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Abstract—Shared control is a promising approach for design-
ing an Advanced Driver Assistance System, since it unifies the
advantages of both manual control and full automation. However,
for a true cooperative shared control ADAS the automation
has to understand the human and thus a suitable model which
describes the driver in the control loop is essential. Our gray-box
approach bases on the biological concept that humans realize
motion by combining a finite set of motion primitives (we call
movemes). With the assumption that a driver switches between
movemes based on perceived information, we propose a Hidden
Markov Model which determines the probability of each moveme
given a certain driving situation. Car turn maneuver experiments
show a good approximation of steering trajectories recorded in
a driving simulator. A comparison with a black-box model show
that the moveme-based driver model performs significantly better.
In addition, training algorithms are available and the probabilistic
approach of the model allows further interpretation of the results.

Index Terms—Driver Modeling, Motion Primitives, Hidden
Markov Model, Shared Control.

I. INTRODUCTION

In 2012 3600 people died as a result of traffic accidents
on German roadways [1]. The total sum of economic losses
related to the traffic accidents for only this one year and
country sum up to 30 billion euro. According to [2] 75%
of all traffic accidents are primary related to failures of the
drivers. Based on this data it seems reasonable to support
drivers with a high level of automation (e.g. automatic lane
keeping). However, it is widely known from the automation of
aircraft cockpits that there is the risk of the “out-of-the-loop”
problem [3] with a high level of automation. This means that
the driver can no longer supervise the vehicle as he is no longer
involved in the vehicle control task. In addition, [4] shows that
in a highly automated vehicle the driver cannot adequately
resume to manual control in the case of an emergency like
the breakdown of the automation system. Instead of designing
systems that take over control of a subtask of the vehicle
guidance problem, systems could be designed that only warn
the driver in critical situations. But in this case it still fully
depends on the driver’s actions whether a critical situation
can be handled or not. It is clear that neither manual vehicle
control nor a high level of automation is the ideal solution.
To combine the advantages of both human and machine it is
therefore advisable to use a shared control structure in which
both the driver and an Advanced Driver Assistance System
(ADAS) control the vehicle together and in cooperation [5],
[6]. Several shared control ADAS concepts have been proposed
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in the literature [7], [8]. A cooperation between driver and
machine requires to understand the human partner in a shared
control loop. If the human behavior is known, an appropiate
controller can be designed in order to achieve the desired task.
Moreover, a human-specific model would lead to a higher
acceptance. Therefore, one of the essential requirements for
the design of a cooperative shared control system is a model of
the driver [9]. In contrast to virtual driver models, which only
form a control framework to steer a vehicle, this model needs
to describe the real steering behavior of the driver. Preferably,
the neuromuscular behavior of the driver should be modeled.
Several biological experiments suggest that humans realize
complex motions by combining a set of motion primitives
[10], [11]. This results in a finite set of steering primitives
a driver uses to control his vehicle. In this specific scope
as a gray-box model for the neuromuscular system of the
driver, we model these primitives as autonomous dynamic
systems and call them movemes in line with [12]. A significant
benefit of the movemes is that they can comparatively easy be
identified using the algorithms submitted in [13] [14] and yield
guarantees regarding correct identification. In previous work
[15] [16] we proposed a driver model for the steering task
which utilizes these movemes to generate a trajectory of driver
steering motion. Thereby a switching controller determines the
moveme sequence the driver applies to control the vehicle. This
switching controller was modelled using an Model Predictive
Control (MPC) framework. It is shown that the model can
adequately describe the driving behavior [16]. However, due
to the MPC framework the use of the model in a practical
ADAS application is difficult, since the calculation time in a
real-time environment is very high [15]. In addition, the driver
model yields a deterministic prediction of the driver steering
actions which does not allow any further interpretation.

In this paper we propose an alternative approach for the
switching controller which describes the driver’s selection of
movemes using a Hidden Markov Model (HMM), being an
appropiate model for real world tasks. For a given driving
situation our switching model yields the probability that a
driver applies a certain moveme. As this probability is given
for all possible movemes the model permits an interpreta-
tion of the model confidence. Combined, the gray-box driver
model allows to understand the neuromuscular system via the
movemes and the selection strategy between them via the
HMM switching model. In addition to being interpretable the
gray-box driver model has, in contrast to data-driven black-



box driver models as bare neural networks, better extrapolation
capability. This means the proposed HMM can not only
describe the driver steering actions for the training data, it can
also be used to explain the steering behavior for data which
are not part of the training. This is a useful property since it is
not possible to include all conceivable scenarios in the training
data.

In summary, the goal of the paper is to propose a gray-box
driver model which bases on movemes and a novel HMM
approach to model the moveme selection. In section II the
moveme model is introduced. The model which describes the
selections of the movemes is given in section III. In section IV
the driver model is validated using real steering data recorded
on a driving simulator. Furthermore, the gray-box driver model
is compared with a black-box model.

II. STEERING MOVEMES

The movemes as basic building blocks of drivers’ move-
ments are represented as autonomous subsystems that are se-
lected sequentially and that generate the movement trajectories.
In general, any kind of system description can be used to for-
mally describe such autonomous subsystems. However, w.l.o.g.
we describe the movemes as piecewise affine autoregressive
systems without exogenous input of the form
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according to [13]. These generate 7' samples of an output
trajectory {wk.}g:l, wg € R whereas A\, € M, M =
{1... N} denotes the currently active moveme at time k and
nq(A;) the order of the autoregressive subsystem. The N
available movemes are thus defined by their parameterizations
dy = [a1(\) - an, (A) ¢(N)]T. The measured output is given
by yr = wyi, + €1, where € represents zero-mean white noise.

In [13], [14] a multi-step prediction error-based algorithm
for the identification of movemes from the measured output
data has been presented and validated experimentally, even
for noisy measurements. Thereby the order n, () is assumed
to be uniform for all subsystems. It is shown that applying
this identification procedure to a given measured movement
trajectory yields a bias-free estimate of the repertoire of used
movemes {ﬁl - ~}- In this paper we use measurements
of the driver’s steering wheel angle y to identify steering
movemes.

However, in a complete driver model which is able to
predict driver movements, it is necessary to generate a proper
selection of movemes, hence the state sequence {)\k}gzl, from
the information of the road and the environment, e.g. road
geometry or the relative dynamics of other vehicles. This
information which naturally can be perceived by a human
driver also serves as inputs w to the switching mechanism in
Fig. 1 on that we focus in this paper.

III. GRAY-BOX LEARNING OF MOVEME SELECTION

A well-known probabilistic approach to model sequential
data is the Hidden Markov Model (HMM). HMMs have been
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Fig. 1. Driver steering movement model based on a moveme repertoire and
a switching mechanism which selects the current moveme A based on car
and environment information w. The active moveme passes a desired steering
angle w on the car

successfully applied in several application fields like speech
recognition [17], gesture recognition [18] and bioinformatics
[19]. We desire to define the movemes as the possible discrete
states of the model and the steering angle as emitted output
in order to use a HMM approach. However, a difficulty in
utilizing a standard HMM lies in the fact that the moveme at
the current time step A; only depends on the last moveme A;_1.
Moreover, in the problem at hand, the switching probability
must also depend on exogenous inputs u. A HMM extension
that includes inputs is given by the Input-Output Hidden
Markov Model (IOHMM) [20]. However, even this model is
not applicable to our problem due to the fact that it does not
allow dynamic subsystems. Therefore, a new HMM model
is introduced in this section, which allows input-dependent
switching of the movemes.

A. Model Structure

As mentioned in the last section, the observed output y,
depends on the current moveme \; at time ¢ as well as on its
last n, values {yk}};_:lt_ n, - With a standard HMM the current
moveme \; would depend only on the last moveme \;_;. If we
assume that \;_1 = 7, i € M, the next moveme is determined
with a markov step. The corresponding transition probabilities
from moveme 7 to other movemes is given by the ¢-th row of

the transition probability matrix ® = {y;;}; j=1..n With
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For the switching mechanism we require that an input vector u,
also has an influence on the current state. The desired variable
dependencies are depicted in Fig. 2. In this example, we have
autoregressive subsystems of second order. Consequently, the
output y; depends on the two last values y;—; and y;—o and
on the current moveme ;. In turn, \; is determined by the
last moveme \;_; and by the actual input vector wu,.

The resulting model structure is illustrated in Fig. 3. The
transition matrix ® is calculated out of the input vector u by
means of an artificial neural network with the parameter set ©,
ie. ® = fyn(©,u). Since the input sequence U = {u; }7_,
is known, we can calculate the current transition matrix ®; at
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Fig. 2. Representation of the variable dependencies for a model with AR-
subsystems of second order with a Dynamic Bayesian Network

each time ¢. As a consequence, the transition matrix becomes
time-variant and its components are given by

Pijt = P =j] M o1 =1,1). “)

We now introduce the state probability distribution ¢ ;=
[C1e -+ (e with

Gt = P\t = j [ {wg }hm)- )

The variable (;. gives the probability of being in a certain
state j at time step t, given the input sequence until ¢. The
probability distribution ¢, is calculated with

¢, =¢_, ®u) ©)
with

N
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The probability distribution therefore fulfills the markov prop-
erty.

The next step is to use the information of the state distri-
bution to select a moveme. Several approaches are possible,
however, we decide to select the moveme with the currently
highest probability. We perform the moveme selection by
means of an operator .4, that is

)\t = A(gt) = m* S M | Cm*,t > gm,t Vm 7& m* (8)

The model output is then determined from the autoregressive
system equation (1) as described in Sec. II. The model param-
eters which have to be trained correspond to the parameter set
© of the network fyn(©,u), which consists of the weights
of all neuron connections. The learning algorithm is described
in the following subsection.

B. Learning Algorithm

Available data to train the model are the input sequence
U = {u;, }}_, and the observed output sequence Y = {y }7_,.
The parameter set to be trained is located in the network
fnn (O, u). Nonetheless, the time-variant transition matrix ®,
i.e. the output of the neural network is not known a-priori.
Hence, typical training methods for neural networks like the
backpropagation algorithm cannot be applied, since we would
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Fig. 3. Gray-box moveme driver model

need fixed input-output pairs {u,, ®;} for all time steps for the
net. To circumvent this problem, we train the model parameter
set ® with a maximum likelihood estimation (MLE), i.e. we
search for the model parameter set © that maximizes the
likelihood of the observed output sequence ), given the input
data sequence U. The likelihood is defined as

L(©) =P |U;O) )
So the MLE seeks

® = arg mgxﬁ(@). (10)

The MLE is done by means of an expectation-maximization
(EM) algorithm. The EM-algorithm is a well-known iterative
procedure to find the maximum (log)-likelihood of a statistical
model. Its convergence has been proven in [21].

IV. EXPERIMENTAL RESULTS

In this section we show the applicability of the proposed
gray-box driver model based on movemes using real measure-
ment data. In addition, we give a first benchmark of our results
with the performance of a black-box model built on a dynamic
artificial neural network solely.

A. Experimental Setup

We measure real steering trajectories in a static driving
simulator equipped with an active steering wheel and the
CarMaker realtime simulation environment by IPG Automotive
GmbH. The maneuver we regard is a left-turn. The road
consists of a straight road, followed by a 90 degrees curve
with a constant radius of 120 meters and another straight road
at the end of the curve. The measurements of the steering
wheel angle y are done by an incremental encoder of 40000
increments per full rotation at a sampling frequency of 10 Hz.
This choice is due to preceeding analysis which showed that
human steering movements show relevant frequencies up to 3.5



TABLE I
MEASURED VALUES IN THE TEST MANEUVER

Input | Unit | Description
“ 1 (Road curvature at time k + 5)-100, where
Lk m k + 5 corresponds to 0.5 seconds in future
Deviation distance of the front axle center
u k m
’ to the lane center
Angle between the vehicle direction and a
U3,k rad . .
’ preview point on the lane center 15m ahead

Hz. In addition, we measure the following three values of the
road and environment information which we will use as model
inputs u. The measured quantities are the road curvature 0.5
seconds ahead, the deviation distance from the lane center and
the angle between the vehicle direction and a preview point
on the lane center 15 meters ahead. The road curvarture u; is
scaled by a factor of 100 to improve numerical accuracy. The
input quantities are noted in Table I.

Four test runs at a constant speed of 50 km/h were performed
for one subject. The test person was a graduate student of 23
years with average driving skills. He was asked to hold the
steering wheel in a quarter-to-three hand position and to drive
the road like in a normal situation. Afterwards, the movemes of
the resulting four steering trajectories M1-M4 were determined
with the identification algorithm in [14]. The identification
results yield a total of 34 different movemes. Due to the fact
that the movemes come from the same maneuver and hence
some of them have similar parametrization, it seems reasonable
to cluster the movemes in groups. The clustering is done by
means of a k-means algorithm, in which we choose to have
10 moveme groups. The number of movemes in each group is
given in Table II. The cluster centroids define the parameters
of the 10 new movemes which we now set as the moveme
repertoire for this maneuver. The artificial neural network we
choose for the function fyn(©,u) of the gray-box model is
a standard multilayer perceptron (MLP) with one hidden layer
with 30 neurons.

B. Training Procedure and Results

The training is first carried out with the input I/ and output
sequence ) of 2 steering trajectories M1 and M2. The input
sequence and the training results are shown in Fig. 4. The
training results include the observed steering trajectory and
the output trajectory of the model. The data is overall well
fit by the model. The state probabilities for all movemes that
generate the model output are also illustrated in the figure.
In many time intervals there is one most probable moveme.
Only in some situations (e.g. around 10s and 40s) there is
not a clearly dominant moveme. Remember that the output is
generated by the selected moveme as determined in (8). Even
at those times, the generated output still approximates the data

TABLE II
NUMBER OF MOVEMES PER GROUP AFTER CLUSTERING PROCEDURE,
MEAN AND STANDARD DEVIATION
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Fig. 4. Training results with gray-box moveme model from M1 and M2
(concatenated). The third subplot shows the probability of all movemes over
time, where each color and linestyle represents a different moveme index.

well. Afterwards, the trained model is tested with the inputs
of another measurement M3. The inputs and the model output
compared to the measured steering trajectory are depicted
in Fig. 5. The model generates an output that approximates
the measured steering trajectory adequately. In order to give
enough evidence for the correct functioning of the model, a
2x2 cross-validation is carried out with the 4 maneuvers M1-
M4. This means that the model is trained with 2 maneuvers and
tested with the other 2 afterwards. The procedure is done for
all possible combinations that we call CV1 to CV6 as shown
in Table III.

Now we train a black-box model consisting of a NARX
artificial neural network (NARX-ANN) with a hidden layer
and 30 neurons [22]. We choose a NARX-ANN since it also
considers output feedback and hence can be better compared
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TABLE III
MANEUVER COMBINATIONS FOR CROSS-VALIDATION
CV1 CV2 CV3 Cv4 CV5s CV6
Trained with | M1,M2 | MI,M3 | M1,M4 | M2,M3 | M2,M4 | M3,M4
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Fig. 5.  Test results with gray-box moveme model from M3 after training
with M1 and M2

to our model than conventional static MLPs. The inputs of this
neural network are the 3 inputs from before plus the last two
values yi_1 and yx_o of the output data at each time step k.
The closed-loop training results are illustrated in Fig. 6. This
means the model output is fed to the NARX-ANN input instead
of the measured target values. It can be seen that the data
is overall well fit by the model. However, some oscillations
can also be observed at the beginning. In the same manner
as before, the trained model is tested with the 3 measured
inputs of maneuver M3. The results can be seen in Fig. 7. It
can be stated that the model performance decreases as soon
as different input combinations are fed into the model. For
example, u3 is negative in the first time steps of the training
data wheras it is positive in the test data. Nevertheless, the
same cross-validation as before is done with the black-box
model. The results of the cross-validation of the moveme-
based gray-box model and the ANN as black-box model are
summarized in Table IV and in Fig. 8. Note the log-scale of
the y-axis. The root mean squared error (RMSE) in degrees
between the measured steering trajectory and the model output
is noted for the training with 2 maneuvers. The mean RMSE

1
0.5 === U2
- 1 e u3
= an
%‘ 0 \ ""'hs;..-'.t: .“' " ":‘-"w;- 3 _
B= e W0 LN
05 \\‘ : |“' L “: ‘. 3
! -
71 | | | | |
0 10 20 30 40 50 60
» 40 T T T T T
Q
) 20 i~ ) 'd A m
o ‘: \‘ 1
5 A f L
= 0wt | iy |
= b
g data \
3 =20 | === closed loop model a

0 10 20 30 40 50 60
time in seconds

Fig. 6. Training results with NARX-ANN from M1 and M2
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Test results with NARX-ANN from M3 after training with M1 and

of the 2 testruns with the other 2 maneuvers done afterwards
are also included.

The moveme-based gray-box model approximates the output
trajectories better than the black-box model. Especially in the
test with non-training data the presented gray-box model shows
a significantly better extrapolation capability.

V. CONCLUSION

In this paper we propose a gray-box driver steering model.
The proposed concept is to use movemes to reproduce the
driver’s steering actions and model the selection of them
using a HMM. In the experiment the gray-box moveme model
can replicate the driver adequately and has a comparable



TABLE IV

ROOT MEAN SQUARED ERROR (RMSE) OF STEERING TRAJECTORIES
AFTER TRAINING AND MEAN RMSE DURING TEST FOR MOVEME MODEL

AND ANN
CVl | CV2 | CV3 | CV4 | CV5 | CV6 | O
training 1.08 | 1.33 | 141 | 479 | 097 | 1.54 | 1.85
test (mean) 1.47 | 172 | 1.58 | 1.54 | 1.21 | 832 | 2.64
training ANN 1.83 | 487 | 4.8 1.76 | 0.69 | 0.31 | 2.38
test ANN (mean) | 292 | 471 | 998 | 245 | 149 | 26.1 | 7.94

RMS during training
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Fig. 8. Root mean squared error (RMSE) of steering trajectories after training
and test for moveme model and ANN. Values in lower graph represent mean
values of both testruns. The blue bars represent the results with the gray-box
moveme model and the red bars represent the black-box ANN model.

performance to the reference ANN black-box model.
The benefits of the moveme gray-box model are the following:

The existence of an applicable approach to determine the
model parameters by one algorithm for the identification
of the movemes and a second for the training of the
HMM. The convergence of both algorithms is guaranteed.
The gray-box moveme model can be used to predict future
steering behavior of the driver for a short time horizon
by simply propagating the current moveme. Moreover, if
road preview is available, a prediction for a longer time
horizon is possible by running the HMM switching model.
The probabilities of the movemes allow the statement of
a model confidence. In addition, further interpretation of
the selected moveme is possible since the selected model
inputs are regarded as possible sensory information of the
driver.

A real-time implementation of the model is simple as the
calculation time needed to execute the model is very small
compared with an MPC approach.

In future work we plan to use this model in a shared control
ADAS based on a game theoretic framework. Aside from the
driving context, our model approach can as well be applied
to other domains, for example aerospace applications and
human-robot interaction like handling heavy weights with
robot assistance in an industrial environment.
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