Jan Jiirjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 139

NLCI - A Natural Language Command Interpreter

Mathias LandhzuBer' Sebastian Weigelt Walter F. Tichy

Keywords: Programming in Natural Language, End-user Programming, Knowledge-based Software
Engineering, Program Synthesis, Natural Language Processing for Software Engineering

Introduction Natural language (NL) interfaces are becoming more and more common,
because they are powerful and easy to use. However, such interfaces are extremely difficult
to build, to maintain, and to port to new domains. They involve competence in speech and
natural language processing (NLP), NL grammars, and inference engines that map the
input to whatever the application requires.

We present an approach for building and porting such interfaces quickly. NLCI is a natu-
ral language command interpreter that accepts action commands in English and translates
them into executable code. The core component is an ontology that models an API. Con-
struction of the ontology can be automated if the API uses descriptive names for its com-
ponents. In that case, the language interface can be generated completely automatically.

The interface can be used, for instance, for instructing robots, programming home automa-
tion systems, manipulating spreadsheets, controlling games, or for working with any API
that is suitable for end-user programming.

The important advance reported in this paper is that interfaces that work with unrestricted
English text require only a domain ontology to be built and no other expertise. The ontol-
ogy can even be generated automatically, if the API has certain properties. Our approach
is a first step on the road to simplify the construction of next-generation user interfaces.

Approach Processes that translate NL into source code usually either target a specific
domain, restrict the input language, or both. Our language analysis is completely domain
agnostic. The domain knowledge is stored in an ontology and loaded before processing the
input. All information derived is annotated in the input text and the (necessarily platform
specific) code generation engine can make use of it without knowing anything about NL.

Translation Process Fig. 1 illustrates the overall process: First we populate the ontol-
ogy that contains the domain specifics (i.e. the API with all classes and their methods);
to allow for fuzzy language matching, we enrich the API with synonyms from WordNet.
The domain ontology must be built only once per API and can be easily extended. Given
an input script, we parse it, enrich it with structural information (such as control struc-
tures [LH15]), and identify actors, actions, and (grammatical) objects. For every sentence
we identify the classes and methods to invoke (including parameters). Before handing over

! Karlsruhe Institute of Technology, Institute for Program Structures and Data Organization, Am Fasanengarten
5, 76131 Karlsruhe, Germany, {landhaeusser | weigelt | tichy } @kit.edu, https://ps.ipd.kit.edu

140 Mathias LandhéuBer, Sebastian Weigelt und Walter F. Tichy

v T
[[
NLCI ' 1+ Ontology 1 Target
API Ontology ! | Populator | ! API
' "y

T

Language
Analyzer

Annotated
Natural

Language
Script

Code

Fig. 1: The NLCI architecture. The ontology populator and the code generator depend on the pro-
gramming language only; all other components depend on the natural language only.

the annotated text to the code generator, NLCI checks and and corrects the sequential or-
der of the script [LHT14]. The last phase generates actual code for the target programming
language. As this step is programming language dependent, one must provide a code gen-
erator for each programming language one wants to support. For an in-depth description
of NLCI see references [LWT16] and [Lal6].

Evaluation NLCI has been tested on two radically different domains: openHAB, an API
for home automation, and Alice, a programming environment for building 3D animations.
Both of the APIs were ontologized automatically and both were tested with benchmarks
of scripts. For each script, a gold standard solution was constructed by hand.

In summary, NLCI produces the correct API calls 67% of the time, with a precision of
78%. Of course, this is not good enough for practical use. Naturally, future work will have
to improve both precision and recall, which means that both the parser and the matching
component need to be improved significantly.

The results are promising and show that interpreting commands stated in NL in these
two domains is feasible, yet we need to improve the accuracy of our matching algorithm.
Though NLCI is limited to written input at the moment, future work will use a speech
front-end to generate text for processing by NLCI [WT15].

References

[Lal6] LandhduBer, M.: Eine Architektur Fiir Programmsynthese Aus Natiirlicher Sprache. KIT
Scientific Publishing, Karlsruhe, 2016.

[LH15] LandhdufBer, M.; Hug, R.: Text Understanding for Programming in Natural Language:
Control Structures. In: Proc. of the 4th Int. Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering. May 2015.

[LHT14] LandhiduBer, M.; Hey, T.; Tichy, W. F.: Deriving Timelines from Texts. In: Proc. of the
3rd Int. Workshop on Realizing Artificial Intelligence Synergies in Software Engineering.
pp. 45-51, June 2014.

[LWT16] LandhdufBer, M.; Weigelt, S.; Tichy, W. F.: NLCI: A Natural Language Command Inter-
preter. Automated Software Engineering, August 2016.

[WT15] Weigelt, S.; Tichy, W. E.: Poster: ProNat: An Agent-Based System Design for Program-
ming in Spoken Natural Language. In: 2015 IEEE/ACM 37th IEEE Int. Conf. on Software
Engineering (ICSE). volume 2, pp. §19-820, May 2015.

