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Abstract In this article, the author discusses the issues and problems asso-
ciated with the influence of different estimation methods on the level of ob-
tained parameters and goodness-of-fit of a Structural Equation Model (SEM)
in the context of data measured on a 7-point Likert scale. Thus, the objective
of the conducted analysis was to compare the selected methods of estimation
such as maximum likelihood (ML), maximum likelihood mean adjusted (MLM),
maximum likelihood mean-variance adjusted (MLMV), weighted least squares
(WLS), weighted least squares mean adjusted (WLSM) and weighted least
squares mean-variance adjusted (WLSMV) on the basis of respective parame-
ter statistics, for which the quality of the SEM model fit was assessed. Eventu-
ally, among the presented methods, the best estimation procedure was selected.
The area of empirical study and the subject of investigation refers to the opin-
ion of consumers about the unethical behavior of companies in the area of
marketing.
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1 Introduction

In this article, various estimation methods are compared with regard to the
SEM model, based on a preselected 7-point Likert scale. This technique (Likert,
1932) is commonly applied in many empirical studies, for it is fairly easy to
develop and a highly reliable approach to measurement. However, the drawback
of this technique lies in its specificity, especially in reference to indicators
representing latent constructs, that are crude in nature. The crudeness arises
from cutting the continuous scale of the theoretical construct into a set number
of ordered categories. Another drawback is the error that is often brought into
analysis due to imperfection of the scaling technique (Baker, Hardyck, and
Petrinovich, 1966). Moreover, Likert measures do not have equally spaced
intervals and the data obtained are typically considered as ordinal-scaled data
or, at best, somewhere between ordinal and interval-scaled data, hence, only
under special research conditions (e.g., with an extended range of response
categories), the Likert scale provides quasi normally-distributed values and
may yield satisfactory results in the context of normal estimators such as ML
(Maximum Likelihood). If the goal of the researcher is to use item-level data
and to diagnose the relations based on the covariance structure, the impact of
data coupled with the choice of appropriate estimation technique must be also
identified.

A main problem which is under discussion, refers to the methodological is-
sues in the context of similarities/differences between various estimation meth-
ods: Maximum likelihood (ML), maximum likelihood mean adjusted (MLM),
maximum likelihood mean-variance adjusted (MLMV), weighted least squares
(WLS), weighted least squares mean adjusted (WLSM) and weighted least
squares mean-variance adjusted (WLSMV) and the data collected on a 7-point
Likert scale. Therefore, issues are not discussed which pertain to the selec-
tion of the optimal number of categories within the scale, as these issues have
been profoundly described in the literature (Alwin 1992; Dawes 2008; Revilla,
Saris, and Krosnick 2014; Tarka 2016). However, what one can infer from such
studies is that the Likert scale with 7 categories ensures higher quality of in-
formation and plays the greatest advantage (as compared to the other variants
as: 3, 4, 5, 6, 8, 9, 10) not only in the phase of data collection, but leads to
better effects in the assessment of the CFA models which are responsible for
the measurement of the respective latent variables. The empirical results, de-
rived from simulations, indicate that scales with wider range (8, 9, 10) generate
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inconsistent scores, because respondents face problems with the appropriate
differentiation of the particular point on the scale. In contrast, scales with a
narrower range (e.g., 3, 4, 5, 6) generate insufficient information for the mea-
surement models.

Given the above arguments, the author on the basis of empirical research
(seeTarka (2016)) has focused on the 7-point option. After completing the com-
parative analysis of the estimation methods: ML, MLM, MLV, WLS, WLSM
and WLSMV, an optimal solution was proposed in reference to SEM model
which diagnosed relationships between two latent variables (see Sect. 3).

2 The Methods of Estimation of a SEM Model with Latent
Variables

The Structural Equation Model (SEM) (see (Goldberger and Duncan, 1973;
Bentler and Weeks, 1980; Muthén and Muthen, 2010)) in its most general form
can be expressed by the following (as result of a modification of the LISREL
notation):

η = αη +Bη +Γ ξ +ζ (1)

Y = αY +ΛY η + ε (2)

X = αX +ΛXξ +δ . (3)

Equation 1 represents the latent variable model (SEM) where η is a vector of
latent endogenous variables with B a matrix of regression coefficients for the
impact of the latent endogenous variables on each other, ξ is the vector of latent
exogenous variables with Γ a matrix of regression coefficients for the latent
exogenous variable’s impact on the latent endogenous variables, αη is a vector
of equation intercepts, and ζ is the vector of latent disturbances that have a
mean of zero and are uncorrelated with ξ .

Equations 2 and 3 are the measurement models (CFA) in which Eq. 2 relates
Y (a vector of observed variables) to η via a coefficient matrix of factor loadings,
ΛY . The αY is a vector of equation intercepts, and ε is a vector of unique
components that have a mean of zero and are uncorrelated with η , ξ , and
ζ . Equation 3 is similarly defined as the indicators for the ξ latent variables.
Since, each equation can be a factor model, the η and ξ may be classified as the
respective latent variables constructed on the basis of the measurement models
(Eqs. 2 and 3).
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Also there are two general assumptions to be considered in the process of
SEM construction. On the basis of conceptual conditions, an important ques-
tion that should be answered affirmatively prior to engaging in SEM is whether
the sample at hand comes from a population that is relevant to the theoreti-
cal ideas being evaluated. Another conceptual problem is whether the data are
gathered under appropriate conditions of measurement in relation to the theory
under investigation. The next issue involves whether a structural theory de-
scribes cause-effect sequences that occur over time, although the instantaneous
causation (with simultaneous mutual influence of variables on each other) in
specific situation also makes sense in a model (Strotz and Wold, 1960; Bentler
and Freeman, 1983). Finally, an important condition of avalid evaluation of a
theory via SEM is the appropriate operationalization of latent variables.

On the other hand, in case of statistical conditions, the researcher needs
to assume that data originates from independent observations (cases, subjects,
sampling units). The next aspect refers to the selection of appropriate units of
the sample, as the existing methods in structural modeling are often based on
the assumption that each of the units or cases in the population has an equal
probability of being included in the sample to be studied. SEM also makes
assumption about the linearity of relations between the variables, which must
be conceptually and empirically appropriate to the theoretical questions being
addressed. The final issue refers to the methodology for continuous variables
in context of their required distribution. As such, if variables reflect strong
abnormality in distributions then they fail in the estimation of the parameters
and the model fit indices (Bentler and Lee, 1983)1.

The above demands are specific for the successful design of a SEM model,
however the optimal choice of the estimation method plays also a significant
role. Considering this, one can find a few approaches to estimate a SEM model.
For instance, in the light of the normal theory assumptions, one can mention
Maximum Likelihood (ML) and Generalized Least Squares (GLS) estimators,
which produce asymptotically unbiased, consistent estimates of parameters. In
practice, a function of FML is most frequently used, which fits the covariance
structure Σ to the sample covariance structure S by minimizing the discrepancy
F(S,Σ(θ)) as follows:

FML(θ) = log|Σ(θ)|+ tr{SΣ(θ)−1}− log|S|−p. (4)

1 Only methods which are based on the distribution-free variables do not require it, since they enable
application of the theory of Tyler (1983), Bentler (1983) and Browne (1984) to correct the normal
theory statistics in order to obtain appropriate test statistics and standard errors.
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where p is the number of indicators.
The problems with an ML estimator are that the ML is more prone to Hey-

wood cases and is likely to produce markedly distorted solutions if minor mis-
specifications will be made to the model. Besides, in the social sciences the
collected data are barely normal, and although the actual parameter estimates
(e.g., factor loadings) may not be seriously affected, nonnormality causes bi-
ased standard errors as well as a poorly behaved χ2-test of overall model fit.
The alternative estimator, namely MLM with robust standard errors and χ2

provides the same parameter estimates as ML, however the model χ2 and stan-
dard errors of the parameter estimates are corrected for nonnormality in large
samples. The similar yet alternative, MLMV assumes the correction based on
the mean-and-variance.

Another solution, the Weighted Least Squares (WLS or ADF (see Hu,
Bentler, and Kano (1992); Curran, West, and Finch (1996))), estimates a weight
matrix based on the asymptotic variances and covariances of polychoric corre-
lations that can be used in conjunction with a matrix of polychoric correlations
in the estimation of SEM models (Muthén, 1984; Jöreskog, 1994). The WLS
applies the following fitting function:

FWLS = [S−σ(θ)]TW−1[S−σ(θ)]. (5)

where S is the vector sample statistics (e.g. polychoric correlations), σ(θ) is
the model-implied vector of population elements in Σ(θ), and W is a positive-
definitive weight matrix.

Browne (1984) has proved that if a consistent estimator of the asymptotic co-
variance matrix of S will be selected for W (that is a positive-definitive weight
matrix) then WLS will lead to asymptotically efficient parameter estimates
and correct standard errors as well as a χ2-distributed model test statistic. In
short, he presented the solution for estimating the correct asymptotic covari-
ance matrix in case of continuous but nonnormal distributions in data using
observed fourth-order moments, whereas Muthén (1984) invented a method-
ology based on dichotomous, ordered categorical and continuous indicators.
With this strategy, bivariate relationships between ordinal indicators are esti-
mated with polychoric correlations and a SEM model is fit by WLS estimation
(Muthén and Satorra, 1995).

Finally, Muthen, DuToit, and Spisic (1997) introduced a robust WLS estima-
tor which profited from earlier works (Satorra and Bentler, 1990; Chou, Bentler,
and Satorra, 1991). With this approach, parameter estimates are obtained by
substituting a diagonal matrix, for W in the WLS function (Eq. 5), the elements
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of which are the asymptotic variances of the thresholds and polychoric correla-
tion estimates (i.e., the diagonal elements of the original weight matrix). Once
a vector of parameter estimates is obtained, a robust asymptotic covariance ma-
trix can be used to obtain parameter standard errors. A typical matrix involves
the full weight matrix W, however, it need not be inverted. In the end, a robust
goodness-of-fit test statistic via calculation of a mean-adjusted (WLSM) and
mean-and-variance-adjusted (WLSMV) χ2 is obtained.

3 The Methodology and the Empirical Research

The subject of the empirical study referred to the opinion of consumers about
the unethical behavior of companies within the area of marketing activities
which influence their increased market consumption. The theoretical founda-
tions were derived from the work of (Tarka, 2016). On their basis, two latent
variables were formed (see Fig. 1): Unfair Advertising Practices (UAP) and
Lack of Social Responsibility (LOSR). The relationship LOSR→UAP was
then examined through the agency of a SEM. Each latent variable has been
loaded with the respective indicators measured on a 7-point scale, where only
the marginal points were labeled, as: 1- totally disagree, 7 - totally agree:

1. (LOSR): Firms often make attempts to get as much of their clients’ wallets
as possible - (LOSR1); Companies in pursuit of clients, have changed their
marketing practices for worse - (LOSR2).

2. (UAP): Most of the advertising contents is misleading and far away from the
truth - (UAP1); Advertisements prepared by companies can not be treated
as a plausible source of information - (UAP2); Companies give false color
to their products - (UAP3).

The data were collected through a survey questionnaire (in 2014) among the
academic community of students N = 200 (aged between 19-21) at five distinct
universities in Poland (Adam Mickiewicz University, University of Technology,
University of Economics, University of Life Sciences and University of Medical
Sciences). Respondents were selected on the basis of the simple random method
of units selection. The sampling frames with a complete list of units were
provided by each university. The estimation of data was conducted in Mplus
software (version 6.12) on the basis of six methods: ML, MLM, MLMV, WLS,
WLSM and WLSMV. The obtained results (under the ML analysis of normally
distributed continuous data) were compared to the results obtained from the
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Fig. 1 The SEM model of the relationships between two latent variables: LOSR and UAP.

same data. However here, the author has assumed MLM and MLMV rescaling
corrections. Finally, the same data were re-examined with the WLS, WLSM
and WLSMV estimators. These methods were considered in the context of
finding the best solution of the proposed SEM model assuming its quality is
based on fit indices, parameter estimates and standard errors. The results are
presented in the next two sections.

4 The Goodness of Fit Indices and the Estimation Methods

For the comparative analysis, selected goodness-of-fit indices were applied:
χ2, CFI, TLI, RMSEA and SRMR. The author’s intention was to provide one
fit statisticout of several different families of fit statistics rather than many fit
statistics from the same family.

In the literature, one can distinguish four general types of measures (Marsh
et al, 1988):

1. Absolute Fit Indices - AFI (χ2, GFI, AGFI, Hoelter’s CN, AIC, BIC, ECVI,
RMR, SRMR): χ2/df ratio, Goodness of Fit Index (GFI), the Adjusted Good-
ness of Fit Index (AGFI), Hoelter’s CN (critical N), Akaike’s Information
Criterion (AIC), the Bayesian Information Criterion (BIC), the Expected
Cross-validation Index (ECVI), the Root Mean Square Residual (RMR), and
the Standardized Root Mean Square Residual (SRMR).
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2. Relative Fit Indices - RFI (IFI, TLI, NFI): There are several relative fit in-
dices in this family (which are not explicitly designed to provide penalties for
less parsimonious models) including Bentler’s Comparative Fit Index (CFI),
Bollen’s Incremental Fit Index (IFI, also called BL89 or ∆2), the Tucker-
Lewis Index (TLI, Bentler-Bonett Nonnormed Fit Index (NFI or BBNFI), or
ρ2), and the Bentler-Bonett Normed Fit Index (NFI).

3. Parsimony Fit Indices - PFI (PGFI, PNFI, PNFI2, PCFI): Parsimonious fit
indices include PGFI (based on the GFI), PNFI (based on the NFI), PNFI2
(based on Bollen’s IFI), PCFI (based on the CFI).

4. Noncentrality Parameter - NP (RMSEA, CFI, RNI, CI): The noncentrality-
based indices include the Root Mean Square Error of Approximation (RM-
SEA) (not to be confused with RMR or SRMR), Bentler’s Comparative Fit
Index (CFI), McDonald and Marsh’s Relative Noncentrality Index (RNI),
and McDonald’s Centrality Index (CI).

The first family AFI does not use an alternative model as a base for com-
parison, since they are derived from the fit of obtained and implied covariance
matrices and the respective minimization function. In contrast, the RFI indices
compare the χ2 of the model tested with the null model. Third family of in-
dices PFI imposes the adjustments on models within which simpler theoretical
processes are favored over more complex ones. However in the literature, it
is recommended to evaluate the SEM model independently of the parsimony
considerations and to evaluate alternative theories favoring parsimony. With
that approach, the researcher would not need to penalize models for having
more parameters, but if simpler alternative models seemed to be as good as a
more complex model, he might favor the simpler model. Finally, the last family
of fit measures NP is grounded on the concept of the noncentrality parameter
and the rationale for using it is that the standard χ2 fit is based on a test holding
that the null hypothesis is true.

Having presented the main types of goodness-of-fit indices we will now
examine the hypothesized SEM model from the perspective of various estima-
tion methods (Tab. 1). From the observation of the χ2, CFI, TLI, RMSEA and
SRMR indices we notice that the model estimated under ML, has obtained a
value of the absolute fit index χ2

(4) = 5.64 at p = .23 thereby suggesting the fit
of data to the hypothesized model is adequate. However, the WLS estimator is
even better (χ2

(4) = 5.10, p-value = .28), also if we compare it to estimators as
WLSM (χ2

(4) = 5.17, p = .27) and WLSMV (χ2
(4) = 5.17, p = .27). In contrast,

the worst level of χ2 can be observed for MLM (χ2
(4) = 7.05, p = .14) and
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MLMV (χ2
(4) = 6.81, p = .15). Both solutions (MLM and MLMV) did not im-

prove the final absolute fit of the model either, as compared to the ML estimator
(see the Scaling Correction Factor (SCF = .80) for MLM). Also by reviewing
the results of the SRMR index (Tab 1), we notice that particular estimation
methods (ML, MLM, MLMV) generated values at the same level of .03.

Table 1 The summary of goodness of fit indices for the hypothesized SEM model.

Fit Indices

Methods of
estimation χ2 df(p) BM χ2 value/df(p)• CFI TLI RMSEA SRMR/WRMR

ML 5.64 4 (.23) 116.03/10(0.00) .98 .96 .06 .03 (SRMR)
MLM 7.05 (.80∗) 4 (.14) 119.74/10(0.00) .97 .93 .08 .03 (SRMR)
MLMV 6.81 4 (.15) 104.48/10(0.00) .97 .92 .08 .03 (SRMR)
WLS 5.10 4 (.28) 97.55/10(0.00) .99 .97 .05 -
WLSM 5.17 (.49∗) 4 (.27) 471.80/10(0.00) .99 .99 .05 .26 (WRMR)
WLSMV 5.17 (.49∗) 4 (.27) 471.80/10(0.00) .99 .99 .05 .26 (WRMR)

Legend: ∗ SCF - Scaling Correction Factor; • BM - Baseline Model and χ2; WRMR - Weighted Root
Mean Square Residual

In contrast to χ2 which measures the extent to which a hypothesized model
fits exactly the data, the RMSEA assesses the extent to which it fits reasonably
well the data (Browne and Cudeck, 1989). Following the guidelines provided
by MacCallum, Browne, and Sugawara (1996) who suggested .01, .05, and .08
levels as indicators of excellent, good, and mediocre fit of the RMSEA index,
we find out that the estimators which didn’t exceed the .05 level, were WLS,
WLSM and WLSMV. This result suggests that the hypothesized SEM model
has obtained a good fit. In case of other methods (especially the MLM and
MLMV estimators, which obtained values of RMSEA = .08) this level appears
to be slightly higher than expected.

By comparing the estimation methods on the basis of the CFI and TLI in-
dices, we notice the proportionate improvement in model fit (starting from ML,
through MLM, MLMV, WLS up to the WLSM and WLSMV methods). In par-
ticular, the WLS, WLSM and WLSMV estimators have produced substantial
values (WLS: CFI = .99, TLI = .97; WLSM: CFI = .99, TLI = .99; WLSMV:
CFI = .99, TLI = .99). Slightly lower values (i.e. CFI and TLI) were noted for:
MLM (CFI = .97, TLI = .92), MLMV (CFI = .97, TLI = .92), and ML (CFI
= .98, TLI = .96). However, their CFI and TLI levels were still fair enough
to indicate a well-fitting model. Just to remind, if the value of CFI is close to
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1.0, the index shows a perfect fit.2 In contrast, the TLI denotes the alternative
approach to the calculation of CFI. However, the differentiating aspect of the
TLI is the inclusion of a penalty function for a model that is overly complex. In
general, both indices indicated a well-fitting model.

At last, by inspecting the Weighted Root Mean Square Residual index
(WRMR - which was calculated for the WLSM and WLSMV estimators with
the assumption of categorical data) and accepting a cutoff .95 criterion as indica-
tive of a good model, we can approve the estimated SEM model as appropriate.

5 The Estimation Methods on the Model Parameters

In the discussion over similarities and differences between estimation methods,
one needs to pay attention to the fit of individual parameter estimates exhibit-
ing the correct sign and size. Consequently, any estimates falling outside the
admissible range, signal that either the SEM model is wrong or the input matrix
has an insufficient level of information. Just to remind, parameter estimates
(which are derived from covariance or correlation matrices) that are not posi-
tive definite and exhibit out-of-range values (such as correlations > 1.00) as
well as negative variances (known as Heywood cases), exemplify unacceptable
estimations of values. Also the presence of excessively large or small standard
errors indicates poor quality of the model fit. For example, in case of standard
errors approaching zero, the test statistic for their related parameters cannot
be defined. Likewise, standard errors that are extremely large indicate that pa-
rameters cannot be determined. Standard errors are influenced by the units
of measurement in observed and latent variables, as well as the magnitude of
the parameter estimates, however no definitive criteria ("small" or "large) have
been established so far in literature. Finally, the test z statistic (reflecting the
parameter estimate divided by its standard error) helps in testing the estimate.

Now, the estimated information (which is presented in Tabs. 2-5, in columns
2-4, with the exception of the parameter symbols column 1) has been grouped
according to the parameters model function. The initial block represents factor
loadings (ξ1→ λLOSR1, ξ1→ λLOSR2, η1→ λUAP1, η1→ λUAP2, η1→ λUAP3),
the next block represents the relationship between latent variables (ξ1→ η1),
and the next three blocks are the latent variable (ξ1variance), the residual vari-

2 Although a value > .90 was in literature originally considered of a well-fitting model, a revised
cutoff value close to .95 has been strongly advised.
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Table 2 Selected unstandardized parameters of the hypothesized SEM model - ML estimation.

Parameters Estimate Standard Error Estimate/Standard Error Two-tailed p-value

ξ1→ λLOSR1 1.00 0.00 999.00 999.00
ξ1→ λLOSR2 1.33 0.46 2.87 0.00
η1→ λUAP1 1.00 0.00 999.00 999.00
η1→ λUAP2 0.74 0.14 5.47 0.00
η1→ λUAP3 0.62 0.12 5.00 0.00

ξ1→ η1 0.99 0.32 3.06 0.00

ξ1variance 0.62 0.30 2.06 0.04

δLOSR1 1.48 0.29 4.95 0.00
δLOSR2 1.38 0.42 3.29 0.00
εUAP1 0.31 0.24 1.29 0.19
εUAP2 1.08 0.21 5.21 0.00
εUAP3 1.36 0.21 6.31 0.00

ζη1 1.36 0.21 6.31 0.00

Table 3 Selected unstandardized parameters of the hypothesized SEM model - obtained in MLM and
MLMV estimation.

Parameters Estimate Standard Error Estimate/Standard Error Two-tailed p-value

ξ1→ λLOSR1 1.00 0.00 999.00 999.00
ξ1→ λLOSR2 1.33 0.46 2.87 0.00
η1→ λUAP1 1.00 0.00 999.00 999.00
η1→ λUAP2 0.74 0.15 4.95 0.00
η1→ λUAP3 0.62 0.12 4.80 0.00

ξ1→ η1 0.99 0.28 3.52 0.00

ξ1variance 0.62 0.30 2.17 0.03

δLOSR1 1.48 0.30 4.95 0.00
δLOSR2 1.38 0.44 3.14 0.00
εUAP1 0.31 0.18 1.78 0.07
εUAP2 1.08 0.21 5.05 0.00
εUAP3 1.36 0.46 2.98 0.00

ζη1 1.06 0.38 2.76 0.00

ances of indicators (δLOSR1, δLOSR2, εUAP1, εUAP2, εUAP3 and the disturbance ζη1

pertaining to the latent variable)3. From their scores we infer that, in case of all
estimation methods, all parameter estimates were reasonable and statistically
significant (> 1.96). There were also no negative variances which might cause
unacceptable estimated values. The only questionable parameter was noticed

3 Two paths ξ1→ λLOSR1 and η1→ λUAP1 were fixed to 1.00 for purposes of identification.
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Table 4 Selected unstandardized parameters of the hypothesized SEM model - WLS estimation.

Parameters Estimate Standard Error Estimate/Standard Error Two-tailed p-value

ξ1→ λLOSR1 1.00 0.00 999.00 999.00
ξ1→ λLOSR2 1.53 0.55 2.77 0.00
η1→ λUAP1 1.00 0.00 999.00 999.00
η1→ λUAP2 0.81 0.12 5.41 0.00
η1→ λUAP3 0.61 0.12 5.08 0.00

ξ1→ η1 0.91 0.24 3.86 0.00

ξ1variance 0.59 0.26 2.23 0.03

δLOSR1 1.51 0.30 5.11 0.00
δLOSR2 1.10 0.55 2.01 0.04
εUAP1 0.31 0.15 2.06 0.03
εUAP2 0.75 0.19 3.94 0.00
εUAP3 1.26 0.32 3.93 0.00

ζη1 1.14 0.34 3.32 0.00

Table 5 Selected unstandardized parameters of the hypothesized SEM model - obtained in WLSM
and WLSMV estimation.

Parameters Estimate Standard Error Estimate/Standard Error Two-tailed p-value

ξ1→ λLOSR1 1.00 0.00 999.00 999.00
ξ1→ λLOSR2 1.03 0.29 3.47 0.00
η1→ λUAP1 1.00 0.00 999.00 999.00
η1→ λUAP2 0.74 0.07 10.56 0.00
η1→ λUAP3 0.66 0.07 8.78 0.00

ξ1→ η1 0.97 0.28 3.45 0.00

ξ1variance 0.38 0.12 3.08 0.00

ζη1 0.55 0.15 3.67 0.00

in the residual variance εUAP1 which has obtained nonsignificant values, below
1.96 (according to information of column 4 for the respective three estimators:
ML (with 1.29 estimate/standard error calculated at p= 0.19), MLM (with 1.78
estimate/standard error at p = 0.07), MLMV (with 1.78 estimate/standard error
at p = 0.07). However, another finding indicates that when we use the estimator
(WLS), the significance level of this parameter will be improved (see the WLS
estimator where: 2.06 estimate/standard error was calculated at p = 0.03). In
consequence, the WLS procedure eliminated the nonsignificance effect associ-
ated with the residual variance of UAP1.
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Considering the size of the particular parameter estimates, we find it is more
or less similar within the range of ML, MLM and MLMV estimators. Parame-
ters did not considerably change in WLS estimation. For instance, factor load-
ings of the observed variables indicate only a slight modification within the
obtained values: η1 → λUAP2 (ML = .74, MLM = .74, MLMV = .74, WLS
= .81); η1→ λUAP3 (ML = .62, MLM = .62, MLMV = .62, WLS = .61). On
the other hand, the size of standard errors has mostly decreased (with the excep-
tion of εUAP3 in ML) in WLS as compared to ML, MLM and MLMV estimation
methods: εUAP1 (ML = .24, MLM = .18, MLMV = .18, WLS = .15); εUAP2
(ML = .21, MLM = .21, MLMV = .21, WLS = .19); εUAP3 (ML = .21, MLM
= .46, MLMV = .46, WLS = .34).

Interestingly, in WLSM and WLSMV, the standard errors have shown even
more descending values as compared to: ML, MLM, MLMV and WLS. For
example, differences can be observed in case of the following parameters: ξ1→
λLOSR2 (ML = .46, MLM = .46, MLMV = .46, WLS = .55, WLSM = .29,
WLSMV = .29); η2→ λUAP2 (ML = .14, MLM = .15, MLMV = .15, WLS
= .12, WLSM = .07, WLSMV = .07); η1→ λUAP3 (ML = .12, MLM = .12,
MLMV = .13, WLS = .12, WLSM = .07, WLSMV = .07); ξ1variance (ML
= .30, MLM = .30, MLMV = .28, WLS = .26, WLSM = .12, WLSMV =
.12); ζη1 (ML = .21, MLM = .38, MLMV = .38, WLS = .34, WLSM = .15,
WLSMV = .15).

6 Conclusions

On the basis of the conducted analysis, we can eventually conclude that all es-
timators have produced approximately tolerable results. However, in searching
for the optimal solution for the SEM model we find that its general fit as well as
the parameter levels seemed to perform better for WLSM and WLSMV com-
pared to the ML, MLM, MLMV and WLS estimation methods. Although, the
range of response categories used within the 7-point Likert scale proves to be
sufficient and approximates the conditions of the normal distribution, this type
of scale is, in fact, still framed within the categorical answers. Hence, strict
application of estimators based on normal theory, though this appears to be
appropriate on the first sight, may not be enough from the perspective of ob-
taining the optimal solution for the SEM model. Just to remind, computing the
correlation/covariance coefficients between indicators and application of the
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ML estimator in a SEM model, needs the solid foundation of normality, at least
in the context of a multivariate distribution for the respective latent variable. In
other cases, such variables should be corrected with a MLM or MLMV estima-
tor or should be restructured with order categorical scales and estimated with
appropriate procedures, i.e. WLS, WLSM or WLSMV. Still, when the number
of response categories on the scale is large (as it is in the case of a 7-point
scale) and the data are approximately normal, failure to address the ordinality
of the data can probably be negligible. One can even argue (given the normally
distributed categorical variables), that continuous methods/estimators can be
used with little worry when a variable has 7 categories. The problem however
is, that in case of indicators which are measured on a 7-point Likert scale, they
cannot completely produce the optimal solution in SEM as compared to the
noncontinuous estimators. Therefore, a quick application of continuous estima-
tors (ML, and its corrected alternative propositions: MLM and MLMV) seems
to be dangerous, since they cause strong side effects on the χ2 test of model fit,
(including the CFI, TLI, RMSEA and SRMR fit indices). The factor loadings
(as shown by the empirical results) can be also underestimated in ML, MLM
and MLMV methods as compared to WLS, WLSM and WLSMV. Besides, the
residual variance of estimates, more than other parameters, seems to be more
sensitive to the continuous methods than the noncontinuous variants. Of these,
we can infer that the WLSM and WLSMV estimation methods perform better
in SEM modeling of a 7-point Likert-scaled data and yield more accurate test
statistics, parameter estimates and standard errors.
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