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Abstract 

Water diffusion into silica glass results in a thin zone near the surface of the 
glass. In this zone the water reacts with the SiO2 structure and “damages” the 
originally intact SiO2 rings. The consequence is a reduced Young’s module. 
This effect can be described by use of continuum damage mechanics 
according to Kachanov and Lemaitre.  
The amount of damage can be estimated from literature data on sound velocity 
measurements.  
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1 Damage by hydroxyl generation 

When a hydroxyl has been formed, the initial silica ring is broken and the mechanical 
cohesion is weakened. Such “defects” in the glass structure can be treated by using the 
damage variable D of continuum damage mechanics (Kachanov [1], Lemaitre [2]). 
This parameter is proportional to the density of micro-defects.  
According to the postulate of strain equivalence by Lemaitre [3], the effective elastic 
modulus, E, decreases with increasing damage  

  )1(0 DEE   (1.1) 

where E0 is the modulus of virgin glass.  
The elastic strain  is according to the hypothesis by Lemaitre  

  
0

0

EE


   (1.2) 

The stress term is indicated here by a subscript “0” that means the stress related to the 
total cross-section.  

The damage variable D can be determined from modulus measurements via eq.(1.1). 
The occurrence of this effect is in principle known from measurements on NaO-SiO2 
glass as the results by Ito and Tomozawa [4]. To the authors’ knowledge, so far no 
measurements on fused silica are available. Therefore, a simple linear relation is ten-
tatively used where the density of defects is assumed to be proportional to the con-
centration of the hydroxyls S: 

  max/ SSD   (1.3) 

from which the Young’s modulus results 

  )/1( max0 SSEE   (1.4) 

The quantity Smax stands for the maximum hydroxyl content in a special loading case, 
at which damage D=1 and mechanical disintegration of the glass ring structure is 
reached and, consequently, Young’s modulus disappears.  

Apart from the equi-triaxial loading case with x = y = z (including the case of dis-
appearing stresses), the elastic modulus must become a tensor with components 
depending on the degree of loading multiaxiality. Since this possibility would make 
the further treatment very difficult [3] and non-transparent, we assume in the following 
considerations that the damage remains isotropic and is considered be of scalar nature. 
This is equivalent to the assumption of pore-like defects. Then also E remains isotropic.  
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Due to damage, the load-carrying cross-section is reduced and, consequently, the 
effective stress increased. If 0 is the nominal stress, the effective stress is given by 

  
D


1

0  (1.5) 

 

2 Experimental evidence for modulus reduction in silica 
In literature, there is experimental evidence for modulus decrease with increasing 
hydroxyl content. This can be seen from measurements of Young’s modulus as a 
function of water content. Measurements on longitudinal sound velocities in silica 
specimens with different water content were reported by Fraser [5] and Le Parc et al. 
[6]. Their results are shown in Fig. 1a and additionally with normalized ordinate 
scaling in Fig. 1b. Individual fits for the two data sets were made resulting for Fraser 
[5] in 

  S025.05974 v  (2.1) 

From LeParc et al. [6] we obtain 

  S0318.05959 v  (2.2) 

When we normalize the results of the two test series on their individual values for S=0, 
we get the representation in Fig. 1b. A common straight-line fit of these data yields 

  SBA
0v

v
 (2.3) 

with the parameters  

A=1 [0.99974, 1.00026] ,  B=5.13 [4.18, 6.08]  

(90%-CI in brackets). The dependency of eq.(2.3) is introduced in Fig. 1b as the 
straight line. 

Since the longitudinal sound velocity depends on Young’s modulus E and density  by 

/Ev , we obtain for small S with /0  1(0.84/2)S according to measurements 

by Shelby [7]:  

  S
E

E   1)/(/ 2
00

0

vv  (2.4) 
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with =10.6. It has to be noted that this value holds for isotropic damage since the 
natural OH-content doesn’t show any preference for a special direction.  

 
Fig. 1 a) Longitudinal sound velocity in silica with different OH-content (blue circles: results by 
Fraser [5], red circles: results by LeParc et al. [6]), b) normalized representation of the two data sets. 

It is self-evident that eq.(2.4) can describe the modulus decrease only for small 
hydroxyl contents. For S 1/ a negative E-module would result. This would be 
without physical sense. A comparable effect on E holds for porosity in ceramics. 
Figure 2a shows results for hot-pressed silicon nitride (HPSN) with MgO and CeO2 as 
was reported by Phani and Niyogi [8], (see e.g. [9]). The solid curve introduced in Fig. 
2a describes the modulus as a function of porosity P by  

  
4

0

53.456.21 PP
E

E
  (2.5) 

with the consequence that material would be disintegrated at about P=0.52.  

We suggest for large S a description similar to the effect of porosity on E in ceramics. 
Therefore, we assume that nano-pores in SiO2, caused by hydroxyl generation, might 
behave like normal pores. Unfortunately, there is actually no information at which 
hydroxyl concentration disintegration of the silica ring structure occurs with E/E00. 
Including this assumption in eq.(2.4) gives  
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4

0

6.101 SS
E

E   (2.6) 

The coefficient  is not yet known. Consequently, the behaviour at smaller values of 
E/E0 remains unknown. Besides of elasticity measurements at high S-concentrations or 
molecular pore modelling of the glass structure may give more information in this 
region. For a modelling by hole-like pores see e.g. Tsukrov and Kachanov [10]. Crack-
like defects were modelled in [11]. 

     
Fig. 2 a) Effect of pores on Young’s modulus of HPSN-ceramics, b) behaviour for silica; expected 

behaviour tentatively introduced by the curve (dash-dotted lines: extrapolation of initially linear 
variation). 

3 Effect of damage 

3.1 Global stress 

Hydroxyl formation in silica damages the initial ring structure. The mechanical 
cohesion is weakened. Such “defects” in the glass structure can be treated by using the 
“rule of mixture” with the encircled regions of broken bonds (Fig. 3) with modulus 
E0 and the intact regions having the modulus E0 of virgin glass. The damage variable 
D is the volume share of the “voids” with E=0.  
As a consequence, the effective elastic modulus, E, decreases with increasing damage  

  )1(0 DEE   (3.1) 

Due to the condition that plane cross-sections must remain plane under load, the strain 
in the surface layer =/E must equal the strain =0/E0 in the bulk.  

The stress in the damaged surface is therefore 
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  )1(0 D  (3.2) 

(0= stress in the bulk). The damage in the material affects also the load-bearing 
capacity of any area element since it reduces its net cross section and, consequenly, the 
strength f. If f,0 denotes the strength in the absence of damage, the strength of the 
damaged material is  

  )1(0, Dff    (3.3) 

The strength of water-damaged silica fibres is strain-controlled. This means that  

  
0

0,

0

0,

)1(

)1(

EDE

D

E
fff

c


 




  (3.4) 

Equation (3.4) tells us that the damage problem can be handled simply by using bulk 
material parameters (E0, f,0) since the damage by broken bond cancels out in (3.4).  

 
Fig. 3 Volume element of silica showing damage by bond breaking due to water/silica reaction, third 
dimension ignored. 

3.2 Effect on the applied stress intensity factors 

In a material with varying Young’s modulus, the fracture mechanics J-Integral as the 
driving force for crack extension remains path-independent, i.e. any path in the near-
tip region, Jtip, must give the same result as a path far away from the crack, Jappl. In the 
case of linear-elastic fracture mechanics, the J-integral is identical with the energy 
release rate G. This results in 

  )1()1( 2
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0
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where Ktip is the “true” stress intensity factor acting at the tip and Kappl is the externally 
applied stress intensity factor that can be computed from handbook solutions. Since 
the Poisson ratio is hardly changed, 0=0.17, we get from (3.1) and (3.5)  

  DK
E

E
KK applappltip  1

0

 (3.6) 

i.e. the effective load at the tip is reduced, Ktip<Kappl. 

3.3 Effect on crack growth resistance 

The damage of the initial ring structure of silica, Fig. 3, must also affect the resistance 
against crack propagation. The dash-dotted line in Fig. 3 may represent the prospective 
plane for crack extension. The crack growth resistance Gc represents the energy 
necessary to split all bonds that are broken when the crack passed the considered 
volume element. Application of the damage variable yields   

  )1(,, DGG ctipc    (3.7) 

(Gc, = crack resistance for the undamaged material) or in terms of stress intensity 
factors 

  )1(,, DKGEK Ictipctipc   (3.8) 

where Kc,tip is the crack-tip toughness and KIc the fracture toughness measured in 
fracture mechanics tests. 
 
3.4 Applied stress intensity factor for fully embedded cracks 

In the special case of a crack fully embedded in a material of reduced but constant 
modulus, the problem simplifies strongly. Then, it holds E=E0 with the consequence of  

  appltip KK   (3.9) 

On the other hand the applied stress intensity factor is given by 

  aFKappl   (3.10) 

(F = Fracture mechanics geometric function).  
Using the actual stress from eq.(3.2), Kappl reads 

  )1()1( 0,0

0,

DKDaFK appl

K

appl

appl



  (3.11) 
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where Kappl,0 stands for the applied stress intensity factor formally computed with 
stresses 0 as present in the bulk material. From (3.8), (3.9) and (3.11) it results 
equivalently to eq.( 3.4) 

  
Ic

appl

Ic

appl

ctip

tip

K

K

DK

DK

K

K 0,0,

, )1(

)1(





  (3.12) 

Also in terms of stress intensity factors, surface cracks fully embedded in the surface 
layer can be handled simply by using bulk material parameters (Kappl, KIc) instead of 
the unknown parameters in the layer. 
The reduced Young’s modulus in the surrounding of a crack must have an effect on 
crack opening displacements COD.  
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