KIT | KIT-Bibliothek | Impressum | Datenschutz

A model for brain life history evolution

González-Forero, Mauricio; Faulwasser, Timm; Lehmann, Laurent

Abstract:
Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain’s energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting (“me vs nature”), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model’s parameter values. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000068018
Veröffentlicht am 09.03.2018
Originalveröffentlichung
DOI: 10.1371/journal.pcbi.1005380
Scopus
Zitationen: 4
Web of Science
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2017
Sprache Englisch
Identifikator ISSN: 1553-7358, 1553-734X
urn:nbn:de:swb:90-680182
KITopen-ID: 1000068018
HGF-Programm 37.06.01 (POF III, LK 01)
Networks and Storage Integration
Erschienen in PLoS Computational Biology
Band 13
Heft 3
Seiten e1005380
Nachgewiesen in Web of Science
Scopus
PubMed
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page