n>1, &) =e) =0,
satisfies

(5.16b) Rp&t = Rpel — a8} +d”,  n >0,
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with defect

R £ n=0
‘ d} + 710" = Rp(§" =€) —7a8%¢" ™!, n> 1.

Moreover, if the CFL condition (5.3) is satisfied, we have that

(L= O 1F et ag Z &+ e s

(5.17) 0
< ( O ~1 ILXE + Z m m+1 +eh )HXE'
m=1

Since the indicator function . is matched to the spatial mesh we have £" € V2 and
thus e} € V2.

We observe that in (5.16¢), except for n = 0, the problematic defect (R, —RRg)&"
could be replaced by the difference €® — ¢"~!. This allows us to gain an additional
factor 7 and to avoid an order reduction.

Proof. The error recursion (5.16a) follows by employing the splitting (5.15) of d!
n (5.11a).
The error €} satisfies the recursion (5.1a) of the locally implicit scheme with

defect d™ instead of the source terms. Hence, the energy identity Lemma 5.2 holds
true for €7. A computation analog to (5.7) and the fact that €) = 0 yields the bound
(5.17). d

5.3. Bounds on defects. It remains to bound the defects. This requires the
following regularity on the exact solution u = (H,E) of Maxwell’s equations (2.1),
which we assume for the remaining paper:

ue C(0,7;D(C) N H* ' (T3)%) nC3(0,T; L*(2)°),

5.18
( ) Ee Cl (O,T; Hk+1(77L,C)3)) Hc C2 (O,T; Hmax(l,kfl)(rﬁl’eﬁ).

Moreover, from now on we assume that the CFL condition (5.3) is satisfied with
0 c (0,1), and that nT < T'. For the sake of readability we give the following bounds
with respect to a generic constant C', which depends on C ., CA'ﬁ, Cetr, 6app, Chnd,c
and co ¢, but is independent of 7, hx and a. Moreover, we introduce two weights
71,72 > 0 which we will choose in our main Theorem 5.10.

We start with the projection defect d7}.

LEMMA 5.6. For all ¢, € V;? we have the bound
(A7, 0n) e < L+ ®)InTlenlse + 2727 onll,
L) uxe = uxe

C 2
~ n+1 n n|2
+%T(|u +u |k+1,7’h,c72,lc+%+|u ‘k+1,n,u,27k+%>

C 2 bnt1 2
+1
+ ¥T<‘un +un|k+1,7'h,,u2’k+/; |8tE(t)|k+LTh,c’2,k?+% dt)

Proof. The first two terms of d? are bounded by applying Young’s inequality with
weights 1,72 to (4.29) and (4.30). For the third term we use the Cauchy—Schwarz
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inequality and the weighted Young’s inequality to obtain

2

T 0 c
T . : <t L SR
1 ((CfiICE( Tr+El_e7r E)) @h)/me Y2 ||90h||,u>< ICh E( €1 E E)H

(5.19) < vrllenlfixe + TIICE( re el

Here, we used CCr = C;Cg, the boundedness result for Cg; from Theorem 4.6, and
the CFL condition (5.3) for the second inequality. Moreover, we have

tnt1
rlcalert ~erm)lz < [ Icgoien st di

n

tn41
< CT/ OB 117, 0y b
) :

n

where we used [|Cgerelly < C|E|pt1,7,...2,k, see [21, Equation (5.4b)], and the CFL
condition. O

Next, we address the defect Rp(£" — £n71).
LEMMA 5.7. For all pp, € Vh2 and all n > 1 we have

n n— C fntt
(Ral€” =" )on) .., < rllonliee + ot [ NFHOIE 7, d
tn—1

n—

Proof. For dG functions Hy, € Vj, and ¢, = (¢n,¢n) € V;2 we have by the
definitions of Ry, in (5.1b) and of Cy in (4.16) that

H ‘
(RR (X . h) ,soh) = (xeHn, @1), + 5 (CiH, ¥n),
HUXe

7_2
< rlonl e + 7 (IR 7+ T CEE?)

(5.20) < tllenlfie + Hthlu The:

Here, the first inequality is obtained by the Cauchyfschwarz inequality and the
weighted Young’s inequality, and the second inequality follows from the boundedness
result for Cfy, i.e., (4.27a), and the CFL condition (5.3). Using this, we have

n n— c n n—
(Rr(€" =€), 0n) e < v7llonllice + ijfH—fani

) CT4 tnt1 3
<verlienliee+ S [ IGHOIE .

tn—1
Here, the second inequality follows via a Taylor expansion of §,;H™*! around ¢,, and

around %,,+2, which yields

fﬁ - 6?171 = £X67Th (615Hn+1 —20;H"™ + 6tH”_1)

,7_2 tn41 tn —¢
= Z <]. - |T|) Xe’ﬂ'h(a?H(t)) dt

tn—1

This finishes the proof. 0
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In the subsequent lemma we provide a bound on TaS®¢" 1.

LEMMA 5.8. For all ¢, € V;? and all n > 1 the following bound holds
(Taseﬁn_l,Wh)st < maPTlonls

C tn
LG / IWOPE@)2 5 dt
t

§a! n—1
c [

+ — |07H(t) ilax(m—l),n e 2,k+3 dt.
Y1 Sty Y

Proof. By using the Cauchy—Schwarz inequality and Young’s inequality we obtain
een—1 n—1 2 2 cr? n—12
To(8°¢ ,<Ph)uxe < Tall" T selenlse < ot T|onlse + Tb{eﬂ'hAH sy -
In the second term we decompose 7, A}y ' = Ayt — A?"! where
tn tn
Ay = / O?H(t) dt, Al = / e m(t) dt.
tn—1 tn—1

By the definition of | - |se in (4.21a) we have

3 3

T _ T _

—Ixemn A s, = — Y arllne x [xem A rlE

n FeF
5.21 < cr’ A1 2 An—1 2
(5.21) <T5 Y or(IbeAl Tl + I Ar 1),

rezt

Here, the inequality is obtained via the splitting of WhA"I‘{_l, the triangle inequality,
Young’s inequality and |[ngp| = 1. We bound the two terms separately. For the

subsequent calculations it is important to recall that the set ]—",‘L’“z only contains faces
int

bordering coarse elements. So, for the remaining proof let F' € F;", which yields
K, Kr € Thec
(a) For the first term the Cauchy—Schwarz inequality in L? yields

tn
arll Al r 3 < apr / I O2E(E)] |3 dt

th—1

tn
< CaFT/ pic e (LOFHWO)IR k + 1 xe (ROFE@))IE K, dt

tr

tn
<cr [ IO o, d

tn—1

Here, we used the triangle inequality, Young’s inequality and the continuous trace
inequality [7, Section 1.1.3] for the second inequality, and

(5.22) ar < cglK, arF < CKp MK p,

for the third inequality.
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(b) For the second term we have

tn
arllfedy el <arr [ xofenn(®lel} d

tn—1

tn
< C’T/ IxeOFer mn ()i}, r + X0 erm () el dt,

tn—1

where the second inequality is obtained via the triangle inequality, Young’s inequality
and (5.22). Let k = max(1,k — 1), then the regularity assumptions on §7H together
with (5.10b) imply

|02exmlicll? p < CRETOPHE < Crin3EoRHI2

For the last inequality we used the CFL condition (5.3). Hence, we end up with

tn
arl DA elh < O [ G FHOR - 1T G FHOR
tn—1 ’ ’

where we used h%“” < h%”l. (This holds true with in the case & > 1 and in the
case k =1 for hx < 1, i.e., the relevant case for a convergence proof. If hx > 1, an

additionally constant voly(£2)? enters this bound.)
Inserting the results from (a) and (b) in (5.21) yields the desired bound. d

It remains to establish a bound on d°.
LEMMA 5.9. We have the bound

(1- 92)((‘10’6}11);“@ <Clu’ +0°[{ 1 7 2441
,
+07! o [R5, +Cr* [ PO . i

+C’T|u +CT|u17

0|2 0]2
|k L The,2,k+ 1 u ’ 1-
+1,Th,c,2,k+3 k+1,Th,c,2,k+3

Proof. This proof needs the following two results shown in [21, Lemma 4.1,4.2]:
Under the CFL condition (5.3) the operator R, is invertible and we have the following
bounds:

_ 1 o
(5.23) IRL luxe < 1— g2 (R RR)™ [luxe <

1
V1-62
By (5.16b), €, = 0 and subsequently (5.2b) we have

(A°,@14) e = (Ri&3s@h) e < €hI1xe

uXxe )HX

From (5.16b) we obtain
& =Ry (d7 +dj) + Ry Reg”.

Using Rp — Rr = —5C and (4.16) we can write

1 e (al A0
d? = §(RL —Rg)(el +e)+ra8% Y + %(RL —Rg) (CE(e”’EO e”’E)) )
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Using the bounds (5.23) we infer
(1= ) &R llxe < CIE uxe + 16°]uxe)
+ O (718 luxe + llex + exlluxe + 7lICh(er & — €5 w)ll)-

The bound on the first two terms are clear. The fourth term can be bounded with
(5.10a) and the last one as in the proof of Lemma 5.6. For the remaining defect we
use (4.30) and subsequently (4.28) and the CFL condition

7‘(‘5'697”%?}1)#XE < Crelonlse|ulirr 7, ok 2

S Cﬂ',c(cbnd,ccoo,c)l/27—

Se

Phllpxe 7 0Th ez~ /21Ul k g1 75, 200 L

< \/5071',07-1/2 ”‘Ph ||[L><E|u|k+177'h,(_.72,k+% :

As a consequence, we have

T||See9r||um < CTl/2|u0|k+1,Th,c,2,k+%-

This concludes the proof. 0

5.4. Main result. Using the stability results and the bounds on the defects, we
now have all ingredients to show our main result.

THEOREM 5.10. Assume that the exact solution u = (H,E) of Mazwell’s equa-
tions (2.1) satisfies
u e C(0,T;D(C) N H(T,)°) nC?(0,T; L*(Q)°),
E e C'0,T; H" (Tho)?)., He C(0,T; H™>*1E=D (T, )?).

Moreover, assume that the CFL condition (5.3) is satisfied with 6 € (0,1), and assume
that nt < T. Then, the error of the upwind fluxes locally implicit scheme (2.5) is
bounded by

n—1
T ~ ~
o = w2+ ok S R
m=0

<C'lu” +u' + uo‘%Jrl,Th,l,kJrl +C'r tg[loaf] ||3t2H(t)||;2¢77”

tn
v ot [T IO+ RO,

2 2
+C'r Z (|um|k+1,n,c,2,k+% + |Um|k+1,frh,i,2,k)

m=0

tn
/ 2 2 2
0 [T IBO R 1 st OO s iy

gC”( max h2T 4 max h%“+7'4).
KeTh,e KeTh,

The constant C' has the dependencies of C and additional involves 1/(1 — 8) and
(1 + a?)/a. The constant C" depends on C' and on [a(t)|kt1,7,, |E®) k1,7,
|07 H () lnax(1.5—1), 7. [07H@) 0, and [|070 ()], t € [0,20].
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REMARK 5.11. We recall from Remark 4.8 that by choosing degree k + 1 on the
(very few) elements in Tp.c N Thi, we obtain the convergence rate

1, = 2k+1 k
R S ]

This is the desired rate k + 1/2 on the coarse elements and k on the fine elements.

Proof. The full discretization error is given by e” = e} — e} — ¢n—1. Using

(e7T7 aph)uxe = 0, and the triangle inequality and Young’s inequality we infer

le™ fxe < llelfixe + 205 17ne + 211€" I7xe-
The first and the last term can be bounded by

Hen”pxa < Capp‘u‘k-‘rl Thy2,k+15 ||€n 1||H><5 = 4t€[t ||62H( )”u Th,e

n—1;

where the first bound stems from (5.10a). For the remaining error €} we have the
bound (5.17) and inserting

dr < Q g [ Pu
(dion) e < 2llenllfine + %7 [0 u()|12 e dt,

tn

and the results from Lemmas 5.6-5.9 with v; = a/2(1 + 2a?) we obtain

(1= O) [ |ty Z\em“ +eplse

< 3721 Z I + & 15xe

4 2
+C|u + U R g ok T T e (27 (O] e

n
i m—+1 m|2
T

m=0

n
! m—+1 m 2
+C'r Z ’u +2u ‘k+1,Th,C,2,k+%
m=0

C tn+1 9
o [ O e+ OBOR 17, iy

tn
+C'/0 THpOFHWOT 7+ 1FHO R 1 h-1),75 2542 AL

By the triangle inequality, Young’s inequality and by choosing the weight v = ﬁfl)
we have

1-0r

~m+l
HXE—T+12(|| H

3yarllel ™ + el ixe T 1&7 xe)-

Finally applying the discrete Gronwall Lemma A.1 yields the result. O
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Fig. 1: Dependence of the maximal stable time step and the error, respectively, on

the stabilization parameter . We used the mesh 7;1(1) and polynomial degrees k = 2
(blue), k = 3 (orange), , k=5 (purple).

6. Numerical results. We conclude this paper by giving numerical examples
confirming our theoretical results. As an example for locally refined grids we use the
mesh sequence 771(] ) = 7710 4 1< j <4, from [21, Section 6]. The mesh parameters,
the decomposition of the mesh into explicitly and implicitly treated elements, and all
further details on the example including a link to the mesh data can be found in this
paper.

As a reference time integrator we use the Verlet method with a full stabilization
on the current iterates H}!, E}. As already pointed out in Section 5 this scheme can
be obtained from the locally implicit scheme (2.5) by choosing 7j, . = 75. In fact, its
recursion can be gained from (2.5) by changing C§, Ci;, S and Sg into Cy, 0, Su
and Sg, respectively. For all following results we ran our simulation until the final
time ty =T = 1 and its error e = u” —ulY is always measured in the L?(Q) norm.

For a detailed discussion of the dependence of the CFL condition on the implicitly
and explicitly treated parts of the mesh we refer to [21], since it makes no difference
if we consider central or upwind fluxes. A new effect occurring for an upwind fluxes
space discretization is the dependence of the maximal stable time step and of the error
on the stabilization parameter a.. We also refer to [10] for a related discussion of such
effects when working with (fully explicit) low-storage Runge-Kutta schemes. The fact
that the maximal stable time step is subject to « is seen from the condition (5.3b).
The dependence of the error on « follows since the constant C’ in Theorem 5.10
involves a factor (1+a?)/a. Thus, for larger a we have two competing effects: on the
one hand the error constant gets smaller and on the other hand the CFL condition gets
stricter. So, the optimal choice might be o € (0,1) instead of & = 1 (depending on the
application). We validate both effects with the mesh 771(1). The maximal stable time
step sizes we observe in our simulation are given in Figure la for the locally implicit
scheme and in Figure 1b for the Verlet method. First of all, the results highlight
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fluxes). (upwind fluxes). wind fluxes).

Fig. 2: Spatial convergence. As final time we used ty = T = 1 and as time step
7 = 107°. We employed the polynomial degrees k& = 2 (blue), k& = 3 (orange),

, k =5 (purple). The black dotted lines have slope maxyc7;, h% for
k=2,...,6.

the superior CFL condition of the locally implicit method compared to the Verlet
method. Moreover, they confirm that a larger o or a higher polynomial degree (this
dependence enters the CFL condition through the constant Chng ) require a smaller
time step in order to ensure stability. Figure 1c depicts the correlation between the
error (for a small time step 7 = 5-107%) and the stabilization parameter a. We
confirm that for larger a the error becomes smaller.

Next, we examine the spatial convergence. For this purpose we use a tiny time step
size 7 = 10~° which is chosen small enough such that the spatial error dominates over
the time discretization error. We give the results in Figure 2a and Figure 2b for the
locally implicit method with & = 0 (central fluxes, see also Figure 2 from [21]) and with
a =1 (full upwind fluxes), respectively. We clearly observe the superior convergence
rate of the upwind fluxes scheme compared to the central fluxes case. In fact, we even
observe a higher convergence rate k+ 1 for the stabilized method compared to k+1/2
given in Theorem 5.10. This behavior is well-known [16]. The convergence rate in
the central fluxes is k as predicted in [21]. As comparison we plotted in Figure 2¢ the
error of the Verlet method with full upwind fluxes, i.e., with stabilization parameter
a = 1. We observe that the Verlet method shows the convergence rate k + 1 for all
mesh levels Th(l), . ,Th(4). For the locally implicit method we observe the same rate
for ’7;1(1), ey ’7;1(3) and then a slight decrease in the rate for 7;54). This confirms the
spatial rate maxge7;, . hI;(+1/2 +maxger, , hf given in Theorem 5.10: For the meshes

7;51), . ,7;53) the implicitly treated part of the grid only consists of elements with a
smaller diameter compared to those of the explicitly treated part, see [21, Table 1].
h];(+1/2

Thus, the spatial error is dominated by maxgeT;, . which we observe in the

figure. Contrary, for the mesh 771(4) there are implicitly treated elements with a larger
diameter than those in the explicitly treated part. Consequently, we also observe the
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Fig. 3: Temporal convergence. We used the final time ¢y =T = 1 and the polynomial
degree k = 5. Moreover, we used the meshes 7751) (blue), 7752> (orange),
and 771(4) (purple).

rate maxge7;, , b in the spatial error.

Last, we verify the temporal convergence. For that purpose we use the polyno-
mial degree k = 5 since for this degree, at least for larger time step sizes, the time
integration error dominates the spatial error. The graphs of the errors of the locally
implicit scheme are given in Figure 3a and Figure 3b for a = 0 (see also Figure 3a
from [21]) and for @ = 1, respectively. We clearly observe that both methods converge
with order two in the time step which substantiates the order given in Theorem 5.10
and in [21, Theorem 5.3] for &« = 1 and a = 0, respectively. Furthermore, we again
observe the slightly weaker CFL condition in the case o = 0 (this method is stable
for a larger time step size, see also Figure la) and the superior space discretization
error for &« = 1 (the plateaus indicating the space discretization errors are at a smaller
size for this method, compare also Figure 1¢). As an additional comparison we give
in Figure 3c the errors we observe for the Verlet method with a = 1. This figure
shows well that both the locally implicit scheme and the Verlet method are of the
same temporal convergence order, i.e., of order two. Moreover, it again illustrates the
considerably improved CFL condition of the locally implicit method compared to the
Verlet method.

Appendix A. Gronwall inequalities.

LEMMA A.1 ((Modified) discrete Gronwall lemma). Let A > 0, 7 > 0 and
AT < % Furthermore, let ay,, b,, ¢, € R such that ag < by, by, < bpt1, ¢ >0, and

- n
(Al) An41 + Cn+1 < bn+1 + )\5 Z (a/erl + am)7 n > 0.

m=0

Then we have a,, + ¢, < e%’\mbn, n>0.
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Proof. Since ¢, > 0 we obtain from (A.1)

n
T
an+l + Cn+1 S bn+1 + )\5 Z (am+l + Crn+1 + Am + cm)a

m=0

whence the statement follows from [12, Proposition 4.1] and (1 +x)/(1 —z) < €3* for
x € [0,3/4]. O

Appendix B. Proofs postponed from Section 4.

Proof of (4.28) from Theorem 4.6. Foruj, = (Hy, Ej,) we have |up|%. = |Hh\%ﬁ+
|Eh|‘2,5}e:7 where by Definition 4.4

(B.1) [Hy,

5, = Y arl|ne x [Hy]r|%
Fe]:iut

h,c

By |ng| = 1, the triangle inequality, Young’s inequality and the trace inequality (4.25)
on the coarse mesh 7y . we infer

apllnp x [Halrlf < 263 car (exccichi Ml x + excrcic, b IHAl )

< 20 oCooe (M BRI i + iy BRI k)
where the second inequality is obtained via

(B.2) arerck <1, aperpCry <1,

Inserting this bound into (B.1) gives

|Hh‘.2SH < Cbnd,ccoo,c”Hh||Z,7‘h,c,27_%~
The proof of the bound for |E|3_ is done analogously. |

Proof of Theorem 4.7 . This proof is done in four steps.
(a) We start with the proof of (4.29): For e = (erm,err) and pp = (dn, ¥n)
we have

(BS) (Ceﬂ') <)Oh)MXE = (cEeTI',E7 ¢h)# + (cHeTI'7H) wh)€~

By the partial integration formular (4.12b) for Cg and because the projection error
er g is orthogonal to Vj,, see (4.6), we have

(CEe,ryE,gbh)M = Z (nF x [én]F, {ew,E}}i“c)F

FeFint
(B.4) < 3 e x Ionlrellr Iferedslr
FeFr
+ 3 lne x [onlpllr [fere}ils.
FeFm

Here, we used the splitting of the mesh faces Fin* = }lnf: U .F;L“f from (4.15) and the
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Cauchy-Schwarz inequality. Using (4.7) we have

I{ere}51I7 = ab lexcxer lx + expcrrenBlr |7

< 20} (JlexcexenslklF + lexcpcupensliell})
(B.5) = 20} (encklenmlxll?  +excnch, lenslicll r)
< 2ar (exlleslicl2 r + cice len sl r)
< 2ap Capp (CKh2k+l|E|k+1 K T CKp h2k+l|E|k+1 Kp) .

Here, we applied the triangle inequality, Young’s inequality, and (B.2) From now, the
two sums in (B.4) have to be treated differently.

(b) By the Cauchy—Schwarz inequality in Reard(Fi%) with weight ap, we obtain

> lne x [6nlele Ifere}llr

FeFnt

< (X arlr < foudeld) (Y eredElR)

(B.6) PeFp reFp
~ 1/2
< \/icapp|¢h|8§l( Z CK h2k+1|E|k+1 K + CKph2k+1|E|k+1 Kp>
FeFin
< (2NoCoo,0)/*Cappl bl se, [Blk41,75 . UTh or 2041/2-

For the second inequality we used the Definition 4.4 of the stabilization seminorm and
(B.5).
(c) Again the Cauchy—Schwarz inequality in Reard(Fy) implies

> lne x [6nlelle 1{exe}&r

FeF™

< (Y welne < [andel2) (X witenmdild)

FeFint FeF

where we choose the weight wp = ap(hg + hik,)/2. From the shape- and contact-
regularity of the mesh 7j,, in fact by using (4.23), we deduce

(B.7) p tap < wphl_(l, thl_(lF < pag.

By |ng| = 1, the triangle inequality, Young’s inequality, and subsequently the trace
inequality (4.25), we infer

wrlne x [onlplE < 2wr ([6nl x5 + lonl k-1 7)
< 2Cwr (hit l¢nl% + hicp llonlli,)
= 2C3wr (g b onll7 e + by g 10l )
< 2C% par (i ol e + 1
(B.8) <207 peoollbnll?, wuren -

s KF)
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Here, the third inequality was obtained via (B.7) and the last inequality follows by
(5.22). Last, we deduce from (B.5) with the aid of (B.7), that we have

WFMQW,E}}%C”% < 2C§pppcoo (h%g|E|i+1,K + h%{’CF|E|i+1,KF) .
This yields

(B.9) Y7 lnr x [en]rllr 1ex e}l < Crllonllr.,

rery

Elk+1,75.:,2,k-

Inserting (B.6) and (B.9) into (B.4), we finally obtain

(Crerk, d’h)u < CrelOnlsg |Bler1,75 0T ci2.k4 172 + CrllOn w7 Bkt 1,75, 5 2.k

Analogous computations show

(Cuerm, ¥n), < Crcltnlse Hlki1,7 .07 0264172 + Coll¥nller  Hlk 1.7, 2.8

whence the bound (4.29) follows by (B.3) and the Cauchy—Schwarz inequality in R2.
(d) We proceed with proving the bound (4.30): By Definition 4.3, the Cauchy-

Schwarz inequalities in L?(F) and in R4 ") we have

1/2
(Stiensin), < lonlsi, (3 arlne < fernlel)

FeFin
By |np| = 1, the triangle inequality and Young’s inequality we infer

arllng x [exu]rli < 2ar (lexulx % + llernlx. |7)

=2ap (ug' lexulxllr + tg. lexul . 5 r)
S 2C§pp(CKh§(]?+l|H|%+1,K =+ CKFhi(]?:1|H‘i+1,KF)'

Here, the last inequality follows from (5.10b) and (5.22). Consequently, we have
(Strer, 1, 0n) < Creldnlsu Blii1, 7 o UTh o 241725

and analogously we obtain
(Skere:¥n) < Cre

Finally, by the Cauchy-Schwarz inequality in R? we get the desired bound (4.30). O

Vnlse|Bles1, 7, 0T o 2,641 /2
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