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The lattice simulations within the effective theory of nonrelativistic QCD (NRQCD) [3, 4]

has developed into one of the most powerful tools for the theoretical analysis of heavy

quarkonium properties [5]. This method is entirely based on first principles, allows for

simultaneous treatment of dynamical heavy and light quarks and gives a systematic account

of the long distance nonperturbative effects of the strong interaction. The perturbative

matching of lattice NRQCD to the full theory of relativistic continuum QCD is thought

to be well understood. One of the most interesting applications of the method is the

analysis of the bottomonium hyperfine splitting. The latter quantity, defined by the mass

difference Ehfs = MΥ(1S) −Mηb(1S), has been a subject of much controversy since the first

observation of the spin-singlet ηb state in radiative decays of the Υ(3S) mesons by the BaBar

collaboration [6]. The measured value of the hyperfine splitting 71.4+3.5
−4.1 MeV overshot the

predictions of perturbative QCD [7] 41 ± 14 MeV by almost a factor of two, well beyond

the experimental and theoretical uncertainty bands. Such a discrepancy would indicate a

serious failure of perturbative QCD in the description of the bottomonium ground state,

in clear conflict with the general concept of the heavy quarkonium dynamics. Further

experimental studies [8–10] were consistent with the initial measurement, while the Belle

collaboration reported a significantly lower value of the splitting 57.9±2.3 MeV with higher

experimental precision [11], see table 1. The advance of lattice NRQCD is expected to

provide an accurate model-independent prediction and solve the problem on the theory

side. The two most recent independent calculations of the hyperfine splitting which fully

incorporate the one-loop radiative corrections give Ehfs = 52.9 ± 5.5 MeV [1] and Ehfs =

60.0 ± 6.4 [2]. Surprisingly, the difference between the central values of the results is

beyond the quoted error bars. Both calculations are based on the same lattice data and

the discrepancy exceeds what one would expect for the perturbative approximations which
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Experiment

BaBar, Υ(3S) decays [6] 71.4+2.3
−3.1(stat)± 2.7(syst)

BaBar, Υ(2S) decays [8] 66.1+4.9
−4.8(stat)± 2.0(syst)

Belle, hb(1P ) decays [11] 57.9± 2.3

PDG average [12] 62.3± 3.2

Theory

NRQCD, NLL [7] 41± 11(th)+9
−8(δαs)

Lattice NRQCD O(v4) [5] 68± 9

Lattice NRQCD O(v6) [2] 60.0± 6.4

Lattice NRQCD [1] 52.9± 5.5

Lattice QCD [28] 53± 5

Table 1. Results of high-precision experimental and theoretical determinations of the bottomonium

hyperfine splitting in MeV.

are formally of the same order in the strong coupling constant αs. At the same time

refs. [1, 2] rely on different methods of perturbative matching and the inconsistency of the

results indicates that a careful study of the general procedure of the radiative improvement

of lattice NRQCD is necessary.

In this paper we study a subtle problem of the lattice NRQCD analysis of the heavy

quarkonium spectrum related to the lattice artifacts associated with the Coulomb binding

effects. We show that a widely used direct numerical matching procedure [13, 14] generates

spurious linear Coulomb artifacts and, in particular, leads to a large systematic error in the

lattice prediction for the hyperfine splitting [2, 5]. The problem is related to the all-order

character of the Coulomb binding effects and is naturally solved when the perturbative

matching of lattice NRQCD is performed through the asymptotic expansion about the

continuum limit [1]. We show that after removing the spurious contribution the result of

ref. [2] is in a good agreement with [1].

The paper is organized as follows. In the next section we outline the general framework

and describe different approaches to the fixed order perturbative matching. In section 2 the

structure of the Coulomb lattice artifacts is studied in detail. The result is applied to the

analysis of the hyperfine splitting in section 3. Section 4 is our summary and conclusion.

1 Radiative improvement and matching in lattice NRQCD

Within the NRQCD approach the hard modes, which require a fully relativistic analysis,

are separated from the nonrelativistic soft modes. The dynamics of the soft modes is gov-

erned by the effective nonrelativistic action given by a series in heavy quark velocity v,

while the contribution of the hard modes is encoded in the corresponding Wilson coeffi-

cients. The nonrelativistic action can be applied in a systematic perturbative analysis of

the heavy quarkonium spectrum [15–17]. At the same time the action may be used for

lattice simulations of the heavy quarkonium states, which gives full control over nonper-

turbative long-distance effects [18, 19]. In the latter approach the inverse lattice spacing a
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plays a role of the effective theory cutoff separating the hard scale mq and the soft scale

vmq, where mq is the heavy quark mass.

As an example, let us consider the spin-dependent part of the NRQCD Lagrangian,

which is responsible for the hyperfine splitting to O(v4). It reads (see e.g. [20, 21])

Lσ =
cF

2mq
ψ†Bσψ + (ψ → χc) + dσ

CFαs
m2
q

ψ†σψχ†cσχc, (1.1)

where B is the chromomagnetic field, CF = (N2
c − 1)/(2Nc) is the SU(Nc) color group

factor, ψ (χc) are the nonrelativistic Pauli spinors of quark (antiquark) field, and we have

projected the four-quark interaction on the color-singlet state. The coefficients cF = 1 +

O(αs) and dσ = O(αs) parameterize the quark anomalous chromomagnetic moment and

the effective local four-quark interaction, respectively. In the given order of the NRQCD

expansion in 1/mq they depend logarithmically on the effective theory cutoff 1/a. This

dependence can be predicted to all orders of perturbation theory by renormalization group

methods (see e.g. [22, 23]). The radiative improvement of the action is therefore mandatory

for the correct continuum limit.

The effect discussed in this paper is characteristic for the quark-antiquark interaction

and we focus on the Wilson coefficient dσ of the four-quark operator. It vanishes in the

Born approximation and is determined by matching the one-particle irreducible quark-

antiquark scattering amplitudes in QCD and NRQCD. The matching becomes particulary

simple when the amplitude is computed at the quark-antiquark threshold and vanishing

momentum transfer. In this case the one-loop full QCD amplitude is

MQCD
1PI =

CFα
2
s

m2
q

[
CA
2

log
(mq

λ

)
+ (ln 2− 1)TF

+

(
1− 2πmq

3λ

)
CF

]
ψ†σψχ†cσχc,

(1.2)

where CA = Nc, TF = 1/2, and we introduced a small auxiliary gluon mass λ to regulate the

infrared divergence. The power enhanced 1/λ term corresponds to the Coulomb singularity

of the threshold amplitude, while the term proportional to TF is due to the two-gluon

annihilation of the quark-antiquark pair.

On the other hand the lattice NRQCD result for the one-loop amplitude to the same

order in 1/mq can be written as follows

MNRQCD
1PI =

CFα
2
s

m2
q

[
−
(
δ +

1

2
ln (aλ)

)
CA −

2πmq

3λ
CF

+
dσ
αs

]
ψ†σψχ†cσχc +O(a), (1.3)

where the nonlogarithmic nonabelian term δ depends on a particular realization of the

lattice action. The matching procedure determines the Wilson coefficient dσ by equating

the effective and full theory amplitudes, eqs. (1.2), (1.3), to a given order in αs and 1/mq.
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The subtlety in this procedure is related to the treatment of the terms in the NRQCD

amplitude which vanish in the continuum limit. Below we compare two different matching

prescriptions currently used in lattice NRQCD calculations.

1.1 Expansion about the continuum limit

This approach has been developed in [1] and relies on the formal asymptotic expansion of

the lattice loop integrals about the continuum limit [24] to obtain the NRQCD amplitude

as a series in a order by order in the heavy quark mass expansion. To the leading order in

1/mq and a it gives (cf. eqs. (1.2), (1.3))

dσ = αs

[(
δ +

1

2
L

)
CA + (ln 2− 1)TF + CF

]
, (1.4)

where L = ln(amq). For the simplest lattice action with no improvement for gluonic and

heavy quark fields the method provides the analytical result [1]

δnaive = −7

3
+ 28π2b2 − 256π2b3 = 0.288972 . . . , (1.5)

where the irrational constants b2 = 0.02401318 . . ., b3 = 0.00158857 . . . parameterize the

lattice tadpole integrals and can be computed with arbitrary precision. For the HPQCD ac-

tion [5], which is used in real simulations, the nonlogarithmic coefficient has been computed

numerically [1]:

δ = 0.1446(28) . (1.6)

Note that eq. (1.3) has only a logarithmic singularity in a in the formal continuum limit

a→ 0. In higher orders of the NRQCD expansion in 1/mq the asymptotic expansion in-

cludes more singular terms with a negative power of a. Such 1/(amq)
n terms are suppressed

with respect to eq. (1.3) in the region 1/a� mq, where lattice NRQCD is applied.

1.2 Direct numerical matching

This approach has been originally used for the radiative improvement of lattice NRQCD.

Within this prescription for a given action in a given order in αs the NRQCD amplitude

is computed numerically without the expansion in 1/mq and a. The Wilson coefficient is

then determined by the difference between the QCD and NRQCD amplitudes in the limit

λ→ 0. Since no expansion is performed, it has a nontrivial dependence on a dimensionless

variable amq and can be written as follows

dσ = αs

[
CA
2
L+ (ln 2− 1)TF + ∆(amq)

]
, (1.7)

where the logarithmic and annihilation contribution are separated and given in an analytic

form. The function ∆(amq) can formally be expanded in an asymptotic series

∆(amq) =
∑
n

(amq)
n∆(n), (1.8)
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where the lower summation limit is negative and depends on the approximation used for

the NRQCD action. To determine the function ∆(amq) we use the numerical data of the

most recent analysis [2] based on the O(v6) action.1 In ref. [2] the numerical values of the

Wilson coefficient are given for three different values of the lattice spacing corresponding

to amq = 1.95, 2.73, 3.31, where the actual lattice simulations are performed. Numerical

simulations [2, 14] show that in general the terms with negative n become important for sig-

nificantly lower values of the lattice spacing corresponding to amq ∼ 1 and can be neglected

in the region under consideration. Indeed, the numerical data are well approximated by a

linear function with the coefficients

∆(0) = 1.31(3), ∆(1) = −1.52(1), (1.9)

where the error bars correspond to the linear fit of the three data points. Note that the

result of the fit is quite sensitive to the inclusion of the higher order terms, which cannot be

reliably estimated due to lack of the numerical data but presumably have the coefficients

∆(n) ∼ 1. Thus the actual uncertainty of eq. (1.9) can be significantly larger. The zero-

order term of the expansion can be related to the value of the Wilson coefficient obtained

through the expansion about the continuum limit, eq. (1.4), as follows

∆(0) = δCA + CF = 1.767(9), (1.10)

in a rough agreement with an estimate eq. (1.9). A characteristic feature of the result of

the numerical matching is the linear dependence of the Wilson coefficient on a, which is

unusual for the lattice simulations with the improved action. It is related to the Coulomb

binding effects in heavy quarkonium discussed in the next section.

2 Coulomb binding effects on the lattice

In perturbation theory the Coulomb binding effects shows up through the singular (αs/v)n

terms in the contribution of the n-loop planar ladder diagrams. Since in an approximately

Coulomb bound state v ∼ αs, such terms have to be resummed to all orders. In the

perturbative approach [16] this is done by constructing the perturbative expansion about

the Coulomb nonrelativistic solution rather than the free quark and antiquark. At the

same time the characteristic momentum scale of the Coulomb dynamics is vmq � 1/a

and the Coulomb effects are included in the lattice NRQCD simulations along with the

nonperturbative effects of strong interactions at the scale ΛQCD. The Coulomb contribution

is ultraviolet finite and therefore its effect on the matching coefficients is suppressed by a

power of a, i.e. is a lattice artifact. Below we consider the role of such Coulomb artifacts

in the calculation of the coefficient dσ.

2.1 One-loop Coulomb artifacts

The Coulomb singularity is contained in the planar box diagrams of QCD (figure 1a)

and NRQCD (figure 1b), and takes the form αsmq/λ since the matching calculation is

1In refs. [2, 5, 13, 14] a different basis of the four-quark operators is used and the Wilson coefficient

dσ/αs should be identified with the linear combination 9
8
(d1 − d2).
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(a) (b)

Figure 1. One-loop Feynman diagrams with Coulomb singularity contributing to the spin-

dependent one-particle irreducible part of the scattering amplitude in QCD (a) and NRQCD (b).

The symmetric NRQCD diagram is not shown. In the diagram (b) the double arrow, dashed and

wavy lines stand for the nonrelativistic quark, Coulomb and transverse gluon propagators, respec-

tively. The black circles denote the effective spin chromomagnetic interaction proportional to the

Wilson coefficient cF in eq. (1.1).

performed with v = 0. Let us consider the evaluation of the corresponding contribution to

the NRQCD amplitude to O(a). The expansion of the lattice NRQCD Feynman rules in

a generates the second or higher order terms so we can use the continuum expressions for

the gluon and nonrelativistic heavy quark propagators

Dµν(k) =
gµν

k2 − λ2
, S(k) =

1

k0 − k2/(2mq)
, (2.1)

where k = (k0,k). After integrating over the time component of the virtual momentum

by taking the residue of the heavy quark propagator, the Coulomb contribution to the

scattering amplitudes takes the form

MNRQCD
C = − 2

3π

C2
Fα

2
s

mq

[∫
B

dk

(k2 + λ2)2

]
ψ†σψχ†cσχc +O(a2), (2.2)

where the integration over the spatial virtual momentum is restricted to the first Brillouin

zone. Without loss of generality we consider a spherically symmetric lattice with the

Brillouin zone defined by |k| < π/a, and after integrating over the angular components

obtain ∫
B

dk

(k2 + λ2)2
=

∫ π/a

0
d|k| 4πk2

(k2 + λ2)2

=
π2

λ
− 4a+O(a2). (2.3)

The contribution of the first singular term of eq. (2.3) agrees with eq. (1.3), while the

second term represents the linear Coulomb lattice artifact corresponding to ∆(1) = −8
3
CF
π

in the expansion eq. (1.8). This coefficient is independent of the infrared cutoff but does

depend on the approximation for the NRQCD action. For example, let us consider the

O(v4) heavy quark propagator

S(k) =
1

k0 − k2/(2mq) + k4/(8m3
q)
. (2.4)

– 6 –
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The correction term in the denominator of eq. (2.4) results in an additional contribution

to the integral in eq. (2.2)

−
∫ π/a

0
d|k| π

(m2
q − k2/4)

= −4a+O(1/mq), (2.5)

where we neglected the gluon mass since the integral is infrared finite. Thus the O(v4)

correction to the nonrelativistic kinetic energy increases the coefficient of the linear term

by factor two, which gives

∆(1) = −16

3

CF
π
. (2.6)

For comparison with the direct numerical matching this value should be multiplied by

a geometrical factor ν = 0.831 . . ., which converts the result obtained on the spherically

symmetric lattice into the one for the standard cubic lattice [1]. This gives ∆(1) ≈ −1.87,

which is slightly above the O(v6) value of eq. (1.9), but is in a very good agreement with the

value ∆(1) ≈ −1.82 obtained from the fit of the O(v4) result [13]. Numerically the one-loop

linear artifact dominates the series in eq. (1.8) for typical values of a and one may argue that

its inclusion into the Wilson coefficient is mandatory. However the above analysis takes

into account only a single Coulomb gluon exchange while the effect of multiple Coulomb

exchanges is not parametrically suppressed and significantly changes the structure of the

expansion in a as discussed in the next section.

2.2 Coulomb artifacts to all orders

Though we consider the properties of the heavy quarkonium bound states, the analysis of

the previous sections involved the scattering amplitudes of the free quark and antiquark.

This is sufficient if in the matching region the binding effects can be expanded in a regular

series in αs. The Coulomb artifacts, however, are related to the dependence of the bound

state characteristics on the lattice spacing, which cannot be described within the finite-

order perturbation theory. Indeed, by using the Coulomb equations of motion the diagram

in figure 1b can be absorbed into the Coulomb wave function of an external state. Thus in

this case the matching procedure should be applied to the matrix elements of the effective

action operators between the quarkonium states with the wave functions computed on the

lattice and in the continuum. The relevant nonrelativistic Coulomb wave function in the

continuum is well known. On the lattice it can be obtained in a straightforward way by

solving the nonrelativistic Schrödinger equation as a difference equation for a given finite

a. In the formal limit ΛQCD � v2mq one can neglect the nonperturbative dynamics of

strong interactions at long distance and the result obtained by numerical solution of the

discretized Schrödinger equation provides the same bound state wave function as the real

lattice simulations based on the functional integral approach.

Let us apply the above “Schrödinger matching” approach to the analysis of the hy-

perfine splitting. The relevant four-quark operator is generated by the magnetic gluon

– 7 –
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exchange and corresponds to the leading order spin-dependent amplitude2

MNRQCD
LO = −2

3

CFαs
m2
q

ψ†σψχ†cσχc . (2.7)

In coordinate space this local spin-flip operator is proportional to δ(x). The corresponding

matrix element, which in fact determines the leading order hyperfine splitting, is propor-

tional to |ψ(0)|2, where ψ(x) is the ground state quarkonium wave function. The Coulomb

solution for this quantity takes into account the contribution of all-order Coulomb ex-

change diagrams including figure 1b. In the continuum it reads |ψ(0)|2 = C3
Fα

3
sm

3
q/(8π).

The lattice value of the wave function at the origin is obtained by numerical solution of the

Schrödinger equation with the Coulomb Hamiltonian. It is performed on a spherically sym-

metric lattice, which retains the qualitative properties of the solution. To match the setup

of real lattice simulations [19] we use the central difference discretization of the kinetic

energy operator, which has O(a4) local error. The boundary condition of the eigenstate

problem is determind by the value of the exact continuum solution at sufficiently large

distance, where the wave function is exponentially suppressed. Though the parameters of

the bound state can be obtained for an arbitrary value of lattice spacing, we are interested

in their behavior at small a. For the expansion of the ground state energy and the wave

function at the origin about their continuum values we get

E = −
C2
Fα

2
smq

4

(
1− 1

4
ā2 +O(ā4)

)
, (2.8)

|ψ(0)|2 =
C3
Fα

3
sm

3
q

8π

(
1− 1

2
ā2 +O(ā4)

)
, (2.9)

where ā = CFαsamq/2 is the dimensionless lattice spacing in Coulomb units, and the

rational coefficients of the expansion are conjectured from the high accuracy numerical

result. The expression for the ground state energy is not required for our analysis and

is given for completeness. Eq. (2.9) does not have a linear dependence on a. This may

be expected since the integration of a second order difference equation with O(a4) local

discretization error gives O(a2) global error of the solution (see e.g. [25]).

Eq. (2.9) determines the difference between the lattice and continuum results for the

matrix element of the leading order spin-flip operator eq. (2.7). As we see, the linear

dependence of the bare result on the lattice spacing is absent. Thus, the one-loop linear

term in the Wilson coefficient (1.7) in fact introduces a linear dependence of the radiatively

improved result on a and one has to add an additional “matching” correction in order to

compensate this dependence. Strictly speaking the correction to the long-distance matrix

element which depends on the properties of a specific bound state should not be associated

with a universal NRQCD coupling and should be consider separately. However, the absence

of the linear dependence of the bound state parameters on the lattice spacing is a general

property of the central difference discretization and one can account this fact simply by

2In a Coulomb system the infrared divergences are regulated by the dynamically generated binding

energy and we can neglect the fictitious mass in gluon propagator.
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setting

∆(1) = 0 (2.10)

in the case under consideration. Thus when the Coulomb effects are taken into account

consistently to all orders in αs, the linear artifact in the four-quark matching coefficient is

effectively absent and the first nonvanishing term is quadratic in a.

We would like to emphasize that though the coefficient in eq. (2.9) is proportional to

α2
s, it gets contributions from all-order Coulomb exchange diagrams. This coefficient is

changed by the higher order terms in the NRQCD action and is different for the standard

cubic lattice, as in the case of the linear artifact discussed in the previous section. In

principle, within the same method the Coulomb lattice artifacts can be evaluated for a

given NRQCD action on a given lattice. However for practical applications they can be

removed along with the nonperturbative artifacts by the extrapolation of the lattice data

to a = 0, as it is discussed in the next section. The absence of the linear artifact is crucial

for this procedure though.

Note that the Υ spectrum has been studied within the discretized Schrödinger-Pauli

equation framework similar to the one used in this paper but on a more realistic lattice [26].

The numerical result of ref. [26] with a good precision rules out the linear Coulomb artifacts

in the bare lattice data for the energy levels in full agreement with our analysis.

Let us now discuss the reason of the qualitative difference between the one-loop and

all-order dependence of the bound state parameters on a. As it has been pointed out, in

the one-loop calculation the leading O(a) correction to the continuum result is due to the

effective momentum cutoff at the scale 1/a while the corrections to the free continuum

quark and gluon propagators contribute only at O(a2). For the bound quark propagator,

however, the corrections start at O(a) due to the Coulomb singularity and, according to

eq. (2.9), cancel the linear term originating from the momentum cutoff. Note that this

cancellation is specific for the lattice regularization in use. From the above analysis it is

clear that if the effective theory is regularized by a momentum cutoff ΛUV ∼ 1/a only, the

linear artifacts of the form mq/ΛUV are indeed generated and for a finite cutoff should be

cancelled by the corresponding term in the Wilson coefficient (see, e.g. [27]).

3 Determination of the energy spectrum from the lattice data

Let us now consider how the Coulomb artifacts affect the determination of the energy spec-

trum from the lattice data. The results of nonperturbative lattice NRQCD simulations are

typically given for a ∼ 1/(vmb) [2, 5]. The use of relatively large values of the lattice

spacing ensures the suppression of the unphysical 1/(amb)
n contributions, which become

important at a ∼ 1/mb . At the same time it results in sizable Coulomb lattice artifacts

proportional to a power of αsamb ∼ 1. In addition the lattice data include the nonper-

turbative lattice artifacts which scale as (aΛQCD)2 and cannot be removed through the

matching procedure discussed above. To minimize these effects the results of the lattice

simulations are numerically extrapolated to a = 0. The extrapolation below a ∼ 1/mb

in this case is justified because the numerical effect of the 1/(amb)
n terms on the data

points is small. Since the radiatively improved lattice result is supposed to be free of linear

– 9 –
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Figure 2. The results of the lattice simulation of the bottomonium hyperfine splitting with O(v6)

NRQCD action and the four-quark Wilson coefficient given by (a) the asymptotic expansion about

the continuum limit [1], (b) the direct numerical matching and (c) dσ = 0 [2]. All data points include

the statistical error and the uncertainty in the value of the lattice spacing. The error bars of (a)

include also the uncertainty due to the higher order perturbative corrections. The difference between

(a) and (b) data sets is mainly due to the spurious linear Coulomb artifact contributing to (b).

artifacts, the extrapolation is performed through a constrained fit of the data points by a

polynomial in a with vanishing linear term (see e.g. [1, 2, 5]). The correct treatment of the

linear artifacts is therefore crucial for the extrapolation procedure. As it has been shown

in the previous section by the analysis of the discretized Schrödinger equation, the linear

Coulomb artifacts are absent in the bare lattice data. The contribution of the four-quark

interaction to Ehfs reads

∆Ehfs = −dσ
4CFαs
m2
q

|ψ(0)|2. (3.1)

Thus the linear Coulomb artifact in the Wilson coefficient obtained by the direct numerical

matching [13, 14] results in spurious linear dependence of the radiatively improved lattice

data on a, which leads to a systematic error in the extrapolation procedure based on the

fit with the vanishing linear term. At the same time the Wilson coefficient obtained by

the asymptotic expansion about the continuum limit is free of the Coulomb artifacts and

provides the correct functional dependence of the radiatively improved lattice data on a

and therefore can be used for consistent extrapolation procedure. The numerical effect of

the spurious linear artifact turns out to be very significant. In figure 2 we compare the

O(v6) lattice NRQCD result for the bottomonium hyperfine splitting with the four-quark

Wilson coefficient obtained by the asymptotic expansion about the continuum limit [1]

and through the direct numerical matching [2]. As a reference point we also present the

numerical data for dσ = 0. The difference between the results obtained within the two

matching schemes is mainly due to the contribution of the linear artifact. It can be as large

as a hundred percent for the actual values of lattice spacing and remains significant after

the extrapolation to a = 0 is performed. The analysis [1] with the matching coefficient
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eq. (1.4) after the extrapolation gives Ehfs = 51.5 ± 5.7 MeV. At the same time the

analysis [2] gives Ehfs = 60.0±6.4 MeV. The discrepancy between the central values is well

beyond the reported discretization/extrapolation uncertainty, which is below 3 MeV. Thus

the analysis of the hyperfine splitting in refs. [2, 5, 13, 14] contains a systematic error and

should be corrected.

The result of the direct numerical matching can yet be used for the self-consistent anal-

ysis of the quarkonium spectrum through the decomposition of the form of eqs. (1.7), (1.8).

After separating the logarithmic part, the result for the Wilson coefficient should be fitted

by a polynomial in amq and the linear term of the expansion should be subtracted. In

the case under consideration only the ∆(0) term should be retained in dσ. The further

analysis follows ref. [1] with the coefficient ∆(0) from eq. (1.10) substituted by the one from

eq. (1.9). This gives the central value Ehfs = 52.7 MeV, which is outside the error interval

of ref. [2] but in a very good agreement with the O(v6) result of ref. [1] given above.

Though the quadratic Coulomb artifact is eliminated by extrapolation, it is instructive

to estimate its contribution to the dependence of the lattice data on a and corresponding

uncertainty in the the extracted value of Ehfs. The result of the fit for the hyperfine splitting

can be represented as follows

Elattice
hfs = Ehfs

(
1− (Λa)2 +O(a3)

)
, (3.2)

where Λ is the mass scale characterizing the approach of the lattice approximation to the

continuum limit. Numerically one gets Λ ≈ 360 MeV for the O(v4) and Λ ≈ 790 MeV for

the O(v6) lattice action [1]. On the other hand the quadratic Coulomb artifact with the

coefficient eq. (2.9) corresponds to

Λ =
CFαsmq

2
√

2
, (3.3)

which gives Λ ≈ 530 MeV for the values of the input parameters taken in the middle

of a typical interval for the lattice spacing. Though eq. (3.3) is obtained in a simplified

model with the Coulomb Hamiltonian and on a spherical lattice, we can conclude that the

quadratic Coulomb artifact to a large extent determines the dependence of the bare lattice

result on a and can be used as a prior for the constrained fit. As we observed in section 2.1

the effect of the lattice artifacts is enhanced by the relativistic corrections since the con-

tribution of the higher dimension operators is more sensitive to the ultraviolet momentum

region. This explains a slower approach to the continuum limit and larger discretization

errors of the extrapolation based on O(v6) lattice data. The smaller discretization un-

certainty balances the larger relativistic corrections in the O(v4) case and both actions

provide comparable total errors. The best estimate is obtained as the weighted average of

two results [1]

Ehfs = 52.9± 5.5 MeV, (3.4)

which is 1.4 MeV above the O(v6) value with slightly reduced error. Hence eq. (3.4) can

be considered as an unambiguous and the most accurate lattice NRQCD prediction for the

bottomonium hyperfine splitting available so far. It is interesting to compare this result to

– 11 –
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the most recent analysis of the bottomonium hyperfine splitting within lattice QCD [28].

Fully relativistic description of the bottom quark is still beyond the reach of the lattice

simulations due to the large value of mb compared to typical hadronic scale. In ref. [28]

the result for the bottomonium system is obtained by extrapolating the fictitious lighter

quarkonium spectrum to the physical value of the bottom quark mass. Such an extrapola-

tion gives Ehfs = 53± 5 MeV, in a very good agreement with the NRQCD result eq. (3.4).

4 Summary and conclusion

In this paper we critically examined the matching procedure for the radiative improvement

of the lattice NRQCD. We have demonstrated that the Wilson coefficients of the effective

four-quark interaction obtained by the widely used direct numerical matching suffer from

spurious linear Coulomb lattice artifacts, which result in a large systematic error in the

predictions for the heavy quarkonium spectrum. This problem is solved by using the

matching procedure based on the asymptotic expansion about the continuum limit. We

also have shown how the direct numerical matching should be modified for a consistent

treatment of the lattice artifacts.

Our analysis resolves the discrepancy between the most recent lattice NRQCD predic-

tions for the bottomonium hyperfine splitting [1, 2] in favour of the result of ref. [1], eq. (3.4).
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