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1 Introduction

The rapid development of increasingly sophisticated computers has made it possible to

simulate more complex physical processes. Compared to experiments, these simulations

have the benefits of being cheaper and allowing us to easily change simulation parameters.

They also let us study properties or phenomena not directly accessible in an experiment.

In molecular mechanics, the study of molecular systems based on principles from classical

mechanics, simulations are not derived from a continuum model but from a molecular or

atomic one. The description of the model is fundamentally based on Newton’s second law.

Each atom is modeled as a point particle with assigned charge and mass, and behaves

according to forces acting on it. As such, this model is a classical particle model and

neglects quantum mechanical effects.

This thesis is divided into two parts and examines two prominent methods in molec-

ular mechanics. The first part considers the problem of numerical time integration in a

technique called molecular dynamics. The second part investigates and compares different

numerical methods for normal mode analysis.

Molecular dynamics is centered around computing trajectories. A trajectory is the path

of a molecular model following time. Relevant information is then extracted from that

trajectory. In principle, the trajectory can be easily computed by solving the differential

equation obtained from Newton’s second law. Early papers conducting simulations of

hard spheres appeared in the late ‘50s. In subsequent years, more sophisticated techniques

were developed, which mainly applied to liquids, solids, and gases. In the ‘70s, the first

simulations of macromolecules, such as BPTI, were carried out. The availability and

rise of computers kept pushing the limits in both simulation size and simulation time.

Nowadays, it is used in chemistry, engineering and medicine as a general purpose tool

and large scale computations with hundreds of thousands CPU cores involving billions of

atoms are successfully conducted.

Molecular dynamics simulations have a wide range of applications. In materials sci-

ence, they are used to investigate the properties of materials at externally imposed phys-

ical conditions. This includes the detection of material failure such as crack propagation.

Simulations can predict properties of new composite materials, such as composites with

graphene, or the behavior of carbon nanotubes. In chemistry, molecular dynamics simu-

lations allow us to investigate phase transitions or to find equilibrium states of structures.

They are also used to refine three dimensional structures as obtained from X-ray crys-

tallography or NMR spectroscopy. Many problems under examination are biophysical.

With molecular dynamics, it is possible to observe phenomena on a macro-scale such as

protein folding or protein mutation. This is highly interesting when trying to understand

the mechanisms of biological processes, and can be useful in drug design.



2 Chapter 1. Introduction

For some general literature on molecular dynamics we refer to the monographs [1–5].

The difficulty in solving the simple differential equations for molecular dynamics is a

combination of the following:

• stability over long simulation times and large simulation domains,

• preservation of geometric and physical properties [6–9],

• strongly nonlinear forces acting on vastly different time-scales [10–15], resulting in

resonance issues with standard integrators [16–20].

The molecular models are large in dimension and the required computing time can be

enormous. New methods improving existing ones by a few percent are worth considering.

In Chapter 2, we give a short introduction on the basics of molecular dynamics. In

Chapter 3, we discuss standard integrators and show their limitations. Chapter 4 serves as

an illustration and two small typical simulations are shown. In Chapter 5 and Chapter 6,

we introduce a new family of filters for the mollified impulse method, called corotational

filters. These filters allow us to avoid certain instabilities found in the impulse method

and can thus improve the efficiency and multiscale character of the employed algorithm.

We provide the general construction, illustration, and performance on small problems in

Chapter 5. We consider two realistic examples in Chapter 6. The results of Chapter 5

and Chapter 6 have already been published in a paper by the author, together with M.

Hochbruck and C. V. Singh [21].

In the second part of the thesis – covered in Chapter 7 and Chapter 8 – normal mode

analysis is highlighted. Normal mode analysis tries to circumvent certain time limitations

encountered in molecular dynamics by deducing large scale movements from a local har-

monic approximation. The harmonic approximation provides vibrational frequencies with

corresponding eigenvectors. The eigenvectors are also called modes, and describe in detail

the motion associated with each frequency. Basically, a full decomposition into separate

frequencies and modes can be computed. Again, the problem at hand is quite challenging

due to the large dimension. Most methods found in the literature deal with this prob-

lem by a model approach: the complexity of the original problem is heavily reduced by

replacing the model with a coarse grained description.

Normal mode analysis is a well established area [22,23]. In the ‘70s it was used for small

molecules [24, 25], and its use was expanded in the ’80s with the development of protein

normal mode analysis [26–28]. Nowadays, the techniques are found in many algorithms,

see for example the reviews [29–32]. The most typical application is the investigation of

functional motions in large biomolecules. However, it is also possible to combine the ideas

from normal mode analysis with many other algorithms such as coarse graining [33] and

molecular dynamics [34, 35]. It is an active area of research [36–43]. For a review of the

different techniques and services available on the internet we refer to [44] and references

therein.
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In the second part of this thesis, the problem is investigated from a numerical per-

spective. Recent, complex algorithms designed for tackling such problems are tested and

compared. We also develop a new multilevel algorithm which exploits the underlying

structure of the physical problem. The method can be used as a standalone solver or as a

preconditioner for multiple numerical methods. In Chapter 7, we present the theoretical

requirements and available algorithms. Their performance is critically reviewed by apply-

ing them to six test problems of varying sizes in Chapter 8.

Goals of this thesis

The goals of the first part of this thesis are

• a numerical investigation of common stability issues in molecular dynamics,

• and to propose a new filter which removes linear resonances. This filter is employed

in the mollified impulse method.

The goals of the second part of this thesis include

• comparing different methods available for normal mode analysis,

• and introducing a linear solver based on a multilevel hierarchy.





2 Basics of Molecular Dynamics Simulations

2.1 Hamiltonian Formulation

In molecular dynamics (MD), we try to predict the time evolution of a set of N atoms.

We denote their position vector at time t by q(t) ∈ R3N and their momentum vector by

p(t) ∈ R3N . Their motion is described by a Hamiltonian system.

Definition 1. (Hamiltonian system) For a given Hamiltonian function H(q, p) with po-

sition coordinates q and momenta p the associated Hamiltonian system is

q̇(t) = ∇pH(q, p),

ṗ(t) = −∇qH(q, p),
(2.1)

for some initial values q(t0) = q0, p(t0) = p0.

If we abbreviate

X =

[
q

p

]
∈ R6N and J =

[
03N I3N

−I3N 03N

]
∈ R6N×6N

this shortens to

Ẋ = J∇H(X), X(0) = X0. (2.2)

While the Hamiltonian framework allows for very general Hamiltonian functions, in molec-

ular dynamics, we focus on a very specific, separable Hamiltonian of the form

H(q, p) =
1

2
pTM−1p+ U(q). (2.3)

The first part is the quadratic kinetic energy T (p) = 1
2p
TM−1p with a (time invariant)

diagonal mass matrix M , and the second part is the potential energy U(q). The Hamilto-

nian itself thus represents the energy of the state (q, p). Throughout this thesis, we assume

that the potential function U(q) is at least twice continuously differentiable.

2.1.1 Invariants

Hamiltonian systems are known to have many interesting properties, a few of which we

will discuss here. An essential property of a Hamiltonian system is that the Hamiltonian

function itself is preserved along exact solutions of the Hamiltonian system, i.e. it is a first

integral of the motion.

Lemma 2. ([6, Ex. IV.1.2]) The Hamiltonian H is an invariant along solutions of the

corresponding Hamiltonian system.
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In molecular dynamics, most potentials are of the form

U(q) =

N∑
i,j=1

Vij(||qi − qj ||), (2.4)

where qk ∈ R3 denotes the position of atom k. Vij is a potential describing the interaction

between atoms i and j and its argument, ||qi − qj ||, is the distance between both atoms.

Then it holds:

Lemma 3. ([6, Ex. IV.1.3]) For an N-body Hamiltonian system with potential of form

(2.4) both linear (
∑

i pi) and angular (
∑

i qi × pi) momentum are conserved.

The conservation of the Hamiltonian function and the conservation of both linear and

angular momentum are intuitive, physical properties; the energy of a closed system does

not change. If there are no external forces, the linear momentum, i.e. the center of mass

velocity, and the angular momentum do not change.

2.1.2 Reversibility

Definition 4. ([6, Def. V.1.1]) Let ρ be an invertible linear transformation in the phase

space of ẏ = f(y). This differential equation and the vector field f(y) are called ρ-reversible

if

ρf(y) = −f(ρy) for all y. (2.5)

Hamiltonian systems with Hamiltonian (2.3) are reversible under the transformation

ρ(q, p) = (q,−p). If a vector field is reversible with respect to this specific transformation

it is called time-reversible. So inverting the velocity vector does not change the trajectory,

it just inverts the direction of motion. A deeper consequence of time-reversibility is that

in MD we do not have a direction of time in the thermodynamics sense. This observation

is known as Loschmidt’s paradox. For more details see for example [4].

2.1.3 Symplecticity

There is one geometric property which characterizes Hamiltonian systems. But first, let

us introduce the concept of a flow.

Definition 5. The mapping

ϕt(q0, p0) = X(t), (2.6)

with

Ẋ(t) = J∇H(X), X(0) =

[
q0

p0

]
(2.7)

is called the flow ϕ of the Hamiltonian system H.

So ϕt(q0, p0) denotes the solution at time t with initial values q0, p0. For Hamiltonian

systems, the flow is symplectic.
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Definition 6. ([6, Def. VI.2.2]) A mapping g is called symplectic, if its Jacobian g′ is

everywhere symplectic i.e. g′(q, p)TJg′(q, p) = J .

Theorem 7. ([6, Thm. VI.2.4], Poincaré 1899) Let H(q,p) be a twice continuously dif-

ferentiable function on S ⊂ R6N . Then, for each fixed t, the flow ϕt is a symplectic

transformation wherever it is defined.

It turns out that for Hamiltonian systems the symplectic flow is a characterizing fea-

ture. It also holds that if a flow is symplectic, then the corresponding ODE is at least

locally Hamiltonian ([6, Thm. VI.2.6]).

2.1.4 Poisson Bracket

Frequently, one is interested in computing the time evolution of a certain property a(X),

defined on the phase space of all possible states X = (q, p). A quick calculation reveals

ȧ(X) =

3N∑
i=1

(
∂a

∂pi
ṗ+

∂a

∂qi
q̇

)
=

3N∑
i=1

(
∂a

∂qi

∂H

∂pi
− ∂a

∂pi

∂H

∂qi

)
= {a,H}. (2.8)

The last equality makes use of the Poisson bracket.

Definition 8. (Poisson bracket) For two smooth scalar functions f, g defined on phase

variables (q, p) ∈ R6N the Poisson bracket is defined by

{f, g} =
3N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
= ∇fTJ∇g.

The Poisson bracket is bilinear, skew symmetric, and fulfills the Jacobi identity

{{g1, g2}, g3}+ {{g2, g3}, g1}+ {{g3, g1}, g2} = 0

and the Leibniz’ rule [6]

{g1g2, g3} = g1{g2, g3}+ g2{g1, g3}.

In equation (2.8), the Poisson bracket of a Hamiltonian is related to the time derivative

of a(X). This is remarkable since the right hand side has no direct explicit time dependence

anymore. Since {a,H} = ȧ(X) all properties on the phase space with {a,H} = 0 are

conserved. It is now easy to prove the conservation of total momentum P =
∑

i pi. Note

that with a potential of form (2.4) we have

∑
i

∂H

∂qi
=
∑
i

∂U

∂qi
= 0

and thus

Ṗ = {P,H} =
∑
i

{pi, H} = −
∑
i

∂H

∂qi
= 0.
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Finally, the Poisson bracket also allows us to express the Hamiltonian system (2.2) more

concisely as

Ẋ = {X,H}, X(0) = X0. (2.9)

2.1.5 Concepts of Numerical Integrators

In general, the Hamiltonian system (2.1) cannot be solved analytically. Instead, a selected

algorithm (referred to as a numerical integrator) tries to provide an approximation to

the exact solution with a given accuracy. Given an initial state q0 = q(t0), p0 = p(t0),

such algorithms deduce information about the exact solution by evaluating the right hand

side of (2.1). Combing the collected information, they make an educated guess about the

future q1 ≈ q(t0 + h), p1 ≈ p(t0 + h) where h is a small positive number, the time step.

In the design of a suitable numerical integrator it is valuable to exploit any known

structural properties of the exact solution. Indeed, it is possible to transfer the concepts

of symplecticity and symmetry to numerical integrators.

Definition 9. ([6, Def. VI.3.1]) A numerical one-step method is called symplectic if

the one-step map y1 = Φh(y0) is symplectic whenever the method is applied to a smooth

Hamiltonian system.

In the Hamiltonian context, we have a symplectic flow, so we are advised to use a

symplectic integrator. Classical theorems from backward error analysis (e.g. [6, Thm.

IX.8.1]) show that the numerical approximations from a symplectic integrator can be

understood as the exact solution of a nearby Hamiltonian system over an exponentially

long time (though care has to be taken not to overestimate this property, since the proofs

of the results from backward error analysis are based on Taylor expansion. Here, however,

hω = const where ω is the highest frequency of the ODE [9]). This topic was actively

researched some decades ago, and simple conditions for symplectic integrators have been

found.

Sometimes, symplectic integrators cannot be formed, and good results are also achieved

with symmetric methods.

Definition 10. ([6, Def. V.1.3]) A numerical one-step method Φh is called symmetric or

time-reversible, if it satisfies

Φh ◦ Φ−h = id or equivalently Φh = Φ−1
−h.

A symmetric numerical method applied to a reversible differential equation has a re-

versible flow ([6, Ch. V]). Since the Hamiltonian system with (2.3) has a reversible flow,

conserving symmetry is preferable. Symplecticity and symmetry are two major geometric

properties, but there are many other ideas in the community, such as projecting solutions

back onto some energy manifold or employing constraints to preserve certain quantities.
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2.2 Potentials

In MD, the potential function U(q) tries to mimic the physical interaction between atoms.

Designing such potential functions is its own branch of science; models are proposed and

calibrated such that they reproduce certain observations obtained from experiments.

In biomolecular simulations there is a fast intra-molecular part Uintra which models

bonded interactions within molecules. Short-range pair interactions Upair describe local

forces between molecules such as Van der Waals repulsion and attraction as well as short-

range electrostatic forces. Long-range contributions Ulong usually consist of the remaining

long-range electrostatic contributions.

Hence, it is common to decompose the potential U(q) into a sum of those components:

U(q) = Uintra(q) + Upair(q) + Ulong(q). (2.10)

Let us give a few examples. For bonded interactions, a standard potential is the

harmonic bond potential. If r = ||qi − qj || denotes the distance between two bonded

atoms, it is given by

U(r) =
K

2
(r − r0)2, (2.11)

where K is a force constant and r0 is the equilibrium length of that bond. A commonly

used model for Van der Waals repulsion and attraction is the Lennard Jones potential

U(r) = 4 ε

((σ
r

)12
−
(σ
r

)6
)

(2.12)

with suitably chosen constants ε and σ. It has a strong repulsive part if r is small, but a

weak attraction part at intermediate distances. For r large, it quickly converges to zero.

For electrostatic interactions the Coulomb potential

U(r) =
1

4πε0

eiej
r

(2.13)

with a constant ε0, charges ei, ej and distance r between atoms i, j is used. Since it

only decays as 1
r , long-range interactions cannot be neglected and are vital for structural

stability. In a regular setup, each atom is bonded through strong harmonic potentials to

a few of its neighbors, usually within the same molecule. It then interacts through pair

potentials with all of its neighbors within a certain cutoff radius, and through long-range

potentials with all other atoms in the simulation.

Due to this potential structure, the resulting ODE is quite stiff. While the slow long-

range interactions are smooth, the frequent collisions between atoms and high force con-

stants in bonded interactions are responsible for the stiffness. Especially the Van der

Waals repulsion with its 1
r12

singularity requires very small step sizes for most standard

explicit integrators.

The three potentials presented here are simple examples. Many more potentials with
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different potential functions exist. Besides pairwise potentials, such as the three potentials

presented here, there are many potentials which include three, four or more atoms in their

construction. Examples include potentials depending on specific angles between three

connected atoms, or torsion potentials. Luckily, a number of so-called force fields exist

which provide a consistent parametrization and a selection of potentials for a molecular

structure. Well-known force fields for biomolecular simulations include AMBER [45],

CHARMM [46–49], GROMOS [50] and OPLS-AA [51]. For more details and an overview

we refer to Chapter 9 in [1] and references therein.

2.3 Time Scale and Number of Atoms

Atoms are very small. In tiny amounts of material there are many atoms. Avogadro’s

constant gives a hint of how many there are: 16 grams of oxygen would already consist

of roughly 6.23 · 1023 atoms, which is an unimaginably large number. More important, it

is impossible to store position and momenta information for that magnitude of atoms, at

least on any current (and probably near future) computer. As a consequence, we have to

restrict the simulations to tiny fractions of these sizes. In a similar way, while interesting

physical phenomena happen on time scales of seconds, microseconds or nanoseconds, the

fastest oscillations in molecules happen on a scale of femtoseconds (= 10−15s).

It is essential to find a compromise between the number of atoms - or molecules - and

the time frame we want to conduct our investigations in. Usually, both the size and time

frame is much smaller and shorter than what we can see and experience with our own

eyes on a reasonable scale. Long, full atomistic simulations of large molecules consisting

of millions of atoms have been conducted on the nano- or microsecond scale. For those

computations serious computing power (tens of thousands of CPU cores for weeks or

months) is essential. Some research groups even design and build their own specialized

hardware for MD [52–54].

2.4 Simulation Cell

So far we have not made any assumptions on the simulation cell, that is the (physical) space

in which the atoms with position qi, i = 1, ..., N are allowed to exist. We just assumed

an infinite domain e.g. qi ∈ R3, i = 1, ..., N . This turns out to be impractical for most

problems. Much more interesting and realistic problems happen in a finite domain D ⊂ R3

with corresponding boundary conditions. Note that in MD the term boundary condition

differs from its usage in the context of PDEs. In MD, boundary conditions describe what

happens when an atom reaches the boundary surface ofD. The restriction of the simulation

cell to some domain D ⊂ R3 is necessary due to practical issues and limited resources.

In MD, interactions are happening on such a small scale that an atomistic simulation

domain of a 1cm cube would be almost impossible. Furthermore, most phenomena do not

happen in a vacuum. A proper background is very important, and long-range forces have
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a significant impact on structural properties.

Multiple types of boundaries are used. Fixed boundaries simply keep the outer layers

of atoms, which are far away from the area of interest, fixed. Wall boundaries let atoms

reaching the boundary bounce back. Vacuum surroundings pretend nothing other than

the few atoms of interest exists. Shrink-wrapped boundaries are automatically adjusted

to only fit our atoms.

The most common type, though, are periodic boundaries. A finite cube, called a

unit cell, is periodically repeated in every spatial direction. Thus, an infinite domain is

generated (see Figure 2.1). This approach is very useful in applications where structure

depends on long–range forces such as electrostatic interactions. It gives a reasonable

background if the chosen cube is large enough. Also, this is very efficient in terms of

memory requirements; only the information for the atoms inside the unit cell needs to

be stored. Instead of using a cube as unit cell, other geometric structures are possible.

For the simulation of a large biomolecule surrounded by a solute such as water, the cube

can be replaced by a rhombohedron. Such a simulation cell minimizes the simulation of

the unwanted solute while still keeping enough spatial distance between the periodically

repeated copies of the large biomolecule.

Figure 2.1: Simple example of periodic boundaries in 2D. The unit cell containing 5
atoms is highlighted in yellow, repeated copies in x and y direction are drawn in opaque
colors. If the blue atom moves in the indicated direction, so do all blue copies.

All types of boundaries have their limitations. Some have no physical justification,

others suffer from various spurious effects. For example, if too small of a periodic box is
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chosen, periodic artifacts will pollute the results.

2.5 Ensembles and Targeted Simulation

In almost all simulations, one tries to investigate materials under certain (imposed) physi-

cal conditions such as a specific temperature or pressure. Therefore, we need to be able to

control these basic conditions. It is common to abbreviate the following thermodynamic

properties: N (number of atoms), V (volume of domain), E (energy), T (temperature)

and P (pressure). Of those thermodynamic properties only three are independent, and

can be chosen to be fixed. This is then called a simulation in a certain ensemble, where

the capital letters indicate, which properties are kept fixed. A few examples are:

• Microcanonical ensemble (NVE): N , V , and E are kept fixed. There is no energy

exchange with the surrounding, no volume change, and no atoms can enter or leave

the domain.

• Canonical ensemble (NVT): temperature instead of energy is conserved. It corre-

sponds to the simulation of a domain surrounded by a heat bath keeping the domain

at a constant temperature. Energy can flow into or out of the domain.

• Isothermal-isobaric ensemble (NPT): temperature and pressure are fixed. In addition

to the energy, the volume changes in order to maintain ambient pressure.

There are more ensembles, such as ensembles in which atoms can enter or leave the

domain. For further details we refer to the literature, e.g. [55] and references therein.

The Hamiltonian equations introduced in the previous chapter follow the microcanonical

ensemble. There are (nontrivial) modifications to those such that they obey another

ensemble.

A simple way of achieving a constant temperature is simply rescaling the velocity

vector p every couple of steps. A popular version of rescaling is the variant of Berendsen

[56]. However, there is some interest in maintaining the ergodic property which is the

assumption that the limit of trajectory averages is equal to the phase space average,

i.e. a system is said to be ergodic, if after a sufficiently long time, it visits all possible

state space points [4]. It can be shown that velocity rescaling does not quite follow the

canonical ensemble. Therefore, a more elaborate approach is to extend the Hamiltonian

equations and add auxiliary variables in the form of so-called thermostats, which control

the wanted thermodynamic properties. The most common thermostat is the Nosé-Hoover

thermostat [57,58], and a simple version for NVT with one auxiliary variable ξ reads:

q̇ = M−1p,

ṗ = −∇U(q)− ξp,
µξ̇ = pTM−1p−Ndβ

−1.
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Here, ξ provides a negative feedback loop which controls the kinetic energy. When the

average kinetic energy is higher than the target temperature β−1, ξ increases and will

damp p until it becomes negative again. Nd are the number of degrees of freedom and µ

is a coupling parameter.

Similar extensions can be designed for the other ensembles. Integrators discussed in

the following chapter naturally compute within a NVE ensemble. Again, we refer to the

literature for information on the necessary modifications when using them in a different

ensemble.

2.6 Setup and Running a Simulation

The following summarizes the steps necessary to conduct a molecular dynamics simulation.

The entire workflow is depicted in Figure 2.2.

BUILDstart

• generate position and structure

• select force field

• set up simulation box

MINIMIZE

• relax initial structure, remove
overlap

• steepest dsc., CG, l-BFGS

EQUILIBRATE
• slowly drive simulation to the

wanted state (temp, pressure)

• distribute energy in system

PRODUCTION
RUN

• run main simulation

• collect data

POST
PROCESS

• evaluate collected dataend

Figure 2.2: Workflow for molecular dynamics

First, position data for the molecular structure under investigation is selected. The

structure is then equipped with a force field; that is, a full set of potential functions with

parameters describing the potential U(q) in (2.3). A suitable simulation box is identified.

These choices go hand in hand. The simulation cell has to fit the molecular structure, and

the boundary condition needs to be compatible to the force field and so on.

To avoid immediate blow ups in the simulation, it is common to first minimize the

structure under the chosen potential function. A potential overlap of atoms is resolved.

For this step, classical minimizers, such as steepest descent or a CG method, can be

employed. More advanced algorithms include the limited-memory BFGS, a quasi-Newton



14 Chapter 2. Basics of Molecular Dynamics Simulations

method.

The goal of equilibration is to distribute energy in the system. The simulation is

started at a random velocity vector of low temperature, and then the simulation is slowly

driven towards the target temperature and pressure. Depending on the sensitivity of

the structure under investigation, this step can take a long time and requires a careful

procedure.

Finally, the production run can be started. This is the part where the original inves-

tigation happens and data from the simulation is collected. Afterwards, the obtained raw

data is evaluated, condensed and visualized.

2.7 Software for Molecular Dynamics

There is plenty of publicly available software for molecular dynamics. Many research

groups develop their own code. Software packages are usually targeted and optimized

towards a specific type of simulation. Here, we will only name software that we used in

the simulations conducted for this thesis. For a more thorough overview we refer to the

monographs [1–5] which include lists of available software.

For preparing and setting up a molecular structure we used moltemplate [59]. This tool

allows us to setup geometric patterns and build large structures by combining smaller ones.

We mostly used the set of force field parameters provided by CHARMM. For some tasks we

required SwissParam [60] which can generate parameters for small molecules which are not

included in the force fields. High-end software for running large simulations on clusters

includes LAMMPS [61] and GROMACS [62]. The simulations for MD were computed

with LAMMPS since its framework allows for simple modifications. Nevertheless, it is a

very efficient software for running large scale simulations. GROMACS has very similar

capabilities, however, since it also contains built-in tools for normal mode analysis, we

mainly used it for the computations in Chapter 8. Postprocessing and visualization of the

results can be done with VMD [63] and ovito [64]. Whereas ovito is a software mainly

focused on visualizing, VMD contains many plug-ins which can provide in-depth analysis

of simulation results.
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As we have seen in the previous chapter, solutions of (2.1) with Hamiltonian (2.3) have

a highly geometric nature with multiple invariants. Therefore, it is natural to devise

numerical integrators mimicking (at least part of) those structures. Furthermore, we are

interested in long-term simulations, often with millions of time steps. Short term accuracy

of a method is of minor interest, since round-off errors will accumulate and model errors

in the molecular models make high accuracy not feasible. Furthermore, methods such

as the explicit Euler scheme, or even common high order Runge-Kutta methods will not

work since they will provide approximations which drift off the energy landscape quickly.

Hence, our main focus lies on topics such as stability, robustness, and efficiency [7].

3.1 The Verlet Method

In the MD community the most successful integrators are, without doubt, the Verlet

method and its multiple time step version - the impulse method [65, 66]. Both are low

order explicit integrators. The Verlet method is based on approximating the second order

derivative in

Mq̈ = −∇U(q) (3.1)

by a second-order central difference

q̈n ≈
qn+1 − 2qn + qn−1

h2
.

If we insert this second-order central difference in Newton’s equation (3.1) we immediately

get the following two step method (Stoermer-Verlet)

qn+1 − 2qn + qn−1 = −h2M−1∇U(qn).

For MD though, the one step formulation in Algorithm 3.1 is more successful since it

directly provides momenta. Here, there are different variations (leapfrog method, velocity-

Verlet method, position-Verlet method). They are all fairly similar but differ in details.

E.g. the leapfrog only provides velocities at half-steps, the velocity-Verlet method does a

half-step with the velocities at the beginning and end, etc.

Algorithm 3.1: One step of the velocity-Verlet method

1 pn+1/2 = pn − h
2∇U(qn)

2 qn+1 = qn + hM−1pn+1/2

3 pn+1 = pn+1/2 − h
2∇U(qn+1)
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All of them have in common that they are explicit methods and only use a single force

evaluation per time step. Note that for example in Algorithm 3.1, the force evaluated at

the new position qn+1 is reused in the beginning of the next step. From now on whenever

we refer to the Verlet method we mean the velocity-Verlet in Algorithm 3.1.

Theorem 11. ([6, Thm. VI.3.4.])

The velocity-Verlet method given in Algorithm 3.1 is a symplectic and second order

method when applied to a separable Hamiltonian.

The success of the Verlet method in molecular dynamics can be credited to its simple

design while preserving both symmetry and symplecticity. The implementation is straight

forward, since it is an explicit method with a single force evaluation. Furthermore, the

Verlet method exhibits a beneficial long-time behavior [67].

The Verlet method can also be interpreted as a splitting method. This is based on the

observation that when splitting the ODE in the following way[
q̇

ṗ

]
=

[
M−1p

−∇U(q)

]
=

[
M−1p

0

]
+

[
0

−∇U(q)

]

the exact flows ϕTh and ϕUh corresponding to the kinetic part T = 1
2p
TM−1p and the

potential part U(q) respectively can be easily computed. In fact, they are just simple

translations and

ϕTh (q0, p0) =

[
q0 + hM−1p0

p0

]
, ϕUh (q0, p0) =

[
q0

p0 − h∇U(q0)

]
. (3.2)

Therefore, the Verlet method with step size h can be expressed as

Φh = ϕUh/2 ◦ ϕTh ◦ ϕUh/2.

Despite its simplicity and many good geometric properties, the Verlet method has a

major drawback for simulations in MD: linear stability analysis reveals a step size restric-

tion hω < 2 depending on the fastest frequency ω (see Section 3.5.1). For accurate results,

step sizes for the Verlet method are commonly chosen around hω ≈ 1
2 in MD.

3.2 The Impulse Method

The major drawback of the Verlet method is the fact that the step size is restricted by the

fastest frequency. Therefore, slow forces have to be computed more often than necessary.

In most biomolecular simulations a step size below 0.5fs or 1.0fs is required to ensure

long-time energy conservation.

Bonded forces oscillate faster than pair forces, and pair forces change more quickly

than long-range electrostatic contributions, a fact to which the Verlet method is ‘blind’.

The impulse method is based on the Verlet method but it further splits the potential
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allowing forces to be evaluated at different time scales. Assume we can split U(q) =

Uslow(q) + Ufast(q). The basic idea is to propagate Uslow only at the beginning and end of

a time step (impulse-like), and then solve

q̈ = −M−1∇Ufast(q)

e.g. using a different integrator with a much smaller step size in the middle of Algo-

rithm 3.2. Sometimes, line 1 and line 3 are referred to as the kick step, and line 2 as the

oscillate step. Usually, the Verlet method is chosen for the inner integration loop, but any

other method could be used.

Algorithm 3.2: One step of the impulse method with two stages, U = Ufast +Uslow

1 p+
n = pn − h

2∇Uslow(qn)

2 Obtain (qn+1, p
−
n+1) by numerically solving the reduced Hamiltonian system with

H̃ = T + Ufast for h time and starting at (qn, p
+
n )

3 pn+1 = p−n+1 − h
2∇Uslow(qn+1)

Clearly, this method is symmetric if the inner integration is done by a symmetric

method. Furthermore, if we use a symplectic method in the inner loop, we obtain a sym-

plectic method since we integrate q̇ = 0, ṗ = −∇Uslow(q) exactly, (see [6, Ch. VIII.4.1]).

So, if we choose the Verlet method in the inner stage, the impulse method becomes both

symplectic and symmetric. From now on, whenever we refer to the impulse method, we

refer to this combination with the Verlet method.

Similar to the Verlet method, we can express the impulse method as a splitting method

with

Φh = ϕUslow

h/2 ◦ (ϕUfast

h/2K ◦ ϕ
T
h/K ◦ ϕUfast

h/2K)K ◦ ϕUslow

h/2 .

Here, the inner integration is done by K steps of the Verlet method with step size h/K.

This splitting approach can be easily extended to an arbitrary number of stages. Hence,

potentials can be grouped into different time-scales and evaluated accordingly. The only

limitation between the stages is that integer factors between the different step sizes are

required. Especially if slow forces are computationally expensive, the impulse method can

provide a significant speed-up. In MD simulations a common force splitting uses different

stages for bond, pair and long-range forces. In the literature, a lot of research has been

conducted to maximize the benefits of this method [10–14]. The studies give advice on

how to choose the ‘best’ splitting and provide tips for implementation such as smooth

cut-offs and other tuning parameters.

A good speed-up over the Verlet method can be obtained in biomolecular simulations,

but the method is not free from problems. Resonances and instabilities already appear in

simple linear models [15,16]. For a further discussion see Section 3.5.2.
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3.3 Simulations with Constraints: SHAKE

The family of SHAKE algorithms [68, 69] is a collection of standard methods for con-

straining intramolecular degrees of freedom within simulations. By removing the degrees

of freedom which are associated with the fastest vibrations, larger step sizes are accessi-

ble. This rather drastic step is justified by the fact that the fastest vibrations are almost

decoupled and do not significantly contribute to behavior on longer time scales. However,

one has to carefully examine whether the impact of SHAKE does not actually interfere

with the observations targeted. Freezing out the fastest degrees of freedom (such as with

SHAKE/RATTLE) can lead to the wrong qualitative limit [70, 71]. Depending on the

application, neglecting fast frequencies is questionable.

In most implementations the constraints are enforced using Lagrange multipliers. The

resulting nonlinear equations are solved using a Newton or Gauss-Seidel method. Assume

we want K constraints collected in a vector function g(q) ∈ RK with g(q) = 0 to be

satisfied. An additional constraint force such that the new positions fulfill the constraints

is applied to the corresponding atoms. In this process we need to determine the Lagrange

multipliers λ ∈ RK in an iterative process. The constrained Hamiltonian system reads

q̇ = M−1p,

ṗ = −∇U(q)−∇g(q)λ,

g(q) = 0.

The bottleneck of this procedure is obviously the solution of the nonlinear equations. As

long as only small connected clusters (up to around 4 or 5 atoms) are constrained, there

are very efficient ways to do so. However, constraining e.g. all backbone atoms of a long

linear chain quickly becomes prohibitively expensive. There are multiple variations of this

basic algorithm depending on its specific purpose and how the nonlinear equations are

solved. These algorithms are known under names such as SETTLE, SHAKE, M-SHAKE,

P-SHAKE, QSHAKE, SHAPE, LINCS, RATTLE, WIGGLE and many more ([5, Ch.

4.3.6], see also references in [72, Sec. II]).

3.4 The Implicit Midpoint Method

Implicit integrators are known to have better stability properties than explicit integrators.

This makes them ideal candidates for the integration of stiff ODEs.

The prototype of an implicit, symplectic and symmetric method is the implicit mid-

point method, and for ẏ = f(y) it reads

yn+1 = yn + hf(
yn+1 + yn

2
).
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Applied to the Hamiltonian system (2.1) with Hamiltonian (2.3), we have

qn+1 = qn + hM−1

(
pn+1 + pn

2

)
,

pn+1 = pn − h∇U(
qn+1 + qn

2
).

Inserting the second into the first equation we have to solve

qn+1 = qn + hM−1pn −
h2

2
M−1∇U(

qn+1 + qn
2

).

Algorithm 3.3: One step of the implicit midpoint method

1 p+
n = pn − h

2∇U( qn+1+qn
2 )

2 qn+1 = qn + hM−1p+
n

3 pn+1 = p+
n − h

2∇U( qn+1+qn
2 )

Written in a trusty leapfrog manner (see Algorithm 3.3), we have to solve the first

two equations using a Newton method. One possibility is to solve for qn+1, but it is also

possible to solve for p+
n with a similar procedure. Each step of the Newton method to

solve for x = qn+1 applied to

0
!

= g(x) = x− qn − hM−1pn +
h2

2
M−1∇U(

qn + x

2
)

then consists in solving the linear system

g′(xn)(xn+1 − xn) = −g(xn),

with

g′(x) = I +
h2

4
M−1Uqq(

qn + x

2
).

To avoid evaluating the Hessian in every iteration step, a simplified Newton method with

fixed g′ is usually used. However, solving this nonlinear system of equations in every

time step is, in general, too expensive in MD. Even storing a full Hessian of the potential

(as required for Newton-type methods) would be almost impossible for huge molecular

systems. Yet for certain specific problems or subproblems with a very sparse or decoupled

Hessian they might be worth the effort. If we apply the midpoint method only to small

molecules such as water in the inner loop of an impulse method (only bond forces) and

use the simplified Newton method, we could explicitly compute (f ′)−1(x). Each step then

is reduced to computing the fast force and a small matrix vector multiplication. If pair

forces are included, though, this quickly becomes a computationally challenging task. If

only bonded forces are used, why go to all this trouble? The Verlet method with bonded

forces is extremely cheap. Even if ten times more steps are used, it will still be competitive.
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3.5 Limitations of Standard Integrators

Both the Verlet method and the impulse method suffer from severe step size restrictions.

The implicit midpoint method is (linearly) unconditionally stable, yet the resulting com-

putations are, in general, much too expensive.

3.5.1 Stability Restriction of the Verlet Method

The Verlet method has a severe step size restriction depending on the fastest frequency.

Lemma 12. Applied to q̈ = −ω2q the Verlet method has a step size restriction hω < 2.

Proof. Applying Algorithm 3.1 to q̈ = −ω2q we get following iteration:(
qn+1

pn+1

)
=

(
1− h2ω2

2 h
h3ω4

4 − hω2 1− h2ω2

2

)(
qn

pn

)
. (3.3)

This propagation matrix has eigenvalues ω1,2 = 1− h2ω2

2 ±
√
h2ω2(h

2ω2

4 − 1).

If h2ω2

4 − 1 > 0 the eigenvalues are real, and one has absolute value greater than 1. If
h2ω2

4 − 1 = 0 ⇔ hω = 2 there is a double eigenvalue at −1. If h2ω2

4 − 1 < 0 we have one

complex conjugate pair of eigenvalues with exact absolute value 1, and thus, we obtain

the stability restriction hω < 2.

This result is quite disappointing since evaluating long-range and pair forces is the

main computational task, in most MD simulations. The fast oscillations resulting from

stiff bonded interactions are very cheap to compute but force the Verlet method to use an

overall small step size.

3.5.2 Resonances in the Impulse Method

“Resonance is a pronounced integrator-induced corruption of a system’s dynamics.” Con-

clusions in [17]

It is well known, that the impulse method suffers from strong linear resonances. Unfor-

tunately, a very complex resonance behavior can also be observed on nonlinear examples.

Let us have a look at an example with a slow potential frequently appearing in molecular

dynamics: in 1D, a single atom with position q and momentum p is bonded to the origin

with a fast harmonic potential and interacts with a fixed neighbor at q = −2 through a

Coulomb potential. This can be modeled by the Hamiltonian

H(q, p) =
1

2
p2 +

ω2

2
q2 +

1

2 + q
. (3.4)

As initial conditions we set (q0, p0) = (1, 0). Through the harmonic potential, we will get

oscillations in q in the interval (−1, 1) and forces Fh with |Fh| ≤ ω2. The nonlinearity has
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forces Fn with Fn ∈ (1
9 , 1) for q ∈ (−1, 1). Note, that Fn is significantly less stiff than the

harmonic part.
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Figure 3.1: Nonlinear resonance instabilities in the impulse method: maximum, arith-
metic mean and minimum of Hamiltonian 3.4 with ω = 10 over 10.000 integration steps
and step size h

For a fixed ω we now numerically integrate this problem for a fixed number of steps

(10.000) with different step sizes. We use a 2-stage impulse method with exact inner

integration of the stiff harmonic part. In Figure 3.1 we plot oscillations in the Hamiltonian

function for ω = 10. We plot arithmetic mean, minimum and maximum for each step size.

In the ideal case, these would be close to each other, and certainly would not exhibit

drastic changes when the step size h is slightly increased or decreased. Unfortunately,

Figure 3.1 clearly reveals a very complex instability behavior. Besides the expected (linear)

instabilities at h = π
ω (2:1), h = 2π

3ω (3:1) and at h = π
2ω (4:1), there are a number of further

instabilities of different magnitudes.

Resonances are a major drawback of the multiscale nature of the impulse method.

This simple example with exact inner integration already shows severe instabilities and a

local increase of oscillations in the Hamiltonian at step sizes as low as hω ≈ 2π/5.

In practice, the fastest oscillations have a period of around 10fs, so the first strong

linear resonance occurs at a step size of 5fs. This limit is called the 5fs-barrier [19].

The resonances can be so strong that within a few time steps a completely non-physical

behavior occurs. It usually manifests in an extreme build-up of energy in a specific mode

and causes the numerical simulation to abort.

The problem of the impulse method with resonance artifacts is a well known topic in

the MD community. It has been observed in many numerical experiments and theoretical

explanations are available [16–20]. At the core of the problem lies the fact that the kick
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step of the impulse method evaluates the slow potential at a single, possibly oscillatory,

position. If the time step in between the kicks is large enough, this position might be a bad

representation of what has happened in between the kicks. Imagine a harmonic oscillator

perturbed by a slow nonlinear contribution such as in the example (3.4). When the slow

force is always evaluated at half the period of the oscillation, it can happen that the kick

step always evaluates at extreme positions of the underlying oscillation. Naturally, this

can lead to a quick drift in energy.

3.5.3 Limitations of the Implicit Midpoint Method

The limitations of the implicit midpoint method are mainly practical in nature: solving

the nonlinear equations quickly becomes a very expensive and challenging task. For large

step sizes, the solution as obtained from a Newton-type method strongly depends on the

initial guess. In addition, in large molecular problems, simply storing or even evaluating

a full Hessian is a challenge on its own.

Even when ignoring all practical concerns, the implicit midpoint method does not

perform well on nonlinear problems in MD. Simulations with simple nonlinear models

[73] show that the implicit midpoint method also suffers from resonance issues revealing

erratic energy fluctuations at certain step sizes. While for small step sizes it provides better

approximations than the Verlet method with the same step size (although at a much, much

higher cost), for larger time steps the quality quickly degrades, and frequencies are severely

distorted [7, 74,75].

There are approaches which try to combine implicit and explicit algorithms such as

the IMEX method [76]. The IMEX method is basically an impulse method with a slow

kick, but the inner fast part is computed with the implicit midpoint method. Thus, the

nonlinear equations can be solved at fairly low cost, and the damping helps reducing

resonances. However, with the slow outer kick, the method remains prone to resonance

problems.



4 Two Small Illustrating Problems

In this section we illustrate practical difficulties on two small, but realistic examples.

Resonance instabilities are not just a theoretical issue, and they are a real problem when

performing molecular dynamics simulations. Also, we give computational timings for the

Verlet and impulse method. There, we show that the computation of the long-range

electrostatic forces poses a major bottleneck on large processor counts.

We abbreviate the two examples with (A) and (B). First, as problem (A), we choose

the most common natural form of ice, that is ice Ih. Ice is very sensitive to changes and its

structure is easily destroyed by a misperforming integrator. This makes it an challenging

test problem. For the second problem (B), we choose a small peptide solvated in water.

It has a variety of different fast vibrations from bonds, angles and torsions. For the time

integration, we use the Verlet method and the impulse method. For the impulse method we

split the potential as in (2.10) in three parts and use three stages in the impulse splitting.

Since descriptions for potentials, models and integrators can quickly become mired in

technicalities, and we here tried to make this section as readable as possible, the reader

is referred to the appendix for detailed explanations. In Appendix A the potentials can

be found in more detail. Appendix B covers parameters of the different models, and in

Appendix C we have a list of the time integration methods.

4.1 (A) - Ice Ih

Ice is a crystalline structure formed by water molecules. Around 20 different structures

are currently known. Ice Ih is the natural phase of ice on earth. It is obtained by freezing

water at atmospheric pressure, so almost all ice on earth has this structure. The name Ih

stands for the first (I) discovered hexagonal (h) structure of ice. From a top view it looks

astonishingly similar to honey comb in a bee hive.

Figure 4.1: (A) - ice Ih, crop of simulation cell, top view

Each water molecule has hydrogen bonds to the four nearest neighbor molecules which

are situated at the corners of a regular tetrahedron. Due to this structure, ice Ih is less
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dense than water and has a higher volume than water. For more details, we refer to the

literature, e.g. [77].

We set up a cubic simulation box with periodic boundaries containing 2880 molecules,

arranged in a perfect hexagonal lattice (see [78] for lattice parameters). The simulation

size is sufficiently large to get reliable results and obtain a computationally challenging

problem (parallel efficiency is a major concern).

There are many atomistic models for water, each with different properties and each

optimized for some special purpose. For a good overview see [79]. We conduct our investi-

gation by choosing two different flexible models. As opposed to rigid models, flexible mod-

els provide intra-molecular degrees of freedom such as bond stretching and angle bending.

First we choose the SPC/F model [80], which is based on the rigid three site SPC model

[81] and uses harmonic potentials in bonds and angles to model intra-molecular forces. The

second model we investigate is TIP4P/2005f [82], a flexible model based on the TIPNP

topology. It additionally uses a massless fourth site, M , with a negative charge. Bond

interactions are modeled using a Morse potential. The angle potential is again harmonic.

Furthermore, both models have Lennard-Jones and long-range electrostatic potentials for

intermolecular interactions.

The initial position is chosen as a perfect lattice structure, the initial velocities are

randomly assigned such that the overall temperature is 150◦K. We then equilibrate for

50ps (= 50,000fs) in NPT targeting 150◦K and 1bar pressure. Afterwards we run for 50ps

in NVE. We are not interested in any kind of order of the integrator (that is the behavior

for small step sizes and short times). Instead we are interested in the behavior over the

full 50ps after equilibration.

4.2 (B) - A Small Peptide

Figure 4.2: (B) - a small peptide, without its surrounding water, drawn in a ball-stick
representation
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We conduct simulations of a small 5-mer peptide solvated in water. The mer refers

to the number of monomers or residues in the peptide, that is the number of ‘building

blocks’ which are strung together in a chain to form the molecule. Initial positions and

structure can be found in the LAMMPS example section. The peptide has 84 atoms

and is solvated in 640 water molecules (total of 2004 atoms) in a periodic simulation

cell. Potentials are modeled according to the CHARMM force field [46]. In CHARMM,

the structure within the peptide is described by a multitude of different bond, angle and

torsion potentials. This makes for a nice toy problem, and it is comparably cheap to

compute due to the low dimension of this example.

Similar to example (A), we first equilibrate for 50ps in NVT at 250◦K. Afterwards, we

compute short 50ps trajectories in NVE for our analysis.

4.3 Frequency Plots

First of all, we identify the different time scales present in this simulation. We compute

infrared spectra with VMD’s IR Spectral Density Calculator Plugin by computing Fourier

transformations of the velocity auto-correlation function. In MD, it is common to report

such frequencies as the inverse of the wave length, called wave number, with the unit

[1/cm]. This can be easily converted to a frequency f or oscillation period T through the

relation

k =
1

λ
=
f

c
=

1

cT

where k is the wave number, and c ≈ 3 · 108m
s the speed of light. Thus, the larger the

wave number, the higher the frequency. A wave number of 3,330cm−1 corresponds to a

vibration with a period of around 10fs. The results for examples (A) and (B) are plotted

in Figure 4.3.

For simulation (A), it shows clear and separate spikes, since at around 150◦K ice Ih

stays in its fixed hexagonal structure, and there is almost no diffusion happening. The

fastest vibrations (right-most peaks) correspond to the quick oscillations in the bonds.

The second major peak at around 1,600cm−1 is due to angle motion. The remaining

part then stems from all the other forces and slower motions. A closer look even allows

us to distinguish both possible vibration modes in an triatomic molecule due to the bond

forces: the peak is separated in a left and a right part. The left part originates in symmetric

stretching of the two bonds in each molecules, whereas the right part indicates the slightly

faster asymmetric stretching.

Compared to ice, example (B) provides a plot with much more interesting features.

The peaks from the water solvent are clearly visible. Additionally, the other bonds and

angles from the peptide are apparent. There is no gap between the fastest angle and slower

forces anymore. This is due to torsion forces as well as all nonlinear interactions between

faster bonds.
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(A)− SPC/F

(A)− TIP4P/2005f
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Figure 4.3: IR spectra for (A) and (B), arbitrary intensity units vs wave number [cm−1]

4.4 Energy Drifts

We run both examples with the Verlet and impulse method at different step sizes. Further-

more, we show results for the implicit midpoint method, and the effect of combining both

the Verlet and impulse method with the SHAKE algorithm. A simple way to estimate

the quality of the results is measuring the drift in the Hamiltonian in the last 50ps of the

simulation. To cancel out oscillations, we choose to average over the first and last 500fs

in this interval.
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Figure 4.4: (A) - SPC/F: energy drift [%] vs outer step size [fs]

The Verlet method shows remarkable stability: at around 2.0fs (SPC/F) or 1.5fs

(TIP4P/2005f) it is barely drifting. And together with SHAKE, the method stays stable

for much larger step sizes. Yet it should be noted that despite showing almost no drift, at

those step sizes, the quality of the computed trajectory quickly degrades. In fact, one is
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Figure 4.5: (A) - TIP4P/2005f: energy drift [%] vs outer step size [fs]

advised to use quite conservative choices (e.g below 0.5fs) for the Verlet method.

Figure 4.4 indicates that for ice simulations with the SPC/F model, the impulse method

can easily handle outer step sizes as large as 4fs without significant drift. Resonance issues

cause, as expected, a dramatic breakdown at step sizes near 4.5fs. It is a 2:1 resonance

failure attributed to the fast bond oscillations. Due to a clear separation of frequency

bands, this is a sharp spike. With larger time steps we can get stable results again. Note

that at time steps between 4.4 and 4.6fs, the simulation actually ‘explodes’ and therefore

aborts half way through. Furthermore, we can also detect nonlinear resonances other than

the critical 2:1 breakdown. Following [18] we also have to expect 3:1 and 4:1 instabilities.

Those are instabilities which happen not at half the period, but at a third or a fourth of the

associated mode. The peaks at around 3.7fs and 4.2fs might stem from such higher order

resonances, resulting from the angle motion. The situation is similar for the TIP4P/2005f,

and the 2:1 instabilities occur near 5fs (see Figure 4.5). The peak at 3.4fs is clearly a 3:1

instability, the smaller peaks at 4.1fs and 4.6fs could originate in higher order resonances,

resulting from the angle motion.
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Figure 4.6: (A) - TIP4P/2005f: energy drift [%] vs outer step size [fs]

Applying SHAKE (see Figure 4.6) significantly increases the accessible time step for
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both methods, yet at the cost of freezing out all bond and angle interactions. In an IR

plot of a SHAKE-trajectory, the corresponding peaks would not appear.
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Figure 4.7: (A) - SPC/F: energy drift [%] vs outer step size [fs]

The implicit midpoint method - Figure 4.7 - performs surprisingly poorly. It is only

stable for time steps up to 3fs, which is far too small to justify the huge costs of solving the

implicit equations. For details concerning the implementation see Section C.3. Basically,

it uses a simplified Newton iteration with a reduced Hessian. In Figure 4.7 we only give

results for the simpler SPC/F model since we did not extend the code to include the

special treatment of the electrostatics in the TIP4P/2005f model.
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Figure 4.8: (B) - peptide: energy drift [%] vs outer step size [fs]

Due to the multitude of different frequencies, it is much harder to assign resonances

to single eigenmodes of the peptide. In Figure 4.8 it is clear, though, that the first

dramatic breakdown happens around 5fs for the impulse method. Other resonances are

more smeared and difficult to identify, but clearly visible. For the Verlet method, the

peaks in between 1.5 and 2.5fs have become much more pronounced compared to results

for the SPC/F model in Figure 4.4.

Both methods with SHAKE exhibit more instabilities than in the previous example.

Note that at a step size just above 4fs, the Verlet method with SHAKE just seems to hold
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Figure 4.9: (B) - peptide: energy drift [%] vs outer step size [fs]

on (Figure 4.9). In a longer simulation, it certainly would result in a large energy drift.
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Figure 4.10: (B) - peptide: energy drift [%] vs outer step size [fs]

The implicit midpoint method (Figure 4.10) allows for larger step sizes than the Verlet

method, yet the difference is not big enough to compensate for the higher computational

cost.

4.5 Computational Cost

Timing results are obtained from short 50ps simulations after equilibration. The results are

averaged over ten runs each. They were obtained on the bwUniCluster (a compute cluster

at the Karlsruhe Institute of Technology) using 128 cores (8 nodes with 16 cores each).

Since the results barely differ between (A) and (B), we only present timing information

for example (A) here. Also, we focus on the Verlet method and impulse method (IM).

Applying SHAKE incurs a slight additional overhead but does not significantly change the

relative cost of force evaluations. We do not give results for the implicit midpoint method

since the level of implementation of that method is by far not comparable to the other

methods. For the Verlet method we use a step size of 1fs, and for the impulse method,
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the step size of the outer stage is chosen at 4fs. Both are common and reasonable choices,

and at these step sizes the integrators are expected to perform without any issues.

Categories in Figure 4.11 and Figure 4.12 are as follows: Bond contains the com-

putation of intra-molecular forces, Pair the time spent on evaluating all forces between

molecules within a certain cutoff. Long-Range is the time used calculating the long-range

electrostatic contributions. Comm represents all time due to communication between

processors. Remaining time is summarized in Other.
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Figure 4.11: (A) - absolute CPU time in seconds walltime for the SPC/F and
TIP4P/2005f model, as obtained from short 50ps simulations using 128 cores with the
Verlet method and impulse method (IM)

First, it is essential to recognize that the explicit methods have barely any overhead.

In all methods, force evaluations make up for more than 95% of computational time.

Clearly, for the Verlet method the computing time is dominated by the long-range force

evaluations. While pair forces still need roughly a sixth of the CPU time, the time spent

on computing bond forces can be neglected. The impulse method evaluates the slow force

four times less often than the Verlet method, which results in a significant speed-up. For

pair forces, no difference is visible since they are still evaluated at the same step size. The

TIP4P model behaves similarly, although the computation of long-range forces is a bit

more complicated due to the additional M -site.
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Figure 4.12: (A) - SPC/F: absolute CPU time in seconds walltime, 6 cores + Tesla K20

Another promising hardware configuration for MD simulations are GPUs. Some com-

putations such as pair interactions can be calculated much more efficiently on a GPU
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[83, 84] than on a CPU. In Figure 4.12, we show timing results obtained on SciNet’s ex-

perimental GPU cluster (SciNet is Canada’s largest supercomputer centre). 6 CPUs share

one Tesla K20c GPU. We computed short 10ps trajectories, so the results cannot be com-

pared directly to the previous plots, yet its relative proportions are clear. Unfortunately,

the long-range solver is not well suited to run on a GPU, and its relative proportion in

CPU time, despite only using 6 cores, is quite large.

Since problem sizes in molecular dynamics are usually very large, it is very important

that algorithms scale very well with large processor counts. In MD, the most common

strategy to distribute computation on a processor grid is based on a domain decomposition

approach. The simulation cell is divided into smaller cubes which then are assigned,

stored and handled on the individual processors. So every processor is responsible for a

small part of the domain. Computations, which only require local information, can be

quickly computed. Such are, for example, computing bond forces, or pair forces. If global

information is needed, such as when computing long-range interactions, the processor grid

needs extensive communication.
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Figure 4.13: (A) - relative CPU load with the Verlet method for 16 - 256 CPU cores

In Figure 4.13, we plot relative CPU times for different processor counts, obtained

with the Verlet method. They indicate the need for better methods: while pair forces

scale very well, at higher processor counts the computation of long-range forces quickly

dominates the computational effort.

A common concept to measure scalability of algorithms is calculating the strong scaling

efficiency. If the amount of time to complete a work unit with 1 processing element is t1,

and the amount of time to complete the same unit of work with N processing elements is

tN , the strong scaling efficiency εscale is given as:

εscale =
t1
NtN

.



32 Chapter 4. Two Small Illustrating Problems

Since, in general tN ≥ t1
N we have εscale ≤ 1. For values of εscale close to 1 an algorithm is

said to be scaling well. For such an algorithm, doubling the number of processors results

in roughly half the walltime until program completion.
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Figure 4.14: (A) - strong scaling efficiency εscale vs # CPU cores

As expected, Figure 4.14 reveals that while both bond and pair forces scale incredibly

well, the long-range force interactions are not suited to run on large processor grids.

Therefore, an appealing approach is to use a heterogeneous hardware structure suited

for the different properties: a high-end GPU, which efficiently calculates pair forces, is

combined with only a few processors, which then handle long-range computations.

4.6 A Word of Warning

We want to end this chapter with a word of warning. Judging the quality of an integrator

just based on its behavior towards long term energy drift is misleading. It is only one out

of many qualitative tests that have to be performed such as radial distribution functions,

energy distributions, slow energy exchange etc. It can be very hard to judge this. It helps

to keep our goal in mind: compute approximate trajectories where we can observe certain

dynamic changes. The energy is just a warning flag. If an integrator is already highly

unstable towards the Hamiltonian, it is doubtful it leads to good physical results. On the

other hand, in extremely long trajectories every integrator will slightly drift, if only due

to round off errors. Hence, they always require a coupling to a thermostat (even if it is

very weak).



5 The Mollified Impulse Method

Resonances in the impulse method are caused by the instantaneous evaluation of the slow

force at positions which do not represent the oscillatory nature of the molecule. Instead, it

is advantageous to replace the potential of the slow force by a mollified version Uslow(Ψ(q)).

Here, the slow force ∇Uslow is evaluated at a more representative filtered position Ψ(q)

and also post-filtered with the transposed Jacobian Ψq(q)
T :

∇Uslow(q)→ Ψq(q)
T∇Uslow(Ψ(q)). (5.1)

The Jacobian ΨT
q removes contributions of the slow force in the direction of the fast

vibrations. In combination with the impulse method, this is usually referred to as the

mollified impulse method [85]. If the inner propagation is approximated by K steps with

the Verlet method, the mollified impulse method reads

φHh ≈ ϕ
Uslow(Ψ(·))
h/2 ◦

(
ϕUfast

h/2K ◦ ϕ
T
h/K ◦ ϕUfast

h/2K

)K
◦ ϕUslow(Ψ(·))

h/2 . (5.2)

Note that removing the Jacobian Ψq in (5.1) destroys the symplecticity of the integra-

tor. Indeed, if we omit the derivative we have to expect inherent energy drifts. For the

same reason the filter must not depend on p.

Algorithm 5.1: One step of the mollified impulse method

1 p+
n = pn − h

2 Ψq(qn)T∇Uslow(Ψ(qn))

2 Obtain (qn+1, p
−
n+1) by numerically solving the reduced Hamiltonian system with

H̃ = T + Ufast for h time and starting at (qn, p
+
n )

3 pn+1 = p−n+1 − h
2 Ψq(qn+1)T∇Uslow(Ψ(qn+1))

For linear problems it can be shown that the mollified impulse method with a suitable

filter does not suffer from linear resonances [85,86]. However, it does suffer from nonlinear

resonances. We plot instabilities for the mollified impulse method for the Hamiltonian

(3.4) in Figure 5.1. This plot shows a clear improvement over the unfiltered impulse

method in Figure 3.1, but certain instabilities can be observed.

While the results with a mollified potential are very promising, one has to keep in

mind that they come at the cost of tempering with the energy exchange between fast and

slow modes. Mollifying a potential avoids resonances by removing force contributions in

the direction of the fastest motions. We will have a closer look at this issue for our specific

problem.

In the literature, two types of suitable filters have been identified. First, we have a

short look at averaging techniques. Second, we describe equilibrium filters.
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Figure 5.1: Nonlinear resonance instabilities in the mollified impulse method: maximum,
arithmetic mean and minimum of Hamiltonian (3.4) with ω = 10 over 10.000 integration
steps and step size h

5.1 Averaging and Equilibrium Filters

With nonlinear force fields, it is not always easy to identify and remove components

which are created by a fast and stiff potential. Averaging techniques take the current

position, denoted by qn, and the potential associated to unwanted frequencies Ufast, and

then integrate over a significant time period (e.g. one period) forwards and backwards in

time. A short trajectory, mostly exhibiting fast motion, is obtained. These positions are

averaged using a weight function Φ:

Ψ(qn) =

∫ ∞
−∞

Φ(τ)x(hτ)dτ

with ẍ = −M−1∇Ufast(x), x(0) = qn, ẋ(0) = 0.

(5.3)

Of course, the integral is approximated by numerical integration with a suitable compact

weight function Φ. In molecular dynamics, this can be implemented efficiently since the

fast potential is cheap in computational cost. Multiple different weight functions are

discussed in the literature [19,85–87]. For application in the mollified impulse method we

need the corresponding outer filter, which in case of conservative fast forces is obtained

by integrating the variational equation

ψ̇ = J−1∇2H(ϕt(X0))ψ, X0 =

[
qn

0

]
. (5.4)
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Recall, that the flow ϕt(X0) denotes the solution at time t with initial value X0 (see

Definition 5). An implementation is not at all straight forward in high end software.

This process has significant additional storage requirements, since it needs an entire set

of position and momenta coordinates plus integration with the (necessarily sparse) outer

filter.

Fast intra-molecular motion can also be removed if the internal bonds and angles are set

back to their equilibrium length [71, 88]. In this approach we define a manifold described

by a constraint function g. The atomic position qn is projected onto this manifold by

solving

Ψ(qn) = qn +M−1gq(qn)Tλ,

g(Ψ(qn)) = 0.
(5.5)

Note that for m constraints, g : R3N → Rm is a vector function and λ ∈ Rm is a vector

of Lagrange multipliers. gq ∈ Rm×3N denotes the Jacobian with respect to the position

vector q. At a first glance resetting internal degrees of freedom with g might seem too

crude of an approximation, but if the outer time step is large enough this becomes a useful

approximation since molecules oscillate around their equilibrium positions.

Due to the nonlinearity of the problem, (5.5) is usually solved with a Newton-type

method. In Algorithm 5.2, the Newton iteration solves for λ when inserting the first

equation into the second one in (5.5). In general, this is only feasible if we treat small

unconnected clusters, otherwise it is computationally very expensive. Depending on the

specific needs, the iteration can be tuned in multiple ways. Most importantly, the simpli-

fied Newton method, where the derivative is kept fixed during iteration, allows for much

cheaper iterations at the cost of slower convergence.

Algorithm 5.2: Newton iteration for solving (5.5)

1 for k=1,2,... until convergence do

2 qkn = qn +M−1gq(qn)Tλk

3 λk+1 = λk − (gq(q
k
n)M−1gTq (qn))−1g(qkn)

Similar to SHAKE-routines this is very competitive and fast, if unconnected clusters

up to size three or four are used. Then the derivative is only 3-by-3 or 4-by-4 and can

be analytically inverted. Again, for the mollified impulse method we need the derivative.

This is straight forward if the approximation for λ is already computed.

With these filters, a time step roughly twice as large compared to a standard multiple

time step method has been achieved. A reliable and stable example is the equilibrium

method presented in [88] or a modified version in [71]. Unfortunately, both types of

filters need significant computational effort. For every outer time step averaging filters

need to integrate forward and backward (including the derivative!) with the fast forces.

Equilibrium methods need to solve nonlinear systems resulting from the constraints.

In the next section, we introduce a new type of filter, which we call a corotational
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filter. It is similar to equilibrium filters in the sense that corotational filters also reset

certain degrees of freedom within molecules to their equilibrium positions. However, fil-

tered molecules are obtained by an approach based on corotation. While this approach

yields a similar quality of the filtering process, it is much cheaper in computational cost.

Furthermore, this new filter can be implemented completely without computing trajectory

averages or solving nonlinear systems. Instead, it is accessible via a simple and explicit

algorithm, thus reducing algorithmic complexity in the filtering process.

Some of the following sections were already published in [21].

5.2 Corotational Filters

The basic idea of corotation is to decompose motion into rotational and translational

parts plus deformations from flexibility in bonds and angles. Corotational filters then

discard deformational contributions. However, it would be too much to ask that for an

arbitrary molecule the structure could be well represented by a single rotation. Therefore,

we decompose the (potentially very complex) molecular structure into disjunct clusters of

much smaller size, e.g. 2-5 atoms.

5.2.1 Cluster Decomposition of a Biomolecular Structure

The goal of this decomposition is a division of the molecular structure into many but much

smaller substructures. Much like in a ‘divide and conquer’ approach, the substructures

are then treated independently, and the connection between substructures is neglected.

We call the substructures clusters, and every atom should be in exactly one cluster. The

construction of the clusters is such that for a fast bond, both atoms need to be part of

the same cluster. Only atoms connected by a slower bond are allowed to be members of

different clusters. Finally, we require that each cluster has a distinct central atom, which

is usually the heaviest one.

Obviously, the classification of faster and slower bonds allows for some choice. Typi-

cally, we try to obtain small enough clusters (e.g. 2-5 atoms) such that the overall rotation

of that cluster is still a good approximation of the local rotation for all its contained atoms,

i.e. that there is no torsional degree of freedom inside a cluster. Of course we could also

include trivial clusters containing only a single atom, however, this excludes that atom

from the filtering process.

In biomolecular structures, the stretching modes of hydrogen bonds (e.g. H-O, H-N,

H-C) are much faster than backbone connections (C-C, C-N, etc). Thus, most clusters

consist of a central atom with fast hydrogen bonds within the cluster, and slower backbone

bonds connecting it to other clusters. Let us take an alkane chain as an example (see

Figure 5.2). It contains slow backbone bonds (C-C) which connect clusters of methyl

(CH3) and methanediyl (CH2) groups: CH3-CH2-...-CH2-CH3. The cluster decomposition

yields two terminal clusters of size 4, and then a chain of clusters of size 3.
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Figure 5.2: Cluster decomposition of hexane, with two terminal clusters of size 4, and a
chain of clusters of size 3. Clusters are indicated by circles, slow bonds are depicted by a
dashed line, and fast bonds by a solid line.

While for simple linear molecules, the choice of clusters is straight forward, it be-

comes a bit more complex in structures such as aromatic rings. In Figure 5.3, such a ring

structure is decomposed in two different ways. Numerical experiments did not indicate

a sensitivity towards the specific decomposition, as long as the fastest bonds were con-

tained inside clusters. Indeed, even very simple decompositions (such as the one used for

the peptide in the example section later) yield good results. There are (semi-) automatic

H
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H
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CH3

H

CH

O
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Figure 5.3: Two possible cluster decompositions of vanillin. The first choice decomposes
the ring structure with a few small clusters, the second approach uses the entire ring as a
cluster, and then cuts off the attached groups. This works, since the aromatic ring can be
considered quite stiff.

algorithms to identify such cluster decompositions, and they are sometimes used in con-

straining algorithms such as the SHAKE algorithm implemented in LAMMPS, since such

a decomposition allows for a very efficient implementation.

Similar decomposition approaches are used by many other methods in MD, most no-
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tably by coarse-graining methods (see e.g. [89,90] and references therein) and by internal

coordinate molecular dynamics (ICMD) such as the GNEIMO method [91,92].

5.2.2 The New Corotational Filter

After generating a cluster decomposition, the clusters are treated independently. We

now illustrate the filter algorithm for a single cluster containing n atoms at position

q = [xT1 , x
T
2 , ..., x

T
n ]T ∈ R3n.

A single cluster is a small structure, and can be well represented by its rotational

orientation R ∈ R3×3 and center of mass c ∈ R3. To get rid of internal deformations,

we construct a reference position q0 ∈ R3n, which has the same structure as this cluster,

but with all fast internal degrees of freedom (such as bonds and angles) set back to their

corresponding equilibrium values. This reference configuration is then rotated and shifted

to match the cluster’s rotation R and center of mass c.

Definition 13. (Corotational Filter) Using Kronecker products ⊗, the new corotational

filter can be calculated as

Ψ(q) = [1, . . . , 1]T ⊗ c+ (In ⊗RRT0 )q0, (5.6)

where we assume that q0 has center of mass at [0, 0, 0]T and rotational orientation R0.

Note that this can be further simplified, if we choose q0 such that the resulting R0 is the

identity matrix I3.

It remains to give an algorithm which quickly approximates the rotational orientation.

The given cluster has a central atom with position x1 bonded to n−1 atoms with positions

x2, ..., xn. Let us abbreviate ri = xi − x1. A fast way of estimating the rotation between

q and q0 is described in [93]:

Definition 14. We compute an orthonormal set of vectors R = [n1, n2, n3] ∈ R3×3 with

n1 =
∑
i∈S1

ri
||ri||

/∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈S1

ri
||ri||

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

n2 =
(
s− sTn1n1

) /
||s− sTn1n1|| , s =

∑
i∈S2

ri
||ri||

,

n3 = (n1 × n2) /||n1 × n2|| ,

(5.7)

where we choose n1 ∈ R3 to be an averaged direction of some bonds i ∈ S1 and for n2 ∈ R3

we choose a different set S2 of bonds. S1 and S2 are suitably chosen, and we illustrate a

few common examples in a following section. The vectors n1, n2, n3 form an orthonormal

basis of R3. R0 is computed in the same way at reference position q0. Then RRT0 is an

estimate of the rotation from q0 to q.
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Under mild assumptions on S1, S2 and the structure of x1, ..., xn (e.g. if S1, S2 6=
∅, s/||s|| 6= n1), the vectors n1, n2, n3 form an orthonormal basis. In fact, for a rigid rota-

tion this approach yields the exact rotation. In Figure 5.4, we sketch the filter algorithm

applied to a cluster of three atoms.
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Figure 5.4: Illustration of the corotational filter algorithm applied to a cluster with three
atoms. First, the center of mass c and rotational orientation n1, n2, n3 are computed.
Then, a reference configuration q0 is shifted and rotated to match the cluster.

5.2.3 Properties of the Corotational Filter

We summarize some basic properties in the following lemma.

Lemma 15. Properties of Corotational Filter

By construction, the new corotational filter (5.6) has the following properties:

(a) If a cluster is already in its equilibrium position, the filter is the identity map.

(b) The filter is a small perturbation of the identity map.

(c) The filter is independent of rotations and translations in the following sense: if R

describes a rotation around the center of mass of q and s is a translation of the entire

cluster, then it holds that Ψ(Rq + s) = RΨ(q) + s

(d) The filter conserves center of mass.

Proof. (a)-(d) directly by construction since these properties hold for each cluster.

In (5.6), the filter depends only on the center of mass and rotational orientation of

that cluster. Since the filter is supposed to smoothen the trajectory and remove highly

oscillatory components to suppress resonances, the choice of S1 and S2 has a strong impact

on the success of the filter. While the center of mass of a cluster is independent of fast

internal motion, we need to ensure that the choice of S1 and S2 leads to a smooth rotational

approximation. Constructing R from the direction of the bonds, the fast changes in bond

length are already neglected. Furthermore, by a smart combination of neighboring bonds,

it is usually possible to remove angle motions. However, not all fast modes can be removed

entirely by a linear combination of bond directions, e.g. some asymmetric stretch modes
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will remain, and we can only reduce the magnitude of those modes. Numerical experiments

in Chapter 6 will show, though, that this does not pose a problem.

Note that the filter provides a general approach, and there is a lot of room for tailoring

this filter to one’s needs. First, the reference position is computed using the rigid body of

that cluster. That is, all internal degrees of freedom are set to their equilibrium values.

Since such a reference position does not change over time, it can be precomputed - and that

is why we will use this approach in the numerical experiments. But it also works if only

some faster bonds are reset, and the current angular position is kept. Second, the extrac-

tion of rotational information offers some freedom. The more smooth it behaves (under

an oscillatory trajectory), the more effective the filter will be. In the given approach, the

rotation is estimated using a linear combination of internal directions around a distinct,

central atom. But in general, any other approach which gives a robust estimation can be

used.

5.2.4 Examples of Sizes Two to Four

The filter presented in the compact notation in (5.6) and (5.7) is not very instructive.

Here, we present examples for cluster sizes n = 2, 3 and 4. For n = 2 and 3, the filter can

be expressed more succinctly.

In the simple case n = 2, two atoms x1, x2 with masses m1,m2 are connected via a

single bond with equilibrium length r0. Because of its symmetries, the cluster can be

described by a single direction, i.e q0 has no contribution in direction of n2, n3. We choose

x1

x2
n1 =

x2 − x1

||x2 − x1||
,

n2, n3 s.t. they form an orthonormal basis.

Therefore, the filter reads

Ψ(q) =

(
c+ a1n1

c+ a2n1

)
, with

a1 = − m2

m1 +m2
r0,

a2 =
m1

m1 +m2
r0.

(5.8)

In the formalism of (5.6) and (5.7) this corresponds to S1 = {2} (since it only uses the

bond r2 = x2 − x1).

For a triatomic cluster (n = 3), we can reduce by one dimension if we choose the

reference cluster q0 ∈ R9 in the (x, y)-plane. Since the z-component is zero, we can omit

the computation of n3. We consider the following choice:

x2

x1

x3

r2 r3θ
n1 =

(
r2

||r2||
+

r3

||r3||

)/∣∣∣∣∣∣∣∣ r2

||r2||
+

r3

||r3||

∣∣∣∣∣∣∣∣ ,
n2 =

(
r2 − rT2 n1n1

)
/||r2 − rT2 n1n1||.

(5.9)
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This particular choice (S1 = {2, 3}, S2 = {2}) has the advantage that vibrations due

to angle bending and symmetric bond stretching are entirely removed by design; if r2

changes as much in an opposite direction as r3, then there is no influence on n1. n2 does

not change either since r2 stays in the same plane. This property holds for any triatomic

symmetric molecule, most notably for flexible water models.

The filter then reads (qi0 denotes the i-th entry of q0)

Ψ(q) =

c+ q1
0n1 + q2

0n2

c+ q4
0n1 + q5

0n2

c+ q7
0n1 + q8

0n2

 . (5.10)

However, we have to make one restriction: if θ is close or equal to 180◦ such as in

thiocyanate (SCN) or hydrogen cyanide (HCN), r2/||r2|| + r3/||r3|| threatens to cancel.

Thus, for such a cluster, it is much better to use a treatment similar to the case n = 2

with

n1 =

(
r2

||r2||
− r3

||r3||

)/∣∣∣∣∣∣∣∣ r2

||r2||
− r3

||r3||

∣∣∣∣∣∣∣∣ . (5.11)

Clusters with four atoms (n = 4) frequently happen with terminal CH3 groups, where

the carbon atom has a slow bond connecting it onwards to the next cluster.

x1

x2x3

x4

Here, the best choice would be S1 = {2, 3, 4}. For S2 we choose

any two of the ‘satellites’: S2 = {2, 3} or S2 = {3, 4} or S2 =

{2, 4}. However, in a planar tetra-atomic structure (such as

formaldehyde H2CO) similar to the three atomic linear case, we

face the danger that r2 + r3 + r4 ≈ 0. Instead, we then choose

S1 and S2 such that n1, n2 reliably characterize the plane in

which the cluster lives.

5.2.5 The Jacobian of the Corotational Filter

Application within the mollified impulse method requires the Jacobian Ψq(q). In con-

trast to other filters in the literature, the derivative of the corotational filter is explicitly

given and easy to compute. It does not require the solution of any nonlinear systems.

Note that both filter and its derivative are spatially local properties, making a parallel

implementation within a domain decomposition strategy fairly easy.

With notation as in (5.6) and (5.7) for a cluster of n atoms we have

Ψ(q) = [1, .., 1]T ⊗ c+ (In ⊗RRT0 )q0
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with

n1 =
∑
i∈S1

ri
||ri||

/∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈S1

ri
||ri||

∣∣∣∣∣∣
∣∣∣∣∣∣ =:

u

||u|| ,

n2 =
(
s− sTn1n1

) /
||s− sTn1n1|| =:

v

||v|| ,

n3 = (n1 × n2) /||n1 × n2|| =:
w

||w|| .

We choose the reference cluster q0 = [q1
0, q

2
0, . . . , q

3n
0 ]T ∈ R3n such that R0 is the identity

I3. The derivative then simplifies to:

Ψq(q) = [1, ..., 1]T ⊗ ∂

∂q
c+

q
1
0
∂n1
∂q + q2

0
∂n2
∂q + q3

0
∂n3
∂q

q4
0
∂n1
∂q + q5

0
∂n2
∂q + q6

0
∂n3
∂q

...

 (5.12)

with

∂n1

∂q
=

1

||u||
(
I3 − n1n

T
1

)(∑
i∈S1

1

||ri||

(
I3 −

ri
||ri||

rTi
||ri||

)
∂ri
∂q

)
,

∂n2

∂q
=

1

||v||
(
I3 − n2n

T
2

) [(
I3 − n1n

T
1

) ∂s
∂q
−
(
sTn1I3 + n1s

T
) ∂n1

∂q

]
,

∂n3

∂q
=

1

||w||
(
I3 − n3n

T
3

)(∂n1

∂q
× n2 + n1 ×

∂n2

∂q

)
.

(5.13)

In the last row of (5.13) we slightly abuse the notation, and the cross products are meant

column-wise. The derivative of the center of mass in (5.12) is given by

∂c

∂q
=

1

mall
[m1,m2, . . . ,mn]⊗ I3, with mall =

n∑
i=1

mi. (5.14)

Note that in (5.13) we have ∂ri/∂q = (ei−e1)⊗I3 where ek denotes the k-th canonical

unit vector. Furthermore,

∂s

∂q
=
∑
i∈S2

1

||ri||

(
I3 −

ri
||ri||

rTi
||ri||

)
∂ri
∂q

(5.15)

and a similar expression, but for S1 already appears in ∂n1/∂q. Thus, if there is an overlap

between S1 and S2, we can reuse part of that calculation. The derivative looks quite com-

plicated, but one is reminded that most quantities are constructed from simple vectors of

size 3, which already have been computed with the filter. Also, from an implementational

viewpoint, the matrix Ψq does not need to be constructed explicitly, instead only its action

on the force vector is required.

For the cases n = 2, 3 the derivative can be expressed much more concisely. In the
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setting of (5.8), for a cluster with two atoms the derivative reads

Ψq(q) = [1, 1]T ⊗ ∂

∂q
c+

(
a1

∂n1
∂q

a2
∂n1
∂q

)
,

∂n1

∂q
=

1

||x2 − x1||
(I3 − n1n

T
1 )[−I3, I3].

(5.16)

The derivative for a cluster with three atoms as obtained from (5.10) is

Ψq(q) = [1, 1, 1]T ⊗ ∂

∂q
c+

q
1
0
∂n1
∂q + q2

0
∂n2
∂q

q4
0
∂n1
∂q + q5

0
∂n2
∂q

q7
0
∂n1
∂q + q8

0
∂n2
∂q

 . (5.17)

5.2.6 Mechanism of Derivative

It is quite interesting to see the mechanism behind the derivative when applied to a force

vector F . We denote the filtered force by F̃ . Then we have

F̃ = Ψ(q)Tq F =

(
[1, ..., 1]T ⊗ ∂c

∂q
+

∂

∂q
(In ⊗R)q0

)T
F

=

(
[1, ..., 1]⊗

(
∂c

∂q

)T)
F︸ ︷︷ ︸

F̃ 1

+

(
∂

∂q
(In ⊗R)q0

)T
F︸ ︷︷ ︸

F̃ 2

.

The first part - F̃ 1 - is a center of mass movement. Denoting by subscript i only the

components for atom i (i.e. Fi ∈ R3 is the force on atom i), we have for the filtered value

F̃ 1
i =

mi

mall

n∑
j=1

Fj , with mall =

n∑
i=1

mi.

For the second part, let us first have a look at the i-th column of ∂
∂q (In ⊗ R)q0, since

this column’s transpose will be multiplied with F to yield the i-th entry of F̃ 2. The i-th

column consists of the derivative of (In ⊗ R(q))q0 with respect to qi (where this time we

mean the i-th entry of q, and not the position of the i-th atom):

∂(In ⊗R(q))q0

∂qi
=

(
In ⊗

∂R(q)

∂qi

)
q0.

Since R(q) is a rotation matrix, for its derivative we have

∂R(q)

∂qi
= SωR(q)

with a skew-symmetric matrix Sω, associated with a rotation around an axis ω ∈ R3,

and can also be written as a cross product (see e.g. [6, Ch. IV.6]). This means, that
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SωR(q)v ⊥ R(q)v for any v ∈ R3, and therefore also

(In ⊗R(q))q0 ⊥
∂(In ⊗R(q))q0

∂qi
.

Most importantly, changing qi generates a rotation of the cluster around the center of

mass with axis ω. The filter now discards all components except force contributions in

the direction of (In ⊗ SωR(q))q0. Especially, components of Fi which are in the direction

of R(q)qi0 will be removed.

Altogether, the second part is the rotational contribution of the force vector to the

center of mass. Also, atoms in a cluster which do not contribute to either ni will not get

any rotational force. So, applying the derivative to a force vector only keeps the center

of mass movement plus components which are necessarily perpendicular to the ‘internal

body coordinates’.

5.2.7 The Full Algorithm

Algorithm 5.3 summarizes the necessary steps as explained in the previous sections. First,

a cluster decomposition of the molecular structure has to be determined and the individual

reference configurations for each cluster need to be computed. Since both the cluster

decomposition and the reference configurations only need to be computed once for every

structure, they can be precomputed.

Now, whenever we need the filtered position and its derivative, for each cluster, we

estimate the local rotation. By rotating and shifting the corresponding reference config-

uration we obtain the filtered position for each cluster. This way internal deformations,

which are not represented by overall rotation or center of mass movement of a cluster,

are discarded. The filtered position of the entire molecular system is then assembled by

simply taking the filtered values from each individual cluster. In a similar manner, we

proceed with the Jacobian of the filter.

Algorithm 5.3: Corotational filter algorithm

Input: position q

Output: filtered position Ψ(q), Jacobian Ψq(q)

1 Precompute:

2 - generate a cluster decomposition

3 - compute a reference configuration for each cluster

4 Filter:

5 for each cluster do

6 - estimate local rotation via (5.7)

7 - compute filtered position via (5.6)

8 - compute Jacobian via (5.12)

9 - assemble Ψ(q),Ψq(q) from individual clusters
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5.2.8 Corotational Filter for Water

Let us illustrate the mechanism behind the corotational filter when applied to a flexible

water model. We consider the following choice (where x1, x2, x3 ∈ R3 denote positions of

the atoms, and r1 = x2 − x1, r2 = x3 − x1):

x2

x1

x3

r1 r2θ

n1 =

(
r1

||r1||
+

r2

||r2||

)/∣∣∣∣∣∣∣∣ r1

||r1||
+

r2

||r2||

∣∣∣∣∣∣∣∣ ,
n2 =

(
r1 − rT1 n1n1

)
/||r1 − rT1 n1n1||,

n3 = (n1 × n2) / ||n1 × n2|| .

(5.18)

This particular choice has the advantage that vibrations due to angle bending and

symmetric bond stretching are entirely removed by design; if r1 changes as much in an

opposite direction as r2, then there is no influence on n1. n2 and n3 do not change either

since r1 stays in the same plane. This property holds for any triatomic symmetric molecule.

Here, the term symmetry is understood not only for the geometry of the molecule, but

also the masses and force field parameters.

In the case of water molecules, we only have a single cluster with three atoms per

molecule. For flexible water we can directly compare the projection filter (5.5) to our new

filter. Following [88] we choose

g(q) =
1

2

 ||x2 − x1||2 − r2
0

||x3 − x1||2 − r2
0

||x3 − x2||2 − 2r2
0(1− cos θ0)


for water molecules at position q = [xT1 , x

T
2 , x

T
3 ]T ∈ R9 with equilibrium bond length r0

and equilibrium angle θ0. As before, x1 is the position of the central oxygen atom. Hence,

for every molecule, a small 3-by-3 nonlinear constraint system has to be solved e.g. with a

simplified Newton method. Since the molecules are close enough to an equilibrium posi-

tion, this method usually converges within a few steps. Nevertheless, it is more expensive

than the corotational filter since the latter only costs roughly as much as a single Newton

step.

Lemma 16. For water molecules (or any symmetric triatomic molecules) equilibrium

(5.5) and corotational filter ( (5.6) with (5.18)) are close in the sense that they are exactly

equal whenever the two bonds have equal length.

Proof. A water molecule in its equilibrium position is uniquely identified by its center of

mass and rotation matrix R containing the vectors ni, i = 1, 2, 3. Both filters maintain

center of mass. For the corotational filter, by design, the vectors ni do not change during

filtering. So we only need to check the vectors ni for the equilibrium filter.

It is, in fact, sufficient to check n1 since both filters do not alter the plane in which

the molecule lives. Denoting filtered values with tilde, easy calculations reveal that after
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filtering we have

r̃1

||r̃1||
+

r̃2

||r̃2||
=
r1

r0

(
1 +

λ1

m2
+ 2

λ1

m1

)
+
r2

r0

(
1 +

λ2

m3
+ 2

λ2

m1

)
where mi is the mass associated with xi. If we would have m2 = m3 and λ1 = λ2 then we

would have
r̃1

||r̃1||
+

r̃2

||r̃2||
= c

(
r1

||r1||
+

r2

||r2||

)
, c ∈ R

and hence n1 would not change during filtering for the equilibrium method.

Obviously for water we have m2 = m3. Furthermore, by assumption, both bonds have

the same length and there is a solution with λ1 = λ2. Since ∂g(Ψ(q))
∂λ has full rank (note that

r1 is not parallel to r2), this solution is also unique by the implicit function theorem.

5.2.9 Slow Energy Exchange

Filtering tempers with the energy flow. But how much does filtering effect the results?

The slow potential in the mollified impulse method becomes independent of the fastest

motions. Slow force contributions in the direction of the fastest modes are filtered. On the

other hand, in a regular three stage splitting, the intermediate stage might be responsible

for transferring most energy flow anyways, so how significant is the influence?

There is both theoretical and numerical evidence that the mollified impulse method

applied to the Fermi-Pasta-Ulam problem has a major impact on the energy exchange

between stiff springs [6, 94]. For MD, it is difficult to find a good testing problem. First,

we try a two stage splitting (bond — pair) on three SPC/F water molecules without

periodic boundary conditions, that is, we test the mollified impulse method with

φHh ≈ ϕ
Upair(Ψ(·))
h/2 ◦

(
ϕUintra

h/2L ◦ ϕ
T
h/L ◦ ϕUintra

h/2L

)L
◦ ϕUpair(Ψ(·))

h/2 . (5.19)

The initial position of the three water molecules is perfectly minimized forming a

triangular position. Then we give one water molecule a small force kick on one of its

hydrogen atoms. This creates a vibration in that molecule, which is then passed on to

its neighbors via pair interactions. We plot the time evolution of oscillatory energies

Ii = Ti +Ubond+angle, i = 1, 2, 3 for a small step size Verlet method, the standard impulse

method, and the mollified impulse method with filtered pair stage.

Figure 5.5 shows that both Verlet and the standard impulse method seem to capture the

energy exchange well. The energy quickly transfers between the molecules. The mollified

integrator, however, barely reproduces this behavior. The filter ‘traps’ the energy in the

single molecule and impedes the energy exchange.

More mathematically, the oscillatory energy in each molecule is given by

Ii =
1

2
pTi M

−1
i pi +

kb
2

∑
j

(rj − r0)2 +
ka
2

(ϕi − ϕ0)2
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Figure 5.5: Oscillatory energies - that is bond+angle+kinetic energy - per molecule on
a 1ps trajectory for three different integrators

where qi, pi ∈ R9 stores the position and momentum of molecule i = 1, 2, 3, and Mi is the

associated mass matrix. The sum over j runs over the two hydrogen bonds with distance

rj . ϕi denotes the angle in the i-th molecule. ka, kb, r0 and ϕ0 are parameters of the

corresponding harmonic force field.

For the leading term in the exact energy exchange with the other components we have

(∇qi denotes differentiation only with respect to the position variables qi in molecule i):

İi = {Ii, H} = {Ii, I1 + I2 + I3 + Upair} = {Ii, Upair} = −pTi M−1
i ∇qiUpair.

On the other hand, with a mollified pair potential, we have

İi = −pTi M−1
i ∇(Upair(Ψq)) = −pTi M−1

i ΨT
qi∇qiUpair(Ψq)

and the derivative ΨT
qi – as discussed in Section 5.2.6 – removes components in the direction

of the fastest motions. All remaining components correspond to either a center of mass

movement or an overall rotation of the molecule. Hence, the energy flow is significantly

impeded.

While this simple example serves as a warning to be careful when using a filter, in

more realistic simulations - such as the following discussion of examples (A) and (B) -
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there is no need to filter the pair stage. The computational bottleneck is the long-range

electrostatic contributions. Therefore, in realistic simulations with long-range forces we

employ a three stage splitting:

φHh ≈ ϕ
Ulong(Ψ(·))
h/2 ◦

(
ϕ
Upair

h/2K ◦
(
ϕUintra

h/2KL ◦ ϕ
T
h/KL ◦ ϕUintra

h/2KL

)L
◦ ϕUpair

h/2K

)K
◦ϕUlong(Ψ(·))

h/2 (5.20)

Here, we only filter the outer stage with respect to the fast oscillations of the inner stage.

The intermediate stage remains unfiltered. Using this intermediate stage allows for an

undisturbed energy flow between the short-range pair potential and the intra-molecular

potential. See Algorithm 5.4 for an algorithmic description.

Algorithm 5.4: One step of the mollified impulse method applied to (2.1) with (2.3)
and (2.10)

Input: position q, momentum p, step size h, stage factors K,L, filter Ψ

Output: new position q, new momentum p

1 p←↩ p− h
2 ΨT

q (q)∇Ulong(Ψ(q))

2 for i = 1, . . . ,K do

3 p←↩ p− h
2K∇Upair(q)

4 for j = 1 . . . , L do

5 p←↩ p− h
2KL∇Uintra(q)

6 q ←↩ q + h
KLM

−1p

7 p←↩ p− h
2KL∇Uintra(q)

8 p←↩ p− h
2K∇Upair(q)

9 p←↩ p− h
2 ΨT

q (q)∇Ulong(Ψ(q))

For the more realistic tests, we use problems (A) and (B). Following oscillatory energies

of single molecules does not make sense here. Instead we use structural properties.

5.3 Performance of the Mollified Impulse Method

We test the mollified impulse method on examples (A) and (B). Since it already has

been shown that averaging filters are less stable than equilibrium filters, we focus on the

projection and corotational filter. Actually, we are more interested in the corotational

filter, since it promises to be cheaper. If the corotational filter introduced in Section 5.2 is

used in the mollified impulse method, we refer to this method as the corotational impulse

method (CIM). When the outer stage is filtered with the equilibrium filter in (5.5) we call

it equilibrium impulse method (EIM). More details can be found in Appendix C.

For water, the cluster decomposition is natural, each molecule is a cluster of size

three. The reference configuration then is simply a water molecule with equilibrium bond

length and angle as specified in the corresponding water model. The decomposition of

the peptide is chosen such that all bonds containing a hydrogen and carbonyl groups

(C=O) are filtered. Then, the peptide decomposes in clusters mostly of size two and
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three. However, there are three terminal CH3 groups which form clusters of size four, and

four single atoms remain, which we choose not to filter. Of the four unfiltered atoms, three

are carbon atoms with slow onwards connections in the aromatic rings, and the last one is

a sulfur atom connected with two slow bonds to a CH3 and CH2 group. Note that those

four atoms can be easily included in a neighboring cluster. However, as the numerical

results indicate, this is not necessary due to their slow bonds. In total, the decomposition

has 25 clusters of size 2, 646 of size 3 and 3 of size 4.

5.3.1 Efficiency of Filter in Removing Fast Motions

The corotational filter is supposed to smoothen a trajectory. First we check that the

filter is actually reliable. We take the trajectory we computed for calculating the infrared

spectra in Figure 4.3. We now apply the corotational filter to each time step and then

compute the infrared spectrum of the filtered positions.

(A)− SPC/F

(A)− TIP4P/2005f

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

(B)− peptide

Wave Number [cm−1]

original filtered

Figure 5.6: IR spectra: wave number [cm−1] vs intensity

In Figure 5.6, we compare the unfiltered with the filtered values, and indeed, the

corotational filter removes all frequencies associated with bond and angle motion. That

also seems to work very well in a heterogeneous molecule, such as the small peptide with

its many different bonds and angles. Note that this filtering only refers to the position

when evaluating the slow force, and the mollified impulse method, in contrast to SHAKE,

retains the ability to fully resolve the fast oscillations.
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5.3.2 Energy Drifts

Energy drifts are computed as before, except that for filtered versions we compute the

energy at the filtered slow potential Ulong(Ψ(q)) (since this can be done on the fly).
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Figure 5.7: (A) - SPC/F, TIP4P/2005f: energy drift [%] vs outer step size [fs]

Severe resonance instabilities, as observed with the unfiltered impulse method (IM), do

not seem to appear in the filtered integrators at all. In fact, step sizes as large as 10 fs (or

around 9fs for the TIP4P model) can be used if we are willing to accept a drift of less than

1% on a 50ps run with 2880 molecules. This should not be a problem if we are running

very long simulations within a NVT/NPT ensemble with a very weak coupling to a target

temperature and/or pressure. As for the impulse method, there are artifacts of nonlinear

resonances visible for both the CIM and EIM. We suspect that they originate from modes

associated with angle vibrations at around 20.8fs (SPC/F) and 20.2fs (TIP4P/2005f). The

peaks around 10fs are then 2:1 instabilities, those just below 7fs are 3:1 resonances, and

the remaining peaks are probably a mix of 3:1 and 4:1 resonances from different modes.
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Figure 5.8: (B) - peptide: energy drift [%] vs outer step size [fs]
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5.3.3 Structural and Energy Analysis

A radial distribution function (RDF) is a structural fingerprint. It describes how density

varies as a function of distance. It is computed by calculating the distance of all atom

pairs of a given type and binning them into a histogram. Thus, it provides a measure of

the probability of finding a given atom type at a certain distance away from a reference

atom.

For problem (A) we investigate the RDF between oxygen atoms obtained after 250ps

equilibration in NPT at 180◦K and 1bar with each method.
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Figure 5.9: (A) - RDFs of oxygen-oxygen distribution

In Figure 5.9 we compare RDFs obtained with a large step CIM at 8fs to a refer-

ence solution using the IM with a small outer step size of 1fs. Bond and pair forces are

computed every 0.25fs. The data is collected and averaged over 10ps. The results are al-

most indistinguishable, and we have peaks at exactly the same positions. There are small

differences in height for both models, with a slight emphasis on the low energy positions.
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Figure 5.10: (A) and (B): relative energy difference of CIM

Filtering long-range force contributions successfully removes resonance instabilities

which originate from the fastest vibrations. However, filtering interferes with the slow

energy exchange between fast and slow modes. We compare differences in the potential

energy of Ubond, Upair and Ulong. After 250ps equilibration (A: NPT at 180◦K and 1bar, B:
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NPT at 250◦K and 1bar) with each method, we collect these values for 10ps. Figure 5.10

plots the relative difference ∆U = |UCIM−UIM|/|UIM|, where we use the CIM with an 8fs

outer time step and the IM as a reference solution with outer time step of 1fs.

These plots indicate that there is a slight difference, primarily in bonded interactions.

This is somewhat expected since we mollify the long-range force contributions exactly

in the direction of these interactions. Otherwise we have no indication that filtering

manipulates the energy flow.

5.3.4 Computational Cost

Similar to Section 4.5, timing results in Figure 5.11 are once more obtained from short

50ps simulations after equilibration. The results are averaged over ten runs each. They

are obtained on the bwUniCluster using 128 cores (8 nodes with 16 cores each).
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Figure 5.11: (A) - absolute CPU time in seconds walltime for the SPC/F and
TIP4P/2005f model, as obtained from short 50ps simulations using 128 cores. For the
CIM, the time spent on the filter is below 0.1s for both models.

The improvement of CIM over a regular Verlet method is about eight times less time

spent on long-range computations. Compared to a standard IM, the CIM saves half the

computational cost of long-range interactions. The additional computation of the filter

itself is very cheap and costs less than 0.1% overall CPU time. Therefore, in Figure 5.11,

it is represented by a very narrow black line between Comm and Other. Obviously, we also

timed the EIM, but do not give separate results. Qualitatively, it is the same as the CIM,

and only differs in the filtering time, where it tends to be 50% more expensive. However,

the overall variation between the ten runs each is of a similar magnitude.

In general, at least 15 − 20% overall speed up can be expected by using the filtered

CIM compared to a standard IM; and > 50% gains over the traditional Verlet algorithms

can be accomplished.



6 Long-term Performance of the Mollified Impulse

Method

The following two realistic problems show that the mollified impulse method combined

with the corotational filter can be used in the type of simulations which frequently appear

in molecular dynamics. Both problems investigate phenomena which happen at a much

slower time scale, and therefore, long simulations are necessary to observe them. First, we

investigate the process of ice friction. Due to the complexity of phase transformation, the

friction force takes a long time to converge. We compute 17ns trajectories. Second, we

highlight slow protein folding on a classical example, namely, bovine pancreatic trypsin

inhibitor. Folding is a very slow process, and usually occurs at time scales of the order

of microseconds or slower. We neither have the hardware nor the cluster time for such

simulations, however, we observe the initiation of a folding process in a 80ns trajectory.

6.1 (C) - Ice-Ice Friction

In problem (C) friction processes between two layers of ice Ih are simulated. It has been

known for a long time that the creation of a liquid layer in between ice interfaces plays a

significant role. The investigation of the dynamics and mechanisms in this liquid layer is

an active area of research from both theoretical/computational and experimental groups

[95–99].

The interesting and challenging part here is the phase transformation at the interface:

in contrast to the crystal ice, the liquid layer has a higher temperature and density. This

layer is more active, and the diffusion is much higher than in the ice.

Similar to [97], we create two slabs of ice separated by a vacuum in z-direction and

bring them slowly into contact. The motion of the two slabs is controlled by harmonically

restricting the movement of a layer of water molecules in each slab (indicated by yellow

coloring in Figure 6.1). This allows us to control friction velocity and contact pressure.

Each slab contains 2880 molecules, in total we have to keep track of 17280 atoms. We

choose the TIP4P/2005f model for this investigation.

The following simulations are computed with the CIM using an outer step size of 8fs

(8fs steps with the long-range forces, pair forces are evaluated every fs and bond forces

every 0.5fs).

6.1.1 Simulation Protocol

First, an initial equilibration is performed for 800ps in NPT targeting 1.0bar and slowly

heating up to 180◦K. After equilibration, the simulation switches to NVE except for

the constrained layers. Here, temperature is controlled by a Nose-Hoover thermostat.
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Figure 6.1: (C) - friction model: yellow coloring indicates areas where we impose friction
and normal force to control velocity and contact pressure

Figure 6.2: (C) - snapshots after 800ps, 1200ps and 9200ps, 5m/s friction velocity

Throughout the simulation, friction causes heat to be created at the interface. There-

fore, the temperature control of the constrained layers models heat dissipation out of the

domain.

Each slab is set to an opposing velocity and we start applying a normal force to the con-

strained layers of molecules. Within the next 8.4ns of simulation time we slowly increase

the target temperature of the constrained layers to 210◦K. Afterwards, the temperature
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of the constrained layers is kept fixed at 210◦K and the simulation continues for another

8ns.

The friction velocity is chosen ranging from 0.01m/s to 10m/s. For the imposed normal

force we select 10 and 100kcal/mol-Å, half of each is applied to the top layer, the other

half is applied in the opposite direction to the bottom layer.

Total simulation time for each run is 17.2ns. Most runs were computed on 64 cores

(4 nodes with 16 cores each) at bwunicluster. Depending on the exact configuration 8ns

of simulation cost roughly 10-12h walltime. So each combination of friction velocity and

normal load requires roughly 1 day of computing time on 64 cores. On average, long-

range forces make for around 20% of the computing time, pair forces for around 40% and

bond forces for around 1%. Communication between processors and nodes takes around

30-35%, filter induced communication needs less than 0.5%. Filter computation is almost

neglectable with below 0.3%. In Figure 6.2 three pictures show the domain after the initial

equilibration, then just after both slabs come into contact, and finally, after the liquid layer

has formed.

6.1.2 Friction Force

Previous experimental studies [98, 99] found that friction forces are rather sensitive to a

variety of parameters such as velocity, normal force and temperature. Unfortunately, it

takes a long simulation to get from static friction to kinetic friction. Figure 6.3 shows

one simulation run, plotting the average friction force over time (at 100kcal/mol-Å normal

force and 5m/s velocity). We can see that as soon as the slabs come into contact, due to

static friction there is a high peak in friction. The strong connections subsequently begin

to break down, and we observe sliding between the layers. The force of friction drops

quickly in the beginning, but much slower afterwards. It takes a long time to converge.

This behaviour can be spotted to some extent in Figure 6.2: the middle picture indicates

that the ice slabs connect just after contact, and then bend while creating an enormous

friction force.
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Figure 6.3: (C) - friction force at 5m/s, 100 kcal/mol-Å normal force
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Figure 6.4: (C) - average final friction force for 10 and 100 kcal/mol-Å normal force
and different friction velocities

Results obtained by varying velocity and normal force are plotted in Figure 6.4. Force

values are averaged over the last 4ns of the 17.2ns runs. They seem to indicate two

relations: first, the higher the velocity, the larger the friction, and second, higher normal

force, as compared to lower normal force, is correlated with significantly lower friction.

6.1.3 Temperature Distribution and Liquid Layer

In the simulation, friction generates heat and the temperature increases near the interface.

A liquid layer is formed at the interface which has a higher density. The order parameter

σ [100] is an indicator for the structure of ice Ih. It can be computed for each molecule,

and is a measure of how close the local structure is to a tetrahedron. This is estimated by

computing the angles to its four nearest neighbor molecules. For molecule i with nearest

neighbors numbered 1− 4, it reads

σi = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cos θijk +

1

3

)2

,

where θijk denotes the angle between the oxygen atoms in molecule i, j and k.

In a perfect tetrahedral network, σi = 1. If the arrangement of molecules is random,

such as in an ideal gas, the mean value of σi is zero. As noted in [97], in practice we can

expect it to be around 0.95 in ice, and around 0.5 to 0.85 in liquid water.

In Figure 6.5, we plot order parameter and temperature along the z-axis for three

different friction velocities. As expected, it indicates that a liquid layer forms in the

middle, and also that the temperature is significantly higher at the friction interface than

in the exterior of the domain.
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Figure 6.5: (C) - thickness of melted layer at 10 kcal/mol-Å for different friction veloc-
ities, order/temperature [K] vs spatial [Å]

6.2 (D) - Bovine Pancreatic Trypsin Inhibitor

Bovine pancreatic trypsin inhibitor (BPTI) is a small protein which can be found in bovine

lung tissue. Its function is suppression of protein digestion and it acts as a competitive

inhibitor. For example, it can be used to reduce bleeding during heart surgery. Well

studied since the 70s/80s, it exhibits complex folding pathways.

Structural information was obtained from the RCSB database (ID: 4PTI [101]). BPTI

has 892 atoms, and we solvate it in 3165 explicit water molecules (10387 atoms in total).

Potentials are modeled according to the CHARMM force field [46]. We use our corotational

filter with 163 clusters of size 2, 3263 of 3 and 25 of 4.

In Figure 6.6 the structure of BPTI is plotted. The representation of BPTI in the right

figure follows the cartoon style common for proteins, also known as a ribbon diagram. In

larger molecules, explicit knowledge of the position of each atom and bond is not of

interest. Instead, the underlying structure receives more attention and such plots give

information of the local structure of the main backbone chain. Coiled ribbons represent

α-helices, arrows indicate β-strands. For more details on the structure of proteins and

their schematic representation we refer to [1] and references therein.
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Figure 6.6: (D) - BPTI. The left image is a full atomistic view of BPTI, the right picture
is a schematic representation of the secondary structure as a ribbon diagram

6.2.1 Simulation Protocol

We equilibrate BPTI to 300◦K at 1bar (NPT) for 210ps using a regular IM with an outer

step size of 4fs. Afterwards, we switch to the CIM with an outer step size of 8fs and run at

300◦K (NVT) for roughly 10 million steps, achieving a simulation time of 80ns. 1 million

steps, so 8ns of simulation time required around 6.5h on 64cores. The load distribution

is a bit different than the ice-friction simulations: almost 60% time spent on pair, 1% on

bond, 32% on comm. Due to less expensive potential in water only around 4% were spent

on long-range interactions. Since pair usually scales very well, more cores would have

helped. However, it was much easier to get a cluster allocation for 64 cores than for 128

or 256 cores.

This is still a very short trajectory, and major transitions happen on larger time scales

[53,54]. And yet, we could still observe small changes using the root-mean-square deviation

(RMSD) as a reaction coordinate.

6.2.2 RMSD Indicates Two Configurations

The root-mean-square deviation is a measure of the average distance between atoms of a

given state compared to a reference model. The overall rotation and translation between

the two states is removed before the RMSD is computed. Usually, only backbone atoms

are included in the computation.

In protein folding, it is common to use the RMSD as a reaction coordinate which

quantifies the progress of transitioning between different folding states. If a protein does

not structurally change and just oscillates more or less around its current configuration,

the RMSD does not change significantly. That happens most times during a simulation.

However, when a folding process occurs, the RMSD will quickly drift since the new state

will not match the reference model anymore.

The RMSD is plotted in Figure 6.7 for backbone atoms of residues 5 to 54 versus time.
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Figure 6.7: (D) - RMSD evolution for residues 5 to 54, backbone atoms only

After an initial equilibration, it seems to settle down just above 1Å until around 45ns.

It then quickly moves to just below 2Å to find equilibrium again. In Figure 6.8, we plot

the initial structure and snapshots after 39ns and 80ns. They indicate the origin of this

behaviour: the lower left part of the backbone partially rotates. This is also supported by

Figure 6.9, which shows the RMSD for each residue during those time frames. After 39ns,

the structure is still relatively unchanged, as compared to the original. It is no surprise

that the end tail clearly moves. There is an additional small peak at id 38 which indicates

changes near the middle of the protein chain. Towards 80ns, the start tail also unfolds.

More interestingly, residues 10 to 15 flip and move away from the center.

Figure 6.8: (D) - BPTI at approx. 0ns, 39ns and 80ns

The obtained results are consistent with [53, 54]. The backbone RMSD there shows

similar movements in the folding process. Of course, since the trajectory here is shorter

by several orders of magnitude only two and not 5 states were found.

The simulations conducted in examples (C) and (D) show that the mollified impulse

method with the corotational filter is a competitive method which can be used for the time

integration of everyday tasks in molecular dynamics. The corotational filter is robust and

stable in long-term simulations. By removing force contributions which are responsible

for severe resonance instabilities, this method can use a twice as large outer time step as a

comparable unfiltered impulse method. While examples (A) and (B) show that the method
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Figure 6.9: (D) - RMSD per residue averaged over 800ps

behaves as expected and has favorable computational properties such as scalability, ease

in implementation and very low cost, the examples (C) and (D) indicate that the slow

energy exchange is not significantly destroyed. In fact, the simulation of the protein BPTI

shows a similar folding behaviour as was obtained in other computational studies.



7 Normal Mode Analysis

Example (D) in the previous chapter pointed to some limitations of molecular dynamics

simulations. In many biomolecular applications, such as the folding mechanism of large

molecules, we are not interested in the highly oscillatory and fast motions. Instead, we

are trying to capture motion associated with slow, yet large, conformational moves of a

molecule. One way to approach this is normal mode analysis (NMA). Here, the harmonic

approximation of the motion near an equilibrium is investigated. This simplification allows

us to identify (instantaneous) vibrational frequencies with its corresponding motion [22].

It is an essentially different approach than MD. Whereas in MD a brute force approach

through fully resolving and integrating all motion is taken, NMA focuses on the slow

modes of a local harmonic approximation.

One of the most important applications of NMA is the prediction of functionally rel-

evant motion of large macromolecules. It is expected that low frequency modes make

dominant contributions to conformational fluctuations at thermal equilibrium [102]. See

also the nice introduction and critical review [29]. There, the authors call “... the relative

success of normal mode analysis ... surprising and intriguing.” And, they state that

[a]lthough some studies found partial overlap between some of the lowest fre-

quency modes and the functional mode determined from two X-ray conform-

ers, in general it would be fanciful to expect anything more than a moderate

correspondence to individual normal modes. However, the expectation that

there exists a larger subspace spanned by the first M lowest frequency normal

modes (where M may be between 10 and 20% of 3N) that is also spanned by

the modes with the largest fluctuation in the real molecule is more realistic.

(quoted from [29])

7.1 Standard Normal Mode Analysis

Similar to molecular dynamics, we consider a molecular model and refer to the ODE

Mq̈ = −∇qU(q) (7.1)

with a potential U(q) and associated energy

H(q, p) =
1

2
pTM−1p+ U(q). (7.2)
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However, in contrast to MD, we search for certain motions in a local harmonic approxi-

mation. That is, normal mode analysis is based on linearizing

∇U(q) ≈ ∇U(q0) +H(q0)(q − q0),

where H is the Hessian matrix of U . Assuming an equilibrium position q0, the force vector

∇U(q0) vanishes, and thus

Mq̈ +H(q − q0) = 0. (7.3)

Solutions of (7.3) can be found by solving the equivalent generalized eigenvalue problem

H v = λMv. (7.4)

Assume (λ, v) is an eigenpair to (H,M) with λ ∈ R, v ∈ R3N . Then q(t) = q0 +cos(
√
λt)v

solves Mq̈ +H(q − q0) = 0.

Therefore, normal mode analysis consists of the following steps:

1. compute an equilibrium position q0 of a given molecular structure (e.g. some initial

position and a force field),

2. for Hamiltonian (7.2) compute a number of eigenpairs (Λ, X) corresponding to the

lowest frequencies from the generalized eigenvalue problem HX = MXΛ, where

H = H(q0) = U ′′(q0) and M is the mass matrix ,

3. eigenvectors v are so-called normal modes, and the corresponding eigenvalues λ are

the squares of vibrational frequencies
√
λ.

So, with normal mode analysis, we obtain eigenpairs indicating both the direction and

the vibrational frequency of each mode. Such information should not be used without

thought: normal mode analysis is based on a harmonic approximation around a single

minimum, and all anharmonic effects are neglected. Especially, the modes might not

reflect all possible directions/pathways possible [32].

In the following, we will refer to full atomistic normal mode analysis in Cartesian

coordinates, that is, M is a diagonal matrix, and when using an appropriate cutoff in

the force field, H is a sparse and symmetric matrix. There are quite a few approaches

which reduce the coordinate space or simplify the potential structure (or both). Such

strategies include normal mode analysis of coarse grained molecular models [33] and the

elastic network model [103]. The reduced problems are of much smaller dimension and

complexity, but possess the same structure (M diagonal, H sparse symmetric). Thus, the

algorithms discussed in the following can also be applied to those problems. However,

there are a few methods where this is not the case. Most notably, for methods built on

employing internal coordinates [104,105] the resulting matrices M,H are, in general, dense

matrices.
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7.1.1 Generalized Eigenvalue Problem

The Hamiltonian (7.2) leads to the generalized eigenvalue problem

H x = λMx,

whereH is the Hessian of the potential function U evaluated at a local minimum q0. Recall

that H is symmetric, and M is a diagonal matrix. This can be transformed to

M−1H x = λx

which has the advantage of being a ‘regular’ eigenvalue problem but unfortunately M−1H
is, in general, not symmetric. Instead, it is common to transform to mass weighted

coordinates y = M1/2x and solve the equivalent problem

M−1/2HM−1/2y = λy, with y = M1/2x.

This retains the symmetry of the problem and can be easily computed since M is a diagonal

matrix.

It is well known, that a symmetric matrix has an eigendecomposition. Hence, there

exists a full orthonormal basis denoted by V with a diagonal matrix Λ containing the

corresponding eigenvalues λi s.t.

M−1/2HM−1/2V = V Λ.

I.e. vi, the i-th column of V , is an eigenvector corresponding to the eigenvalue λi. Note that

V V T = V TV = I. Transforming vi back to the original coordinates, that is xi = M−1/2vi,

we see that each xi fulfills H xi = λiMxi. However, the xi are not orthonormal with

respect to the standard scalar product. Instead, since

xTi Mxj = vTi vj = δij (7.5)

they are orthonormal with respect to M -weighted scalar product 〈u, v〉M = uTMv.

The core task of normal mode analysis is thus computing a (partial) eigendecompo-

sition of the mass-weighted Hessian. This sounds deceptively easy and straight forward,

however, we again face the curse of dimensionality. With increasing dimension of H, a

full decomposition quickly becomes unfeasible, and further approximations have to be

introduced.

7.1.2 Characterization of Eigenmodes

There is a connection between a molecular model and the resulting eigenvectors from

normal mode analysis. The mass-weighted Hessian should have six eigenvalues very close

to/or exactly zero. Three eigenvectors of eigenvalue zero correspond to the translation
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invariance of radial potentials. The remaining three correspond to a rotation of the entire

model. All other eigenvalues should be positive since the Hessian should have been eval-

uated at a (local) minimum. Negative eigenvalues are a sign of insufficient equilibration

during computation of q0. However, it can be quite challenging to find such a minimum.

Positive, small eigenvalues are associated with conformational, large scale moves. Large

eigenmodes are usually very localized and associated with highly oscillatory motion.

The interest in slow modes comes from the hypothesis that these modes are responsible

for the biggest contributions to large fluctuations within a molecule. And in fact, this

claim is backed up by both empirical and theoretical evidence. In [102], a theorem is

presented which relates the mass-weighted means-square displacement of a normal mode

to the inverse of the corresponding eigenvalue, i.e. (see equation (1) in [102])

N∑
a=1

ma〈∆r2
a〉 = kBT

3N−6∑
j=1

1

ω2
j

where ma and ∆ra are the mass and displacement vector, ωj is the frequency of the j-th

mode, T the absolute temperature and kB is Boltzmann’s constant. 〈· · · 〉 denotes the time

average. Hence, the lowest eigenmodes contribute the most to the overall fluctuation. The

influence of eigenmodes with larger eigenfrequencies decays with the square inverse.

Figure 7.1: Four normal modes of the small peptide from example (B): the directions of
the normal mode are drawn as displacement vectors. The two modes on the left correspond
to fast vibrations whereas the two modes on the right are slow modes.

As an early example we computed the normal modes of the small peptide used as

example (B) in Chapter 4. We plot two fast modes on the left and two slow modes on

the right in Figure 7.1. Clearly visible is the qualitative difference: the fast modes are

highly localized whereas the slow modes correspond to large fluctuations withing the entire

molecule.
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7.1.3 Approaches in the Literature

In general, due to the large dimension of the problem, a direct solution is not available

and instead iterative methods prevail. The approaches in the literature can be categorized

into two types: first, an algorithmic approach, and second, a model approach.

In the algorithmic approach, the problem at hand is faced with high end numerics.

For example, the normal mode routines in GROMACS, NOMAD and MMTK use the

eigensolver from ARPACK, that is an implicitly restarted Arnoldi/Lanczos method. We

only found ‘explicit’ algorithms; that is, no inverse iterations, or shift-and-invert strategies

were employed. Instead, the ARPACK is called in a symmetric standard mode where ma-

trix vector products with the (mass-weighted) Hessians are provided by the user. Closely

related, in [106] a version of the Block Lanczos [107] is shown to converge rapidly when

creating a subspace based on a shift-and-invert technique. Other approaches include the

Component Synthesis Method (CSM) [39,40] or the Method of Diagonalization in a Mixed

Basis (DIMB) [42] (DIMB is available in the CHARMM program) where eigenvectors of

subblocks of the Hessians are computed and then combined and refined (see also [108–111]).

In the model approach the basic assumption is that the model is too large and provides

too much negligible information. Thus, the model is simplified following a certain strategy

or set of assumptions. One obtains a much smaller and directly solvable model, or one

which is much easier to handle. Examples of such a strategy include coarse grained approx-

imations [33] or the restriction to internal coordinates [104,105,112]. In [38], residues are

restricted to rotation and translation vectors, and eigenvectors in the resulting subspace

are computed. Both the Elastic Network Model (ENM) [103] and the Gaussian Network

Model (GNM) remove the original force field altogether and replace it with a simple spring

model (ENM) or a description of the inter-residue contact topology (GNM).

For further information on the vast amount of methods and literature, we refer the

interested reader to one of the following reviews and references therein [29–32,44].

7.2 Numerical Approximations of Eigenpairs

In this section we present numerical algorithms for approximating eigenpairs of the sym-

metric eigenvalue problem

Ax = λx, with A = M−1/2HM−1/2 ∈ Rn×n,

where A = AT is the mass-weighted Hessian with n = 3N .

For large eigenvalue problems, iterative methods attempt to approximate a subset

of eigenpairs. In normal mode analysis, the subset of interest usually consists of a fixed

number of the slowest modes. Iterative algorithms face restrictions from multiple directions

due to the large scale nature of the problem. Of course, the runtime on a computer or

compute cluster until an acceptable approximation has been reached is of considerable

interest. The best we could hope for would be a complexity which is linear in the dimension
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n, that is, a complexity of O(n). However, a sparse matrix-vector multiplication is already

in O(n). Thus, if the main computational task of an algorithm consists in computing

matrix-vector multiplications, then the number of steps required until convergence needs

to be independent of size of the matrix. The computing time is, to some extent, also

connected to the question of how well the computational task can be computed in parallel.

Storage can become a limiting factor. Storage is required not only for the sparse large

matrix itself but also for a search space and for the approximate eigenvectors. Whenever

dealing with large scale problems, some concern should be given to the general stability

of an algorithm and the effect of roundoff errors. A very common issue is, for example,

the loss of orthogonality in a Lanczos process, as we will see later.

7.2.1 Rayleigh-Ritz Method

We follow Chapter 2.2 in [113]. The standard approach for approximating eigenpairs of a

large and sparse matrix A ∈ Rn×n is the Rayleigh-Ritz method.

Definition 17. Given a subspace S ⊆ Rn, θk ∈ R is a Ritz value of A with respect to S
with Ritz vector uk if (θk, uk) satisfies the Galerkin condition

uk ∈ S, uk 6= 0, Auk − θkuk ⊥ S. (7.6)

The pair (θk, uk) is called a Rayleigh-Ritz approximation.

Exact eigenpairs (also called Ritz pairs) of the projection of A onto the subspace S
serve as approximations to the eigenpairs of A.

Theorem 18. Let S ⊆ Rn be an m-dimensional subspace and V ∈ Rn×m be any matrix

such that R(V ) = S. Then (θk, uk) is a Rayleigh-Ritz approximation if and only if θk is

an eigenvalue of

H = (V TV )−1V TAV (7.7)

and uk = V yk, where yk is an eigenvector of H corresponding to θk.

Note that if the columns of V are orthonormal, then V TV = Im, and the problem re-

duces to computing eigenpairs of the small matrix H = V TAV . If the subspace is suitably

chosen, and of much smaller dimension than the original problem, useful approximations

at low cost can be obtained. Usually, this strategy is employed in an iterative manner. In

order to improve the approximation, the subspace is gradually extended by some heuristic.

This method is known to approximate outer eigenpairs much faster than inner ones.

However, iterating with A−1 has a much higher associated cost. The concept of harmonic

Ritz values offers an alternative.

Definition 19. Given a subspace S ⊆ Rn, θk 6= 0 is a harmonic Ritz value of A with

respect to S if θ−1
k is a Ritz value of A−1 with respect to S.
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Surprisingly, the actual usage of A−1 can be avoided.

Theorem 20. Let V ⊆ Rn be a subspace with dim V = m, and orthonormal basis V ∈
Rn×m. Assume W = AV has dimension m. Then θk is a harmonic Ritz value of A with

respect to W if and only if

Auk − θkuk ⊥ W for some uk ∈ V, uk 6= 0. (7.8)

Moreover, if W ∈ Rn,m is a matrix with R(W ) =W, then (7.8) is equivalent to

(W TAV )yk = θk(W
TV )yk, uk = V yk. (7.9)

The pair (θk, uk) is called a harmonic Rayleigh-Ritz approximation.

Corollary 21. If (θk, uk) is a harmonic Rayleigh-Ritz approximation of A, and wk = Auk,

then

θ−1
k =

wTk A
−1wk

wTk wk
=

uTkAuk

uTkA
TAuk

(7.10)

is the Rayleigh quotient of Auk with respect to A−1.

Both Rayleigh-Ritz approximations have in common that the large matrix A is pro-

jected onto a subspace of much smaller dimension. They differ in how the information

is processed, though. Harmonic Ritz values are known to give better approximations of

interior eigenvalues.

7.2.2 Lanczos Method

In the following, we refer to the Lanczos method as the (symmetric) Lanczos process for

the construction of the Krylov basis combined with a Rayleigh-Ritz method.

Definition 22. For A ∈ Rn×n and 0 6= v ∈ Rn

Km(A, v) = span{v,Av,A2v, ..., Am−1v} (7.11)

is called the mth Krylov subspace with respect to A and v.

It directly follows that for x ∈ Km(A, v), we have x = p(A)v where p ∈ Pm−1 denotes

a polynomial of degree at most m− 1. Therefore, the m-th Krylov space is equivalent to

the space of all polynomials in A of degree at most m− 1 applied to v:

Km(A, v) = {p(A)v | p ∈ Pm−1}.

Furthermore, a Krylov space is invariant to shifts of the matrix A and it holds

Km(A, v) = Km(A+ σI, v), ∀σ ∈ R .
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When dealing with a symmetric matrix, a basis of a Krylov space can be computed by

the Lanczos iteration. It uses a modified Gram–Schmidt process to produce an orthonor-

mal basis Vm = [v1, ..., vm] of Km. This can be written as a recurrence of the form

AVm = Vm+1H̃m = VmHm + hm+1,mvm+1e
T
m (7.12)

where Vm ∈ Rn×m has orthonormal columns, V T
mvm+1 = 0 and Hm ∈ Rm×m is symmetric

and tridiagonal. The Lanczos iteration with start vector v1 can also be written as a simple

three-term recursion (v0 = 0, β1 = 0):

vm+1 = wm+1/βm+1, wm+1 = Avm − αmvm − βmvm−1, m > 0 (7.13)

with αm = vTmAvm, βm = ||wm||. (7.14)

The coefficients αi and βi form the diagonal and superdiagonal entries of the tridiagonal

matrix Hm. Finally, the eigenpairs (θk, yk) of Hm are used to compute the Ritz pairs

(θk, uk = Vmyk) of A.

The following lemma allows for easy error estimation during the Lanczos iteration.

Lemma 23. Let (θk, uk), uk = Vmyk be Rayleigh-Ritz approximations of A corresponding

to Km. Then the residual is given by

Auk − θkuk = hm+1,m(eTmyk)vm+1 (7.15)

and thus ||Auk − θkuk|| = hm+1,m|eTmyk|.

Altogether, for a symmetric matrixA we obtain the resulting algorithm (Algorithm 7.1).

The Lanczos method is known to approximate exterior eigenvalues quite quickly and well.

Its main advantage is the efficiency of the algorithm.

Algorithm 7.1: Lanczos method with symmetric matrix A, start vector v, see [114,
115]

1 r = v, β1 = ||v||, v0 = 0

2 for k = 1, 2, . . . until convergence do

3 vk = r/βk
4 r = Avk
5 r = r − βkvk−1

6 αk = vTk r

7 r = r − αkvk
8 βk+1 = ||r||2
9 compute approximate eigenvalues Hk = YΘ(k)Y T

10 test for convergence

11 compute approximate eigenvectors U = VkY

More specifically, assume λ1 ≥ ... ≥ λn are the exact eigenvalues of A, then convergence
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theorems of the Lanczos method [116, Thm. 10.1.2.] show that the Ritz value θ1 (largest

eigenvalue of Hm) is bounded by

λ1 ≥ θ1 ≥ λ1 − (λ1 − λn)

(
tanφ1

cm−1(1 + 2ρ1)

)2

, with ρ1 =
λ1 − λ2

λ2 − λn
.

Here, cm denotes the m-th Chebyshev polynomial and cos(φ1) = |qT1 z1| where z1 is the

start vector of the Lanczos method and q1 the exact eigenvector to λ1. Hence, the larger

ρ1, the quicker the convergence. It is clear that ρ1 is large for a well separated eigenvalue.

A similar result is obtained for λn by applying the bounds to −A.

Convergence of the Lanczos method can thus be accelerated if the original problem can

be manipulated in such a way that the eigenvalues of interest are well separated, exterior

eigenvalues of the transformed problem. To this end, polynomial filtering can be used. The

basic idea is based on the fact that for a polynomial p, p(A) has the same eigenvectors as

the original A and eigenvalues p(λi). However, the approximations are still in the same

Krylov subspace as when iterating with A, and it is not clear if the approximations can

thus be improved. More of this technique’s advantages and problems can be found in the

literature [116,117].

For computing harmonic Ritz values, the Arnoldi iteration (7.12) is also useful. Using

a Krylov basis Vm, the generalized eigenvalue problem reads

(W T
mAVm)yk = θk(W

T
mVm)yk. (7.16)

Since Wm = AVm this is equivalent to

(H̃T
mH̃m)yk = θkH

T
myk. (7.17)

However, this should not be solved directly, and the computation of H̃T
mH̃m should be

avoided. Instead, a QR factorization of H̃m avoids stability problems. This way only the

condition number of H̃m enters, not its square [113, Ch. 2.4].

7.2.3 Shift-and-Invert Iteration

An appealing approach for computing slow modes is inverse iteration. The regular Lanczos

iteration approximates large and exterior eigenvalues very quickly. We can exploit this

property by iterating with Ã = (A − σI)−1 instead of A. This corresponds to a spectral

transformation since the eigenvalue problem Ax = λx is transformed to

Ãx = (A− σI)−1x =
1

λ− σx.

The transformed eigenvalue problem has the same eigenvectors, but eigenvalues µ = 1/(λ−
σ). However, the largest eigenvalues of Ã are now the eigenvalues of A which are closest

to the shift σ. Hence, we can expect quick convergence of eigenpairs close to the shift σ.
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Using Ã in the Lanczos method is called the shift-and-invert Lanczos method, here, we

will simply call it shift-and-invert iteration.

Obviously, the matrix Ã is not computed explicitly. Instead, the resulting linear system

has to be solved in each step of the Lanczos method. While this algorithm promises less

iteration steps (and with it less memory for storing the basis vectors), the bottleneck will

be solving the linear system. If we find a quick and efficient way to solve sparse linear

systems with the mass weighted Hessian, this method has great potential.

Usually, in each step of the shift-and-invert iteration, the linear system will be solved

itself by an iterative method. Such a concept is known as inner-outer iteration. The outer

iteration is the application of the subspace method. For each outer step, an inner iteration

is performed to (inexactly) solve the linear problem.

In contrast to the Lanczos iteration, the basis vectors of the Krylov space with (A −
σI)−1 are obtained with an (inexact) iterative method, and therefore do not build a Krylov

space anymore. However, it has been observed by many numerical investigations that,

despite using inexact solutions, the methods are still reliable. Even with a low tolerance

in the solver, convergence can still be achieved [118–121].

7.2.4 The Implicitly Restarted Arnoldi Method

The implicitly restarted Arnoldi method [122,123] (IRAM), or when applied to a symmet-

ric problem, the implicitly restarted Lanczos method for sparse systems addresses some

numerical difficulties encountered in the regular Arnoldi or Lanczos iteration.

One major disadvantage of the Arnoldi method is that with an increasing number of

steps, more and more computer memory is required to store the basis vectors Vm. For

large problems, since Vm ∈ Rn×m is dense, this is a severe restriction. This is not directly

true for the Lanczos iteration. It is based on a three-term recursion and does not need to

store the full basis Vm. However, we are interested in approximations to the eigenvectors

and thus either need to store the full basis Vm or compute a second run.

In the IRAM, an efficient restarting process is implemented. Whenever a certain num-

ber of basis vectors, let us say m vectors, is reached, p unwanted directions are identified

and then discarded. This is accomplished by an implicitly shifted QR algorithm which

compresses the Arnoldi factorization of length m into a factorization of length k = m− p.
The reduced factorization can then be extended by another p steps to again yield a length

m factorization. Thus, the Arnoldi space is limited to a fixed number of vectors.

Assume we have arrived at an Arnoldi factorization of length m with

AVm = VmHm + fme
T
m, with fm = hm+1,mvm+1.

Then p shifts ν1, . . . , νp are selected, which usually correspond to unwanted eigenvalues of



7.2. Numerical Approximations of Eigenpairs 71

Hm. The associated directions are removed by computing a QR decomposition of

p∏
i=1

(Hm − νiI) = QmRm

and then setting

AVmQm = VmQmQ
T
mHmQm + fme

T
mQm.

Denoting QTmHmQm = H+
m and V +

m = VmQm we obtain

AV +
m = V +

mH
+
m + fme

T
mQm.

It can be shown that the first k−1 components of eTmQm are zero, and thus, by truncating

after the k-th column an Arnoldi decomposition of order k is obtained

AV +
k = V +

k H
+
k + f+

k e
T
k , with f+

k = h+
k+1,kV

+
m ek+1 + fmqm,k.

Here, h+
k+1,k refers to the (k+1, k)-th entry of H+

m, and qm,k is the (m, k)-th entry of Qm.

The crucial point is now that V +
k and H+

k are the matrices which would have been obtained

by running k steps of the original Arnoldi process, but with a modified starting vector

v+
1 =

1

c

p∏
i=1

(A− νiI)v1,

where c is some normalization factor. Hence, restarting corresponds to applying a poly-

nomial filter to the initial vector v1 in a very efficient way without applying the filter in

each step.

The resulting algorithm is summarized in Algorithm 7.2. Using such an algorithm is

a complex task. The performance is influenced by many parameters (e.g. number of basis

vectors or search space, starting vector, selection criterion, tolerance).

Obviously, this method can be ‘upgraded’ with shift-and-invert ideas if the linear

systems can be solved at a reasonable cost. Actually, the implementation in ARPACK

[124] uses a reverse communication interface, that is, the program returns the control to

the user whenever interaction with the matrix A is required. Depending on the mode

(standard, inverse, or shift-and-invert), the user then returns the required information

(e.g. a matrix-vector multiplication or the solution of a linear system).

GROMACS built-in normal mode tools use LAPACK for the dense eigensolver, and

ARPACKs implicitly restarted Arnoldi method in standard mode for sparse systems.

7.2.5 Jacobi-Davidson Method

The Jacobi-Davidson method [125] was developed in the ‘90s. It can be seen as an im-

provement of Davidson’s method, which is a cheap version of the shift-and-invert method
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Algorithm 7.2: Implicitly restarted Arnoldi method in ARPACK (see [124])

• Start: Build a length m Arnoldi factorization AVm = VmHm + fme
T
m with the

starting vector v1.

• Iteration: Until convergence

1. Compute the eigenvalues {λj : j = 1, 2, ...,m} of Hm. Sort these eigenvalues
according to the user selection criterion into a wanted set {λj : j = 1, 2, ..., k}
and an unwanted set {λj : j = k + 1, k + 2, ...,m}.

2. Perform m− k = p steps of the QR iteration with the unwanted eigenvalues
{λj : j = k + 1, k + 2, ...,m} as shifts to obtain HmQm = QmH

+
m.

3. Restart: Postmultiply the length m Arnoldi factorization with the matrix Qk
consisting of the leading k columns of Qm to obtain the length k Arnoldi
factorization AVmQk = VmQkH

+
k + f+

k e
T
k , where H+

k is the leading principal
submatrix of order k for H+

m. Set Vk ← VmQk.

4. Extend the length k Arnoldi factorization to a length m factorization.

where the occurring linear systems are solved very approximately.

A weak point of the Lanczos method is that the Krylov space does not use currently

available information to improve the subspace. The Jacobi-Davidson method uses a dif-

ferent set of subspaces, and then employs the Rayleigh-Ritz method. The expansion of

the subspace is more elaborate than a simple matrix-vector multiplication. A suitable

direction is identified by (approximately) solving a linear system.

The idea is as follows. Assume we want to expand the current space Sm by a vector

tm ⊥ Sm. If we already had a Rayleigh-Ritz approximation (θ, u), then the optimal choice

of t would be

A(u+ t) = λ(u+ t) i.e. (A− λI)t = −(Au− λu). (7.18)

However, t can not be computed since λ is not known. Hence it is replaced by the best

available approximation, namely θ. Also, since t is used to expand the search space, t is

restricted to be orthogonal to u. The resulting linear system reads (where r = Au− θu)

(I − uuT )(A− θI)(I − uuT )t = −r, t ⊥ u. (7.19)

This equation is called the Jacobi-Davidson correction equation. It is solved approximately,

and its approximate solution is taken for the expansion of the subspace. This is the main

and fundamental difference to Krylov subspace methods. The Jacobi-Davidson method

has no Krylov space structure (e.g. powers of the matrix or a shifted inverse applied to

a starting vector). Instead, the inverse operator is applied to the residual vector r of a

current guess. The correction equation is approximately solved by some steps of a usually

preconditioned iterative method, e.g. see Section 7.3.2.



7.2. Numerical Approximations of Eigenpairs 73

Algorithm 7.3: Basic Jacobi-Davidson method for λmax(A) for Hermitian eigen-
value problem [114,126]

1 start with t = v0, starting guess

2 for m = 1, 2, . . . do

3 for i = 1, . . . ,m− 1 do

4 t = t− (vTi t)vi

5 vm = t/||t||2, vAm = Avm
6 for i = 1, . . . ,m do

7 Mi,m = vTi v
A
m

8 compute the largest eigenpair (θ, s) of M (||s||2 = 1)

9 u = V s // V ∈ Rn×m with columns vj
10 r = Au− θu
11 if ||r||2 ≤ ε then

12 λ̃ = θ, x̃ = u

13 stop

14 solve (approximately) a t ⊥ u from

15 (I − uuT )(A− θI)(I − uuT )t = −r
16 (λ̃, x̃) is approximation to largest eigenvalue λmax with corresponding eigenvector

Algorithm 7.3 is a very simple version of the Jacobi-Davidson method for the com-

putation of a single exterior eigenpair. If restart and deflation techniques are added (see

[127]), then this algorithm is called JDQR, see also [128] for computing interior eigen-

values. Since the Jacobi-Davidson method involves solving a linear system, this method

can be easily preconditioned. Also, since t is ‘only’ used for expanding the space, a very

accurate solution of the linear system is not necessarily required.

We refer to [125, 129] for more details. In [130], the connection between the Jacobi-

Davidson method and inexact Newton iterations is shown. Convergence proofs for the

Hermitian eigenvalue problem are given in [131].

7.2.6 Contour Integral Methods

Contour integral methods for computing eigenpairs are a combination of approximating a

contour integral and a Rayleigh-Ritz approach (CIRR method [132,133]). These methods

are a relatively new development (e.g. FEAST algorithm [134, 135] from around 2009).

Contour integration techniques were mainly developed for quantum mechanics. They are

built around a Rayleigh-Ritz approach; however, the subspace is chosen in a very different

manner. As the author puts it in [134], “[t]he technique deviates fundamentally from the

[...] traditional techniques”.

In our notation, for real, symmetric A and resolvent G(z) = (zI − A)−1 a contour
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integral is computed

XXT = − 1

2πi

∫
C
G(z) dz (7.20)

where X ∈ Rn×m contains m eigenvectors to the m eigenvalues inside the contour C.
Postmultiplying by an arbitrary matrix Y ∈ Rn,m with linear independent columns yields

X(XTY ) = − 1

2πi

∫
C
G(z)Y dz (7.21)

⇒ XW = − 1

2πi

∫
C
G(z)Y dz (7.22)

where W ∈ Rm×m, and thus each column of XW is a linear combination of eigenvectors

in X. XW is now used in a Rayleigh-Ritz procedure to obtain the eigenpairs inside the

contour C. The integral is approximated by numerical integration. The original paper [134]

uses an Ne-point Gauss-Legendre quadrature on the positive half circle. We denote the

quadrature nodes and weights by (xe, ωe), e = 1, ..., Ne. A basic version of this algorithm

for a search interval [λmin, λmax] is shown in Algorithm 7.4.

Algorithm 7.4: Basic FEAST algorithm (see [134])

1 Select M0 > M random vectors in Y ∈ Rn×m0

2 while not converged do

3 Set Q = 0 with Q ∈ Rn,m0 , r = (λmax − λmin)/2

4 for e = 1, . . . , Ne do

5 compute θe = −(π/2)(xe − 1)

6 compute Ze = (λmax + λmin)/2 + r exp(iθe)

7 solve (ZeI −A)Qe = Y to obtain Qe ∈ Cn×m0

8 compute Q = Q− (ωe/2)R(r exp(iθe))Qe // R denotes the real part

9 Form AQ = QTAQ

10 Solve AQΦ = λΦ to obtain the M0 eigenvalues λ and eigenvectors Φ

11 If λi ∈ [λmin, λmax], λi is an eigenvalue with eigenvector in the i-th column of

X = QΦ

12 Check convergence for the trace of eigenvalues. If iterative refinement is needed,

set Y = X

The performance of this approach depends vastly on the ability to solve the occurring

linear systems with (zI − A). If direct solvers are not available, iterative solvers with

modest accuracy can be employed. Furthermore, this method has potential for parallelism.

For example, in the inner for-loop in Algorithm 7.4, each iteration is independent and thus

can be computed in parallel. Then, each occurring linear system in line 7 has to be solved

for multiple right-hand sides. Depending on the solver, this can either be computed in

parallel, or with significant savings by reusing information from a previous step.

Efficient implementations of this algorithm are available. A blackbox version of this
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algorithm has been implemented in the high-end Intel MKL library. As a linear solver it

uses the PARDISO direct solver [136–138].

7.3 Efficient Approximation of Shifted Linear Systems

All previous methods (except the regular Lanczos method) rely heavily on being able

to solve a linear system (A − σI)x = b with A = M−1/2HM−1/2 and shift σ, which

constitutes the main computational task.

The matrix A results from a numerical computation, and in theory, since it is the

Hessian evaluated at a local minimum, it should be symmetric, semi-positive definite with

exactly six zero eigenvalues with eigenvectors corresponding to translation and rotation of

the entire domain. However, due to rounding errors on large computations, or simply the

fact that the matrix was evaluated very close to (but not exactly at) the minimum, a few

negative eigenvalues of small magnitude might be present. The shift σ is usually required

to be close to the eigenvalues of interest (e.g. σ small, positive), and hence the resulting

linear systems are symmetric and indefinite. For simplicity of notation, in this section we

present algorithms for solving the linear system

Ax = b, with A = M−1/2HM−1/2 − σI.

Thus, A is a symmetric and indefinite matrix.

7.3.1 Direct Methods

Direct methods should not be ruled out without further consideration. Since the eigen-

solvers usually require multiple solutions of the same linear system, some initial effort can

pay off.

The standard approach for a direct method for sparse matrices is to precompute some

triangular factorization, and then solve each system with a backward and forward trian-

gular solve. Since we are dealing with sparse systems, one would hope that this sparsity

could also be present in the triangular factorization. This is in general not easy to achieve.

For symmetric, banded matrices, though, it is well known that an LDLT decomposition

will keep the band structure in its triangular factors. Here, L is a lower triangular matrix,

and D is diagonal. Fill-in in L only happens within the bandwidth of the original matrix

A.

Therefore, a common strategy is the following: first, the sparse matrix is reordered

to reduce the bandwidth and limit the fill-in. Reordering algorithms such as the reverse

Cuthill-McKee algorithm [139,140] or the symmetric approximate minimum degree permu-

tation [141,142] can be used for this task. For a recent survey on reducing the bandwidth of

a matrix, see [143]. Then, the sparse LDLT factors are computed and used for repeatedly

solving the linear system with multiple right hand sides through forward and backward

solves with the LDLT factors.
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We want to mention that the LDLT decomposition necessarily needs to include a

pivoting strategy for symmetric indefinite problems. For stability, it is also advisable to

use a more general form of D, where D is block diagonal with blocks of sizes 1 or 2. For

reasons and details we refer to Chapter 4.4 in [116] and references therein.

The following table lists the approximate computational cost for dense and symmetric

banded matrices with upper and lower bandwidth p (see [116], Chapter 4).

# dense matrix band matrix

compute LDLT n3/3 np2

solve LDLT twice n2/2 twice 2np

Table 7.2: Computational cost of an LDLT decomposition for dense and banded matrices

While quick in expected computational time (each solve is technically in O(n)), there

are two expected limitations: first, due to the unavoidable fill-in, direct methods based

on a decomposition are quite memory consuming, and second, they require the shifted

Hessian to be sorted to a banded matrix with minimal bandwidth. However, this might

not be possible, or the bandwidth might be large depending on the molecular structure.

If there are no loops etc, the Hessian can be reordered to a band structure, and the fill-in

stays bounded.

Unfortunately, as we will see in the next chapter, for most molecules the Hessian

does not sort well, and the fill-in is significant, and is often in an order which makes a

factorization unfeasible. In such situations, an iterative solver may be employed.

7.3.2 Iterative Methods

Iterative solvers are commonly used when solving large and sparse linear systems. They

are usually based on matrix-vector multiplications with the original sparse matrix, and

thus exploit the sparsity to their advantage. The topic itself can easily fill multiple mono-

graphs on its own [144–148]. Here, however, we are interested in specific iterative methods

which are able to solve sparse symmetric indefinite systems. We will highlight two Krylov

subspace methods, but we note that many more methods exist.

Krylov subspace methods are iterative methods where the approximations xm are

chosen such that xm ∈ x0 +Km(A, r0) where x0 is an initial approximation to Ax = b and

r0 = b−Ax0 is the initial residual. We then have

xm = x0 + pm−1(A)r0,

where pm−1 ∈ Pm−1 denotes a polynomial of degree at most m − 1. For ease in notation

we will assume x0 = 0 and thus have xm ∈ Km(A, b). Note that this is not a restriction,

since for a given start vector x0, we have A(x−x0) = b−Ax0 which is of the desired form.

There are a number of methods available for symmetric indefinite problems. First, the
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MINRES method [149], which is based on the minimal residual condition

||rm|| = ||b−Axm|| = min
x∈Km

||b−Ax||,

provides the m-th approximation as

xm = argmin
x∈Km

||b−Ax||.

Let Vm be a basis of Km obtained from the Lanczos process and AVm = Vm+1H̃m. Then

xm = Vmym for some ym ∈ Rm and with β = ||b|| we have

rm = b−Axm = b−AVmym
= Vm+1(βe1 − H̃mym).

Thus, by minimizing

||rm|| = ||βe1 − H̃my||, y ∈ Rm,

the iterate xm = Vmym is obtained from solving an (m+ 1)×m dimensional least squares

problem (recall Vm+1 is orthogonal).

Hence, the MINRES is basically the GMRES method applied to a symmetric matrix.

Instead of the Arnoldi process in GMRES, the Lanczos iteration generates a basis of Km.

The obtained algorithm can be expressed by a short three term recurrence without actually

having to store the entire basis of Km. Instead, only two vectors are required. For details

of this algorithms, see for example [145,146].

The MINRES yields a general convergence result [144, Prop. 6.32] (since A is diago-

nalizable with eigenvalues λi, i = 1, . . . , n)

||rm||2 ≤ min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)| ||r0||2.

If A is symmetric indefinite with eigenvalues contained in I− ∪ I+ = [a, b] ∪ [c, d] with

a ≤ b < 0 < c ≤ d the following error bound is obtained [145]

min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)| ≤ min
p∈Pm,p(0)=1

max
z∈I−∪I+

|p(z)|

≤ 2

(√
|ad| −

√
|bc|√

|ad|+
√
|bc|

)[m
2

]

and [·] denotes the integer part. In our application, d will be a large number, and a

comparably small. Also, b, c might be close to 0, and the convergence might be very slow.

The second method we want to highlight is the symmetric QMR (quasi-minimal resid-

ual) method. It is a special case of the quasi-minimal residual (QMR) method [150].
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The general QMR uses two sequences of Lanczos vectors Vm,Wm that span the Krylov

subspaces Km(A, b) and Km(AT , b) with relations AVm = Vm+1H̃m, A
TWm = Wm+1T̃m

with tridiagonal H̃m, T̃m. Although our problem is symmetric, this flexibility allows the

use of indefinite preconditioners. For a non-symmetric matrix A the resulting Vm,Wm

are not orthogonal matrices anymore. Instead, they are constructed to be biorthogonal

(V T
mWm = Im). The iterates xm = Vmzm are then characterized by a quasi-minimal

residual property

min
z∈Rm

||βe1 − H̃mz||,

and the residual vector is given by

b−Axm = Vm+1(βe1 − H̃mzm).

Algorithm 7.5: Symmetric QMR algorithm for Ax = b with preconditioner B =
B1B2 (see [151])

1 Choose x0 ∈ RN

2 Set r0 = b−Ax0, t = B−1
1 r0, τ0 = ||t||2, q0 = B−1

2 t, θ0 = 0 and ρ0 = rT0 q0

3 for n = 1, 2, . . . do

4 Compute t = Aqn−1 and σn−1 = qTn−1t.

5 if σn−1 = 0 then

6 stop

7 αn−1 = ρn−1

σn−1
and rn = rn−1 − αn−1t.

8 Set t = B−1
1 t, θn = ||t||2

τn−1
, cn = 1√

1+θ2n
, τn = τn−1θncn,

9 and dn = c2
nθ

2
n−1dn−1 + c2

nαn−1qn−1, xn = xn−1 + dn.

10 if convergence then

11 stop

12 if ρn−1 = 0 then

13 stop

14 Set un = B−1
2 t, ρn = rTnun, βn = ρn

ρn−1
, and qn = un + βnqn−1.

For general A, Vm and Wm are not unitary matrices, but when A is a symmetric ma-

trix, the algorithm simplifies significantly. In fact, without preconditioning, the symmet-

ric QMR and the MINRES are mathematically equivalent [151]. However, when using a

preconditioner, the two methods differ. While the QMR can deal with indefinite precondi-

tioners, the MINRES method is restricted to symmetric positive definite preconditioners.

This seems a bit unnatural but is due to the fact that MINRES requires a symmetric

matrix in the iteration. Therefore, the preconditioner has to be applied in a symmetric

way. As we will see in the next section, this requires the preconditioner to be symmetric,

positive definite. The symmetric QMR on the other hand can directly incorporate an in-
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definite preconditioner. However, as noted in [152], a sophisticated ‘look-ahead’ is needed

to prevent numerical breakdown. A simple preconditioned algorithm without look-ahead

for the symmetric QMR is given in Algorithm 7.5.

7.3.3 Preconditioning

The error bounds e.g. for the MINRES method show that for the problems under inves-

tigation here, the convergence will be quite slow. Therefore, these methods are usually

used with a preconditioner.

Refering to a linear problem of type

Ax = b, (7.23)

preconditioning means transforming this linear system into one which is easier to solve for

an iterative method, and has the same solution as the original one. Most commonly, the

preconditioner is a matrix itself, let us denote it by B. Application of the preconditioner

(B−1) should be inexpensive. Then the left preconditioned system is

B−1Ax = B−1b. (7.24)

Similarly, right preconditioning leads to

AB−1u = b, x = B−1u. (7.25)

If a factorization B = BLBR is available, then it can be split into

B−1
L AB−1

R u = B−1
L b, B−1

R u. (7.26)

Since A is symmetric, it seems important to preserve symmetry, i.e. the first two ap-

proaches are not symmetric in general. However, symmetry can also be preserved by using

an B-inner product without factorizing or splitting B (e.g. sym. QMR, or preconditioned

CG method [144, Ch. 9.2.1]).

A good preconditioner usually fulfills B−1A ≈ I, but anything which improves con-

vergence is acceptable. The ideal preconditioner is the matrix A itself, and the iterative

method would finish in one step. For obvious reasons, this choice is out of the question.

Classical choices for preconditioners (where A = D −E − F with D diagonal, E,F lower

and upper triangular matrices with zeros on the diagonal) are:

• Jacobi: B = D,

• Gauss-Seidel: B = (D − E),

• Symmetric Gauss-Seidel: B = (D − E)D−1(D − F ). Note that this can be written

as B = LU with L = (D−E)D−1 = I −ED−1 and U = D−F . Hence, this can be

realized by two solves with an upper/lower triangular matrix [144].
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However, these preconditioners do not work well for the problem under consideration.

A more elaborate approach consists in computing an approximate factorization

A ≈ LU

where L and U have some favorable properties (for example sparsity, or low cost) and

hopefully ||A− LU || small. Many strategies exist for sparse matrices, e.g. incomplete LU

or incomplete Cholesky factorizations. For symmetric indefinite matrices, an incomplete

LDLT factorization with lower triangular L and diagonal D can be computed [144, 147,

153].

Preconditioning methods are available in software packages such as ILUPACK [154].

ILUPACK provides state of the art algorithms for computing approximate matrix decom-

positions based on the incomplete LU decomposition including a multilevel approach [155].

Additionally, iterative solvers such as GMRES, PCG and symmetric QMR are provided,

which can make use of the preconditioners. Matrix reordering schemes are also available.

Altogether, the algorithms in ILUPACK allow for the efficient solution of sparse linear

systems.

Let us return to the aforementioned limitation, that MINRES requires a symmetric

positive definite preconditioner. This is due to the fact that the iteration matrix in MIN-

RES needs to be symmetric. As a consequence, the preconditioning has to be of the

form B−1/2AB−1/2 for a preconditioner B = B1/2B1/2. Thus, B is symmetric positive

definite and we transform to a symmetric problem with the matrix square root. Such a

restriction is unnatural since for an indefinite matrix A and a symmetric positive definite

preconditioner B, we cannot have B−1/2AB−1/2 ≈ I. However, the problem can be partly

circumvented [156]. First, an approximate LDLT factorization with indefinite D is com-

puted. Then L|D|LT is used as preconditioner. L|D|LT has the same eigensystem but

positive eigenvalues. However, convergence might be slower compared to a preconditioned

symmetric QMR [151].

On the other hand, the symmetric QMR only requires a relationship of the form ATP =

PA for the Lanczos process to simplify. This can be fulfilled by an arbitrary nonsingular

symmetric conditioner, see [151] and Algorithm 7.5. More precisely, if B = B1B2 =

BT
2 B

T
1 = BT is a split preconditioner, then the preconditioned system A′ = B−1

1 AB−1
2

can be used, since with P = BT
1 B
−1
2 we have

(A′)TP = B−T2 ATB−1
2 = BT

1 B
−1
2 B−1

1 AB−1
2 = PA′.

So far, we have derived preconditioners which have a direct matrix representation.

However, this is not a requirement. In fact, as in many iterative methods, only the action

of the preconditioner to a vector is required. In the next section, we explore an elaborate

approach based on a multilevel structure. This method can be used as a solver for the

linear system itself, or as a preconditioner built into an outer iterative method.
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7.4 A Multilevel Approach for Solving the Linear System

The idea of multilevel methods for PDEs is based on a particular convergence behavior

of certain splitting methods. For most classical iteration methods such as the Richardson

iteration (with ω suitably chosen)

xk+1 = xk + ω(b−Axk) (7.27)

the convergence is quite slow. However, oscillatory components of the error are damped

significantly after only a few steps.

The large linear systems can be solved efficiently by a multigrid approach by exploiting

information gained by discretizing the PDE on a sequence of meshes. On a fine mesh,

iteration methods - called smoothers - will allow us to reduce oscillatory components and

thus smooth the error. The idea of multigrid now relies on the fact that a smooth function

can be well approximated on a coarser mesh. Hence, on the coarse mesh a (linear) error

equation for the error is solved, which is then used to correct the approximation on the

fine mesh. The key point is that the resulting linear system on the coarse mesh is of much

smaller dimension. Obviously, this idea can be applied recursively, and the linear system

on the coarse mesh can itself be solved by first iterating with a cheap method, and then

solving the error equation on an even coarser grid.

All in all, a hierarchy of meshes offers to move between different resolutions. On each

level, a few steps of the smoother reduce the corresponding fastest error components which

allows the representation of the error on a coarser mesh. The obtained approximation is

then improved by a correction from a coarser grid. Combining these ideas results in an

efficient solver.

This section investigates whether a similar approach can be employed in solving lin-

ear systems for normal mode analysis. At first, it is not at all obvious how this could

work. NMA is neither based on meshes nor does the concept of a smoother directly trans-

late. However, a molecule possesses a strong, fixed structure itself. The success of coarse

graining methods seems to indicate that it is possible to reduce the ‘resolution’ within

a molecular model while still resolving its essential dynamics. It seems worth trying a

series of such models for use in a multilevel approach. The role of the smoother is not

obvious, but we can employ an iteration method with similar properties. Its task is to

reduce the error such that the result can be well represented on the next coarser level.

Since coarsening usually reduces local and internal high frequency motions, we suspect

that a simple method such as the Richardson iteration might be a good candidate.

7.4.1 Basic Algorithm

We directly use ideas motivated by classical multigrid schemes. We closely follow the

notation and ideas in [144, Ch. 13]. In the context of molecular dynamics, however, no

grids are present. Instead, we will use the term ‘level’. For a successful multilevel approach,
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two ingredients are essential: first, one needs a hierarchy of levels with matching operators

for projection and prolongation; this makes it possible to switch between different levels.

Second, a numerical method which reduces the fast error components on each particular

level has to be selected. Those two ingredients have to match, i.e. the smoother needs to

produce an approximation which can be well represented on the next coarser level.

Algorithm 7.6: Basic two-level algorithm with two levels (Af , Ac) and starting
value x0

1 Function x = twolevel(bf , x0)

2 x = smooth(Af , bf , x0, µ1) // µ1 smoothing steps, starting value x0

3 r = bf −Afx // compute residual

4 Acec = P T r // solve for ec
5 x = x+ Pec // correct

6 x = smooth(Af , bf , x, µ2) // µ2 smoothing steps, starting value x

In Algorithm 7.6, the two-level procedure is shown for solving Afx = bf . There, we

have a fine and a coarse level with symmetric matrices Af ∈ Rn×n and Ac ∈ Rm×m with

m < n, respectively. The relationship between these levels is expressed by a mapping

P ∈ Rn×m which allows the restriction and prolongation between levels. At the beginning

and end of the algorithm, a certain number of smoothing steps are computed. Here, the

function smooth(Af , bf , x0, µ) denotes the application of µ steps of the smoother applied to

the problem Afx = bf with starting value x0. In between the residual vector is projected

to the coarse level. There, the corresponding linear system is solved exactly. The coarse

level solution is then used as a correction for the fine level.

We impose a few assumptions to simplify the analysis. First, we assume that P ∈ Rn×m

is an orthogonal matrix with P TP = Im. Second, assume that the matrix Af is nonsingular

and the same holds for Ac. Third, we restrict ourselves to employing a Galerkin projection

Ac = P TAfP (7.28)

to obtain the coarse matrix. Note that in general, for a multilevel algorithm the interpo-

lation and prolongation matrices do not need to be each other’s transpose.

For a further analysis, we write the smoothing iterations in the form

x̃k+1 = Sx̃k + g, k = 0, 1, ... (7.29)

where S is the iteration matrix for one smoothing step. Then the application of µ smooth-

ing steps can be written as

x̃µ = Sµx̃0 + gµ, gµ =

µ−1∑
i=0

Sig.
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The coarse level correction (lines 3-5 in Algorithm 7.6) reads

x̂k+1 = x̂k + PA−1
c P T (bf −Af x̂k)

= (In − PA−1
c P TAf )x̂k + PA−1

c P T bf (7.30)

= T x̂k + bc

where

T = In − PA−1
c P TAf and bc = PA−1

c P T bf . (7.31)

Thus, one iteration of the two-level algorithm (Algorithm 7.6) can be expressed as an

iteration scheme with

xk+1 = Sµ2(T (Sµ1xk + gµ1) + bc) + gµ2

= Sµ2TSµ1xk + g̃µ1,µ2 (7.32)

= Gxk + g̃µ1,µ2 .

Here,

G = Sµ2TSµ1 and g̃µ1,µ2 = Sµ2(Tgµ1 + bc) + gµ2 . (7.33)

G is the iteration matrix of the two-level cycle, and the matrix T as defined in (7.31) acts

as the coarse level correction. µ1 and µ2 denote the number of smoothing iterations before

and after the coarse grid correction.

The extension to a hierarchy of levels l = 1, 2, ..., L is straight forward. In the fourth

line of Algorithm 7.6, the method requires us to solve the coarse level equation exactly.

However, Acec = P T r might still be too large to be solved directly. Instead, the two-level

idea can be applied recursively, and the coarse level correction can itself be approximated

by yet another two-level method on an even coarser level. The obtained recursive algorithm

is given Algorithm 7.7. There, we assume that we have a sequence of suitable projectors

Pl, l = 2, ..., L and set

A1 = Af , Al = P Tl Al−1Pl, l = 2, ..., L

to create a hierarchy of L levels. The function smooth(Al, bl, x
l
0, µ

l
1) denotes the application

of µl1 steps of the smoother applied to the problem Alx = bl with starting value xl0. The

initial call to this algorithm is simply

x = multilevel(1, bf , x
1
0)

where x1
0 is a starting vector for level one, e.g. the zero vector, and bf is the right hand side

on the finest level. The method then recursively calls itself iterating through the coarser
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and coarser levels. On each level l, we can choose the number of pre- and postsmoothing

steps µl1, µ
l
2 as well as the starting vector xl0.

Algorithm 7.7: Basic multilevel algorithm with L levels

1 Function x = multilevel(l, bl, x
l
0)

2 if l < L then

3 x = smooth(Al, bl, x
l
0, µ

l
1)

4 r = bl −Alx
5 e = multilevel(l + 1, P Tl+1r, x

l+1
0 )

6 x = x+ Pl+1e

7 x = smooth(Al, bl, x, µ
l
2)

8 else

9 x = A−1
L bL

The way this algorithm walks through the levels, has similarities to the letter V ,

therefore Algorithm 7.7 is known as a V -cycle. If line 5 is replaced by a double call of the

multilevel function, that is

e = multilevel(l + 1, P Tl+1r, multilevel(l + 1, P Tl+1r, x
l+1
0 )),

this method corresponds to a W -cycle [144, Ch. 13]. See Figure 7.3 for a schematic

representation of a V - and W - cycle with four levels.

−

−

−

−

l = 1

l = 2

l = 3

l = 4

−

−

−

−

Figure 7.3: Schematic representation of a V - and a W -cycle for a four-level algorithm.
A downwards arrow from level i to i+ 1 corresponds to computing µi1 pre-smoothing steps
on level i, and then computing the projected residual for the next level. An upwards arrow
from i + 1 to i corresponds to correcting the approximation on level i by the coarse level
correction from level i + 1, and then computing µi2 post-smoothing steps. On a node at
level 4, the exact solution A−1

L bL is computed.

7.4.2 Properties and General Convergence of the Two-Level Algorithm

We now return to the two-level algorithm, and highlight a few properties of the coarse

level correction.
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Lemma 24. The coarse level correction T defined in (7.31) is a projector.

Proof. By definition we have

T 2 = (In − PA−1
c P TAf )(In − PA−1

c P TAf )

= In − 2PA−1
c P TAf + PA−1

c P TAfP︸ ︷︷ ︸
=Ac

A−1
c P TAf

= In − PA−1
c P TAf = T.

Hence, T is a projector.

With the projector T , we can write Rn as a direct sum of two subspaces

Rn = P ⊕ T = Null(T )⊕ Range(T ).

This implies

Tx = 0, ∀x ∈ P and Tx = x, ∀x ∈ T .

It is a small further observation that

P = Null(T ) = Range(P ),

and

T = Range(T ) = Null(I − T )

= Null(PA−1
c P TAf )

= Null(P TAf ).

Additionally, P and T are orthogonal with respect to the Af -weighted inner product (if

Af is s.p.d) or, in general, for all x ∈ T : P TAfx = 0. By construction, application of T

annihilates components in the range of P , but leaves components in the kernel of P TAf

untouched.

We now turn to the convergence of the two-level iteration (7.32). In the literature, the

convergence theory has been established for many cases, and precise, technical conditions

are available. We refer to [157] and references therein. Here, however, we want to give a

very simple, and straight forward sufficient condition for convergence.

Lemma 25. Assume that the exact solution x? of Afx = bf is a fixpoint of the smoother

(7.29), e.g. x? = Sx? + g, then x? is also a fixpoint of the two-level algorithm (7.32).
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Proof. Inserting the exact solution x? into (7.32) we obtain

Gx? + f̃µ1,µ2 = Sµ2(T (Sµ1x? + gµ1) + bc) + gµ2

= Sµ2((In − PA−1
c P TAf )x? + PA−1

c P T bf ) + gµ2

= Sµ2((x? − PA−1
c P T bf + PA−1

c P T bf ) + gµ2

= Sµ2x? + gµ2

= x?.

Thus, x? is also a fixpoint of the two-level algorithm.

Convergence of the two-level iteration (7.32) is then proven by showing that ||G|| < 1

under certain assumptions on the smoother.

Lemma 26. Let the coarse level correction T be defined as in (7.31), and T = Range(T ).

If the smoother defined in (7.29) is a convergent method with ||S|| < 1, and fulfills

||Sµ2t|| ≤ ||t||||T || , ∀t ∈ T , (7.34)

where µ2 denotes the number of post-smoothing steps, then (7.32) describes a convergent

method.

Proof. We show that ||G|| < 1 with G as in (7.32). Note that

||G|| = ||Sµ2TSµ1 || ≤ ||Sµ2T || · ||Sµ1 ||
< ||Sµ2T ||

since ||S|| < 1. With x = s+ t, s ∈ P, t ∈ T we have

||Sµ2Tx|| = ||Sµ2T (s+ t)|| = ||Sµ2t||

≤ ||t||||T || ≤ ||x|| ∀x ∈ Rn .

The last inequality holds since t = Tx and therefore ||t|| ≤ ||T || · ||x||. Thus, ||G|| < 1 and

the method (7.32) is convergent.

The lemma is based on a very simple estimate. Therefore, it requires a very strict

condition on the smoother. This can be improved in many ways. First, it basically ignores

the pre-smoothing iterations. Second, the inequality (7.34) can be weakened significantly

depending on the specific angles between P and T .

Nevertheless, the lemma is useful in establishing a baseline. The assumption in (7.34)

requires the smoother to converge quickly on the subspace T . Elsewhere, the smoother can

have a very limited convergence rate. This is the case for many simple iteration methods

such as the Richardson iteration.
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Now, the general heuristic is that we find a subspace with basis P such that the

associated subspace T is the space where a selected smoother’s convergence is very fast.

We can approach this from both ends: either we select a smoother, check where it converges

fast, and then try to construct a suitable subspace P, or we select the space first, and then

try to combine it with a suitable smoother.

7.4.3 Simple Analysis for Eigenspace Decomposition

There is one special case that we want to investigate a little bit further. The ideal choice

of P , though not practical, would be a basis of the subspace containing the eigenvectors of

Af corresponding to the lowest eigenvalues. We want to show that this choice combined

with the simple Richardson iteration as a smoother leads to fast convergence.

Since Af is symmetric, it is diagonizable, i.e.

Af = V DV T , D = diag(λ1, ..., λn)

with eigenvalues λ1 ≤ · · · ≤ λn and an orthogonal matrix V . Note that in the linear

systems required for normal mode analysis, the eigenvalues are contained in an interval

(a, b) where a is a small negative number and b is a large positive number. In the examples

of Chapter 8, a ∈ [−100,−10] and b ∈ [105, 106].

Now, we fix 1 < p� n and let

V = [Vc, Vf ], D =

[
Dc

Df

]
,

Dc = diag(λ1, ..., λp−1)

Df = diag(λp, ..., λn)

be a splitting of V into Af invariant subspaces where Vc contains all eigenvectors for

eigenvalues λi < λp, and Vf contains all eigenvectors to eigenvalues λi ≥ λp. We choose

P = Vc, and obtain

Ac = V T
c AfVc = Dc.

As we will see later, the factor

K = 1− λp
λn

plays a significant role in the convergence of the smoother. The smaller this factor, the

faster the convergence in the smoothing step. However, decreasing this factor corresponds

to choosing a larger p. On the other hand, the smaller we choose the space Vc or p, the

easier it will be to solve the coarse level equation.

The coarse level corrector T with the choice of P = Vc is

T = I − PA−1
c P TAf = I − VcA−1

c V T
c Af

= I − VcV T
c

= VfV
T
f .
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Since T is actually symmetric, T is an orthogonal projector and ||T || = 1.

The smoother, a Richardson iteration, has the iteration matrix

S = I − ωAf .

Here, we choose ω = 1
λn

. Hence,

S = I − 1

λn
Af

⇒ SµV = V

(
I − 1

λn
D

)µ
.

Note, that under the assumption that
λp
λn

is sufficiently small, the smoother converges

quickly on Vf :

||SVf || = ||I −
1

λn
Df || = 1− λp

λn
� 1.

However, on Vc we have

||SVc|| = ||I −
1

λn
Dc|| = 1− λ1

λn
≈ 1,

and it might even be slightly larger than 1 in the presence of negative eigenvalues of

small magnitude. Note, that therefore ||S|| > 1 and we do not fulfill the assumptions

in Lemma 26. As already mentioned, though, the assumptions in Lemma 26 are very

strict. And in fact, since Range (Vc) is an S-invariant subspace with Range (Vc) ⊂ P, the

two-level algorithm will still converge [157, cf. Fact 1.1].

For the two-level algorithm with G as in (7.33) we have

GV = Sµ2TSµ1V = Sµ2VfV
T
f V

(
I − 1

λn
D

)µ1
= Sµ2Vf

(
I − 1

λn
Df

)µ1
= Vf

(
I − 1

λn
Df

)µ1+µ2

and thus

||G|| = ||GV || =
(

1− λp
λn

)µ1+µ2

= Kµ1+µ2 .

Hence, in this simple example the two-level algorithm has a convergence rate of Kµ1+µ2 .

Furthermore, it does not make any difference whether we iterate k times with G, or simply

once but with kµ1 and kµ2 smoothing steps. This behavior is specific to the very simple

special case using exact invariant subspaces of Af . The coarse grid correction solves its

part on Vc exactly in a single iteration. There is no benefit in multiple iterations.
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However, in practice, a few obstacles remain. Most importantly, a decomposition in

Vc and Vf is obviously not available, but instead target of the eigensolver which calls the

multilevel algorithm as a linear solver. Instead, we will have to work with approximations

of invariant subspaces. Also, the coarse level equation will not be solved exactly but will be

replaced by an approximation itself, introducing further challenges. This will be discussed

in the following sections.

7.4.4 A Subspace Based on Translation and Rotation

A key part of the multilevel approach is the generation of a hierarchy of levels which

provide descriptions of different resolutions of the underlying molecular model. A straight

forward idea from coarse graining (see e.g. ideas used for the proposed corotational filter

in Chapter 5) decomposes the molecule into disjunct clusters. Internal motion is removed

for each cluster, and the movement is restricted to translation and rotation. If the allowed

moves are collected in an orthonormal matrix P ∈ Rn×m, thus leads to the coarse Hessian

Ac = P TAfP . Multiple levels can easily be formed; a coarser level is obtained by simply

connecting two or more neighboring clusters to a new, larger cluster. Finer levels are

obtained by dividing clusters into multiple, smaller ones.

Each cluster yields three translation vectors and three rotation vectors. In Cartesian

coordinates, these vectors can be quickly computed. The translation vectors for a single

cluster with k atoms are a simple Kronecker product

N trans =
1√
k


1
...

1

⊗ I3 ∈ R3k×3 .

The corresponding rotational vectors for that cluster at position q = [q1, · · · , qk]T ∈ R3k

are

N rot = [(Ik ⊗ Ωx)q̂, (Ik ⊗ Ωy)q̂, (Ik ⊗ Ωz)q̂] ∈ R3k×3

with internal coordinates

q̂ = q −


1
...

1

⊗ 1

k

k∑
i=1

qi ∈ R3k

and generators of rotations

Ωx =

0 0 0

0 0 −1

0 1 0

 , Ωy =

 0 0 1

0 0 0

−1 0 0

 , Ωz =

0 −1 0

1 0 0

0 0 0

 .

Normal mode analysis is usually conducted in mass-weighted coordinates, and the
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translation and rotation vectors need to be transformed into that mass-weighted space.

The resulting vectors M1/2N trans,M1/2N rot for all m clusters are collected in a matrix

N ∈ Rn×6m with NTN = I6m.

Figure 7.4: Translation-and-rotation approach: decomposition of the peptide from Prob-
lem (B) in clusters depicted by cuboids. Each cuboid is then restricted to translation and
rotation.

Note that this approach can be modified in many ways. First, the restriction to local

translation and rotation is not a necessary requirement and other motions could also be

considered. Second, the clusters cut the molecule at selected bonds. Bonds, however, are

strong connections within a molecule. Decompositions which allow an overlap, that is,

which allow an atom to be part of two or maybe multiple clusters, might be better suited.

Basically, it is about whether we can approximately guess the slow subspace correctly, any

physically motivated decomposition can be incorporated.

7.4.5 A Subspace Based on Torsion Angles

A more elaborate and physically motivated subspace is used in quite a few coarse graining

models where a reduction to internal coordinates is performed. A very common choice

is the reduction to dihedral coordinates. Here, only a few selected (usually important

backbone) dihedral angles are kept as variables. The remaining components, i.e. all bonds

and angles, are kept fixed. This results in a rigid model which has some rotational degrees

of freedom along some significant chains.

In a very similar manner such ‘significant’ dihedrals can be identified and used to

construct a relevant subspace. However, the resulting N will be, in contrast to the shift-

and-rotation approach, a dense matrix. This is not a problem if a small enough number

of dihedrals is selected.

Similar to the translation-and rotation approach, the construction of the subspace is

straight forward. For each dihedral (with four assigned atoms), we compute the rotation
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around the axis ω =
xj−xi
||xj−xi|| indicated by the two interior, middle atoms i, j. For a single

torsion axis the idea is shown in Figure 7.5.

Figure 7.5: Torsion approach: a single torsional degree of freedom from the peptide of
Example (B) is shown. The black points indicate the atoms forming the dihedral, the
dashed line is the rotation axis.

However, there is one situation in which such an approach fails: if there are loops in

the main chain of a molecule, it is not clear how to construct the corresponding torsion

vectors. In a loop of a molecule, a dihedral cannot be freely moved since both ends of

the dihedral are connected through the loop. The problem is resolved by calculating the

response of the model when twisting the dihedral. This can be fairly expensive, though,

and instead a cheap approximation e.g. by a coarse grained model should be used.

The idea of using rotational degrees of freedom can also be used to refine the translation-

and-rotation approach. Recall, that each cluster of atoms was restricted to overall trans-

lation and rotation. In such a cluster, additional internal degrees of freedom can be

incorporated by allowing the movement along certain dihedral angles.

7.4.6 A Decomposition Approach

The methods presented in [39,40, 42] start by decomposing a large molecule into smaller,

connected domains. Assume we already have a sensible decomposition of a molecule into

some larger clusters. Instead of relying purely on translation and rotation, or torsional

degrees of freedom, one can simply compute the exact eigenpairs of A restricted onto each

cluster. Instead of one big eigenvalue problem, many much smaller ones have to be solved.

Since we are only interested in the slow directions, we simply discard the fastest eigenpairs

and take the remaining ones as a basis.

The decomposition approach has a clear relation to the translation-and-rotation ap-

proach. Both will yield similar results for small clusters since the slowest six eigenvectors

will most likely correspond to translation and rotation. However, larger clusters can be
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chosen here, and then other slow eigenvectors contribute.

7.4.7 Smoother

Usually, for the smoother (7.29), a cheap iterative method which rapidly converges on the

fast modes is chosen.

For solving Ax = b, classical iteration methods are of the form

xk+1 = Sxk + f,

and some examples are (where A = D−E−F , D diagonal, E,F strict lower/upper part)

• Richardson iteration: SR = I − ωA, fR = ωb with suitably chosen ω,

• Jacobi iteration: SJa = I −D−1A, fJa = D−1b,

• Gauss-Seidel iteration: SGS = I − (D − E)−1A, fGS = (D − E)−1b.

More details on each of these methods as well as a general convergence analysis can

be found in [144, Ch. 4]. Note, that we can write a Gauss-Seidel iteration in the form

xk+1 = SGSxk + fGS

= (I − (D − E)−1A)xk + (D − E)−1b

= (D − E)−1(Fxk + b)

and thus, one iteration step has a similar cost compared to one iteration step with the

Richardson iteration.



8 Numerical Results for Normal Mode Analysis

This section gives numerical results for the algorithms discussed in the previous chapter.

First, after presenting a few suitably chosen test examples, different numerical methods for

solving the eigenvalue problem are examined in Section 8.3. Afterwards, numerical results

for solving the linear system (A−σI)x = b are evaluated in Section 8.4. We present results

for the multilevel approach in Section 8.5.

8.1 Workflow

Fully computing a Hessian takes a lot of resources. First, the molecular problem needs

to be built and equilibrated. Then, the structure needs to be minimized until a local

minimum of the potential function has been found. Finally, the Hessian can be extracted.

BUILDstart

• generate position and structure

• select force field

• choice of parameter, ligands

MINIMIZE
• need highly accurate minimum

• steepest dsc., CG, l-BFGS, vv

evaluate
HESSIAN

• exact

• numerical, e.g. central difference

EIGENSOLVER?? process

Figure 8.1: Workflow for normal mode analysis

When building the problem, the given structure and position data must be thoroughly

checked. Since the data is usually obtained by some experimental methods, there may

be a large error in the position data due to the resolution limit of the employed method.

Frequently, some data, such as hydrogen bonds, have been left out and need to be added.

Then a force field, that is, a set of parameters and a functional form of the potential

landscape, has to be selected. This step is a choice, and many force fields for different

classes of molecules are available. Usually, the force field that most closely matches the

requirements is chosen. However, many force fields do not offer a complete parametrization

for every possible molecular situation. This is often the case if there are ligands (ions or

molecules that bind central metal atoms) present. Those interactions then need to be
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parametrized by some force field generation tool (such as SwissParam [60]). Finally,

we have a full atomistic model (position data and structure) combined with a complete

description of the force field which is ready for simulation.

Now, this model needs to be minimized with respect to its potential function. The

attained minimum should be highly accurate, since even minor deviations can lead to quite

large negative eigenvalues in the Hessian. Usually, multiple algorithms are employed. It is

observed that, for example, the steepest descent method is good for locating a minimum,

but the convergence is slow. Hence, after some initial minimization, a more elaborate

algorithm such as a CG or l-BFGS method is used for convergence until machine precision.

Sometimes, if the initial position data is very inaccurate it is common to first equilibrate

the molecular system with a regular molecular dynamics simulation e.g. with the Verlet

method.

When the minimum is attained, the Hessian can be calculated. If all second derivatives

of the (very complex) force field are available in an analytical form, the Hessian is directly

evaluated. Otherwise, a numerical approach e.g. with central differences can be taken.

The software package GROMACS provides solutions for all the required steps. It

can read a structure file and automatically assign the correct parameters according to a

user-selected force field. Multiple minimizers are implemented. It has the capability to

numerically compute the Hessian, and finally can compute a few of the smallest eigenvalues

by calling the implicitly restarted Arnoldi method provided by ARPACK.

8.2 Selection of Examples

An excellent database for molecular structures is the RCSB database [158]. It primarily

contains structure information of large biological molecules, such as proteins and nucleic

acids. Scientists can upload their results in a publicly available format. For each entry in

the archive, the method and resolution of the data is listed.

We chose six examples with varying degrees of freedom. Note, though, that in the com-

munity those examples are considered rather small structures. However, for larger struc-

tures, the necessary effort required to obtain a valid minimized structure grows rapidly.

Each structure in the RCSB database is identified by a unique four character combi-

nation. We chose 1PGB, an immunoglobin binding protein with 855 atoms, 4PTI, the

classical BPTI example with 892 atoms, 1TNG, a hydrolase inhibitor with 3,247 atoms,

1AI0, a human insulin hexamer with 4,740 atoms, 5C7X, a neutralizing antibody with

16,165 atoms, and 2BG9, a nicotinic acetylcholine receptor with 29,879 atoms. More

background information about each example can be found in the RCSB database. We

plot each molecule in its cartoon style in Figure 8.2.

For each of the examples, we went through the process described in Figure 8.1. We

modeled the interactions with the CHARMM force field, and set a cutoff radius for the

interactions to 10Å. After the initial setup of the problem and parametrization, we chose

to ‘relax’ each model with a short MD simulation (500,000 steps with the Verlet method



8.2. Selection of Examples 95

Figure 8.2: Schematic representation of the selected examples 1pgb, 4pti, 1tng (top row)
and 1ai0, 5c7x, 2bg9 (bottom row)

and 0.5fs step size) starting at 50◦K and then slowly cooling it to a near zero temperature.

From there on, the l-bfgs minimizer iterated until convergence to machine precision was

obtained (between 600 and 3072 iterations depending on the model). At the obtained

position, the Hessian was evaluated. The MD simulation took approximately 5 hours on

4 cores for the largest model, and the minimizer afterwards required approximately half

an hour. The bottleneck was evaluating the Hessian, which used more than 14 hours.

However, the code in GROMACS for evaluating the Hessian is still at the prototype stage.

We list some important facts in Table 8.3. From now on, we use the abbreviations H1,

H2, ..., H6 to refer to each of the problems. Across the models, the maximum number of

entries per row seems to be between 1,100 and 1,400. It is no surprise that this number

is similar for all molecules since it is directly related to the cutoff radius in the potential

which we chose to be the same for all models. As a consequence of an almost constant

number of entries per row, the density, that is, the relative amount of nonzero entries,
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PDB ID 1pgb 4pti 1tng 1ai0 5c7x 2bg9

#dof 2,565 2,676 9,741 14,220 48,495 89,637

max. entries/row 1,269 1,194 1,380 1,245 1,419 1,389

density 0.267 0.245 0.090 0.053 0.018 0.010

#MB 50.2 54.6 48.7 61.5 245.1 436.1

H1 H2 H3 H4 H5 H6

Table 8.3: Number of degrees of freedom, maximal nonzero entries per row in Hessian,
density, and storage required by Gromacs .mtx format (in MB) for each Hessian

quickly drops with increasing dimension. Also, there is relatively small variation of the

number of entries per row within each model. This is simply attributed to the fact that

each atom has a similar number of neighbors within the cutoff radius.

Figure 8.4: Sparsity pattern of the Hessian matrices, ‘nz’ denotes the number of nonzero
entries. From top left to bottom right: 1pgb, 4pti, 1tng, 1ai0, 5c7x and 2bg9

Furthermore, Table 8.3 lists the storage required to store the Hessian (actually, due to

the symmetry of the matrix only the lower or upper triangular is stored) in GROMACS

internal .mtx format (a version of compressed row storage). The anomaly in the storage

size for the two small problems is due to the fact that, in GROMACS, a full Hessian and

not a sparse Hessian is used for systems with less than 1,000 atoms. In Figure 8.4, the

structure of the obtained Hessians is shown.

Table 8.5 lists the smallest and largest eigenvalue of each Hessian. It is noteworthy
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H1 H2 H3 H4 H5 H6

#dof 2,565 2,676 9,741 14,220 48,495 89,637

λmin -2e-07 -2e-07 -0.005 -6e-08 -0.006 -583

λmax 5.3e05 5.0e05 5.3e05 5.3e05 5.4e05 5.5e05

Table 8.5: List of smallest and largest exact eigenvalue (λmin, λmax) of each Hessian

that the largest eigenvalue is independent of the dimension. Also note that the largest

problem, despite having converged to a local minimum (up to machine precision), has one

significant negative eigenvalue.

8.3 Solving the Eigenvalue Problem

In this section we test the methods introduced in Section 7.2 and compare their perfor-

mance on the six examples. A common goal in normal mode analysis is computing a

subspace corresponding to slow modes. Therefore, with each algorithm we try to compute

the 50 smallest eigenpairs up to residual accuracy of 1e-6.

8.3.1 Lanczos Method and Shift-and-Invert Iteration

In Figure 8.6 we plot the number of converged ‘target’ eigenvalues with magnitude smaller

than 1,000 versus the number of iterations when using the Lanczos method. As predicted,
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Figure 8.6: Lanczos method: number of converged eigenvalues with magnitude smaller
than 1000 vs number of iteration steps

it takes many iterations for the eigenpairs to converge. Note that for the two small

problems the convergence of small eigenpairs happens close to the full dimension of the

matrix. A similar behavior is expected for the larger problems. However, we simply

cannot iterate for that long because of two major issues: loss of orthogonality and memory

requirements.
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A major advantage of the Arnoldi process for symmetric matrices is the reduction

to the Lanczos process, that is, Hm reduces to a tridiagonal matrix, and in theory, a

three term recurrence allows for cheap iteration steps. However, due to roundoff, the

orthogonality between the vectors in Vm is quickly lost. In Figure 8.7 we see that this is

a serious issue even for quite small iteration numbers.
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Figure 8.7: Lanczos method: loss of orthogonality in Vm vs number of iterations m

In fact, the plot looks quite peculiar and exhibits a funny step behavior. While the

algorithm seems to maintain orthogonality for some steps, it then quickly drifts off a little

bit. It maintains the new level for a few steps, before it again quickly drifts to a new level.

There is an explanation to this behavior. Orthogonality is well maintained until a Ritz

vector converges. In this case, the orthogonality can be lost. For more details, we refer to

Chapter 13 in [159].

Therefore, the Lanczos process needs to be upgraded with some strategy of reothogona-

liation. Hence, a major advantage of the Lanczos process is lost. Full reorthogonalization is

not necessary and many more elaborate strategies exist, however, they still add significant

cost.

The second big drawback of the Lanczos process is its memory requirement. While the

iterations are very cheap, until convergence is reached many iterations have to be done.

Yet, we need to store the Lanczos vectors in Vm (the alternative, computing a second, run is

too expensive). For example for problem H6, 1000 steps require storing 1000 vectors of size

89,637. In regular doubles (64bits, 8bytes each) this amounts to roughly 700MB. However,

since many more iterations than 1000 are required, this quickly becomes unwieldy.

With shift-and-invert iteration the convergence can be accelerated significantly, how-

ever, at the cost of repeatedly solving large linear systems. In Figure 8.8 the number of

converged target eigenpairs versus the number of required iterations is shown. Two things

stick out. First, compared to the Lanczos method very few iterations are required. Sec-

ond, the convergence of eigenpairs starts almost immediately, and the convergence speed

does not majorly differ between the different problems. I.e. the smallest and the largest

problem require a similar number of iterations.
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Figure 8.8: Shift-and-invert iteration: number of converged eigenvalues with magnitude
smaller than 1000 vs number of iteration steps

We also computed harmonic Ritz pairs but could not find a major advantage. Polyno-

mial filtering can speed up convergence. However, one has to take into account that each

iteration step has the cost of multiple multiplications with A which (in our tests) nullified

the accelerated convergence.

8.3.2 The Implicitly Restarted Arnoldi Method (IRAM)

When using the IRAM, due to the restarts, the memory requirements do not increase

the more iterations we compute. We compare the number of required iterations until

convergence of the smallest 50 eigenvectors for standard and shift-and-invert mode in the

IRAM.

PDB ID 1pgb 4pti 1tng 1ai0 5c7x 2bg9

#dof 2,565 2,676 9,741 14,220 48,495 89,637

nit (standard) 6,440 6,717 12,659 17,851 28,850 35,117

nit (shift-and-invert) 154 154 154 154 154 154

H1 H2 H3 H4 H5 H6

Table 8.9: Number of outer iterations nit in IRAM when applied to the six test problems
in standard and shift-and-invert mode

Recall that in the standard mode each iteration consists of a matrix vector product

like in the Lanczos method. In the shift-and-invert mode, in each step a large linear

system with the shifted matrix A − σI has to be solved. We choose σ = 10 and give the

results in Table 8.9. In contrast to the Lanczos method without restarts, the IRAM in

standard mode can run many more iterations without running into memory restrictions.

Still, the standard mode requires a very high number of iterations. On the other hand,

when using the shift-and-invert mode only few iterations are required. This is no surprise
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since there is not much difference between the shift-and-invert iteration and the IRAM in

that mode. The obtained number of iterations nit with the IRAM in shift-and-invert mode

is 154 for all problems. This comes from the fact that in the IRAM there is no testing

for convergence during extending the search space (see 4. in Algorithm 7.2). The default

choice for the search space is twice the number of wanted eigenvectors. Thus, in the first

iteration a Lanczos basis of size 100 is computed. The restarting procedure then reduces

the factorization by half. In the second iteration, the basis is extended back to the size

100 by adding around 50 more Lanczos vectors. Note that the number of iterations could

be easily tuned by manually adjusting the size of search space.

Some troubles arise from having a symmetric indefinite matrix A. Since the negative

eigenvalues are of much smaller magnitude compared to the largest positive ones, it might

seem like a good idea to choose the shift σ in the IRAM such that the resulting matrix

A−σI is symmetric positive definite. This can provide some advantage since solving linear

systems with a positive definite matrix is more efficient and reliable than for indefinite

problems. However, there is a major drawback to this approach which jeopardizes all that

is gained.

H1 H2 H3 H4 H5 H6

nit for σ = 10 154 154 154 154 154 154

nit for σ = −100 183 184 216 228 261 362

#dof 2,565 2,676 9,741 14,220 48,495 89,637

Table 8.10: Influence of different choices for σ on the number of required iterations nit

in shift-and-invert mode

When the shift-and-invert iteration is performed and the shift is not chosen closest to

the targeted eigenvalues, the convergence speed significantly decreases. This phenomena

is shown in Table 8.10. In this table we list the number of required iterations until the

smallest 50 eigenpairs have converged. The shift σ = 10 is closer to the eigenvalues

of interest but the iteration matrix is then indefinite. The number of iterations stays

constant in this case. If σ = −100 is chosen the shift is further away from the eigenvalues

but the iteration matrix is now positive definite (except for problem H6 which still has

one negative eigenvalue). The number of required iterations, though, is much higher, and

seems to increase with the dimension of the problem.

8.3.3 Jacobi-Davidson Method

For performing computations with the Jacobi-Davidson method we use the JADAMILU

software package [160]. JADAMILU stands for JAcobi-DAvidson method with Multilevel

ILU preconditioning. It is coded in Fortran 77 and the name hints that its linear solver is

tuned by a multilevel ILU preconditioner.

The code runs an outer loop which repeatedly solves the Jacobi-Davidson correction



8.3. Solving the Eigenvalue Problem 101

equation to expand the search space. An inner loop iteratively solves the linear systems by

using a preconditioned CG or a symmetric QMR method. When using standard settings

for computing the smallest 50 eigenpairs the following results are obtained (see Table 8.11).

PDB ID 1pgb 4pti 1tng 1ai0 5c7x 2bg9

#dof 2,565 2,676 9,741 14,220 48,495 89,637

outer steps 195 186 197 194 183 379

inner steps 1,852 1,833 1,984 1,880 1,686 7,824

shift -5.75 -5.37 -3.02 0.00 0.00 -594

H1 H2 H3 H4 H5 H6

Table 8.11: Outer iterations in Jacobi-Davidson method

The number of inner and outer steps seems to be mostly independent of the problem

size. Problem H6 seems to be a special case due to its single negative eigenvalue. In this

case, JADAMILU chose a shift slightly below the negative eigenvalue. The number of

inner and outer iteration steps is drastically larger compared to the other problems. We

suspect that this behavior is similar to the behavior the IRAM exhibits when using a shift

further away from the eigenvalues.

By its performance, this method behaves somewhere in between the standard and

the shift-and-invert mode in the IRAM. Compared to the shift-and-invert mode, it uses

more outer steps, however, each step is only solved approximately. The numbers of inner

iteration steps combined, though, are significantly less than required by the standard

IRAM.

The JADAMILU has one very interesting possibility: in contrast to the Krylov meth-

ods, the user can supply a start space. If a good guess of the ‘target’ eigenspace is available,

the method is expected to converge much faster. Such an initial guess could be cheaply

obtained, e.g. by using an elastic network model.

8.3.4 Contour Integration: the FEAST Eigensolver

The FEAST eigensolver is distributed with the Intel MKL libraries under the name Intel

MKL Extended Eigensolver. As such, it is expected to be implemented very well. Espe-

cially on the smaller four problems it is very quick in converging. It only required 2 or 3

outer iterations for convergence to machine precision. However, one has to keep in mind

that each iteration consists of solving Ne (number of quadrature points, default: 8) linear

systems with m0 (here, 100) right hand sides each!

On the larger two problems, namely 5C7X and 2BG9, the eigensolver faces more

troubles: for 5C7X, it needs 7 iterations until machine precision, or 4 iterations until a

residual error of 1e-6. For problem 2BG9, the solver requires around 12GB in memory,

and also requires 3 iterations until 1e-6, and then runs until the maximum number of
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refinement loops allowed (by default: 20). However, it converges to a residual of around

1e-12 in a mere 5 steps but then cannot reach its own (very strict) stopping criteria.

Compared to the other eigensolvers, the FEAST eigensolver requires many more linear

systems to be solved, however, this method still has some benefits. Due to the algorithm,

parallelization is straight forward. Availability and level of implementation are also in

favor of this eigensolver.

8.3.5 Conclusion on Eigensolvers

Before we turn to investigate efficient ways to solve the arising linear systems, we want to

give a short summary of the discussed methods.

In general, there are two extremes. Methods, which are purely based on polynomial

matrix-vector multiplications with A, allow for cheap iteration steps, but require a very

large number of iterations. For methods entirely based on inverse iteration, quick conver-

gence can be expected, yet each step is costly.

The performance of methods based on inverse iteration depends strongly on the effi-

ciency when solving the resulting linear systems. If they can be solved at fair cost, all

inverse based methods (IRAM in shift-and-invert mode, JADAMILU, FEAST) are quite

efficient. Actually, there is not much of a difference, if each of the method’s parameters is

chosen suitably. In fact, the literature suggests that a simple shift-and-invert Lanczos ver-

sion is just as good, or maybe even better than contour integral based spectral projection

methods [161].

Some of the methods presented (JADAMILU, FEAST) can benefit from a properly

chosen starting space. Sometimes, a good starting space is available at low cost. In those

cases, it seems advisable to use such a method. Later, when presenting the multilevel

approach, we also try to guess certain subspaces corresponding to slow motion. The ideas

discussed there could also be used to construct a proper starting space. However, we did

not investigate this possibility further.

8.4 Solving the Shifted Linear System

The linear systems are of the type

(M−1/2HM−1/2 − σI)x = b ,

which we abbreviate by Ax = b. For testing, we set σ = 10 unless otherwise stated.

First, we show how direct methods perform for solving the linear system. Afterwards,

we investigate iterative methods. The multilevel approach is evaluated in Section 8.5.

8.4.1 Direct Methods: Factorization of Matrices

When using a direct method to solve the linear system Ax = b, with symmetric, and

indefinite A, the main step is computing the factorization A = LDLT . This task is not
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trivial for large sparse matrices. By reordering the matrix A, the fill-in in the L factor

is reduced. See [162] for a comparison and details of some implementations of available

direct solvers.

Here, we compare the sparsity and the fill-in obtained by reordering the matrix A with

the reverse Cuthill-McKee algorithm (RCM) and the symmetric approximate minimum

degree permutation (AMD). For problems H3 and H4, we plot the reordered matrix and

the obtained L factors (see Figure 8.12 and Figure 8.13). It is nice to observe how the RCM

attempts to minimize the bandwidth, and AMD tries to obtain an arrowhead structure.

Figure 8.12: H3: sparsity pattern of the reordered matrices. In top row, we plot the
reordered Hessian matrices, in the bottom row, we plot the corresponding L + LT factor.
Left: unsorted, middle: RCM, right: AMD, nz denotes the number of nonzero entries.

In Table 8.14, we list the number of nonzero entries (nnz) in the matrix A and the L

factors. By nnz(Lrcm) we denote the number of nonzero entries in the matrix L as obtained

from the LDLT decomposition applied to the matrix A reordered with the RCM. A similar

notation is used for the AMD. We also list the memory requirement in MB for storing

each matrix. In contrast to the values listed earlier, here, we use the storage required

by MATLAB without taking advantage of the symmetry. Also, MATLAB uses 8-byte

integers for storing the row index of non-zero elements. Thus, the values for #MB(A) are

more than twice as large compared to the .mtx format reported earlier.

The number of non-zero entries in the matrix L is significant lower when using a

reordering strategy. The RCM performs well on the three small Hessians, however, it is

less efficient than the AMD on the larger problems. On problem H4, the RCM fails to

decrease the fill-in at all. For a sparse matrix, the number of non-zero entries is directly
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Figure 8.13: H4: sparsity pattern of the reordered matrices. In top row, we plot the
reordered Hessian matrices, in the bottom row, we plot the corresponding L + LT factor.
Left: unsorted, middle: RCM, right: AMD, nz denotes the number of nonzero entries.

PDB ID 1pgb 4pti 1tng 1ai0 5c7x 2bg9

#dof 2,565 2,676 9,741 14,220 48,495 89,637

nnz(A) 1.76m 1.75m 8.50m 10.7m 42.8m 76.1m

nnz(L) 2.82m 2.80m 33.8m 45.5m 307m 1,077m

nnz(LRCM) 1.88m 1.92m 22.0m 46.5m 234m 634m

nnz(LAMD) 2.60m 2.58m 24.7m 31.5m 136m 496m

#MB(A) 26.8 26.8 130 164 653 1,161

#MB(L) 43.1 42.8 516 694 4,677 16,437

#MB(LRCM) 28.5 29.4 336 710 3,571 9,682

#MB(LAMD) 39.7 39.3 377 480 2,078 7,569

H1 H2 H3 H4 H5 H6

Table 8.14: Fill-in and memory usage of the LDLT decomposition applied to the matrix
A reordered with RCM and AMD

related to the amount of memory required to store the matrix. Hence, the reordered L

factors are less demanding in memory. Though, they quickly fill a couple of GB even for

the problems under consideration here.
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The amount of fill-in is large. To estimate the amount of fill-in εfill, we divide the

number of non-zero entries in LAMD or LRCM (whichever is lower) by the number of

non-zero entries in the lower triangular part of A, that is approximately nnz(A)/2:

εfill =
2 min{nnz(LAMD),nnz(LRCM)}

nnz(A)
.

For problems H1 to H6 we obtain the fill-in factors 2.14, 2.19, 5.18, 5.89, 6.36, and 13.0.

Let us make a crude estimate of the computational cost of a regular Lanczos iteration

compared to a shift-and-invert iteration. The main computational task of the Lanczos

iteration is a matrix-vector multiplication with A. This costs approximately 2·nnz(A) op-

erations each. For the shift-and-invert method, first we need to compute the factorization

A = LDLT once. Each step then requires the triangular and diagonal solves Lz = b,

Dy = z and LTx = y for some right-hand side b.

Let us ignore the factorization cost for the moment, and compare the cost for each

iteration. The two triangular solves require approximately 2·nnz(L) operations each, and

the diagonal solve is of negligible computational cost. Each step in the shift-and-invert

iteration thus costs 4·nnz(L)= 2 · εfill·nnz(A) operations. Therefore, the fill-in factor εfill

provides us with an estimate of how much more expensive solving Ax = b is compared to

a matrix-vector multiplication with A.

Obviously, the factorization cost is the main computational task for the shift-and-invert

iteration. In the end, it comes down to the question whether the LDLT factorization

can be computed cheaper than the cost of the many matrix-vector multiplications in

the Lanczos iteration. For example, in problem H5, the IRAM requires 28,850 matrix-

vector multiplications until convergence. If we subtract the cost for the iterations in the

shift-and-invert iteration (≈ 150 · εfill), we see that shift-and-invert iteration breaks even

when the factorization is cheaper than approximately 27,896 matrix-vector multiplications.

We want to emphasize again that this a very crude estimate since we simply neglected

the computational cost of anything other than the matrix-vector multiplications for both

algorithms.

8.4.2 Iterative Methods

Iterative methods are usually employed when solving large, sparse linear systems of equa-

tions. However, the MINRES method without preconditioning requires many iterations

until convergence. In Table 8.15, we list the number of iterations until a relative residual

of approximately 1.49e-08 (=
√

mach. prec.) has been obtained. The number of iterations

for solving Ax = b is averaged over ten random vectors b.

Clearly, the number of iterations is unacceptably high, and one should not use an

iterative method without a preconditioner for these applications.
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PDB ID 1pgb 4pti 1tng 1ai0 5c7x 2bg9

nit 916.2 1,082 1,558 1,925 6,778 13,751

H1 H2 H3 H4 H5 H6

Table 8.15: Number of iterations nit for the MINRES Method without using a precondi-
tioner

8.4.3 Preconditioned Iterative Methods

ILUPACK [154] is a very versatile software package for solving large and sparse linear

systems. At its core, it computes an incomplete LU or LDLT decomposition which then

is used as a preconditioner in a linear solver. Trying to keep as much sparsity as possible,

it offers many different reordering strategies. By adjusting drop tolerances, the fill-in can

be controlled. Furthermore, ILUPACK provides the ability to use a multilevel framework

for the preconditioner. Finally, several built-in iterative solvers such as the symmetric

QMR complete the package.
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Figure 8.16: Fill-in εfill vs number of iterations nit with ILUPACK on Hessians H1-H3
(top row) and H4-H6 (bottom row)

Thus, ILUPACK allows for balancing between the effort for precomputing a factoriza-

tion and the number of iterations required in the iterative solver. In general, the more

expensive the factorization (both in computing time and storage), the less iterations are
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required later (and vice versa). Since the eigensolvers required around 150 solves, and the

preconditioner only needs to be computed once, it is worth investing some effort into the

decomposition.

We present the results as obtained by ILUPACK in the following way. For each model,

we compute the factorization for all available reordering methods and a number of different

drop tolerances. ILUPACK has six different reordering strategies, and we chose drop

tolerances from 1e-2 to 1e-6. Then, for each factorization, we compare the fill-in to the

number of iterations the preconditioned symmetric QMR requires on average to solve a

linear system. In Figure 8.16 we plot the results for the Hessian matrices.

We do not specify to which reordering strategy each of the points belong. In fact, there

is no clear superior or inferior reordering method. As we can see, the overall differences are

fairly low. The results clearly show the interplay between the fill-in εfill and the number of

iterations nit. A low number of iterations in the solver can be obtained with a high fill-in

and vice-versa.

E.g. for 2BG9, if a fill-in of 4 can be handled, the method allows for convergence in

around 10 steps. So, ignoring all other costs, the eigensolver requires 150 solves times 10

iterations. Each iteration requires a preconditioned application of A, so with a fill-in of 4,

this costs roughly 5 MV. In total this is of the order 7,500 MV (� 35, 117 MV what the

standard IRAM requires).

Figure 8.17: ILUPACK preconditioner for Hessian H5, three levels, reordering ‘metise’,
drop tolerance 1e-4

In Figure 8.17 we plot the multilevel decomposition for the model 5C7X. We chose the
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reordering strategy ‘metise’, and used a drop tolerance of 1e-4. The green and blue parts

are just the transpose of each other (since it is a symmetric problem). In fact, only one

set is stored. The red parts are the connection between levels, of which there are three in

this example. For more information about the multilevel strategy we refer to [154].

8.5 Multilevel Algorithm

In this section, we present the numerical results when using a multilevel approach such as

proposed in Section 7.4. We compare the numerical convergence factors obtained when

using different subspaces. In detail, we show the results for BPTI, that is, the model

problem H2. These results are presented throughout Section 8.5.1 to Section 8.5.4. After-

wards, in Section 8.5.5, we give results for H4. A short summary of the results for H6 can

be found in Section 8.5.6.

Recall, that BPTI has 892 atoms, and hence the Hessian is a 2676-by-2676 matrix.

BPTI has 58 residues. We construct the subspaces based on the ideas presented earlier,

and test them together with the Richardson and Gauss-Seidel iteration in the two-level

algorithm (7.32). We did not use the Jacobi iteration, since it never converges for the

problems under consideration here. Also, we start by considering the two-level algorithm

(Algorithm 7.6) which has one coarse and one fine level. In particular, that means that the

coarse grid correction equation is solved exactly. Later, we will also consider a hierarchy

of levels with more than two levels (see Section 8.5.4).

8.5.1 Subspaces Based on Translation and Rotation

Subspaces following the idea proposed in Section 7.4.4 are very easy to construct. They

do not even require any knowledge of the Hessian. Instead, they are purely based on the

underlying structure.

Using simple heuristics, we construct a sequence of seven subspaces. A very coarse

subspace of dimension 348 is obtained by simply using one translation-and-rotation cluster

for each residue. For constructing a finer subspace, we use the strategy employed to

construct the corotational filter: we force all hydrogen bonds (which are expected to be

the fastest bonds) into clusters. Usually, a cluster decomposition with clusters of sizes two

to four is obtained. Atoms which do not have a hydrogen bond form clusters of size one.

The resulting subspace is of dimension 1987.

Starting at these two ‘basic’ subspaces, we construct a total of seven subspaces by

dividing or combining clusters. The full list with a short description is given in Table 8.18.

We abbreviate the subspaces by RT1 to RT7.

In Figure 8.19, we plot the original Hessian aside two coarse Hessians which correspond

to the Galerkin projection with RT5 and RT2. We now evaluate the performance as follows:

for each combination of smoother and subspace, we compute 20 steps of the two-level cycle

for ten random vectors b with unit length. We then plot the norm of the residual versus
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ID dimension description

RT1 174 two residues per cluster

RT2 348 one cluster per residue

RT3 510 split clusters larger than 14 atoms in subspace 2

RT4 738 split clusters larger than 10 atoms in subspace 2

RT5 1499 subspace 7 but try to merge clusters of size one and two

RT6 1937 subspace 7 but prohibit clusters with one atom

RT7 1987 cluster decomposition based on hydrogen bonds

Table 8.18: List of the constructed translation-and-rotation subspaces for H2

Figure 8.19: Sparsity pattern of full and coarse Hessians for subspaces RT5 and RT2

the iteration number. Also, we compute the numerical convergence factor as the quotient

between two consecutive residual norms.

In our experiments, the Gauss-Seidel method converges much faster than the Richard-

son iteration. Therefore, in Algorithm 7.6 we set µ1 = µ2 = 1 when using the Gauss-Seidel

method as smoother, and µ1 = µ2 = 2 when using the Richardson iteration. In Figure 8.20

we plot the results for all subspaces listed in Table 8.18. On the left, we plot the relative

residual norm

||ri|| = ||b−Axi||/||b||

where xi is the approximation obtained after i steps with the two-level algorithm. On the

right, we plot a numerical convergence factor

ci = ||ri||/||ri−1||.

All methods converge with some factor smaller than 1. However, the convergence speed

is extremely slow for the subspaces RT1 to RT4. This is not really surprising, since these

subspaces are quite small.
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Figure 8.20: Relative residual norm ||ri|| and convergence factor ci for subspaces RT1-
RT4 (top row) and RT5-RT7 (bottom row) in combination with Richardson iteration (RI)
and Gauss-Seidel iteration (GS)

Much more promising are the results for the larger subspaces RT5-RT7. We can observe

a very good convergence speed for the two large subspaces RT6 and RT7 combined with

the Gauss-Seidel method. However, the dimension of these subspaces is fairly large. The

Gauss-Seidel method with the subspace RT5 performs well, considering that subspace RT5

is of roughly half the dimension of the original Hessian.

We give the convergence factor and residual at step 20 for other numbers of smoothing

steps in a table. In Table 8.21, this is done for the Richardson iteration. We use two,

four and ten smoothing steps each for pre- and for post-smoothing. Good convergence is

obtained for subspaces RT6 and RT7 when using many smoothing steps.

In Table 8.22, the results for the Gauss-Seidel iteration are plotted. We use one,

two and five smoothing steps each for pre- and post-smoothing. The results are much

better compared to the Richardson iteration, and a convergence factor of c20 = 0.268

can be obtained. As before, though, this corresponds to choosing a fairly large subspace

and using many pre- and post-smoothing iterations. Considering the dimension of the

subspace, RT5 again performs very well. The convergence factor is between c20 = 0.8023

and c20 = 0.6719.

Let us investigate how well the exact eigenvectors vi ∈ V of the Hessian can be repre-

sented in each of the subspaces P . As a measure, we compute the norm of the projection

of vi onto P , that is ||PP T vi||. Here, P is an orthonormal basis of the subspace, and
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µ1 = µ2 = 2 µ1 = µ2 = 4 µ1 = µ2 = 10

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

RT1 3.792e-01 0.9825 2.852e-01 0.9791 1.956e-01 0.9742

RT2 3.656e-01 0.9789 2.730e-01 0.9759 1.662e-01 0.9685

RT3 3.591e-01 0.9774 2.525e-01 0.9723 1.495e-01 0.9659

RT4 3.702e-01 0.9748 2.497e-01 0.9702 1.206e-01 0.959

RT5 1.372e-01 0.9375 4.222e-02 0.9127 8.088e-03 0.8648

RT6 1.417e-02 0.9051 2.849e-03 0.8433 3.453e-05 0.6844

RT7 2.005e-03 0.8372 8.071e-05 0.7042 7.258e-09 0.4368

Table 8.21: Richardson iteration and subspaces RT1-RT7: influence of number of
smoothing steps on numerical convergence factor and relative residual norm as obtained
after 20 steps.

µ1 = µ2 = 1 µ1 = µ2 = 2 µ1 = µ2 = 5

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

RT1 1.964e-01 0.9669 1.082e-01 0.9569 4.871e-02 0.9425

RT2 1.503e-01 0.959 8.200e-02 0.9506 3.243e-02 0.9332

RT3 1.310e-01 0.9556 8.305e-02 0.9496 2.871e-02 0.9276

RT4 1.282e-01 0.9504 5.414e-02 0.9325 1.946e-02 0.9014

RT5 2.671e-03 0.8023 3.004e-04 0.742 1.985e-05 0.6719

RT6 1.111e-10 0.3224 2.979e-11 0.2945 7.198e-13 0.3025

RT7 2.996e-11 0.3039 5.768e-11 0.2777 3.576e-12 0.268

Table 8.22: Gauss-Seidel iteration and subspaces RT1-RT7: influence of number of
smoothing steps on numerical convergence factor and relative residual norm as obtained
after 20 steps.

vi ∈ Vexact is an exact, orthonormal eigenvector. E.g. ||PP T vi|| = 1 if the subspace en-

tirely contains the eigenvector vi, and ||PP T vi|| = 0 if the subspace is orthogonal to that

eigenvector.

The results are plotted in Figure 8.23 for the subspaces RT1-RT7. For visual pur-

poses, we sorted the eigenvectors in V by their eigenvalue in ascending order, that is, the

eigenvectors corresponding to the lowest eigenvalues are left.

Clearly, Figure 8.23 indicates why some of the subspaces are much better than others.

Also, when dividing the decomposition from subspace RT2 into the decomposition for

subspace RT4, we did not respect the underlying molecular structure but simply cut the

clusters in half. Apparently, this is not a good strategy, since subspace RT4 has the highest
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Figure 8.23: Representation of an eigenvector in the subspaces RT1-RT7. Eigenvectors
are sorted in ascending order.

overlap with fast eigenvectors.

8.5.2 Improving the Subspace with Dihedrals

The molecular structure of BPTI has some salt bridges, and thus long loops inside the

main chain. Hence, a direct approach with dihedrals does not work. Instead, we again

decompose the molecule into clusters corresponding to the residues. For each residue, we

compute the six translation and rotation vectors (compare to subspace RT2 in the previous

section) and then inject further vectors based on the torsional directions indicated by some

of the dihedrals inside the cluster.

Our chosen selection strategy was to exclude all dihedrals which connect residues. Also,

we exclude all dihedrals which are part of a loop within a residue (e.g. aromatic carbon

ring). Then, the obtained subspace has dimension 611. We abbreviate this subspace with

TO (for torsion).

µ1 = µ2 = 2 µ1 = µ2 = 4 µ1 = µ2 = 10

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

RT2 3.656e-01 0.9789 2.730e-01 0.9759 1.662e-01 0.9685

TO 3.540e-01 0.9749 2.246e-01 0.9681 1.226e-01 0.9615

Table 8.24: Richardson iteration and subspaces RT2 and TO: influence of number of
smoothing steps on numerical convergence factor and relative residual norm as obtained
after 20 steps

The results of that strategy are given in Table 8.24 and Table 8.25. They do not seem

to provide a specific benefit. The new subspace TO gives results which are in between the
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results for subspaces RT3 and RT4 of the precious section.

µ1 = µ2 = 1 µ1 = µ2 = 2 µ1 = µ2 = 5

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

RT2 1.503e-01 0.959 8.200e-02 0.9506 3.243e-02 0.9332

TO 1.054e-01 0.9519 5.722e-02 0.9445 2.567e-02 0.9315

Table 8.25: Gauss-Seidel iteration and subspaces RT2 and TO: influence of number of
smoothing steps on numerical convergence factor and relative residual norm as obtained
after 20 steps
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Figure 8.26: Representation of an eigenvector in the subspaces RT2 and TO. Eigenvec-
tors are sorted in ascending order.

Similar to Figure 8.23, we compare the eigenspace overlap for the dihedral space. The

results are given in Figure 8.26. There we see, that the dihedral space is a bit better than

the RT2, however, not much better.

8.5.3 Domain Decomposition and Subspaces

Domain decomposition as a basis for constructing a subspace was discussed in Section 7.4.6.

We divide BPTI in its 58 residues. Then, for each residue, we first compute the six

translation and rotation vectors, and then elevate that subspace by a number of slow

eigenvectors of the Hessian restricted to that residue. Basically, the large eigenvalue

problem is divided into many smaller eigenvalue problems. In the case of BPTI, 58 small

eigenvalue problems with sizes in between 21-by-21 and 78-by-78 have to be solved.

For each residue we take dη · Nrese additional slow eigenvectors, where η is a scaling

factor and Nres denotes the number of degrees of freedom of that residue. We construct

a series of subspaces with η = 0.1, 0.2, ..., 0.6. We list their dimension in Table 8.27.

We plot the sparsity pattern of three matrices in Figure 8.28. Left is the original

Hessian, the middle one is the coarse Hessian corresponding to subspace DD4, and the right
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ID DD1 DD2 DD3 DD4 DD5 DD6

dimension 644 909 1170 1437 1696 1976

η 0.1 0.2 0.3 0.4 0.5 0.6

Table 8.27: List of the constructed domain decomposition subspaces

Figure 8.28: Sparsity pattern of full and coarse Hessians for subspaces DD4 and DD1
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Figure 8.29: Relative residual norm ||ri|| and convergence factor ci for subspaces DD1-
DD3 (top row) and DD4-DD6 (bottom row) in combination with Richardson iteration (RI)
and Gauss-Seidel iteration (GS)

matrix is the coarse Hessian for DD1. In contrast to the subspaces based on translation

and rotation, visually, there is not much of a resolution difference between the two coarse
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Hessians. The reason is that the subspaces here are always based on an entire residue,

and not on smaller entities.

As before, we plot results for µ1 = µ2 = 1 (Richardson iteration: µ1 = µ2 = 2)

smoothing steps in Figure 8.29. Again, the methods converge with some factor smaller

than 1. The convergence speed is much better compared to the subspaces RT1-RT7.

More results for different numbers of smoothing steps can be found in Table 8.30 and

Table 8.31. Note that for the methods converging to machine precision in less than 20

steps, we give the convergence factor just before convergence. For all others we use the

numerical convergence factor after 20 steps.

µ1 = µ2 = 2 µ1 = µ2 = 4 µ1 = µ2 = 10

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

DD1 2.532e-01 0.9613 1.442e-01 0.9477 4.379e-02 0.9149

DD2 1.279e-01 0.928 3.741e-02 0.884 2.579e-03 0.7861

DD3 3.802e-02 0.878 5.696e-03 0.8103 6.779e-05 0.6642

DD4 7.526e-03 0.8189 4.227e-04 0.7207 7.211e-07 0.5461

DD5 5.086e-04 0.7167 3.067e-06 0.5608 4.879e-11 0.3345

DD6 1.930e-05 0.6197 2.648e-09 0.402 4.252e-14 0.1448

Table 8.30: Richardson iteration and subspaces DD1-DD6: influence of number of
smoothing steps on numerical convergence factor and relative residual norm as obtained
after 20 steps.

µ1 = µ2 = 1 µ1 = µ2 = 2 µ1 = µ2 = 5

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

DD1 1.668e-02 0.8559 2.157e-03 0.7931 1.653e-04 0.7092

DD2 1.098e-03 0.7436 3.519e-05 0.6433 2.082e-06 0.5809

DD3 7.181e-06 0.5746 2.555e-07 0.5008 1.854e-08 0.4516

DD4 8.447e-09 0.4113 2.040e-10 0.3508 3.073e-12 0.2979

DD5 4.667e-12 0.2694 7.614e-13 0.2314 3.358e-11 0.1917

DD6 7.326e-12 0.1666 3.959e-12 0.09701 2.320e-12 0.08191

Table 8.31: Gauss-Seidel iteration and subspaces DD1-DD6: influence of number of
smoothing steps on numerical convergence factor and relative residual norm as obtained
after 20 steps.

In general, we can expect faster convergence using the Gauss-Seidel method instead

of the Richardson iteration. Even when using a single pre- and post-smoothing step with

the Gauss-Seidel method, the two-level algorithm combined with DD4 converges with a
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factor of 0.4113. With more smoothing steps, faster convergence can be achieved.

Finally, we plot the eigenspace-subspace overlap in Figure 8.32. Compared to the

subspaces RT1-RT7, the subspaces DD1-DD6 are much better in reproducing the slow

eigenvectors.
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Figure 8.32: Representation of an eigenvector in the subspaces DD1-DD6. Eigenvectors
are sorted in ascending order.

8.5.4 Multilevel Algorithms with Three and Four Levels

So far, we only considered the two-level cycle. Here, we show numerical convergence for

one three-level algorithm and one four-level algorithm (cf. Algorithm 7.7). In general, it

is advantageous to choose subspaces from the same category (e.g. either from the RT*

series or the DD* series) because we can then be assured that prolongation and restriction

operators between levels are guaranteed to have beneficial properties such as sparsity and

simplicity. We only give results for subspaces in the DD* series, since they yield better

results. Algorithms using translation and rotation subspaces also work, yet at slightly

worse factors.

We start with three levels, and construct a three-level algorithm with subspaces from

domain decomposition, specifically, subspaces DD1 and DD4. Note that subspace DD4

is a true extension to subspace DD1, so there is a simple prolongation and interpolation

between them. The corresponding matrices are the ones shown in Figure 8.28. We inves-

tigate different numbers of smoothing steps, and also show results for V - and W -cycles

(see Table 8.33 and Table 8.34). We choose the same number of pre- and post-smoothing

steps for all levels, so setting µ1 = µ2 = 2 is short for setting µl1 = µl2 = 2, l = 1, 2 in

Algorithm 7.7.

The convergence speed is somewhere in between the expected factors for the smaller

and larger subspaces. Clearly, convergence can be accelerated by choosing more smoothing
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µ1 = µ2 = 2 µ1 = µ2 = 4 µ1 = µ2 = 10

||r20|| c20 ||r20|| c20 ||r20|| c20

V -cycle 1.371e-01 0.9461 5.087e-02 0.9197 1.077e-02 0.8676

W -cycle 9.677e-02 0.9336 3.068e-02 0.8999 2.561e-03 0.8127

Table 8.33: Richardson iteration for a three-level algorithm with DD1 and DD4: influence
of number of smoothing steps on numerical convergence factor and relative residual norm
as obtained after 20 steps.

µ1 = µ2 = 1 µ1 = µ2 = 2 µ1 = µ2 = 5

||r20|| c20 ||r20|| c20 ||r20|| c20

V -cycle 5.246e-04 0.7326 4.999e-05 0.6703 1.747e-06 0.5861

W -cycle 9.089e-06 0.6025 1.594e-07 0.5179 2.621e-09 0.4208

Table 8.34: Gauss-Seidel iteration for a three-level algorithm with DD1 and DD4: influ-
ence of number of smoothing steps on numerical convergence factor and relative residual
norm as obtained after 20 steps.

steps in the inner levels. Then, the limit convergence factor is expected to be close to the

factor of the two-level algorithm with exact inner solves.

It makes much more sense to choose different smoothing steps for the different levels.

In a four-level approach, we use subspaces DD1, DD2 and DD4 and choose as smoothing

steps µ1
1 = µ1

2 = 1, µ2
1 = µ2

2 = 3 and µ3
1 = µ3

2 = 5 (outer to inner levels, cf. Algorithm 7.7)

for the Gauss-Seidel iteration. As before, we choose twice the number of smoothing steps

for Richardson iteration. The following results are obtained (see Table 8.35).

V -cycle W -cycle

||r20|| c20 ||r20|| c20

RI 3.063e-02 0.8854 1.661e-02 0.8448

GS 1.443e-05 0.6128 3.689e-08 0.4376

Table 8.35: Richardson (RI) and Gauss-Seidel (GS) iteration for a four-level algorithm
with DD1, DD2 and DD4: numerical convergence factor and relative residual norm as
obtained after 20 steps for V - and W -cycle.

Here, for the W -cycle, the results are very close to the corresponding results reported in

Table 8.30 and Table 8.31. Especially, using only one (Richardson: two) outer smoothing

steps make this choice much cheaper than the only slightly better results in Table 8.33

and Table 8.34.
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8.5.5 Results for H4

After giving the results in detail for H2, we now quickly give some of the results for H4.

H4 has around five times the number of atoms compared to H2, and its Hessian is a

14,220-by-14,220 matrix.

ID H4-RT1 H4-RT2 H4-RT3 H4-RT4 H4-RT5 H4-RT6 H4-RT7

dim. 918 1,836 2,988 3,780 7,572 10,351 10,525

Table 8.36: List of the constructed rotation-and-translation subspaces for H4

In Table 8.36, we list the dimension of the rotation and translation subspaces. To

avoid confusion, we abbreviate those subspaces with H4-RT*. We use exactly the same

heuristics as detailed in Table 8.18.

µ1 = µ2 = 1 µ1 = µ2 = 2 µ1 = µ2 = 5

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

H4-RT1 1.832e-01 0.9658 1.086e-01 0.9584 4.870e-02 0.9498

H4-RT2 1.615e-01 0.9632 8.158e-02 0.9519 3.632e-02 0.9415

H4-RT3 1.436e-01 0.9598 7.590e-02 0.9493 2.902e-02 0.9419

H4-RT4 1.200e-01 0.9546 6.763e-02 0.9496 3.033e-02 0.9419

H4-RT5 1.719e-02 0.8965 6.701e-03 0.8654 9.728e-04 0.8154

H4-RT6 2.515e-09 0.3952 6.547e-11 0.3397 7.406e-12 0.3226

H4-RT7 3.295e-10 0.3539 1.339e-11 0.3163 1.670e-12 0.297

Table 8.37: Gauss-Seidel iteration and subspaces H4-RT1 to H4-RT7: influence of num-
ber of smoothing steps on numerical convergence factor and relative residual norm as
obtained after 20 steps.

For brevity, we only give results for the Gauss-Seidel iteration (Table 8.37). Similar to

the behavior on H2, the convergence factor is good for the large subspaces H4-RT6 and

H4-RT7. For the smaller subspaces, the convergence is significantly slower.

When we follow the approach of domain decomposition for H4, we obtain the subspaces

listed in Table 8.38. Again, we only give results with the Gauss-Seidel iteration (see

Table 8.39).

ID H4-DD1 H4-DD2 H4-DD3 H4-DD4 H4-DD5 H4-DD6

dimension 3,420 4,818 6,240 7,650 9,048 10,482

η 0.1 0.2 0.3 0.4 0.5 0.6

Table 8.38: List of the constructed domain decomposition subspaces for H4
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µ1 = µ2 = 1 µ1 = µ2 = 2 µ1 = µ2 = 5

ID ||r20|| c20 ||r20|| c20 ||r20|| c20

H4-DD1 3.850e-02 0.9106 1.137e-02 0.8754 1.510e-03 0.8231

H4-DD2 3.078e-03 0.7978 3.579e-04 0.7344 4.334e-05 0.6901

H4-DD3 4.087e-05 0.6483 6.018e-06 0.6027 5.668e-07 0.5636

H4-DD4 7.381e-08 0.4561 1.664e-09 0.4018 2.440e-10 0.3902

H4-DD5 7.558e-12 0.2894 5.446e-12 0.2547 2.216e-12 0.2492

H4-DD6 8.233e-13 0.1796 2.895e-12 0.1663 2.339e-12 0.1598

Table 8.39: Gauss-Seidel iteration and subspaces H4-DD1 to H4-DD6: influence of num-
ber of smoothing steps on numerical convergence factor and relative residual norm as ob-
tained after 20 steps.

The convergence is a lot faster on all domain decomposition subspaces compared to

the H4-RT* subspaces of similar dimension. A good convergence factor of c20 ≈ 0.4 is

already obtained with H4-DD4. Note that this subspaces has around half the dimension

of the original Hessian.
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Figure 8.40: Representation of an eigenvector in the subspaces H4-DD1 to H4-DD6.
Eigenvectors are sorted in ascending order.

We plot the projection of the eigenvectors into the subspaces H4-DD1 to H4-DD6 in

Figure 8.40. For H4, the combined results indicate that an efficient multilevel algorithm

can likely be constructed with a proper choice of subspaces.
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8.5.6 Results for H6

It is nice to see that the multilevel approach works well on the smaller problems. However,

on current hardware, these problems can be solved directly since the memory requirements

of a factorization can easily be handled. For the larger problems, though, the direct ap-

proach becomes quickly unfeasible. Therefore, it is of great interest whether the multilevel

approach actually works for large problems. The problem H6 is on the verge of being too

large to be handled by direct methods on common hardware. Recall that H6 has Hes-

sian matrix of dimension 89,637-by-89,637 containing approximately 76,1 million non-zero

entries.

ID H6-DD1 H6-DD2 H6-DD3 H6-DD4 H6-DD5 H6-DD6

dimension 20,992 29,953 38,846 47,648 56,367 65,738

η 0.1 0.2 0.3 0.4 0.5 0.6

Table 8.41: List of the constructed Domain Decomposition Subspaces for H6

We only give results for the Gauss-Seidel method combined with domain decomposition

subspaces (see Table 8.41). Furthermore, the results are averaged over 5 runs and not 10

runs as previously. Also, we have to choose a slightly different shift, since for the shift

σ = 10, the matrix is very close to singular. We set σ = −10 and obtain the following

results, which are summarized in Table 8.42.

µ1 = µ2 = 1

ID ||r20|| c20

H6-DD1 2.410e-02 0.9064

H6-DD2 2.209e-03 0.8195

H6-DD3 1.686e-04 0.7205

H6-DD4 1.457e-06 0.5764

H6-DD5 8.511e-10 0.3942

H6-DD6 1.965e-12 0.286

Table 8.42: Gauss-Seidel iteration and subspaces H4-DD1 to H4-DD6: influence of num-
ber of smoothing steps on numerical convergence factor and relative residual norm as ob-
tained after 20 steps.

In Table 8.43, we show convergence results for a three-level algorithm using subspaces

H6-DD2 and H6-DD4. We set µ1
1 = µ1

2 = 1 and µ2
1 = µ2

2 = 3. The results are given for

the V - and W - cycle.
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V -cycle W -cycle

||r20|| c20 ||r20|| c20

GS 9.409e-05 0.7335 3.514e-06 0.6144

Table 8.43: Gauss-Seidel (GS) iteration for a three-level algorithm with H6-DD2 and
H6-DD4: numerical convergence factor and relative residual norm as obtained after 20
steps for V - and W -cycle.

8.5.7 Conclusion on Linear Solvers

Direct methods are very efficient for small problems. For larger problems, the fill-in in the

L-factor can grow rapidly. Also, it is difficult to decide a priori which reordering strategy

will be effective.

Therefore, for larger problems, one is advised to use a preconditioned iterative solver.

ILUPACK provides elaborate software for this task. The different parameters allow the

balance between competing factors: low memory on one side, and a low number of itera-

tions on the other. However, if the focus is on a low number of iterations, there is a large

overhead in precomputing time for the incomplete multilevel LDLT decomposition. Also,

the large fill-in will make each application of the preconditioner fairly expensive. The

reward is an extremely low number of iterations required to solve a linear system. Even

for the large problem H6, it is possible to achieve convergence in less than 7 iterations on

average.

The multilevel algorithm has little memory overhead, and requires almost no precom-

puting time. For the large problems H4 and H6, we showed that it is possible to achieve

good convergence for a W -cycle in a three or four level environment. These algorithms

only used one pre- and post-smoothing step on the outer level, and the next level is around

half the dimension. With a convergence factor of 0.4, a relative residual of around 1e-4 can

be reached in ten steps. With twenty steps, a relative accuracy of 1e-8 can be expected.

Also, in most settings, a faster convergence can be observed for the first few steps.

It is difficult to compare this method to ILUPACK, though. Since we only implemented

a “proof of concept” version of this multilevel algorithm, it does not make sense to directly

compare computing times.

Specifically, for H6, ILUPACK can achieve convergence in 11 steps with a fill-in of

around 3.5, or in 45 steps with a fill-in of around 2.1. This is equivalent to the cost

of roughly 50, or 140 respectively, matrix-vector (MV) multiplications. The three-level

algorithm for H6 (see Table 8.43) requires at least 20 steps for the W -cycle, and each

iteration step computes 2 MV on the full problem. The inner levels of the W -cycle require

2(µ2
1 +µ2

2) = 12 iterations with the coarse matrix on level 2. Then, per iteration step, four

linear systems with the coarse matrix of level three need to be solved. In total, this will

be more expensive than the solver implemented in ILUPACK, though, the difference will

not be large.
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8.6 The Slowest Eigenmodes of H6

We want to finish this chapter by presenting some of the eigenmodes for the problem

H6. Recall, that the lowest eigenvalue of H6 is negative. The next six eigenvectors

corresponding to the lowest frequencies are related to overall translation and rotation.

Therefore, we are interested in eigenmodes starting at the 8th lowest frequency. However,

for visual purposes, we also included the 7th eigenmode, which corresponds to an overall

rotation of the molecule.

plotted in number of eigenmode wave number [1/cm]

Figure 8.45 7th 2.16399

Figure 8.46 8th 6.58859

Figure 8.47 9th 8.05627

Figure 8.48 10th 8.73612

Figure 8.49 11th 10.544

Figure 8.50 12th 11.3367

Figure 8.51 13th 12.6236

Figure 8.52 14th 12.8965

Figure 8.53 15th 13.2836

Table 8.44: List of figures corresponding to the eigenmodes and wave numbers

The eigenmodes are plotted as displacement vectors (cf. Figure 7.1). Here, however,

we do not plot the individual atoms anymore. Depending on the eigenmode, we decide to

either plot a side or a top view. All the eigenmodes have the common feature that they

are vast collective motions with contributions from the entire molecule.
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Figure 8.45: H6 - 7th eigenmode
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Figure 8.46: H6 - 8th eigenmode
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Figure 8.47: H6 - 9th eigenmode
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Figure 8.48: H6 - 10th eigenmode
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Figure 8.49: H6 - 11th eigenmode
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Figure 8.50: H6 - 12th eigenmode
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Figure 8.51: H6 - 13th eigenmode
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Figure 8.52: H6 - 14th eigenmode
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Figure 8.53: H6 - 15th eigenmode





9 Conclusions

In the first part of the thesis, we showed the significance of resonance issues in standard

integrators for molecular dynamics. Such resonance problems effectively limit the time

step of the employed numerical integrator. We proposed a new filtering technique, which

can be used to increase the accessible time step in an impulse method. In detail, we

compared it to already established methods such as the equilibrium method. On some

realistic examples, we showed that the new filtering technique works reliably. Furthermore,

it can be implemented in a very efficient way. The results are published in [21].

The second part of the thesis compares different numerical methods for normal mode

analysis. In normal mode analysis, the main task is computing eigenpairs corresponding

to the smallest eigenvalues of large Hessian matrices. Essentially, the problem requires

solving linear systems with the mass-weighted Hessian. We show the limitations of direct

methods, and the performance of iterative solvers. Finally, we introduce a new multilevel

algorithm which tries to take advantage of a coarse grained molecular description to extract

information. A first implementation of this algorithm shows the potential to efficiently

tackle the problem at hand. At its core, we need to correctly guess subspaces correspond-

ing to slow motion using structural information. In this thesis, we propose three different

strategies, and critically evaluate the success on six molecular system of different sizes.

However, while it shows good performance for the examples investigated here, the algo-

rithm reacts very sensitively to small changes. This thesis provides a “proof of concept”,

but for usage in productive implementations, more research needs to be conducted.





A Potentials

Here, we provide a list of the potentials used during the simulations in this thesis. We

want to emphasize that this list does not cover all available potentials, at the contrary,

it only contains a few important ones out of the vast number that exist. Afterwards, we

quickly explain the force field CHARMM, which provides a full set of parameters for many

groups of molecules.

Most potentials directly depend on the interatomic distance. When calculating the

force, that is, the derivative of the potential function, the following relations are useful:

we denote

rij = qj − qi ∈ R3

and

||rij || = ||qj − qi|| =
√

(qj1 − qi1)2 + (qj2 − qi2)2 + (qj3 − qi3)2.

Hence,

d||rij ||
dqi

= − 1

||rij ||
(qj − qi) = − rij

||rij ||
,

d||rij ||
dqj

=
1

||rij ||
(qj − qi) =

rij
||rij ||

. (A.1)

If a potential depends only on the interatomic distance, it is clear, that both the potential

and the force are invariant with respect to overall translations or rotations.

We group potentials as in (2.10) and

U(q) = Uintra(q) + Upair(q) + Ulong(q) (A.2)

with

Uintra = Ubond + Uangle + Udihedral + Uimproper

and

Upair = ULJ + UCoul.

A.1 Bonded Potentials

Bonded potentials describe interactions within the same molecule between bonded atoms.

A.1.1 Harmonic Bonds

A bond potential models a direct bond between two atoms in the same molecule. Usually,

those are very strong bonds which are highly oscillatory and contribute to the fastest

vibrations in a molecular model.
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A very common and simple harmonic spring model of a two bonded atoms with distance

r is given by the potential function

U(r) =
kb
2

(r − r0)2, (A.3)

where kb is a force constant and r0 is the equilibrium length of that bond.

A.1.2 Morse Bonds

A more elaborate bond potential which is used by the TIP4P/2005f model is the Morse

potential

U(r) = D[1− e−α(r−r0)]2, (A.4)

where D,α and r0 are suitable constants.

A.1.3 Angle Potential

The harmonic angle potential is similar to the harmonic bond potential. It is harmonic in

the angle enclosed by three bonded atoms:

U(θ) =
kθ
2

(θ − θ0)2, (A.5)

where θ is the angle between atom 1 bonded to both atoms 2 and 3:

θ = θ2,1,3 = arccos

(
r12

T r13

||r12|| · ||r13||

)
, rij = qj − qi. (A.6)

A.1.4 Dihedrals

Dihedral potentials model a torsion angle φ between four consecutive bonded atoms 1-2-

3-4. The angle is measured between the two intersecting planes formed by the atoms 1-2-3

and 2-3-4. The harmonic dihedral potential then reads

U(φ) = K(1 + d cos(nφ)),

where K, d, and n are suitable constants.

In CHARMM, a slightly different version is used with a potential function

U(φ) = K(1 + cos(nφ− d)).

A.1.5 Impropers

The improper potential is very similar to the dihedral one, however, the four atoms now

have a central atom 1 which is bonded to three atoms 2-3-4. The improper angle χ is

the angle between the planes formed by 1-2-3 and 2-3-4. As potential form a harmonic
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function is chosen, and

U(χ) = K(χ− χ0)2,

with constants K and χ0.

A.2 Pair Potentials

Pair potentials describe short-range interactions which apply to all pairs of atoms with a

distance smaller than a certain cutoff radius rc. In contrast to the bonded potentials, the

‘status’ of such interactions will change during a simulation, that is, if two atoms move

away from each other their interaction due to the pair potential will eventually vanish.

The other way around, if two atoms move towards each other, as soon as they are closer

than rc, a pair interaction needs to be computed.

A.2.1 Lennard-Jones Potential

The Lennard-Jones potential models intermolecular forces due to Van-der-Waals repulsion

and attraction. It has the potential function

U(r) = 4 ε

((σ
r

)12
−
(σ
r

)6
)

(A.7)

with parameters ε and σ. The choice of the powers is somewhat arbitrary. This version

is sometimes referred to as a 12-6-LJ (because of the powers). A 9-6-LJ version is also

common.

Since the Lennard-Jones force decays rapidly with increasing distance it is usually used

with a cutoff radius. To avoid non continuous jumps at the cutoff a switching function

ensures smooth transition to zero.

Therefore, between an inner and an outer cutoff radius the Lennard-Jones potential is

multiplied by a switching function S(r) which goes smoothly to zero:

S(r) =
(r2

outer − r2)2(r2
outer + 2r2 − 3r2

inner)

(r2
outer − r2

inner)
3

, rinner < r < router. (A.8)

A.2.2 Coulomb Potential

The electrostatic potential models interactions due to the different electric charges in

atoms. Denoting by ei the charge of particle i, it is given by

U(rij) =
1

4πε0

eiej
rij

, rij = ||qj − qi||. (A.9)

Since the Coulomb potential decays very slowly with increasing radius, simply using a

cut off with a switching function (as for the Lennard-Jones potential) can lead to severe

artifacts. Depending on the simulation requirements, neglecting long-range effects can
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have an adversary effect. This is an issue for all pair potentials which behave like r−3 or

slower: using a cutoff can create a significant artifact.

A.3 Long-Range Electrostatic Methods

With periodic boundaries the total electrostatic potential Φ for a cubic box of length L

reads

Φ =
1

2

1

4πε0

N∑
i,j=1

∑′

n∈Z3

eiej
||qi − qj + nL|| ,

where the prime in the second summation means that for n = 0 the term i = j is omitted.

Unfortunately, this series is only conditionally convergent, so its value depends on the

summation order (see [163], good explanation also in [164, pg. 162ff] or [5, Appendix A]).

Directly evaluating this sum is expensive (it would scale like N2 where N is the number

of atoms) and other alternatives have to be considered. Here, we will focus on lattice

methods, however, other successful approaches such as multipole methods or reaction

field methods exist.

A.3.1 Ewald Summation

With the traditional Ewald summation, the sum can be evaluated with computational

complexity in O(N
3
2 ). The idea is to decompose the conditionally convergent sum into

two rapidly converging sums Φ ≈ Φshort + Φlong. This can be done by adding so-called

screening charges to ‘shield’ the point charges.

With the error function

erf(x) =
2

π

∫ x

0
e−y

2
dy, erfc(x) = 1− erf(x),

we arrive at the following decomposition (rnij = ||qi − qj + nL||):

Φshort ≈
1

2

1

4πε0

∑′

n∈Z3

N∑
i,j=1

rnij<rcut

eiej
erfc(Grnij)

rnij
,

Φlong ≈
1

2

1

4πε0

∑′

n∈Z3

N∑
i,j=1

eiej
erf(Grnij)

rnij
.

The erfc in Φshort ensures that this part quickly goes to zero for increasing radius.

Thus, Φshort can be approximated like a regular pair potential with a cutoff radius. Φlong

represents the remaining long-range terms, and it can be shown that this sum quickly

converges in Fourier - or reciprocal - space.

However, there are even faster methods which use the FFT to speed up computations
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for the reciprocal sum. In the best case, the computational cost scales like O(N logN).

One of these methods is the particle-particle particle-mesh (PPPM) method.

A.3.2 PPPM Method

There is some variety for particle-mesh algorithms which only differ in small points. In

general, they first proceed similar to the Ewald summation and decompose the sum in a

direct and reciprocal sum. The direct sum is handled like a pair potential. With elaborate

strategies such as neighbor lists or a linked cell method, the force is evaluated for each

pair within a certain cutoff radius. The reciprocal sum is handled by assigning the charges

to a mesh, transforming the grid and evaluating the sum in reciprocal space. Then, the

force on each atom is obtained by transforming back into real space.

However, these methods differ in their exact choice of screening functions, switching

strategies and interpolation method. The PPPM method uses spherical charge clouds to

shield the point charges and uses trilinear interpolation to mesh points when evaluating

the long-range forces in Fourier space.

A.4 CHARMM Force Fields

CHARMM is an acronym for Chemistry HARvard Molecular Mechanics [46–49]. It is a

name for a set of force fields in MD. It also refers to the corresponding MD simulation and

analysis software package. We refer to the force fields here. There are different versions for

united-atom (CHARMM19) and all-atom fields (CHARMM22). Specific parameter sets

for biomolecules such as DNA and lipids exist. These parameter sets try to provide full

descriptions for each chemical group.

In its core, CHARMM provides an additive force field with a decomposition similar to

(2.10) with a separation in bond, angle, dihedral, improper, Van-der-Waals and electro-

static potential. It uses the CHARMM dihedral function, presented second in the dihedral

section. Furthermore, the angle potential uses an additional Urey-Bradley term, that is

a covalent bond between the terminal atoms of an angle. Nonbonded terms are only

computed for atoms separated by three or more covalent bonds.

The force constants and geometric constants (such as bond distance and equilibrium

angle) are provided in long parameter tables and are matched based on atom types and

structure of the molecular model. The values were obtained from a multitude of sources.

In order to provide as accurate simulations as possible, parameters were fitted with vi-

brational data, geometric matching of crystallographic data, and optimized by empirical

energy calculations.





B Models

B.1 SPC/F

The SPC/F model [80] is based on the very common rigid three

site SPC model and uses harmonic potentials in bonds and

angles to model intra-molecular forces.

H

O

H

θ

model kb r0 ka θ0 σO−O εO−O σH−H εH−H eO eH

SPC/F 1108.27 1.0 91.5392 109.47 3.166 0.1553943595 0.0 0.0 -0.82 0.41

Table B.1: model parameters for SPC/F, units as in LAMMPS ‘real’ settings

In the flexible SPC/F [80] the bonded contributions are modeled as harmonic springs

Uintra =
∑
i

kb
2

(ri − r0)2 +
∑
j

ka
2

(θj − θ0)2

where the sum runs over all bonds or angles respectively. ri is the bond length of the i-th

bond, and θj the j-th angle.

The pair potential is a classical 12-6 Lennard-Jones potential interacting only between

oxygen atoms with parameters as in Table B.1. The cut off for the Lennard-Jones poten-

tial is set to 9Å using a CHARMM switching function starting at 8Å. The short-range

Coulomb interactions also use a cut off of 9Å and the long-range electrostatic contributions

are handled by a PPPM-method with accuracy set to 1e-05.

B.2 TIP4P/2005f

Introduced 2011 in [82], the TIP4P/2005f is a flexible water model based on the TIP4P/2005

model.
H

O

H

M
Each water molecule has two flexible bonds, one flexible angle,

and additional charge site M. The exact position of M depends

on the bonds.

The TIP4P/2005f uses a Morse potential for the bonds and a harmonic approximation

for the angle:

Uintra =
∑
i

D[1− e−α(r−r0)]2 +
∑
j

ka
2

(θj − θ0)2

where the sum runs over all bonds or angles respectively. The constants are given in

Table B.2.
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model D α r0 ka θ0

TIP4P/2005f 432.581 [kJ/mol] 2.287 [1/Å] 0.9419 [Å] 107.4◦ 367.81 [kJ/(mol rad2)]

Table B.2: Model parameters for TIP4P/2005f

The position of M -site is calculated relative to the oxygen atom with

dOM = drelOM (zOH1 + zOH2) (B.1)

where zOHi are the distances to the oxygen of the hydrogen’s projections along the HOH

bisector, and drelOM = 0.13194.

The oxygen sites do not carry a charge but contribute to the Lennard-Jones term. H

and M sites are charged but do not contribute to the Lennard-Jones term. The parameters

are ε = 0.18520627[kcal/mol], σ = 3.1644[Å] and qH = 0.5564.

The cutoff for the pair interactions is set to 8.5Å, with a smooth switching function

starting at 8Å. The long-range electrostatic contributions beyond 8.5Å are handled by a

suitable long-range method such as Ewald summation or PPPM.

B.3 Peptide

The small peptide has only 84 atoms, and it is surrounded by 640 water molecules. In

total, the simulation has 14 different types of atoms, 18 different types of bonds, 31 types of

angles, 21 dihedral types and 2 improper types. All bonded interactions use the CHARMM

versions of the harmonic potentials. The pair style uses a switching function to smoothly

cut off the Lennard-Jones potential with rinner = 8.0 Å and router = 10.0 Å. The long-range

solver is the PPPM method. For a full set of parameters, see the data files from the folder

‘peptide’ in lammps, see http://lammps.sandia.gov/doc/Section_example.html.

http://lammps.sandia.gov/doc/Section_example.html


C Integrators

C.1 Velocity-Verlet Method

The Verlet method is the standard integrator as described in Section 3.1. It is a second

order, symmetric and symplectic method. Each time step, only one force evaluation is

required. For step size h, the numerical flow Φh of the Verlet method is given by

Φh = ϕUh/2 ◦ ϕTh ◦ ϕUh/2.

Here, ϕT , ϕU describe the exact flow of the kinetic and potential part of the ODE (see

(3.2)).

C.2 Impulse Method

The impulse method is described in Section 3.2. In molecular dynamics, we use an impulse

method with three stages and the splitting

U(q) = Uintra(q) + Upair(q) + Ulong(q) (C.1)

with a fast intra-molecular part Uintra, short-range pair interactions Upair and remaining

long-range electrostatic contributions Ulong.

The numerical flow of the impulse method with this three stage splitting is given by

Φh = ϕ
Ulong

h/2 ◦
(
ϕ
Upair

h/2K ◦
(
ϕUintra

h/2KL ◦ ϕ
T
h/KL ◦ ϕUintra

h/2KL

)L
◦ ϕUpair

h/2K

)K
◦ ϕUlong

h/2 .

Integer factors K,L between the step sizes of the stages are required. If not specified

otherwise, we always choose K and L such that

h

KL
≤ 0.5fs, and

h

K
≤ 1fs.

C.3 Implicit Midpoint Method

The implicit midpoint method as introduced in Section 3.4 needs to solve a nonlinear

system of equations in every time step. To conduct the simulations in Chapter 4, the

implicit midpoint method was implemented with the following simplifications. First, it

only runs a simplified Newton iteration, so the derivative is fixed at the initial guess.

Second, the derivative is not a full derivative, it uses a smooth CHARMM cutoff for pair

forces between 3 and 4 Angstrom. Accuracy of the Newton iteration is set by the user,
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we used 1e-4. For solving the linear systems, we used the BiCGstab method from the

software package Eigen.

All those simplification make it feasible to run simulations with the implicit midpoint

method, but it will have a major impact on the step sizes available. For larger step

sizes, due to the nonlinearity of the problem, the simplified equations might not properly

converge anymore, and no safeguard, such as re-evaluating the Hessian is implemented.

C.4 Mollified Impulse Method

The mollified impulse method is described in detail in Chapter 5. See also Algorithm 5.4.

In principle, it is exactly the same as the impulse method, except that the outer stage is

filtered. Specifically, a filter Ψ is inserted in the slow potential. The filtered slow force

then reads ΨT
q (q)Ulong(Ψ(q)). If the filter Ψ is chosen as the identity map, this method

reduces to the regular impulse method.

If the corotational filter introduced in Section 5.2 is chosen, we refer to this method

as the corotational impulse method (CIM). When the outer stage is filtered with the

equilibrium filter in (5.5) we call it equilibrium impulse method (EIM). The stage factors

K,L are chosen in the same way as for the impulse method.

C.4.1 Corotational Impulse Method

We implemented the corotational impulse method in a high-end fashion in LAMMPS. It

automatically decomposes the molecular structure into suitable clusters. The user can

influence this decomposition by providing information what kind of interactions have to

be contained inside a cluster. Such information can be a specific bond or angle type, atom

type or atom mass. Currently, the implementation supports clusters up to 5 atoms.

The decomposition in clusters only depends on local information. So each CPU com-

putes its own decomposition and updates it from time to time due to migrating atoms

from neighboring CPUs. A precompiled list of clusters with a reference position each is

stored locally. When evaluating the slow force, first the mollified position is computed by

iterating through the cluster list and computing rotation and translation of each cluster,

and then the corotated reference position is used to obtain the mollified position. To

avoid recomputing certain values, at the same time, the derivative is already computed.

Then, the mollified position is used to evaluate the slow force. Afterwards, the derivative

is applied to the slow force vector and the original position is restored.

It is a straight forward implementation, however, with attention to the specific details

of LAMMPS. The filter is able to efficiently run on large processor counts. As such,

the filter behaves correctly in the event of migrating atoms between processor borders.

All necessary values are communicated to the correct cores. This includes a complicated

behavior in some cases of periodic boundaries. The local list of clusters needs updating

in the event of resorting of atoms (for performance), and neighbor list changes. All-in-all,



C.4. Mollified Impulse Method 145

the implementation performs reliable at extremely low cost.

C.4.2 Equilibrium Impulse Method

We implemented the EIM for comparison purposes in LAMMPS. It is mainly based on the

SHAKE functions. That is, this method is restricted to small clusters of up to three atoms

as obtained from LAMMPS SHAKE implementation. By modifying the position restraint

function, the filtered position can be extracted. Additionally, the routines functionality

was extended to provide the derivative necessary for filtering.





Notation

(q, p) atomic positions and momenta in Hamiltonian coordinates, column vectors

N Number of atoms

q̇, q̈ first, second time derivative of q

∇qH(q, p) gradient of function H(q, p) w.r.t to q, column vector

{A,B} Poisson bracket (8)

03N , I3N zero/identity matrix 3N-by-3N

⊗ Kronecker product

||qi − qj || distance/radius between atom i and j with the regular Euclidean norm on R3

H(q, p) Hamiltonian function

H Hessian matrix

n dimension of matrix

S,V,W calligraphic letter: space/subspace - except H
[q1, ..., qn] vector, matrix notation

Km Krylov space of dimension m

Pm Set of polynomials with degree smaller or equal than m

O(·) algorithmic complexity, Landau notation for asymptotic behavior

diag(· · · ) diagonal matrix

Range(A) image of matrix A

Null(A) null space of matrix A

Km(A, v) polynomial Krylov subspace
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Abbreviations

ODE ordinary differential equation

MD molecular dynamics

NMA normal mode analysis

NVE, NVT, NPT ensembles

IM impulse method

CIM corotational impulse method

EIM equilibrium impulse method

SPC/F a flexible simple point charge model of a water molecule, see Appendix B

TIP4P/2005f a flexible model of a water molecule, see Appendix B

GMRES,MINRES generalized minimal residual method

QMR quasi-minimal resiudal method

IRAM implicitly restarted Arnoldi method

JADAMILU Jacobi-Davidson method with Multilevel ILU preconditioning

H1-H6 refering to the model problems in Section 8.2

RI,GS Richardson iteration, Gauss-Seidel iteration

RT as prefix: for subspaces of type rotation and translation

DD as prefix: for subspaces of type domain decomposition

CG conjugate gradients

l-BFGS low-memory Broyden–Fletcher–Goldfarb–Shanno algorithm

RCM, AMD matrix reordering algorithms, see Section 7.3.1
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