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Abstract— Tuning a PI controller can be quite cumbersome
for the non-expert as the closed-loop control system has to
meet various requirements while the influence and interaction
of the two degrees of freedom are not always clear. This paper
addresses the design of an iterative PI controller autotuning
for drive systems with the idea of imitating a human expert.
In contrast to existing concepts, a new approach with multiple
tuning strategies is applied which gives a compact rule base that
is easy to modify. The performance of the proposed algorithm
is illustrated through motion control testbench trials.

I. INTRODUCTION

PI controllers are the dominating control structure for a
wide range of technical processes. The performance of these
systems is highly dependent on the respective controller
setting. Once a controller is configured it provides satisfying
results for the process, given an unchanged operating envi-
ronment. However, if process variables change, the control
performance suffers. Hence, modern PI controllers come
with autotuning functionalities which enable an automatic
adaption of the controller to its application.

Most existing autotuning methods are identification-based
which means that a certain model structure is assumed and
system parameters are identified. Based on the estimated
system parameters the controller parameters are calculated.
Such methods can only work well if the model structure
fits to the system at hand. Nonlinearities, as e.g. limitations
of drives or friction, are usually neglected by the model,
which can lead to unspecified control behavior. Thus, tuning
a system in closed-loop operation is meaningful, since the
real system behavior is considered.

The basis for rule-based autotuning is the advance of an
experienced control engineer configuring a controller. The
human expert observes the response of the system to an
excitation signal and, based on characteristics of the respon-
se, changes the controller parameters according to certain
rules which were acquired by experience. This process is
repeated until no improvement can be attained anymore. The
idea of rule-based selftuning is to imitate the human expert
by means of a fuzzy logic rule base which contains the
available expertise. The design of a suitable fuzzy system
is subject of many publications, as [1]–[8]. The proposed
concepts differ w.r.t. the applied excitation signal, system
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Fig. 1. Basic structure of rule-based autotuning

response characterization and rule base. Fig. 1 illustrates the
basic structure of the rule-based selftuning approach. The
involved variables are the set point w(t), the manipulated
variable u(t), the controlled variable y(t), the number of
system response characteristics p and the tuning factors fkr
and fTn.

All of the above-mentioned rule-based autotuning
procedures are designed with a single rule base. Hence,
for treating various adverse controller settings, the system
response has to be characterized in a complex way
yielding an extensive rule base. For these concepts,
rule base modifications, e.g. for considering process-
specific nonlinearities, are hardly possible. Moreover, most
approaches do not consider the presence of measurement
noise. Thus, there is need for further research taking these
constraints into account.

The paper is organized as follows. Initially, in Section II
the problem is defined. Existing concepts are investigated and
the need for an additional approach is motivated. In Section
III the design of a new algorithm is delineated. The basic
idea is presented and the rule base is extensively derivated.
Moreover, a new approach for the characterization of non-
ideal system responses is described. Section IV illustrates
the proposed autotuning algorithm by means of a particular
motion control problem. Finally, Section V concludes with
a brief summary of the paper.

II. PROBLEM DEFINITION AND REQUIREMENTS

Consider the following mathematical representation of a
PI controller

GPI(s) = kr

(
1 +

1

sTn

)
, (1)



where kr and Tn are the proportional gain and the integral
time constant, respectively. The objective is to find suitable
values for kr and Tn such that a desired control behavior is
attained. For this purpose, the system is excited by a desired
reference signal and the system response is characterized by
a number of parameters. In some existing approaches the
excitation signal is given by a reference step with the step
response being characterized by e.g. the overshoot (OS),
the undershoot (US) and the settling time [4], [5]. A rule
base evaluated by fuzzy logic is used for mapping these
parameters to suitable tuning factors fkr and fTn. Using
these tuning factors, the controller parameters are tuned by

kr,i+1 = fkr,i · kr,i, (2a)
Tn,i+1 = fTn,i ·Tn,i, (2b)

for i = 0, ..., k − 1. The procedure runs iteratively until a
stopping criterion is fulfilled. The complexity of the rule
base is strongly dependent on the number of system response
characteristics p serving as input variables for the fuzzy
system. If each of the p linguistic input variables has qj
linguistic values (j = 1, ..., p), a complete and unambiguous
rule base would consist of the following number of rules

Nrules =

p∏
j=1

qj . (3)

In preparing this study, a detailled theoretical and practical
analysis of the methods proposed in [4] and [5] was accom-
plished in the context of a motion control application. At
this, the algorithm proposed in [4] produced unsatisfactory
results. The algorithm proposed in [5] provided partially
good results, however, accompanied by several problems for
certain initial controller parameters. A modification of the
algorithm, in order to consider process-specific pecularities
and non-idealities, proves to be difficult, since the rule base
consists of 184 rules arising from three input variables (OS,
US, status). Many of the rules are not motivated in this
publication and there still exist gaps in the proposed rule
base leading to unspecified behavior. Moreover, there is no
concept contained for dealing with non-ideal measurements.

Due to the reasons mentioned above it seemed meaningful
to create a new algorithm taking all the drawbacks of existing
concepts into account. We aim at a compact, parsimonious,
transparent and complete rule base which can be easily
modified in order to incorporate process-specific require-
ments. The new algorithm should enable a fast convergence
to the performance maximum in the controller parameter
space for all initial controller parameters. Moreover, a robust
determination of the system response characteristics which
is insensitive to measurement noise is aspired.

III. DESIGN OF THE NEW ALGORITHM

A. Basic Idea

The first interim objective is the design of a parsimonious
fuzzy system with a compact rule base. As illustrated in
(3), the number of rules is significantly dependent on the
number of system response characteristics p. Thus, in this

paper, the closed-loop step response is characterized by only
a single parameter - the damping ratio (or just “damping”)
d. The idea is inspired by the approximation of processes
with second order systems of

G(s) =
K

1 + 2dTs+ T 2s2
. (4)

Regarding this approximation, there is an unambiguous ma-
thematic relation between the damping d and the first OS
and US of the step response relative to the set point

OS = exp

(
− πd√

1− d2

)
, US = exp

(
− 2πd√

1− d2

)
. (5)

Consequently, for processes that can be approximated by a
second order system, the characterization by the damping
is more effective compared to the characterization by the
OS and US. Regarding drive systems, this approach is
particularly suitable for one-mass systems as the closed-
loop is then described by a second order system. Since
the damping provides a high-level characterization of the
closed-loop behavior, the approach often proves appropriate,
even for processes that cannot be approximated by second
order systems.

A major problem of rule-based autotuning algorithms is
that similar insufficient system responses can be ascribed
to multiple adverse parametrizations of the PI controller.
Most of the existing concepts try to solve this problem by
a detailled characterization of the system responses. In this
paper we apply an alternative, very human-like approach:
for each input d to the rule base, there exist two tuning
strategies. Each strategy is applied as long as it is successful
and the tuning strategy is switched if a tuning iteration is not
successful. The algorithm terminates if no strategy is able to
attain control improvement anymore.

An essential question in this context is how success can
be evaluated. OS, US or achieved damping could be possible
quantificators for this purpose [4], [5]. However, the objective
of a control system is not to create a certain OS and US
but to optimize reference tracking and disturbance rejection
with respect to a meaningful controller action. Inspired by the
optimal control approach a performance index J is specified:

J =
1

N

N∑
k=1

(|e(k)|+ r · |u(k)|) . (6)

In this equation N represents the number of samples
during a step response recording. The first part of the sum
penalizes a bad control performance by adding up values of
the absolute control error e(k) = w(k) − y(k). The second
part of the sum penalizes controller action u(k) which can
be weighted by the factor r ∈ R≥0.

As for most existing rule-based autotuning concepts, the
excitation signal is chosen to be a reference step with the
corresponding closed-loop step response as system respon-
se. In order to take disturbance rejection into account, an



Fig. 2. Flow chart of the proposed method

additional disturbance step is applied to the system after
the step response has sufficiently settled. A tuning step is
then rated as successful if the performance index J of the
system response has decreased, compared to its value in
the previous iteration. Considering two strategies yields then
the algorithm depicted in the program flow chart in Fig. 2.
Without much effort the algorithm can be extended by adding
further strategies which gives a great flexibility.

B. Rule Base

Based on the objectives presented at the end of section II,
the following requirements are defined:

• The membership functions have to be designed wide
enough to ensure robustness w.r.t. irregularities.

• The membership functions should be finely partitioned
to enable a fast tuning procedure.

• A damping around 0.7 is aspired. Regarding a second
order system, 0.7 corresponds to a step response OS of
4.4% which nearly represents the tuning goal in [5].

• The rule base has to cover difficult dynamical excepti-
ons, e.g. the case where an increasing proportional gain
leads to a decreased OS in the step response.

• At least one tuning factor should always be significantly
far away from 1. Otherwise a small modification in both
controller parameters can lead to very small changes
in the step response leading to even smaller controller
parameter variations in the next iterations.

• The optimization of kr and Tn should be decoupled if
possible. This enables free progression in the controller
parameter space and finally a parameter configuration
which is close to a possible minimum of (6).

The membership functions (MF) for the linguistic input
and output variables are shown in Fig. 3 (a) and (b),
respectively. The values of the linguistic variables are

(a) MF for the input variable d

(b) MF for output variables fkr , fTn

Fig. 3. MF for the input and output variables of the fuzzy system

d = BNEG NEG OK POS BPOS

ver 1 kr ↓↓ kr ↓ kr → kr ↑ kr ↑↑
Tn ↑↑ Tn ↑ Tn → Tn ↓ Tn ↓↓

ver 2 kr ↓↓ kr ↓ kr → kr ↑ kr ↑↑
Tn → Tn → Tn → Tn → Tn →

ver 3 kr ↓↓ kr ↓ kr ↑ kr ↑ kr ↑↑
Tn → Tn → Tn → Tn ↓ Tn ↓↓

TABLE I
DEVELOPMENT OF STRATEGY I

BNEG (big negative), NEG (negative), OK, POS (positive),
and BPOS (big positive). The damping is said to be
“OK” between 0.5 and 0.85 which, in a second order
system, corresponds to an OS from 0.6% to 16%. If the
damping is too high or too low, the linguistic variables
distinguish between two intensities each, which allows a
faster convergence.

Strategy I

Since the rule base of [5] yielded partly acceptable results
during previous studies, it is meaningful to retain the main
concepts of the proposed tuning. Put in highly simplified
terms, the fundamental idea is to diminish the damping (i.e.
to increase the OS) by increasing the proportional gain kr
or by decreasing the integral time constant Tn. On the other
side, the closed-loop damping can be increased by decreasing
kr or by increasing Tn. Bringing these basic principles in a
table structure leads to the rule base illustrated in row “ver
1” of Table I.

In order to enable a free progression in the parameters
space, it is meaningful to decouple the tuning for kr and Tn.
Hence, strategy I will focus on the proportional gain while



d = BNEG NEG OK POS BPOS

ver 1 kr → kr → kr → kr → kr →
Tn ↑↑ Tn ↑ Tn → Tn ↓ Tn ↓↓

ver 2 kr ↑ kr ↑ kr → kr → kr →
Tn ↑↑ Tn ↑ Tn → Tn ↓ Tn ↓↓

ver 3 kr ↑ kr ↑ kr ↓ kr ↓ kr ↓
Tn ↑↑ Tn ↑ Tn → Tn ↓ Tn ↓↓

TABLE II
DEVELOPMENT OF STRATEGY II

strategy II focuses on the integral time constant. In terms of
strategy I, this leads to the configuration shown in the second
row of Table I.

As presented in the requirements, there should always be
a significant tuning action for at least one of the controller
parameters. However, for the case d = OK there is no
parameter modification wherefore the algorithm could easily
be stuck. In order to solve this issue the proportional gain
could be increased or decreased for the case d = OK. Since
it is assumed that strategy I is very important for the tuning
of overdamped cases, i.e. controllers with too small kr, the
proportional gain will be increased in this case.

For overdamped systems, decreasing Tn will make the
response faster and finally lead to the desired OS. Hence,
these actions are also added to the rules for d = POS and
d = BPOS in strategy I. The third row of Table I illustrates
the final version of strategy I.

Strategy II

As strategy I is mainly directed to variations of kr, the
starting idea of strategy II is to focus on variations of Tn.
When neglecting modifications of kr, the initial rules in row
“ver 1” of Table I give the rule base shown in row “ver 1”
of Table II.

Again some modifications have to be included to comply
with the requirements listed at the beginning of Section III.
Several simulations and testbench results revealed that a
combination of a too low proportional gain and a small
integral time constant can lead to heavy oscillations in the
step response. In those cases an increase of kr can decrease
the oscillations which is in contrast to strategy I and has
therefore to be included in strategy II.

Fig. 4 exemplarily illustrates this behavior by means of
the open-loop frequency response of a one-mass system
being controlled by a PI controller. If kr is increased, the
magnitude plot moves upwards and the crossover frequency
(bold vertical line) increases. This, in turn, will increase the
phase margin as long as the crossover frequency approaches
the maximum of the phase response. As a consequence,
it would be meaningful to add a rule which increases the
proportional gain in case of oscillating step responses as
shown in the second row of Table II.

Fig. 4. Bode plot illustrating the rule d=NEG in strategy II

Particular processes suffer from particular restrictions,
which has to be incorporated by an effective autotuning algo-
rithm. Regarding drive systems, we illustrate how upcoming
restrictions can be included to the rule base.

One of the most difficult controller autotuning situations
in electrical drive systems is when the motor is in saturation
for most of the time during a desired acceleration. This is
mainly caused by a too high proportional gain and leads
to a moderate damping and a turbulent steady state control.
The only way to reduce the over-tightness of the control
is to significantly decrease the proportional gain. Conven-
tional autotuning algorithms fail to react adequately since
existing system response characterizations are not capable
of describing this situation. In consequence, the system be-
havior is inaccurately ascribed to another adverse controller
setting, leading to implausible tuning action. In contrast, the
algorithm proposed in this paper can be simply modified by
decreasing kr for damping values d = OK to d = BPOS in
strategy II, which leads to the last row of Table II.

C. Step Response Characterization

The damping ratio d is the only input to the rule base in
the proposed method. This section describes two approaches
of determining d based on a step response.

The first way is to assume the step response of the closed-
loop to be originated by a second order system (4). In discrete
form, the system can be written as

Gz(z) =
a

1 + bz−1 + cz−2
. (7)

The parameters a, b and c can be estimated from a recorded
step response, e.g. by applying the Nelder-Mead method.
Assuming the discrete time system (7) to be originated from



the continuous system (4) by using implicit Euler integration,
the damping factor d can be calculated from the estimated
parameters by

d = −
(
c+

b

2

)√
1

c(1 + b+ c)
. (8)

Regarding the closed-loop behavior, the method is limited to
processes which can be described by second order systems.
The procedure is robust to noisy measurement data but
sensitive to unmodeled effects such as friction.

The second approach focuses on the maximum relative
OS of the system response. If the reference step size is not
exceeded by the system response, the system is regarded as
overdamped and the damping factor is set to d = 1. Likewise,
the damping is set to d = 0 if the system response exceedes
twice the reference step size. In total, the damping factor can
then be calculated by

d =


1 , if ymax < wref

0 , if ymax > 2 ·wref√
(lnOS)2

(lnOS)2+π2 , else,
(9)

where the calculation for the last case follows directly from
rearranging (5). In theory, this method is more sensitive to
measurement noise, as it relies on a single sample of the
step response. However, in simulations and testbench trials
we obtained reliable characterization results if the noise level
was not too high.

IV. EVALUATION

Many simulations and testbench trials were conducted
in order to investigate the performance of the proposed
method w.r.t. motion control applications. A selection of the
results are presented in this section. During all test trials the
weighting factor was set to r = 0.2.

In the first example, the testbench is mechanically con-
figured to resemble a one-mass system. A passive initial
controller is applied. In each iteration of the method, a refe-
rence step from 0 to 200 rpm and a subsequent disturbance
step are conducted. The results are shown in Fig. 5. The
three subfigures show the nine iterations necessary to tune
the controller. The first iteration illustrates the very slow
dynamics regarding the reference and disturbance response.
As there is no OS, the system is initially considered to be
overdamped with d = 1. According to strategy I, kr is incre-
ased and Tn is decreased. Step by step, these modifications
improve the control performance during the next iterations.
However, the first iteration in the second subfigure shows
how the increased stiffness leads to inordinate controller
action which becomes evident by the turbulent character of
the stationary speed signal and an increased value of the
performance index. Hence, the third tuning step is considered
to be unsuccessful and the strategy is switched. After three
iterations with strategy II and improving control quality, the
second to last iteration has again a decreased performance

Fig. 5. Tuning protocol for slow initial controller

index. The strategy is switched back to strategy I. Howe-
ver, the last iteration gives no improvement, wherefore the
algorithm terminates by taking iteration 7 as the best tuning
result.

This type of test trial was repeated for a number of
different initial controller parametrizations. The results are
shown in Table III where kr,0 and Tn,0 are the initial control
parameters, k∗r and T ∗

n are the final controller parameters,
Iter is the number of iterations and J is the final value of the
performance index. Although the initial controller parameters
are varied by a factor of 1000, the parameters converge to
very similar values giving a good control performance. The
only exception is case 6, where no improvement can be
attained. This is due to the initial values which represent the
stiffest controller realizable on the drive, i.e. the controller
with the highest possible kr and the lowest possible Tn. The
corresponding tuning run is visualized in Fig. 6. The control-
ler will create a step response with a damping in the range
between “OK” and “BPOS”. However, for these values the
rule base contains no strategy where kr is decreased without
simultaneously decreasing Tn. Hence, no improvement can
be attained and the algorithm terminates after two iterations.
The problem could be solved by modifying the rule base,
e.g. by adding an additional strategy. However, note that the
initial values of case 6 are not reasonable as they represent
the stiffest possible configuration of the drive.



# kr,0 Tn,0 k∗r T ∗
n Iter J

1 20 5 71.8 0.150 12 3.62

2 10 0.3 76.3 0.140 7 3.53

3 2 0.01 85.3 0.056 23 3.48

4 200 3 65.5 0.206 18 3.62

5 3.2 0.55 63.7 0.207 12 3.71

6 200 0.005 200 0.005 3 4.02

7 2 0.005 80.5 0.038 23 3.46

8 50 0.1 78.1 0.078 5 3.52

9 15 0.3 89.4 0.177 8 3.69

10 140 1 72.0 0.206 7 3.65

TABLE III
OVERVIEW OF TUNING RESULTS FOR DIFFERENT INITIAL CONTROLLERS

Fig. 6. Tuning protocol for testrun #6

An example for an initial controller with an oscillating
step response is shown in Fig. 7. As the whole sequence
takes relatively long to terminate (23 iterations), only the
first six and the last three iterations are shown. Regarding
the first two subfigures, it can be seen how the damping
steadily increases. Note, that in the last subfigure the y-axis
is scaled in order to visualize the differences between the last
three iterations. Similar to the result in Fig. 5, the algorithm
terminates when both strategies yield no improvement.

More testbench trials were conducted e.g. attaching a
second mass to a load via a belt which made the system a
two-mass system, using different reference and disturbance
step sizes, all giving very promising results. Even simulation
tests using models from process control like those found
in [5] indicate that the method and rule base can be used
for a wider class of systems than the initially intended one.

V. CONCLUSIONS

This paper addresses the design of a rule-based autotuning
algorithm with focus on the application to drive systems.
Compared to existing concepts, the approach of alternative
tuning strategies enables the utilization of a compact and
complete rule base. Due to the flexibility of the method, the
ideas can be easily transferred to processes from other areas
of application. The algorithm is able to deal with practical
obstacles as measurement noise and nonlinearities occuring
from process-specific non-idealities. Numerous trials in si-

Fig. 7. Tuning protocol for testrun #7

mulations and at a drive system testbench yielded adequate
tuning results.
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