Popivanov et al. Boundary Value Problems (2017) 2017:26 0 Boundary Value PrOblemS

DOI 10.1186/513661-017-0757-1

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

On the existence and uniqueness of a
generalized solution of the Protter problem
for (3 + 1)-D Keldysh-type equations

Nedyu Popivanov'”, Tsvetan Hristov'!, Aleksey Nikolov? and Manfred Schneider?

“Correspondence:
nedyu@fmi.uni-sofia.ng

"Faculty of Mathematics and
Informatics, University of Sofia,
Sofia, 1164, Bulgaria

Full list of author information is
available at the end of the article

@ Springer

Abstract

A (3 + 1)-dimensional boundary value problem for equations of Keldysh type (the
second kind) is studied. Such problems for equations of Tricomi type (the first kind) or
for the wave equation were formulated by M.H. Protter (1954) as multidimensional
analogues of Darboux or Cauchy-Goursat plane problems. Now, it is well known that
Protter problems are not correctly set, and they have singular generalized solutions,
even for smooth right-hand sides. In this paper an analogue of the Protter problem
for equations of Keldysh type is given. An appropriate generalized solution with
possible singularity is defined. Results for uniqueness and existence of such a
generalized solution are obtained. Some a priori estimates are stated.
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1 Introduction
In the present paper we consider an analogue of the Protter problems for (3 +1)-D Keldysh-
type equations. For m € R, 0 < m < 2, we study some boundary value problems (BVPs) for

the weakly hyperbolic equation

Lm [M] = uxlxl + uxsz + ngxg - (tmut)t =f(x, t); (11)

expressed in Cartesian coordinates (x, £) = (x;, %, %3, ) € R* in a simply connected region

2 2-m 2 2 2 2_2__m
Qp := (x,t)10<t<to;2_mt2 < ’cl"'962'HC3<1_2—mt2 '

bounded by the ball ¥y := {(x,£) : £ = 0,,/x? + x3 + x3 < 1}, centered at the origin O =

(0,0,0,0) and by two characteristic surfaces of equation (1.1)

2 2-m
DIEE {(x,t):0<t<t0, xf+x§+x§=1—2—t2},
-m

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13661-017-0757-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0757-1&domain=pdf
mailto:nedyu@fmi.uni-sofia.bg

Popivanov et al. Boundary Value Problems (2017) 2017:26 Page 2 of 30

2 2—-m
M= (x,0):0<t<ty, /a2 +x+ab=—"—2t"7
2 {( ) 0 1 2 2 _m

2
where tj := (Z’T’”)m.
In this work we are interested in finding sufficient conditions for the existence and

uniqueness of a generalized solution of the following problem.
Problem PK Find a solution to equation (1.1) in £2,, that satisfies the boundary conditions
ulsy = 0; t"u, — 0, ast— +0.
The adjoint problem to PK is as follows.

Problem PK* Find a solution to the self-adjoint equation (1.1) in €2, that satisfies the
boundary conditions

ulsm = 0; t"u; — 0, ast— +0.
2

First, we present a brief historical overview here and provide an extensive list of refer-
ences.

Protter arrived at similar problems, but for Tricomi-type equations, while studying
BVPs which describe transonic flows in fluid dynamics. It is well known that most impor-
tant boundary value problems that, in the case of linear mixed-type equations, appear in
hodograph plane for two-dimensional transonic potential flows are the classical Tricomi,
Frankl; and Guderley-Morawetz problems. The first two for flows in nozzles and jets and
the third one as an approximation in flows about airfoils. For such connections, see the
paper of Morawetz [1]. About sixty years ago Murray Protter [2] stated a multidimensional
variant of the famous Guderley-Morawetz plane problem for hyperbolic-elliptic equations
that had been studied by Morawetz [3], Lax and Phillips [4]. This problem now is known as
the Protter-Morawetz problem. A result for uniqueness was obtained by Aziz and Schnei-
der [5] in the case of Frankl-Morawetz problem. However, the multidimensional case is
rather different, and there is no general understanding of the situation. Even the question
of well posedness is not completely resolved. For different statements of multidimen-
sional Darboux-type problems or some related Protter-Morawetz problems for mixed-
type equations, see [1, 6-13]. Some Tricomi problems for the Lavrent’ev-Bitsadze equa-
tion are studied in [14—16]. On the other hand, different problems for elliptic-hyperbolic
equations of Keldysh type have specific applications in plasma physics, optics, and analysis
on projective spaces (see Otway [17, 18] and Otway and Marini [19]). Various statements
of problems for mixed equations of Tricomi or Keldysh type can be found in Oleinik and
Radkevic¢ [20], Nakhushev [21], and several applications of such problems in the study of
transonic flows are described in Chen [22], Cani¢ and Keyfitz [23]. Let us also mention
some results in the thermodynamic theory of porous elastic bodies given in [24, 25]. In
order to analyze the spatial behavior of solutions, some appropriate estimates and similar
procedures are used there.

In relation to the mixed-type problems, Protter also formulated and studied some BVPs
in the hyperbolic part of the domain for the wave equation [26] and degenerated hyper-
bolic (or weakly hyperbolic) equations of Tricomi type [2]. In that case the Protter prob-
lems are multidimensional analogues of the plane Darboux or Cauchy-Goursat problems
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(see Kalmenov [27] and Nakhushev [28]). The equations are considered in (3 + 1)-D do-
main, bounded by two characteristic surfaces and noncharacteristic plane region. The data
are prescribed on one characteristic and on a noncharacteristic boundary part. Protter
considered [2, 26] Tricomi-type equations or the wave equation (m € R, m > 0)

me [M] = tm [uxlxl + uxzxz + ”xgxg] — Uy :f(xt t) (12)

in the domain

~ 2 2 2 2
Q= 4 (o, 20,3, 8) 1 £ 0, —— ¢35 <\ Jx+ad+ad<1- = L
m+2 m+2

bounded by ¥ and two characteristics surfaces of (1.2)

-~ 2 2
E{”:{t>0,,/xf+x§+x§=l— t%L},
m+2

~ 2 m+2
S350, /6% + 4%+ 4% = £z g,
2 { I

He proposed four problems, known now as Protter problems.

Protter problems Find a solution of equation (1.2) in the domain Q,, with one of the
following boundary conditions:

Pl: uly ysm =0, PI": ulgyusp = 0;

P2: Mli{n =0, th|20 = 0, pP2*: M|i£n = 0, I/{[|20 =0.

The boundary conditions in problem P1* (respectively P2*) are the adjoint boundary con-
ditions to problem P1 (respectively P2) for (1.2) in Q.

It turns out that instead of both boundary conditions given in problems P1 on £, X,
and in P2 on f]g’ , X for the Tricomi-type equation (1.2), in the case of Keldysh-type equa-
tion (1.1), they are reduced to only one boundary condition on the characteristic X{” and
a condition on the growth of possible singularity of the derivative u; as £ — +0.

We mention some known results for Protter problems in the Tricomi case that make
the investigation of such problems interesting and reasonable. Garabedian [29] obtained
a result for the uniqueness of classical solution to problem P1 for the wave equation (i.e.,
equation (1.2) with m = 0). It is interesting that contrary to their plane analogues, the 3-D
Protter problems are not well posed (see [30, 31] and the monograph of Bitsadze [32]). The
reason is that the adjoint homogeneous problems P1* and P2* have an infinite number of
linearly independent nontrivial classical solutions. On the other hand, the unique gener-
alized solutions of 3-D problems P1 and P2 could have strong power-type singularity on
the flg’ even for smooth right-hand sides (see [31, 33, 34]). Behavior of the singular solu-
tions to 3-D problems P1 and P2 is studied in [35, 36]. Such results are announced for the
4-D case as well [37]. Didenko [38] studied problems P1 and P1* for the Tricomi equation
(m = 1) in the symmetric case. Aldashev [39] studied some multidimensional analogues of
Protter problems for equation (1.2), but he did not mention any possible singular solutions.
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These known results for Protter problems for Tricomi-type equations and many inter-
esting applications of different boundary value problems for equations of Keldysh type
motivate us to study problems PK and PK* and to try to find out new effects that appear.
In [40] ill-posedness of 3-D Protter problems for Keldysh-type equations in the frame of
classical solvability is discussed, and the results for uniqueness of quasi-regular solutions
are obtained. Existence and uniqueness of generalized solutions to problem PK in that
case are obtained in [41], and some singular generalized solutions are announced in [42].

In [31, 33] we study Protter problems for Tricomi-type equations. For 3-D Keldysh-type
equation in [43], we formulate a new Protter problem and announce some results for the
existence and uniqueness of a generalized solution in the case 0 < m < 1. In [44] we an-
nounce analogical results for (3 + 1)-D equations of Keldysh type in a more general case
0 < m < 4/3 and claim the existence of infinitely many classical smooth solutions of the
(3 + 1)-D homogeneous problem PK*. Now, in the present paper we work in the case
0 < m < 4/3. Using an appropriate Riemann-Hadamard function, we find an exact inte-
gral representation of the generalized solution and prove the results announced in [44].
To avoid an infinite number of necessary conditions in the frame of classical solvability,
we give a notion of a generalized solution to problem PK which can have some singularity
at the point O. In order to deal successfully with the encountered difficulties for ¢ € (0,1),
we introduce the region

Qe i=Qm N {|x| > 8},

where |x| = \/x7 + %3 + x3.

We give the following definition of a generalized solution of problem PK in the case
0<m<4/3.

Definition 1.1 We call a function u(x,t) a generalized solution of problem PK in €2,
O<m< %, for equation (1.1) if:
L s,y € C(Qn\ 0),)=1,2,3, 14 € C(Qu \ o)

2. ulsp =0;
3. For each ¢ € (0,1) there exists a constant C(g) > 0 such that in €,,,

|y, 8)] < Cle)e 7 1.3)

4. The identity
/Q {t”‘utvt — Uy Vi) — Uy Viey — Uy Vs —fv} dxidx> dxsdt =0 (1.4)
holds for all v from
Vi = {V(x, t):ve C2(§2m),v|25n =0,v=0 in a neighborhood of O}.
Remark 1.1 We mention that all the first derivatives of the generalized solutions of 3-D
Protter problems in the Tricomi case can have singularity on the boundary of the domain

(see [31, 33]). Actually, this fact corresponds to the analogical situation in a 2-D case of
the Darboux problem (see [27]). While in the Keldysh case, according to Definition 1.1,
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the derivative u; can be unbounded when ¢ — +0, but u,,, u,, and u,, are bounded in

each Q,,., € >0.

In this paper, first, we prove results for the uniqueness of a generalized solution to prob-
lem PK.

Theorem 1.1 If m € (0, %), then there exists at most one generalized solution of problem
PK in Q,,.

Further, we use the three-dimensional spherical functions Y} (x) with n € N U {0}; s =
1,2,...,2n+1. The functions Y?(x) are defined usually on the unit sphere S? := {(x;, x2,%3) :
x7 + x5 + x5 =1}, and Y? form a complete orthonormal system in Ly(S?) (see [45]). For
convenience of discussions that follow, we extend the spherical functions out of S2 radially,
keeping the same notation for the extended functions Y?(x) := Y$(x/|x|) for x € R®\ {0}.

Let the right-hand side function f(x, £) of equation (1.1) be fixed as a “harmonic polyno-

mial” of order [ with / € N U {0}, and it has the following representation:

I 2n+1

flet)=> " " fo(1xl, 1) V) (L5)

n=0 s=1

with some coefficients f;(|x], t).
In this special case we give an existence result as well.

Theorem 1.2 Let m € (0, %). Suppose that the right-hand side function f (x,t) has the form
(1.5) and f € CY (). Then the unique generalized solution u(x,t) of problem PK in Q,,
exists and has the form
I 2n+l
e, t) =y > us(|xl, £) V(). (1.6)

n=0 s=1

Remark 1.2 Actually, when the right-hand side function f(x, t) has the form (1.5) in The-
orem 1.2, we find explicit representations for the functions u;,(|x|, ) in (1.6). These repre-

sentations involve appropriate hypergeometric functions.

In the case when the right-hand side function f (x, £) has the form (1.5), we give an a priori
estimate for the generalized solution of problem PK in €2, as well.

Theorem 1.3 Let the conditions in Theorem 1.2 be fulfilled. Then the unique generalized
solution of problem PK in Q,, has the form (1.6) and satisfies the a priori estimate

’u(x, t)’ < c(rgax [f|) 2|7, (1.7)

with a constant ¢ > 0 independent of f.

Estimate (1.7) shows the maximal order of possible singularity at point O, when the right-
hand side function f(x,£) is a “harmonic polynomial” of fixed order /. We will point out
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that a similar a priori estimate for generalized solutions to 3-D Protter problem P1 in the
Tricomi case is obtained in [36], while an estimate from below in this case is given in [31].
The present paper contains the introduction and five more sections. In Section 2, the
Protter problem PK is considered in a model case when the right-hand side function f(x, £)
of equation (1.1) is fixed as a “harmonic polynomial” (1.5) of order /. In that case we for-
mulate the 2-D boundary value problems PK; and PKj;, corresponding to the (3 + 1)-D
problem PK. We give a notion for a generalized solution of Cauchy-Goursat problem PK,
and in Section 3, using the Riemann-Hadamard function associated to this problem, we
find an integral representation for a generalized solution. Further, we obtain existence and
uniqueness results for a generalized solution of problem PK,. Actually, this is the essential
result in this paper and has the most difficult proof. Using the results of the previous sec-
tion, in Section 4 we prove the main results in this paper, i.e., Theorem 1.1, Theorem 1.2
and Theorem 1.3. In Appendix A we give the main properties of the Riemann-Hadamard
function associated to the Cauchy-Goursat problem PK,. In Appendix B some auxiliary
results, needed for the study of the generalized solution to problem PK, are proven.

2 Two-dimensional Cauchy-Goursat problems corresponding to problem PK
Using spherical coordinates (r,6,¢,t) € R*, 0 <0 <7, 0 < ¢ <27, r > 0 with

x1 = rsiné cos ¢, x5 =rsiné sin g, X3 =rcosb

problem PK can suitably be treated. Written in the new coordinates, equation (1.1) be-
comes

1 1
Lu= —2(r2u ), + 5———(sinBug)y +

r " 256 99 = (tm”t): =f. 2.1)

—u
r2sin® 6

We consider equation (2.1) in the region
-m -m

2 2m 2 am
Q= (r,@,(p,t):0<t<to,05«9<7r,0§g0<271,2—t2 <r<1—2—t2 ,

bounded by the following surfaces:

Yo = {(r,Q,(p,t):t:0,0fQ <,0 §g0<277,r<1},

""5

2 2
El”’:{(r,@,go,t):t>0,0§9<7r,0§g0<2n,r:1—2—t },
—-m

m 2 2-m
)= (r,@,go,t):t>0,0§9<71,0§g0<27t,r:2—t2 .
—m

Problem PK becomes the following one: find a solution to equation (2.1) with the boundary

conditions
ulgm = 0; t"u; — 0, ast— +0.

The two-dimensional spherical functions, expressed in terms of § and ¢ in the traditional
definition (see [45]), are Y3(0,¢) := Y3(x), x € S2, n e NU{0},s =1,2,...,2n + 1, and satisfy
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the differential equation

1 9/. 9 1 92
— —|(sin0 =Y |+ —5——= Y, +n(n+1)Y,; =0.
sin® 90 00 sin*@ d¢?

In the special case when the right-hand side function f(x,¢) of equation (2.1) has the
form

f(r,0,0,1) =1, (r,0)Y,(0, ),

we may look for a solution of the form
u(r,0,9,t) = u,(r,t)Y;(0,¢)

with unknown coefficient i (r, t).

For the coeflicients u (r, t) which correspond to the right-hand sides f;(r, t), we obtain
the 2-D equation

2 n(n+1)
u,,+—u,—(tmut)t— —u=f
r r
in the domain
2 2-m 2 2-m
Gu=1(1:0<t<ty, t?2 <r<l———¢t2 ¢,
2—-m 2—-m

which is bounded by the segment Sy = {(r,£) : 0 < 7 < 1,£ = 0} and the characteristics

2 —m
S{"::{(r,t):0<t<t0,r=1——t22},
2—-m

2 2-m
Se=1(r,t):0<t<tyr=—-t2 .
o {(r ):0<t<ty,r T~ }

In this case, for u(r, t), the 2-D problem corresponding to PK is the problem

K, T 7 @M =f(r,t) inG,,

ulgm = 0; "y, — 0, ast— +0.
1

Remark 2.1 When the right-hand side function f(x,¢) has the form (1.5), it is enough
to take test functions v € V), in the identity (1.4) to have the form v = w(|x|,£)Y}(x), n €
NU{0},s=1,2,...,2n+1and

we V,(,}) = {w(r, t):we CHG,), wlgn =0,w=0ina neighborhood of (0, 0)}.
The generalized solution of problem PKj is defined as follows.

Definition 2.1 We call a function u(r,£) a generalized solution of problem PK; in G,
(0<m< %) if:
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L ,u € C(Gp \ (0,0)), 4 € C(G \ So);
2. M|S{Vl =0;
3. For each ¢ € (0,1) there exists a constant C(¢) > 0 such that the estimates

Jue(r,1)| < Cle)e ¥

hold in G, := G, N {r>¢};
4. The identity

nn+1
/ [u,v, —t"uvs + ( )

holds for all v € V,i}).

uv +fv} rrdrdt=0 (2.2)

Substituting the new characteristic coordinates

-1 _2 -1 2 5 2.3
é;‘_ _r—2_m , n= —}"+2_ t ()
and the new functions
u(‘i:’ 77) = ’”(5» 77)”("(5; 77)’ t(‘i:’ 77)),
V(é’ '7) = 7(5: U)V(V(fx 71): t(gr Tl))’ (2.4)

&) - %(2 &) (rE ) E ),

from problem PK;, we get the 2-D Cauchy-Goursat problem

Uey + L5 (Ue = Uy) = G U =F(E,m) inD, (2.5)
PK2 .
U(O; 7]) =0, hmn—&—H—O(U - E)Zﬁ(u$ - ur]) =0, (26)
where

D:= {(é,n):0<$<n<1}CR2,

and the parameter g = % €(0,1) since 0 < m < %.
The generalized solution of problem PKj is defined as follows.

Definition 2.2 We call a function U(§,n) a generalized solution of problem PK, in D
(0<B<1)if:
L U, U+ Uy e C(D\ (L,1), Us — U, € CD\ {n =£});

U(O’ 77) =05 (27)
3. For each ¢ € (0,1) there exists a constant C(g) > 0 such that
(U = )€ n)| < Cle)(n-8)F inD;\ {n=£} (2.8)

where D, :=DN{& <1-¢};
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4. The identity

2n(n +1)

fD(n—é)zﬁ{UsVn PUVer o e

uv + 2FV} deédn=0 (2.9)
holds for all
VeVv®:={V(En): Ve D) V(1) =0,V =0 inaneighborhood of (1,1)}.

3 Existence and uniqueness of a generalized solution to the Cauchy-Goursat
plane problem PK,

In this section we prove the existence and uniqueness of a generalized solution to problem

PK;. In order to do this, we use the Riemann-Hadamard function associated to problem

PK, to find an integral representation for a generalized solution of this problem in D.

According to Gellerstedt [46] and the results of Nakhushev mentioned in the book of

Smirnov [47], this function has the form

(&, n;E0,10), ,
®(&,n;80,m0) = (€ m:80,m0), 1> 6o (3.1)

D7(&,m;60,m0), 1 <o,
for (§0,10) € Dand (¢§,n) € TU T\ {1 = &}, where
T:={(n:0<E<n<&},  M:={(&n):0<& <&, <n<no}.
The Riemann-Hadamard function ®(&, n; &y, o) should have the following main proper-

ties (see [46, 47]):

(i) The function ® as a function of (&g, n9) satisfies

b e PO P <@_£>_ﬂ
£0,10 . 000N o — &y \ 0&g ano (2—50—770)2

=0 inD,n#é& (3.2)

and with respect to the first pair of variables (£, )

£ (0] = P2d 9 (ﬁd)) E( 3 )_ n(n +1)

d&adn 95\n-§/) om\n-§/ (2-&-n)
=0 inD,n#é&y; (3.3)
(i) @*(%0,n0580,m0) = 1;
(ifi) ©*(§, 1050, m0) = (255
(iv) @* (80,1560, M0) = (%)ﬂ;
(v) The jump of the function ® on the line {n = &y} is

[([®@]]:= 52210{@_(5,50 —8;0,m0) — ©* (&, €0 + 860,10}

= COS(ﬂﬂ)sliIilo{qﬁ(S,go +8;€0, &0 + 8) D" (0, &0 + 8350, 70) }

8
= COS(nﬂ)( S0 =% ) ;
no —&o




Popivanov et al. Boundary Value Problems (2017) 2017:26 Page 10 of 30

(vi) @~ vanishes on the line {n = &} of power 28.
Actually, the function ®* is the Riemann function for equation (2.5).

Remark 3.1 In the case 0 < 8 <1/2 and F(&,75)=(y - §)‘4ﬂf(§,11), where f € C(D), a gen-
eralized solution of problem PK, has an explicit integral representation (see [46] and
[47]). We find an integral representation in the case 0 < 8 <1 and F € C(D) using the
properties of the Riemann-Hadamard function ®(&, n; &y, o). The existence of a function

D(&, n; &, no) with properties (i) + (vi) is shown in Appendix A (see also [44]).

Theorem 3.1 Let 0 < B <1 and F € C(D). Then each generalized solution of problem PK,
in D has the following integral representation:

& prno
U(50»770)=/(; fé F(&,n)®(&,n;50,m0) dn d§. (3.4)

Proof Let U(&,n)beageneralized solution of problem PK;, in D. For any arbitrary function
Y (&, 1) from Ci°(D), we have ¥ € V@, and from (2.9) we obtain the identity

_g)2p By et } dE dn =
/D(n §) {Usﬂn_s(us Uy) (2—E—n)2U Fyrdédn=0,

where U, is the weak derivative of L. Therefore

. n(n+1) ~ B
2-&-n*" n-§

U, =F (U: - U,) € C(D)

since F, U, Uz — U, € C(D). From this it follows that U, is a classical derivative of U/ and
U (&, n) satisfies the differential equation (2.5) in D in a classical sense.

Now, using the properties of the Riemann-Hadamard function ®(§, n; &y, n9), we obtain
the integral representation (3.4) for a generalized solution of problem PK by integrating
the identity

(&, m; 60, m0)Ee y [U(E, )] — U, m)EL [ (&, 1360, m0)] = F(&, )P (&, 1360, M0)
over a triangle
Ts:={(5,n):0<& <& —28,E+8<n<& -0}
and then over the rectangle
My :={(€,1):0<& <& 28,5 +8<n<no}
with § > 0 small enough, and finally letting § — 0. O

Theorem 3.1 claims the uniqueness of a generalized solution to problem PK,. Next, we
prove that if F € C}(D) and U(£,n) is a function defined by (3.4) in D, then U(£,n) is a
generalized solution to problem PK in D. In order to do this, we introduce the notation

Mg := max{rqax |F|, max |Fg + F,7|],
Dy Dy
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and we mention that, according to Lemma A.1 (see Appendix A below), the Riemann-
Hadamard function ®(&, n; o, no) can be decomposed in the following way:

D, m;60,10) = H(E, 1580, m0) + G(E, 150, 10),

where H (&, n; &y, no) is the Riemann-Hadamard function (A.12) associated to problem PK,
in the case n = 0 and G(&, n; &0, 10) is an additional term. Therefore we can rewrite repre-
sentation (3.4) in the form

U(&o,m0) = U™ (€0, 10) + U (£0,70), (35)
where

e, [ " £ " B, mHE, 1580, n0) iy de (3.6)
and

e, )= [ ! /5 " B (&, m)G(E, 150, n0) i d. (37)

Firstly, we will study the function L' (£y,70). To do this, we use the estimates for some
integrals involving function H(&, n; &, o) obtained in Appendix B.

Theorem 3.2 Let 0 < B <1 and F € CY(D). Then, for the function U™ (&, 1), we have
un, Ug + L[,% e C(D\ (1,1)), U,]HO € C(D\ {no = &}) and the following estimates hold:

U™ (€0, m0)| < KisMpéo  in D\ (1,1),
|\ + U |(80,m0) < KiMpmo  in D\ (1,1),

U (%0, m0)| < KiMFEo(no — &)™ in D\ {no = &)},

where Ky > 0 is a constant independent of F.

Proof Step 1. From (3.6) and (B.1) from Lemma B.1 (see Appendix B) we obtain

50 1o
|U" (&0, m0)| < MF/ A H(&, 130, m0) dn d& = MpI' (€0, 10) < kiMp&o.
0

Step 2. Differentiating (3.6) with respect to 1y and using (B.4) from Lemma B.2, we ob-
tain

(no —&)P
(1m0 — &0)P

0 M0 0/ py—¢ B }
,1; o0, dnd d
gMF{/O /g [Hin€, 6o, dnd + [ (m—&) :
&0 _ B
sl [ (22 4

< Me(ky +1)E(no — £0) 7.

1L (0, m0)| = ‘ / f F(&,n)Hyy (€13 E0rno) dn d& + fo F(g,mo) 0 =5 ds‘
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Step 3. According to Remark A.1, the derivatives H; , H, have singularities of order
[n — &|™! on the line {n = &}. Gellerstedt [46] and Moiseev [48] consider the case 7 = 0
and suggest differentiating (3.6) after appropriate substitutions of variables. In that way
one can find integral representations for the first derivatives of the solution which do not
involve the first derivatives of function H. In order to do this, following Moiseev [48], we
introduce new variables

. 50-§ ~_NMo—1

= s = 3.8
no —&o " no —&o (38)

We define

FF—(‘%» ﬁ) = H+(Er 77;‘§>:Or 770)’ 1:1_(5! ﬁ) = H_(S’ méo» 7)0):

from (A.12) we obtain

Fr(é,ﬁ)=(1—ﬁ+§)ﬁF(ﬁ,1—ﬂ,1; Y, e,
1-n+§
- kQ-7+ &) 1-q+E\
H (5!77)_ WF<ﬁHB’2ﬁ1 éf] )’ 77>1'
Then we have
U (&0, mo)
o

n9-&o 1+§ ~ o~ o~
~ (10— &)’ / { / F(&o — (00 — £0)E, 10 — (10 — £0)) FLE, 7) dﬁ} dE,
0 0
and
(Ugh + UlT) (€0, mo)

o (1 i o ~
~ (10— &)’ /0 /0 (Ex + E) (£ — (o — £0)E+ 10 — (10 — £0)77) FLE, 7) i dE

rm=&0) [ FO10- 0 - &) 7 ) i

Now the inverse transform of (3.8) gives
. . s rno
(uts+ it o) = [ [ e F)E mHE o) s
0 &
n0
+/ F(Or n)H(Or ﬂ;éo,ﬂo)dn-
0
Now (B.1) from Lemma B.1 and (B.6) from Lemma B.3 give

|(Ufl + U ) (&0, mo) | < MEp{I* (%0, m0) + I (§0,m0) } < Mp(ky + k3)no. O
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Theorem 3.3 Let the conditions in Theorem 3.2 be fulfilled. Then for the function
UC (&, 10) we have U°C, Ug), LI,% € C(D\ (1,1)), and the following estimates hold in D\ (1,1):

|UC(&0,m0)| < KaMF&Eo(2 — &0 — 10) ™", (3.9)
|U§) (E0,m0)| < KoMpEo(2 — & — o)™, (3.10)
U (§0,m0)| < KaMF&o(2 = E0 — 10) ™", (3.11)

where Ky > 0 is a constant independent of F.

Proof Using estimates (A.26) and (A.27), from (3.7) we obtain estimate (3.9):

& réo
G _ — .
u (50,770)|—‘ /0 /E F(&,m)G (8,150, o) dn d&
& prno
b * ’; ) d d
+/0 /g (&, m)G" (&, 150, o) dn s‘

< CGMFSO{ %50(2 — & —10) " + (0 — &0)'° }
< KoMFpég(2 — & —no)™".

Now we calculate

& rno
S (o, o) = /0 /g F (&, )Gy (€, 1, Eo, 1) dn .

Here we do not have integrals on the boundaries because Y = 0 on the line {£ = &}, and
the function G(§,n,&o,70) has no jump on the line { = &} (see Appendix A). Applying
estimates (A.30) and (A.31) to this integral, we have

G MeCq s réo ~ '
|U§0($0’n0)| = (2 %.0 _ 770 n+1 / / 50 Tl) n E

Mr-C, & rno
§ GG / (- &) d de

2-&-n0Jo Jg
MrCg

1 nyl
T (2% —no)"! (i +2°L).

Now (B.2) and (B.3) from Lemma B.1 give estimate (3.10). Further, we calculate

& rno
S (50,m0) = /0 L F(&,m)Gyo (6,10, m0) d dE,

where we used that Y = 0 on the line 1 = n9. Analogously, applying estimates (A.28) and
(A.29), which are even better than (A.30) and (A.31), to the last integral for the derivative
G,,, we obtain estimate (3.11). O

As a direct consequence of Theorem 3.2 and Theorem 3.3, in view of U = UH + US, we

have the following theorem.
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Theorem 3.4 Let 0 < 8 <1 and F € CY(D). Then, for the function U(£,n) defined by (3.4),
we have U, Us + U, € C(D\ (1,1)), U, € C(D\ {n = &}) and for some constant K3 > 0 the
estimates below hold

|UE n)| <KsMpg2-E-n)™" inD\(1,1),
|(u§ + ur])(g» 77)| = I<3MF(2 - g - 77)_"_1 in D \ (lr 1)’ (312)

|Uy (&) < KsMpg(n— )P (2~ )™ inD\ {n=£}.
Now, we are able to prove the following existence result.

Theorem 3.5 Let 0 < 8 < 1 and F € CY(D). Then there exists one and only one general-
ized solution to problem PK, in D, which has integral representation (3.4), and it satisfies
estimates (3.12).

Proof Let U(¢,n) be the function known from Theorem 3.4. Therefore U, U + U, € C(D\
11), U, e C(D\ {n = £€}), and it satisfies estimates (3.12) in Definition 2.2. But in view of
(3.12) it is obvious that condition (2.7) and estimate (2.8) hold.

To prove that U(&, n) satisfies identity (2.9) in Definition 2.2, we need several steps as
follows.

Step 1. We prove that U(&, n) satisfies the differential equation (2.5) in a classical sense
and aa_n(uf) e C(D).

(1.i) Following Smirnov [47], we find another representation formula for the function
UM (g,n). Let us introduce the function

R§(&,m580,m0)s 1> &o,
Ry (&,m580,m0), 1< &0,

Ro(&,m5&0,10) :=

where
R mkon )._<no—n>ﬁ<no—n>l”3F (1 81— T rm—n)
»11,50,7/0) = 1 — PP L= 0,4 3 )
0 1no —éo no—§& no—5& no—§
B B
_ n-§ n-§ n-§ n-§
R (5»77;5 )1 )::7/<—) (—) F, (ﬂ’ﬁ’ﬁrl"'zﬂ;—: )
0T o0 go—-&) \m—-¢/) "' Eo—& n0—£
Here y = —% and Fi(a, b1, by, c; %, ) is the hypergeometric function (A.8) of two

variables (see Appendix A).
In [47] the case 0 < 8 < 1/2 is considered, but here we find that in a more general case
0 < B <1 the function Ry (&, n; &y, no) solves

IR
8—0 =—(n-&)"H(&, n;60,m0) for (§,m) eNMUT,
n (3.13)

Roly=ny =0, Roly-¢ =0,

where (&y,10) € D and H(&, n; &, o) is function (A.12).
Using (3.13), integration by parts and

1

[RS _R5]|n=go = E
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leads to the integral representation
" s rmo g
U (&o,mo) := f / o [(n — §)F(&,1)|Ro(§, 5 €0, m0) d dé
0 Jg

1 &o
+E ; (50 —&)F(§,%0) dé. (3.14)

(1.ii) Differentiating (3.14) we obtain that U* satisfies the differential equation

(%D%+%f&a§ Uty = F(g0,n0), (3.15)

where all derivatives are in a classical sense and they are continuous in D.
(1.iii) Since H (&, n; &, no) satisfies the differential equation (3.2) withn=0and ® =H+G
satisfies (3.2) with # > 0 for the difference G = ® — H, we obtain

n(n+1) - n(n+1)
2-&-nm0)> (2-& —n)>

B
Ggyno + —— (G, — Gy) —
om0 1o — &o 0 10

Now, using integral representation (3.7) for L/%(&, n0), we calculate

B G n(n+1) G
U, us -u P
( Eo) "' — & ( o no) (2- ‘50—770)2

§0 rno B
/ / F(&, 77)|:Géono & (GSO Gﬂo)

(2-& —no)?
1) S rno
5_§%%ﬁ/ / F(E mH(E, 60, 10) di dé

_ n(n+1) H
(2-%—no)? e (316

G:|(§,77;-‘§0,7)0)d'7d§

where all derivatives are in a classical sense and they are continuous in D.
(Liv) Since U = U + US, summing up equations (3.15) and (3.16), we obtain the differ-
ential equation

Usy - Uyy) - =11 P no)

U,
(e o + (2 - &) —no)?

B
-&o
in a classical sense. But, since F, U, Uy, — U,,, € C(D), it follows that (U,),, € C(D).
Step 2. We will prove that identity (2.9) holds for all V(£,7) € V?
(2.i) Let V(£,1) € V? and in addition V/(£,7) = 0 in a neighborhood of { = £} and in a
neighborhood of {n = 1}. From Step 1 we know that U(&, n) satisfies the differential equa-
tion (2.5), where all derivatives are in a classical sense, continuous in D. Let us consider

2n(n+1)

IV = /D(n—é)zﬂ{l,[g\/,, +UnV§ + m

uv + 2FV} dé& dn. (3.17)

Now we integrate by parts in Iy in the following way:
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- in the term U; V,,, we move the derivative from V;, to U and obtain the term (Ug),V:

2B
n—

/(U ~ &)UV, dE dn = - / (n-&)* [(Us)n + US:| V d§ dn; (3.18)
D D &

- in the term U, Vg, we move the derivative from U, to Vi and obtain the term U(V%),:

2
-

[a-erruve dédn=—/(n—é)w[(Vs)n ; vg]u(zlsdn.
D D §
There are not integrals on the boundary of D because U(0,7) =0, V(£,1) =0 in a neigh-
borhood of {n = £} and in a neighborhood of {n =1}.
- since V € C%(D), we have (Vz), = (V;)e;
- in the term (V})): U, we move the derivatives from (V})¢ to U and obtain the term
(Ue), V:

2
/D(ﬂ—é)zﬁun‘@dédﬁ=—/D(n—é)2’3[(vn)e+ P Vs}Udédn

2
:/(n—f)zﬁ[UsVn——ﬂ(Vs + Vn)U] d§ dn
D n-§
28 2B
- [o-e7|wo, - o, |vaean. @19
D n-§
Again there are not integrals on the boundary of D, and putting (3.18) and (3.19) into (3.17),
we get
Iy=-2 [ (n- Zﬁ{u P w.-u —MU—F}\MZ dn=0. (320
v=-2 [ -y s Lo -up - S £dn=0. (3:20)

(2.ii) Let V(£,n7) € V® and W(s) be a function having the properties W(s) € C*(R!),
W(s) =1 for s> 2, W(s) =0 for s < 1. If k,/ € N, then according to (2.i) (see (3.17) and
(3.20)) for the functions

Vii(§,m) = V(&,n) W (k[1 - n]) W (I[n - £])
identity (2.9) holds. Therefore we have

2 D) g 2FV}
(2-&-n)2?

x W (k[L~ 1)) (Ul - £1) dé i

0=/(n—$)2ﬂ{UsVn+UnV$ +
D

. /D I(n - £V (U - U)W (K[L— ) W' (Il - £1) V & dn

_ /D k(= £PP U (K[L - 1)) W (Il - 1)V de diy

=l + Lo+ B (3.21)

Obviously, 14 — Iy, as k,[ — oo.
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We know that V = 0 in a neighborhood of (0,0) and supp WV'({[ — &]) is contained in
{1 <I[n - &] < 2}. Using estimate (3.12) we find that on supp W'(/[ — §]) the functions

Wie(&, 1) =10 =€) {Uy — Uy} (k{1 = n]) ' (Iln - £1)V
satisfy the estimates
|Wii(&,m)| < const.(n —£)F7. (3.22)

Since, obviously, the sequence Wj; converges pointwise almost everywhere to zero and
it is dominated by a Lebesgue integrable function in D for 0 < 8 <1 (see (3.22)). Thus,
according to the Lebesgue dominated convergence theorem, I — 0 as k,[ — oo.

Since V(&,1) = 0, we have

k|VE )| |W' (k[1-n1)| = k(1L - )|V, (& D)|| ¥ (kL - n])| < c,

where ¢, is a constant and 7 < 77 < 1. Therefore I3 — 0 as k,/ — oo.
Thus, letting k,/ — oo in (3.21), we obtain that identity (2.9) holds for V € V. Conse-
quently, the function U(§, n) is a generalized solution to problem PKj. O

4 Proof of the main results
In this section we give the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3 formu-

lated in Section 1.

Proof of Theorem 1.1 Let and u; and u, be two generalized solutions of problem PK in
Q. Then the function u := u; — u; solves the homogeneous problem PK. We will show
that the Fourier expansion
oo 2n+l
u(r,0,0,6)= Y Y u(r,0)Y;(0,¢)

n=0 s=1

has zero Fourier-coefficients

b4 2
u (r,t) :=/ / u(r,0,¢0,t)Y;(0,¢)sind dp db
o Jo

in G,,ie,u=0in Q,,.

For u we know that the identity
/ {t’”utvt — Uy Vg — Uy Viey — Uy Via } dxidx, dx3 dt =0 (4.1)
Qm

holds for all test functions v(x,t) = w(r,t)Y;(x) described in Remark 2.1. Therefore from

(4.1) we derive

1
f {us w, —t"uf w +musw}r2drdt=0 (4.2)
Gm

nr'Vr nt"'t n
r2
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forall w(r, t) € V,(nl) (see Definition 2.1), e NU{0},s =1,2,...,2n + 1. Since u(x, t) satisfies
conditions (1), (2) and (3) in Definition 1.1, the functions i (r, ) satisfy conditions (1), (2)
and (3) in Definition 2.1, and therefore they are generalized solutions of problem PKj.

Using (2.3) we see that the functions V(&,7) := (&, n)w(r(€,n), t(€, 1)) € V?). Now from
(4.2) we obtain that for the functions U} (&, n) := r(&, n)u; (r(€,n), t(€, n)) the identity

2 1
[o-er{uv, i, vee 2wy aean-o
D

2-&-n)

holds for all V(r,t) € V@ (see Definition 2.2), » € NU{0},s = 1,2,...,2n + 1. The functions
U3 (&, n) satisfy conditions (1), (2) and (3) in Definition 2.2 and, consequently, U3 (£, n) are
generalized solutions of the 2-D homogeneous problem PK,. Theorem 3.1 gives U} (£, 1)

O

0 in D. Therefore i (r,£) = 0 in G, and thus u = u; — uy =0 in Q,,,.

Proof of Theorem 1.2 From Theorem 1.1 it follows that there exists at most one generalized
solution of problem PK in €2,,. Since f(x, t) has the form (1.5), we look for a generalized
solution of the form (1.6), i.e.,

I 2n+l

e £) =Y Y us (Ixl,2) Y3().

n=0 s=1

To find such a solution means to find functions i (r, ) that satisfy the identities

nr’r nit 2 n

n(n+1
/ [us v, —t"u; vt+¥usv+f,fv]r2drdt:0
Gme r

forallve V,(,}) and satisfy the corresponding conditions (1), (2) and (3) in Definition 2.1.
In view of (2.3) to find such functions means to find functions

U (&,m) = r(&,mus, (r(&, n), (&, m)),

such that for F;(&,n) := %r(é, nfi(r(&,n), L&, n)) the identity

2n(n +1)

—— WV +2FVdédn=0
@_&_pp n T } s

[a- sfﬁ{uz,s V)4 U, Vi s

holds for all V/(£,7) = (&, n)v(r(£,n), t(£,n)) € V? and satisfies the corresponding condi-
tions (1), (2) and (3) in Definition 2.2. Theorem 3.5 gives the existence of such functions
U3 (&, n) which are generalized solutions of problem PK in D. In that way we found func-
tions u (r,t) = r'US (&(r, £), n(r, t)) which are generalized solutions of problem PK in G,,,.
Therefore the function u(x, t), given by (1.6), is a generalized solution of problem PK in
Qe O

Proof of Theorem 1.3 Theorem 1.1 and Theorem 1.2 claim the existence and uniqueness
of generalized solutions u(x, t) of problem PK in 2,,,, which has the form (1.6). Using (2.3)

for functions L&, n) = r(&, n)us,(r(€, 1), 1§, ) and F3(§,n) = 7€, n)f (r(€,n), £(E, 1)), we
obtain the 2-D problem PK;. According to Theorem 3.5, estimates (3.12) hold, and in view
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of (3.6) and (3.7) we see that the estimate for [U},(§,7)| holds with (maxg, |f;]) instead
of MFI

\us(&,m)| < I<(néa><l}i§!)(2 —E-n)"
with a constant K > 0 independent of f;. That implies
|uil(r, t)| < 2’"1((1221)(% |>r’”’1.

Therefore in view of (1.6), summing up over n and s, we get the desired estimate (1.7). O

Remark 4.1 It is interesting that in the case 0 < m < 1 problem PK for the Keldysh-type
equation (1.1) can be formally reduced to problem P2 for the Tricomi-type equation (1.2)
with power of degeneration m1; := m/(1 — m) > 0 and the right-hand side function, which
vanishes on ¥ like #”1. That implies many differences between the investigation and be-
havior of the solution to the obtained problem and the usual Protter problem P2. How-
ever, in the present paper we study the (3 +1)-D problem PK in a more general case when
0<m<4/3.

Appendix A: The Riemann-Hadamard function ®(&, n, &, 1o)
Firstly, to aid the reader, we briefly recall some known properties of the hypergeometric
function of Gauss F(a, b, ¢; ¢) that we will use.

Ifc#0,-1,-2,..., then

o (@)i(b);
F(a,b,ct):=Y (‘;)(i)‘) ¢, (A1)

i=0

with (a); = I'(a + i)/T'(a), where T" is the Euler gamma function of Euler. For i € N, one has
(@;=al@+1)---(a+i-1), (a) =1.

The series (A.1) converges absolutely for ¢ € C with |¢| <1 and also for || =1 if Re(c —
a—b)>0.1f -1 <Re(c—a - b) <0, then the series converges conditionally for |¢| = 1 with

¢#L
We mention the following properties of the hypergeometric function (see [31, 49, 50]):

Flab e ¢) = — 9 ) /0 lt“_l(l—t)c_“‘l(l—g“t)‘bdt (A.2)

F@Il(c—a

for ¢ € C, 0 <Re(a) <Re(c), |argl - ¢)| < 7.
In the casec—a—-b>0:

. )= L@rc—a-b)
|F(a,b,c;¢)| < const., F(a,b,c1) = T(c—a)l(c-b)

(A.3)

resp.c—a—-b<0:

Fa,b,c;¢)=(1-¢) P Fc—a,c-b,c;¢) (A.4)
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and
|F(a, b,c; §)| < const.(1- )b, (A.5)
resp. ¢ —a — b = 0: For each « > 0, there exists a constant ¢(«) > 0 such that
’F(a, b,c; ;‘} <cla)1-¢)%, (A.6)
d b
L Fab )= LFa+1,b+1,c+1;0). (A7)
dg c
The hypergeometric function of two variables is defined by
[o¢] (o @]
)ij(b1)(b2)i
Fl(ﬂ,bl,bz,c,x, = ZZ +] 1 ( 2) del~ (A.S)

i (C)l+]l‘]'

e

The series converges absolutely for x,y € C with |x| <1, |y| <1 (for more properties of Fi,
see [49], pp.224-228).

Now, in the case n € N U {0}, we construct the following Riemann-Hadamard function
of the form (3.1) associated to problem PK5: For (&, 79) € D

e \B
q>+=< n-§ ) F(B,n+1,1-8,-n,,X,Y), n>&,
1o —&o

_:k<n
No —

_ r'(B)
S TA-prep)’
(o —&)(no —n)
(n—&)(no — o)’

(0o —&)(no —n)
2-§-n)2-%-n0)

(A.9)

Y !
%‘0> X_5H2<ﬁ,ﬁ,—n;n+1)2ﬁ;}’_y>1 T]<§0,

where

X =X(&,n,60,m0) =

Y =Y(&,n,&,n0) := -

Here F3(ay,as, by, by, ¢; %, ) is the Appell series

)i(b1);(b .
F3((,11,a2, bl’ b2) ny;y) = Z Z al—(l)(z)xlyl (A.lO)

i=0 j=0 (©irsilf!

which converges absolutely for x,y € C with || < 1, [y| <1 (see [49], pp.224-228) and
Hj(a1, a3, b1, by, ¢%,9) is the Horn series

o0

i by)i(b oy
Hj(ay,a,b1,b2,¢%,y) := Z Z (@)~ (612)/(,]'1) i(ba): ¥y (A.11)
i=0 j=0

which converges absolutely for x,y € C with |x| <1, |y|(1 + |x|) <1 (see [49], pp.224-228).
We mention that for (£, 79) € D we have |X| <1in ITand 1/|X| <1in T, while |Y| <1 in
IT but |Y| could be greater than 1 in 7. However, the function ® is well defined because

Page 20 of 30
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n € N U {0}, since b; = —n, and we have a finite sum with respect to i in the function H,
(see (A.11)), which appears in (A.9). We will fix all these properties a little bit later.
Let, for (£9,70) € D and (&,17) € T UTT\ { = &}, us introduce the functions

H+ 7 ; ) 7 )
HE mitomo) = |7 o BE0 M0 0>k (A12)
H™ (&, m:80,m0), 1 <&,

where

H+(%—>775507770) = < n-$
No —

B
) F(B,1-B,1;,X),

—(& 1. _ n-¢\" -8 1
H(E:’?»So;no)—k(n $>X F(ﬁ,ﬂ»2ﬁ7X>

0—5S0

and

G+ ’ ; ’ ’ ?
G(gr 77;50’ 770) = { (é: ! EO nO) 1 >E0 (Al?))

Gf(f”?;fo,ﬂo), n <E0,

where
G* (&, m3£0,0) = ( ) Z F(B,1-B,i+1;X), (A.14)
=1
- n-§ AN v , 1
G™(§,m360,m0) 1= k(no _$0> X7t ;de F<ﬁ - l,ﬁ,Zﬁ;}), (A15)
. (n+1)i(=n); g e (n+1)i(=n);
t ! ’ =Bt

Now we prove the following important lemma.
Lemma A.1 The function ®(&,n;&o, no) has the following decomposition:
@(&,m360,m0) = H(E, 560, 10) + G(&, 150, 10)- (A.16)
Proof (i) In view of (A.10) we have

(1 - B)y(n + 1)i(-n);
)27y

F(Bn+1,1-B,- n,lXY)_ZZ ‘XY

i=0 j=0

Since (1), = (i + j)! = i!(i + 1); for i,j € N U {0}, we obtain from (A.1) and (A.9)

n-§ (B);(1-PB); = i~ (8- B); ﬁ);
O (&, n;80,m0) = <0—§0) {Z 0y Al el o o Z YZ Gy /}

j=0

p— ﬂ -
=< n-¢ ) {F(ﬁ,l—ﬂ,l;X)+ZciYiF(ﬁ:1—/3’i+1;X)}
1no —&o i=1

=H"(&,1;80,10) + G*(&, 150, 10).
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(ii) In view of (A.11) we have

1 (B)j-i(B)j(=n)i(1 - n); ;
Hz(ﬂ,ﬁ,—n,n+1,2ﬂ,y,Y) XO:; 2B, XYY

We mention that for 0 < 8 <1 and i,j € NU {0}

LB +j-i) _T(B-i)
L@ T@)

(B)j—i = (B-19)

and using the relation I'(z)["(1 - z) = we calculate

sm(nz)

FB-H)ra-pg+i

(B)j-i(1 = B)i = (B -1

T(BT(1-B)
B . sin(Bm)
== GatB — o)
= (-1)'(B - 1);.

Now, from (A.1) and (A.9) we obtain

o . P
¢(E,n:50:no)—k( _§0> : (2,3)11 Xi Z Z (25)]’ X’}

i=1

n-§ = , 1
=k ; d,'YlF -LpP, 5=
(o=t (o) S (s-vnony)|

=H"(&,1;€0,n0) + G (&, 1550, M0)- 0

We mention here that function (A.9) is closely connected to the Riemann-Hadamard
function announced in [51], p.25, example 7, which is associated to a Cauchy-Goursat
problem for an equation connected with (2.5) with some appropriate substitutions. Actu-
ally, the function H(&, n; &, 170) is the Riemann-Hadamard function associated to problem
PK, in the case n = 0 (see Gellerstedt [46] and Smirnov [47]). It is well known that the
function H (&, n; &y, o) has the properties (i) = (vi) listed in Section 3. It is not difficult to
check that in the case n > 0 function ®(&, n; &, o) has the same properties. Using the sys-
tems of differential equations that F; and H, satisfy (see [49], pp.233-234), with a straight-
forward calculation we check that the function ®(&, n; &y, n0) satisfies equations (3.2) and
(3.3). Further, since X (&0, 1,0, 10) = X(&, 10, &0, 10) = 0, Y(§0,1,£0,m0) = Y (&, 10,60, 10) = 0,
we see that the function ® has the properties (ii), (iii) and (iv). We also have X(§,&, &y, o) =
0, and therefore the function G(&, ; &, o) vanishes on the line { = £} of power 28. There-
fore the function @ has the properties (vi). Let us calculate the jump of the function ¢ on
the line {n = &}. We will show that the function G has no jump on the line {n = &,}. Using
(A.3) and the relation I'(i) = (i — 1)! for i € N, we calculate

(n +1)i(-n);

GF(B,1-B,i+1L;1)=kd,F(B—i,B,2B;1) = TA-F+)CB+])
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In view of (A.14) and (A.15) we have

G*(&,80;€0,m0) = G™(§,0550,10)

-6\~ (m+Di-n)i
“(ns) 2 pr gy & o)

Therefore the jump [[G]] = 0, and in view of (A.16) we have [[®]] = [[H]]. Consequently,
the function ® has the property (v) since [[H]] = cos(8)( -5 )8 (see Gellerstedt [46]).

1n0-%0

A.1 The function H(E, 1, &, 7o)

Using the properties of a hypergeometric function mentioned above and the relations

oy (0 =8)(n - &o) 1oL (0=8)E—m
(n—&)(no — &)’ X (E-8&mo-n’
_ (o —&)(mo — 1) X - (n—&0)(60 — &)
(n—&)(no —&)*’ T (- 8)no - £0)*

1\ G- -8) 1\ Go-mn-5)
1y _ E=mo)n-§) 1) _ Se-nn=5) A.
(X)Eo (o~ )60 & (X) & —&)m P (A18)

X, (A.17)

we prove the following lemma.

Lemma A.2 Let 0 < 8 <1 and 0 <&y < ny < 1. Then there exists a constant Cy > 0 such

that

|H*(€,m560,m0)| < Cu(n— &), (&,n) €T, (A.19)

|H™ (&, m360,1m0)| < Culéo—m)F, (E.n)eT, (A.20)
_ -B

|H;0(§’77;§0» 7]0)| < CHMI (5;77) S H: (A21)

no — &o

_ B

|H;;0(§’n;§07 Tlo)| S CH%: (Eﬂ?) € T (A22)

Proof (i) Using (A.6) we find that for each « > 0 there exists a constant c(«) > 0 such that

n-£\° _
I (& msovno)| < c<a>< ) (1-x)
no —&o

(n—&)*P(no — &)
(n—&0)*(no — &)~
) (n—-§)* ( 1 )_a
H™(&,1; 0, E _ VB — B\ ¥
H &m0 mo)| < )i 3ty =\~ X
(n—€)* (50— £)*P(no —n)**
(0 — ) (€0 — )" '

= c(a)
(A.23)

=c(a)

From here, choosing & = 8, we obtain estimates (A.19), (A.20).
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(ii) In view of (A.17), (A.18) for the derivatives with respect to 19, using (A.4) and (A.7),

we obtain
fl_|_ P n-§ ao.
|Hno|—' — H"+p(1- ﬂ)( g0) X, F(L+ B,2 5,2,)()‘
ﬂ(’?—g)ﬂ & — ‘
:4_F ) - 1; - F - b} P ;
e B BLX) (L= S FL 6,5,2:)
(n-§&)F oy (no — &)* P~
= Ay g T =T T
and

n-no 2(& —&)Pmo-nP\X
kB(n—&)* ( ) n-§ ( )‘
- _F 2 — 175 F 142
G- 8l —md | \PP2Bx )4y g\ PP 20

(n-£)* ( _ l)‘“ (10 — )
Go— VP (r0—m P S T

_ 28
|H,70|=' PH kb -§) <l> F(1+,3,1+ﬁ,1+2ﬂ;)—1(>‘
10

<c(a) X

Now we choose a = 8 to obtain the desired estimates (A.21), (A.22). O

Remark A.1 In the same manner, for the derivatives with respect to &;, we obtain

(n-§)°
(o — o)A

H, =8 [F(ﬂ, 1-4,1X) +(1-p) Z"_‘ ! ] (A.24)

and

_ kp(n— 5)2’9 1\ 1p
)

"o - 6B (o 28 - (ﬁ B,1+28; >i| (A.25)

In the case 0 < 8 < 1/2, Smirnov [47] and Meredov [52] claim

(n—&)(no — &)™
— &P - )P

|H§0(§,7);€o,no |_ (o

ie., H (E n; €0, o) has integrable singularity on {1 = & }. As we see from (A.24) and (A.25),
the derlvatlve with respect to &y of function H has not integrable singularity on {n = &}.

A.2 The function G(&, 1, &, 170)
In this section we prove some properties of the function G(&, n; £, no) defined by (A.13).

Lemma A.3 Let 0 < 8 <1and 0 <& <ng < 1. Then there exists a constant Cg > 0 such
that

|G* (&, m;€0,m0)| < Cgno —£0),  (€,m) €T, (A.26)

’Gi(g’ 77;50, 770)| =< CG(2 - %-0 - 770)7"» (%-7 77) € T) (A27)
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_ -B
|G,+,O(§,'7,§o’flo)| = CG%: (,nel, (A.28)
. (no—n)"
|Gn0(§,77:§01770)| = CGQ_;)W; EneT, (A.29)
N (n—&)"
Gy & miomo)| = Coy -y @ e, (A.30)
(o—n)"F
|G, (€750, m0)| < Csm, EneT. (A.31)
Proof First, we mention that
Ye = (2—&—no)(no —n) Y - (2-& —n)( &)
PTTR-E-nE-E&-n)? " @-E-n)2-E-n)®
(i) Let (&, n) € 1. Then we have
no—§
X _ fl7s
Kool = G =6 — )"
Y] [Y](no - &) 1
Y|<1, s A.32
i< 770—505(7}—5)(770—50)52—50—770 ( )
| Yol < _ [Yyol < _
o= gy M T 2—&—no

According to (A.3), |F(B,1-B,i+1;X)| <comst.,i=1,2,...,n, in expression (A.14) for G*.
Therefore estimate (A.26) holds.
With use of (A.7) we calculate the derivative with respect to &,

_ B n i
G%:(ﬁ) {Zci[ ﬂys +iY"‘1YEO]F(;‘3,1—ﬁ,i+1;X)

1o — &o i1 Mo —&o

+ﬂ(1—ﬁ)ziii1 F(,3+1,2—ﬁ,i+2;X)}

i=1

and the derivative with respect to 7

_E V[ i
G;OZ( 7 S) {Zc,»[— ﬁyg +iY”Y,,o]F(ﬂ,1—,B,i+1;X)

1o —&o = 1o — o

Bl- ﬂ)Z

X, F(B +1,2 - ﬂl+2X)}

According to (A.3) and (A.6), for the hypergeometric functions in the expressions for G|

and G, , we have

aa (no — &) (n - §)” Tlo—fo)a
[F6 1.2 ﬁ’S,X”SC(O[)(W—SO)“(WO—E)“Sda)(n—éo >0

|F(1+/3,2—/3,i+2;X)| <const., i=2,3,...,n
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Therefore in view of (A.17) we have

G+
’ ¥0|§(n0_go)ﬁ 770—50+2—§o—770+(77—§)(770—§0) n-=&o

Gt | < _©@ { Y2 M- (n—so)l‘“}
T (mo—%0)f Ino—& 2-&-mo  (n—§)(no—&) \mo—o .

Ci(@) { Y] 1 [Y|(no — &) (770—50)“}

Now, taking o = B € (0,1) and using (A.32), we obtain estimates (A.30) and (A.28).
(ii) Let (£,n) € T. Then we have

‘(l) - no—§&
X o

~ (&o-&)mo—-n)
Y| 1
b < b
28 —no no—-n_ 2-%-no
Yy _ [Y|(no — &) - 1
Eo—& ~ (Bo—&)mo—1n) ~ 2-&—-no

Y] <
(A.33)

1 1
Ye| < = 1Vl < .
=2 -0 T T 2= - o)

According to (A.3) |F(B —1i,8,28;1/X)| < const.,i=1,2,...,n, in expression (A.15) for G~.

Since

<n—s>ﬂx_ﬁ: -9
no —&o (&0 —&)P(no — )P

we see that estimate (A.27) holds.
With use of (A.7) we calculate the derivative with respect to &,

- k(n—§)* - [ BY' ] ( ) 1)
Ty Te—l di| - . —iB,28;—
Gy, (&0 — £)P(no — )P :Z P +iY Y, |F( B-i, 8,28 X

i=1

n

+ % D (B- i)diYi<)l()soF<,3 —i+1,8+1,28+ 1;%)}

i=1

and the derivative with respect to 1o

k-9 [ 20 ity Jo(-am20 1)
S = o= E)P o~ )P di| = Yy, |F(B-i 8,28~
7 (‘50—5)’3(770—77)’3{; ;70_,7+l 7 B-ipB ﬁX

1< i1 , 1
+§;(ﬂ—z)diY<)—()HOF(ﬁ—L+1,ﬁ+1,2f3+1;)—()}.

According to (A.3) and (A.6), for the hypergeometric functions in the expressions for G|
and G, , we have

1
‘F(ﬁ,ﬂ+1,2ﬁ+1;)—(>

(no —n)* (50 = §)” T)o—’?)a
SC(“)(so—n)a(no—swSc(“)<so—n et

|F(,3—i+1,1+/3,1+2/3;1/X)| <const, i=2,3,...,1.
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Now using (A.18) we calculate

_ Cs(a) { Y] 1 |Y1(n0 — §) (;70_;7>“} ~ i
G, Y
| E°|§(770—77)’3 -5 (2-E-mP  Go-&o-n\E-n i;' |

(77 —Tl)afﬁ —i—
< 3C3(Ol)(zo_w ;(2 ~& —no) !

andforO<a <1

Cy(a)

Gl = (no—n)ﬁ{

\YI(n—§) (& -n 1} i
+(§o—£)(no—n)(no—n) ZIYI

i=1

Y] 1
+
no—n (2-& —no)?

3C4(0l) - _ic1
< 2-& —m0)"".
(o — )P ; e
Therefore, taking « = B € (0,1), we obtain estimates (A.29) and (A.31). O

Appendix B: Auxiliary results
Lemma B.1 Suppose 0 < <1land0< &y <ny<1. Then

& 10
P Eorno) = /0 [ Hemon dnds <kt (B.)

Proof From (A.19) and (A.20) we obtain

s réo § rno
1 -n)Pdnd —&)Pdnd
I SCH{/O /é_ (o —n)"dn $+f0 a (n—50)"dn é}

= Cy{l} +L,}.

Now we obtain

28
I = u—;ﬂ(;Tﬂ) (B.2)
and
L= L50(770 - &), (B.3)
1-8
Therefore estimate (B.1) holds. O

Lemma B.2 Suppose 0 < B <1land0<§&y<no<1. Then

& no
P60, 10) = / / \Hy (€, 15500 10) | dn dE < Kool — £0) . (B.4)
0 13
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Proof From (A.21) and (A.22) we obtain

o So — ) o0 0
rea [ [ G e [ [ O ]
0o—1 o 0 — 50

= Cy {12

&)
no —&o

In I? we substitute n = & + (& — &)o and, according to (A.2), we get

oL sy fo—€ \T ] (50— )"
2 _ _ Bl1_22 5 So0—s)
h /o [/0 =2 (1 no—§ G) do no—§ @

_rora-4 Go-87

re-a) no—§ 5

o
/ F(l,lyz_ﬂré-)
0

where ¢ = f]‘(’)—j Since ¢ —a—b =- <0, according to (A.5), the hypergeometric function
|F| < const.(1—¢)~P. Therefore

2 -B 0 SO _%_ F -B
I; < cai(no —&o) — d& < c180(no —&0)™". (B.5)
o \7Mo—§
Now (B.3) and (B.5) give estimate (B.4). O

Lemma B.3 Suppose 0 < B <1and 0< &y <no<1. Then

no
PlEono) = / H(O, 1380, 10) dn < Ksno. (B.6)
0

Proof Using (A.23) with & = 8, we obtain

& 28 1o 28
3 -B 777 d n— d }
I’ <c(B)ng {/0 (Eo— )P mr /50 (n—&o)P 1

& 10
<c(B)ng” {séﬂ /0 (€ —n)Pdn+n? /g (n—&)" dn}

_ C(ﬂ) -/3{ 1+8
1-8

< ksno. O

+ 15" (o ~ &)}
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