Statistical Simulation of a Multi-Phase Tool
Machining a Multi-Phase Workpiece

Swetlana Herbrandt, Uwe Ligges, Manuel Ferreira, Michael Kansteiner, and
Claus Weihs

Abstract The continuing development of the multi-phase material concrete
leads to an increased demand for the optimization of diamond impregnated
tools. Because of high initial investment costs for diamond tools, not only the
reduction of processing time, but also the reduction of tool wear is in the focus
of interest. While some parameters like cutting speed can be controlled, other
important parameters like the number of cutting diamonds are beyond our influ-
ence. To manage this randomness, simulation models for diamond and segment
grinding are developed. In this work we will present two models for a segment
grinding simulation. The first model is an extension of the simulation model
proposed by Raabe et al. (2011) for single diamond scratching on basalt. Beside
the goodness-of-fit, the simulation time is an essential factor in the development
and choice of simulation models. The difficulties encountered while extending
this model are discussed and we provide a solution to accelerate the workpiece
simulation. In order to achieve a further reduction of simulation time, a second
model is introduced under the assumption of pyramidal shaped diamonds. The
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simulation results are compared with single diamond experimental data and a
feasibility study is performed for the segment setup.

1 Introduction

The machining of mineral subsoil is daily routine at building sites. In many
cases the machined material is concrete and the preferred tool for trepanning is
a diamond impregnated drill because of the diamond‘s cutting properties. Since
these tools are in general not adapted to particular situations, under certain
circumstances the tool wear can be much higher than expected and would
therefore lead to an earlier need for replacement. Hence our main target is the
understanding and optimization of the machining process with simultaneous
reduction of tool wear. The difficulty of this task is in the complexity of the
process in conjunction with the problem that many variables affecting the
machining process can not be directly influenced and are even difficult to
observe. The simulation should enable the control of these parameters and offer
the possibility to conduct as many simulated experiments as necessary to find
optimal settings for tool production and the machining process.

In the last twenty years many different models for the simulation of forces,
material removal and temperature in grinding processes were presented (Brinks-
meier et al, 2006). The model categories range from heuristic and empirical to
physical models, while high performance computers allow for the computation
of models with resolution degrees from macroscopic to microscopic. The con-
sidered areas of application are as various as the models due to the versatile
usability of diamond impregnated tools, the diverse characteristics of machined
materials, and the multiple kinds of machining processes. The state of the art
method for simulations of engineering applications like grinding or sawing
is the finite elements approach (Zienkiewicz and Taylor, 1977; Altintas et al,
2005). Originally, this method is used for the description of continuous trans-
formation of machined material regarding e.g. its deformation or the change in
temperature. Therefore, the finite elements method is particularly suitable for
materials which allow plastic or elastic deformation, respectively effects which
cause a continuous change on the material. In the case of rigid materials, like
natural stone, the material removal is a discontinuous process resulting in brittle
fracture and discontinuous chip formation (Denkena et al, 2004). Such situa-
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Fig. 1 Development of the Simplex Segment Model.

tions are often solved by the discrete elements approach or by a combination of
both methods (Munjiza et al, 1995).

Raabe et al. (2011) considered a model for the force simulation of a sin-
gle diamond grinding process with a geometrically undefined cutting edge
scratching on basalt. Their approach is closely related to the discrete elements
method since the removal mechanism is simulated by removing parts from
a workpiece represented by a set of 3-dimensional simplexes. The resulting
forces are calculated using a geometrical approach involving the angles of the
interacting simplexes of diamond and workpiece. In the following papers the
model was extended by including the material heterogeneity (Raabe et al, 2012)
and compared with experimental data (Weihs et al, 2014). Continuing this work
we introduce two models with further extensions concerning the material (from
basalt to concrete) and the tool (from single diamond to a segment).

2 Outline

In this work we present two different models (Simplex Segment Model in
Sect. 4 and Scratch Track Model in Sect. 5) for the machining of concrete with
a single tool segment. The concrete is assumed to consist of two aggregates,
basalt and cement, while the segment is a sintered composite of uniformly
distributed diamonds in a metal matrix (see Sect. 3 for details).

In Sect. 4 we present a model (Simplex Segment Model, see Fig. 1 for model
development) for segment grinding as an extension of the single diamond
model of Raabe et al (2011, 2012) and Weihs et al (2014). Two models for the
workpiece simulation are described in Sect. 4.2. The representation of the multi-
phase tool (segment) is explained in Sect. 4.1, followed by a draft version of the
process simulation (Sect. 4.3), where we discuss the computational challenge
concerning the simulation time of this segment model.
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Fig. 2 Development of the Scratch Track Model.

The computation time of this computationally expansive simulation is re-
duced by introducing an assumption about the geometry of the diamond’s
cutting profile. While the Simplex Segment Model is working with geomet-
rically undefined cutting edges of the diamonds in the segment, the shape of
the diamonds in the Scratch Track Model (see Fig. 2) in Sect. 5 is restricted
to pyramids. This assumption allows the modeling of the scratch track which
results when one or more diamonds scratch the surface of the workpiece. The
development proceeds in two steps. In the first step we adjust all scratch track
diamond model parameters by minimizing the deviation between observed
forces from single diamond scratch tests and forces of the Scratch Track Dia-
mond Model. For this we will first introduce the scratch track diamond model in
Sect. 5.1, describe the experiments (Sect. 6.1) and then explain the optimization
procedure and the results in Sect. 6.2. The second step is a feasibility study
(Sect. 7.2) comparing the forces of the Scratch Track Segment Model (Sect. 5.2)
with the forces of conducted experiments with segments (7.1).

The goal of this work is to predict the arising forces while drilling with the
segment into concrete up to a predefined total depth with a constant cutting
speed and a constant feed speed.

3 Grinding Process

The core drilling process is a widely used method in the construction industry.
For this work diamond tipped drill core bits are used. A drill core bit consists
of several rectangular segments attached to a circular body in equally spaced
intervals. Each segment is a sintered composite of diamonds and metal powder.
Due to a large number of influencing factors, measurement results gained from
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Fig. 3 Experimental setup for single diamond scratch test.

drilling tests provide only encapsulated information, because dependencies
and interfaces cannot be distinguished clearly (Franca et al, 2015). Hence, the
first logical step is to reduce the influencing factors by reducing the number
of segments which are used for a drilling operation and therefore reducing
the number of diamonds. Consequently, two different analysis approaches are
studied. Tests with single diamonds, called scratch tests and tests with single
segments comprising a number of diamonds on the surface.

Single Diamond Scratch Test To gain a better and more fundamental under-
standing of the complex grinding process, scratch tests with single diamonds
are conducted (Fig. 3 (a)). The advantage of this procedure is the better pro-
cess control due to the absence of diamond break outs, interactions between
diamonds, and the influence of the metal matrix surrounding the diamonds in a
segment. In the experimental setup a diamond with a pyramidal shape (Fig. 3
(b)) scratches on a circular path with radius r [mm], a constant cutting speed
Ve [ﬁ] and a constant feed speed vy [%] into the specimens until a total

depth is reached. During the experiment the forces (tangential force f, radial
force f,, normal force f) are recorded.

Single Segment Test For single segment tests, the segments are manufactured
in a powder metallurgical process route as a mixture of diamonds and metal
powder. During the experiment the segment is attached to a tool holder (Fig. 4),
so that the diamonds with workpiece contact scratch the workpiece on a circular
path. As in the single diamond tests the cutting and feed speed are constant and
the forces (tangential force fy, radial force f}, normal force f;) are recorded.

Material Concrete is a composite material which consists of three main con-
stituents: cement, water and aggregates. Due to chemical reactions between
water and cement a hardening process occurs so that the cement acts like a
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segment -

Fig. 4 Experimental setup for segment test.

binder which holds the aggregates together and builds a strong connection.
Cement stone is a mixture of sand and water without aggregates like basalt.

4 Simplex Segment Model

The simplex model is a direct extension of the Raabe et al. (2011, 2012) model
and consists of the three parts: tool, workpiece and process simulation.

4.1 Multi-Phase Tool

Diamond Assuming that all diamonds used for the segment production have
the shape of truncated octahedra with different edge lengths, the two parameters
I = 2% and ¢ € (0,1 (see Fig. 5 (a)) determine the geometrical form of a sin-
gle diamond with size g. For simplicity in simulation, the truncated octahedron
is subdivided into 3-dimensional simplexes as shown in Fig. 5 (c) by applying a
Delaunay tessellation (Barber et al, 1996). Simplexes can be used to simulate
the diamond wear by removing single simplexes from the diamond’s simplex set.
When considering the diamond wear, simplexes should be small and numerous.
Since size and number of simplexes depend on the number of points used for
the tessellation, such points have to be placed inside the truncated octahedron
either at random positions or by creating a 3D-lattice (Fig. 5 (b)). The lattice
can be generated, e.g., by stringing together cubic diamond crystal structures as
it was proposed by Raabe et al. (2012). The last step in the diamond simulation
is a random rotation of all points.
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Fig. 5 (a) shape parameters, (b) cubic crystal structure lattice (c) simulated diamond (d) simulated
segment with 5 vol.-% diamonds

Segment When moving from a single diamond towards a complete drill core
bit, the segment is an intermediate step. As a sintered composite of diamonds
and metal powder it introduces new parameters. Design parameters are shape
and size of the segment, the size distribution of the diamonds, and their volume
fraction p in the segment. Suppose, e.g., the diamond sizes g are uniformly
distributed between 0.3 and 0.4 mm (equates to 40/50 mesh) and there are
5 vol.-% diamonds in the segment of size a X b x ¢ and volume Vs = abc.
For the expected diamond size E (g) the volume of this diamond is given by

3
V(E(g)) =8v2-10"2E(g). To get a diamond volume fraction of p there
have to be

V(E(g))
diamonds of size E (g) in the segment. Therefore, we sample |2m| diamond
sizes and determine the corresponding volumes V (g;),...,V (gpm ] ) Sampling

more sizes than probably needed provides us with the flexibility to reasonably
approximate the volume fraction p. To achieve this, the first

i
.V

n= argmin Yi1V (8) _
1<i<|2m] Vs

sizes are taken for the diamonds placed in the segment. The positions py,...,p,
for these diamond sizes are sampled under the condition

+ .
lon=p| = 2922 v <k
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to guarantee that the diamonds do not overlap each other. For these positions
the diamonds with sizes g1,...,g, are simulated as described above. A result is
shown in Fig. 5 (d).

4.2 Multi-Phase Workpiece

In this section we will present two ideas for workpiece simulation which allow
simulating concrete as a composite of different materials like basalt and cement,
and reinforced concrete. The workpiece has the shape of a hollow cylinder with
a height h and radii r + b = %” 4 b, where the half width b of the cylinder must
be greater than half the diamond size or half the segment width (Fig. 6 (a)).

If we want to simulate reinforced concrete, we first need to simulate the
reinforcing bar with diameter ds. The position of this bar is given by an axis
passing through two predefined or random points. Around this axis a point
lattice is expanded. Then we create an equidistant cement grid with point
distance Opparse ON

[—[r+b],[r+Db]]x[—[r+b],[r+b]] x[0,h]

in steel direction to avoid irregular spacing between the bar and cement. To
fill the cement grid with basalt grains, we repeat the next two steps until the
desired basalt volume fraction is achieved. First we sample a random point
from our coarse grid and a random grain diameter from the basalt diameter
distribution U (apas, bpas)» Where apas and by, are the lower and upper bound
of the occurring basalt grain diameters. If there are no other grains (or steel)
overlapping the sphere with the defined diameter around this random point, we
define all points inside as basalt grain. The resulting workpiece grid is shown in
Fig. 6 (b). Due to different material properties and inhomogeneity within the
same material each point receives an intrinsic value according to its material.
To achieve this, material specific exponential covariance functions are fitted
from the estimated seasonality of the force time series of real basalt and cement
experiments (Raabe et al, 2012). To use this information for each basalt grain
grid and the remaining cement grid Gaussian random fields are sampled with
the fitted covariance functions (see Fig. 6 (¢)).

Approach a In the first steps all calculations are done on the coarse grid to
save time. Since we want to degrade the workpiece into fragments by applying
a Delaunay tessellation on the set of points from our grid, the distance between
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Fig. 6 (a) Basic shape, (b) coarse grid with steel points (yellow), cement points (grey) and basalt
points, (c) coarse grid after point elimination and (d) coarse grid with values (represented by different
color shades) from sampled Gaussian random fields
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Fig. 7 (a) Finer grid with interpolated point values, (b) tessellation of basalt grains and reinforced bar,
(c) tessellation of cement points and boundary points of the objects and (d) complete workpiece.

the points influences the size of the resulting tetrahedra. Due to the fact that
the chip size (size of the removed material fragments) is very small we need a
finer grid with point distance &fine < Scoarse- The values for these grid points are
interpolated by ordinary Kriging from the values of the coarse grid (Fig. 7 (a)).
The Delaunay tessellation of the finer grid proceeds in two steps. We first apply
it to the different workpiece objects (basalt grains, steel bar, Fig. 7 (b)). Then
the remaining cement points and the boundary points of basalt and steel are
degraded into simplexes (Fig. 7 (c)). It is obvious that especially in the second
part of the workpiece tessellation the set of points is not convex. To handle this
problem we remove all simplexes with maximal edge length greater than the
0.98—quantile of all maximal simplex edge lengths.

This procedure works much better than a tessellation of all points at once
because it respects the boundaries of the single objects. Finally, each simplex
receives the mean value of its four points’ values which are of the same material
as the simplex.

Approach b The most time consuming factor in the method of approach (a) is
the Delaunay tessellation. To reduce this we provide a different approach. As
described above we still need a finer grid but instead of expanding a finer grid
over the whole workpiece shape, we just take one part of the hollow cylinder
with the correct angle, being a fraction of 7. By the Delaunay tessellation of
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Fig. 8 (a) Workpiece blank, (b) first workpiece part with assigned simplex values, (c) four aligned
workpiece parts and (d) complete workpiece consisting of sixteen aligned parts.

Table 1 Average values for 100 simulated concrete workpieces of the same size (standard deviation in
parentheses).

Approach a Approach b
Points in finer grids 7504 11264
Point distance [mm] 0.33 0.251
Simplices 47578 (250) 47568 (0)
Mean simplex volume [mm3] 4.253-1073 (94973 . 10*6) 2.623-1073 (34304~ 10*6)
Simulation time [sec] 37.147 (2.743) 10.716 (0.321)

this grid part we receive a degraded workpiece sector as shown in Fig. 8 (a)
without point or simplex values. Since neither the points nor the simplexes
of this sector have assigned values, we will call it a ‘blank’. To create the
workpiece, the next three steps have to be repeated until the hollow cylinder
is complete (Fig. 8 (d)). A copy of the blank with jittered points is rotated to
its position in the workpiece. Then we interpolate the values for the points of
this part by ordinary Kriging from the values of the random fields of the coarse
grid. Here we use the information about positions and sizes of the basalt grains
for a material separated interpolation. Afterwards the values for the simplexes
are calculated from the point values (Fig. 8 (b)). Because of using copies of
the one blank, each part of the workpiece has the same Delaunay tessellation.
Nevertheless, all simplexes have different volumes because we changed the
basis of the tessellation by jittering the points in each part.

To compare the two workpiece simulations one hundred concrete workpieces
with the sizes d, = 20 mm, b = 2.5 mm and a height of 4 = 1 mm were simulated
for both procedures. Despite the fact that the numbers of simplexes are rather
similar (see Table 1), the simulation time required for the second procedure
is much shorter, as intended. Another advantage of the second workpiece
simulation is that we have no variation in the number of simplexes because
the blank tessellation does not depend on the material. That makes it easier to
calculate the needed memory size.
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4.3 Process Simulation

To simulate the machining process with workpieces as in Sect. 4.2 we first have
to simulate a workpiece of desired size and material and a diamond or segment.
After positioning the diamond or segment on the surface of the workpiece the
process starts with the first movement of the tool. The length and depth of
this movement depends on the cutting speed v., cutting depth per revolution
ap = 10*3%27rr [mm] and the number of iterations v per revolution. For the
simulation of N revolutions, we have to determine for each of the VN iterations
whether the simulated tool has contact with the simulated workpiece. In this
case the affecting forces are computed. When using a tool segment machining
concrete, there are four possible interactions: basalt-diamond, basalt-metal
matrix, cement-diamond and cement-metal matrix.

For the force calculation we can use a geometrical approach based on the
edge orientation of the colliding simplexes and the division of the resulting force
into radial and normal force described for the process with a single diamond in
Raabe et al. (2012). In this approach each workpiece simplex hit by a diamond
simplex is removed from the simulated workpiece. To extend this procedure to
the grinding with a segment, we assume that material removal is only caused by
the diamonds and not by the metal matrix. With the additional assumption that
the force time signal is dominated by the forces arising in diamond-workpiece
interaction, we only have to distinguish between the different workpiece ma-
terials. Nevertheless, in each iteration we have to determine each workpiece
simplex with non-zero intersection volume with a simplex of at least one of the
diamonds in the segment. The computation time of one iteration step depends
on the number of simplexes in all diamonds and the number of simplexes in the
workpiece. Since the whole number of simplexes decreases due to the wear and
removal simulation, the evaluation of later iterations is faster. At the end of the
process simulation many workpiece simplexes outside the scratch track will
remain because they were not hit by any of the diamonds.

Unfortunately, it turned out that this model only appears to be appropriate for
the simulation of short single diamond experiments but not for the much more
complex simulation of segment experiments, which require the simulation of
hundreds of revolutions with multiple diamonds. For this purpose, we developed
another approach.
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5 Scratch Track Model

In the new approach we reduce workpiece modeling to a minimum. Instead of
modeling the complete workpiece and then remove parts of it, we only simulate
the parts which are removed by the diamonds.

The shape of the diamond, introduced in Sect. 4.1, is simplified to a pyramid
turned upside down as used in the single diamond experiments (Sect. 3). This
simplification to a pyramidal form can be justified since the part of the octahe-
dral diamond form that removes material in the segment experiments is very
similar to a rotated pyramid. By this assumption, the resulting scratch track has
the profile of a triangle with angle o determined by the cutting profile of the
diamond.

Before we introduce the force model for the grinding process with a segment
(5.2), we explain the model idea for the special case of a single diamond (5.1).

5.1 Scratch Track Diamond Model

In the one diamond case, a single diamond is scratching on a circular path
along the workpiece surface (see Sect. 3). The maximal intrusion depth of the
diamond is limited by the height of the diamond. For simplification we assume
that this maximal depth is reached after N revolutions. Let denote v the number
of modeled observations per revolution and a, = f 27r the cutting depth per
revolution. It is obvious that the resulting forces depend at least on the volume
of removed material and characteristics of the machined material. Thus, in our
model a realization of the modeled force is obtained by

F}:&-vai—l-&'vi, iZl,...,NV,
r r
where r is the drilling radius, g,, and g, parameters, which have to be optimized,
v; the volume removed from the workpiece and z; the material heterogene-
ity (Herbrandt et al, 2016). In the following we will describe the concept of
the scratch track model and how the information about removed volume and
material characteristics is linked to this scratch track.

To simulate v observations per revolution and N revolutions in total for one
diamond, we place VN + 1 triangles evenly distributed along the diamond’s
scratch track (Fig. 9 (a)), whereby the first triangle has an area of zero. The
sizes of these triangles depend on the intrusion depth of the diamond in the
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workpiece and the angle o of the pyramid representing the shape of the diamond.
Since the cutting depth per revolution a, is known, we can assume that the
intrusion depth increases by a = % for each simulated scratch track triangle
Dj (j=1,...,vN+1) (see Fig. 9 (a) with the triangles Dy,...,D,; of the
first revolution with v = 20). To consider the brittleness of the material, we
allow a Beta (0,ap, p,q)-distributed size variation a* of the triangles, where
Beta(0,a,,p,q) is the generalized beta distribution for the interval [0,a,] with
the unknown parameters p and ¢. Thus, the height of the jth triangle D; with
the corner points (d;1,djp,d;3) is hj = a(j—2) +a; (j=2,...,Nv+1and
hi = 0), where the i.i.d. variables a3, ...,a},.  have the same distribution as
ar.

A simulated observation is represented by a scratch track part formed by the
connection of two adjacent triangles (see Fig. 9 (b)). The connection is realized
by three 3-dimensional simplexes and the removed volume v; is calculated as
the sum of the volumes of the three simplexes.

As in Sect. 4.2 the material heterogeneity is considered by sampling from
Gaussian random fields. In contrast to Sect. 4.2, however, the number of values
we have to sample from the Gaussian random fields is smaller, since only the
3(Nv+1) points of the Nv + 1 triangles are taken into account. Additionally,
we want to adjust the parameters i, 6%, 62, ¥ of the Gaussian random field
together with all the other parameters (p, g of the Beta distribution and g,,,g,)
by minimizing the deviation between the observed and modeled forces (see
Sect. 6.2). The material heterogeneity z; of the ith modeled observation is
calculated as the mean of the six sampled point values of each two adjoining
triangles (d;j1,dj>,d;j3) and (d(j;1)1,d(j11y2,d(j+1)3)- In Fig. 9 (c) the six values
are represented by the colors of the six points of the two triangles and the overall
mean is represented by the color of the polyhedron (scratch track part) resulting
by the connection of these two triangles. Fig. 9 (d) shows 100 of thus scratch
track parts with heterogeneity values represented by colors in the first revolution.

5.2 Scratch Track Segment Model

In a segment we have several diamonds at random positions (see Sect. 3 and
Sect. 4.1). In addition to the first assumption (diamond shape), we introduce a
further assumption concerning the scratching with more than one diamond at
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Fig. 9 (a) Scratch track triangles for the first revolution and (b) tessellation of one scratch track part
into three simplexes (red, green and blue), (c) Scratch track part with sampled heterogeneity values for
the six points represented by different color shades for the points and the mean value (color of track
part) and (d) scratch track of the first revolution with v = 100 observations (scratch track parts) with
assigned heterogeneity values.

the same time. The second assumption states that the scratch tracks of different
diamonds are independent of each other.

For our model one of the most important differences between grinding with
a diamond and grinding with a segment (which corresponds to grinding with
several diamonds) is the maximal intrusion depth. In the single diamond case
this depth is determined by the diamond height, since the one diamond defines
the complete tool. Therefore the intrusion depth ranges from 0 to the height of
the diamond hp = ﬁ, where g is the diamond size and ¢ the pyramid angle.
In the segment experiment the diamonds are held by the metal matrix. Sup-
pose that the position of the lowest diamond of size g and height hp is
P = (px, Py, p-)" (Fig. 10 (a)). Then the first contact of this diamond with
the workpiece is at the intrusion depth of p, — hip (Fig. 10 (b)). The Figs. 10
(b)-(d) show the intrusion period of this diamond. The diamond of height Ap is
completely in the workpiece at the cutting depth of p, (Fig. 10 (d)). When this
maximal intrusion depth of the diamond is reached, the diamond is still held by
the metal matrix and the grinding process proceeds (Fig. 10 (e)). We assume
that the diamond breaks out at an unknown cutting depth p’.

The scratch track diamond model needs some adaptations for the segment
application. The adaptations of the three model parts scratch track, volume and
heterogeneity will be discussed in the same order as in Sect. 5.1.
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Fig. 10 (a) First segment workpiece contact with a diamond (yellow) inside the metal matrix (red), (b)
First diamond workpiece contact at a cutting depth of p, — hp, (c) Diamond in the intrusion period, (d)
Diamond at the end of the intrusion period at a cutting depth of p,, (e) Last position of the diamond
before break out at pl.

(b)

Fig. 11 (a) jth scratch track triangle D; = (d i,djpp,d j3) and diamond profile (d}l ,d}z,d j3) and (b)
ith scratch track part

When modeling the scratch track we have to consider the case in Fig. 10
(e). When the length of the triangle’s base b; = 2h;tan § (h; height of the jth
triangle) representing the part of the diamond inside the workpiece exceeds
the size of the diamond g, the intrusion period of the diamond has ended (as
shown in Fig. 10 (d)). Since the diamond profile will not increase any more, we
have to cut off the corners (djl,d}l,cﬂ) and (djz,d}z,m) (see Fig. 11 (a)) of
the following scratch track triangles. The diamond’s profile in the workpiece is
determined by the triangles (d;i,d»,d;3) during the intrusion period and then

by ( ;l,d;.z,dﬂ).
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After the intrusion period the volume is reduced by the volumes v;; (volume
of the right grey polyhedron in Fig. 11 (b)) and v;; (volume of the left grey
polyhedron in Fig. 11 (b)) between the corresponding cut off corners. The result-
ing volume is the volume of the green polyhedron in Fig. 11 (b). Additionally,
the volume v; is reduced by the already removed volume v;_, in the previous
revolution for i > v (same procedure as for the scratch track diamond model).

After that, the material heterogeneity z; of the i-th modeled observation is
calculated as the mean of the six sampled point values of each two adjoin-
ing diamonds’ profile triangles (d;i,d}2,d;3) and (d(]+1)1,d(1+1)2,d(]+1 ) (as
in the scratch track diamond model) or (d 0 ,27d 13) and (d(
dij )3) after the intrusion period of the diamond (Fig. 11 (b)).

The resulting normal forces

DD (1+1)

P Lozivit® v, po—hp <ai1 <pl
l 0, otherwise

are modeled so that for one diamond scratching at radius r and parameters g,
and g, normal forces increase as the removed volume v; increases, while the
variance is represented by the heterogeneity values z; (i = 1,...,NV). For K
diamonds the total force in the ith iteration

K
E’Jotal = Z E’,k
k=1

is determined as the sum of the K forces F;1,...,F; g in the ith iteration.

For the simulation of Nv = 4500 force observations with a segment including
one diamond by using the presented scratch track segment model we need
9.83 (£0.997) seconds. In almost the same time we can simulate the workpiece
of the simplex segment model (approx. 10 seconds, see Table 1 in Sect. 4.2).
For the simulation of 4500 observations with the simplex segment model we
additionally need to simulate the process (Sect. 4.3) to calculate the forces. That
means the scratch track segment model has finished the computation of 4500
observations even before the simplex segment model is ready to compute the
first observation.
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6 Single Diamond Grinding

In this section we will focus on the Scratch Track Diamond Model (Sect. 5.1).
For the model parameter adjustment we first explain the details of the conducted
single diamond experiments (Sect. 6.1) which provide the force data we use
as reference in the adjustment procedure. Then the optimization of the model
parameters and the results are presented (Sect. 6.2).

6.1 Design of Single Diamond Experiments

In the experimental setup a diamond scratches into the specimens until a total
depth of A = 0.08 mm. During the experiment the forces (tangential force
fx, radial force f,, normal force f;) are recorded with a sampling rate of
vy = 200000 Hz. Depending on the total drilling depth and the speeds v,
and vy, the total number of recorded observations per experiment and force
can be calculated as Av'—jovf (here: between 101000 and 480000). The tests are

conducted on a machining center (IXION TLF 1004) without a coolant or lubri-

cant. For the analysis of the influence of the cutting speed v, [%] and the feed
speed vy [%] on the resulting process forces, a 4°— full factorial design with

the parameter setting v, € {40.5,117,193.5,270} and v; € {2,4.5,7,9.5} is
chosen. By carrying out scratch tests on single phases of the composite material
concrete the process is subdivided into subprocesses. Hence, tests on single
phase basalt and cement stone are conducted to analyze the forces developing
during the scratching. Five samples of each material are available and each
of them can be scratched on 12 radii r € {16,17,...,27} mm. The destructive
testing does not allow real repetitions, so each speed combination (v, vy) is
repeated on adjacent radii of a sample. The 16 speed combinations of the full
factorial design are distributed to six blocks of size five using the D—criterion.

Let denote Z (v, vy) the set of radii with the same speed combination (v¢,vy)
and ng (ve,vy) the number of elements in this set. Since each speed combination
is repeated on the adjacent radius, each set contains at least two elements.
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6.2 Optimization of the Scratch Track Diamond Model

To find out whether the approach in Sect. 5 is suitable to describe forces arising
during a single grain scratch test, the model parameters 8 = (g.,, g, U, 62,
652, v, p, q), where i, 62, 62,y are the parameters of the Gaussian random
field, are adjusted to the normal forces (f, = f) from the conducted single grain
experiments (see sec. 6.1) on basalt and cement (see Herbrandt et al, 2016,
for more details). The adjustment is performed for each speed combination
(ve,vy) by applying model based optimization techniques which are particularly
suitable for the optimization of expensive black box functions (Jones et al,
1998). The target is the minimization of the objective function determining the
deviation between observed and modeled forces. For this purpose the expected
deviation

E (Hf(vc,v.f,r) —ﬁ(@,r)HD) =E(D(f (ve,vs,r), F(0,r))) (1)

of a measured force f(v¢,vs,r) from the model force .7 (0,r) (underlying
force model process with realizations F (6, r) as described in Sect. 5) is mini-
mized. By estimating the expectation with the arithmetic average of M (here:
M = 25) realizations F of the force model .# and ng (v.,vy) observed forces
f (ve,vy,r) with radii r € Z (ve,vy), the optimal parameter settings for one
speed combination are obtained as

0" (ve,vy) = argmin D (f (ve,vy),F (6))

0cO
> f[dR<f<Vcana’">vﬁ(97’")) 2)

reﬂ(v(.,vjﬂ) m=1

g (F (veyvyr) F* (0,) ds (F(veovy. ) F (0,1) |

=argmin ————
gco 3Mng (ve,vy)

where the terms are discussed in the following. The considered deviation mea-
sure D is the mean of measures for the comparison of the three characteristics
slope, range, and spectrum. For the comparison the forces f = f (v¢,vs,r) =
{ft,- (ve,vp,r) |0<t; < Ty, i=1,...,L, L number of observations, Ty observa-
tion time in seconds}and F =F (0,r) ={F,(0,r)|0<#; <Tp, i=1,..,NVv}
have to be aligned. Due to the different sampling rates and since the sampling
rate of f is very high, we decide to exploit the characteristics of the time se-
ries, rather than applying very time consuming methods like the dynamic time
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warping. Therefore, the forces f and F are aligned by the intercepts of the
corresponding linear models

f=Bro+Brit+€rand F = Bro+ Prit + €F. (3)

Therefore, the force with the smaller estimated intercept (ﬁ 70 OF EFO) is shifted
by redefining the starting time

/5 Efo > BFO

fr= 50<B
ﬁi|0§ti—m%7fﬂ’§Tf—m%7fﬂ’=Tf* » Bro < Bro

“4)

(F analogue). For the comparison of range and spectrum the forces are addi-
tionally detrended, so that

f= {fzf—ﬁf*o—ﬁf*lfi [0 <t <min{Tp, T } = Tf} )

with f* = By« + By+1t + €y~ (F analogue). Then the range difference is

4 (FF) = |y f-in - may Fovomin B ©
and the slope difference is
dy (*,F") = |Bro1—Brt . ™
Since the modelled sampling rate
wel0d 1
VF = - 8
" 2160 H ©

1

S
on the same time interval, the number of considered observations nj of F is
also smaller than n 7 Therefore, the spectral differences are only calculated at

the Fourier frequencies

is much smaller than the sampling rate v [f] and we consider both time series

n

i . ) .
0=, withn=np+| min ny—23'5" andjzl,...,bJ )

of the shorter time series F. This approach allows the application of the fast
Fourier transform (Bloomfield, 2004) algorithm, which by itself enables a fast
computation of the periodogram
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2

l’li} _
Zerxp(—iZﬂ(pjk) (10)

k=1

I (9) =

anf

as an estimate of the spectrum of F. By adjusting the angular frequencies 27,
to the sampling rate of the measured signal f, we obtain the periodogram

2

(1)

ny _
kaexp (—i27rq)ijk>
\

k=1

I: () = vy

of j?at the same frequencies ¢@; and can determine the spectral differences

3]
ds (ﬂa = ; ‘If(q’j) —Iﬁ(q’/‘)‘- (12)

Since the scratch track diamond model is stochastic, the noisy Kriging model
is chosen as surrogate in the model based optimization process for the CPU-
intensive deviation function (Picheny et al, 2013). A new point for evaluation is
proposed by maximizing the augmented expected improvement (Huang et al,
2006). We evaluated 800 parameter constellations 0 for each speed combination
(ve,vyr). The first 80 points (initial design) for evaluation of the 800 in total
were sampled from a random Latin hypercube.

The results achieved with this method show a good agreement between
observed and modeled normal forces. Fig. 12 displays exemplarily the nor-
mal force from the conducted experiment for the speed combination (vc =
270 o, vp =1 %) and 50 modeled force time series with optimized model
parameters. As the figure implies, the modeled forces match the slope and
variance of the observed force quite well.

Table 2 shows the optimization results for each of the 16 speed combinations
(ve,vy). In the most cases the best parameters were found in the first 500
optimization steps. For the speed combinations with higher minimal deviation
measures Dy,;, we observed discrepancies in the course of the corresponding
force time series (repetitions with the same speed combination but on different
radii or on different material samples). The described deviation measure results
in small values if all 25 realizations of the scratch track diamond model fits in
terms of slope, range and spectrum to all observed forces with the same speed
combination. If the observed forces with the same speed combination are quite
different, the optimal parameters found are a compromise which ensure the best
fit of the modeled force for all these observations in terms of average.
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Fig. 12 Normal force from conducted single grain experiment with the parameter settings
Ve =270 ;0 vy =T b, = 18 mm (black) and 50 modeled forces (red).

min?

Fig. 13 is an example of an optimization course for the speed combination
ve =270 - vy =T 75 The first 80 points are the realizations of the deviation
measure for the model parameter combinations of the initial design (see upper
figure in 13). By using the space filling random Latin hypercube design a good
parameter combination with D ~ 2.1 could already be found within these first
80 points (lower figure in 13). The iterative optimization improved this value in

the following up to D = 1.45 after the evaluation of 592 further points.

7 Single Segment Grinding

Since the resulting forces of the scratch track diamond model seems rather
promising, we start the analysis of the scratch track segment model with a
first feasibility study. In the first Subsect. (7.1) we summarize the technolog-
ical details concerning the segment manufacturing, as well as the design of
experiments for the conducted tests with the fabricated segments. The second
Subsect. (7.2) will deal with the feasibility study and its results.
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Table 2 Optimization results for the 16 speed combinations (VC7 Vf) with minimum value of D found
and the according iteration npy;, of the optimization procedure.

Ve Ve Dpin Mmin
40.5 2.0 3.245 328
40.5 4.5 3.037 621
40.5 7.0 5.643 682
40.5 9.5 4.317 299
117.0 2.0 1.492 800
117.0 4.5 3.811 490
117.0 7.0 7.075 427
117.0 9.5 4.413 434
193.5 2.0 1.657 731
193.5 4.5 3.729 171
193.5 7.0 1.749 452
193.5 9.5 6.950 423
270.0 2.0 2.089 122
270.0 4.5 4.750 755
270.0 7.0 1.450 672
270.0 9.5 7.607 261
Q % n ‘
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Fig. 13 Optimization course for the speed combination v,
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. Upper Figure:

Deviation measure D for the 800 parameter combinations of 8. Lower Figure: Minimal deviation
measure from the first 80 evaluations (initial design) to all 800 evaluations. Red line marks the
evaluation with the best found parameter combinations of 6.
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7.1 Design of Single Segment Experiments

In the powder metallurgical process route a four component metal powder
consisting of iron, cobalt, copper and tin (Diabase V21, Dr. Fritsch) is used,
which is optimized for concrete machining. Within this process route synthetic
diamonds (Syngrit SDB1055, Element Six) with varying grain sizes (20/30,
40/50 and 70/80 mesh) are added to the metal powder mixture at variable
amounts of 2, 5 and 10 vol.-%. Subsequently the prepared powder-diamond
material is homogenized in a tumbling mixer. Finally the raw material is filled
in graphite moulds and sintered in a CSP100 hot-pressing facility (Dr. Fritsch)
to shape geometries of 8 x 10 mm rectangles. The maximum pressure is 350%
and the sintering parameters are 840° C for three minutes. The single segment
tests are carried out on a machining center (FZ 12 S, Chiron) under constant
water supply. An additive within the water prevents corrosion of the machining
center (Bechem Avantin 361, concentration 7 %). Before testing, segment
dressing is carried out in order to expose the first diamond layer of the segment
and thus, guarantee the contact between at least one diamond in the segment
and the workpiece. The radius of the tool holder amounts to » = 50 mm (Fig. 4).
Force measurements (tangential force f, radial force f,, normal force f;)
are conducted using a force dynamometer (Kistler instruments, type 9255C)
with a frequency of vy = 10000 Hz until a total depth of A = 3000 mm is
reached. For each diamond grain size and diamond concentration experiments
with the parameter settings of a 32— full factorial design in circumferential
speed n = % € {117,449,781} ﬁ (rounds per minute) and feed velocity
vy €{0.5,1.25,2} ™2 are performed (including repetitions).

min

7.2 Feasibility Study for the Scratch Track Segment Model

Since the model results for the scratch track diamond model are satisfactory,
a feasibility study is established whether the scratch track segment model is
able to reproduce a force time series from a conducted segment experiment (see
Sect. 7.1). For this purpose the number of active diamonds and the number of
broken out diamonds in the segment are fixed to be 15 and 1, respectively, for
an experiment with circumferential speed n = 449 min~!, v =2 =, grain size

of 40/50 mesh and 2 vol.-% diamond concentration. Additionally, the x— and
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Fig. 14 (a) Normal forces of a segment experiment (black) and modeled forces with optimized
parameters (red), (b) segment profile with marked metal matrix bar

y—coordinates of the diamonds’ positions p = (px, py, pZ)T in the segment are
measured.

According to the speed parameters the total cutting depth amounts to approx-
imately 2.4 mm. Since 14 out of 15 cutting diamonds are still in the segment
when the experiment is over, we have to set the end of the diamond-workpiece-
interaction p’, of these 14 diamonds to a value greater than 2.4 mm. For the
broken out diamond the end of interaction is determined from the structural
change in the force time series at approx. 1.67 mm. The remaining unknown
parameters are the start of interaction of the 14 diamonds (one diamond’s
interaction starts at 0 mm), the grain sizes which are limited to the interval
[0.297,0.4] mm corresponding to 40/50 mesh, and the diamonds’ profile angles.
The adjustment of all these parameters with the model based optimization (as
described above) leads to the result presented in Fig. 14 (a). The average course
is already well matched up to the point that one diamond breaks out after approx.
50 seconds. There are at least two explanations for this mismatch. One is that
the optimized parameter settings are not correct for the broken out diamond. If
the chosen grain size is too small or the diamond-workpiece-interaction starts
too late, the resulting force of this diamond is too small at the break out point
and thus would lead to a too small decrease in the force time series. Another
explanation can be referred to a phenomenon that can be observed in segment
experiments but not when using a drill core bit, where the material removal and
the segment wear are more regular since more segments lead to more cutting
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diamonds. If a diamond in a single segment is cutting along its circular path at
a constant radius and there are no other diamonds at directly adjacent radii, the
material to the left and to the right of this diamond is not removed. The result is
that the metal matrix of the segment is removed at both sides of the diamond’s
position and the remaining metal matrix, which is holding the diamond, forms
a bar (see Fig. 14 (b)). It is conceivable that the friction between this metal
matrix bar and the workpiece results in higher forces. At the break out point
the diamond and the metal matrix bar break out which would explain the much
smaller forces after the break out. The magnitude of the normal force after the
break out of the diamond depends on the size of the diamonds newly active
afterwards.

8 Conclusion and Future Work

We have presented two different ways for the simulation of a grinding process.
The first approach (in Sect. 4) is based on the tessellation of the workpiece into
simplexes and turns out to require too much computation time. A reduction
of the workpiece simulation time can be achieved using a slightly different
approach (the ‘blank’-approach) regarding the tessellation procedure. However,
the computation of the process part cannot be accelerated without a substantial
loss of accuracy. Therefore, the approach in Sect. 4 is certainly appropriate for
the simulation of short single diamond experiments but not for the simulation of
segment experiments, which require the simulation of hundreds of revolutions
with multiple diamonds.

For this reason the approach in Sect. 5.1 was developed by introducing some
assumptions about the scratch track produced by a pyramidal shaped diamond.
The model parameters have been successfully adjusted to the data provided by
the conducted single grain experiments (Sect. 6.1). Therefore, we performed a
feasibility study (7.2) for the segment grinding simulation using the approach
in Sect. 5.2 with one of the segment experiments as reference (Sect. 7.1). The
average course of the normal force is already well matched by the modeled
force. Thus, the presented model can be used as base for further developments.
Improvements may be possible regarding the simulation time. Since all scratch
track parts are subdivided into three simplexes in the same way, it is possible
to derive a closed expression for the volume of each scratch track part and the
volume for the scratch track reduction, respectively. This closed expression
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will make the subdivision into simplexes redundant and thus leads to a faster
calculation. We already derived such formulas for the scratch track diamond
model (Herbrandt et al, 2016) and we want to extend these results for the
presented scratch track diamond model.

Beside the improvement of the actual model, future work will deal with
the duration of the diamond-workpiece interaction. Based on the proposed
simulations, future experiments will focus on a better understanding of diamond
break outs depending on different compositions of the metal powder used for
the segment manufacture.
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