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Abstract. Almost all catchments plot within a small enve-

lope around the Budyko curve. This apparent behaviour sug-

gests that organizing principles may play a role in the evo-

lution of catchments. In this paper we applied the thermody-

namic principle of maximum power as the organizing princi-

ple.

In a top-down approach we derived mathematical formu-

lations of the relation between relative wetness and gradi-

ents driving run-off and evaporation for a simple one-box

model. We did this in an inverse manner such that, when the

conductances are optimized with the maximum-power prin-

ciple, the steady-state behaviour of the model leads exactly

to a point on the asymptotes of the Budyko curve. Subse-

quently, we added dynamics in forcing and actual evapora-

tion, causing the Budyko curve to deviate from the asymp-

totes. Despite the simplicity of the model, catchment ob-

servations compare reasonably well with the Budyko curves

subject to observed dynamics in rainfall and actual evapora-

tion. Thus by constraining the model that has been optimized

with the maximum-power principle with the asymptotes of

the Budyko curve, we were able to derive more realistic val-

ues of the aridity and evaporation index without any param-

eter calibration.

Future work should focus on better representing the

boundary conditions of real catchments and eventually

adding more complexity to the model.

1 Introduction

In different climates, partitioning of rainwater into evapora-

tion and run-off is different as well. Yet, when plotting the

evaporation fraction against the aridity index (ratio of poten-

tial evaporation to rainfall), almost all catchments plot in a

small envelope around a single empirical curve known as the

Budyko curve (Budyko, 1974). The fact that almost all catch-

ments worldwide plot within this small envelope around this

curve inspired several scientists to speculate whether this is

due to co-evolution of climate and terrestrial catchment char-

acteristics (e.g. Harman and Troch, 2014). Co-evolution be-

tween climate and the terrestrial system could in turn be ex-

plained by an underlying organizing principle which deter-

mines optimum system functioning (Sivapalan et al., 2003;

McDonnell et al., 2007; Schaefli et al., 2011; Thompson

et al., 2011; Ehret et al., 2014; Zehe et al., 2014). As hydro-

logical processes are essentially dissipative, we suggest that

thermodynamic-optimality principles are deemed to be very

interesting candidates.

The most popular among these are the closely related prin-

ciples of maximum entropy production (Kleidon and Schy-

manski, 2008; Kleidon, 2009; Porada et al., 2011; Wang

and Bras, 2011; del Jesus et al., 2012; Westhoff and Zehe,

2013) and maximum power (Kleidon and Renner, 2013;

Kleidon et al., 2013; Westhoff et al., 2014) on the one hand

– both defining the optimum configuration between compet-

ing fluxes across the system boundary – and, on the other

hand, minimum energy dissipation (Rinaldo et al., 1992;

Rodriguez-Iturbe et al., 1992; Hergarten et al., 2014) or max-

imum free-energy dissipation (Zehe et al., 2010, 2013), fo-

cusing on free-energy dissipation associated with changes
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in internal state variables as a result of boundary fluxes,

i.e. soil moisture and capillary potential, and a related op-

timum system configuration. In this research we focus on the

maximum-power principle.

The validity and the practical value of thermodynamic-

optimality principles are still debated (e.g. Dewar, 2009),

and the partly promising results reported in the above-

listed studies might be just a matter of coincidence. There

is a vital search for defining rigorous tests to assess how

far thermodynamic-optimality principles apply. The Budyko

curve appears very well suited for such a test, as it con-

denses relative weights of the steady-state water fluxes in

most catchments around the world. It is thus not aston-

ishing that there have been several attempts to reconcile

the Budyko curve with thermodynamic-optimality princi-

ples. For example, Porada et al. (2011) used the maximum-

entropy-production principle to optimize the run-off conduc-

tance and evaporation conductance of a bucket model being

forced with observed rainfall and potential evaporation of the

35 largest catchments in the world. The resulting modelled

fluxes were plotted in the Budyko diagram and followed the

curve with a similar scatter as real-world catchments.

Another very interesting approach was presented by Klei-

don and Renner (2013) and Kleidon et al. (2014), using the

perspective of the atmosphere. They maximized power of the

vertical convective motion transporting heat and moisture up-

wards using the Carnot limit to constrain the sensible heat

flux. This motion is driven by the temperature differences be-

tween the surface and the atmosphere, while at the same time

depleting this temperature gradient, leading to a maximum in

power. Additionally, evaporation at the surface and conden-

sation in the atmosphere deplete this gradient even further

at the expense of more vertical moisture transport and thus

more convective motion. Their approach showed some more

spreading around the Budyko curve for the same 35 catch-

ments as used in Porada et al. (2011), but they used a sim-

pler model that has to be forced with far fewer observations,

namely solar radiation, precipitation, and surface tempera-

ture.

Very recently, Wang et al. (2015) used the maximum-

entropy-production principle to derive directly an expression

for the Budyko curve. They started from the expression of

Kleidon and Schymanski (2008), and by maximizing the en-

tropy production of the whole system they reached the ex-

pression for the Budyko curve as formulated by Wang and

Tang (2014). This is an intriguing result that partly contra-

dicts the findings of Westhoff and Zehe (2013), whose study

revealed, in simulations with an HBV type conceptual model,

that joint optimization of overall entropy production results

in optimum conductances approaching zero.

The objective of this study is to define a model which, un-

der constant forcing, leads to a point on the asymptotes of

the Budyko curve when flow conductances are optimized by

maximizing power. The model is comparable to the one pro-

posed by Porada et al. (2011), but with different relations

between relative wetness of the subsurface store and driv-

ing gradients. We derived the gradients driving evaporation

and run-off in an inverse manner, with both the asymptotes

of the Budyko curve and the maximum-power principle as

constraints. Subsequently, we added dynamics in forcing or

in actual evaporation (similar to Westhoff et al., 2014) to

move away from these asymptotes to more realistic values

of the aridity and evaporation index, without calibrating any

parameter. Finally, these sensitivities were compared to ob-

servations.

2 The maximum-power principle

The maximum-power principle implies that a system evolves

in such a way that steady-state fluxes across a systems bound-

ary produce maximum power. It is directly derived from the

first and the second laws of thermodynamics, and it is very

well explained in Kleidon and Renner (e.g. 2013). Here we

give only a short description: let us start by considering a

warm and a cold reservoir, which are connected to each other.

The warm reservoir is forced by a constant energy input Jin,

and the cold reservoir is cooled by a heat flux Jout. In steady

state Jin = Jout and both reservoirs have a constant tempera-

ture Th and Tc, respectively, with Th > Tc. The heat flux be-

tween the two reservoirs produces entropy, which is given by

σ =
Jout

Tc

−
Jin

Th

. (1)

However, instead of transferring all incoming energy to the

cold reservoir, the heat gradient can also be used to perform

work (to create other forms of free energy). This means that,

in steady state, the incoming energy flux Jin equals the outgo-

ing energy flux Jout plus the rate of work P (which is power)

performed by the system.

For given temperatures of both reservoirs, the theoretical

maximum rate of work is given by the Carnot limit:

PCarnot = Jin

Th− Tc

Th

. (2)

Now we introduce an extra flux cooling the hot reservoir as

a function of its temperature Jh.out = f (Th). This flux is in

competition with the flux Jh-c between both reservoirs, while

both reduce the temperature gradient between the two reser-

voirs. In Eq. (2) Jin should then be replaced by Jh-c, while Th

and Tc are not fixed anymore but are a function of all fluxes.

In this setting, there exists a flux Jh-c maximizing power. In

the extreme cases of Jh-c = 0 and Jh-c→∞, power is zero,

while for intermediate values power is larger than zero.

In hydrological systems, power is often generated by wa-

ter fluxes and is given as the product of a mass flux and

the potential difference driving this flux, (note that several

authors have divided this formulation by the absolute tem-

perature, while naming it maximum entropy production: e.g.
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Kleidon and Schymanski, 2008; Porada et al., 2011; West-

hoff and Zehe, 2013; Westhoff et al., 2014; Kollet, 2015).

Although these formulations are equivalent in isothermal cir-

cumstances, the here-derived maximum-power principle is,

in our opinion, more sound.

In the remainder of this article we use specific water fluxes

(LT−1) and potential differences µhigh−µlow in meter water

column (L), where the flux is given as the product of a spe-

cific conductance k (T−1) and the potential difference. We

recognize that, in order to come to the same units as power,

these formulations should be multiplied by the water den-

sity, gravitational acceleration, and a cross-sectional area, but

since we are looking for a maximum, and these parameters

are constant, we can leave them out. We also use the word

gradient for the potential difference µhigh−µlow, where the

length scale with which the difference should be divided is

incorporated into the conductance. With these formulation,

power is given by

P = k
(
µhigh−µlow

)2
, (3)

where k is the free parameter we optimized to find a maxi-

mum in power.

3 Mathematical framework

Here we derive the model that, when conductances are opti-

mized with the maximum-power principle, always results in

a point on the asymptotes of the Budyko curve independent

of the value of the given constant atmospheric inputs (here

rainfall and chemical potential of the atmosphere). To reach

this, proper relations between relative wetness and gradients

driving run-off and evaporation were derived, which is ex-

plained in the following.

3.1 Initial model setup

Our model consists of a simple reservoir being filled by rain-

fallQin and drained by evaporationEa and run-offQr. Using

the same expressions as in Kleidon and Schymanski (2008),

the steady-state mass balance and corresponding fluxes are

expressed by

Qin = Ea+Qr, (4)

Ea = ke (µs−µatm) , (5)

Qr = kr (µs−µr) , (6)

where µs, µr, and µatm are the chemical potential of the soil,

chemical potential of the free water surface of the nearest

river, and chemical potential of the atmosphere, respectively,

while ke and kr are the specific conductances of evaporation

and run-off. In these expressions, µs and µs−µr are func-

tions of the relative saturation h in the reservoir:

Ge(h)= µs(h), (7)

Gr(h)= µs(h)−µr(h), (8)

where Ge(h) and Gr(h) can have any form as long as they

are strictly monotonically increasing with increasing relative

saturation. For example, Porada et al. (2011) used the van

Genuchten model (van Genuchten, 1980) and gravitational

potential to derive the chemical potential of the soil. How-

ever, here we will derive them in such a way that, under con-

stant forcing, we end up exactly at the Budyko curve.

3.2 Backward analysis to determine the driving

gradients

3.2.1 Optimum k∗
e matching the Budyko curve

Let us first find an optimum conductance k∗e leading to a point

on the asymptotes of the Budyko curve B. An expression de-

scribing these asymptotes exactly is given by (adapted from

Wang and Tang, 2014)

B =
Ea

Qin

=
1+Epot/Qin−

√(
Epot/Qin− 1

)2
2

, (9)

with Epot being the potential evaporation. Now we make an

important assumption to define Epot: we assume that evap-

oration is purely described as the product of a gradient and

conductance – ignoring the influence of radiation. It is as-

sumed to be maximum when in Eqs. (5) and (8) µs = 0,

meaning that the relative wetness is 1, implying no water lim-

itation. With this assumption, potential evaporation is given

by Epot = k
∗
e (−µatm) (note that µatm is always negative).

Combining this equation with Eqs. (5), (7), and (9) results

in

k∗e =
Qin

(Ge(h∗)−µatm)
B(k∗e ), (10)

where h∗ is the steady-state relative wetness leading to a

point on the asymptotes of the Budyko curve (note that this

is the relative wetness occurring when ke = k
∗
e ).

3.2.2 Maximum power by evaporation

As mentioned above, k∗e should also correspond to a max-

imum in power by evaporation (Pe). We achieved this in a

backward analysis, implying that we start with defining a

function Pe(ke) which is always larger than zero for ke ∈

(0,+∞) and where ∂Pe/∂ke = 0 at ke = k
∗
e . A function sat-
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isfying these constraints is1

Pe(ke)= ke

P0

k0

e
−

(
ke−a
k0

)2

, (11)

where P0 and k0 are the reference power (L2T−1) and ref-

erence conductance (T−1), introduced to come to the correct

units. In all computations they have been set to unity. Setting

the derivative to zero for ke = k
∗
e yields

∂Pe

∂ke

=

(
2k∗ea− 2k∗e

2
+ k2

0

) P0

k3
0

e
−

(
k∗e−a

k0

)2

= 0 (12)

→ a = k∗e −
k2

0

2k∗e
,

resulting in Pe(ke)= keP0 /k0e
−((ke−k

∗
e )/k0+k0/(2k

∗
e ))

2

.

Combining this expression with Eqs. (3) and (7) (Pe =

ke(Ge−µatm)
2), Ge is expressed as

Ge(ke)=±

√
P0

k0

e
−

(
ke−k

∗
e

k0
+

k0
2k∗e

)2

+µatm. (13)

Since we neglect condensation (Ge(ke)−µatm ≥ 0), only the

positive solution remains. Inserting Eq. (13) into Eq. (10) and

setting ke = k
∗
e yields

k∗e =
Qin√

P0

k0
e
−

k2
0

4k∗e
2

B(k∗e ), (14)

which can be solved iteratively for k∗e .

Combining these results with the mass balance (Eqs. 4–6)

yields the following expression for run-off gradient Gr as a

function of ke:

Gr(ke)=
Qin

kr

−
ke

kr

√
P0

k0

e
−

(
ke−k

∗
e

k0
+

k0
2k∗e

)2

. (15)

Note that any value of kr leads to a point on the Budyko

curve.

3.2.3 Maximum power by run-off

Although the Budyko curve does not depend on the value of

kr, an optimum k∗r can still be found by maximizing power

by run-off. For this, steps similar to those for optimizing ke

are used, where in Eqs. (11)–(13) ke is simply replaced by kr,

resulting in a gradient for run-off as a function of kr:

Gr(kr)=

√
P0

k0

e
−

(
kr−k
∗
r

k0
+

k0
2k∗r

)2

, (16)

1We have also tested the function Pe(ke)=

P0exp
(
−((ke− a)/k0)

2
)

, but this led to two non-trivial so-

lutions for k∗e and is thus less convenient to use than the expression

in Eq. (11)

while from the mass balance (Eqs. 4–8), kr is given by

kr =
Qin− [Ge(h)−µatm]

Gr(h)
. (17)

Combining these two equations and setting kr to k∗r yields

k∗r =
Qin− k

∗
e

[
Ge(k

∗
e )−µatm

]√
P0

k0
e
−

k2
0

4k∗r
2

, (18)

which can also be solved iteratively for k∗r .

3.3 Forward analysis

To apply the maximum-power principle in any hydrological

model, the model should run until a (quasi-)steady state is

reached. Within the above-presented backward analysis the

steady-state optimum gradients are simply found by giving

ke the value of k∗e in Eq. (13) and kr = k
∗
r in Eq. (15).

However, when the relative wetness h evolves over time,

the gradients should be resolved as a function of the relative

wetness (Ge =Ge(h) and Gr =Gr(h)). To do this, we as-

sumed that h is a linear function of Gr(ke) scaled between

zero and unity (for sensitivities to different initial relations

between relative wetness and one of the gradients see Sup-

plement S1):

Gr(h)=min[Gr(ke)]+ (max[Gr(ke)]−min[Gr(ke)])h, (19)

where the maximum in Gr(ke) occurs when the sec-

ond term on the right-hand side of Eq. (15) is zero

(max[Gr(ke)]=
Qin

kr
) and the minimum value is derived

when this second term is maximum, occurring at ke =

kmax
e = 1/2

k∗e − k2
0

2k∗e
+

√(
k∗e −

k2
0

2k∗e

)2

+ 4

. Inserting this

into Eq. (15) yields

min[Gr(ke)]=
Qin

kr

−
kmax

e

kr

√
P0

k0

e
−

(
kmax
e −k∗e
k0

+
k0

2k∗e

)2

. (20)

If we now plot h vs. Ge, a unique relation between the two

exists (Fig. 1).

With the gradients as functions of h, the non-steady mass

balance equation is written as

Smax

dh

dt
=Qin− krGr(h)− ke (Ge(h)−µatm) , (21)

where Smax is the maximum storage depth (L) and t is time

(T). Now, the time evolution of the relative wetness can be

simulated.

4 Results and discussion from forward analysis

4.1 Constant forcing

With the known relations between relative wetness and gradi-

ents driving evaporation and run-off, the forward model was
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Figure 2. (a) Analytical Budyko curve (Eq. 9) and result from forward mode with constant forcing and (b) time evolution of relative saturation

and both gradients for complete initial saturation (solid lines) and initial dry state (dashed lines). µatm =−0.7.

run and ke was optimized by maximizing power. With con-

stant forcing, each value of µatm resulted in a point on the

asymptotes of the Budyko curve (Fig. 2a). In Fig. 2b, the

time evolution of the relative wetness and both gradients are

shown for an initially saturated and an initially dry state, indi-

cating that, irrespective of the initial state, the forward model

evolves to a steady state.

4.2 Sensitivity to dry spells

By introducing dynamics in forcing, we expected the result-

ing Budyko curve to deviate from the asymptotes.

In the literature, the deviation from the asymptotes is often

done by introducing an empirical parameter (e.g. Choudhury,

1999; Wang and Tang, 2014).

To move away from this empiricism, we started at the

asymptotes of the Budyko curve. Subsequently, we added

dry spells and dynamics in evaporation (e.g. when trees lose

their leaves the evaporative conductance ke goes to zero) and

tested how this influenced the Budyko curve.

To test sensitivities to dry spells, simple block functions

were used, with either a predefined constant input or no in-

put at all. For longer relative lengths of the dry spell, the

slope of the curves becomes smaller until a maximum of

Ea/Qin = 0.98 (Fig. 3). The reason the asymptotes do not

reach unity lies in the fact that already at very short dry spells

a second maximum in power evolves, while the first maxi-

mum disappears quickly with increasing dry spells. This is

in line with results of Westhoff et al. (2014), and in Zehe

et al. (2013) a second optimum is also present. Although in-

teresting, we leave a better exploration of this transition zone

where two maxima exist for future research.

These curves were compared with data of real catchments

that have a relatively stable wet period interspersed with

a regular dry period. The Mupfure catchment (Zimbabwe,

Savenije, 2004), with approximately 7 months without rain

(Fig. S2.1 of Supplement), plots very close to the theoret-

ical curve with the same length of the dry spell. However,

catchments from the Model Parameter Estimation Experi-

ment (MOPEX) database (Schaake et al., 2006) with clear,

consistent dry spells still plot far from the respective theo-

retical curves. This discrepancy can be partly explained by

the somewhat arbitrary way the number of dry months is de-

termined: the MOPEX catchments are filtered to have only

www.hydrol-earth-syst-sci.net/20/479/2016/ Hydrol. Earth Syst. Sci., 20, 479–486, 2016



484 M. Westhoff et al.: Budyko curve derived with maximum-power principle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
pot

/Q
in

 [−]

E
a/Q

in
 [−

]

 

 

Analytical (n=20)
t
dry

=4 months

t
dry

=5 months

t
dry

=6 months

t
dry

=7 months

t
dry

=8 months

MOPEX t
dry

=4 months

MOPEX t
dry

=5 months

MOPEX t
dry

=6 months

Mupfure t
dry

=7 months

Figure 3. Sensitivity to periodic dry spells in the forward model.

MOPEX catchments are filtered to have only those catchments hav-

ing at least 1 month with a median rainfall < 2.5 mmmonth−1 and

a coefficient of variance < 0.5 for all months with a median rainfall

> 25 mmmonth−1. The final number of dry months was determined

maximizing the difference between the mean monthly precipitation

of the X driest months minus the mean monthly precipitation of the

1−X wettest months, where X = 1,2. . .12. Error bars indicate 1

standard deviation and are determined with bootstrap sampling.

those catchments having at least 1 month with a median rain-

fall < 2.5 mmmonth−1 and a coefficient of variance < 0.5

for all months with a median rainfall> 25 mmmonth−1. The

final number of dry months was determined maximizing the

difference between the mean monthly precipitation of the X

driest months minus the mean monthly precipitation of the

1−X wettest months, where X = 1,2. . .12.

For example, the MOPEX catchment with a 4-month dry

spell could also be argued to have a dry spell of 7 months

(Fig. S2.1, MOPEX ID: 11222000); similarly, the MOPEX

catchment with a 5-month dry spell (Fig. S2.1, MOPEX ID:

11210500) could also be argued to have one of 6 months.

If these “corrections” are made, the variability within the

MOPEX catchments is consistent (with longer dry spells

plotting more to the right), but there is still a discrepancy

with the simulated curves of 1 to 2 months, indicating that

the model should still be improved.

4.3 Sensitivity to dynamics in actual evaporation

We also tested the sensitivity of dynamics in actual evap-

oration by periodically turning ke on and off, while keep-

ing the rainfall constant. This sensitivity analysis shows that

the longer actual evaporation is switched off, the smaller the

slope of the Budyko curve and the smaller the maximum

value of the evaporation index (Fig. 4). Comparing the dif-

ferent curves with real catchments shows that data from the

Ourthe catchment (Belgium) are relatively close to its respec-

tive line (its months without actual evaporation are estimated
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Figure 4. Sensitivity to on–off dynamics in actual evaporation

in the forward model. MOPEX catchments were filtered to have

only those catchments having a coefficient of variance < 0.12 for

monthly median rainfall and with at least 1 month with a median

maximum air temperature< 0 ◦C; a month is considered to have no

actual evaporation if the monthly median maximum air temperature

< 0 ◦C (after Devlin, 1975). Error bars indicate 1 standard deviation

and are determined with bootstrap sampling.

from Fig. 6.1 of Aalbers, 2015). Also the MOPEX catch-

ments plot relatively close to their respective lines. However,

the way the MOPEX catchments were filtered is somewhat

arbitrary (only those having a coefficient of variance < 0.12

for monthly median rainfall and with at least 1 month with a

monthly median maximum ambient temperature < 0 ◦C are

taken into account; a month is considered to have no actual

evaporation if the monthly median maximum air temperature

< 0 ◦C; after Devlin, 1975, Fig. S2.2 of Supplement).

At first sight the comparison with data looks better than in

the case of dry spells. However, all plotted catchments have

an aridity index between 0.5 and 0.71, and within this range

the different curves also plot close to each other. Yet, it is still

somewhat surprising that the comparison is relatively good,

since the modelled lines were created by assuming a constant

atmospheric demand (µatm) for each run, which is different

from real catchments that have a more-or-less sinusoidal po-

tential evaporation over the year. However, we consider it as

future work to better represent the real-world dynamics in the

model.

5 Conclusions and outlook

The Budyko curve is empirical proof that only a subset of all

possible combinations of aridity index and evaporation in-

dex emerges in nature. It belongs to the so-called Darwinian

models (Harman and Troch, 2014), focusing on emergent be-

haviour of a system as a whole. Since the maximum-power

principle links Newtonian models with the Darwinian mod-
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els, it has indeed potential to derive the Budyko curve with

an, in essence, Newtonian model.

We presented a top-down approach in which we derived

relations between relative wetness and chemical potentials

that lead, under constant forcing, to a point on the asymp-

totes of the Budyko curve when the maximum-power princi-

ple is applied. Subsequently sensitivities to dynamics in forc-

ing and actual evaporation were tested.

Since the Budyko curve is an empirical curve, a calibration

parameter is often linked to catchment-specific characteris-

tics such as land use, soil water storage, climate seasonality,

or spatial scales (e.g. Milly, 1994; Yang et al., 2008; Choud-

hury, 1999; Zhang et al., 2004; Potter et al., 2005). Although

correlations between characteristics and the calibration pa-

rameter have been found, it remains a calibration parameter.

Here we presented a method to derive the Budyko curve

without any calibration parameter, but sensitive to temporal

dynamics in boundary conditions. Although we used simple

block functions to test these sensitivities, they compare rea-

sonably well with observations. Nevertheless, improvements

could be made by modelling dynamics closer to reality, or

even by adding multiple parallel reservoirs to account for

spatial variability within a catchment.

Even though the model represents observations reasonably

well (despite its simplicity), the method used here is by no

means proof that the maximum-power principle applies for

hydrological systems. This is due to the top-down deriva-

tion of the gradients in which the maximum-power princi-

ple is used explicitly. In principle, the method could also be

used with respect to any other optimization principle. How-

ever, the reasonable fits with observations are grounds upon

which to further explore this methodology – including the

maximum-power principle.

The Supplement related to this article is available online

at doi:10.5194/hess-20-479-2016-supplement.

Acknowledgements. We would like to thank three anonymous

reviewers for their fruitful comments. Furthermore we would like to

thank Miriam Coenders-Gerrits for providing data of the Mupfure

catchment, Wouter Berghuijs for his help with the MOPEX data set,

and Service Public de Wallonie for providing river flow data of the

Ourthe catchment. This research was supported by the University

of Liege and the EU in the context of the MSCA-COFUND-BeIPD

project.

Edited by: D. Wang

References

Aalbers, E.: Evaporation in conceptual rainfall-runoff mod-

els: testing model realism using remotely sensed evap-

oration, Master’s thesis, Delft University of Technol-

ogy, available at: http://repository.tudelft.nl/view/ir/uuid:

a2edc688-2270-4823-aa93-cb861cf481a2/, last access: 10 Au-

gust 2015.

Budyko, M. I.: Climate and Life, 508 pp., Academic Press, New

York , 1974.

Choudhury, B.: Evaluation of an empirical equation for annual

evaporation using field observations and results from a bio-

physical model, J. Hydrol., 216, 99–110, doi:10.1016/S0022-

1694(98)00293-5, 1999.

del Jesus, M., Foti, R., Rinaldo, A., and Rodriguez-Iturbe, I.: Maxi-

mum entropy production, carbon assimilation, and the spatial or-

ganization of vegetation in river basins, P. Natl. Acad. Sci. USA,

109, 20837–20841, doi:10.1073/pnas.1218636109, 2012.

Devlin, R.: Plant Physiology, 3rd Edn., D. Van Nostrand Company,

New York, 1975.

Dewar, R. C.: Maximum Entropy Production as an Inference Al-

gorithm that Translates Physical Assumptions into Macroscopic

Predictions: Don’t Shoot the Messenger, Entropy, 11, 931–944,

doi:10.3390/e11040931, 2009.

Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schy-

manski, S. J., Blöschl, G., Gelfan, A. N., Harman, C., Klei-

don, A., Bogaard, T. A., Wang, D., Wagener, T., Scherer, U.,

Zehe, E., Bierkens, M. F. P., Di Baldassarre, G., Parajka, J.,

van Beek, L. P. H., van Griensven, A., Westhoff, M. C., and

Winsemius, H. C.: Advancing catchment hydrology to deal with

predictions under change, Hydrol. Earth Syst. Sci., 18, 649–671,

doi:10.5194/hess-18-649-2014, 2014.

Harman, C. and Troch, P. A.: What makes Darwinian hydrology

“Darwinian”” Asking a different kind of question about land-

scapes, Hydrol. Earth Syst. Sci., 18, 417–433, doi:10.5194/hess-

18-417-2014, 2014.

Hergarten, S., Winkler, G., and Birk, S.: Transferring the concept

of minimum energy dissipation from river networks to subsur-

face flow patterns, Hydrol. Earth Syst. Sci., 18, 4277–4288,

doi:10.5194/hess-18-4277-2014, 2014.

Kleidon, A.: Nonequilibrium thermodynamics and maximum en-

tropy production in the Earth system, Naturwissenschaften, 96,

653–677, doi:10.1007/s00114-009-0509-x, 2009.

Kleidon, A. and Renner, M.: Thermodynamic limits of hydrologic

cycling within the Earth system: concepts, estimates and implica-

tions, Hydrol. Earth Syst. Sci., 17, 2873–2892, doi:10.5194/hess-

17-2873-2013, 2013.

Kleidon, A. and Schymanski, S.: Thermodynamics and optimality

of the water budget on land: a review, Geophys. Res. Lett., 35,

L20404, doi:10.1029/2008GL035393, 2008.

Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynam-

ics, maximum power, and the dynamics of preferential river flow

structures at the continental scale, Hydrol. Earth Syst. Sci., 17,

225–251, doi:10.5194/hess-17-225-2013, 2013.

Kleidon, A., Renner, M., and Porada, P.: Estimates of the climato-

logical land surface energy and water balance derived from maxi-

mum convective power, Hydrol. Earth Syst. Sci., 18, 2201–2218,

doi:10.5194/hess-18-2201-2014, 2014.

Kollet, S. J.: Optimality and inference in hydrology from en-

tropy production considerations: synthetic hillslope numerical

www.hydrol-earth-syst-sci.net/20/479/2016/ Hydrol. Earth Syst. Sci., 20, 479–486, 2016

http://dx.doi.org/10.5194/hess-20-479-2016-supplement
http://repository.tudelft.nl/view/ir/uuid:a2edc688-2270-4823-aa93-cb861cf481a2/
http://repository.tudelft.nl/view/ir/uuid:a2edc688-2270-4823-aa93-cb861cf481a2/
http://dx.doi.org/10.1016/S0022-1694(98)00293-5
http://dx.doi.org/10.1016/S0022-1694(98)00293-5
http://dx.doi.org/10.1073/pnas.1218636109
http://dx.doi.org/10.3390/e11040931
http://dx.doi.org/10.5194/hess-18-649-2014
http://dx.doi.org/10.5194/hess-18-417-2014
http://dx.doi.org/10.5194/hess-18-417-2014
http://dx.doi.org/10.5194/hess-18-4277-2014
http://dx.doi.org/10.1007/s00114-009-0509-x
http://dx.doi.org/10.5194/hess-17-2873-2013
http://dx.doi.org/10.5194/hess-17-2873-2013
http://dx.doi.org/10.1029/2008GL035393
http://dx.doi.org/10.5194/hess-17-225-2013
http://dx.doi.org/10.5194/hess-18-2201-2014


486 M. Westhoff et al.: Budyko curve derived with maximum-power principle

experiments, Hydrol. Earth Syst. Sci. Discuss., 12, 5123–5149,

doi:10.5194/hessd-12-5123-2015, 2015.

McDonnell, J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G.,

Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M.,

Selker, J., and Weiler, M.: Moving beyond heterogeneity and pro-

cess complexity: a new vision for watershed hydrology, Water

Resour. Res., 43, W07301, doi:10.1029/2006WR005467, 2007.

Milly, P. C. D.: Climate, soil water storage, and the average

annual water balance, Water Resour. Res., 30, 2143–2156,

doi:10.1029/94WR00586, doi:10.1029/94WR00586, 1994.

Porada, P., Kleidon, A., and Schymanski, S. J.: Entropy production

of soil hydrological processes and its maximisation, Earth Syst.

Dynam., 2, 179–190, doi:10.5194/esd-2-179-2011, 2011.

Potter, N. J., Zhang, L., Milly, P. C. D., McMahon, T. A., and Jake-

man, A. J.: Effects of rainfall seasonality and soil moisture ca-

pacity on mean annual water balance for Australian catchments,

Water Resour. Res., 41, w06007, doi:10.1029/2004WR003697,

2005.

Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Bras, R. L., Ijjasz-

Vasquez, E., and Marani, A.: Minimum energy and fractal struc-

tures of drainage networks, Water Resour. Res., 28, 2183–2195,

doi:10.1029/92WR00801, 1992.

Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Ijjasz-

Vasquez, E., and Marani, A.: Fractal structures as least energy

patterns: The case of river networks, Geophys. Res. Lett., 19,

889–892, doi:10.1029/92GL00938, 1992.

Savenije, H. H. G.: The importance of interception and why we

should delete the term evapotranspiration from our vocabulary,

Hydrol. Process., 18, 1507–1511, doi:10.1002/hyp.5563, 2004.

Schaake, J., Cong, S., and Duan, Q.: The US MOPEX data set,

IAHS-AISH P., 307, 9–28, 2006.

Schaefli, B., Harman, C. J., Sivapalan, M., and Schymanski, S. J.:

HESS Opinions: Hydrologic predictions in a changing environ-

ment: behavioral modeling, Hydrol. Earth Syst. Sci., 15, 635–

646, doi:10.5194/hess-15-635-2011, 2011.

Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward

approach to hydrological prediction, Hydrol. Process., 17, 2101–

2111, 2003.

Thompson, S., Harman, C., Troch, P., Brooks, P., and Siva-

palan, M.: Spatial scale dependence of ecohydrologically me-

diated water balance partitioning: a synthesis framework for

catchment ecohydrology, Water Resour. Res., 47, W00J03,

doi:10.1029/2010WR009998, 2011.

van Genuchten, M. T.: A closed-form equation for predicting the

hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J.,

44, 892–898, doi:10.2136/sssaj1980.03615995004400050002x,

1980.

Wang, D. and Tang, Y.: A one-parameter Budyko model

for water balance captures emergent behavior in darwinian

hydrologic models, Geophys. Res. Lett., 41, 4569–4577,

doi:10.1002/2014GL060509, 2014.

Wang, D., Zhao, J., Tang, Y., and Sivapalan, M.: A thermo-

dynamic interpretation of Budyko and L’vovich formulations

of annual water balance: proportionality hypothesis and maxi-

mum entropy production, Water Resour. Res., 51, 3007–3016,

doi:10.1002/2014WR016857, 2015.

Wang, J. and Bras, R. L.: A model of evapotranspiration based on

the theory of maximum entropy production, Water Resour. Res.,

47, W03521, doi:10.1029/2010WR009392, 2011.

Westhoff, M. C. and Zehe, E.: Maximum entropy production: can

it be used to constrain conceptual hydrological models?, Hy-

drol. Earth Syst. Sci., 17, 3141–3157, doi:10.5194/hess-17-3141-

2013, 2013.

Westhoff, M. C., Zehe, E., and Schymanski, S. J.: Importance of

temporal variability for hydrological predictions based on the

maximum entropy production principle, Geophys. Res. Lett., 41,

67–73, doi:10.1002/2013GL058533, 2014.

Yang, H., Yang, D., Lei, Z., and Sun, F.: New analytical derivation

of the mean annual water-energy balance equation, Water Re-

sour. Res., 44, W03410, doi:10.1029/2007WR006135, 2008.

Zehe, E., Blume, T., and Blöschl, G.: The principle of “maximum

energy dissipation”: a novel thermodynamic perspective on rapid

water flow in connected soil structures, Philos. T. R. Soc. B, 365,

1377–1386, doi:10.1098/rstb.2009.0308, 2010.

Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and West-

hoff, M.: A thermodynamic approach to link self-organization,

preferential flow and rainfall–runoff behaviour, Hydrol. Earth

Syst. Sci., 17, 4297–4322, doi:10.5194/hess-17-4297-2013,

2013.

Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., West-

hoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K.,

Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P.,

Scherer, U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS

Opinions: From response units to functional units: a thermody-

namic reinterpretation of the HRU concept to link spatial orga-

nization and functioning of intermediate scale catchments, Hy-

drol. Earth Syst. Sci., 18, 4635–4655, doi:10.5194/hess-18-4635-

2014, 2014.

Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., West-

ern, A. W., and Briggs, P. R.: A rational function approach for

estimating mean annual evapotranspiration, Water Resour. Res.,

40, w02502, doi:10.1029/2003WR002710, 2004.

Hydrol. Earth Syst. Sci., 20, 479–486, 2016 www.hydrol-earth-syst-sci.net/20/479/2016/

http://dx.doi.org/10.5194/hessd-12-5123-2015
http://dx.doi.org/10.1029/2006WR005467
http://dx.doi.org/10.1029/94WR00586
http://dx.doi.org/10.1029/94WR00586
http://dx.doi.org/10.5194/esd-2-179-2011
http://dx.doi.org/10.1029/2004WR003697
http://dx.doi.org/10.1029/92WR00801
http://dx.doi.org/10.1029/92GL00938
http://dx.doi.org/10.1002/hyp.5563
http://dx.doi.org/10.5194/hess-15-635-2011
http://dx.doi.org/10.1029/2010WR009998
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.1002/2014GL060509
http://dx.doi.org/10.1002/2014WR016857
http://dx.doi.org/10.1029/2010WR009392
http://dx.doi.org/10.5194/hess-17-3141-2013
http://dx.doi.org/10.5194/hess-17-3141-2013
http://dx.doi.org/10.1002/2013GL058533
http://dx.doi.org/10.1029/2007WR006135
http://dx.doi.org/10.1098/rstb.2009.0308
http://dx.doi.org/10.5194/hess-17-4297-2013
http://dx.doi.org/10.5194/hess-18-4635-2014
http://dx.doi.org/10.5194/hess-18-4635-2014
http://dx.doi.org/10.1029/2003WR002710

	Abstract
	Introduction
	The maximum-power principle
	Mathematical framework
	Initial model setup
	Backward analysis to determine the driving gradients
	Optimum ke* matching the Budyko curve
	Maximum power by evaporation
	Maximum power by run-off

	Forward analysis

	Results and discussion from forward analysis
	Constant forcing
	Sensitivity to dry spells
	Sensitivity to dynamics in actual evaporation

	Conclusions and outlook
	Acknowledgements
	References

