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Chapter 1

Introduction

It’s been a global effort, a global success.
It has only been possible because of the extraordinary achievements of
the experiments, infrastructure, and the grid computing.

Rolf Heuer

Over the past decades, particle physics has been a major driving force for scientific
progress. Particle physics has been probing nature with steadily increasing energy,
precision, and scope. This has uncovered many fundamental rules which govern our
universe.

At the same time, the impact of particle physics research reaches well beyond
its own scientific fields. Many technological and scientific challenges are posed by
particle physics research. This has created a dedicated, interdisciplinary effort driving
technological development in general.

Today, the Large Hadron Collider (LHC) and its experiments are popularly seen
as synonymous with experimental particle physics research. In fact, the LHC is the
biggest, most powerful particle accelerator and collider built to date. It enables the
controlled study of elementary particle interactions at unprecedented energies. In
addition, its high collision frequency enables the study of extremely rare interactions.

As a result of the collision frequency and level of detail recorded by the LHC
detectors, enormous amounts of data are generated. Thus, data analysis by the LHC
collaborations require dedicated, powerful data analysis resources. This challenge
has only been solved by pioneering developments of both software and infrastructure.
Most prominently, collaborations have created the Worldwide LHC Computing Grid
(WLCG), the largest noncommercial computing grid in the world.

The LHC collaborations steadily face new challenges in their research. Following
the end of the recent shutdown period of the LHC, physics research is resumed under
new conditions. Increased collision energy and frequency enable new physics research.
In return, performing precision analyses has become even more challenging. At the
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1 Introduction

same time, the increase in data volume poses a severe challenge for data management
and processing.

The research presented in this thesis is firmly rooted in these two areas of particle
physics. It is an interdisciplinary work on physics research as well as applied computer
science for physics analyses: The determination of the jet energy scale at the LHC
creates the foundation for future, high precision physics analyses. This is enhanced
by a new approach to physics data analysis, which ensures continued viability of
performing physics analyses at high statistics.

End user analyses in modern particle physics process huge amounts of data. Re-
search relies on regular, iterative improvements of analyses based on previous results.
This makes analysis speed critical for research progress.

To keep up with increasing data volumes for end user analyses, a new approach
to data processing infrastructures has been developed as part of this work. It
introduces the data processing paradigm of data locality to particle physics analyses:
A distributed caching infrastructure is used to optimise access to data in batch
systems. This reflects the distributed, evolving end user data analysis workflows used
in particle physics.

A prototype is already in use and demonstrates its applicability for end user data
analysis. Compared to existing infrastructure, the prototype improves analysis speed
by several factors. Most prominently, it is used to speed up calibration of the jet
energy scale of the CMS experiment.

A prominent feature of particle collisions at the LHC are so-called jets. These
groups of particles originate from each parton of the actual collision. In many analyses,
jets are a prominent signature due to their abundance in collision events. The precise
measurement of jet features is critical for high precision analyses.

Since jets are compound objects, calibration of jet measurements is a complex
process. As part of this work, the jet energy scale of the CMS detector has been
calibrated using Z + Jet events. Being the last step of calibration required for further
analyses, both precision and speed are critical.

With the second data taking period of the LHC, jet calibration has to account
for new experimental conditions. Several techniques to mitigate biases from Pileup
collisions have been studied and calibrated. To achieve adequate precision, two
channels are used in parallel, namely Z ! µµ + Jet and Z ! ee + Jet. The achieved
precision of CMS jet energy calibration is already approaching the precision of the
previous data taking period.

This thesis aims at readers from both particle physics and computer science.
Chapter 2 provides a brief overview on the context of this work. The structure and
working principle of the CMS detector is outlined. Next, both physical phenomenology
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and technical reconstruction of jets are detailed. Finally, infrastructure and workflows
used for end user analysis are sketched.

In addition to Chapter 2, a list of acronyms and a glossary is provided after the
appendix. These define and briefly explain commonly used technical terms as well as
jargon.

Chapter 3 is focused on the new analysis infrastructure. At first, the viability
of caching for particle physics end user analyses is outlined; this also includes an
overview of existing technologies and related work. Following this, the new approach
of coordinated caching for batch systems is introduced and discussed. Next, the
prototypical implementation of this approach is detailed. Finally, performance of the
prototype is evaluated based on physics analyses deployed on a test infrastructure.

Chapter 4 is dedicated to the calibration using Z + Jet events. A brief description
of the calibration procedure used by the CMS collaboration is provided. Afterwards,
the analysis of Z + Jet events is described in general. Finally, the calibration for
data recorded by the CMS detector in 2015 is detailed.

Individual conclusions and outlooks for parts of the thesis are provided in each
main chapter. In addition, Chapter 5 provides an overall conclusion and outlook
based on the synergies between both topics: The distributed, coordinated caching as
well as the calibration using Z + Jet events.
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Chapter 2

Background

The work presented in this thesis is related to many different scientific fields. Obviously,
a basic understanding of the detector and methodology of experimental particle physics
is required. The processes themselves are subject to considerations of theoretical
physics. Finally, the actual realisation is based in the domain of distributed computing
and applied computer science.

Within the scope of this chapter, a basic overview on key topics is provided. Covering
both computer science and particle physics, descriptions are meant to be adequate
for readers from either field. Topics are described in a condensed, fundamental form
as required to understand key arguments of later chapters. Thorough descriptions
can be found in literature and are out of scope for this chapter.

2.1 The CMS Experiment at the LHC

To study particle interactions at high energies in controlled conditions, particle
colliders of different designs are used. The Large Hadron Collider (Large Hadron
Collider (LHC)) [1] is the biggest, most powerful of these machines built to date. It
was designed to study particle physics in a controlled environment at unprecedented
energies. While it has become famous for the discovery of the Higgs boson [2, 3], its
scientific scope is much broader.

The LHC is a synchrotron, featuring two adjacent beam pipes. Groups of particles,
so called bunches, are accelerated in opposite direction in these pipes. The beams
cross at four interaction points, at which high energy collisions of bunches may occur.
The main operation mode of the LHC is the acceleration of proton beams.

The advantage of using protons is the reduced loss from synchrotron radiation
compared to electron accelerators. Thus, high collision energies can be achieved. A
major downside is that protons are not elementary particles, which has significant
implications. For example, the fraction of energy in each interaction of two colliding
protons’ constituents is unknown. Also, elementary particles not part of the main
interaction may cause secondary, soft interactions.
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2 Background

After its first data taking period ended in 2013, the LHC underwent upgrades
and maintenance. The second data taking period, called Run II, started in April
2015 with improved performance. Particle collisions occur at a center-of-mass energy
of 13TeV. The interval between bunches crossing was initially 50 ns but has been
reduced to 25 ns in mid 2015.

Particle collision are studied at and around the interaction points. Here, specialised
detectors are placed, each designed with a distinct goal in mind. One of the four
major LHC detectors is the CMS general purpose detector [4].

2.1.1 The CMS Detector

CMS stands for Compact Muon Solenoid, which signifies the main design features
of the detector: It is compact, with little space between subdetectors, placing them
as close as possible around the interaction point. It features dedicated, precise
muon subdetectors, allowing for clear signatures of processes involving these particles.
Finally, it contains a powerful solenoid magnet, enabling high precision momentum
measurements. A schematic view of the detector is shown in Figure 2.1.

Figure 2.1: Schematic View of the CMS Detector: The CMS detector is designed with a
barrel shape and oriented along the beam pipe. Two endcaps close off the edges
of the barrel. The forward region is positioned directly around the beam pipe. In
each region, several subdetectors are positioned in layers around the interaction
point. [5]
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2.1 The CMS Experiment at the LHC

Geometrically, the detector follows a barrel shape positioned around the interaction
point. The central component, called barrel, is designed as a hollow cylinder aligned
along the beam pipe. The barrel is closed off by two circular planes, the endcaps.
Protruding from the endcaps is the smaller forward section, which wraps around the
beam pipes.

In each of these regions, several subdetectors are present to detect different types of
interactions. These subdetectors are positioned in layers stacked on top of each other.
The layers are always stacked in the same order in respect to the interaction point.

Not all types of layers are present in every region, and there are technical differences
between regions. In general, the following layers are available, in this order starting
closest to the interaction point:

• The tracker records the trajectory of charged particles.

• The electromagnetic calorimeter measures the energy of leptons and photons.
It is commonly referred to as ECAL.

• The hadronic calorimeter measures the energy of hadronic particles. It is
commonly referred to as HCAL.

• The solenoid is not a subdetector. However, its magnetic field bends particle
trajectories due to charge and momentum.

• The muon system records trajectories of muons. It is effectively a second
tracker for these particles.

The detector output is an ordered collection of electronic signals. These represent
the location and intensity of particles interacting with individual subdetectors. To
deduce the type and properties of these particles, they must be reconstructed from
the detector output.

2.1.2 The Particle Flow Approach

Each subdetector is sensitive to different properties of particles, as shown in Table 2.1.
This allows a direct identification of many particles via these properties. For example,
if the tracker records a trajectory pointing at a deposit in the ECAL, this is likely
caused by an electron.

The combination of all subdetector signals for reconstruction is called the Particle
Flow [6] algoritm. Objects reconstructed with this approach are called Particle Flow
candidates. These are the de facto standard for what is used as particles and their
features in analyses.

Strictly speaking, the particle flow candidates are only an interpretation of detector
signals. While the method is superior to previous methods, its performance varies
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2 Background

Table 2.1: PARTICLE IDENTIFICATION WITH SUBDETECTORS

Particle Identified by
Tracker ECAL HCAL Muon System

� ⇥ p ⇥ ⇥
e p p ⇥ ⇥
µ

p ⇥ ⇥ p

p p ⇥ p ⇥
n ⇥ ⇥ p ⇥

with the subdetectors available. This makes it essential to take into account where
particles interact with the detector.

2.1.3 Coordinate Systems

Several different coordinate systems are commonly used for describing the CMS
detector. Each is designed for a different purpose. All coordinate systems have in
common that they are centered to the interaction point. An illustration is shown in
Figure 2.2.

The default 3-dimensional cartesian coordinate system is right handed. Its x-axis
points to the center of the LHC ring, the y-axis upwards and the z-axis along the beam
pipe. Based in this, several derived coordinates are defined. These are more suitable

(a) Cartesian and Spherical Coordinates (b) Relation of ⌘ and ✓

Figure 2.2: Coordinate Systems Used for the CMS Detector: The default cartesian coordinate
system is right handed and oriented with respect to the beam pipe in z and LHC
ring in x. The azimuthal and polar orientation is commonly expressed via the
respectives angles � and ✓. For describing physical processes, the pseudorapidity
⌘ is commonly used instead of the polar angle.
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2.1 The CMS Experiment at the LHC

for describing particle physics processes. In addition, the positive and negative z-axis
are defined as forwards and backwards direction, respectively.

Reflecting the barrel shape of the detector, the azimuthal angle � resides in the
x-y-plane. It starts at the x-axis, meaning that � = 0 and � = ⇡/2 denote horizontal
and vertical orientation, respectively. As both the detector geometry and physics
processes are isotropic in �, it is most relevant for expressing relative orientations.

Since the x-y-plane is transversal to the particle beams, the initial momentum in
this plane is negligible. This makes any non-negligible, final momentum or energy in
this plane important physical quantities. The projection of a quantity onto this plane
is denoted by a subscript T. For example, p

T

is the momentum in the transversal
plane.

Multiple coordinates are available to represent the polar orientation. The obvious
one is the polar angle ✓, defined with respect to the z-axis, i.e. forward direction.
However, the rapidity y and pseudorapidity ⌘ are more adequate for describing physics
processes.

⌘ =
1

2
ln

✓
|p|+ p

z

|p|� p

z

◆
= � ln

✓
tan

✓

2

◆

y =
1

2
ln

✓
E + p

z

E � p

z

◆

In principle, the rapidity y is more adequate for describing physics: it is invariant
under Lorentz transformations along the z-axis. Yet, it implicitly depends on precisely
determining an object’s mass, which can be difficult or outright impossible at the
LHC collisions: The partons colliding may carry an arbitrary fraction of proton
energy, making the actual collision energy unknown.

Being a purely geometric quantity, the pseudorapidity ⌘ is trivial to deduce and
more robust. In addition, pseudorapidity equals rapidity for massless particles.

lim
m!0

y = ⌘

2.1.4 Detector Regions

The barrel shape of the CMS detector has some drawbacks for measurements. While
the detector is roughly isotropic in �, this is not the case in ✓. This creates several
distinct regions between which detection performance, precision, and coverage varies.

In general, these regions correspond to the detector elements barrel, endcaps, and
forward. More in detail, individual sub-detectors partially overlap and transitions
regions are realised differently. In the scope of this thesis, several distinct regions are
of interest, as shown in Figure 2.3.
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2 Background

Figure 2.3: Longitudinal Slice of the CMS Detector: The barrel shape along the z-axis leads
to distinct regions in the polar orientation. Due to overlap of subdetectors in
barrel, endcap, and forward region, the detector precision varies between certain
areas. Examples include: The calorimeters of the barrel only cover a region
of ⌘ < 1.3. ECAL segments of barrel and endcap join in the transition region
of 1.48 < ⌘ < 1.55, leading to reduced precision. The total coverage of muon
system and ECAL is ⌘ < 2.4 and ⌘ < 3.0, respectively.

The coverage of the barrel with calorimeters is limited to ⌘ < 1.3. Here, energy
resolution is best, especially for neutral particles. Since most events of interest lead
to high activity in this region, it is critical for many analyses.

Subdetectors targeting leptons are only present in barrel and endcaps, not the
forward region. While the muon system provides precise measurements for muons, it
only covers the region of ⌘ < 2.4. The ECAL extends further, detecting electrons in
the slightly larger area of ⌘ < 3.0. However, the transition between barrel and endcap
leads to reduced ECAL precision in the area of approximately 1.48 < ⌘ < 1.55.

2.2 Jets in the LHC

The Standard Model of Particle Physics does not allow for isolated partons, i.e.
quarks and gluons. Yet, the physical processes taking place in proton-proton collisions
practically always include such a state. In practice, the separation of a parton from
the interaction causes new partons to form around it. In place of an isolated parton,
detectors only register a group of particles instead. Such a group is commonly referred
to as a jet.

2.2.1 Origin of Jets

The inability to detect individual partons is due to confinement : all visible matter is
colour neutral, meaning colour charged particles must always be in a bound state.
This is due to the strong force, which acts on colour charged particles. In contrast to
other forces, the potential of the strong force increases with distance. Thus, a parton
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2.2 Jets in the LHC

separating from its bound state is met by an increasing potential which can absorb
any kinetic energy.

While a parton cannot be freed from its bound state, the confining potential itself
may be broken. As a bound state is split, the energy contained in the field binding it
increases. At some point, enough energy is available to create a pair of quark and
antiquark. Each of these binds to a portion of the initial bound state. The net result
are two colour neutral bound states, which may freely separate from each other.

With the energy transferred in collisions at the LHC, each separated parton may
cause this process repeatedly. This creates a shower of partons in place of the initial
parton. In turn, these partons will bond to hadrons. Further decays of these hadrons
may also result in leptons.

The result of this formation, bonding and possible decay is a collimated shower of
particles, as shown in Figure 2.4. This shower is roughly comparable in energy and
orientation to the parton it originated from. Thus, the shower is used in lieu of the
undetectable parton.

Reflecting this, the shower is represented as a single object, a jet. As such, a jet is
an abstraction, not a physical object itself. A thorough understanding and modelling
is required to use jets in precision measurements.

(a) Splitting of Colour Bound States [7] (b) Formation of Particle Jet from Parton [7]

Figure 2.4: Formation of Jets: Jets form due to colour confinement created by the strong
force, as visualised in Figure 2.4a. The potential of the strong force increases with
distance, potentially until forming new particles is favorable. Partons separating
from a bound state thus create new bound states, preventing unbound partons.
If a parton is separated with high energy a cluster of particles forms, as visualised
in Figure 2.4b. A cascade of bound states splitting iteratively creates a shower
of particles. This final shower is abstracted as a jet, which is studied in place of
the initial parton.
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2 Background

2.2.2 Jet Reconstruction in the CMS Experiment

Abstracting a parton shower to a single object is not unambiguous. Results of jet
clustering, i.e. combining a group of particles to a jet, depend on the algorithm used.
In addition, algorithms vary in the robustness of their underlying model.

In the CMS experiment, the anti-k
t

algorithm [8] is commonly used1. It uses a
distance measure between two particles, as defined in Equation 2.1. The measure
expresses how close the particles are to being elements of the same jet. In addition, a
dynamic threshold is used, as defined in Equation 2.2.

d

ij

= min
�
p

a

T,i

, p

a

T,j

� �R

2
i,j

R

2
, with a = �2 (2.1)

d

k

= p

a

T,k

, with a = �2 (2.2)

�R

2
i,j

= (⌘
j

� ⌘

i

)2 + (�
j

� �

i

)2 (2.3)

The measure is used for an iterative clustering of jets in the event. In each iteration,
the pair of particles (i, j) with the smallest d

ij

are merged. The merged object
is treated as a regular particle for calculating d

ij

in any following iteration. This
effectively merges groups of similarly oriented particles, preferring clusters of high
momentum and density.

Any particle k for which d

k

is smaller than any d

ij

is removed from further clustering.
Since this requires �R

2
i,k

> R

2 for any (i, k), it implies that R is a hard limit for the
angular jet size.

The anti-k
t

algorithms is robust and generally outperforms other common al-
gorithms. Yet, it is still an idealised model. Events recorded by the CMS detector
include noise and other background effects. This limits the correspondence between
clustered jets and initial parton. Chapter 4 details the process of correcting jets to
remedy this, and the correction procedure performed as part of this tesis.

2.3 Computing in High Energy Physics

Scientific research at the LHC is not only a challenge for detector engineering,
theoretical physics, and experimental physics. It requires significant effort and
resources to handle the vast amounts of data. Being the first to perform research at
this scope, the LHC collaborations have developed their own means to manage data.

With research performed by worldwide, publicly funded collaborations, data han-
dling and processing reflects this. On the one hand, data must be available to
every collaborator. On the other hand, resources should be contributed equally. To

1The name is derived from its initial formulation. There, k2p
ti corresponds to what is called paT,i in

this thesis.
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facilitate this, the LHC collaborations have joined their computing resources in a
single, worldwide infrastructure.

2.3.1 The WLCG

The Worldwide LHC Computing Grid (WLCG) [9] is primarily composed of hundreds
of computing centres. The centres themselves are largely independent, but provide
their services via common middlewares and protocols. Each centre provides processing
and storage capacities for one or more LHC collaboration. In turn, each collaboration
has its own computing model for using these resources. However, the general concepts
are the same.

Historically, each computing centre of the WLCG belongs to a specific tier, defining
its role. This distinction has become less strict, but it still reflects the principle of data
handling. Tier 0 is closest to the detector, storing raw detector data and performing
basic reconstruction. Tier 1 distributes data globally, creating and storing data ready
to be analysed. Tier 2 provides processing resources, generating simulations and
allowing users to analyse data. The tiers are organised hierarchically, as shown in
Figure 2.5.

The LHC collaborations use the WLCG for a large variety of computing tasks.
Reconstruction workflows convert raw detector data to high level data suitable for
physics analysis. This mainly requires processing power, but also considerable data
input. Simulation workflows simulate collision events and detector responses. Such
workflows practically only depend on processing power. Analysis workflows use data
from reconstruction and simulation to analyse physics processes. Their requirements
vary, possibly consuming large amounts of data and processing resources.

The size and complexity of the WLCG means that it is mostly used for large,
automated workflows. This makes it too inflexible for performing the highly iterative
end user analyses. Thus, most analyses are performed in large parts on the local
computing resources. Since these resources are loosely coupled to the WLCG, they
are commonly called Tier 3.

2.3.2 Tier 3 Analysis Facilities

Resources of the Tier 3 provide access to the WLCG but do not have an active role in
its workflows. These resources are managed and used by small groups or individuals.
Commonly, they range from processing clusters at universities down to individual
workstations. Compared to other Tiers, the smaller scope allows to optimise usability
and performance for specific tasks.

Tier 3 analysis facilities provide local batch processing resources to handle the data
volume and complexity of LHC analyses. Examples of this are the National Analysis

17



2 Background

Figure 2.5: The WLCG Tier Structure: The WLCG is composed of hundreds of computing
centres, each assigned to a tier. Based on the tiers, computing centres are
organised hierarchically: Data from detectors is provided by the Tier 0 to several
Tier 1 centres. In turn, each Tier 1 centre serves multiple Tier 2 centres. [10]

Facility (NAF) and the computing resources at the Institut für Experimentelle
Kernphysik (IEKP). Such facilities commonly provide three types of resources:

• Portals are interactive login nodes for users. They allow scientists to interactively
prepare, test, and manage their analyses.

• Fileservers provide large volumes of storage, sufficient to hold multiple datasets.
They are accessible from all other components.

• Worker Nodes provide processing resources, joined via a Batch System. This
allows the automatic, parallel execution of analysis applications.

2.3.3 End User Data Analyses

A typical end user analysis consists of multiple stages, each performed in a different
environment. In general, each stage reduces data volume and turnaround time. In
turn, later stages are repeated more frequently.
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Several CMS analyses performed by groups at the KIT use the Artus [11] framework.
These analyses can be considered as exemplary for the scope of this work. Figure 2.6
shows the Artus analysis workflow. Most steps of an Artus analysis are trivially
parallelised: each collision event is processed individually, without accessing data
from other events.

The starting point are datasets provided by the CMS collaboration. These are
derived either from the detector or simulations. At this stage, collision events are
described via contained logical and physical objects, such as particles. Due to the
size and to ensure their availability, such datasets are published in the WLCG.

The process of skimming performs a basic selection on the dataset. Events are
removed if they are unlikely to contain interesting processes. From each valid event,
only the physical objects to be studied are kept. The resulting skim is similar in
structure to the initial dataset, but highly optimised in terms of size. Usually, every
analysis group produces a set of skims for all its members. Due to their size, skims
are stored at analysis facilities or at Tier 2 sites.

The analysis transforms objects from each event to observables. This includes
trivial extractions, such as reading the momentum of a particle object. More complex
tasks are handled via immediate objects, e.g. reconstructing the initial object of a
decay process. The level of detail available is used for performing complex selection
criteria, called cuts. The result is an n-tuple, a Struct of Arrays where each array
corresponds to an observable. Most n-tuples can be easily stored on portals or
workstations.

The final step is plotting, creating visual or numeric representations of data. This
is the only step processing information from multiple events at the same time. It is
thus capable of calculating distributions and relations including events. The output
is usually a plot, though it is not uncommon to also output meta-data, e.g. numerical
results of a fit.

Figure 2.6: Exemplary End User Analysis Workflow Using the Artus Framework: The
workflow uses a sequence of processing applications (green) to create increasingly
specialised data formats (blue). This process decreases data size and application
runtime from TB and days to MB and minutes. Any step can be repeated
without repeating previous steps. This allows for high iteration frequencies of
later steps.
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Chapter 3

Coordinated Caching for End User Data
Analyses in High Energy Physics

If you torture the data enough, nature will always confess.
Ronald Coase

Being a data driven science, High Energy Physics (HEP) strongly depends on
efficient data analysis. This is not just a matter of resource utilisation: Analyses
undergo constant development and tuning, linking analysis performance to research
speed. Improved efficiency allows studying more phenomena, and deriving results of
better quality and precision.

Computing in HEP both requires and motivates new developments. The Worldwide
LHC Computing Grid (WLCG), and thus experiments at the Large Hadron Collider
(LHC), would be impossible without software and infrastructure developments by the
HEP community. However, effort has mostly been focused on large scale processing.
Infrastructure for end user data analyses usually relies on commonly available techno-
logies. Yet, many new approaches in data analysis cannot be applied to HEP. The
mixture of existing workflows and constraints creates a niche that is not well covered
by modern, specialised approaches.

This work introduces a generalised approach to iterative data analysis. On the
one hand, it uses modern processing principles, most importantly data locality. On
the other hand, it frames these principles in a minimalistic way, avoiding constraints
and isolating customisations. Being developed primarily for use in HEP, it integrates
with and improves existing workflows. The work is applicable to any data science
using similar workflows.

The approach builds on two features of data analysis in HEP: First, while sizeable
amounts of data are analysed, the total amount of data is considerably larger. Second,
data is analysed via batch processing, i.e. distributed processing of multiple chunks
of data in parallel. Both features are exploited by providing data from a distributed
cache.
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Parts of the work presented in this chapter have been previously published [12–15].
Prior reading of these publications is not required for this chapter. All key information
and arguments are presented here as well.

An overview on requirements for HEP analyses and existing technologies is given
in Section 3.1. In Section 3.2, the concept of Coordinated Caching is introduced and
explored in general. The prototypical implementation of the approach and key design
considerations are presented in Section 3.3. Experiences and key metrics derived
from using the system for analyses of LHC Run II data can be found in Section 3.4.
Finally, Section 3.5 contains conclusion and outlook of the project.

3.1 Applicability of Caching for End User Data Analyses

End user workflows, as outlined in Section 2.3.3, are in principle ideal for caching. Each
step of a workflow is repeated multiple times. While configurations and applications
are tuned constantly, input data is long-living. In addition, input data is often shared
amongst several users.

Yet, scope and size of data usage make traditional approaches non-trivial. In
addition, existing infrastructure has inarguably been very effective for past research.
It is thus critical to more closely define the scope of caching for end user data analyses.

3.1.1 Characteristics of Analysis Workflows

For caching to be beneficial, there must be a potential performance gain. To assess this,
benchmarks of different data provisioning technologies were performed. An excerpt is
shown in Figure 3.1; a more detailed description and measurement is available in the
original publication [14]. Hardware specifications are in Appendix E.1.

The benchmark of 1Gbit network demonstrates the limitations of current network
based infrastructure. Due to network being a shared resource, there is a fixed limit
on throughput. Adding more processing resources, even on other hosts, does not
increase throughput beyond this point.

Extrapolating the performance makes it apparent that a single host cannot saturate
a 10Gbit network. However, a cluster of three worker nodes is sufficient for partial
saturation. Under full load from an efficient analysis, even a small cluster does not
perform efficiently. A cache could thus increase efficiency by providing part or all of
the required input.

However, any potential cache must provide sufficient performance as well. The
demand for parallelisation, throughput, and data volume make this difficult on a
single host. The only local data source with adequate performance is a Solid State
Drive (SSD). It allows to fully utilise a modern processing node, as used in the
benchmark.
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(a) Total Input Throughput (b) Average per Job CPU Efficiency

Figure 3.1: Performance Metrics for Different Input Media: Benchmarks were performed
using the same Jet Energy Corrections (JEC) analysis. The type of data
access/storage and parallelisation was varied for each benchmark. For the
benchmark of 10Gbit, 48 additional processes reading data were deployed in
parallel on other hosts. The performance drop in the last bin is due to saturation
of system resources. Here, fewer resources are available as some are consumed
by the operating system and other services.

In addition to raw performance, principles of caching must be applicable to work-
flows. Most importantly, a notable fraction of data usage must follow a predictable
pattern. Thus, analysis input usage patterns were tracked, as visualised in Figure 3.2.
All accesses shown are from JEC workflows, belonging to multiple users. Several
distinct features relevant for caching can be identified:

• The largest part of accesses is to a few, pivotal datasets. For example, skim
5 is used about ten times more often than skims 1 to 4 combined. It is thus
sufficient to cache only a fraction of all data, identified by frequent usage.

• Access to datasets are interleaved, with both pivotal and other datasets over-
lapping. For example, skims 7 and 8 are detector and simulation data used
together. It is thus necessary to assess not the temporary, but the overall benefit
of caching specific data.

• Pivotal datasets are only used in a limited time range before being replaced.
For example, skims 7 and 8 were replaced by skims 17 and 18. Outdated data
may thus be identified by its last access.

• The order of time intervals is days for accesses, and months for relevancy. For
example, skim 24 was fully read every 1 to 2 days over 2 months. Thus, a cache
must operate at a much larger timescale than usual for e.g. filesystem caches.
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Figure 3.2: Usage of Skims for Analyses: Data was collected from jobs reporting their
input files to the batch system. For technical reasons, these are mostly jobs of
JEC workflows. Skims are numbered by their occurrence in the batch system.
Excluded are skims which are used for benchmarking, were accessed less than
five times, or used for less than a week. Skims with similar access behaviour, e.g.
skims 7 and 8, are matching detector and simulation datasets.

The characteristics of current workflows make caching a viable strategy. Yet, the
use case is not comparable to that targeted by regular caches. To operate efficiently
at this scale, an efficient software solution is required.

3.1.2 Existing Approaches and Related Work

A number of existing solutions have been evaluated for their applicability to end user
data analyses. This is not limited to cache software. Related technologies which may
be used for data locality are included as well. The following is not an exhaustive list,
but covers all notable categories.

Local Data Caches

An obvious approach to caching input data are operating system caches. For example,
Linux automatically caches recently read data in unclaimed Random Access Memory
(RAM). In principle, such a cache could be extended to an SSD. Specialised caches [16,
17] explicitly promote such a use case. Many distributed systems also use comparable,
local caches.

Yet, the scale of operation limits the applicability of such caches. The general
setup implies several limitations. These can be seen as exemplary for challenges of
caching in distributed data processing.
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• The underlying algorithms are optimised for small, temporary repeating read
operations. In contrast, HEP data easily exceeds cache sizes, and accesses
interleave over several days. This makes it likely that cached data is superseded
before being accessed again.

• A distributed workflow may repeat the same read operation on different hosts.
Yet, caches are only aware of local read operations. Important data may be
ignored if the fraction of read operations performed locally is insignificant.

• Similarly, caches are only aware of their own content. As such, data may be
cached on multiple hosts. Such duplicates ultimately limit the unique volume
of data provided by caches.

• Applications only benefit if data is cached on the same host. However, caches
usually do not expose their content, or do so only inappropriately. This makes
it impossible to know on which host a job would benefit from already cached
data.

Distributed Data Storage

The distribution of workflows on several hosts is a key issue for data locality. Distrib-
uted data storage technology likewise allows distributing data onto several hosts.

Parallel file systems extend regular file system behaviour onto distributed environ-
ments. Both data storage and access may be performed from several hosts in parallel.
The file system itself may span several hosts as well. While not mandatory, it is not
uncommon that the same hosts are used for storing and processing files.

However, parallel file systems do not necessarily improve data locality. It is in
general not possible to deduce on which host data is stored. Storage allowing to deduce
this information can in principle be used for local data processing [18]. However,
this implies adhering to the underlying distribution algorithm. These are generally
optimised for non-local access and fault tolerance.

To optimise data locality for processing, specialised file system and processing
frameworks have emerged in recent years. These usually employ the MapReduce
processing paradigm [19]. The paradigm builds on defining tasks in an abstract
way: A map procedure defines how results are derived from a portion of data. A
reduce procedure defines how multiple sets of individual results are merged. These
procedures allow parallel processing of arbitrary data chunks, and creating a single
result from it. Processing frameworks use this to split tasks into jobs matching the
data layout on file systems.

The MapReduce paradigm is compatible with HEP workflows. These already
process datasets in chunks, merging the results afterwards. However, the formalisation
and implementations are not compatible.
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The commonly used MapReduce framework Hadoop [20] has several incompatible
constraints: Data access is implemented via a unique streaming protocol; in contrast,
HEP relies on POSIX for local access, and protocols such as xRootD for remote
access. The Hadoop file system [21] splits data into chunks by itself, whereas
HEP workflows split data by their own requirements. Similarly, Hadoop expects
to split tasks into jobs, which is already performed by HEP job managers. At
the implementation level, Hadoop requires active use of its programming model
and libraries; a resulting application is not compatible with classical batch systems
without extensive modifications.

Caching in Distributed Environments

The general concept of caching in distributed environments is not new. Existing
solutions generally perform considerably better than multiple isolated caches. However,
the use case of data locality for processing is not adequately addressed yet.

A distributed cache may be created by coordinating individual caches. Issues
arising from limited scope, e.g. content duplication, are countered by a centralised
coordination component. Simulations show significant improvements in hit ratio and
throughput [22]. Yet, implementations usually target resource providers, namely web
services. Host locality for data consumers is by design out of scope.

Several caching systems target distributed data processing. The CernVM File
System (CVMFS) [23] is used for provisioning of software frameworks and other
common applications. Local caches are used to eliminate remote access for often used
software. The CacheD service [24] of the HTCondor batch system stores executables
used by jobs. This eliminates the need to transfer the same executable each time
a job is deployed. Both CVMFS and CacheD show that caching is beneficial for
distributed processing. Their use case is on software that is the same for many jobs
executing simultaneously. In contrast, input data is the same for individual jobs
executing repeatedly.

Attempts have been made by the LHC collaborations to promote data locality
for end user data analyses. The ATLAS collaboration implemented a prototype to
speedup analyses via a centralised cache [25]. This setup demonstrates the speedup
from improved locality as well as the viability of using SSD based caches. Yet, the
setup is limited to data access via xRootD and its caching mechanism as well as
still accessing the cache via network. Several groups have adapted Hadoop for use
with HEP analyses [26, 27]. These approaches demonstrate improved scalability and
performance of data locality based processing. However, the modifications required
and constraints imposed on existing workflows are severe.
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3.2 Coordinated Caching for Batch Systems

As outlined in Section 3.1.1, HEP end user data analyses are suitable for caching.
Yet, existing technologies are not applicable without extensive modifications. Still,
data locality provided via caching has been shown to provide considerable advantages.
Thus, a new caching concept to enable data locality for end user data analyses is
proposed as part of this thesis: individual caches on batch system worker nodes are
coordinated to form a single cache spanning the entire batch system.

The review of existing technologies as outlined in Section 3.1.2 exposes two major
issues: On the one hand, constraints on workflows and jobs are severe. Modifications
to analyses required are unfeasible for most end users. Also, modified analyses are in-
compatible with regular infrastructure. On the other hand, reviewed implementations
are optimised for specific use cases. Extensibility for different setups and protocols is
limited.

The proposed concept thus targets two main goals, motivating key design features:

• Constraints on end user workflows and software should be minimised. The
concept thus targets analysis infrastructure, not applications.

• Extensibility for other setups and protocols must be possible by design. The
concept is thus modularised. It offers a generic core and specialised extensions.

An element shared by all HEP analysis infrastructures is the use of batch systems.
While implementation details vary, the general design is the same. Thus, the concept
suggests a new middleware layer integrating with batch systems1.

Simply put, the suggested middleware mimics an operating system cache scaled
up to cover a batch system. Operating system caches target applications using read
requests to process blocks from files. The middleware targets workflows using jobs
to process files from datasets. Key challenges arise from the processing environment
being distributed over several hosts or even sites.

3.2.1 Distributed Cache Layers

In general, a cache can be viewed as being composed of three key elements:

• Selection: identifying data most beneficial to cache.

• Provisioning: locally storing and maintaining copies of data.

• Redirection: intercepting accesses to serve local data and track access patterns.
1In principle, neither concept nor middleware are strictly limited to batch systems and worker

nodes. For example, no modifications are required to target groups of worker nodes, e.g. sites
in grid or cloud environments. Descriptions presented here assume batch systems as targeted
environment for clarity and simplicity.
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In a distributed environment of batch processing, these elements must be distributed
as well. To promote this, the concept distinguishes local from global scope: each
local scope is confined to an individual worker node, while the global scope is the
entire system. Based on this distinction, several elements or layers can be defined for
coordinated caching:

• Selection Layer: operates at global scope, aggregating and analysing all data
accesses in the system.

• Provisioning Layer: operates at local scope, maintaining data stored on worker
nodes.

• Coordination Layer: links global and local scope, spreading decisions from the
Selection Layer to the Provisioning Layer.

• Redirection Layer: intercepts workflows at job and application granularity.

The key difference to regular caches is the addition of a coordination layer. This
is required by operating in a distributed environment. The scope of each element is
shown in Figure 3.3

The different scopes of each layer imply a tight definition of responsibilities. The
provisioning layer is similar to regular caches, though it spans several hosts. It is
the coordination layer that handles the distributed nature of the system. Caching
logic can be freely chosen and adjusted as the selection layer only ever interacts with
other layers. Integration with infrastructure and applications is confined solely to the
redirection layer.

(a) Layers of a Classic Cache (b) Layers of Coordinated Caches

Figure 3.3: Layers of the Coordinated Caching Concept: The coordinated caching concept
is composed of four layers, each handling a different responsibility. The selection
layer works at global scope, where all metadata of accesses and data can be
aggregated. The provisioning layer consists of multiple elements, each operating
at local scope. Connecting the two is the coordination layer, spanning local
and global scope. The redirection layer reside in both local and global scope,
depending on the targeted use case.
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Provisioning Layer

The provisioning layer handles the actual data on worker nodes. As such, it is formed
by a number of provisioning nodes, one per worker node. As provisioning nodes are
collocated with data processing facilities, the provisioning layer is the only layer with
guaranteed access to remote data.

The main purpose of data provisioning is to guarantee that data is locally available.
After remote data is copied to local cache devices, periodic checks of metadata ensure
the consistency of local copies with remote data. If data is outdated, it is updated or
removed.

The provisioning layer does not decide which files to cache. It relies on external
input to select files, rate their importance, and assign them to provisioning nodes.
Each provisioning node only provides the files that have been assigned to it, preferring
important files if space is scarce. Globally managing the precise allocation of files to
specific devices is not scalable, however.

Thus, each provisioning node has some limited autonomy. Each provisioning node
decides by itself how to deal with limited space. This is required when new files are
added or existing files change size. Provisioning nodes take the importance of files
into account, but are not strictly bound by it. For example, a provisioning node
may decide to evict only the second most unimportant file if that frees exactly the
required space.

Provisioning nodes are not just the only element with guaranteed access to data.
They also have guaranteed access to its metadata, such as size and modification time
of files. As such, other layers use the provisioning layer to access file metadata.

Selection Layer

The selection layer is responsible for selecting data that is beneficial to cache. It
exclusively works with metadata of both jobs and data. Thus, it is sufficient to
interact only with other layers of the system.

By design, the selection layer never requires action from elements outside of the
system.. All metadata on job and data usage are provided by the provisioning and
redirection layers. This frees the selection layer from any constraints from batch
system and user applications. It transparently extends the functionality of the
middleware by exploiting the interfaces of the redirection and provisioning layer. In
turn, this layer can be easily replaced, adjusted, and optimised for different use cases.

In the concept of coordinated caching, selecting data for caching also means rating
data. The rating expresses the impact of caching specific data. For example, this
may estimate how often data is accessed in the future. The specific rating must be
chosen to reflect the expected features of data accesses in user workflows.
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The selection layer forwards only the rating, not any details on how it is derived.
The only requirement is that other layers properly interpret the rating. That is, they
must be able to deduce which rating indicates more important data. This ensures a
clear distinction of responsibilities between the layers. In turn, this allows the use of
established caching algorithms.

Redirection Layer

The redirection layer is the interface to external elements. Targeting jobs in a
batch system requires splitting the responsibility of the redirection layer into two
tasks: redirection of queued jobs to worker nodes and redirection of data accesses for
executing jobs.

The redirection layer is largely defined by the infrastructure and user applications.
In turn, it encapsulates all specifics of these external elements. It is the only layer
that handles implementation details of the targeted use case. This makes all other
layer implementations independent of the use case.

The redirection of data access for executing jobs is comparable to the redirection by
regular caches. Direct data access is rerouted to use local copies of data, if available.
This requires overwriting the data access method used by applications. Ideally, this is
integrated into the protocol used for data access. Alternate approaches, e.g. modifying
job configurations, are possible as well.

The redirection of queued jobs stems is required due to the integration with batch
systems. Cached data is only beneficial if jobs execute on nodes hosting their data.
Thus, job scheduling must be influenced to prefer nodes with cached input data.
Ideally, this is performed by hooking into the batch system’s scheduling mechanism.
Alternatively, it can be integrated into user submission tools.

The redirection layer puts the only hard constraint on user jobs: in order to redirect
queued jobs, they must publish their input data in a standardised way.

Coordination Layer

The coordination layer manages the distributed resources of the system. It connects
the selection layer at global scope and the provisioning layer at local scope. This
allows using established techniques for selection and provisioning.

The coordination layer is similar to a job scheduler. Data must be scheduled to
provisioning nodes, similar to how jobs are scheduled to worker nodes. On the one
hand, the coordination layer has metadata for data to be analysed. For example,
this may be size, processing speed, or which data is processed in parallel. On the
other hand, it has metadata for provisioning nodes. For example, this includes size of
caching devices, or the number of attached processing slots. Both metadata of data
and provisioning nodes must be matched to find an optimal allocation of data.
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Like job scheduling, data scheduling can be optimised for various goals. For example,
specific use cases may benefit from high peak locality over average locality. Similarly,
one may optimise for speedup of specific workloads versus overall throughput. Most
of these decisions depend on the use case. However, some features directly follow
from targeting batch systems.

3.2.2 Data Scheduling for Batch Processing

The primary challenge for local caches is the estimation of data popularity. In order
to successfully provide data, a cache must predict which data will be used next. In
a distributed environment this is further complicated by locality considerations. In
addition to estimating which data is required, it is also relevant where it is required.

Batch processing implies several caching scopes for distributed caching. The global
scope includes all data cached, regardless of location. The local scope includes all
data cached on a specific node. At the job scope, only data used by a single job is
relevant. The relation between these scopes is illustrated in Figure 3.4.

Data of any local scope is strictly a subset of the data at the global scope. Selecting
data for the global scope has been extensively studied for regular caching. The
limiting factor for data locality is the overlap between local and job scope. This
determines the efficiency of any coordinated caching system for batch processing.

Optimising the efficiency of coordination is important regardless of use case. To
illustrate the core challenges, a simple model of uncoordinated caching is demonstrated.
It mainly avoids edge cases, e.g. partial allocation of data. Conclusions are applicable
in general.

Figure 3.4: Scopes of Coordinated Caching: A single distributed, coordinated cache can be
viewed at different scopes. In an idealised view, the global cache is a single entity.
Like a non-distributed cache, it simply holds a fraction of the overall data. This
fraction is roughly the ratio of cache size to overall data volume. With the goal
of optimising data locality, each individual local cache is distinct. The locally
cached data is merely a fraction of the globally cached data. This fraction is
inversely proportional to the number of caches. To optimise data locality of jobs,
the group of files accessed together is important. Even when fully available in
the global cache, only a fraction may reside in each local cache.
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Assume that the total data has a volume Vtotal, which consists of chunks of data, or
items. The global cache volume is sufficient to hold a volume Vcache. For practically
all use cases, Vcache is considerably smaller than Vtotal. Further, chunks are small
compared to any cache and total storage volumes. Finally, the worst case of a
statistical caching strategy is assumed: every item has the same probability of being
cached.

Regardless of caching strategy, only a fraction of data can be provided by the cache.
This can be thought of as the chance that specific data is cached. As in regular
caches, this is the cache hit rate P

global

.

P

global

/ Vcache

Vtotal
(3.1)

An optimal caching strategy may optimise the use of cache space, and thus P

global

.
Still, the chance of an item being cached is roughly proportional to the fraction of
volumes.

Item Locality and Replication

To optimise data locality, the deciding quantity is the amount of data provided locally.
Thus the coordinated caching concept adds another metric: the chance of an item
being cached on the host it is accessed from. This defines the local hit rate P

local

.
The ratio of local and cache hit rate defines the locality efficiency ⌘

local

.
The locally cached data can only ever be a subset of the globally cached data.

Assuming processing nodes are interchangeable, the global scope may be equally split
across nodes. In this case, each processing nodes has an equally sized local cache
volume Vlocal.
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(3.2)

At this point, it is also appropriate to address replication. In data storage and
processing, it is common to replicate items to multiple nodes. This improves fault
tolerance and increases the chance for data locality. For caching, it is important that
the global cache volume cannot hold all data and consists solely of the local cache
volumes. Using replicas proportionally reduces the volume of unique items in the
cache. In addition, the number of hosts Nhosts constraints the number of replicas
Nreplicas.
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Put simply, replication improves the chance to hit cached data. Yet, it reduces
the chance of data being cached in the first place. While replication is important for
distributed storage, there is no advantage for distributed caching.

Furthermore, the compensation of both effects only holds for statistical data
placement. If either cache hit rate or locality efficiency are fixed via scheduling,
replication still constraints the other.

Regardless of replication, the local hit rate is tied to the cache volume per node.
Compared to a monolithic cache, the hit rate for distributed, uncoordinated caching
is inversely proportional to the number of nodes. This is caused by random selection
of the node hosting an item and the node executing its jobs.

It is thus important that coordinated caching actively schedules jobs to data. In
turn, this means replication should be avoided.

Job Locality and Item Groups

In batch processing and especially HEP, it is common to process a group of items at
the same time. In classic batch systems, these groups are assigned externally, before
submission.

Each job only benefits from caching if items are locally available. It is sensible to
define the job efficiency ⌘

job

as the fraction of items available locally. In turn, this
can be expressed via the expected number of local items N

local

and total items N

job

.
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It is important to distinguish between job and locality efficiency at this point. For
any single item, locality efficiency ⌘

local

can be arbitrarily improved via scheduling.
This merely requires scheduling jobs to the node caching the item. Disadvantages
from distributed caching can thus be easily avoided. There are only two states, both
of which are advantageous: An item is either cached and accessible, or it is not cached
and thus does not waste any space.
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For any job or group of items, job efficiency is bound by the distribution of items.
Perfect job efficiency is impossible if not all items are collocated on the same node.
This adds a third state: An item may be cached but not accessible with the rest of
its group, wasting space. This can be modelled as a binomial distribution:
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This effect is notable even for small scale processing. Assuming jobs of four items
on a cluster of four nodes, 75% of jobs are limited to job efficiencies of 25% or less.

It is thus important that coordinated caching schedules data to match usage by jobs.
This must be sensitive to the item grouping chosen before submission. Otherwise, it
is impossible to optimally schedule jobs to data for execution.

3.2.3 Simulation and Estimates

Performance benchmarks as shown in Section 3.1.1 show that caching can benefit
HEP data analysis. However, building a middleware or cluster based on this requires
estimating the scale of improvements. Thus, simulations have been performed to
estimate effects of coordinated caching. Most importantly, the setup at the Institut
für Experimentelle Kernphysik (IEKP) has been studied, as shown in Figure 3.5.

(a) Setup of Cache Throughput Simulation (b) Results of Cache Throughput Simulation

Figure 3.5: Simulation of Throughput Using Coordinated Caches on Worker Nodes: The
simulation setup is comparable to the analysis cluster at the IEKP, as shown in
Figure 3.5a. Every worker node has 32 execution slots and is connected to a local
cache and shared fileservers. The bandwidth to individual caches is 4Gbit/s and
10Gbit/s to all fileservers. Free parameters are the number of worker nodes and
average local cache hit rate. A workflow processing 4GB at 20MB/s per process
is assumed. The resulting processing time is shown in Figure 3.5b. Straight lines
indicate processing time for a given number of worker nodes. Dashed lines are
the expected local cache hit rate without aligning job and data scheduling.
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Several key features are apparent from the simulation results: Coordinated caching
enables scalability. Network bandwidth is an important contributor for overall
throughput. Following this, perfect local hit rate is not desirable. Finally, hit rates
without scheduling are inadequate.

As expected, data locality via caching enhances scalability of existing infrastructure.
The addition of local caches automatically scales throughput to processing capabilities.
The actual speedup is determined by network bandwidth and the number of processing
nodes. The former determines the initial throughput. The later determines the final
throughput. In general, speedups of several factors are possible.

Even with the addition of caching, network is important for overall throughput.
Several caches are required to provide the same throughput as network does. Ideally,
both cache and network throughput is combined. This implies that perfect hit rates
are not desirable: on average, hit rates should balance cache and network throughput.

There is some leeway in optimising hit rates. Limited processing speed creates
a plateau between the limits of network and cache. Leaning towards low hit rates
allows caching data for more workflows. At higher hit rates, few workflows are reliably
provided from the cache. The former is advantageous for many interleaved workflows.
The later is more stable with few recurring and many temporary workflows.

3.3 The HTDA Middleware Prototype

As part of this thesis, a prototype of the coordinated caching concept has been created:
The High Throughput Data Analysis (HTDA) middleware. It demonstrates both the
feasibility of the approach as well as the improved scalability and performance.

HTDA provides all core features of coordinated caching: A provisioning layer
supporting POSIX data sources. A combined selection and coordination layer,
suitable for usage patterns of HEP workflows. Finally, a redirection layer integrating
into HTCondor batch systems and POSIX data access.

The software has been built primarily as a prototype for demonstration. However,
it is also designed with future applicability in mind. Dependencies on HEP workflows
are kept to an absolute minimum; the middleware is useable outside of the current
HEP context. All interfaces to external elements are modular, allowing for future
support of additional protocols.

Architecturally, the HTDA middleware builds on distinct nodes. These are joined
together to form a pool spanning several hosts. Each node runs one or several services.
These services implement the layers of coordinated caching.
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There are currently three service types:

• Provider services form the provisioning layer. Each stages and maintains data
on the host it is running on.

• Coordinator services implement the selection and coordination layer. They
aggregate metadata on files and jobs, selecting data to cache.

• Locator services are a key component of the redirection layer. Each creates a
map of files provided by nodes, which is used for scheduling.

In addition, the redirection layer has two more constituents: First, hooks in the
batch system collect metadata of jobs and influence scheduling. Second, an overlay
in the Virtual File System redirects file access on worker nodes. An overview of the
HTDA services is shown in Figure 3.6.

3.3.1 Nodes and Shared Infrastructure

All persistent elements of the HTDA middleware are handled by a single application,
the htda_node. It provides the basic infrastructure to create a distributed pool:
instances launched on different hosts may communicate and collaborate. This forms
the basic environment in which HTDA services operate.

The application itself is written in Python 2 [28]. This is motivated by the flexibility
and ease of use of the language. In addition, it is widely used in HEP.

The htda_node implements the basic environment for running HTDA services. It
unifies basic application features, most prominently configuration and logging (see
Appendix C). In addition, it provides an abstract interface to the pool of nodes.

Figure 3.6: Schematic View of the HTDA Services: The HTDA middleware is composed
of several services. Provider services reside on worker nodes and provide local
copies of data. Which files to provide on which node is determined by the
Coordinator service. To schedule jobs to their cached input data, the Locator
services provide information about data placement to jobs.

36



3.3 The HTDA Middleware Prototype

Finally, the htda_node monitors deployed HTDA services, restarting them in case of
errors. The abstraction is a key feature for the HTDA prototype.

The nodes themselves implement the actual communication between each other.
There are two main features to this: Inter-Process Communication (IPC) and pool
mapping.

Node and Component Communication

Each node runs a server and client to communicate with other nodes. This is
currently based on REST requests sent via HTTP/S. The use of HTTP/S is an
implementation detail; the design specifically allows for other protocols in parallel.
Calls to components on the same node can be resolved locally.

The REST architecture is an integral design decision. Stateless communication
makes each htda_node only loosely coupled to the pool. Loss of connection between
nodes does not corrupt state of the system. Temporary or permanent absence of
nodes in a pool is thus not harmful. This allows HTDA to operate on temporary
processing resources.

The client/server infrastructure is made available by the node via an abstraction
layer. Components can use it to expose some of their methods to other nodes, enabling
Remote Procedure Call (RPC). This provides a URI for every functionality, as shown
in listing 3.1.

1 # Method call via high level Python API
2 HeartbeatAPI(Node <ekpsg01.physik.uni -karlsruhe.de >).

get_nodes_by_role(node_class =" locator ")
3

4 # Method call abstract information
5 Node: Node <ekpsg01.physik.uni -karlsruhe.de>
6 Node URI Address: ekpsg01.physik.uni -karlsruhe.de
7 Component: Heartbeat Mapper
8 Component URI Name: heartbeat
9 Method: get_nodes_by_role

10 Method URI Name: GET
11 Method Argument: node_class =" locator"
12

13 # Method call via low level HTTP API
14 GET http :// ekpsg01.physik.uni -karlsruhe.de/heartbeat/locator

Listing 3.1: Method calls between components: Components expose their functionality
via high-level APIs, abstracting RPC calls. Interaction between components
is performed by calls to such methods on other nodes. The high-level API
translates the call to an available low-level API call.
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Pool Discovery

htda_nodes interact by calling exposed methods of other nodes. However, components
must first be aware of available nodes. Even in local batch systems, nodes may be
only temporarily part of an HTDA pool. This makes dynamic pool discovery vital.

To this end, each htda_node runs a generic component, the pool mapper. It
dynamically discovers other nodes of a pool, as shown in Figure 3.7.

(a) Discover (b) Reply (c) Recurse (d) Shutdown (e) Expire

Figure 3.7: Mapping of an HTDA Pool: Each node runs a mapping service, the pool mapper.
In its discovery stage, the mapper queries known nodes for other nodes (3.7a,3.7b).
This is repeated recursively, until all nodes have been discovered (3.7c). In its
validation stage, the mapper exchanges heartbeats with known nodes. Any
node repeatedly failing a heartbeat exchange is considered defunct (3.7d,3.7e).
Both stages are repeated frequently, providing an up-to-date state of the pool.
Pool mappers can start discovery either from a configured address, or whenever
another node connects.

The pool mapper provides all local HTDA services with the nodes currently available
in the pool. This information can be directly used for communication via RPC. The
details of availability, e.g. the protocol used for communication, are purposefully not
exposed to HTDA services. For example, mapper and underlying protocols may use
proxies for communication. This abstraction frees HTDA services from having to
deal with the physical layout of the HTDA pool.

3.3.2 Data Provisioning

The data provisioning layer of HTDA is implemented via the Provider service. On
each worker node, one Provider service is run, which maintains local copies of
data. In addition, the HTDA middleware uses Provider service to persistently store
metadata on the location of data copies.

Provisioning for Data Locality

Internally, each Provider service is composed of three major elements: The Catalogue
stores the current state of provisioning. The Allocator computes the desired state
of provisioning. The Operator handles the transition between current and desired
state. A schematic overview is schon in Figure 3.8.
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Figure 3.8: Components of the Provider Service: Each functionality of the Provider is
implemented separately. The Operator performs the actual provisioning of data,
moving it from storage to cache devices. Which data to provide is decided
by the Allocator. Persistency is ensured by the Catalogue, which stores all
vital metadata. This complexity is not exposed to other services: Metadata
on the Provider and its content is exposed, and new items may be suggested
for provisioning. Internally, Storage and Cache APIs abstract their resources:
storage must only provide a means to fetch data, while a cache must allow
placing this data.

The Catalogue stores all metadata relevant for data provisioning. On the one hand,
this is file information, as shown in listing 3.2. This includes immutable information,
e.g. the URI of the file on remote storage, and mutable information, e.g. on which
device it is cached at the moment. On the other hand, this is a journal of required
actions or tasks, e.g. deletions of local copies. This is comparable to the journal of file
systems: Instructions for performing actions are stored until all partial operations are
successful. This ensures consistency in case of interruptions, e.g. reboots of worker
nodes.

1 source_uri : original URI of the file , as addressed by users
2 filename : dirname + basename on local filesystem
3 storage_id : storage API providing the source file
4 cache_id : cache API supervising a local copy
5 size : size of the source file , in bytes
6 score : importance of the file
7 cache_time : when the file was assigned to this node
8 allocation_time : when the file was assigned to a cache API
9 maintained_time : when the file was last validated

Listing 3.2: Metadata of files stored by Cache services: Each cache stores immutable and
mutable metadata of files assigned to it. Immutable metadata relates to how
files are accessed. Mutable metadata includes details on how files are cached.
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The Allocator implements the autonomous allocation of files to cache devices. At
regular intervals, it calculates the currently best allocation. The current algorithm
does a sequential allocation based on file priority: All files are sorted by their rating;
Cache devices are then successively filled until no space is left. For each file whose
allocation changes, a corresponding move or deletion task is created. These tasks are
stored in the Catalogue journal.

The Operator performs the actual handling of data. This is implemented via
several worker threads each processing work items in parallel. This currently includes
three types of work items:

• Handling the transition between allocations: This means processing the tasks
created by the Allocator. New files are copied from storage to a cache device,
copied between cache devices, or released from a cache device.

• Maintaining the current allocation: The Catalogue is scanned for allocated
files. For each local file, its metadata is compared to the metadata of the source
file. If a mismatch is detected, the file is copied from storage again, or released
if this fails.

• Cleaning cache devices: Each cache device is scanned for orphaned files. If a
file is found that has not been allocated to that cache device, it is released.

Backend Abstraction

The HTDA middleware has been written with the goal of caching files from remote
storage. This is designed to be performed by copying files to local cache devices. For
extensibility and portability, elements of Provider services do not work directly on
files. Instead, an abstraction of protocols via backends is used.

Backends wrap both protocols as well as specific end points. For example, POSIX
cache devices can be accessed by the FSCache cache backend2. A specific end point,
e.g. a mounted SSD, is wrapped by instantiating an FSCache with the mount point
path.

On the one hand, this abstraction simplifies adding additional protocols. Creating
a new backend is sufficient to integrate it into all elements of HTDA. This mostly
means wrapping metadata retrieval and file access, as shown in Listing 3.3. Backends
are easy to implement, requiring about 150 to 250 lines of code.

1 class StorageAPIBase (*args , ** kwargs):
2 """ Backend for Remote Storage """
3 def supports_uri(source_uri: str):
4 """ Check if a given URI is supported by this backend """

2The FSCache and FSStorage backends actually use Python’s abstraction of file systems, as
implemented by os.path [29]. This supports POSIX, Windows and MacOS file systems.
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5 def get_file_info(source_uri: str):
6 """ Provides the FileInfo (metadata) for the given URI """
7 def refresh_copy(fileview: FileView):
8 """ Update a cached copy to match its original source """
9 def verify_copy(fileview: FileView):

10 """ Check the validity of a copy against its source """

Listing 3.3: Abstract API definition for storage backends: Backends are used to abstract
accesses from Provider services to cache and storage resources. Each backend
wraps internal calls to the protocol used by a resource. A FileView implements
transactional modifications of the metadata shown in Listing 3.2.

On the other hand, the abstraction loosens the definition of remote storage and
cache devices3: Remote storage must provide source data and its metadata. Cache
devices must allow storing copies of data.

For example, the HTDA prototype implements the MultiCache backend. It com-
bines other backends into a single interface. This is currently used to merge multiple
SSD devices for allocation by Provider components. Access outside the HTDA
middleware still targets the bare devices for optimal performance.

Metadata Volatility

Storing file metadata on Provider nodes is not only used for internal state. It also
serves to provide the ground truth of data locality in an HTDA pool.

Each Provider service stores locality metadata in its Catalogue. In turn, the
Catalogue stores its content persistently on its host. This automatically ties locality
metadata to the availability of the host. At the same time, locality of data itself is
also tied to the host.

As such, all other components rely on Provider services for locality information.
This information may be cached or proxied. Yet, this replicated information is never
binding nor vital. Even after a total system failure, locality information can be
reconstructed from Provider services.

3.3.3 Data Selection and Coordination

The HTDA middleware combines the selection and coordination layer in the Coord-
inator service. Internally, each layer is still a separate element. The collocation
simplifies the management of metadata at smaller scale, however.

Combining the two layers makes it advantageous to synchronise them, as shown
in Figure 3.9. First, jobs and files are ranked to identify data worth caching. After-
wards, files are assigned to caches based on this rating. Technical details of the
implementation can be found in the master thesis by C. Metzlaff [15].

3Technically, the definition of what constitutes a file is also loosened. For simplicity, this is not
discussed here.
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Figure 3.9: Operation Sequence of the Coordinator Service: The Coordinator relies on
the access layer to inform it about data accesses. This information is used to
rate the importance of individual data items. The current allocation of items
is pulled in from Providers. Based on this, a new allocation is calculated and
pushed to Providers again.

Rating of Data

The requirements on a rating system for HTDA are twofold: On the one hand, the
rating must reflect the most relevant features of data usage. On the other hand, the
result must allow unambiguous interpretation in a distributed environment.

The second requirement is most easily satisfied by a scalar result. Each file
is assigned a score, with higher numbers signifying higher benefit or importance.
This allows sorting files by priority, and in turn makes partitioning straightforward.
However, it disqualifies multi-dimensional scoring algorithms, such as the Adaptive
Replacement Cache [30].

The choice of a scoring algorithm is based on HEP usage characteristics, as shown
in Section 3.1.1. On the one hand, important datasets are identified by frequent
usage over a period of time. This characteristic is identified by Least Frequently
Used (LFU) algorithms. On the other hand, outdated datasets are identified by being
unused for a period of time. Least Recently Used (LRU) algorithms are sensitive to
this characteristic.

As such, HTDA uses a combination of the two: The score is based on a decaying
frequency, as shown in equation 3.9. Here, tnow is the time at which the score is
calculated. For every job j that accessed an item, t

j

is the time of submission to
the batch system. The parameter �t is a configurable tuning constant; ⇥ is the
Heaviside step function.
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This approach lies in the spectrum of Least Recently/Frequently Used (LRFU)
algorithms. Such algorithms perform well for block level caches [31], which HTDA
mimics at a larger scale. Owing to the targeted scope, the approach used has some
specific features.

First, the parameter �t limits the observed time period. This sets a limit on the
age of metadata that needs storing. Compared to other definitions of LRFU, the
linear decay of 1/�t sacrifices smoothness. Since the frequency of evaluations is high
compared to �t, continuity is sufficient.

Second, the moment in time t

j

of an access to an item by a job is subject to
interpretation. A job covers a range of time: it may be queued for hours and run
for hours. During the later, it may repeatedly access arbitrary portions of an item.
Thus, the middleware uses the time a job is first queued. While not precise, this
has several advantages: Actual accesses may be anticipated, allowing data to be
cached before a job is run. Jobs rerun by the batch system because of failures are not
counted repeatedly. Recorded dates are independent from speedups due to caching;
this avoids feedback loops and allows comparing different algorithms.

Finally, the definition is for generic items, not files. This reflects that processing is
based on groups of files, which are part of datasets. The model used for grouping of
files in turn defines how items and files are related.

File Grouping

As outlined in Section 3.2.2, caching individual files only is not adequate. Scheduling
data must respect that jobs access groups of files. Yet, there are no constraints on
this grouping: users are free to choose and change their own partitioning methods.

Analysis of usage data shows some structure to file grouping in most HEP user
analyses: Groups of files partition datasets in arbitrary but stable ordering. The size
of groups varies, but certain sizes dominate. As a result, specific groupings are more
common than others.

Motivated by this, the partitioning model defines scoring in two ways: First, the
items rated are the groups of files as used by jobs. This respects that no constraints
can be assumed for grouping. Second, each file is assigned the score of the highest
ranking group it belongs to. All lower ranking groups are ignored. This approach
implicitly prefers workflows with stable grouping.

The distinction between file and item score decouples component implementations.
All components other than the Coordinator operate at the granularity of individual
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files. No information on how files relate to each other is provided. Instead, the
Coordinator is expected to encode relationships in the score provided. This allows
for arbitrary scoring mechanisms by the Coordinator.

Data Placement

In addition to rating files, the Coordinator must also assign them: each Provider
service is regularly assigned a set of files for provisioning. Similar to scoring, this
process must take into account the grouping of files. In addition, it must reflect that
groups may overlap.

The HTDA middleware uses a heuristic approach to data placement, as shown in
Figure 3.10. Each Provider node is abstracted to the sum of its cache volumes4. File
groups are distributed to nodes in a top-down approach: Beginning with the highest
scored group, groups are attempted to be assigned in order.

(a) Grouping of Files by Jobs (b) Placement of File Groups

Figure 3.10: File Grouping and Placement: User workflows are free to implement their own
partitioning of a dataset to jobs. Figure 3.10a shows the same dataset of files 1,
2, . . . partitioned differently: Two workflows using file groups A.1, A.2, . . . and
B.1, B.2, . . . for their jobs, respectively. Placement of files by HTDA attempts
to maximise overlap for file groups of the same dataset. Figure 3.10a shows the
placement of file groups A followed by B: Since A.1 contains most files of B.1,
the missing file 4 is added to the provider of A.1.

Each group assignment is performed with respect to placed files. If a group is
already available on a Provider, no action is triggered. Otherwise, the Provider
nodes providing the highest fraction of the group are determined. From these nodes,
one is selected randomly.

4In principle, each Provider node also publishes the metadata of the worker nodes it services. This
information is currently not used by the placement algorithm.
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3.3.4 End User Workflow Integration

The redirection layer of HTDA is split into multiple elements. The only general
element are Locator components. Hooks are used to handle the specifics of batch
systems and end user applications.

Location Information

The most important information for external resources is the location of files. This is
required to schedule jobs, and may be used to optimise file grouping. However, this
information is distributed over all Provider nodes. Directly querying this information
is time consuming and inefficient.

Thus, the Locator service is designed to efficiently expose information. Internally,
it acts as a proxy for metadata of the HTDA middleware. All Provider nodes are
periodically queried for metadata of all local files. Intermediate changes are pushed
to Locator nodes by Provider nodes.

The Locator is optimised to service the most common external requests. For a
given job and file group, the worker nodes with best data locality are provided. For a
given dataset, the best partitioning to optimise locality is provided.

By design, the Locator is expendable to an HTDA cluster: Locator nodes only
act as a cache for metadata. This contrasts it to similar concepts, e.g. Hadoop’s
NameNode. Multiple Locator nodes may be deployed at the same time to improve
fault tolerance and availability.

Integration to HTCondor

The HTDA currently provides hooks to integrate into an HTCondor batch system.
The choice for HTCondor is due to its availability at IEKP and its extensibility. The
batch system has built-in support for hooks at various points.

HTDA provides hooks which integrate into HTCondor’s job_router service (see
Appendix D). Using the job_router serves two functions: First, it performs a
preselection of queued jobs. Second, it ensures hooks are invoked in a controlled
fashion.

Preselection ensures that HTDA only interfaces with relevant jobs. Being part of
HTCondor, the job_router efficiently watches the queue and inspects new jobs. Jobs
are checked to provide appropriate metadata and possibly to satisfy other quality
criteria, such as being limited in execution time. Only appropriate jobs get managed
by HTDA via its hooks.

This preselection provides an event-driven handling of jobs in the HTDA infra-
structure. In turn, an arbitrary number of jobs not managed by HTDA are allowed
without negative effects. This allows deploying HTDA at arbitrary capacity alongside
other infrastructure.
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Figure 3.11: Operation Sequence of the HTDA HTCondor Hooks: By using the job_router
of HTCondor, hooks interact with individual jobs. Hooks publish information
to the Collector when the job is submitted or done. In turn, hooks add
information on preferable hosts while the job is queued or running.

Once a job has been selected as suitable, the HTDA hooks interface with the HTDA
infrastructure, as shown in Figure 3.11. There are three distinct stages, each handled
by a separate hook: On being selected, jobs are translated. While queued or running,
jobs are regularly updated. After completion or failure, jobs are finalized.

HTDA use the translate and finalize stages to collect metadata. Both types of hooks
send job metadata to the Collector. The translate hook collects static information:
which files are used, owner, and resources such as memory required. The finalize
hook collects monitoring information, such as exit code, wall time, hit rates, and
worker node.

The update stage is used to influence job scheduling. The hook queries a Locator
for suitable hosts. This information is added to a job’s ClassAd Rank statement, as
shown in Listing 3.4. In turn, HTCondor uses this statement to prioritise a worker
node for execution.

1 Rank = ( 0.0 ) + HTDA_RANK
2 HTDA_COLLECTORS = "http :// ekpsg03.physik.uni -karlsruhe.de :8082"
3 HTDA_CACHEHIT_RATE = 0.7096774193549999
4 HTDA_LAST_UPDATE = 1465383130.87
5 HTDA_LOCALITY_RATE = 0.548387096774
6 HTDA_LOCATORS = "http :// ekpsg03.physik.uni -karlsruhe.de :8081"
7 HTDA_MACHINE_RANK = 0 + ( ( machine == "ekpsg02.physik.uni -karlsruhe.
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de" ) * 15 ) + ( ( machine == "ekpsg03.physik.uni -karlsruhe.de" )
* 16)

8 HTDA_RANK = HTDA_MACHINE_RANK

Listing 3.4: ClassAd values of a job modified by HTDA hooks. Hooks add metadata required
for scheduling and reporting. The Rank statements are used to influence which
worker nodes are preferred for execution. Other metadata stores monitoring
information and which HTDA nodes to report to.

The HTDA hooks work mostly with the metadata provided by the batch system.
The only exception to this are job input files; there is no automated way to extract
this from arbitrary jobs. Thus, users are required to publish a list of input files with
their job.

Application Redirection

The combination of Locator nodes and hooks redirects jobs to worker nodes where
input files are cached. However, the actual access by applications must be redirected
as well. While not handled by the HTDA middleware, it is required for it to work.
Each backend expects a specific scheme for this redirection.

The backend for POSIX accesses uses distinct base paths to distinguish source and
cache devices. A prefix based renaming scheme maps every file to a path on a device,
as shown in Figure 3.12. This method is derived from the trivial file catalog [32]
scheme used in HEP.

In principle, the rules for file access are simple: Read accesses should try any cache
paths and fall back to the storage path. Write accesses should directly address the
storage path. Yet, implementing this is non-trivial: POSIX accesses are part of the
operating system.

Figure 3.12: Naming Scheme of POSIX Backends: The HTDA POSIX backends use a
naming scheme to map files to locations. The basis is the global path of a file,
i.e. the path by which users access it. Prefixes are used to signify source and
locality. Remote files are identified by the storage path. It adds the mount
path of remote storage (purple) as a prefix. Local copies are identified by the
cache path. It extends the storage path by prepending the cache device mount
path (red).
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Three solutions for redirection have been tested:

• Applications aware of the scheme may resolve locations by themselves. However,
this requires modifications to the applications, which HTDA is meant to avoid.

• Provider nodes may merge local and remote paths using links. The resulting
directory structure is effectively read-only.

• File paths may be squashed inside the Virtual File System. This requires
specialised file systems.

The suggested method is the use of dedicated file systems for merging paths. Union
File Systems allow overlaying local and remote directory hierarchies, as shown in
Figure 3.13. The main advantage of this is transparency for users and applications:
Read accesses are transparently serviced from cache devices if possible. Advanced
union file systems allow write-through, i.e. directing write accesses directly to storage.
The downside is that such file systems are not available for all operating systems.

3.3.5 Applicability to other Environments

The environment at IEKP is well suited to develop a prototype for coordinated caching.
However, the concept itself is not limited to this specific processing environment.
There are other environments where coordinated caching may be beneficial. HTDA
has been designed with extensions for this in mind.

The restriction to local cache access is not always adequate. High Performance
Computing (HPC) infrastructure usually has small, fast storage shared by worker

Figure 3.13: Squashing Paths for End Users via Union File System: As users and applications
expect a single file hierarchy, paths must be merged. A Union File System
squashes individual directory trees present in the Virtual File System. Given
distinct local and remote directory trees, a single, merged tree can be presented
to users. Complex Union File Systems such as AUFS also allow write-through
to the underlying storage.
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nodes. An HTDA system could use this as a cache spanning multiple nodes. The
middleware already supports POSIX based parallel file system. However, scheduling
of data and jobs is built on the assumption that one Provider maps to one worker
node. Both algorithms and metadata would have to be generalised.

A major motivation of coordinated caching is to speed up remote accesses. This
makes protocols other than POSIX suitable. Specifically, common HEP protocols
such as xRootD allow access to WLCG storage. As HTDA interacts with resource
consumers, not providers, it could transparently overlay WLCG storage. For HTDA
itself, this merely requires new Provider backends. However, a different local
redirection method is required. Related work shows this to be feasible [25] in
general.

Finally, a notable fraction of computing resources can be provided opportunis-
tically [33]. This implies that both processing and storage resources are volatile.
Technically, the HTDA middleware is built to deal with this. However, it is only
handled in terms of fault tolerance. To fully leverage opportunistic resources, schedul-
ing must actively take features of these resources into account. For example, data
expected to be important over a long period of time should reside on an equally long
lived storage.

3.4 Evaluation of the HTDA Prototype

An instance of the HTDA middleware is already in use at the IEKP. Initially used
for development, it is now primarily used to speed up end user data analyses. Being
deployed for several months, multiple parts of the system have been evaluated.

3.4.1 Middleware Performance

The HTDA infrastructure is deployed on dedicated hardware, as detailed in Ap-
pendix E.1. This hosts worker nodes with SSD cache devices and one Provider
service each. A single Collector and multiple Locator nodes are also part of the
infrastructure. These are located on separate service and submission machines.

A key design feature of HTDA is transparency. This is not only in regards to user
workflows, but also to the processing infrastructure.

Integration with existing Infrastructure

The batch system itself, including submission nodes and scheduler, is shared with
other IEKP infrastructure. Modifications are confined to submission nodes, where
the HTDA hooks have been installed. Other services, e.g. for dynamic cloud resource
provisioning [33, 34], can be deployed in parallel.
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Supported sources for data are the file servers available at IEKP. These are overlayed
with AUFS [35] union file systems on worker nodes. This redirects accesses to data
transparently: Read accesses are serviced from local devices if possible. Write accesses
are directly directed to the file services. There are no changes required on the file
servers; the default export via NFS is sufficient.

It is worth noting that this mechanism is tied to the availability of an appropriate
union file system. The Linux mainline union file system OverlayFS [36] is not suitable
for use with HTDA. For the default HEP operating system, Scientific Linux 6 [37],
older versions of AUFS are available. However, these implementations are not stable
for production use. Operating systems using current Linux kernels 3 or 4 and current
versions of AUFS are required. The prototype system deploys CentOS 7 [38] with a
4.5 kernel and AUFS 4.

Overhead and Scalability

The overhead from HTDA is negligible at the scope of a processing cluster. Additional
resource consumption, as shown in Table 3.1, is well below resource usage for analyses.
Network overhead due to communication is unnoticeable. It is worth emphasising
that the system is a prototype running in CPython2.7; neither source code, actual
application, nor configurations are optimised for performance of the HTDA middleware
itself.

On each worker node, the Provider node consumes (15± 5)% of a single core. This
is below 1% of each worker node’s total CPU capacity. Each Provider hosts roughly
7000 files, storing (3.0± 0.5)MB of persistent metadata. The memory footprint is
roughly 120MB. Compared to the 500GB cache volume and 64GB RAM, both are
negligible.

The Locator nodes are practically unnoticeable on the batch system’s submission
hosts. Both CPU and memory consumption is negligible. The integration via the

Table 3.1: HTDA RESOURCE CONSUMPTION: CPU consumption is relative to a single
core, i.e. 3200% equals full capacity. RSS is the resident set size, i.e. memory
exclusively held by the application. Persistent Data is the size of data stored on
disk. Values have been collected via the GNU ps utility.

Component CPU RSS Persistent Data

Cache (15± 5)% 120MB (3.0± 0.5)MB
Locator < 1% 60MB None

Coordinator (10± 5)% 1GB 250MB
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job_router ensures adequate scalability. The limiting factor in scalability tests on
job volume and frequency is the batch system itself.

The major challenge for scalability is the Coordinator. It is the only component
which cannot be scaled out to multiple instances. As such, the current implementation
limits the scalability of the selection and coordination layer. However, this limitation
is not enforced by other components; scalability only requires refactoring or recreating
the Coordinator.

In addition, performance of the Coordinator [15] is sufficient. For six months of
operation, persistent metadata is only 250MB in size. Algorithm runtime for rating
and placing files scales linearly with respect to either file or file group count [15].
Both file and group count are effectively bound by the time period in which accesses
are deemed relevant. At the current scale, rating and placement calculation as well
as updates to Provider nodes take roughly 10 s to complete; due to the scale of data
transfer speeds, it is sufficient to perform these steps only every 30min.

The only element critical for final end user data analysis speedup is the redirection
of data access of analysis applications. No other element is actively involved with
end user workflows. Benchmarks reveal no notable overhead from redirection via a
union file system, as shown in Figure 3.14. This means end users benefit from the
full performance of the available processing resources.

Figure 3.14: Performance of Raw and Overlayed Input Devices: Benchmarks are the same as
shown in Figure 3.1a. in particular, the AUFS union file system is benchmarked;
it squashes the previously benchmarked SSD and 10Gbit connected file server.
All data was manually copied to the SSD. The benchmark shows no notable
overhead from squashing. Differences for high process counts are due to
interference with other processes on the host.
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3.4.2 Data Scheduling Performance

Being a distributed system, the HTDA middleware has an increased parameter space
compared to regular caches. For example, it is not sufficient for data to be cached, it
must also be accessible by jobs. This makes it impossible to assess the performance
of the middleware with only a single metric like the cache hit rate. The development
of system metrics is an ongoing work [39]. Several key features are pivotal enough to
be studied in isolation, however.

The global cache hit rate limits the optimal performance. Predicting data accesses is
required for all other tasks. To study this, the rating formula defined in Equation 3.9
has been applied to recorded dataset accesses. The resulting rating is shown in
Figure 3.15a. Several features can be identified that reflect the behaviour described in
Section 3.1.1: A number of pivotal datasets dominate time periods spanning multiple
days. At many times, two datasets are ranked equally important, reflecting the use
of detector and simulation data in parallel.

To simplify the interpretation of scores, the highest ranking datasets may be
selected. This gives an estimate for what would actually be cached. An illustration
is shown in Figure 3.15b, while hit rates are listed in Appendix E.2. With two
exceptions, all datasets with more than 500 accesses have cache hit rates in the range
of 70% to 90%. In addition, the selection of datasets is stable: once selected, most
datasets keep their rank for several days.

(a) Dataset Ratings Relative per Timeframe (b) Dataset Accesses and Highest Scores

Figure 3.15: Selection of Datasets for Caching: Ratings for datasets have been calculated by
applying the HTDA scoring formula to recorded accesses. The formula is given
in Equation 3.9, while the accesses are shown in Figure 3.2. Figure 3.15a shows
ratings as heights. For visualisation, ratings are normalised to the maximum
score at every point in time. Figure 3.15b shows accesses in black. Coloured
bands indicate that the dataset is amongst the three highest ranking datasets.
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The scheduling of data and jobs is only meaningful when studied together. The
availability of data automatically limits the effectiveness of job scheduling, as shown
in Figure 3.16. In most cases, the partitioning of datasets used by HTDA matches
that of jobs. Nearly all jobs have either all or none of their input files available on
one worker node. As desired, this maximizes job efficiency, and minimizes unused
data. For jobs with cached input data, roughly 75% are scheduled perfectly.

While effective under most circumstances, scheduling may be further improved.
Scheduling of jobs currently uses an all-or-nothing approach to data availability:
There is a short delay in which a job is only allowed to start on worker nodes where
its input data is cached. Afterwards, jobs may be started on any node. This policy
could be relaxed to a soft delay depending on the maximum attainable hit rate: if no
or little input data is cached anywhere, there is little benefit in delaying execution.
Furthermore, the delay could be adapted if resources are scarce during periods of
high utilisation: A longer delay would increase overall throughput, since jobs are
more likely to run on cached input data.

Experience shows that file grouping is not handled optimally. On the one hand,
the assignment of highest group score as file score can lead to fragmentation. If file
grouping changes, previously assigned files may stick to Providers in suboptimal
groups: Consider files initially placed in pairs, but later used as sets of four. The
pairs would still have the high rating for optimal access, while providing only half
the data for this access. Setting the file score on Provider nodes to the highest local
group score would penalise this. On the other hand, using only the groups provided4.4 Cache Modules

Figure 4.8: This plot shows the locality rate and cachehit rate of jobs between 15. Dec
2015 and 22. Dec 2015. Jobs with a cachhit rate and locality rate of one are
ideal.

provides the rates and the point of time, a job was executed to allow a constrain on
the timing window.

4.4.3 Cache Life Time
This module has a very basic usage. It displays the lifetime of files in the cache. As
previously mentioned, the basic functionality of a cache includes the possibility to
determine which files have to be deleted from cache, in order to free up space for
new files. The Cache Coordinator provides the information, how long a deleted file
stayed in the cache and when it was deleted. This information gets displayed in a
histogram, as shown in figure A.2.

4.4.4 Cache Distribution
Cache organization and the distribution of files are crucial parts in a cache based
computing system. In HPDA, files are grouped in so called datasets. The di�erent
datasets emerge from the file structure the users use: files in the same folder belong
to the same dataset. These datasets normally consist of multiple separate files. The
file numbers rangs from one to several thousand files per dataset.

In HPDA, an algorithm is implemented to distribute the files in one data set
equally among all machines in the cluster. In an ideal scenario, every machine caches
an equal sized part of every data set. This distribution is done by file size, not by
file count.

29

Figure 3.16: Global and Local Cache Hit Rate: Hit rates are recorded by the HTDA
middleware. The cachehit rate is the maximum hit rate possible for a job
on any worker node. The locality rate is the actual hit rate on the worker
node on which the job is executed. Data shown is an excerpt from monitoring
from 15th December 2015 to 22nd December 2015. [39]
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by jobs is suboptimal. Smaller groups could often be combined without side effects.
For example, jobs using strict subsets of bigger, common groupings ({{1, 2}, {3, 4}}
versus {{1, 2, 3, 4}}) could be merged. Identifying file groups via a frequent itemset
approach [40, 41] could implicitly resolve this.

3.4.3 End User Data Analyses Performance

A key performance indicator for caches is the benefit on throughput or performance.
For a system such as HTDA, many parameters influencing this are impossible to
control, however. Instead of monitoring overall throughput, a single analysis has been
selected as a benchmark.

The CMS Z + Jet calibration analysis detailed in Chapter 4 is highly data driven.
It mostly depends on input rate, as only few calculations are performed compared
to other analyses. In addition, processing speed is critical to derive corrections in a
timely manner. As such, the Z + Jet calibration analysis is the reference analysis for
the HTDA system.

The walltime of jobs is closely related to the performance of workflows. For the
reference analysis, this has been tracked both with and without cache, as shown in
Figure 3.17. On the IEKP cluster, HTDA improves processing speed roughly by a
factor of 4 on average. Notably, HTDA is not at its limit of scalability, while the
current infrastructure is; the relative speedup increases with more worker nodes.

Figure 3.17: Analysis Speed with HTDA: Per-job walltime of the Z + Jet calibration work-
flow, with enabled or disabled HTDA caching. For both tests, the same workflow
was processed on the same cluster, with no other workflows interfering. Data has
been collected with the GNU time utility. Lower walltime is better. Outliers of
the workflow without HTDA cache are executed after the bulk of the workflow.
This demonstrates that network bandwidth is saturated when all jobs execute
in parallel.
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3.5 Conclusion and Outlook

The work presented in this chapter is an important step towards efficient data analysis
in HEP. Modern processing paradigms are transparently introduced to existing
workflows. Benefits are not limited to short term improvements; the scalability of the
approach enables efficient end user data analysis even in the future.

While existing approaches build on similar paradigms, this approach strives for
generalisation. It demonstrates how a minimalistic, modularised approach allows
integrating modern techniques into established workflows. Furthermore, its focus on
extensibility allows introducing additional techniques in the future.

Building on caching and batch processing, the new approach works with well
established techniques. Yet, the added scope and scale give rise to new challenges.
Solutions chosen in implementing the approach perform adequately for the studied use
case. However, extending and optimising the approach is subject to future research.

With the HTDA prototype, the new approach is not just a generic approach. It has
already made a notable contribution to the analysis of LHC run 2 data. Inarguably,
such a prototype cannot be compared to a production system. Yet, the middleware
is in a state adequate for stable operation, providing notable benefit far outweighing
its cost.

Today, the HTDA prototype is used to improve the calibration efforts of the CMS
collaboration. The Z + Jet calibration analysis described in Chapter 4 is perfectly
suited for such a system. It has been adopted for use on the prototype easily. Being
a time critical analysis, it greatly benefits from the speedup provided.
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Chapter 4

Calibration of Jets with Z ! (µµ/ee) Events

It is the mark of an educated man to look for precision in each class of things just
so far as the nature of the subject admits.

Aristotle

The size of the Large Hadron Collider (LHC) and its detectors enables unprece-
dented physics analyses. At the same time, the method by which this is achieved has
severe implications on precision and physics performance. Performing high precision
analyses requires a precise modeling of how detectors respond to particles from
collision events. Dedicated calibration analyses are required to enable other high
precision analyses in the first place. The goal is the provisioning of corrections, which
relate measured properties to their true scale.

Reflecting the scale of the LHC experiments, calibration is an extensive effort
involving multiple analyses. Individual results often influence one another, requiring
an iterative approach and ongoing effort. Separate calibrations are performed for
different detector components and particles. Jets are amongst the most complicated
objects to calibrate, since they consist of multiple particles.

Jets are an integral part of collision events at the LHC. On the one hand, most
analyses rely on event signatures featuring jets: jets are used as part of a measurement,
or to separate signal and background interactions. On the other hand, jets are present
regardless of the interactions studied. Colliding bunches of hadrons are practically
guaranteed to result in jets from additional interactions, the so called Pileup.

As such, the calibration of jets is integral for most physics analyses performed
at the LHC. The Jet Energy Corrections (JEC) relates the energy of quarks and
gluons to the measured energy of their experimental signature, the jets. Due to the
complexity of this task, corrections are derived in multiple stages. Since JEC are
required by practically all analyses, both precision and speed are crucial.

The basic approach to JEC in Run II is derived from methods used in Run I [42].
However, new conditions due to higher energy and increased interaction frequency
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call for new corrections and new methods. In addition, technical problems in data
taking have made the speed of deriving corrections even more important.

As part of this thesis, residual corrections for jets have been derived from Z !
(µµ/ee) + Jet events. An overview of the JEC effort is given in Section 4.1. Section 4.2
describes the technical and physical background of the Z ! (µµ/ee) + Jet analysis in
general. The derivation of corrections is detailed in Section 4.3. Finally, Section 4.4
provides a conclusion and outlook of the calibration effort.

4.1 Jet Energy Calibration in the CMS Experiment

The accuracy for measuring properties of jets is inherently limited by jets being
compound objects. Reconstructing jets involves combining information on multiple
particles from many subdetectors. Reconstruction efficiency is limited by physical
processes, algorithms, and the detector itself.

The CMS collaboration has a dedicated calibration effort to counter such limitations.
The objective of this calibration is to match the measured jet energy to the parton
energy, as shown in Figure 4.1. The calibration is split into several stages, each
providing dedicated corrections to specific effects. Both sequence and scope of
correction stages are formalised.

Figure 4.1: Scopes of Jet Energy Measurement: Jets are measured to derive the parton
energy. This is the energy of the parton originating from the initial interaction.
However, the parton cannot be detected, only the particle jet resulting from
it. In the process of clustering a jet, particles may be incorrectly included or
excluded. Finally, actually detecting the jet in the detector involves several
subdetectors. From the final measurement, features of the particle jet and the
parton must be reconstructed. Each intermediate stage is subject to inefficiencies
and biases.
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4.1.1 Calibration Stages

There are three mandatory stages of corrections for every CMS analysis. Each
addresses a different type of inefficiency in determining the initial parton energy.
Separate handling of different effects allows the use of dedicated correction methods.
In addition, corrections may be derived differently for simulated and recorded events.
The three correction stages Pileup offset corrections, simulation based corrections,
and residual corrections as well as their sequence are shown in Figure 4.2.

Figure 4.2: Stages of Jet Energy Corrections of the CMS Collaboration: Corrections are
handled differently for data from the detector or simulation. Corrections for
Pileup background are derived from background studies of simulation and detector
data. The expected response is derived from simulation data, but applied to
detector data as well. To account for unexpected effects, additional corrections
are derived for detector data only.

The first stage is Pileup offset corrections. These subtract particle energy
erroneously clustered into a jet. A common source for this is Pileup, i.e. particles
from additional interactions. This stage also handles phenomenologically similar
sources of error, e.g. noise. Corrections are derived separately for data from detector
and simulation.

The second stage is simulation based corrections, which use complete simu-
lations of interaction and detector. This accounts for all known negative effects
of jet reconstruction. Such effects include inefficiencies of detector response and
jet clustering. Corrections are derived from simulated events. This gives access to
generated partons, simulated particle jets, and simulated detector responses. The
same corrections are applied to both detector and simulation data.

The third stage is residual corrections. These compensate for differences in
simulated and actual response. Corrections are derived separately in two stages from
multiple channels. The basic method is the same for all channels: Jets are compared
to a reference object that is well understood in simulation and the detector.

4.1.2 Data Driven Residual Corrections

Residual corrections are split into two parts: Relative corrections ensure uniform
jet energy response across detector regions. Absolute corrections ensure uniform
jet energy response with regard to jet energy. Combining both parts ensures proper
calibration of jet energy in the entire detector.
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Both correction parts use balancing methods: Events are studied in which the hard
interaction produces a jet and a reference object in opposite direction. Due to the
negligible transverse momentum of the LHC’s beams, the two objects are balanced
in the transverse plane: transverse momentum is the same, but orientation in � is
opposite. Measuring the reference object properties provides an estimator for the
properties of the parton from which the jet originates. Additionally, by using well
known reference objects, jets from simulation and detector can be compared implicitly
via the reference object.

To derive the relative corrections, a single jet in the barrel region is used as reference
object. This region provides a reliable reference for several reasons, most importantly
the uniform detector shape and high range of jet p

T

. The jet to be corrected may be
in any detector region. Corrections are derived from the imbalance of the two jets,
parameterised as a function of ⌘.

The absolute corrections use reference objects with good energy resolution. These
are matched to jets in the central region. Three analyses, each using a different
reference object, derive absolute corrections for Run II. One of these, using a Z boson
as reference object, has been implemented and performed as part of this thesis.

4.2 Analysis of Z + Jet Events

Calibration with Z + Jet events has several advantages which offset the low cross
section compared to other calibration channels. For example, Z properties have small
systematic uncertainties. This allows for precise measurement of jet uncertainties.
Different Z decay channels allow crosschecking several subdetectors against each other,
as shown in Figure 4.3. Also, using a Z boson as reference object allows corrections
at low jet p

T

. These factors have made previous Z ! µµ + Jet calibration studies
an important contribution during Run I JEC [43].

Run II introduces new conditions that must be reflected in calibrations. The
increased collision energy of 13TeV and interval of 25 ns makes calibrations even
more critical. The entire analysis has been recreated to be viable for techniques used
in Run II.

The analysis uses the Excalibur analysis suite [33]. It extends the Artus framework
and workflows, adding tools for detailed study of jets at different correction levels.
Owing to the impact of CMS JEC, an important focus has been on improving speed
and robustness against user errors. This is implemented in the analysis itself via
automatisation. It is also further facilitated by an optimised infrastructure, as detailed
in Chapter 3.

In addition to the Z ! µµ + Jet studies building on experiences from Run I,
the calibration has been extended to use Z ! ee + Jet events [44]. This increases
statistics on the one hand, and allows for internal crosschecks on the other hand.
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Figure 4.3: Subdetectors Contributing per Channel: The Z ! µµ + Jet and Z ! ee + Jet
calibrations use different subdetectors. In both cases, jets are covered by the
Tracker and calorimeters. Also, both electrons and muons are visible to the
Tracker. For Z ! µµ + Jet, the Z decay products are also covered by the
dedicated muon trackers of CMS. In contrast, Z ! ee + Jet relies on the
electromagnetic calorimeter.

Finally, new methods such as the PileUp Per Particle Identification (PUPPI) [45]
Pileup corrections have been studied and enabled for corrections [15].

The studied number of combinations of channels, corrections, data taking periods,
and Pileup mitigation techniques is beyond the scope of this chapter. As such, only
a representative selection of plots is shown in this chapter. Unless otherwise noted,
plots show Z ! µµ + Jet events with CHS Pileup mitigation. Events are taken from
the 2015D data taking period of the CMS collaboration. Configurations of studied
variants are listed in Appendix A. Additional plots may be found in Appendix B.

4.2.1 Data Preprocessing

The analysis is implemented using the Excalibur analysis suite. It builds on the
Artus framework and thus inherits its general workflow design: Official CMS data
is skimmed using the Kappa framework. Observables are extracted using an Artus
analysis. Finally, observables are aggregated to create histograms, fits, and other
representations.

Before the actual Artus analysis, several preprocessing steps are performed. From a
technical side, these reduce data size and complexity. More importantly, they collect
and apply metadata relevant for physics results.

Excalibur relies on metadata from external sources to process data in Artus.
Fetching, processing, and applying metadata has been automated as a preprocessing
step. This ensures that calibration is always performed with up-to-date parameters.
Furthermore, it eliminates many sources of user error. Most importantly, it guarantees
that settings are used consistently even when manually overwritten.
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Skim Preprocessing

Skimming applies basic preprocessing to each event. Leptons with too little transverse
momentum are rejected as Z decay candidates. Only events with at least two decay
candidates are kept.

In addition, the basic definitions of jets are set: All jets are clustered using the
anti-k

t

algorithm with multiple cone sizes, as outlined in Section 2.2.2. Results
presented in this chapter use the CMS standard of R = 0.4. Constituents are particle
flow candidates as outlined in Section 2.1.2. Skims of simulation datasets also include
so-called generator jets. These are directly derived from simulated particles, without
simulated detector interaction and reconstruction. Finally, a transverse momentum
threshold is used for all jets to exclude very soft jets from Pileup.

p

l,skim

T

> 8GeV (4.1)

p

Jet,skim

T

> 5GeV (4.2)

Data Certification and Data Taking Periods

Not all data collected by the CMS detector is appropriate for analysis. For example,
failure of the solenoid drastically reduces reconstruction reliability. Some data may
only be adequate with constraints, e.g. excluding malfunctioning detector regions.

The CMS collaboration coordinates the use of valid data by certifying data taking
periods, or runs. These are regularly updated by the CMS data certification group.
Multiple levels of data quality are available, as shown in Figure 4.4.

Figure 4.4: Certified Data Taking Periods: The CMS collaboration certifies periods of data
taking, so-called runs. Certification provides different levels of data quality. High
quality data covers less runs, and contains less data in each run. Quality levels
used for calibration are Golden (best), Silver, and DCSOnly (worst).
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The default for CMS analyses is the golden JSON. It offers the best data quality, at
the cost of a reduced data volume. Calibration is performed with other data quality
levels as well, if required. All results presented in this chapter use the golden JSON
standard.

For run 2, data certification lists are also used to specify the bunch crossing interval.
Separate lists are available for 25 ns and 50 ns intervals.

Since calibration depends on detector performance, certification information is used
at multiple stages. As such, Excalibur does not use raw certification lists. It adds
support for cutting and slicing to select appropriate runs. Results in this chapter
show data from the 2015D data taking period, unless otherwise noted. This is the
most recent period with stable conditions for which corrections have been derived.

The periods defined by certification and slicing are used as a filter on data from the
detector. Only events recorded in such a period are processed. In addition, the used
data periods implicitly define the Integrated Luminosity. Excalibur automatically
queries this value for the specific data periods used.

Pileup Estimation and Weighting

Due to the LHC colliding bunches of non-elementary particles, Pileup adds notable
background activity to events. Properly correcting for this effect is critical to achieve
adequate precision for calibration. As such, simulations must closely replicate the
real Pileup characteristics.

In general, simulations provided by the CMS collaboration do match the Pileup
characteristics in the experiment. At the time simulations are performed, Pileup
characteristics are often unknown. This is especially true at the beginning of the 25 ns
data taking: compared to Run I, Luminosity has been increased and bunch crossing
intervals shortened. Thus, simulations were created without knowledge about Pileup.
Consequently, simulated events must be weighted to match the distributions found in
detector data.

Weighting is performed based on the expected number of Pileup interactions µ or
hn

PU

i1. Recorded data provides only the number of actual Pileup interactions. The
expected number must be estimated based on Luminosity and Pileup cross section.
Excalibur automatically performs this for a given set of runs. The result is the
distribution of the expected number of Pileup interactions for this run.

Simulated events directly expose the expected number of Pileup used in the
simulation. Excalibur calculates the distribution of hn

PU

i for each simulation dataset.
The distributions from detector and simulation data are normalised and binned. For
each bin, the ratio of events in detector and simulation data is calculated. Each

1The canonical name in the CMS experiment is µ. To avoid confusion with muon quantities, the
Z ! µµ analysis uses the longer name hn

PU

i.
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simulated event then weighted by the corresponding ratio for its hn
PU

i. This matches
the distribution in the simulation to the detector data, as shown in Figure 4.5.

(a) Expected Number of Pileup Interactions (b) Number of Pileup Interactions

Figure 4.5: Pileup in Detector and Simulation Data: Pileup is a key characteristic of events.
Simulations must closely replicate the Pileup observed in the detector. This is
ensured by weighting simulated events depending on the expected number of
Pileup interactions. Figure 4.5a shows the expected number of Pileup, including
the unweighted simulation. Simulation and detector data do not fully overlap,
as hnPUi for the later is calculated per event. This excludes smearing from the
uncertainty on hnPUi. Figure 4.5b shows that the observed, actual number of
Pileup agrees between data from detector and weighted simulation.

Preliminary Corrections

The purpose of calibration with Z + Jet events is to derive the final residual corrections.
This implies that the base level of the calibration uses all previous correction steps. As
such, Excalibur applies corrections individually to allow working at specific correction
levels. Plots in this chapter include all correction levels before the absolute detector
corrections, unless otherwise noted.

Since jet correction levels modify the jet energy, this also influences the Missing
Transverse Energy (MET). As such, ~

E

miss

T

must be recalculated for each correction
level, as defined in Equation 4.3. For every jet, its initial energy deposit ~p

i

T,skim

is replaced with the corrected energy ~p

i

T,CL

. In addition, the offset for Pileup
contribution ~p

i

RC

is added.
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The corrections are consistent for data from detector and simulation, as shown in
Figure 4.6. This feature is important for one of the absolute calibration methods
used. Notably, MET is not isotropic in �, as would be expected from the isotropy of
the detector. This is due to a misalignment of the interaction point and the centre of
the detector. However, the effect is cancelled out on average.

(a) Missing Transverse Energy (b) Direction of MET

Figure 4.6: MET after Jet Energy Corrections: The MET is constructed from the energy
of all objects in an event. Correcting jet energy for different correction levels
thus requires recalculating the MET. As shown in Figure 4.6a, corrections are
consistent between data from simulation and detector. The wave like shape in
Figure 4.6b is caused by misalignment of the beampipe.

4.2.2 The Z + Jet Event Topology and Selection

For calibration, an ideal Z + Jet interaction produces a Z and a parton, balanced
against each other. The parton undergoes showering and hadronisation, creating the
jet to be calibrated. The Z decays to two leptons; the calibration is performed for
decays to two oppositely charged electrons or muons. An ideal topology is shown in
Figure 4.7.
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Figure 4.7: Schematic View of Ideal Z + Jet Events Used for Calibration: The actual inter-
action produces a single Z boson and parton. The initial transverse momentum
is negligible. This results in Z and parton being oriented in opposite direction
in �. A jet originates from the parton, while the Z boson decays to a pair of
electrons or muons. Requiring reliable detector coverage limits the ⌘ regions in
which jets and leptons are accepted.

Constraints are required to select appropriate events from data. For the Z + Jet
channel, background from other channels is low.Instead, additional particles from
Pileup are the most common source for misidentifying events.

Constraints from Z Boson Decay

As the Z boson is not visible to the detector, it must be reconstructed from its decay
products. To ensure precision, leptons must be fully covered by their respective
subdetectors. Thus, a small border region of either ECAL or muon system is excluded
as well. A minimum transverse momentum is required to ensure reliable detector
response. Any lepton fulfilling these constraints is a potential Z boson decay product.

|⌘
µ

| < 2.3 (4.4)
|⌘e| < 2.4 (4.5)
p

µ,e
T

> 20GeV (4.6)

A valid Z boson is defined as a pair of oppositely charged leptons whose invariant
mass is close to the Particle Data Group (PDG) Z boson mass. Since two leptons
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4.2 Analysis of Z + Jet Events

are assumed to originate from a Z boson decay, exactly one Z boson must be
reconstructable from any pair of leptons. The Z boson must also have a minimum
transverse momentum. This avoids probing jet phase space regions with large
systematic biases.

��
m

ll

�m

PDG
Z

��
< 20GeV

�
m

PDG
Z = 91.1876GeV

�
(4.7)

N

µ

+Ne  3 (4.8)
p

Z
T

> 30GeV (4.9)

Overall, this relaxes the constraints used during Run 1: Z boson reconstruction
allowed for only a single pair of oppositely charged leptons. For Run II, an arbitrary
number of leptons is allowed.

Jet Definitions and Constraints

The ideal topology includes only one parton and thus one jet. However, this is not a
feasible constraint under experimental conditions. For example, additional jets may
originate from Pileup or final state radiation from the parton. Jets are thus sorted by
their transverse momentum in descending order as first, second, third etc. leading jet.
Since additional jet activity is caused by soft processes, it is reasonable to match the
first leading jet to the parton. For simplicity, this jet is simply called the leading jet.

Selection criteria for jets apply similar considerations as lepton selection: detector
coverage and response, ensured by constraints on ⌘ and p

T

. Only the leading jet is
required to fulfil these constraints. Additional jets are not required to satisfy absolute
thresholds.

|⌘
Jet1

| < 1.3 (4.10)
p

Jet1

T

> 12GeV (4.11)

A relative threshold is used to veto events with considerable additional jet activity.
It is parameterised via ↵, the estimated relative energy loss of the leading jet. The Z
boson momentum is used as an estimate for the true parton momentum. The second
leading jet is used as a worst case estimate for leading jet radiation losses.

↵ :=
p

Jet2

T

p

Z
T

(4.12)

↵ < 0.3 (4.13)

67



4 Calibration of Jets with Z ! (µµ/ee) Events

A key assumption for calibration is that the leading jet is balanced to the Z boson.
As such, the two are expected to be oriented in opposite direction, or back to back.
Since only the transverse momentum of the beams is negligible, a constraint is applied
only in �. As additional jet activity may bias this balance, a small margin of error is
allowed.

|�Z � �

Jet1

| > ⇡ � 0.34 (4.14)

4.2.3 Agreement of Simulation and Detector Data

The choice of Z + Jet events for calibration is motivated by Z boson features being
well known. This implies that features of the Z boson must agree in detector and
simulation. Thus, calibration requires thorough validation of its features.

In general, both individual leptons and the reconstructed Z boson are adequately
described by simulation. Differences are within the expected precision of the detector.
However, response of leptons currently seems to be overestimated, as shown in
Figure 4.8. This effect is corrected before deriving jet energy corrections.

(a) Transverse Momentum of Leading Muon (b) Reconstructed Mass of Z Boson

Figure 4.8: Kinematics of Muons and Z Boson: The calibration with Z + Jet events relies
on precise simulation of Z boson features. In general, muons are simulated
adequately; detector response is slightly overestimated in simulation. This
results in a shift of the Z mass by few permille.
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As part of the validation, other features are checked as well. This encompasses
kinematics outside the regions used for calibration and the composition of jets. As
required by the calibration, data from detector and simulation agree in these features.
As such, they are not further discussed here.

4.3 Calibration for CMS Run II

The Z + Jet analysis allows calibrating the jet energy scale. The goals are weighting
factors that link the measured jet and initial parton energy, as defined in Equation 4.16.
These factors must be separately derived for each detector region and every jet
definition.

C = R

�1
jet

=
p

parton

T

p

jet

T

(4.15)

=
p

parton
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jet,sim

T| {z }
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gen

p

jet,sim

T

p

jet

T| {z }
C

res

(4.16)

Calibrations for CMS are parameterised by jet p

T

and ⌘. Multiple channels are
used for best statistics and robustness. The Z + Jet analysis contributes both the
Z ! ee + Jet and Z ! µµ + Jet channels for Run II. In addition, different jet
definitions are supported; at the moment, these are defined by the Pileup mitigation
method used before clustering.

4.3.1 Pileup Mitigation

Additional jet activity has a severe impact on calibration performance. The calibration
for Pileup effects only removes the average Pileup energy. Yet, jets from Pileup still
remain in the event. Applying jet vetoes or studying jet distributions is biased by
these artefacts.

As such, identifying and removing Pileup itself is important for calibration. The
default method used during Run 1 is the Charged Hadron Subtraction (CHS) method.
As charged hadrons are visible to the tracker, their point of origin can be reconstructed.
CHS removes any particle that definitely originates from a Pileup interaction.

As CHS only removes charged particles, its effectiveness is limited. To remedy this,
the PUPPI method has been introduced for Run II. It generalises the approach of
CHS to all particles.
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4 Calibration of Jets with Z ! (µµ/ee) Events

The PUPPI Method

Like CHS, PUPPI uses tracker information to identify charged particles originating
from Pileup. However, it uses other features distinct to Pileup to generalise this
information, and categorise other particles as well. This includes uncharged particles,
but also charged particles whose origin is inconclusive. A schema of this method is
shown in Figure 4.9.

(a) Pileup Identification with CHS (b) Pileup Identification with PUPPI

Figure 4.9: Pileup Mitigation for Run II: To identify Pileup for removal, the point of origin
can be reconstructed from tracks. As this is only possible for charged particles,
only these can be clearly categorised. The CHS method removes particles clearly
identified as originating from Pileup. The PUPPI method uses this information
to categorize other particles as well. It uses the kinetic properties of categorised
particles as a classifier for all particles.

The approach uses a generic measure applicable to all particles. It expresses a
Pileup likeness ↵

i

for every particle2

i, as defined in Equation 4.17.

↵

i

= log

particlesX

j

p

j

T

�R

ij

⇥ (�R

ij

�R

min

)⇥ (�R

ij

�R

max

) (4.17)

The measure is based on the fact that Pileup tends to produce soft jets, in contrast
to jets from the hard interaction. A soft jet consists of particles with low energy,
spread over a large area. Thus, particles in jets originating from Pileup tend towards
low values of ↵

i

. Particles from the hard interaction tend towards high values of
↵

i

. The restriction to a local distance via R

max

mimics the maximum size of jets
from clustering. Excluding a smaller distance R

min

avoids singularities from collinear
splitting.

2It is important to distinguish between the per-particle measure ↵i used for PUPPI and the
per-event measure ↵ used for JEC. The two are not equivalent.
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For each event, the PUPPI method uses charged particles to identify the ↵

i

distribution of particles from Pileup. While derived from charged particles, the
distribution is comparable for uncharged particles. This allows identifying and
removing uncharged particles from Pileup as well.

Calibration using PUPPI

As part of this thesis, the PUPPI method has been integrated into the Z + Jet
analysis. Technical validation shows the method to be ready for use. However, side
effects on the Z + Jet event topology must be studied as well [15].

Unlike CHS, the PUPPI method inspects all particles. Thus, it can remove entire
jets from Pileup. This applies especially to soft jets, after which ↵

i

is modeled. Most
jets from additional Pileup interactions are removed, as shown in Figure 4.10.

The largest impact on calibration is the purity of events. Second leading jets
originating from Pileup are suppressed. In turn, any remaining second leading jet
is likely caused by final state radiation. For most events, it is the actual fraction of
energy loss. As a result, bias from Pileup on the ↵ constraint is reduced, as shown in
Figure 4.11.

(a) Number of Jets with CHS (b) Number of Jets with PUPPI

Figure 4.10: Number of Jets Depending on Pileup Mitigation: Pileup mitigation removes
particles associated with Pileup. The CHS method only removes a portion of
charged particles. Pileup jets still remain in the event. In contrast, PUPPI can
remove any particle originating from Pileup, possibly removing entire jets.
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4 Calibration of Jets with Z ! (µµ/ee) Events

(a) Second Jet Activity with CHS (b) Second Jet Activity with PUPPI

Figure 4.11: Second Jet Activity Depending on Pileup Mitigation: The second leading jet is
an estimator for final state radiation. However, jets from Pileup interactions
bias this. The PUPPI method largely removes second jets not originating from
final state radiation. In turn, the constraint ↵ < 0.3 is less biased.

The use of PUPPI is promising for calibration studies. Since it reduces the impact
from Pileup in general, calibration is less biased. Furthermore, it provides events with
much cleaner topology. This allows selection constraints to be used more precisely.
This can be used to improve purity or statistics, as shown in Figure 4.12.

The Z + Jet analysis is an early adopter of PUPPI in the calibration effort. As
such, not all calibration stages are consistently available for jets with PUPPI Pileup
mitigation. Thus, plots in other sections use the default method for CMS analysis,
namely the CHS method. Plots for data using the PUPPI method may be found in
Appendix B. However, PUPPI is now officially supported by the calibration effort for
data collected in 2016.

4.3.2 Unification of Z ! ee and Z ! µµ for Calibration

The Z ! µµ + Jet and Z ! ee + Jet channels are complementary for calibration.
Both channels use the same initial interaction. Thus, methods and workflows are
largely equivalent. This allows using both channels in parallel.

The Z ! ee + Jet channel is a new addition to the Z + Jet calibration effort
at Institut für Experimentelle Kernphysik (IEKP). Since the channel shares many
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(a) Accepted Events with CHS (b) Accepted Events with PUPPI

Figure 4.12: Accepted Events Depending on Pileup Mitigation: Multiple constraints used
for Z + Jet analyses work on jets in the events. Since jets may originate from
Pileup, this introduces biases to constraints. The PUPPI method is superior in
removing such jets. This increases the number of accepted events by a factor
of roughly 2.5.

elements with the Z ! µµ + Jet channel, many kinematic features are comparable.
Still, electrons and muons are not fully equivalent in the detector. This leads to
distinct differences that must be reflected in calibration [44].

Most prominently, precision varies depending on transverse momentum of the Z
boson, as shown in Figure 4.13. Namely, muons are more precise at low p

T

. In turn,
electrons cover a wider spectrum of p

T

. This is due to the coverage by different
subdetectors.

Muons are detected only by the tracker and muon system; both use the trajectory of
a particle to measure its momentum. At high momentum, muon trajectory approaches
a straight line, making momentum reconstruction difficult. In contrast, electrons are
detected by the ECAL. Due to the magnetic field of CMS, electrons emit substantial
energy via photons. At low momentum, photon and electron may deviate notably
from each other. This makes it difficult to reconstruct them as one entity.

Both channels are analysed as one workflow. Muons and electrons are generically
treated as leptons from Z decay; only lepton corrections are applied separately. As
a result, kinematics of the two decay channels are mostly equivalent, as shown in
Figure 4.14.
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4 Calibration of Jets with Z ! (µµ/ee) Events

(a) Invariant Mass of µµ (b) Invariant Mass of ee

Figure 4.13: Mass of Z Boson Depending on Channel: The precision of the reconstructed
Z boson mass depends on the decay products. A low response of muons or
electrons also lowers the measured Z mass. In general, the Z ! µµ channel
becomes unreliable above 400GeV. In contrast, the Z ! ee channel is more
robust at higher transverse momenta. The line and band show the Z boson
mass and width as published by the PDG.

While processed together, the channels are used separately for calibration. On the
one hand, a separate scaling of the Z mass is performed to match data from detector
and simulation. It compensates for the different coverage and separate corrections
of electrons and muons. On the other hand, treating channels separately allows
crosschecking responses from ECAL and muon system. Plots for the Z ! ee + Jet
channel may be found in Appendix B.

4.3.3 Jet Balancing and Corrections

CMS jet corrections are based on comparing measured and true energy of jets. The
ratio of measured and true energy is the jet response R

jet

. Its inverse can be directly
used as a correction factor. The challenge is the derivation of the true energy or
transverse momentum.
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(a) Leading Muon Orientation (b) Leading Electron Orientation

Figure 4.14: Forward Orientation of Leading Lepton: For both Z ! ee and Z ! µµ,
kinematics of Z decay products are mostly equivalent. Differences arise from
the different coverage of subdetectors. The ECAL exhibits a gap between barrel
and end caps of the detectors. In contrast, the muon system does not extend
as far in forward and backward direction.

Jet Response

Data from the detector obviously does not reveal the true energy of jets. However,
the energy can be estimated by exploiting the negligible transverse momentum of
particle beams. The Z boson and parton originating from the hard interaction are
balanced in the transverse plane. Furthermore, the Z boson features a much better
resolution than jets.

Two balancing methods are used for Z + Jet calibration, as shown in Figure 4.15.
Both assume that the Z momentum is equal in magnitude to true energy of the
parton, as defined in Equation 4.18. The difference is in what is considered as the
detected equivalent of the parton.

~p

Z
T

= �~p

parton

T

(4.18)

pT Balance assumes an ideal topology of one jet balanced against the Z. This implies
that the true parton momentum is also the true jet momentum. The p

T

Balance,
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as defined in Equation 4.20, follows directly from this.

p

jet

T

⇡ p

parton

T

(4.19)

R

bal

jet

=
p

meas

T

p

Z
T

(4.20)

This method is subject to biases from assuming an ideal topology. Specifically,
final state radiation leading to multiple jets from the initial parton breaks
this assumption. In this case, response may be significantly underestimated.
Constraints on ↵ can reduce this bias, but also reduce statistics when the second
jet originates from Pileup.

In turn, the method is robust against soft Pileup. Since only the Z and leading
jet are considered, biases from other objects are avoided. This makes the
method especially robust against miscalibration of other detector elements.

Missing ET Projection Fraction (MPF) takes any jets into account. The assump-
tion is that the topology is not ideal, but pure: all energy in the detector results
either from the Z or the balanced parton. In turn, any MET must originate
from imprecisions in jet energy measurement.

� ~
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parton
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(4.21)
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Z
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The MPF is subject to biases from the assumption of purity. Especially soft
Pileup activity can be significant compared to the p

T

Balance. Since MET is
derived from the entire detector, all elements must be well calibrated.

In practice, MPF is the most robust balancing method. It is implicitly robust
against final state radiation and jet clustering errors. Since most biases of the
method are isotropic, they cancel out on average.

Figure 4.16 shows the performance of the two methods. The scale of pZ
T

serves
as an estimate for the true jet energy. As expected, the MPF method is the more
robust: its response in simulation is close to 1 on the entire jet energy spectrum. In
contrast, p

T

Balance drops severely for low jet energies. This is mostly an effect of
final state radiation having a higher relative effect.

For calibration, the absolute behaviour of responses is of minor significance. In
general, both distributions show the same trends in comparison of detector and
simulation data: responses of the detector are systematically underestimated. This
illustrates the need for distinct corrections of detector responses.
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(a) Balancing Topology (b) pT Balance Topology (c) MPF Response Topology

Figure 4.15: Jet Balancing Responses: Calibration uses balancing to derive a per-event
definition of jet response. The pT Balance response only uses the pT of Z
boson and leading jet. This avoids Pileup contribution, but also excludes final
state radiation splitting the studied jet. The MPF response uses the entire
event. This respects arbitrary splitting of the leading jet. Pileup contribution
is included, but suppressed by the projection along the Z boson direction.

(a) pT Balance (b) Missing ET Projection Fraction

Figure 4.16: Jet Responses Before Final Corrections: The two jet response methods pT Bal-
ance and MPF Response are used to derive jet energy corrections. Corrections
applied in these figures are based on simulation only. Both methods show a
drop in reconstruction efficiency at lower jet energies. The Z + Jet analysis is
the only data driven calibration probing the low jet pT spectrum. Bins above
400GeV are not yet adequately covered with sufficient statistics.
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Topology Extrapolation

Both the p

T

Balance and MPF method are biased if events do not conform to the
ideal Z + Jet topology. To derive corrections applicable in general, these biases must
be compensated. Ideally, this compensation allows combining both methods.

Biases originate from different effects. Yet, they can be subsumed as additional
activity in the event. An effective upper limit on the scale of this is the second leading
jet. It constraints jets from both Pileup and final state radiation.

As such ↵ = p

Jet2

T

/p

Z
T

, as defined in Equation 4.12, may constrain biases. However,
it is not feasible to apply a simple constraint. Especially under the conditions of
Run II, many events exhibit notable activity, as shown in Figure 4.11a. Any fixed
constraint limiting additional activity would also drastically reduce statistics.

To leverage phase space regions with considerable ↵, the topology is extrapolated.
The phase space is divided into regions of diminishing ↵, i.e. reduced additional jet
activity. Extrapolating responses between these regions allows reconstructing ↵ ⇡ 0.
Regions and extrapolation are shown in Figure 4.17.

The extrapolation underlines the characteristics of the p

T

Balance and MPF
methods. Final state radiation increases with higher values of ↵. In turn, the leading

(a) Extrapolation for Z ! µµ (b) Extrapolation for Z ! ee

Figure 4.17: Jet Response Extrapolation to Ideal Topology: To derive corrections, events are
extrapolated to an ideal topology. All constraints mentioned in Section 4.2.2
are applied, with the exception of ↵ < 0.3. Responses are calculated for bins in
↵, and a linear fit applied. Extrapolation provides the responses at ↵ ⇡ 0.
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jet only carries a fraction of the initial parton energy. As a result, the p

T

Balance
drops drastically for high values of ↵. In contrast, the MPF response is much more
robust. Its slope indicates that Pileup offset may be overestimated. High ↵ implies
low p

Z
T

, reducing the phase space for additional, soft jets.
In the extrapolation to ↵ ⇡ 0, responses from either detector or simulation data

converge. The difference between detector and simulation data is still between 1% to
2%, however. In principle, the ratio of response from detector and simulation can be
used as a correction factor, as defined in Equation 4.16. However, this is applicable
only to the single channel responses are derived from. For corrections applicable in
general, multiple channels must be combined.

Global Fit and Residual Corrections

Corrections of simulation and detector data are used to enable high precision meas-
urements. In turn, biases from deriving corrections themselves must be kept to a
minimum. This is achieved by using multiple channels to derive the final corrections.

For Run II, corrections for CMS are derived based on data from four channels.
Two of these channels have been provided as part of this thesis, namely Z ! µµ + Jet
and Z ! ee + Jet. The �+ Jet channel can reliably probe high jet momenta. Finally,
the Multijet channel is used to calibrate highly energetic jets, using low energy jets
calibrated by other channels.

The channels are combined in the so-called global fit. The reference object of each
channel, i.e. Z boson, � or multiple jets, defines the common p

T

scale. For each p

T

bin, an extrapolation of generalised additional jet activity, as defined in Equation 4.23,
is performed. In addition, nuisance parameters are used to account for peculiarities
of each channel, e.g. uncertainties on lepton energy.

↵

GF

:=
p

Jet2

T

p

ref

T

(4.23)

(4.24)

The Global Fit produces the final, residual corrections, matching data from detector
and simulation. These corrections adjust the jet response in detector data.

As a crosscheck, this effect is validated by the Z + Jet analysis as well. The final
corrections further reduce differences between detector and simulation. Corrections
derived for the 2015D data taking period consistently reduce differences to below 1%,
as shown in Figure 4.18.
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(a) Extrapolation for Z ! µµ (b) Extrapolation for Z ! ee

Figure 4.18: Jet Response with Final Corrections: The residual corrections derived from
the calibration shift the jet response in detector data. This aligns the response
in detector and simulation data. The ratio of the two data sources shows the
current precision of corrections. Corrections derived with the Z + Jet analysis
reduce differences in jet response to less than 1%.

4.4 Conclusion and Outlook

The work presented in this chapter is a considerable contribution to the calibration
effort of the CMS collaboration. Calibration of jet responses is vital for research at
the LHC. It is a key requirement to achieve the high precision required by searches
for new phenomena.

The calibration with Z + Jet events is important to align data recorded in the
CMS detector with simulations. By using the well studied Z Boson as a reference
object, simulation and experiment can be compared. Without the resulting residual
corrections, comparing other experimental results to theoretical predictions would
not be feasible.

Calibration is an ongoing effort, which extends beyond the timescale of this work.
Thus, the Z + Jet analysis has been reimplemented to remain viable for the new
conditions of Run II. A stable technical foundation has been created for the ongoing,
reliable calibration of the jet energy scale.

The increased collision energy and frequency of Run II directly impacts the so-called
Pileup. These additional interactions are a major influence for the measured jet
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energy. A new Pileup mitigation technique, which aggressively removes suspected
Pileup contribution, has been studied. The corrections derived from these study allow
for the adoption of the technique by other analyses. Furthermore, it forms the basis
for future in-depth studies of the Z + Jet events in the CMS detector.

To improve the precision of calibrations, two complementary channels have been
used: for the first time in the CMS calibration effort, Z ! µµ + Jet and Z ! ee + Jet
have been calibrated in parallel. This allows using information from multiple detector
components. In addition, it considerably improves statistics and thus precision.

Data taking at 25 ns has only recently begun in summer 2015. Despite this, the jet
energy calibration for the CMS collaboration already achieves high precision. The
difference in jet response for data from detector and simulation has been lowered to
less than 1%.
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Chapter 5

Conclusion and Outlook

The work presented is an interdisciplinary contribution to particle physics. From a
technological perspective, a new approach for end user data analysis via distributed,
coordinated caching has been proposed. With respect to particle physics itself, the
jet energy scale of the CMS experiment has been calibrated to high precision.

The new data analysis approach adds data locality to existing data analysis
workflows and infrastructures. By caching data on processing resources, data may be
served more quickly, in turn speeding up data analysis as a whole. The approach has
been specifically designed to integrate transparently with existing particle physics
workflows and infrastructures.

A prototype has been implemented to demonstrate the feasibility of the approach.
This prototype is already successfully used to enhance particle physics analyses.
In specific, the runtime of calibration analyses for the CMS detector is used as a
benchmark. Using the new data analysis approach, such analyses are performed four
times faster on average.

Using Z + Jet events recorded at the CMS detector, the jet energy scale has been
calibrated for the second Large Hadron Collider (LHC) data taking period. This
calibration is crucial for high precision analyses performed by the CMS collaboration.
The changed conditions at the LHC necessitate not just a continuation of earlier
calibration efforts. An entirely new Pileup mitigation technique has been studied and
calibrated. To provide the statistics and robustness required, two channels have been
calibrated in parallel. The current precision of calibrations already approaches that
of the first LHC data taking period.

Both topics, technology and analysis, benefit from each other. The new middleware
allows to perform calibrations with more channels, without sacrificing speed and
responsiveness. In turn, the calibration analysis serves as a well defined, stable
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benchmark and probe for the middleware. This mutual benefit allows both topics to
act as enablers for future research.

Results of the calibration are vital to analyses performed as part of the second LHC
data taking period. The contribution of this work impacts the precision of future
analyses by the CMS collaboration.

The new techniques introduced to the calibration analysis itself allow for further
improvements of precision. The improved Pileup mitigation makes it possible to
study the Z + Jet channel with drastically reduced background effects. Combining
two decay channels enables an improved study and validation of the detector response
in these channels.

The distributed caching middleware prototype is applicable well beyond its current
scope. It is only a small step from being suitable for emerging types of processing
resources, such as cloud and HPC resources. In addition, both the prototype and
its underlying approach are applicable to data analysis in general, even outside of
particle physics.
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Appendix A

Configuration and Settings for the Z + Jet
Analysis

Tools and Settings used for the analysis detailed in Chapter 4.

A.1 Software and Versions

Table A.1: ANALYSIS SOFTWARE USED

Software Version / Commit

CMSSW (skim) CMSSW_7_6_3_patch2
CMSSW (analysis) CMSSW_7_4_0_pre9
Excalibur a31fe391e8f4f94ea7c4cc4e990b68b290e62073
Artus a1b8bb10d7f1e4aa3b40e9cee9da6c0309bc79d4
KappaTools b91c0447a357b35967a2738047ce2837e4355a1a
Kappa d8472f6b0f3f584767b1355ff02b8aa9c41e0d84

A.2 Configurations

Configurations as provided by the respective repositories and commits. For DCSOnly
certification, the config modifier _DCSOnly was applied as well. Other run periods
have been studied via the modifiers _2015A, _2015B and _2015C.

85



A Configuration and Settings for the Z + Jet Analysis

Table A.2: EXCALIBUR CONFIGURATIONS

Channel Data MC Modifiers

Z ! µµ + Jet (CHS) data15_25ns mc15_25ns _2015D
Z ! ee + Jet (CHS) data15_25ns_ee mc15_25ns_ee _2015D
Z ! µµ + Jet (PUPPI) data15_25ns mc15_25ns _2015D _puppi
Z ! ee + Jet (PUPPI) data15_25ns_ee mc15_25ns_ee _2015D _puppi

A.3 Settings

This is an excerpt from above mentioned configurations. Due to their length, only
key portions are listed.

Table A.3: ANALYSIS SETTINGS

Option Channel Value

Dataset Z ! µµ (Data 2015B, 50ns) /DoubleMuon/Run2015B-16Dec2015-v1/AOD
Z ! µµ (Data 2015C, 50ns) /DoubleMuon/Run2015C_50ns-16Dec2015-v1/AOD
Z ! µµ (Data 2015D, 25ns) /DoubleMuon/Run2015D-16Dec2015-v1/AOD
Z ! µµ (MC NLO, 25ns) /DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/

RunIIFall15DR76-PU25nsData2015v1_HCALDebug_76X_mcRun2_asymptotic_v12-v1/AODSIM
Z ! ee (Data 2015B, 50ns) /DoubleEG/Run2015B-16Dec2015-v1/AOD
Z ! ee (Data 2015C, 50ns) /DoubleEG/Run2015C_50ns-16Dec2015-v1/AOD
Z ! ee (Data 2015C, 25ns) /DoubleEG/Run2015C_25ns-16Dec2015-v1/AOD
Z ! ee (Data 2015D, 25ns) /DoubleEG/Run2015D-16Dec2015-v2/AOD
Z ! ee (MC NLO, 25ns) /DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/

RunIIFall15DR76-PU25nsData2015v1_HCALDebug_76X_mcRun2_asymptotic_v12-v1/AODSIM
JEC Z ! (µµ/ee) (Data) Fall15_25nsV2_DATA

Z ! (µµ/ee) (MC) Fall15_25nsV2_MC
JSON Z ! (µµ/ee) (Data) /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions15/

13TeV/Cert_246908-260627_13TeV_PromptReco_Collisions15_25ns_JSON_v2.txt
Minbxsec Z ! (µµ/ee) 69.0 mb
Jet ID Z ! (µµ/ee) (Data) 2015 loose
HltPaths Z ! µµ (Data) HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ
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Appendix B

Additional plots of Z + Jet analysis

B.1 General

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.1: Constraint Efficiency with all constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.2: Missing Transverse Energy without any constraints, and Simulation based

Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.3: Missing Transverse Energy with all constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.4: Azimuthal Orientation of Missing Transverse Energy without any constraints,

and Simulation based Corrections
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B.1 General

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.5: Azimuthal Orientation of Missing Transverse Energy with all constraints, and

Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.6: Number of Reconstructed Jets without any constraints, and Simulation based

Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.7: Number of Reconstructed Jets with all constraints, and Simulation based Cor-

rections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.8: Number of Reconstructed Jets versus Number of Primary Vertices without any

constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.9: Number of Reconstructed Jets versus Number of Primary Vertices with all

constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.10: Number of Primary Vertices without any constraints, and Simulation based

Corrections
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B.2 Z Boson

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.11: Number of Primary Vertices with all constraints, and Simulation based Correc-

tions

B.2 Z Boson

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.12: Transverse Momentum of Leading Z with all constraints, and Simulation based

Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.13: Orientation of Leading Z Lepton with all constraints, and Simulation based

Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.14: Mass of Z Boson versus Transverse Momentum of Z Boson with all constraints,

and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.15: Transverse Momentum of Z Boson with all constraints, and Simulation based

Corrections
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B.3 Jets

B.3 Jets

B.3.1 Leading Jet

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.16: Transverse Momentum of Leading Jet without any constraints, and Simulation

based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.17: Transverse Momentum of Leading Jet with all constraints, and Simulation

based Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.18: Forward Orientation of Leading Jet without any constraints, and Simulation

based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.19: Forward Orientation of Leading Jet with all constraints, and Simulation based

Corrections
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B.3 Jets

B.3.2 Second Leading Jet

Alpha Constraint

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.20: 2nd Jet Activity without any constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.21: 2nd Jet Activity without constraints on ↵, and Simulation based Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.22: 2nd Jet Activity with all constraints, and Simulation based Corrections

B.4 Responses

B.4.1 Missing ET Projection Fraction (MPF)

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.23: Missing ET Projection Fraction versus Transverse Momentum of Z Boson with

all constraints, and Simulation based Corrections
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B.4 Responses

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.24: Missing ET Projection Fraction versus Transverse Momentum of Z Boson with

all constraints, and Simulation and Residual Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.25: Missing ET Projection Fraction versus Number of Primary Vertices with all

constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.26: Missing ET Projection Fraction versus Number of Primary Vertices with all

constraints, and Simulation and Residual Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.27: Missing ET Projection Fraction versus Absolute Forward Orientation of Leading

Jet without constraints on ⌘, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.28: Missing ET Projection Fraction versus Absolute Forward Orientation of Leading

Jet without constraints on ⌘, and Simulation and Residual Corrections
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B.4 Responses

B.4.2 pT Balance

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.29: pT Balance versus Transverse Momentum of Z Boson with all constraints, and

Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.30: pT Balance versus Transverse Momentum of Z Boson with all constraints, and

Simulation and Residual Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.31: pT Balance versus Number of Primary Vertices with all constraints, and

Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.32: pT Balance versus Number of Primary Vertices with all constraints, and

Simulation and Residual Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.33: pT Balance versus Absolute Forward Orientation of Leading Jet without con-

straints on ⌘, and Simulation based Corrections
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B.4 Responses

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.34: pT Balance versus Absolute Forward Orientation of Leading Jet without con-

straints on ⌘, and Simulation and Residual Corrections

B.4.3 Extrapolation

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.35: Extrapolation in ↵ without constraints on ↵, and Simulation based Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.36: Extrapolation in ↵ without constraints on ↵, and Simulation and Residual

Corrections

B.5 Resolution

B.5.1 Missing ET Projection Fraction (MPF) Resolution

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.37: Resolution of Missing ET Projection Fraction versus Transverse Momentum of

Z Boson with all constraints, and Simulation based Corrections
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B.5 Resolution

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.38: Resolution of Missing ET Projection Fraction versus Transverse Momentum of

Z Boson with all constraints, and Simulation and Residual Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.39: Resolution of Missing ET Projection Fraction versus Number of Primary

Vertices with all constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.40: Resolution of Missing ET Projection Fraction versus Number of Primary

Vertices with all constraints, and Simulation and Residual Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.41: Resolution of Missing ET Projection Fraction versus Absolute Forward Orienta-

tion of Leading Jet without constraints on ⌘, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.42: Resolution of Missing ET Projection Fraction versus Absolute Forward Orient-

ation of Leading Jet without constraints on ⌘, and Simulation and Residual
Corrections
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B.5 Resolution

B.5.2 pT Balance Resolution

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.43: Resolution of pT Balance versus Transverse Momentum of Z Boson with all

constraints, and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.44: Resolution of pT Balance versus Transverse Momentum of Z Boson with all

constraints, and Simulation and Residual Corrections
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B Additional plots of Z + Jet analysis

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.45: Resolution of pT Balance versus Number of Primary Vertices with all constraints,

and Simulation based Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.46: Resolution of pT Balance versus Number of Primary Vertices with all constraints,

and Simulation and Residual Corrections

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.47: Resolution of pT Balance versus Absolute Forward Orientation of Leading Jet

without constraints on ⌘, and Simulation based Corrections
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B.5 Resolution

(a) Z(µµ) with CHS (b) Z(ee) with CHS (c) Z(µµ) with PUPPI
Figure B.48: Resolution of pT Balance versus Absolute Forward Orientation of Leading Jet

without constraints on ⌘, and Simulation and Residual Corrections
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Appendix C

HTDA Configuration

This is the HTDA Sphinx documentation on configuring HTDA nodes and hooks.
Configuration setting blocks are autogenerated.

HPDA uses configuration files with an extended ini style. In addition, a number
of command line arguments may be used for convencience.

The HPDA system consists of two generic component types: Nodes that host the
core services, and Hooks that link to an existig batch system. In order to setup an
HPDA cluster on top of a batch system, several components must be configured:

Cache On every worker node with cache devices, an HPDA Node with a CacheMas-
ter must manage the caches. It maintains the files on the caches and provides
file and device meta-data to other components.

Locator A Frontend to the Cache meta-data, used for scheduling jobs to worker
nodes. At least one Locator is required to be accessible from every submit
host. Ideally, there is one Locator running on every host used for user job
submission.

Coordinator The scheduler of the HPDA cluster, deciding which files to stage and
where to put them. Exactly one Coordinator is required, and it must support
bi-directional communication to all Caches and Locators.

Collector Trackers for job, user and file usage statistics. Currently a subcomponent
of the Coordinator, so it cannot be explicitly setup.

Job Hooks The link between job meta-data and scheduling on the one hand and the
HPDA components on the other. When using an HTCondor batch system,
these must be configured on every submit host (schedd).

C.1 Syntax

The configuration file format uses extended INI syntax. It supports key-value pairs
organized in sections. Values may be lists and use references to each other. Comments
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C HTDA Configuration

may be used, which are simply ignored by the parser. Formally, a config file consists
of the following elements:

• Sections enclosed in square brackets ([]) at the start of a line.

• Keys at the start of the line, followed by an equal sign (=) to set or a plus-equal
sign (+=) to append.

• Comments starting with a semicolon (;).

• Values anywhere else.

Sections appearing multiple times are concatenated. Attributes appearing multiple
times are concatenated if defined with plus-equal sign (+=) or reset if defined with
equal sign (=). It is not an error to concatenate to an undefined attribute - this is
equivalent to a new definition. Keys are case insensitive and have included whitespace
converted to underscores. In general, whitespace is stripped from all elements.

There is a reserved section called global. Any attributes appearing before a section
are assigned to it. In addition, an explicit section global may be used for assigning
attributes.

Values may appear anywhere after a key. Lists of values are created simply by
having each individual value on a new line. Values may also include references to
other values. The syntax for this is &<section:attribute>s. If section is ommited
(&<:attribute>s), it defaults to the current section. If only an attribute is named
(&<attribute>s), the global section is used.

note References are substituted as plain strings, without any type con-
versions.

Multiple configuration files may be used. Sections and attributes are created in
parsing order. Note that references are resolved after parsing all files - they may thus
refer to attributes set in other files.

C.1.1 Example

times = 2 ; global value

[Section1]
foo_value = bar
times_seconds = &<times>s seconds ; refers to global value times

[Section2]
some_minutes = &<times>s minutes ; refers to global value times
times = ; a value may already be defined here as well
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C.2 General

&<Section1:times_seconds>s
&<:some_minutes>s ; refers to local value

[Section1]
foo_value = foo ; overwrites previous definition
times_seconds += 16 seconds ; append to previous definition

Indentation and line breaks before values are optional. The value of [Section2]
times will actually be the list [“2 seconds”, “16 seconds”, “2 minutes”]

C.2 General

C.2.1 Logging

All components provide logging facilities based on the Python logging package. This
allows sending debugging and runtime information to streams and log-files. (Other
logging targets, e.g. email, may be supported in the future.)

It is generally sufficient to configure Handlers. Configuring Loggers provides detailed
control when a single Handler receives messages from multiple Loggers.

[handler.nick1], [handler.nick2], ...

The actual output targets for logging. They must refer to loggers used in
the application in order to receive any logging messages.
type is buffer

Buffer for other handlers, delaying and clustering output of
records.
capacity ( int = 32 ) Number of records to buffer at most
flush_close ( bool = True ) Flush buffer when closing
flush_full ( bool = True ) Flush buffer when full
flush_level ( str = CRITICAL ) Minimum required level of

messages to flush
logger ( list[str] = [<empty>] ) logger name(s) to get mes-

sages from
targets ( list[str] ) Name of handler(s) to buffer
unlink_targets ( bool = True ) Remove original sources from

targets
type is file

Redirection of logging output to a file.
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C HTDA Configuration

destination ( str ) name of file to direct output to
logger ( list[str] = [<empty>] ) logger name(s) to get mes-

sages from
max_age ( seconds = -1 ) Maximum file age; use -1 for no

limit
max_count ( int = 3 ) Maximum number of files to use
max_size ( bytesize = -1 ) Maximum file size as byte size;

use -1 for no limit
minimum_level ( str = NOTSET ) -> {DISABLED, CRITICAL, ERROR, WARNING, STATUS, INFO, DEBUG , NOTSET}

Minimum required level of messages
permissions ( permission = rw-r--r-- ) Permissions of log

file
type is stream

Redirection of logging output to a stream, i.e. stdout or
stderr.
destination ( str = stderr ) sys stream to direct output to
logger ( list[str] = [<empty>] ) logger name(s) to get mes-

sages from
minimum_level ( str = NOTSET ) -> {DISABLED, CRITICAL, ERROR, WARNING, STATUS, INFO, DEBUG , NOTSET}

Minimum required level of messages

[logger.nick1], [logger.nick2], ...

Internal aggregation pipelines for logging messages. Each section’s nick-
name is used as the name the logger configured. The root logger is always
defined.
minimum_level ( str = NOTSET ) -> {DISABLED, CRITICAL, ERROR, WARNING, STATUS, INFO, DEBUG , NOTSET}

Minimum required level of messages
propagate ( bool = True ) Propagate to all lower loggers

C.3 Nodes

C.3.1 Node

Every node, regardless of active components, provides a core of essential functionality.
This infrastructure is shared by all components running on the node.

The NodeServer should be configured with respect to firewall settings and other
local services (the default port 8080 is the http alternative default). The NodeMapper
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C.3 Nodes

requires to be configured with respect to the components running on the node (see
below).

[NodeMaster]

Controller for any component’s main threads. The NodeMaster regularly
checks component lifesigns, restarting them in case of failures.

components ( list[str] = [] ) components to start on this node

restart_delay_add ( seconds = 10.0 ) delay to add to thread resur-
rection per death

restart_delay_max ( seconds = 600.0 ) minimum delay for thread re-
surrection after death

restart_delay_min ( seconds = 0.0 ) minimum delay for thread resur-
rection after death

restart_interval ( seconds = 0.0 ) interval for checking thread lifesigns
and restarts

[NodeServer]

HTTP server used by all components for inter-node communication.

host ( str = scc-wkitx-cl-cn-199-116.scc.kit.edu ) The address/host-
name the server is listening on.

port ( int = 8080 ) The port the server is listening on.

threads ( int = 5 ) Maximum number of worker threads to service con-
current requests

timeout ( seconds = 30.0 ) Timeout for incomming requests.

[NodeMapper]

Discovery of other nodes via hearbeats. For either two nodes to be able
to interact, at least one must notify the other as a listener

interval ( seconds = 60.0 ) Delay between sending/checking heartbeats

listeners ( list[str] = [] ) URIs of nodes to actively notify about this
nodes.

max_misses ( int = 5 ) Allowed missed heartbeats before ignoring node

variance ( seconds = 5.0 ) Variance of delay

113

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int


C HTDA Configuration

C.3.2 Cache

At least one Cache and Storage is required for the node to fullfil its functionality.
The catalogue should reside on a media that is as persistent as the caches.

Nodes hosting a Cache component should address all other Locator and Co-
ordinator nodes.

[CacheCatalogue]

Persistent store for the state of the meta-data of the cache.

state_base_path ( str ) Directory to store current state.

state_cache_size ( int = 4 ) Number of chunks to cache in memory.

state_chunk_count ( int = 64 ) Number of chunks to store state in.

tasks_base_path ( str ) Directory to store outstanding tasks.

[CacheAllocator]

Manager of the cache resources. Assigns files to backends or removes
them.

interval ( seconds = 300.0 ) Interval between starting work cycle.

variance ( seconds = 10.0 ) Variance on work cycle interval.

[CacheOperator]

Maintainer and janitor of the cache. Fetches, validates and unlinks files
and performs other maintenance duties.

cleaner_interval ( seconds = 43200.0 ) Interval between attempting
to spawn a cleaner for a single cache.

cleaner_max_threads ( int = 1 ) Maximum number of worker threads
tending to cache cleaning duties.

cooldown ( seconds = 0.01 ) Delay for each worker between a work
action.

duration ( seconds = 60.0 ) Minimum duration of a work cycle.

interval ( seconds = 300.0 ) Interval between starting work cycle.

pool_size ( int = 3 ) Maximum number of worker threads to use for
work items of any kind. Must be >2 and should by >1+cleaner_max_threads.

variance ( seconds = 10.0 ) Variance on work cycle interval.

[cache.nick1], [cache.nick2], ...
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C.3 Nodes

Resources available for caching files. The nickname is arbitrary but should
not change between configuration modifications.

type is multi, multiapi or master

Pseudo cache combining several APIs.

selector ( str = random ) Placement strategy to use for as-
signing files to slaves. [’random’, ’hash’, ’sequence’]

sequence ( float = 0 ) Order in which the backend is tried.
Higher sequences are tried first, negative ones are ignored.

slaves ( list[str] = [] ) Nickname of slaves to be handled by
this API.

type is fs, fsapi, posix or filesystem

Cache device accessible via POSIX commands. Any kind of
r/w mount point or subfolder is adequate.

sequence ( float = 0 ) Order in which the backend is tried.
Higher sequences are tried first, negative ones are ignored.

size_limit Limit of the space to use for caching files.

( percent = 0.75 ) Fraction of the total device volume
to use.

( bytesize ) Absolute size to use on the device.

uri_prefix ( str ) Start of all URIs of files managed with this
backend. This is commonly the path to a device mount
point or subfolder.

[storage.nick1], [storage.nick2], ...

Resources providing data files. The nickname is arbitrary but should not
change between configuration modifications.

type is fs, posix, fsapi or filesystem

Data source accessible via POSIX commands. Any kind of
readable mount point or subfolder is adequate.

raw_mount ( str ) Mount point of the source, without any
caches overlayed.

sequence ( float = 0 ) Order in which the backend is tried.

uri_prefix ( str ) Start of all URIs of files available from this
backend. This should be the mount point as seen without
cache infrastructure.
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C HTDA Configuration

[WorkerInfo]

Source of information to publish about an attached worker node. Used
for scheduling.

type is htc or htcondor

dynamic ( bool = False ) Whether slots may be dynamically
resized.

pool ( str = default ) <undocumented>

type is static

cpus ( list[int] = [1, 1, 1, 1] ) Cores available per slot.

dynamic ( bool = False ) Whether slots may be dynamically
resized.

memory ( list[float] = [] ) Memory available per slot.

name ( str = scc-wkitx-cl-cn-199-116.scc.kit.edu ) Name
of the worker node in the batch system.

pool ( str = default ) Nickname of the batch system pool.
Only relevant for multiple batch systems.

C.4 Hooks

[HTCRouter]

Hooks interfacing jobs to service and cache nodes.

collectors ( list[str] = [http://localhost:8081] ) URLs of collector-
s/coordinators to report to about jobs.

enforce_local Policy for waiting for locally available files.

( seconds = 0 ) Minimum time to wait before running on host
without local files; 0 means do not wait, -1 means wait indefin-
itely.

( str ... ) ClassAd expression that must evaluate to True once the
job may start. Use ‘%s(machine_rank)s’ for the number of files
on a Startd.

hook_timeout ( seconds = 10 ) Maximum time after which the hook
aborts.

hook_variance ( seconds = 1 ) Maxmimum range of random variance
on query times.
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C.4 Hooks

input_key ( str = INPUT_FILES ) Key to the job ClassAd attribute
listing input files.

locators ( list[str] = [http://localhost:8081] ) URLs of locators to
query for file locations.

prefix ( str = HPDA ) Prefix to expect/apply for ClassAd insertions’
keys, e.g. ’<prefix>_RANK’.

query_all ( bool = False ) Whether to query all locators or just the
first available.

update_delay ( seconds = 120 ) Minimum delay between updating jobs.
Even if the HTC Job Router launches more often, hooks will not
perform action.
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Appendix D

Job Router Integration

This is the HTDA job hook configuration for use with HTCondor’s job_router.
1 ### HPDA Schedd Setup
2 ### --------------------
3 ### To be used on nodes that allow job submission
4

5 # launch job router to hook into submitted jobs
6 DAEMON_LIST = $(DAEMON_LIST), JOB_ROUTER
7

8 # intrinsic job router:
9 # - test for HPDA required attribute(s)

10 # - disable HTCondor grid routing
11 # - inject routing keywords to activate hooks
12 # NOTE: This requires new style ClassAd syntax
13 JOB_ROUTER_ENTRIES = \
14 [ \
15 name = "HPDA"; \
16 requirements = (target.INPUT_FILES isnt undefined); \
17 MaxJobs = 1000; \
18 MaxIdleJobs = 500; \
19 TargetUniverse = 5;\
20 set_HPDA_Route = True; \
21 set_HookKeyword = "HPDA"; \
22 GridResource = "NONE"; \
23 OverrideRoutingEntry = True; \
24 ]
25

26

27 # router can poll frequently as hooks may skip frequent updates
28 JOB_ROUTER_POLLING_PERIOD = 10
29

30 ### external HPDA hooks
31 # docs specify HPDA_HOOK_JOB_FINALIZE , 8.2 expects HPDA_HOOK_JOB_EXIT
32 HPDA_HOOK_TRANSLATE_JOB = /opt/hpda/repo/bin/htc_translate.py
33 HPDA_HOOK_UPDATE_JOB_INFO = /opt/hpda/repo/bin/htc_update.py
34 HPDA_HOOK_JOB_EXIT = /opt/hpda/repo/bin/htc_finalize.py
35 HPDA_HOOK_JOB_FINALIZE = /opt/hpda/repo/bin/htc_finalize.py
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D Job Router Integration

36

37

38 # Disable PROCD as job_router runs as submitting user , not condor/root
like PROCD does

39 JOB_ROUTER.USE_PROCD = False
40

41

42 # Increase ClassAd parser buffer character size (defaults to 10240) to
handle large job ClassAds

43 PIPE_BUFFER_MAX = 102400
44

45

46 # Require jobs to wait for router hooks , IF they are applicable
47 # NOTE: Keep this up to date with JOB_ROUTER_ENTRIES above
48 APPEND_REQUIREMENTS = ( (INPUT_FILES =?= UNDEFINED) || (HPDA_Route =?=

True) || (( CurrentTime - QDate ) > ( $(
JOB_ROUTER_POLLING_PERIOD) * 3 )) )
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Appendix E

HTDA Test Cluster

E.1 Specifications

The High Throughput Data Analysis (HTDA) test cluster is part of the Institut für
Experimentelle Kernphysik (IEKP) HTCondor cluster. Five worker nodes are used
as listed in Table E.1. Two of these worker nodes use only half of the maximum
Random Access Memory (RAM) and CPU.

Table E.1: TEST CLUSTER WORKER NODE

OS Scientific Linux 6 (Kernel 2.6.32)
CPU 2x Intel Xeon E5-2650v2 @ 2.66GHz

(à 8 cores, 16 threads)
Memory 8x 8GB RAM

SSD 1x Samsung SSD 840 PRO 512GB or
2x Samsung SSD 840 EVO 256GB

HDD 4x WDC WD4000 4TB
Network 1x Intel X540-T1 (10GigE/RJ45)

A total of 7 file servers is covered by the HTDA test cluster. In total, they provide
305TB of storage.

E.2 Performance
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E HTDA Test Cluster

Table E.2: HTDA hit rate for Datasets: The hit rate is defined as number of accesses with
data cached over total number of accesses. See Section 3.4.2 for details on how
scores are derived.

Index Dataset (Basename) Accesses Cache Hit Rate

25 Zmm_DoubleMu_Run2015C_PRV1_13TeV 1448 0.72
24 Zmm_DoubleMu_Run2015D_PRV4_13TeV 1921 0.93
23 Zee_DoubleEG_Run2015C_PRV1_13TeV 52 0.05
22 Zee_DoubleEG_Run2015D_PRV4_13TeV 139 0.07
21 Zee_DYJetsToLL_M_50_aMCatNLO_Asympt25ns_13TeV 240 0.00
20 Zmm_DYJetsToLL_M_50_aMCatNLO_Asympt25ns_13TeV 1110 0.55
19 DoubleMu_Run2015C_Jul2015_13TeV 324 0.52
18 DoubleMu_Run2015D_Sep2015_13TeV 551 0.93
17 DYJetsToLL_M_50_aMCatNLO_Asympt25ns_13TeV 212 0.75
16 DYJetsToLL_M_50_aMCatNLO_Asympt50ns_13TeV 64 0.00
15 DoubleMu_Run2015D_Sep2015_13TeV 110 0.41
14 DYJetsToLL_M_50_aMCatNLO_Asympt50ns_13TeV 84 0.00
13 DYJetsToLL_M_50_aMCatNLO_Asympt25ns_13TeV 512 0.84
12 DoubleMu_Run2015C_Aug2015_13TeV 540 0.89
11 2015-07-28_ee-backgrounds_Run2012 201 0.00
10 2015-07-28_ee-data_Run2012 364 0.32
9 2015-08-06_ee-mc-gen_Run2012 14 0.00
8 DoubleMu_Run2015B_Jul2015_13TeV 686 0.28
7 DYJetsToLL_M_50_aMCatNLO_Asympt50ns_13TeV 16513 0.92
6 2015-07-28_ee-mc_Run2012 272 0.16
5 2015-05-18_DoubleMu_Run2012_22Jan2013_8TeV 12224 0.91
4 2015-05-16_DYJetsToLL_M_50_madgraph_8TeV 368 0.01
3 DoubleMu_Run2015B_Jul2015_13TeV 29 0.20
2 DYJetsToLL_M_50_aMCatNLO_Asympt50ns_13TeV 361 0.58
1 DoubleMu_Run2015B_Jul2015_13TeV 91 0.47
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Acronyms

CHS Charged Hadron Subtraction 61, 69–73, 123, 128, 137, Glossary: Charged
Hadron Subtraction

CVMFS CernVM File System 26, 123, Glossary: CernVM File System

HDD Hard Disk Drive 123, 128, Glossary: Hard Disk Drive

HEP High Energy Physics 21, 22, 25–27, 33–36, 42, 43, 47, 49, 50, 55

HPC High Performance Computing 48

HTDA High Throughput Data Analysis 35–38, 40–50, 52–55, 121–123, 133–135, 143,
Glossary: High Throughput Data Analysis

IEKP Institut für Experimentelle Kernphysik 18, 34, 45, 48–50, 54, 72, 121, 133

IPC Inter-Process Communication 37, 123, Glossary: Inter-Process Communication

JEC Jet Energy Corrections 23, 24, 57, 58, 60, 70, 123, 132, Glossary: Jet Energy
Corrections

LFU Least Frequently Used 42, 123, Glossary: Least Frequently Used

LHC Large Hadron Collider 5, 6, 9, 10, 12, 13, 16, 17, 21, 22, 26, 55, 57, 60, 63, 80,
83, 84, 127, 129

LRFU Least Recently/Frequently Used 43, 123, Glossary: Least Recently/Frequently
Used

LRU Least Recently Used 42, 123, Glossary: Least Recently Used

MC Monte Carlo Simulation 123, Glossary: Monte Carlo Simulation

MET Missing Transverse Energy 64, 65, 76, 87–89, 123, 137, 139, Glossary: Missing
Transverse Energy
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Acronyms

MPF Missing E

T

Projection Fraction 2, 76–79, 96–98, 102–104, 138, 140, 141

NAF National Analysis Facility 17, 124, Glossary: National Analysis Facility

PDG Particle Data Group 66, 74, 124, 138, Glossary: Particle Data Group

PUPPI PileUp Per Particle Identification 61, 69–73, 124, 137, Glossary: PileUp Per
Particle Identification

RAM Random Access Memory 24, 50, 121, 124, Glossary: Random Access Memory

RPC Remote Procedure Call 37, 38, 124, Glossary: Remote Procedure Call

SSD Solid State Drive 22, 24, 26, 40, 41, 49, 51, 124, 135, Glossary: Solid State
Drive

WLCG Worldwide LHC Computing Grid 5, 17–19, 21, 49, 124, 132, Glossary:
Worldwide LHC Computing Grid
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Glossary

Array of Structs Data structure for storing data of similar objects. Uses a sequence
where each position corresponds to a single object holding its attributes. Efficient
for working with all attributes of an individual object. Contrast with Struct of
Arrays. 128

Artus Analysis framework for the Kappa data format. 19, 60, 61, 125, 132

CernVM File System File system providing access to remote software repositories.
Repositories are compiled, maintained, and provided globally. The actual file
system allows to easily make the content available on many processing hosts.
26, 123

Charged Hadron Subtraction Pileup mitigation technique, the default method of
the CMS collaboration. As charged hadrons are visible to the CMS tracker,
their point of origin can be reconstructed. Charged hadrons originating from
pileup interactions can thus be classified as such. Charged Hadron Subtraction
excludes these hadrons from jet clustering. 69, 123, 128

ClassAd Data structure and format used by HTCondor to describe any resource. This
includes pool resources, e.g. worker nodes, and user resources, e.g. jobs. ClassAds
are used to publish metadata required for scheduling in an HTCondor pool.
Structurally, ClassAds are mappings containing key-value or key-expression
pairs. Expressions may be evaluated in respect to other ClassAds, e.g. a job
requiring memory on a worker node. 46

ECAL The Electromagnetic Calorimeter, or ECAL for short, is a subdetector type
of the CMS detector. It detects the energy of leptons and photons, with the
exception of muons. Energy is detected by kinetic absorption of particles; the
heavy muons can pass through the ECAL absorber. 66, 73–75, 138

Excalibur Analysis suite for Z ! (µµ/ee) + Jet events, built on the Artus framework.
60, 61, 63, 64
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Glossary

Hadoop Data processing framework focusing on data locality. Usually used as a
processing cluster, similar to a batch system. Special parallel file systems, such
as HadoopFS, may publish locality information for a Hadoop cluster. The
cluster may split and distribute analysis processes to optimise the locality of
data access. 26, 45

Hard Disk Drive Persistent data storage device, using magnetic disks. Relying on
simple and established technology, high capacities are available at low cost. 123,
128

High Throughput Data Analysis Prototype of a coordinated caching middleware.
35, 121, 123

HTCondor Batch system for high throughput computing. It excels at combining
spatially and administratively distributed resources. As such, it is commonly
used for managing grid, cloud, and other opportunistic resources. In addi-
tion, it offers a wide range of settings and hooks, allowing for a high level of
customisability. 26, 35, 45, 46, 121, 125, 134

Integrated Luminosity A measure for the volume of interactions that happened in a
time period. It is derived by integrating the Luminosity over a given period
of time. While the Luminosity allows calculating the rate of a process, the
integrated Luminosity provides the count. 63

Inter-Process Communication Mechanism for distinct processes to share data. IPC
is typically used to perform requests from one process to another. 37, 123

Jet Energy Corrections Formalised corrections to match reconstructed jet energy to
actual jet energy. 23, 57, 123, 132

Kappa Framework for creating and reading optimised datasets. 61, 125

Least Frequently Used Cache selection algorithm rating items by their frequency of
accesses. Most effective if items are used repeatedly over a long period of time.
42, 123

Least Recently Used Cache selection algorithm rating items by their last access
time. Most effective if items are used repeatedly over a short period of time.
42, 123

Least Recently/Frequently Used Cache selection algorithm rating items by both
frequency and age of accesses. Most effective if items are used repeatedly over
a limited period of time. 43, 123
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Linux A family of operating systems building on the same central component, the
Linux kernel. In general, one can distinguish between the kernel version and
distribution. The kernel version defines the low-level functionality available,
such as drivers or file systems. The distribution roughly defines the auxiliary
tools and infrastructure around the kernel. 24, 50, 128

Luminosity A measure for the potential rate of interactions in a particle collider.
It can be defined as the flow of particles through an area per time. For any
process, its expected rate can be calculated from luminosity and interaction
cross section of the process. 63, 126

MapReduce Processing paradigm used for local data processing. Workflows are spe-
cified in separate map and reduce steps. The former maps functions onto chunks
of data, extracting information. The later reduces the chunks of information
into one result. 25, 26

Missing Transverse Energy Transverse component of missing energy in a particle
collision. Missing energy is an indication of particles not covered by the detector,
e.g. neutrinos. In collision events at the LHC, the initial transverse energy is
negligible. A non-negligible transverse energy in the final state implies a missing
balancing energy deposit. 64, 87–89, 123, 137, 139

Monte Carlo Simulation Simulation technique for physical processes. Uses random
sampling to model complex processes, by chaining simple processes with known
random distributions. 123

National Analysis Facility Tier 3 analysis facility for german scientists, provided by
DESY. 18, 124

NFS The Network File System is a protocol for accessing remote directories and files.
It allows mounting remote directory trees similar to a local file system. NFS is
commonly used to access distributed storage in local networks. 50

Particle Data Group International collaboration publishing particle properties. 66,
124, 138

Pileup Additional, soft collisions in particle collision events. To achieve high event
rates, bunches of particles are collided instead of isolated ones. In addition
to possible hard interactions, this practically always results in multiple soft
collisions. The pileup collisions add a background of mostly low-energetic
particle to events. 6, 57, 59, 61–64, 66, 67, 69–73, 76–81, 83, 84, 136–138
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PileUp Per Particle Identification Pileup mitigation technique, generalising the Charged
Hadron Subtraction (CHS) method. As with CHS, charged particles are used to
identify particles from pileup interactions. From this, the general characteristics
of pileup particles are derived, regardless of charge. These characteristics are
then used to filter uncharged particles as well. 61, 124, 137

POSIX The Portable Operating System Interface, a definition of APIs provided
by operating systems. Commonly defines the system calls of Unix operating
systems, in turn implying some architectural features. Linux does not strictly
follow the standard. However, it can be considered posix compliant for most
purposes. 26, 35, 40, 47, 49, 134

Random Access Memory Fast data storage, typically volatile. Mostly used to hold
data actively used by a computer, i.e. its main memory. The term RAM is
commonly used to refer to both software and hardware implementing the main
memory. 24, 121, 124

Remote Procedure Call Mechanism for executing calls in remote processes. Typ-
ically used to unify calls to local and remote resources through a common
interface. 37, 124

REST The REpresentational State Transfer, a design model for handling requests. It
is an abstract definition, focusing on architectural considerations. REST builds
on a uniform communication interface, separating clients sending requests and
servers handling them. A key feature is statelessness, i.e. each request is distinct.
Actions depend only on the request and state of the server. 37

Solid State Drive Persistent data storage device, using integrated circuits. The lack
of any moving mechanical parts allows for fast, concurrent reading, and writing.
In general several times as expensive per capacity as an Hard Disk Drive (HDD)
22, 124, 135

Struct of Arrays Data structure for storing data of similar objects. Uses multiple
sequences, where each sequence corresponds to an attribute and each object
has its own index. Efficient for working with individual attributes of all objects.
Contrast with Array of Structs. 19, 125

Virtual File System An abstraction layer unifying the interfaces of actual file systems.
A VFS allows providing multiple file systems of different types in a single
interface. In modern operating systems, users only interact with the VFS. Linux
represents the VFS as the root directory, into which other file systems are
mounted. 36, 48, 135
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Worldwide LHC Computing Grid The data storage and processing infrastructure
of the LHC collaborations. 5, 17, 21, 124, 132

xRootD Remote data access protocol and service. The xRootD protocol allows
reading of data from local and remote data providers. 26, 49

129





List of Figures

2.1 Schematic View of the CMS Detector: The CMS detector is designed
with a barrel shape and oriented along the beam pipe. Two endcaps
close off the edges of the barrel. The forward region is positioned
directly around the beam pipe. In each region, several subdetectors
are positioned in layers around the interaction point. [5] . . . . . . . 10

2.2 Coordinate Systems Used for the CMS Detector: The default cartesian
coordinate system is right handed and oriented with respect to the beam
pipe in z and LHC ring in x. The azimuthal and polar orientation is
commonly expressed via the respectives angles � and ✓. For describing
physical processes, the pseudorapidity ⌘ is commonly used instead of
the polar angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Longitudinal Slice of the CMS Detector: The barrel shape along
the z-axis leads to distinct regions in the polar orientation. Due to
overlap of subdetectors in barrel, endcap, and forward region, the
detector precision varies between certain areas. Examples include:
The calorimeters of the barrel only cover a region of ⌘ < 1.3. ECAL
segments of barrel and endcap join in the transition region of 1.48 <

⌘ < 1.55, leading to reduced precision. The total coverage of muon
system and ECAL is ⌘ < 2.4 and ⌘ < 3.0, respectively. . . . . . . . 14

2.4 Formation of Jets: Jets form due to colour confinement created by
the strong force, as visualised in Figure 2.4a. The potential of the
strong force increases with distance, potentially until forming new
particles is favorable. Partons separating from a bound state thus
create new bound states, preventing unbound partons. If a parton is
separated with high energy a cluster of particles forms, as visualised
in Figure 2.4b. A cascade of bound states splitting iteratively creates
a shower of particles. This final shower is abstracted as a jet, which is
studied in place of the initial parton. . . . . . . . . . . . . . . . . . 15
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2.5 The Worldwide LHC Computing Grid (WLCG) Tier Structure: The
WLCG is composed of hundreds of computing centres, each assigned
to a tier. Based on the tiers, computing centres are organised hierarch-
ically: Data from detectors is provided by the Tier 0 to several Tier 1
centres. In turn, each Tier 1 centre serves multiple Tier 2 centres. [10] 18

2.6 Exemplary End User Analysis Workflow Using the Artus Framework:
The workflow uses a sequence of processing applications (green) to
create increasingly specialised data formats (blue). This process de-
creases data size and application runtime from TB and days to MB
and minutes. Any step can be repeated without repeating previous
steps. This allows for high iteration frequencies of later steps. . . . 19

3.1 Performance Metrics for Different Input Media: Benchmarks were
performed using the same Jet Energy Corrections (JEC) analysis. The
type of data access/storage and parallelisation was varied for each
benchmark. For the benchmark of 10Gbit, 48 additional processes
reading data were deployed in parallel on other hosts. The performance
drop in the last bin is due to saturation of system resources. Here,
fewer resources are available as some are consumed by the operating
system and other services. . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Usage of Skims for Analyses: Data was collected from jobs reporting
their input files to the batch system. For technical reasons, these
are mostly jobs of JEC workflows. Skims are numbered by their
occurrence in the batch system. Excluded are skims which are used
for benchmarking, were accessed less than five times, or used for less
than a week. Skims with similar access behaviour, e.g. skims 7 and 8,
are matching detector and simulation datasets. . . . . . . . . . . . . 24

3.3 Layers of the Coordinated Caching Concept: The coordinated caching
concept is composed of four layers, each handling a different responsib-
ility. The selection layer works at global scope, where all metadata of
accesses and data can be aggregated. The provisioning layer consists
of multiple elements, each operating at local scope. Connecting the
two is the coordination layer, spanning local and global scope. The
redirection layer reside in both local and global scope, depending on
the targeted use case. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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3.4 Scopes of Coordinated Caching: A single distributed, coordinated
cache can be viewed at different scopes. In an idealised view, the
global cache is a single entity. Like a non-distributed cache, it simply
holds a fraction of the overall data. This fraction is roughly the ratio
of cache size to overall data volume. With the goal of optimising data
locality, each individual local cache is distinct. The locally cached
data is merely a fraction of the globally cached data. This fraction
is inversely proportional to the number of caches. To optimise data
locality of jobs, the group of files accessed together is important. Even
when fully available in the global cache, only a fraction may reside in
each local cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Simulation of Throughput Using Coordinated Caches on Worker Nodes:
The simulation setup is comparable to the analysis cluster at the IEKP,
as shown in Figure 3.5a. Every worker node has 32 execution slots and
is connected to a local cache and shared fileservers. The bandwidth
to individual caches is 4Gbit/s and 10Gbit/s to all fileservers. Free
parameters are the number of worker nodes and average local cache hit
rate. A workflow processing 4GB at 20MB/s per process is assumed.
The resulting processing time is shown in Figure 3.5b. Straight lines
indicate processing time for a given number of worker nodes. Dashed
lines are the expected local cache hit rate without aligning job and
data scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Schematic View of the HTDA Services: The HTDA middleware is
composed of several services. Provider services reside on worker nodes
and provide local copies of data. Which files to provide on which node
is determined by the Coordinator service. To schedule jobs to their
cached input data, the Locator services provide information about
data placement to jobs. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Mapping of an HTDA Pool: Each node runs a mapping service, the
pool mapper. In its discovery stage, the mapper queries known nodes
for other nodes (3.7a,3.7b). This is repeated recursively, until all
nodes have been discovered (3.7c). In its validation stage, the mapper
exchanges heartbeats with known nodes. Any node repeatedly failing
a heartbeat exchange is considered defunct (3.7d,3.7e). Both stages
are repeated frequently, providing an up-to-date state of the pool.
Pool mappers can start discovery either from a configured address, or
whenever another node connects. . . . . . . . . . . . . . . . . . . . . 38
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3.8 Components of the Provider Service: Each functionality of the Provider
is implemented separately. The Operator performs the actual pro-
visioning of data, moving it from storage to cache devices. Which
data to provide is decided by the Allocator. Persistency is ensured
by the Catalogue, which stores all vital metadata. This complexity
is not exposed to other services: Metadata on the Provider and its
content is exposed, and new items may be suggested for provisioning.
Internally, Storage and Cache APIs abstract their resources: storage
must only provide a means to fetch data, while a cache must allow
placing this data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Operation Sequence of the Coordinator Service: The Coordinator
relies on the access layer to inform it about data accesses. This
information is used to rate the importance of individual data items.
The current allocation of items is pulled in from Providers. Based on
this, a new allocation is calculated and pushed to Providers again. 42

3.10 File Grouping and Placement: User workflows are free to implement
their own partitioning of a dataset to jobs. Figure 3.10a shows the same
dataset of files 1, 2, . . . partitioned differently: Two workflows using
file groups A.1, A.2, . . . and B.1, B.2, . . . for their jobs, respectively.
Placement of files by HTDA attempts to maximise overlap for file
groups of the same dataset. Figure 3.10a shows the placement of
file groups A followed by B: Since A.1 contains most files of B.1, the
missing file 4 is added to the provider of A.1. . . . . . . . . . . . . . 44

3.11 Operation Sequence of the HTDA HTCondor Hooks: By using the
job_router of HTCondor, hooks interact with individual jobs. Hooks
publish information to the Collector when the job is submitted or
done. In turn, hooks add information on preferable hosts while the job
is queued or running. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 Naming Scheme of POSIX Backends: The HTDA POSIX backends
use a naming scheme to map files to locations. The basis is the global
path of a file, i.e. the path by which users access it. Prefixes are used
to signify source and locality. Remote files are identified by the storage
path. It adds the mount path of remote storage (purple) as a prefix.
Local copies are identified by the cache path. It extends the storage
path by prepending the cache device mount path (red). . . . . . . . 47
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3.13 Squashing Paths for End Users via Union File System: As users and
applications expect a single file hierarchy, paths must be merged. A
Union File System squashes individual directory trees present in the
Virtual File System. Given distinct local and remote directory trees,
a single, merged tree can be presented to users. Complex Union File
Systems such as AUFS also allow write-through to the underlying
storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.14 Performance of Raw and Overlayed Input Devices: Benchmarks are
the same as shown in Figure 3.1a. in particular, the AUFS union
file system is benchmarked; it squashes the previously benchmarked
Solid State Drive (SSD) and 10Gbit connected file server. All data
was manually copied to the SSD. The benchmark shows no notable
overhead from squashing. Differences for high process counts are due
to interference with other processes on the host. . . . . . . . . . . . 51

3.15 Selection of Datasets for Caching: Ratings for datasets have been
calculated by applying the HTDA scoring formula to recorded accesses.
The formula is given in Equation 3.9, while the accesses are shown in
Figure 3.2. Figure 3.15a shows ratings as heights. For visualisation,
ratings are normalised to the maximum score at every point in time.
Figure 3.15b shows accesses in black. Coloured bands indicate that
the dataset is amongst the three highest ranking datasets. . . . . . 52

3.16 Global and Local Cache Hit Rate: Hit rates are recorded by the HTDA
middleware. The cachehit rate is the maximum hit rate possible for
a job on any worker node. The locality rate is the actual hit rate
on the worker node on which the job is executed. Data shown is an
excerpt from monitoring from 15th December 2015 to 22nd December
2015. [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.17 Analysis Speed with HTDA: Per-job walltime of the Z + Jet calibra-
tion workflow, with enabled or disabled HTDA caching. For both tests,
the same workflow was processed on the same cluster, with no other
workflows interfering. Data has been collected with the GNU time util-
ity. Lower walltime is better. Outliers of the workflow without HTDA
cache are executed after the bulk of the workflow. This demonstrates
that network bandwidth is saturated when all jobs execute in parallel. 54
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4.1 Scopes of Jet Energy Measurement: Jets are measured to derive the
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