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Abstract

The present thesis deals with the inverse dynamics simulation of underactuated mul-
tibody systems. In particular, the study focuses on solving trajectory tracking control
problems of differentially flat underactuated systems. The use of servo constraints
provides an approach to formulate trajectory tracking control problems of unde-
racutated systems, which are also called underactuated servo constraint problems.
The formulation of underactuated servo constraint problems makes use of minimal
coordinates and dependent (or redundant) coordinates to yield a set of differential-
algebraic equations (DAEs) with high index. The transition between the redundant
coordinates formulation and the minimal coordinates formulation is achieved by ap-
plying the discrete null space method. Since the numerical solution to the DAEs with
high index is a challenging task and the flatness-based analytical solution is not fea-
sible for complicated underactuated systems, it is necessary to apply index reduction
methods to reduce the index before the direct time discretization is performed. A
specific projection method is applied to reduce the index from five to three and it re-
quires the computation of projection matrices, which are constant Boolean-type in the
redundant coordinates formulation and are time-dependent in the minimal coordina-
tes formulation. A newly proposed index reduction method called index reduction
by minimal extension is developed in this thesis and applied to servo constraint pro-
blems of underactuated systems. Representative numerical examples are used to
demonstrate the application of both index reduction methods. Special attention is
placed on the new index reduction by minimal extension method through several ad-

vanced examples, which can not be solved by application of the projection method.

Keywords: Inverse dynamics, differential-algeraic equations, trajectory tracking, servo
constraints, differential flatness, index reduction, projection method, minimal exten-
sion, multibody dynamics, underactuated mechanical systems, feedforward control,
cranes, manipulators






Kurzfassung

In der vorliegenden Dissertation wird die Simulation der inversen Dynamik unter-
aktuierter Mehrkorpersysteme behandelt. Insbesondere werden Steuerungsprobleme
der Bahnverfolgung fiir differentiell flache unteraktuierte Systeme untersucht. Mit
Hilfe von Servobindungen werden die Steuerungsprobleme der Bahnverfolgung fiir
unteraktuierte Systeme formuliert. Die betrachteten Probleme werden unteraktuierte
Servobindungsprobleme genannt. Minimalkoordinaten, abhéngige oder redundante
Koordinaten werden zur Formulierung unteraktuierter Servobindungsprobleme ver-
wendet. Die Formulierung ergibt differential-algebraische Gleichungen mit hohem
Index. Die diskrete Nullraum-Methode erméoglicht den Ubergang von redundanten
Koordinaten zu Minimalkoordinaten. Da die numerische Losung der differential-
algebraischen Gleichungen mit hohem Index anspruchsvoll ist und die flachheitsba-
sierte analytische Losung fiir komplizierte unteraktuierte Systeme nicht praktikabel
ist, werden Methoden zur Indexreduktion vor der direkten Zeitdiskretisierung einge-
setzt. Eine spezielle Projektionsmethode wird angewendet, um den Index von fiinf
auf drei zu reduzieren. Die Methode erfordert die Berechnung von Projektionsmatri-
zen, die in der redundanten Koordinaten Formulierung konstant und in der Minimal-
koordinaten Formulierung zeitabhingig sind. Eine neue Methode, Indexreduktion
durch minimale Erweiterung genannt, wird in dieser Dissertation entwickelt und fiir
Servobindungsprobleme unteraktuierter Systeme verwendet. Die beiden Methoden
werden auf repréasentative numerische Beispiele angewandt. Insbesondere wird schon
gezeigt, dass sich die neu entwickelte Indexreduktionsmethode zur Losung invol-
vierter Probleme eignet, die bislang mit der Projektionsmethode nicht gelost werden

konnten.

Schliisselwérter: Inverse Dynamik, Indexreduktion, Bahnverfolgung, Servobindun-
gen, Mehrkorperdynamik, unteraktuierte Systeme, differential-algebraische Gleichun-
gen, Differentielle Flachheit, Projektionsmethode, minimale Erweiterung, Vorsteue-
rung, Krane, Manipulatoren
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1 Introduction

Inverse dynamics problems arise in many applications of feedforward control pro-
blems, such as robotic control, aircraft control or crane control. The present thesis
deals with inverse dynamics simulation problems and especially focuses on solving
trajectory tracking control problems. The goal of trajectory tracking control problems
is to determine control inputs that force a mechanical system to complete a prescri-
bed motion. The determination of control inputs is based on the dynamic model
of the controlled mechanical system, which can be formulated by employing either

generalized coordinates or redundant coordinates.

The formulation of inverse dynamics simulation problems yields differential-algebraic
equations (DAEs), because the desired system outputs expressed in terms of state
variables lead to servo constraints on the system. If fully actuated systems are con-
sidered, the number of control inputs/outputs is equal to the number of degrees of
freedom. In fully actuated systems control inputs are easily solved from the dyna-
mic equations by the routine inverse dynamics analysis, since the system motion is
fully specified by the task requirements. Besides, the governing equations for servo
constraint problems of fully actuated systems are (differentiation) index-3 DAEs. The
servo constraint problem of fully actuated systems is well understood in the applica-
tion of robot control. For example, the inverse dynamics control of such problems can

be used to generate manipulator control torques.

In contrast to fully actuated systems, the situation changes considerably for unde-
ractuated systems in which the number of control inputs/outputs is lower than the
number of degrees of freedom. The system motion is specified by desired system
outputs with the same number as control inputs. Due to the property of underac-
tuation, the inverse dynamics simulation of underactuated systems is much more
demanding. Control inputs can not be solved from the dynamic equations by model
inversion, since the input distribution matrix in the governing equations is not in-
vertible. Therefore, the determination of control inputs that force the underactuated

system to complete the partly specified motion is a challenging task. In particular, the
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governing equations for servo constraint problems of underactuated systems arise as
a set of DAEs with high index. Servo constraint problems of underactuated systems
in partly specified motion can be viewed from the perspective of constrained motion.
From the geometric viewpoint of Blajer [27], similar to geometric constraint forces
in constrained multibody systems, control inputs (actuator forces) can be regarded
as reaction forces of servo constraints. However, the reactions of servo constraints
may have any direction with respect to the manifold of servo constraints, and in the
extreme case may be tangent, while the reactions of geometric constraints are ortho-
gonal to the respective constraint manifold. The realization of servo constraints with
the use of control forces can range from orthogonal to tangential. In the case of tan-
gential realization, underactuated systems are differentially flat. The solvability of the
DAEs with high index for differentially flat underactuated systems (the controllability
of differentially flat underactuated systems in partly specified motions) is closely re-
lated to the mathematical property known as differential flatness [39], which implies
that all system state variables and control inputs can be algebraically expressed in
terms of desired outputs and their time derivatives up to a certain order, without in-
tegrating any differential equations. However, the flatness-based analytical approach
is not feasible for more complicated underactuated systems and the derivations are
featured by substantial complexity. The DAE formulation provides a more convenient
appraoch to the inverse dynamics analysis of underactuated systems in partly speci-
fied motion. Servo constraint problems of differentially flat underactuated systems
arise in many applications, such as control of cranes, control of robots with flexible

joints or flexible members and control of cable suspension manipulators.

In the formulation of underactuated multibody systems, the choice of coordinates
has strong impact on the form of the equations of motion. If generalized (minimal)
coordinates are used, the governing equations of motion are in the form of ordinary
differential equations (ODEs), which are in general highly nonlinear. The orientation
of rigid bodies is described by rotational parameters such as Euler angles, which give
rise to the singularity problem. By contrast, if redundant coordinates are applied, the
formulation of constrained mechanical systems yields differential-algebraic equations
(DAEs), which exhibit a comparatively simple structure. The description of the orien-
tation of rigid bodies relies on direction cosines instead of rotational parameters such
as Euler angles, rotation vectors or other 3-parameter description of finite rotations.
Thus, the rotationless formulation is featured by a constant mass matrix and can be

easily extended to flexible multibody dynamics.



1.1 Literature review

In the present thesis, numerical methods are developed to deal with servo constraint
problems of underactuated multibody systems. In particular, the study focuses on
differentially flat underactuated mechanical systems, in which the index of the DAEs
exeeds three. The high index value causes difficulties in the direct numerical inte-
gration of the DAEs. Therefore, to facilitate a stable numerical integration, index
reduction methods are preferred to reduce the high index value of the DAEs to three
or even lower. A specific projection method proposed by Blajer and Kotodziejczyk
[27] yields an index reduction from five to three. The projection method requires the
computation of projection matrices, which are time-dependent for the formulation in
terms of generalized coordinates and constant Boolean-type for the formulation in
terms of redundant coordinates. The purpose of the projection matrices is to split
the dynamics of the underactuated system into constrained and unconstrained parts.
After the application of the projection method, the high index DAEs are transfor-
med to a more tractable index-3 form, which is amenable to a direct discretization
with common numerical integration schemes such as the backward Euler method.
An alternative index reduction method is the newly proposed method to reduce the
index of the DAEs. The new approach relies on the index reduction by minimal ex-
tension originally developed by Kunkel and Mehrmann [62] for more general DAEs.
The technique of minimal extension is especially suited for the semi-explicit structure
of the DAEs and it is not necessary to compute projection matrices as in the pro-
jection method. Therefore, the new method, also called index reduction by minimal
extension, can be applied to servo constraint problems of underactuated systems to
reduce the index value of the DAEs to three or even to one. Moreover, the reduced
index-1 DAEs are purely algebraic and reflect the fact that the underactuated system
at hand is differentially flat. At last, the desired control inputs that force the unde-
ractuated system to complete the partly specified motion are determined by solving
the resulting DAEs and the feedforward control strategy is obtained for the trajectory

tracking control of underactuated systems.

1.1 Literature review

A bief literature review on servo constraint problems of underactuated systems is

given below.

In servo constraint problems, control outputs (specified in time load coordinates) lead

to servo [56] (control [76] or program [25]) constraints. The formulation of underactu-
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ated servo constraint problems is accomplished by employing either minimal coordi-
nates [28, 20, 21, 94, 2] or redundant coordinates [20, 21, 30, 31, 94, 2]. The rotationless
formulation in terms of redundant coordinates is widely employed in diverse nu-
merical problems, such as the numerical integration for constrained rigid multibody
dynamics [17, 9, 13, 19, 87], for flexible multibody dynamics [14, 15, 79], for optimal
control problems [23, 84], for contact problems of flexible bodies [12, 51, 41, 40], and
for nonlinear thermo-viscoelastodynamics problems [47, 48, 49, 61, 60]. The present
rotationless formulation has similarities to the formulation based on natural coordina-
tes advocated by Garcia de Jalén et al. [37, 38]. It can be reduced to the formulation in
terms of generalized coordinates by application of the discrete null space method with
nodal reparametrization [9, 13, 67, 87]. In addition, a specific coordinate augmenta-
tion technique [19, 88, 87, 40] is applied in the rotationless formulation to incorporate
rotational variables and associated torques. The formulation of underactuated servo
constraint problems yields equations of motion in the form of DAEs with high index,
which are difficult to be treated in the numerical integration. Therefore, index re-
duction methods are applied to transform the high index DAEs to lower index DAEs,
which are amenable to a direct discretization. Blajer and Kotodziejczyk [25, 27] have
originally proposed a specific projection method to deal with servo constraint pro-
blems. In particular, two projected formulations are distinguished in the application
of the projection method. These are the projected formulation in terms of minimal
coordinates [28, 29, 21, 94] and the projected formulation in terms of redundant coor-
dinates [30, 31, 21, 94]. A new index reduction method is called index reduction
by minimal extension, which was originally developed by Kunkel and Mehrmann
[62, 63]. The new index reduction method has been applied to the servo constraint
problems of underactuated systems in [2, 24], to the inverse dynamics simulation
[95, 96] of a class of cranes [65, 59, 57], whose formulation fits into the general fra-
mework [58], and to servo constraint problems of kinematically undetermined cable
suspension manipulators [53, 70, 52]. Differential flatness [39, 78] is one important
mathematical property for differentially flat underactuated systems and yields the
flatness-based solution. However, it is not possible to derive the flatness-based ana-
lytical solution for complicated servo constraint problems. Numerical methods are

therefore much more preferable for solving the problem.



1.2 Outline

1.2 Outline

This section gives an overview over the thesis and the main contents of each chapter.
Chapter 2 provides the basic theoretical concepts for the modeling of rigid multi-
body systems. It first introduces Hamilton’s principle, which is used to derive the
Lagrange’s equations of the second and first kind. Then the application of Lagrange’s
equations yields equations of motion for discrete rigid multibody systems under con-
sideration. The governing equations take the form of ordinary differential equations
(ODEs) in the generalized coordinates formulation or the form of differential-algeraic
equations (DAEs) in the redundant coordinates formulation. In particular, the dis-
crete null space method can be applied to reduce the large number of equations and
unknowns present in the rotationless formulation. Therefore, the generalized coor-
dinates formulation can be derived from the redundant coordinates formulation as
well. In addition, the descriptions of rigid bodies and two basic kinematic pairs are
given in the case of the rotationless formulation. The coordinate augmentation is also
shortly introduced. To this end, the numerical example of a three-dimensional rotary
crane demonstrates the comparison of two different formulations of rigid multibody

systems and their corresponding influences on the numerical integration.

Chapter 3 presents several numerical time-stepping schemes, such as the implicit
Euler method, the mid-point-type rule, the energy-momentum scheme and the va-
riational integrator. These methods can be used for the direct time discretization of
the DAEs for constrained multibody systems. In this connection, a classical bench-
mark problem for rigid multibody dynamics is used to demonstrate the application
of different numerical integration schemes and the numerical results are discussed

and compared with each other.

Chapter 4 describes the inverse dynamics simulation problems of underactuated me-
chanical systems, which are formulated by using servo constraints. The formulation
of servo constraint problems makes use of either generalized coordinates or redun-
dant coordinates. In the case of redundant coordinates, the discrete null space method
can be applied to yield the size reduction. The formulation of underactuated servo
constraint problems yields differential-algebraic equations (DAEs) with high index.
As a specific index reduction method, the projection method is applied to yield the
index reduction in order to solve servo constraint problems. In this connection, the
projected formulation is used for the formulation in terms of generalized coordinates,
redundant coordinates and dependent coordinates, respectively. In addition, the pro-

perty of differential flatness is introduced and used to derive the analytical reference
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solution for differentially flat underactuated systems. Two numerical examples are
analyzed and demonstrate the comparison between different projected formulations

and the flatness-based approach.

Chapter 5 introduces a new index reduction method, which is called index reduction
by minimal extension. The method is first described for constrained mechanical sy-
stems. Then it is applied to the inverse dynamics simulation of cranes, which are
formulated by using dependent coordinates. In this case, index reduction by mini-
mal extension can be applied once more and DAEs of index 1 can be obtained. This
proves that the cranes under consideration are differentially flat. Besides, index re-
duction by minimal extension can also be applied to the formulation of cranes in
terms of minimal coordinates. In this case, the procedure is more complicated than in
the dependent coordinates formulation. The commutative process between minimal
extension and size reduction is proved and shown in a diagram. This chapter in-
troduces also a general formulation in terms of redundant coordinates, in which the
number of holonomic constraints is greater than the number of servo constraints. It is
proved that index reduction by minimal extension can be applied to this formulation
as well. The number of redundant coordinates can be reduced by application of the
discrete null space method. For simplicity, the backward Euler scheme is applied for
the time discretization of the resulting index-3 DAEs. Two numerical examples show
the application of index reduction by minimal extension to the formulation in terms
of dependent coordinates and minimal coordinates, respectively. The third example
demonstrates the application of index reduction by minimal extension to the formula-
tion in terms of redundant coordinates and the size reduction procedure. The results
are presented and compared with the analytical reference solution.

Chapter 6 gives several advanced numerical examples of underactuated mechanical
systems and demonstrates the effective application of index reduction by minimal

extension to the formulation in terms of redundant coordinates.

Eventually conclusions are drawn and an outlook for future developments is provided
in Chapter 7.



2 Modeling of rigid multibody

dynamics

Multibody systems are composed of interconnected rigid or flexible bodies that per-
form translational or rotational motions, and the motion of the bodies is constrained
by different types of joints [83]. In computational multibody dynamics, different
formulations are used to study the dynamic behaviour of multibody systems. The
formulation of multibody systems depends on the choice of coordinates for the des-
cription of multibody dynamics and the choice of coordinates also has strong impact

on the form of equations of motion.

There will be two alternative formulations introduced in this chapter: the formulation
in terms of generalized (or minimal) coordinates along with Euler (or Bryant) angles
for the description of the orientation of rigid bodies, and the formulation in terms
of redundant coordinates, in which the orientation of rigid bodies is described in
terms of direction cosines (see, for example, [9, 13]). The formulation in terms of
generalized coordinates yields equations of motion in the form of ordinary differential
equations (ODEs). In contrast, the formulation in terms of redundant coordinates
yields differential-algebraic equations (DAEs). In addition, a numerical example of a
three-dimensional rotary crane will be presented, which demonstrates the application
of the two formulations and their influences on the numerical time integration.

2.1 Hamilton’s principle

In analytical mechanics one important variational principle is Hamilton’s principle [43,
64], from which some fundamental laws of mechanics, like Lagrange’s equations and
Hamilton’s equations, can be derived. Hamilton’s principle is an integral principle,
which considers the motion of an entire system between two time points t; and ¢,.

It reduces the problem of dynamics to the investigation of a scalar definite integral



2 Modeling of rigid multibody dynamics

and has the remarkable advantage of being invariant to the coordinate system used
to describe the Lagrangian [74].

The action (or action integral) is defined as

)

S = /L(q,q) dt 2.1)

fy

where the Lagrangian L is expressed in the form
L=T-V (2.2)

with the system kinetic energy T and the system potential energy V.

Hamilton’s principle can be stated as follows: The actual path in the configuration space
ST b . . .

renders the value of the definite integral 5 = [, L(q,q) dt stationary with respect to all

arbitrary variations of the path between two instants t1 and t, provided that the path variations

vanish at these two end points [74]. Mathematically it implies that the motion of a

dynamical system is such that the variation of the line integral S for fixed t; and ¢, is

zero [43]:

55 = /L(q,q) dt =0 (2.3)

2.1.1 Lagrange’s equations of the second kind

In rigid multibody systems Lagrange’s equations can be derived from Hamilton’s
principle by using either generalized coordinates or redundant coordinates. Genera-
lized coordinates s € Rf can be used to describe the configuration of the mechanical
system and the dimension f is equal to the degrees of freedom of the mechanical
system.



2.1 Hamilton’s principle

For mechanical systems, if generalized coordinates # € R/ are used, the variation of

the action integral reads

where the integration by parts is expressed as
for fd (oL aL 1"
aﬂ-éydt:—/dt(aﬂ)ﬁydt—&—[aﬂﬁy}tl (2.5)
b h

with the endpoint conditions du(t1) = du(t2) = 0. Requiring that the variations of
the action integral be zero for all du implies that the integrand must be zero for all

time ¢, giving the well-known Euler-Lagrange equations for conservative holonomic

d (oL oL

which are also called Lagrange’s equations of the second kind. Based on Lagrange-

systems [71],

d’Alembert’s principle, for non-conservative holonomic systems there is

)

2
%:5/u%m¢+/gﬂw&:0 (2.7)

t t
which leads to Euler-Lagrange equations for non-conservative holonomic systems,
d /oL oL
(=) - 2= = o 2.
dt (au> o~ 2 28)
where Q" are non-conservative generalized forces, and more specifically, the applied

forces that can not be derived from a potential, such as the friction force and the
actuation force.
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2.1.2 Lagrange’s equations of the first kind

If redundant coordinates g € IR" are used, the coordinates are not independent, and
then constraint equations are required to restrict the motion of the mechanical system

and constrain the mechanical system to a lower dimensional manifold.

In the case of holonomic mechanical systems, the constraints can be expressed as
constraint functions
®(q,t) =0 (2.9)

where ® € R” and the dimension m denotes the number of independent holonomic
constraints. If redundant coordinates g € R" have the dimension 7, the degrees of
freedom of the mechanical system can be calculated by f = n — m, which is equal to
the number of generalized coordinates # € R/.

If the constraints can not be expressed in the form of Equation (2.9), the constraints
are nonholonomic. If constraint equations are not explicitly dependent on time, the

constraints are scleronomic and can be expressed as
®(q)=0 (2.10)

Otherwise the constraints are rheonomic.

For constrained mechanical systems with holonomic constraints, the action integral

needs to be modified as

t

2}
S=5— /A~<I>(q) dt = /(L(q,q) —A-®(q)) dt (2.11)

ty ty

with Lagrange multipliers A € R™. Then the variation of the modified action reads

. oL @
55:/{.(5 Lk 522 —M-cb]dt
PR R A R

Flor  d soL oo\ " ?
:/[aq_dt<8q>_<aq> )\} -(Sth—/cb-Mdt
ty

2.12)

10
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where the integration by parts

[2) ty
"L d /oL oL f2
aq~5th——/dt(aq)dth—i-{aqﬁq} (2.13)

t
ty ty !

is used with the endpoint conditions éq(t;) = dq(t;) = 0. Hamilton’s principle
implies that the variation of the modified action integral in the actual path followed
by the system must be equal to zero. Then according to the fundamental lemma of
the calculus of variations, the coefficients of dg and JA in Equation (2.12) are both
equal to zero. For conservative holonomic systems this leads to the Euler-Lagrange

equations

d (oL\ oL [od\T
ET: (@) — @ + <W) A=0 (2.14a)

®(q) =0 (2.14b)

which are also called Lagrange’s equations of the first kind. Analogously, for non-

conservative holonomic mechanical systems, the Euler-Lagrange equations read

d /oL\ oL [o®\T .
i (5i) 3 (5) =0 215

®(q) =0 (2.15b)

2.2 Generalized coordinates formulation

The generalized coordinates formulation can be employed to model the dynamics
of mechanical systems. In this formulation the Lagrange’s equations of the second
kind in Equation (2.6) (see also [46]) is applied to derive the equations of motion for
conservative constrained mechanical systems. In Equation (2.2) the kinetic energy T
and potential energy V of a mechanical system need to be determined. The total
kinetic energy of the system is the sum of all bodies’ translational and rotational

energy parts:
1 1
T—;(ETHIZ)]'U[—FE(U]']]wI) (2.16)

Here, the mass of the body is denoted by m and the velocity of the center of mass of
the body is specified by v;. The angular velocity of the body about an axis is given by

11
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wr and the inertia tensor of the body is represented by J;. For the orthogonal principal
axis, the products of inertia are equal to zero, and then the inertia tensor is reduced
to a diagonal matrix. Besides, the total number of bodies is N. The calculation of the
potential energy V is simple and will not be discussed here.

Then, inserting the derived Lagrangian into Equation (2.6) leads to the equations of
motion of mechanical systems in the form of ODEs:

jp=v (2.17a)
M(u)v = f(u ) (2.17b)

with generalized coordinates u € Rf, generalized velocities v € Rf, the positive-
definite mass matrix M(u) € R/, generalized dynamic (centrifugal, Coriolis and
gyroscopic) and applied forces f € Rf. However, the equations of motion in terms
of rotational degrees of freedom (for example, Euler angles) are highly nonlinear
and their derivation is quite cumbersome. In particular, the mass matrix M (p) is

configuration-dependent and very complicated.

2.3 Rotationless formulation

In contrast to the generalized coordinates formulation, the rotationless formulation
relies on direction cosines and makes use of redundant coordinates to circumvent the
use of rotational parameters such as Euler angles, joint angles, rotation vectors or
quaternions [16] for the description of the orientation of rigid bodies. In this section
the Lagrange’s equations of the first kind will be applied to derive the equations of
motion in terms of redundant coordinates for conservative constrained mechanical
systems. Then the reduced formulation of the DAEs will be introduced and the
rotationless formulation will be described in detail.

2.3.1 Equations of motion

In the application of the Lagrange’s equations of the first kind, the kinetic energy of

the finite-dimensional mechanical system can be given by

T(@) = i+ Mg 2.18)

12



2.3 Rotationless formulation

Here, M € R"*" is a constant and symmetric positive-definite mass matrix and the
constant mass matrix is an essential property of the rotationless formulation. As
before, the superposed dot denotes the time differentiation. The potential energy is
given by a function V(q) € R. Then the equations (2.14a)—(2.14b) are used to derive
the dynamic equations for mechanical systems subject to holonomic constraints. The

terms in the equations (2.14a)—(2.14b) are determined by

d /oL .

T <_aq> = Mj (2.19a)
oL
30 =-VV(q) (2.19b)

Then the equations of motion for conservative constrained mechanical systems can be

written in the form of differential-algebraic equations (DAEs):

g—v=0 (2.20a)
Mv+VV(g)+G (g)A =0 (2.20b)
®(g)=0 (2.20c)

Here, a vector of redundant coordinates is given by g € R” which specifies the confi-
guration of the mechanical system. A vector of redundant velocities is denoted by v €
R". Moreover, a vector of holonomic constraint functions is expressed by ®(q) € R"
with the corresponding constraint Jacobian matrix G(q) = D®(gq) € R™*" and a vec-
tor of Lagrange multipliers is given by A € R™ which specifies the relative magnitude
of constraint forces. In addition, the m constraints are assumed to be independent.

Consequently, the constraint Jacobian matrix G has full row rank.

Due to the holonomic constraints in Equation (2.20c), the n — m dimensional configu-

ration manifold of the mechanical system can be expressed by

Q={q(t) e R" |®(q) =0} (2.21)

Accordingly, the degrees of freedom of the discrete mechanical system is f = n — m.
In summary, the equations (2.20a)—(2.20c) are index-3 differential-algebraic equati-
ons (see [35, 63]), which consist of 21 + m equations for the unknown variable vectors
(q,9,A) € R" x R" x R™. Obviously the DAEs (2.20a)—(2.20c) exhibit a comparati-
vely simple structure, which makes possible the design of energy-momentum conser-
ving schemes (see Section 3.3). Some time-stepping schemes will be explained in the

following chapter.

13



2 Modeling of rigid multibody dynamics

2.3.2 Reduced formulation of the DAEs

The DAESs (2.20a)—(2.20c) can be reformulated by premultiplying an appropriate ma-
trix (i.e. the null space matrix) and reparameterizing the configuration manifold Q.
This size-reduction procedure (i.e. discrete null space method) has been dealt with
in several works (see [9, 13, 19, 84, 87]). Due to the holonomic constraints (2.20c),
redundant velocities are restricted to the tangent space T,Q C R". The geometric
constraint equations (2.20c) can be differentiated once with respect to time to obtain
the constraint conditions at the velocity level. Accordingly, the kinematic constraints
assume the form

G(g)v=0 (2.22)

and the tangent space at g € Q can be identified with the null space of the constraint
Jacobian, that means
T,Q = null(G(q)) (2.23)

Suppose that there exists a matrix P(g) € R"*f, whose column vectors span the null
space of G(g) € R™*". The matrix P(q) is the null space matrix, which satisfies the
mathmatical condition

range(P(gq)) = null(G(q)) (2.24)

or in the alternative form
GP=0 (2.25)

Then admissible velocities v € T;Q can be written as
v=DPv (2.26)

with independent generalized velocities v € Rf. These velocities v may be classified
as quasi-velocities because their time integrals do not result in generalized coordina-
tes [13]. Equation (2.26) shows that the null space matrix P(g) maps R/ into T,Q.
After inserting Equation (2.26) into (2.18), the reduced form of the kinetic energy T is

expressed as

~ 1

T(q,v) = SV Mv (2.27)
where the reduced mass matrix M is given by

M = P'MP (2.28)

and coincides with the configuration-dependent mass matrix M in Equation (2.17b).

14



2.3 Rotationless formulation

In order to eliminate the constraint forces, Equation (2.20b) is premultiplied by PT,
which means the equations in (2.20b) are projected onto the tangent space T;Q. Then
using the equations (2.25) and (2.26) leads to the reduced formulation of the DAEs:

gq—Pv=0 (2.29a)
Mv +P"MPv +PTVV(q) =0 (2.29b)
P(q)=0 (2.290)

which govern the motion of the constrained mechanical system. By introducing ap-
propriate generalized coordinates or local coordinates # € U C R/, a second size-
reduction can be performed for the parameterization of the configuration manifold
Q. Accordingly, the holonomic constraints (2.29c) can be eliminated if a mapping
F: R/ > R” can be found such that

q="F(u) (2.30)

Then the constraints
®(F(n)) = 0 (231)

vanish from Equation (2.29¢). It should be noted that the differentiation of Equation
(2.30) with respect to time gives rise to the consistency condition (2.26). The null space
matrix P is then calculated by

P = DF(u) (2.32)

Generally the size-reduction procedure leads to equations of motion (2.17a)—(2.17b),
which have already been derived by applying the Lagrange’s equations of the second

kind in the generalized coordinates formulation.

2.3.3 Spatial rigid body

The specific rotationless formulation [17] of rigid bodies fits into the framework for
constrained mechanical systems, makes use of redundant coordinates and circum-
vents the use of any type of rotational parameters. Thus, it can be employed to

describe the position and orientation of a spatial rigid body.

In the present rotationless formulation, the orientation (rotation) of the rigid body
is characterized by nine redundant coordinates d; € RS, (i = 1,2,3) (see Fig. 2.1),

15



2 Modeling of rigid multibody dynamics

which constitute the rotation matrix (direction cosine matrix). The nine redundant
coordinates are subject to six independent holonomic constraints (2.44), sometimes
called the internal constraints, which ensure the assumption of the rigidity of the
body. Due to the assumption of the rigidity, the orthogonal rotation matrix R € SO(3)

satisfies the following conditions:
RRT =1, RT=R"!, det(R)=1 (2.33)

The rotational degrees of freedom of rigid body are calculated by f =9 — 6 = 3.

lg

€3

€2

el

Figure 2.1: Spatial rigid body.

The configuration of the rigid body (Fig. 2.1) in three-dimensional Euclidean space
can be described by the position vector of the body’s center of mass ¢ € R3 and a
right-handed body-fixed coordinate system {d;}, d; € R3, (i = 1,2,3). The vectors
d; are called the directors of the body and for simplicity the axes of the body-fixed
director frame {d;} are assumed to be aligned with the principal axes of the rigid

body. Then the set of 12 redundant coordinates comprises the configuration vector

4

dq
= 2.34
q i (2.34)

d3

which describes the configuration of the rigid body in the three-dimensional space.
The configuration vector is specified relative to the inertial Cartesian basis {e;}. If a
material point X = X;e;! belongs to the reference configuration By C R3 of the rigid

1 The Einstein summation convention is used in the context.
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2.3 Rotationless formulation

body, the current spatial positon of X € By at time ¢ relative to the inertial Cartesian
basis {e;} is expressed by
x(X,t) = (1) + Xidi(t) (2.35)

and the time derivative of x(X, t) yields the velocity of the material point
o(X,t) = ¢(t) + Xid;(t) (2.36)

Thus the kinetic energy can be written as

1
T=2 / o(X, 1) - o(X, )p(X)dV (2.37)
By
Since the axes of the body-fixed frame are aligned with the principal axes of the rigid

body, the kinetic energy of the rigid body can be given by

3
1 1 .
T= EM(PQD @+ 5 E E;d; - d; (2.38)
i=1

where ¢ and d; are redundant velocities, M, and E; are expressed by

M, = / o(X)dv (2.39)
By

Ei = / (X;)?p(X)dV (2.39b)
By

The mass density at X € By is denoted by p(X), the total mass of the body is M, and
the principal values of the Euler tensor with respect to the center of mass is expressed
by E;. The current Euler tensor with respect to the center of mass is given by

3
E=) Ed®d (2.40)
i=1

The Euler tensor is symmetric, positive-definite and can be related to the inertia tensor
via the relationship
J=(wE)I-E (2.41)

17



2 Modeling of rigid multibody dynamics

According to Equations (2.18) and (2.38), the mass matix for a rigid body is given
by
0 EI 0 0
M= ! (2.42)
0 0 EI o
0 0 0 EI

in which each identity matrix I and zero matrix 0 has the dimension three. The above
constant and diagonal 12 x 12 mass matrix M exhibits the specific characteristic of
the rotationless formulation, whereas the mass matrix M derived in the generalized

coordinates formulation is configuration dependent.

Then the potential energy of the rigid body is given by
V=Mygp-e;3 (2.43)

when the gravity is considered. Due to the assumption of the rigidity, the body-
fixed frame keeps orthonormal for all times ¢t € Ry.. Thus, there are six independent

internal constraints with associated constraint functions:

%(dl'dl)_l-
3dy-do) — 1
Hds-d3) —1
Dinla) = |2 ;12)2 (2.44)
dy - ds
dy - ds

According to Gine = V4®@int(q), the internal constraints give rise to the corresponding
constraint Jacobian:

Gint(q) = (2.45)

in which the vector 0 has the dimension three and the constraint Jacobian matrix
has the dimension 6 x 12. Additional details about the rigid body formulation can be
found in [13, 17, 84, 87]. Note that the present rotationless formulation has similarities

to the natural coordinates formulation advocated by Garcia de Jalén et al. [37, 38].
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2.3 Rotationless formulation

Reduced formulation of the rigid body

Next the reduced dynamic equations (2.29a)—(2.29¢c) will be considered in depth for
the spatial rigid body. First, the redundant velocities v € R!? of the rigid body are
expressed in terms of the twist [3], which is composed of the translational velocity

@ € R® of the body’s center of mass and the angular velocity w € R? of the rigid

body. That is
f— ["’] (2.46)
w
Then the director velocities d; € R® are expressed in terms of the angular velocity of
the rigid body through
di =w X d,‘ = —d,' X w = —Hiw (247)

Here, d; denotes the skew-symmetric 3 x 3 matrix with the corresponding axial vector
d; € R3, that is

~ 0 —dy d
di=|d, 0 —d; (2.48)
—d;, dy 0
provided that
d;,
d; = |d;, (2.49)
d

In view of Equation (2.26), the components of the twist t € R® play the role of in-
dependent pseudo velocities of rigid body. The tangent space T;Q = ker (Gin(q)) is

determined and admissible velocities v € T;Q are specified through the relation
v = Pine(q)t (2.50)

where the 12 x 6 null space matrix Piy for the free rigid body is given by

Pini(q) = -~ (2.51)

©c o o ~
|
A
N
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2 Modeling of rigid multibody dynamics

Here, each 0 and I matrix has the dimesion three. In view of Equation (2.45), the
condition GintPint = 0 is fully satisfied.

Then the reduced mass matrix M for the rigid body can be calculated through

Ml 0

M = PL MP;, = - (2.52)
! ' 00— Ei(d)?
Using the identity (a,')2 =d; ®d; — (d; - d;)I, Equation (2.41) leads to
3 N 3
=Y Ei(d)*=—-) Ei[di®d;— (d;-d)I) = —E+ (trE)I = | (2.53)
i=1 i=1

with the customary inertia tensor of the rigid body J. Thus, the reduced mass matrix

M= [M*DI 0] (2.54)
0 ]

In addition, PTMPt in Equation (2.29b) is expressed as

can also be written as

. 0 0
PTMPt = o (Z?:l Edi o di) w] = [w y Iw] (2.55)
by using Equation (2.41). The last term in Equation (2.29b) is calculated by
% 7
PI'VV(q) = [Zl 1 (; 5 3){)] =- M (2.56)

where f and 7 are the resultant force and torque relative to the rigid body’s center
of mass. In the end the reduced equations of motion (2.29a)—(2.29¢) for the free rigid

body are written as

My = f (2.57a)
Jo+wX Jw=m (2.57b)
which are the Newton-Euler equations for rigid bodjies.

Generalized coordinates, such as Euler angles or the rotation vector 8 € R3, can be
employed to describe the orientation of the rigid body instead of the directors d;.
Therefore, the number of redundant coordinates g € R'? can be further reduced
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2.3 Rotationless formulation

by reparameterization of the configuration space. A rotation matrix R € SO(3) is
introduced, which is parameterized in terms of 6 € IR?, and the directors of the rigid
body can be expressed by

d; = R(0)d,, (2.58)

where d;; denotes the initial directors relative to the inertial Cartesian basis {e;} at
time t = 0. The rotation matrix can be calculated through the Rodrigues formula [42,
72], that may be expressed by the exponential map representation:

sin 0] 1—cos|6] 42

R(6) = exp(8) = I+ TR ) (2.59)

After the reparametrization of the unknowns the configuration of the free rigid body
is specified by six coordinates u = (@,0) € U C R® x R%. A mapping F: U — Q is
given by

(2.60)

2.3.4 Kinematic pairs

Rigid multibody systems consist of rigid bodies interconnected by different types of
joints, which can be classified into two groups: lower pairs and higher pairs. The
joints with surface contact are referred to as lower pairs and the joints with point or
line contact are called higher pairs [42]. The basic kinematic pairs have been treated
thoroughly in several works [13, 79, 84, 87]. Here only the revolute pair and the
prismatic pair will be introduced so that they can be used in the three-dimensional

rotary crane example in the sequel.

A simple multibody system is now considered, which consists of two rigid bodies
coupled by lower kinematic pairs. The configuration of the a-th rigid body? can be
characterized by redundant coordinates g* € R'? (« = 1,2), which has been given in
Equation (2.34). Then the configuration of two rigid bodies can be characterized by

2 In the framework of the rotationless formulation the superscript denotes the respective rigid body.
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2 Modeling of rigid multibody dynamics

24 redundant coordinates. Thus, the configuration vector is written as

1
q= [ZZ} 2.61)

Due to the assumption of the rigidity, each rigid body is subject to six internal con-
straints. For the two-body multibody system, 12 internal constraint functions are

described by
@l (q")
q’int(‘]) = int (2.62)
(I)iznt(qz)
and the associated constraint Jacobian Gini(q) € R'2*? is given by
Gin(q") 0
Gint(g)=| ™ (2.63)
0 Giznt(qz)

Here, ®%.(¢%) and G

int int

(g“) have already been given in Equations (2.44) and (2.45),

respectively.

In addition, the connection of two rigid bodies by a specific joint leads to the external
constraints expressed by constraint functions ®ex(q). Accordingly, the kinematic pair

can be characterized by the constraint functions

Diny ( q )
®d(g) = (2.64)
(q) [ e(q)
and the corresponding constraint Jacobian
Gint (‘1 )
G(g) = (2.65)
@ =16, (@)

The equations of motion of the kinematic pair can then be expressed by Equation
(2.20a)—(2.20c). The constant mass matrix M € RR?**2* then reads

1
M= [Ag AH (2.66)

in which the submatrix M* € R'?*12 is given in Equation (2.42).

Next two primitive kinematic pairs will be presented in the framework of the rotati-

onless formulation.
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2.3 Rotationless formulation

Revolute pair

Figure 2.2: Revolute pair.

The revolute pair is a basic kinematic joint for multibody systems. As shown in
Fig. 2.2, it consists of two rigid bodies (x = 1,2) and the corresponding director frame
{d?} (i =1,2,3) is fixed to each individual body. The location of the joint is specified
by coordinates p# with respect to the individual body frame {d;}}. That is

p" = pid! (2.67)

Then a unit vector #! is introduced, which is fixed to the first body and specified by
coordinates ] with respect to the director frame {dll}

n' =nld] (2.68)
Additionally, two more vectors (see Fig. 2.3) can be introduced and defined as
ml = (m});d} (2.69)

such that {m%, m%, nl} constitute a right-handed orthonormal frame. For the revolute
pair, the axis of rotation of the second body relative to the first body is specified by

the unit vector n' and the relative degree of freedom is one. The revolute pair entails

23



2 Modeling of rigid multibody dynamics

5 external constraint functions, which can be written in the following form

(PZ + P2 _ (01 _ pl
Pexi(q) = n'-d2 -y (2.70)
nl-ds—

where 771 and # are constant and need to be consistent with the initial conditions.
Moreover, the corresponding constraint Jacobian of the external constraint functions

is given by the 5 x 24 matrix

I —piI -l il I I 3l p3l
Gext(q) = | 0T nl(dD)T ny(d@)" ny(a@)” of (x")T o o (2.71)
0" nj(d3)" nj(d)T ni(@3)" of o ()T of

where the vector 0 and the identity matrix I have the dimension three. In conclu-
sion, for the two-body multibody system with revolute pair, there are 24 redundant
coordinates expressed in Equation (2.61), which are subject to 12 internal constraint
functions (2.62) and 5 external constraint functions (2.70). The degrees of freedom of
the revolute pair is then calculated by f =24 -12-5=7.

Prismatic pair

The prismatic pair as shown in Fig. 2.3, is also used as a basic kinematic joint to
connect rigid bodies. In the two-body multibody system with prismatic pair, the
translational motion of the second body relative to the first body occurs along the
translational axis specified by the unit vector n!, which is fixed at the first body and
can be expressed by Equation (2.68). Therefore, the prismatic joint has one relative

degree of freedom.
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2.3 Rotationless formulation

Figure 2.3: Prismatic pair.

Analogously, the prismatic pair entails 5 external constraint functions, which may be
written in the form

m; - (¢ +p* — ¢ —p')
my - (¢ +p> —¢' — p')

Devi(q) = di-d5 —m (2.72)
d% : d% — 12
dy - di — 13

where 71, 2 and 73 are constant and need to be consistent with the initial conditions.
Similarly, the prismatic pair has 7 degrees of freedom. Furthermore, the correspon-

ding constraint Jacobian of the external constraint functions is given by the following
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2 Modeling of rigid multibody dynamics

5 x 24 matrix:

—(m%)T G1T1 Gsz G1T3 (mDT P%(m%)T P%(m%)T P3(m%>T
—(my)" G2T1 ng G2T3 (m3)" P%(m%)T p5(m3)" P%(m%)T
Gext(g)=1| 0T (@) of of of 0’ Chi o
OT OT (d%)T OT OT OT OT (de
o’ o of @t o (@)t o’ o”
2.73)
with the expression
Gui = (m); (¢ +p* — @' — p') — pim, (2.74)

fora =1,2and i = 1,2,3. More details about the null space reduction and reparame-
trization of unknowns can be found in [13].

2.3.5 Coordinate augmentation

The rotationless formulation circumvents the use of rotational parameters. Howe-
ver, in many practical applications the rotational degrees of freedom with associated
torques need to be considered in the formulation of multibody dynamics. A spe-
cific coordinate augmentation technique [19, 88, 87] can be applied to incorporate
the rotational parameters with associated torques into the rotationless formulation
of multibody systems. It is to be noted that the coordinate augmentation does not
destroy the advantageous features of the rotationless formulation.

In the following section a three-dimensional rotary crane example will demonstrate

the application of the coordinate augmentation technique.

2.4 Three-dimensional rotary crane

There are many different types of cranes like overhead cranes or rotary cranes, which
are widely used in various fields like in the transportation or construction industries.
In practical applications, they are operated by the human crane operator to move a
payload from the initial position to the end position along a trajectory in the working
space. The operation needs to avoid the obstacles and sways of the payload [28, 59]
and requires the motion planning for the payload position.
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2.4 Three-dimensional rotary crane

Figure 2.4: The three-dimensional rotary crane example.

In the inverse dynamics simulation, cranes are underactuated (2 < f) mechanical sy-
stems, in which the number a of control inputs/outputs is smaller than the number f
of degrees of freedom [26]. Besides, there are also fully actuated (¢ = f) or overactu-
ated (2 > f) mechanical systems. The subsequent chapters will focus on the inverse

dynamics simulation of underactuated systems.

The three-dimensional rotary crane example depicted in Fig. 2.4 has originally been
dealt with in the inverse dynamics simulation by Blajer and Kolodziejczyk [28], where
generalized coordinates were used to formulate the dynamics of the system. As des-
cribed in the previous sections, for the same rotary crane example, either the ge-
neralized coordinates formulation in terms of minimal coordinates or the rotationless
formulation in terms of redundant coordinates can be applied to perform the forward

dynamics simulations [93]. Both formulations will be provided in the following.

2.4.1 Generalized coordinates formulation

The model of the rotary crane, as shown in Fig. 2.5, is considered as a rigid multibody
system, that is comprised of three rigid bodies and one payload. The payload is here
assumed as a point mass (mass m4). The first rigid body consists of the girder bridge
and the pillar, and its moment of inertia relative to the rotation axis d3 ® is expressed
by J3. Here the vector d} is identical to the unit vector e3 in the direction of Z-axis

(see also Fig. 2.9). The second rigid body is the trolley (mass m,), which undergoes

3 The subscript indicates which axis of the body frame is regarded as the rotation axis of the rigid
body, and the superscript indicates which rigid body is considered.
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2 Modeling of rigid multibody dynamics

the translational motion on the girder bridge. The third rigid body is the winch (mass
mg3), which is contained in the trolley. The moment of inertia of the winch relative to

the rotation axis d3 (see also Fig. 2.9) is given by J5.

7 A

[\/

Y
\_/
X I ¢
N
-
N

Figure 2.5: The rotary crane model in terms of 5 generalized coordinates.

The rotary crane model is an underactuated mechanical system with 5 degrees of
freedom, that is, f = 5. Then the configuration of the system can be described by a

set of generalized coordinates:

T
p=1lp s 1 & 92] (2.75)

Here, the rotation angle of the girder bridge about the Z-axis relative to the X-axis is
given by ¢, the position of the trolley on the girder bridge is specified by s, the length
of the hoisting cable is denoted by [ which connects the payload with the winch, and
the swing angles depicted in Fig. 2.5 are given by 6; and 6,. Moreover, the rotation
angle 6 of the winch, as shown in Fig. 2.5, is related to the cable length / and can be

expressed by
=1y

Tw

0 (2.76)

in which the winch radius is denoted by r, and the initial cable length is Io.
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2.4 Three-dimensional rotary crane

Position vectors and finite rotations

7 A

\

Figure 2.6: The rotary crane model with body frames {d;, d, d3} and {d}, d5,d5}.

During the movement of the rotary crane the first body only has the rotational motion
about the Z-axis (see Fig. 2.6). The center of mass of the first body is assumed to be
at the origin of the inertial Cartesian coordinate system. Then the position vector of
the first body reads

o' = |0 (2.77)

The position vectors of the trolley and the winch read

$cos @
@ =¢° = [ssing (2.78)

0

The position vector of the payload has been provided by Blajer and Kotodziejczyk [28]

and it reads
(s +1sin6y) cos ¢ + I cos B, sin 6, sin ¢
¢t = (s + Isin6y) sin ¢ — I cos B, sin 67 cos ¢ (2.79)

—I cos 6, cos 61
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2 Modeling of rigid multibody dynamics

The position vector of the payload can also be calculated by
ot=¢* +In (2.80)

Here, a unit vector (see Fig. 2.6) is given by n, which is directed along the cable and

points to the payload .

A sequence of finite rotations about the body-fixed frame axis can be applied to cal-

culate the unit vector n:

sin 6
i = R(—e3) = R(81)R(6,)(—e3) = exp (01 )exp(8y)(—e3) = | —sin6ycosfy | (2.81)
— cos 07 cos 6,

where the components of # are expressed in the initial body frame {dq,dp, d3} and
T

es=1[0 0 1] .

For Equation (2.81) it is necessary to first calculate the rotation matrix. At first, the

body frame of the winch is rotated clockwise from its initial orientation {dy, da, d3}

to the current orientation {di, dy, dé} by an angle (—6;) about the body-fixed frame
axis dj of the winch. The rotation matrix of the first rotation is then expressed by

1 0 0
R(61) = exp(61) = exp(61d1) = [0 cos6; sin 2.82)
0 —sinf; cosb;

Then the body frame of the winch is rotated clockwise about the body-fixed frame
axis dj by an angle of (—6,). The rotation matrix of the second rotation is given by

R cosf; 0 —sin6,
R(6;) =exp(62) =exp(bdy) = | 0 1 0 (2.83)
sinf, 0 cosbh

Next the unit vector n expressed in the inertial Cartesian coordinate system is calcu-
lated by

n=n1d)+npdy+n3ds = (sinf,) dy — (sin 6y cosb,) dy — (cos 01 cos6,) ds  (2.84)
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2.4 Three-dimensional rotary crane

where the unit vectors of the initial body frame {d;, dy, d3} are expressed by

cos @ —sin ¢ 0
dy = |sing dy=| cosg d3 = |0 (2.85)
0 0 1

At last, inserting the unit vector n into Equation (2.80) yields the same expression as
provided in Equation (2.79).

The Lagrangian function

The total kinetic energy of the three rigid bodies and one mass point is given by

T=TT+TL+T:+14 (2.86)
with the energy components
1.
Ty = 5 I} ¢? (2.87a)
1 1
T = m; §% + 5 (J5 + mys*) ¢* (2.87b)
N
1 1 1 l
Ta = = 22 - (13 2\ -2 i <2 287
3= 5 M8 +2(]3+m35)§0 t5h - (2.87¢)
1
Ty =5 my ¢t ¢t (2.87d)

The potential energy of the rotary crane is given by
V=myge* e3 (2.88)

Then the Lagrangian of the mechanical system is calculated by Equation (2.2) and the
Lagrange’s equations of the second kind are applied to obtain the ODEs (2.17a)—(2.17b)
for the rotary crane model. It is to be noted that symbolic manipulations are used to

compute the differentiation of the Lagrangian.

Numerical discretization

To solve the ordinary differential equations of the rotary crane model, the second
order accurate mid-point-type rule is used and its application yields the discretized
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2 Modeling of rigid multibody dynamics

version of (2.17a)—(2.17b)

Poi1— By = Atvn+% (2.89a)

with the time step size At = t,41 — t, in a representative time interval [t,, t,41]. It
should be noted that (e), and (e), 1 represent the evaluation of the corresponding
vector at the time point t, and t, 1, respectively. Moreover, (o), 41 = % [(®)n + (®)n11]
denotes the mid-point evaluation of the corresponding vector.

Forward dynamics simulation

In the forward dynamics simulation, the initial configuration of the rotary crane is

specified by the generalized coordinates

T
#o=1[0 15m 5m 0 0] (2.90)

and the initial generalized velocities are given by

vo = [1m/s 000 O}T 2.91)

During the simulation time of f = 1s, for example, the girder bridge rotates with
an initial angular velocity ¢ = 1m/s. As there are no other external forces and
torques acting on the mechanical system except the gravitational force, the payload
falls down. Table 2.1 presents the data of mass and moment of inertia for each body
of the rotary crane. In the numerical experiment, the winch radius is r,, = 0.1m, the
gravitational acceleration is ¢ = 9.81m/s? and the masses and moments of inertia
are: my = 50kg, m3 = 3kg, my = 10kg, J} = 16.67kg - m?, ]2 = 2.08kg - m?,

J3 =0.26kg-m?, J3 = 0.02kg - m?.

body mlkg] Ji[kg-m*] Jo[kg-m?] J3[kg-m?]

1 100 216.67 216.67 16.67
2 50 2.08 2.08 2.08
3 3 0.26 0.02 0.26
4 10 — — —

Table 2.1: Data of mass and moment of inertia for each body of the rotary crane.
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2.4 Three-dimensional rotary crane

Numerical results

The numerical results of the forward dynamics simulation of the rotary crane are
presented in Fig. 2.7. They show that the total energy of the system and the Z-axis
component of the angular momentum L, are conserved quantities because this rotary
crane model is a conservative system with rotational symmetry about the Z-axis.
Some snapshots of the movement of the rotary crane are presented in Fig. 2.8. It is to
be noted that in the simulation the origin of the inertial Cartesian coordinate system
XYZ is placed at the half height position of the pillar rather than at the top of it.

500 1134.956

1134.955

T
energy

0 1134.954
0

angular momentum

Time Time

Figure 2.7: Generalized coordinates formulation: Energy and angular momentum of the rotary crane
with the time step of At = 107*s.
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2 Modeling of rigid multibody dynamics

Figure 2.8: Generalized coordinates formulation: Snapshots of the simulation of the rotary crane at
specific time points.

2.4.2 Rotationless formulation

The rotationless formulation in terms of redundant coordinates will be applied to
formulate the numerical model of the rotary crane, which is shown in Fig. 2.9.
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2.4 Three-dimensional rotary crane

\

Figure 2.9: The model of the rotary crane with the position vectors ¢!, ¢* and the body frames
{d{,dﬁ, dg}, [=1,2,3.

Rigid bodies

Proceeding along the lines of Uhlar and Betsch [88], the configuration of each rigid
body (I = 1,2,3) and the point mass can be specified by the configuration vector
g" € R'? in Equation (2.34) and g* € R3. Then the configuration of the rotary crane
model can be described by 39 redundant coordinates, which comprise the configura-

tion vector
1

q
2
a=|" 2.92)
q
gt
with each component
@'
i_ |4
g ="} (I=1,2,3) (2.93)
d;
d;
and the position vector of load mass
gt =¢* (2.94)
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2 Modeling of rigid multibody dynamics

Constraints

Due to the assumption of rigidity, each rigid body gives rise to six internal constraints
(Equation (2.44)). Three rigid bodies lead to 18 internal constraints. Besides, the ex-
ternal constraints describing the joints should also be considered in the model. Ac-
cordingly, the first body is connected to the ground via a revolute joint. The external

constraint functions are written as

q)l

Dev1 (ﬁ) = d% - e3 (2.95)
;- e3

The associated constraint Jacobian is given by

I 03x3 03x3 03x3 03x12 O3x12 0O3x3
Grevi(q) = |07 (e3)™ 0T 0T 01412 O1x12 Oix3 (2.96)
o7 07 (e3)T 0T 01412 O1x12 Oix3

The trolley is then connected to the girder bridge by a prismatic joint. The external

constraint functions are written as

@ ¢
& -¢?

Dpris(7) = | di - d5 (2.97)
d} - d3
di - d?

The corresponding constraint Jacobian is given by

o o7 (T o @)T o7 o7 0" 012 013
o of of ()T @)t of of 07 0112 013
Gpris(3) = [07 (@3)T o" o7 of of @hHT 0" 0112 013
o o (a3)" of of o 0" (@) 012 013
o o7 o @7 of @)T o" 0" 0.2 0143
(2.98)
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2.4 Three-dimensional rotary crane

The winch is connected to the trolley also by a revolute joint. The external constraint
functions are written as
P —¢
Prev2(q) = | d3-dj (299)
dj - d3

and the corresponding constraint Jacobian is given by
0312 =T 03x3 033 03x3 I 03x3 03x3 03x3 03x3

Grev2(d) = |01 0T 0T  (d)T oT o" o of of 0,3] (2.100)
Oz 07 0T (@) of of of 0f (45)7 013

The payload is connected to the winch, and the constraint function is described by
®=(¢'—¢°) - (¢" = ¢*) — (rub + o)’ (2.101)
in which the cable length is specified. The constraint Jacobian is then given by
G=[012 26° 9" 0o 20g*—¢)T 0 0 —2n(rub+1)|  (2102)

The additional coordinates 0, s and 6, shown in Fig. 2.9, are introduced into the
rotationless formulation by applying a specific coordinate augmentation technique
[87]. The variable 6 denotes the rotation angle of the girder bridge about the Z-axis
relative to the X-axis, the variable s specifies the displacement of the trolley and the
variable 6 describes the rotation angle of the winch about the axis d3 of the body
frame. In addition, in the inverse dynamics simulation the external force or torque,
associated to the new coordinates 6, s and 6, can be incorporated into the rotatinless

formulation as well.

The extended configuration vector is expressed by

(2.103)

T v X

42x1

The introduction of the three additional coordinates leads to three new constraints.

The first constraint corresponding to 6 is expressed by

Daug1(q) = di- ey +sinb+d}-e; —cos (2.104)
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2 Modeling of rigid multibody dynamics

and the constraint Jacobian is given by
Gaug1(q) = {OT 07 (e1+ex)” 0T 01427 (cos@+sinf) 0 0} (2.105)
The second constraint corresponding to s is expressed by
Doug2(q) = di - @ —s (2.106)
which specifies the translational motion of the trolley. The constraint Jacobian is
Gaug2(7) = [OT @ 0T 0T ()T 0154 0 —1 o] (2.107)
The third constraint corresponding to 0 is expressed by
Daugs(q) = di - d5 +sinf + di - d7 — cos (2.108)

With regard to the treatment of the discretization, Equation (2.108) is rewritten in

partitioned form

Daugs () = Phugs () + Prugs (6) (2.109)

with
Dluga(@) = di - d5+ i - di (2.110a)
Cbgug3(9) =sinf — cos 6 (2.110b)

The corresponding constraint Jacobian is written as

Gauga(4) = [01.15 ()T 07 (d)7 07 (@B +d])" 0109 0 0 (cos6+sine)]

(2.111)
or in an alternative form
Gaugs (4) = [Ghga (@) Glugs(0)] (2112)
with the components
Gaugs (@) = [01x15 @)™ o (@)™ of (B+d)T 010 0 0 (2.113a)
Gﬁug3(9) = cosf +siné (2.113b)
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2.4 Three-dimensional rotary crane

In summary, the formulation of the rotary crane model has 42 redundant coordina-
tes, 18 internal constraints, 16 external constraints and 3 additional constraints. The
degrees of freedom of the system is calculated by f = 42 -18 —16 —3 = 5. Itis to
be noted that many external constraints are only linear and thus can be eliminated
without destroying the structure of the DAEs (2.20). The reduction procedure can be
found in Subsection 2.3.2.

Mass matrix and potential energy

After the application of the coordinate augmentation, the diagonal mass matrix of the
system needs to be extended as:

A -
M2

M3

M = M* (2.114)
0
0
L 0] oan
where M!(I = 1,2,3) is given in Equation (2.42) and

my

M* = iy (2.115)

My
The potential energy of the rotary crane model is calculated by
V=mges -(pl +mpges ~go2 +mzges -(p3 +myges -(p4 (2.116)

The differential-algebraic equations (2.20) are obtained for the rotary crane model.
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2 Modeling of rigid multibody dynamics

Reduced formulation of the rotary crane

The DAE: of the rotary crane model can be reduced by premultiplying the null space
matrix. A mapping F : Rf — R" can be found such that

q=F(u) (2.117)

then the null space matrix P can be calculated through
P = DF(u) (2.118)

Following the reduction procedure in Subsection 2.3.2, the ODEs (2.17a)—(2.17b) of

the rotary crane model can also be derived from the rotationless formulation.

Numerical discretization

For the direct discretization of the DAEs, the methodology developed by Gonzalez
[45] is employed. This yields a specific second-order accurate algorithm called the ba-
sic energy-momentum (BEM) scheme [19], which is energy consistent and conserves

momentum maps associated with symmetries of the underlying mechanical system.

A representative time interval [t,, t,11] with the time step At = t,,1 — t, is considered,
and the state space coordinates q,, € Q, v, € R" at t,, are given.

Then the discretized version of (2.20a)—(2.20c) is given by

At
D1~ 90 = 7(1’11 + Unt1) (2.119a)
M (vy41 —vy) = —At {vv(an qn+1) + GT(‘JW q”+1)/\n,n+1 (2.119b)
®(q,.1) =0 (2.119¢)

where the discrete Lagrange multipliers A, ;1 are assumed to be constant in the time
interval [t, ty11].

The advantageous algorithmic conservation properties of the BEM scheme are linked
to the discrete gradient of a function F: R" — R. If F is at most quadratic, then
the discrete gradient is identical to the standard gradient, which is evaluated in the
mid-point configuration g, L1 This implies that V.F(q,,9,.,) = VF(q, +%) In
Equation (2.119b) the discrete gradient is applied to the potential energy function V,
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2.4 Three-dimensional rotary crane

ie. VV(q,,q,,1), and to the constraint functions ®. The discrete constraint Jacobian
of ® is expressed by

GT(qn’ qn+1) = [vq)l (an qn+1)l vqh(‘in/ qn+1)r Tty vq)m (‘in/ qn+1) (2120)

Considering the constraints of the rotary crane example again, the associated discrete
gradient coincides with the mid-point evaluation of the continuous constraint Jaco-
bian, since most of the constraints are at most quadratic. In contrast, the additional
constraint functions require a special treatment. Taking the third additional constraint

function ®,,53(q) as an example, the discrete gradient is expressed as

Gaug3(‘7n/ qn+l) = {G;ug’j(ﬁypr%) G§Hg3(9n,9n+1) (2.121)
with the component

(DiugS (9n+1) - q)gugS (971 )

9n+l - Qn

G (0, 0 1) = 2.122)
If 6,11 — 60y, then Ggug3(9n, 0p11) — (<D§ug3(9n))’ , where the constraint derivative is
given by (®§Ug3(9))’ = cos f + sin#.

To solve the discretized equations of motion (2.119a)—(2.119¢c), inserting v, cal-
culated from Equation (2.119a) into (2.119b) leads to a system of nonlinear alge-
braic equations, which can be solved for the n + m unknowns (q,,, 1, Anns+1). Thus,
9pi1 € Q vny1 € R", Ay 11 € R™ can be determined by applying the BEM scheme,
which is discussed thoroughly in [9].

Forward dynamics simulation

body mkg] Ejlkg-m?] E; E;  length[m] width depth

1 100 8.33 833 208.33 5 1 1
2 50 1.04 1.04  1.04 0.5 05 05
3 3 0.01 025 0.01 1 02 02
4 10 — - - — — —

Table 2.2: Data of mass, Euler tensor and dimension for each body of the rotary crane.
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2 Modeling of rigid multibody dynamics

Next the simulation? of the rotary crane now using the redundant coordinates is
repeated. The simulation will focus on the algorithmic conservation properties of the
BEM scheme.

In the simulation, the mass, value of Euler tensor and dimension of each rigid body
of the rotary crane are listed in Table 2.2. The principal values of the Euler tensor E;
can be calculated by

Ei = %(Ij + k= 1Ti) (2.123)

for even permutations of the indices (i, j, k) and the principal values of the classical
(convected) inertia tensor are given by Jj, J;, Jr. Moreover, the initial configuration is
defined by: § =0, s = 2.5m, 8 = 0, [ = 5m. The initial angular velocity of the first
body is given by 5 = 1m/s. During the simulation there are no other external forces
and torques except the gravitational force.

The rotary crane system can be classified as an autonomous Hamiltonian system with
symmetry. As shown in Fig. 2.10, the total energy and the third component of the
angular momentum L, are conserved quantities. Some snapshots of the simulated
motion of the rotary crane model are illustrated in Fig. 2.11. Obviously, the nume-
rical results and the snapshots are identical to those obtained from the generalized
coordinates formulation. It is to be noted that the present energy-momentum scheme
conserves the quantities independent of the time step size.

1134.956

total energy

1134.955

energy

0 1134.954
0 01 02 03 04 05 06 07 08 09 1 0 02 04 0.6 0.8 1

angular momentum

0 01 02 03 04 05 06 07 08 09 1
Time

Figure 2.10: Rotationless formulation: Energy and angular momentum of the rotary crane with the
time step of At = 107 2s.

4 The origin of the inertial Cartesian coordinate system XYZ is placed at the half height position of
the pillar rather than at the top of the pillar (see Fig. 2.9). The placement of the origin of the inertial
Cartesian coordinate system has no influence on the rotationless formulation.
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2.4 Three-dimensional rotary crane

Figure 2.11: Rotationless formulation: Snapshots of the simulation of the rotary crane at specific time
points.
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3 Numerical integration schemes

In Chapter 2 the equations of motion of mechanical systems have been derived by
applying the Lagrange’s equations. The equations of motion pertaining to constrai-
ned mechanical systems are index-3 differential-algebraic equations, which can be
recapitulated here:

g—v=0 (3.1a)
Mo +VV(q)+Gl(g)A =0 (3.1b)
®(q)=0 (3.1¢)

Then the numerical time-stepping schemes are applied to solve the above continuous
equations of motion (3.1a)—(3.1c). For the time discretization, a representative time
interval I, = [ty, t,41] with the time step At = f,41 — t, is considered, and the
coordinates gq,, € Q, velocities v, € R" and the Lagrange multipiers A, € R™ at the
time node t, are given. The task is to compute the coordinates g, ; € Q, velocities

vy+1 € R" and the Lagrange multipliers A,, 11 € R™ at the next time node ¢, .

Some numerical integration schemes, which are usually used for the direct time dis-
cretization of the underlying DAEs, will be outlined in this chapter.

3.1 Implicit Euler method

The implicit Euler method is a basic time-stepping scheme for the numerical integra-
tion of DAEs. The application of the implict Euler method leads to the direct time
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discretization of the index-3 DAEs (3.1a)—(3.1c¢):

Gpi1— g, = Dtoyq (3.2a)
M (041 —00) = =Dt [VV(q,41) + GT (9,41 An1] (3.2b)
®(q,41) =0 (3.20)

Then the Newton-Raphson method can be applied to solve the resulting nonlinear
algebraic equations (3.2a)—(3.2c). The details about the Newton-Raphson method can
be found in [40]. Accordingly, the coordinates, velocities q,, ., € Q, v,,41 € R" as well

as the Lagrange multipliers A, 1; € R" at the time node t,;1 can be obtained.

It is worth noting that the implicit Euler method is first order accurate and exhibits
numerical damping. Due to the numerical damping the total energy of a conservative
mechanical system is not conserved, but decays with the time during the numerical

simulation.

3.2 Mid-point-type rule

The mid-point-type rule has been applied to discretize the ordinary differential equa-
tions in the example of the rotary crane. It can also be used for the time discretization
of the differential-algebraic equations (3.1a)—(3.1c). Then the set of discretized equa-

tions is expressed as

Tui1— 9n = DO, 0 (3.3a)
M (vn+1 - Un) = —At [VV(anr%) + GT(qn+%)An,n+1} (3-3b)
d (‘1n+1> =0 (3.3c)

in which the Lagrange multipliers A € R" are approximated by constant values
Annt+1 € R™ during the time interval I,,. This approximation leads to possible discon-
tinuities on the boundaries of the time interval I,,. Besides, the geometric constraint
conditions need to be satisfied at each time node ¢, and f,;1. It is to be noted that
in nonlinear elastodynamics the mid-point rule does not conserve the total energy of
the mechanical system.
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3.3 Energy-momentum scheme

3.3 Energy-momentum scheme

The energy-momentum scheme is a structure-preserving time-stepping scheme, which
was originally proposed by Simo and Tarnow [85] in the context of nonlinear elasto-
dynamics. It inherits conservation of energy and momentum maps and has also been
applied to rigid body dynamics, in which the rotationless formulation of multibody
systems benefits the design of the energy-momentum scheme [19]. The application
of the energy-momentum scheme in various problems can be found for example in
[12, 14, 18, 23, 24, 45, 49].

The energy-momentum scheme has already been applied to discretize the differential-
algebraic equations in the example of the rotary crane. The set of discretized equati-

ons is recapitulated:

At
Tui1 — 4w = — (On +Ont1) (3.4a)
M (V1 —vy) = —At {vV(qn,an) + GT(qn/anrl)An,nH} (3.4b)
P (’1n+1) =0 (3.40)

where the discrete constraint Jacobian is defined by

GT(qn/ qn+1) = |:$q>1 (qn’ qn+1)'vq>2(qn’ qn+1>’ o /quW(qn’ qn+1)i| (35)

The discrete gradient (derivative) denoted by V is crucial to the algorithmic conserva-
tion of both energy and angular momentum. It satisfies the directionality property

Vi 9u1) uia —q0) = f(@01) — f(q,) (3.6)

which is of key importance for algorithmic energy conservation. It is worth mentio-
ning that if the function F : R"” — R is at most quadratic then the discrete gradient
coincides with the mid-point evaluation of the standard gradient. That is

V‘F(qn’ qn+1) = VJ:(”];H»%) (37)

An in-depth investigation of properties of discrete derivatives can be found in [44].

In contrast to the implicit Euler method, the energy-momentum scheme is second
order accurate and exhibits superior numerical stability. The drawback of both sche-

mes lies in the condition number of the interation matrix for the solution of the
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3 Numerical integration schemes

nonlinear system of equations (3.4a)—(3.4c). It implies that the condition number
of the iteration matrix becomes more and more ill-conditioned for decreasing time
steps. To remedy this drawback, a further modification can be accomplished by ap-
plying the discrete null space method and the reparametrization of the remaining
unknows. Application of the two size-reduction steps yields the so-called reduced
energy-momentum scheme. Further details about the reduction method can be found
in[7,8,9,13,79, 87].

3.4 Variational integrator

The concept of a variational integrator is based on a direct discretization of the action
integral, whereas the previous time-stepping schemes rely on the direct discretization
of the underlying equations of motion. In this section specific variational integrators
will be derived according to the lecture notes from Betsch [11]. For this purpose, it
is assumed that the time interval I = [0, T] is divided into N equidistant intervals

I, = [tn, ty+1) with the time step At = £, 1 — t,.

Minimal coordinates

Here the configuration vector g is used to represent the minimal coordinates. The
action integral is then defined as

T N—1 tn+l
s= [Land=Y [ Laaa (33)
0 n=0 b

ty1
The discrete Lagrangian is introduced to approximate the integral [ L(g,4)dt. In
tn

this case there is
th.rl

Lol i)~ [ Llg,a)a 69)
t”

Accordingly, the discrete action integral is expressed by
N—-1

Sa(@os- - an) = Y La(d,, @, 11) (3.10)
n=0
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3.4 Variational integrator

The application of the discrete variational principle requires that 6S; = 0 with the
boundary points g, and g, held fixed. This yields

N-1 N-1
050 =0)  Li(dy dus1) = D 0La(@y 1) =0 (3.11)
n=0 n=0

By using the Gateaux derivative (see Appendix A.1), the partial derivatives ! can be
calculated and the variation of the discrete action integral reads

N-1 N-1
054 = Z 5Ld(an qn+1) = Z [DlLd<qn' qn+1) -0, + DZLd(qn' qn+1) ’ 5’77[—0—1]
n=0 n=0
N-1
=D1La(q0,41) - 649+ Y _ 04, - [D1La(dy 441) + D2La(4,_1,9,)] +
1 (3.12)
DrLa(qn_1,9N) - 09N
N-1
= Z (Sqn ' [DlLd(qn’ qn+1) + DzLd(‘]nfl/ qn)] =0
n=1

where a discrete integration by parts [71] is used and the end point conditions

oq(ty) = 0g, = 0 and dq(ty) = dqy = O are considered. It is required that the
variation of the discrete action integral is equal to zero for any choice of dg,. This
leads to the discrete Euler-Lagrange (DEL) equations:

DzLd(qnflf qn) + DlLd (an qn+1) =0 (313)

which must hold forn=1,...,N — 1.

The trapezoidal rule is used to approximate the integral in Equation (3.9), which can
be expressed by

At Gni1— 4 Gui1— 4
La(@u ni1) = {L (qn, %) +L (qnﬂ, %)] (3.14)

JdL, JdL,
1 Here the notations DiLy(x,y) = a—xd and DyLy(x,y) = a—yd are used.
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3 Numerical integration schemes

by using the following expressions

t—t
q |]In =4, + Tn(qn+1 - qn)

o @y —a,)
q |I[n = At

(3.15)

The continuous Lagrangian of the mechanical system under consideration can be

given by
. 1, .
L(g.4) = 54-Mj—V(q) (3.16)
With regard to Equation (3.14), the discrete Lagrangian is thus written as

1 A
Ld(qnl qn+1) = m (qn+l - qn) M (qn+1 - qn) - 7t [V (qn) +V (qn+l)] (3.17)

Then the discrete Euler-Lagrange equations in (3.13) are applied and the partial deri-

vatives are

q -9 At
D1Ld('1n/ %H) = _M% - TVV (qn) (3.18a)
q —q At
DaLi(qy 4y 1) = MZ =" = SV V (g, 4) (3.18b)

Equation (3.18b) can also be expressed by

9y —9n—1

DyLi(9,-1.9,) =M At

-Zvva,) (3.19)

Inserting Equation (3.19) and (3.18a) into Equation (3.13) leads to the following non-
linear algebraic equations

1
AM (Z540 429, —q,1) —AVV (q,) =0 (3.20)

and an alternative form is given by

1
M (9011 —29,+49,.1) =—-VV(q,) (3.21)

in which the acceleration has been approximated through the second order central
difference, that is
i D1~ 240+ 90
! (82

(3.22)
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3.4 Variational integrator

If the coordinates g,,_; at the time node ¢,,_; and g,, at t, are already known, then the
coordinates q,, ,; at t,1 can be calculated. It is obvious that the variational integrator
is an explicit two-step method, that is, (q,_1,9,) — (4,,4,,,)- Nevertheless, it can
be implemented as an one-step method by introducing the discrete momentum

Py = —D1Ls(4,, 9y41) (3.23)

Due to Equation (3.13), the discrete momentum is also given by

P, = DyL4(q,_1.4,) (3.24)

or in an alternative form
Pyy1=DaLy(q,,9,,1) (3.25)

In this case, if 4, and Py, are given, then g, can be calculated from Equation (3.23).
Then the momentum P, can be obtained from Equation (3.25). The procedure is
expressed by (q,,, Pn) — (4,1, Pni1). Instead of the trapezoidal rule, the mid-point
rule can also be used to approximate the integral in Equation (3.9)

qn+l + qn qn+1 - qn) (326)

Other descriptions of the variational integrator can be found in [22, 68, 66, 71].

Redundant coordinates

Here the configuration vector g is used to represent the redundant coordinates. Ac-
cording to the variational symplectic-momentum integrator proposed by Leyendecker
et al. [68] (see also [22]), for constrained mechanical systems, the discretization of the

extended action integral (2.11) with {; = 0 and #, = T yields the discrete extended
action integral

N—
Z {Ld U P anrl t (/\n ! Q(qn) =+ AnJrl : ‘I’(%H)) (3-27)

with the expression

T
/ A-®(q)dt~ % (An- @(q,) + Ausr - ©(q,.1)) (3.28)
0

51



3 Numerical integration schemes

Similarly, the variational principle requires that S, = 0 for fixed end points g, and
qy- This yields

1 1
540 [D1Ld(qo, n) — 5D®g(9) Ao] +oqy - |:D2Ld(qN—1'qN) — 5D®4(qy) A
N-1
+ Z (sqn : |:D1Ld(qn’ anrl) + DzLd(qnflf qn) - Dq’g(%) An:| =0

n=1

(3.29)
for any choice of éq, with 0 < n < N and the end point conditions dg, = dq,; = 0,
and the condition

N—-1
1 1
5940 @a(qo) + 50AN - Palqy) + > 6An-®4(q,) =0 (3.30)

n=1

for any choice of A, with 0 < n < N. Here the abbreviation ®4(g) = At ®(gq) is used.
Eventually, the discrete Euler-Lagrange (DEL) equations for constrained mechanical

systems read

DaLg(q,_1,4y) + D1La(q,, 4,41) — G4 (4,) An =0 (3.31a)
®(q,.,) =0 (3.31b)

where G4(q) = At D®(q). In view of the continuous Lagrangian in Equation (3.16),
the discrete Lagrangian in Equation (3.14) is given by

1 9ni11+9
La(q @i1) = 557 (@1 = 40) - M (@541 — 9,) = DV (%) (3:32)

Applying the discrete Euler-Lagrange equations (3.31a)—(3.31b) leads to

OOl P Y
At

+ % (VV(@, )+ VV(g,, )] +Glg,) A =0 (333)
®(q,.,) =0 (3.33b)

with the expressions

1
@1+ 40) Gy =500+ 40i1) (3.34)

NI —

.

1
2
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3.5 Andrew’s squeezer mechanism

The discrete momentum can be defined by

_ 1
Pn = _DlLd(an qn+1) + EGg(qn)

1 (3.35)
Pljl_ = _DZLd(qn—lf qn) - §G£<qn)
Accordingly, the DEL equations can be written in an alternative form
Py —P, =0 (3.36)

3.5 Andrew’s squeezer mechanism

Figure 3.1: Andrew’s squeezer mechanism: Setup.

A classical benchmark problem for multibody dynamics is used to demonstrate the
application of numerical integration schemes. In this benchmark problem the ro-
tationless formulation (see Section 2.3) is used. According to [91, Sec. 3.6.9] this
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3 Numerical integration schemes

mechanism can be traced back to the PhD thesis by G.C. Andrews (1971). A detailed
description of Andrews’ squeezer mechanism can be found in the Multibody Sys-
tems Handbook [80], the book [50, Ch. VIL.7] and the Technical Report [55]. Related
numerical investigations have also been documented in [4, Sec. 5.2].

As shown in Fig. 3.1, the multibody system at hand consists of 7 rigid bodies inter-
connected by frictionless revolute joints. The coordinates of the joints are given in
Table 3.1. In addition, the inertia properties as well as the coordinates of the center of
mass for all bodies are given in Table 3.2.

Moreover a spring with spring coefficient ¢ = 4530N/m and unstretched length
lp = 7.785 x 1072 m is connected to the present multibody system. The spring length
in the initial configuration (ty = 0) is 5.267 x 10~2m.

The body-fixed frames are located in the center of mass of each body. The mechanism
is driven by a motor located at point O. A constant torque M = 0.033N - m is applied.
In the initial configuration (fp = 0) the mechanism is at rest. Obviously, the mecha-
nism at hand has one degree of freedom. In the numerical simulations gravitation is

not taken into account.

In Fig. 3.2 the two displacement components corresponding to joint (P) are plotted
versus time. Similarly the angle B is plotted over time in Fig. 3.3. Again it can be
observed from Fig. 3.4 that the EM scheme adheres to the balance law for energy,
whereas both Gen-a? and VI fail to satisfy this balance law. The situation is shown in
more detail in Fig. 3.5. Of course, since Gen-a and VI are consistent, refinement of
the time step yields an improved fulfillment of the balance of energy. This is shown
in Figs. 3.6 and 3.7. Finally, to illustrate the motion of the whole multibody system at
hand several snapshots are plotted in Fig. 3.8.

2 More details about the generalized-a scheme can be found for example in [4].
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3.5 Andrew’s squeezer mechanism

Joints

x [m]

y [m]

IO EmEIN®m» O

0
-0.06934
-0.03635
0.01400
-0.01047
-0.03400
-0.03163
0.00699
-0.02096

0
-0.00227
0.03273
0.07200
0.02536
0.01646
-0.01562
-0.00043
0.00130

Table 3.1: Andrew’s squeezer mechanism. Coordinates of the joints.

Link Mass [kg] Rotational inertia [kg - m?] x [m] y [m]
1 0.04325 2.194 - 10° 9.182-10% 5.700 - 107°
2 0.00365 4.410 - 1077 -4491-10~3 2788 -10~*
3 0.02373 5.255 - 10~° 1.874-10"2 2.048 - 1072
4 0.00706 5.667 - 10~7 -3.022-1072 1.207 - 1072
5 0.07050 1.169 - 10~° -5.324-107%2 1.663 - 1072
6 0.00706 5.667 - 1077 -2.854-1072 -1.072 - 102
7 0.05498 1912 - 10°° -5.926 - 1072 -1.060 - 1072

Table 3.2: Andrew’s squeezer mechanism: Inertia data and coordintates of the center of mass.

0.005

-0.0051

-0.011

-0.0151

position

-0.0251

-0.031

angle

0035, 0.005 0.01 0.015 0.02 0.025

time

Figure 3.2: Displacement of hinge (P).

0.03

i 0 0.005 0.01 0.015 0.02 0.025 0.03
time

Figure 3.3: Angle f [rad].
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balance of energ
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Figure 3.6: Time step At = 3-1075s.

Figure 3.7: Time step At = 3-1075s.



3.5 Andrew’s squeezer mechanism

-5
S

Figure 3.8: Andrew’s squeezer mechanism: Snapshots at t = {0,3,6,9,12,15} ms.
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4 Inverse dynamics simulation of

multibody systems

The inverse dynamics control problem can be stated as follows: given a desired or
prescribed motion of a mechanical system, determine the control inputs that force
the system to complete this specified motion, and the determination is based on the
dynamic model of the controlled mechanical system [29]. The derivation of the dyna-
mic model of the controlled mechanical system can be achieved by either generalized
coordinates formulation in terms of minimal coordinates or rotationless formulation
in terms of redundant coordinates (see Chapter 2). The method of inverse dynamics is
often most suitable for the trajectory tracking control problems of multibody systems.
Depending on the ratio of the number a of independent control inputs to the num-
ber f of degrees of freedom, the multibody systems fall into three main categories:
overactuated (a > f), fully actuated (¢ = f) and underactuated (¢ < f) mechanical
systems [26].

Overactuated systems have more control inputs than degrees of freedom and are
ofen found in aerospace, automotive, robotics applications and biomechanical mo-
dels. Fully actuated systems have as many control inputs/outputs as degrees of free-
dom and the motion of the systems is fully specified by the task requirements. Given
a fully prescribed motion of a system at the position, velocity and acceleration levels,
the desired feedforward control law is the consequent result of a pure algebraic reso-
lution of the dynamic equations [26]. The inverse dynamics control of this type has
been intensively described in robotic textbooks, such as Craig [36], Murray et al. [75],
Spong et al. [8¢] (see Seifried [81]). Moreover, the previously developed structure-
preserving integrators for index-3 DAEs have been applied successfully (see Uhlar
and Betsch [89]), where servo constraints are incorporated into an energy-momentum

scheme emanating from the direct discretization of the underlying DAEs.

In fully actuated and overactuated multibody systems, all degrees of freedom can

explicitly be regulated by available controls, such as control forces and torques. This



4 Inverse dynamics simulation of multibody systems

is not the case for underactuated multibody systems, which have fewer control inputs
than degrees of freedom. The underactuation makes the inverse dynamics control
problem more challenging. Moreover, for trajectory tracking control of underactuated
systems required to complete a partly specified motion, an accurate and efficient
feedforward control law is often necessary. Therefore, the main focus is on the inverse
dynamics simulation of underactuated mechanical systems, which relies on servo

constraints for the partial specification of the motion of the systems.

4.1 Underactuated mechanical systems with servo

constraints

In underactuated mechanical systems, the number a of control inputs, equal to the
number of control outputs, which are in general desired performance goals of a dy-
namical system, is smaller than the number f of degrees of freedom, a < f [29].
Typical examples of underactuated mechanical systems are cranes like overhead cra-
nes, rotary cranes, and flexible multibody systems like manipulators with flexible
joints or members [54, 69]. Some other examples of underactuated systems can be
found in [25, 27].

A possible performance task of underactuated systems is the output trajectory tracking,
for example, the trajectory tracking of the end-effector of manipulators. Thus, the
main focus here is on the specification of trajectories of specific points of a multibody
system such as the end-effector of a robot. In this connection, the desired system
outputs can be described in terms of the system states and modeled as servo con-
straints [56, 29] (also called control constraints or program constraints), which can
be imposed onto the controlled system as additional constraint functions. The servo
constraints enforce the desired motion along prescribed trajectories and thus can be
used to partially prescribe the motion of the discrete mechanical systems. The use of
servo constraints makes possible a simulation approach to the inverse dynamics of

underactuated multibody systems.

The partial specification of the motion of underactuated multibody systems by means
of servo constraints typically leads to a problem formulation in terms of differential-
algebraic equations (DAEs). If minimal coordinates are used, the differential part of
the DAEs corresponds to the equations of motion (4.1b), whereas the algebraic part is

related to the servo constraints (4.1c). In the special case of fully actuated multibody
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4.1 Underactuated mechanical systems with servo constraints

systems, the simulation approach to the inverse dynamics problem yields index-3
DAEs that can be integrated in analogy to the DAEs corresponding to constrained
mechanical systems (see, e.g., [89]). However, the situation changes considerably if
underactuated mechanical systems are dealt with. In this type of systems, the number
of degrees of freedom exceeds the number of controls. The use of servo constraints
in the context of underactuated multibody systems leads to a broad diversity of servo
constraint problems (see, in particular, [26, 33, 82]). One indicator of problem di-
versity is the (differentiation) index [€] of the underlying DAEs that typically ranges
from three to five and even higher. The index of a set of DAEs is an important charac-
teristic, which is a measure of singularity of the DAEs and indicates difficulty in their
numerical treatment. The index of a DAE system denotes also the number of times the
algebraic equations of the system need to be differentiated with respect to time to get a
set of ordinary differential equations in all the involved variables [30]. Consequently,
to facilitate a stable numerical integration, some kind of index reduction approach
needs to be applied. This issue will be discussed in detail in the subsequent chap-
ters. The other indicator of problem diversity is related to the differential flatness [78]
of underactuated mechanical systems. If the underactuated system is differentially
flat, the analytical solution can be obtained through the flatness-based formulation.
If the underactuated system is non-flat, the stability of the internal dynamics is of
paramount importance and ensures the controllability of the system [26, 33, 82]. Here
only differentially flat systems are considered.

4.1.1 Generalized coordinates formulation

Servo constraints can be appended to the previously derived equations of motion to
formulate the inverse dynamics control problem of underactuated mechanical sys-
tems. Using minimal coordinates, the DAEs governing the inverse dynamics of dis-
crete underactuated mechanical systems consist of the equations of motion and the

servo constraints [25, 27]. In particular, the equations of motion have the form

p=v (4.1a)
Mo = f(u, ) + B (u)u (4.1b)

with minimal coordinates # € R/, generalized velocities v € R/, positive definite
mass matrix M € RS/, generalized forces f € R/, control inputs # € R? and

input transformation matrix B € R%f. Furthermore, t € I denotes the time, and
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I = [to, tf] C R is the time interval of interest. The equations of motion are subject to

the servo constraints

s(u) = () (4.10)

where y(t) : T — R” is the desired output function. Note that the number a of
control inputs is assumed to be equal to the number of independent servo constraints.
Correspondingly, the Jacobian of the servo constraints S(u) := Ds(u) is assumed to
have full (row) rank. At this point the control inputs are regarded as variables [63,
Ch. 3.6]. The attention is focused on underactuated mechanical systems in which the
number of controls is lower than the number of degrees of freedom, that is, a < f.

A distinguishing feature of the DAEs (4.1a)—(4.1c) is that, in general, B # S. This
is in sharp contrast to mechanical systems subject to holonomic constraints. The
difference between holonomic and servo constraints is further reflected in the rank
of the matrix P := SM'BT and in the index of the DAEs (4.1a)—(4.1c). A precise
definition of the differentiation index, denoted simply by index, can be found in [34].

If the matrix P has full rank (equal to a), then there should exist an invertible matrix
H € R such that B = HS. This implies that there exist Lagrange multipliers
A € R? such that BTy = STA. Accordingly, the DAEs (4.1a)—(4.1c) assume the well-
known structure of the equations of motion pertaining to (holonomically) constrained
mechanical systems written in terms of redundant coordinates. In this special case,
the DAEs (4.1a)—(4.1c) are known to have the index of 3. Using the terminology
introduced by Blajer [25], this case is called the orthogonal realization of the servo
constraints.

In general the matrix P is rank deficient and the realization of the servo constraints
is either mixed orthogonal-tangential or purely tangential in the sense of Blajer [25].
Then the so-called controlled and constrained subspaces do not coincide. In particu-
lar, the rank of the matrix P measures the number of directions of the constrained
space which can be directly actuated by the control inputs [27]. For rank(P) < a the
index of the DAEs (4.1a)—(4.1c) always exceeds 3.

It has already been mentioned that many examples of mechanical systems employing
servo constraints lead to DAEs of index 5. Nevertheless, there are examples with
arbitrarily high index, see Example 2 in [25]. In the present work crane models that
typically yield DAEs of index 5 (see, for example [27, 30, 31]) are considered first.

Similarly, the motion of more involved crane-type manipulators such as the wire
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mechanism dealt with in [53] is governed by DAEs of index 5. This wire mechanism

example will be discussed in the sequel.

4.1.2 Rotationless formulation

The underactuated multibody systems can be formulated by a specific rotationless
formulation [17] in terms of redundant coordinates as well. One of the main fea-
tures of the rotationless formulation is the constant mass matrix. Using redundant
coordinates, the servo constraints can be expressed by time specified outputs, such as
the load coordinates of the end-effector. The servo constraints can be easily appen-
ded to the DAEs pertaining to the rotationless formulation of multibody dynamics.
This yields a mixed set of standard (passive) constraints and servo constraints. The
motion of the discrete underactuated mechanical systems under consideration is go-
verned by differential-algebraic equations with a mixed set of holonomic (4.2d) and

control constraints (4.2c).

g—v=20 (4.2a)
Mo +VV(g) + Gl (g)A+BTu=0 (4.2b)
c(g,t)=0 (4.2¢)
®(q) =0 (4.2d)

Here, the vector of redundant coordinates is denoted by g € IR” which specifies the
configuration of the underactuated mechanical system at time ¢. The vector of redun-
dant velocities is expressed by v = 4, where a superposed dot indicates differentiation
with respect to time. Accordingly, the configuration vector g and the velocity vector
v comprise the vector of state space coordinates (gq,v) (see, for example, Rosenberg
[77]). The mass matrix M € R"*" is assumed to be constant, symmetric and non-
singular. The kinetic energy of the underactuated system can be written as

T(v) = %v -Mv (4.3)

Moreover, the potential energy function is denoted by V(g) € R. The holonomic
constraints are represented by a vector of geometric functions ®(q) € R™ and the
associated constraint Jacobian is described by G(g) = D®(q) € R™*" and A € R"
represents a vector of Lagrange-multipliers, which specify the relative magnitude of

the constraint forces. The m holonomic constraints are assumed to be independent.
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Due to the presence of the holonomic constraints, the constrained underactuated me-
chanical system has /i = n — m degrees of freedom. The corresponding configuration

space of the underactuated system is given by

Q={q(t) eR" [®(q) =0} (4.4)

Furthermore, a vector of servo constraint functions ¢(g,t) € R™ is expressed in the

form of
c(q,t) =s(q) —(t) (4.5)

The servo constraints serve the purpose of partially specifying the motion of underac-
tuated systems (/i1 < 7i) and the system outputs are specified by s(g) € R™ together
with the given desired trajectory (t) € R™. Note that the servo constraints comprise
rheonomic holonomic constraints as well. The formulation of control constraints in
Equation (4.5) is much simpler compared to the formulation in Equation (4.1c) and
this will be demonstrated in the numerical examples in the sequel. The corresponding
actuator forces are determined by the control inputs # € R™ in conjunction with the

input transformation matrix B € R™*".

4.1.3 Reduced formulation of the DAEs

The generalized coordinates formulation in terms of minimal coordinates can also be
obtained by applying the null space method introduced in Section 2.3.2 to the DAEs
(4.2a)—(4.2d) emanating from the rotationless formulation in terms of redundant coor-
dinates. This yields the same equations of motion in terms of minimal coordinates as
the DAEs (4.1a)—(4.1c¢).

Assume that it is possible to choose 7i generalized coordinates u € U C R”" for
the parameterization of the configuration manifold Q. Then there exists a mapping
F: U~ Q such that

q=F(u) (4.6)

Admissible velocities v € T;Q = null(G(q)) can be written in the form
v = Pv (4.7)

with the generalized velocities v = ji and the null space matrix P = DF(u). Since the
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4.2 Numerical integration of underactuated systems with servo constraints

columns of P € R"*" span the null space of G € R"*", this implies
GP=0 (4.8)

Using Equation (4.7), the reduced form of the kinetic ener: T is given b
& £q gy g Y

-~ 1 —
T = SV Mv (4.9)
with the reduced mass matrix

M =P'MP (4.10)

Note that the mass matrix M is generally configuration dependent and assumed to
be positive definite. Premultiplying Equation (4.2b) by PT and making use of Equa-
tion (4.7) and (4.8) yield the reduced formulation

p—v=0 (4.11a)
M+ PTMPv +VV(u) +B u=0 (4.11b)
(u,t) =0 (4.11¢)
where the servo constraints are given by
c(ut) =s(u) —v(t) 4.12)

is obtained by inserting Equation (4.6) into the servo constraints (4.5). Furthermore,
VV(u)=PTVV(g) and B' = PTBT (4.13)

The resulting DAEs (4.11a)—(4.11c) in terms of generalized coordinates can be re-
garded as the starting point for index reduction approaches, such as the Blajer-type
projection method [25, 27] and the newly proposed index reduction by minimal ex-
tension method [2].

4.2 Numerical integration of underactuated systems with

servo constraints

In underactuated mechanical systems, more challenging problems may arise due to

the underactuation property. In this case the Jacobian of the servo constraints does
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not span the space of the control inputs any more. This case is termed by Blajer and
Kotodziejczyk [27] mixed orthogonal-tangent realization of servo constraints. Conse-
quently, the index of the corresponding DAEs exeeds three in general and this makes
the numerical integration of underactuated mechanical systems and the simulation
of index-5 problems much more demanding. Even the popular Radau Ila scheme,
a Runge-Kutta method with three stages, which is a method of order 5 for ODEs,
does not converge for general index-5 problems. Thus, index reduction methods are
preferred to reduce the index of the DAEs to 3 or even lower. To yield an index re-
duction from 5 to 3, Blajer and Kotodziejczyk [27] have proposed a specific projection
technique that has been further refined in [31]. The projection approach requires the
computation of time-dependent [27, 31] or constant Boolean-type [2(, 21] projection
matrices in order to split the dynamics of the underactuated system into constrained
and unconstrained parts.

The aim here is to get a reformulation of the DAEs which is amenable to a direct dis-
cretization. To this end, the specific projection method [20, 21, 27, 31, 94] is applied to
the underlying DAEs in terms of generalized coordinates and redundant coordinates,

respectively.

4.2.1 Projected formulation in terms of generalized coordinates

In the inverse dynamics formulation, the equations of motion in terms of generali-
zed coordinates can be derived in different ways. The set of DAEs (4.1a)—(4.1c) in
terms of generalized coordinates is identical to the resulting set of governing equa-
tions (4.11a)—(4.11c) derived by applying the null space method to the rotationless
formulation. In the following the latter one will be used as the starting point to apply

the projection method proposed in [27].

Differentiating the servo constraints (4.11c) twice with respect to time yields the con-

sistency condition (constraint condition at the acceleration level)

2 - -
%z(y, f) = C(u)v+& =0 (4.14)

together with the constraint Jacobian

C(w) = D5(p) (4.15)
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and the constraint-induced acceleration [27]
E=Cv—# (4.16)
Note that the initial values of state variables should satisfy the constraint condition

s(pug) — (o) =0 (4.17)

and the constraint condition at the velocity level

C(pg)vo —¥(to) =0 (4.18)

To perform the projection method, a suitable projection matrix D € R™* (=) needs
to be devised, such that the condition

rank(D) = 7i — 71 (4.19)
and the relationship
CD=0 (4.20)
are satisfied.

The projections can be accomplished by premultiplying the dynamic equation (4.11b)
with CM ' and 15T, respectively. Premultiplying Equation (4.11b) by CM ' and
using the servo constraint condition at the acceleration level (4.14) yields the pro-
jection of Equation (4.11b) into the constrained subspace

—F+CM {P"MPv+VV(u)+B ul =0 (4.21)

which is called the orthogonal projection [27] of Equation (4.11b).

Next, premultiplying Equation (4.11b) by D yields the projection of Equation (4.11b)

into the unconstrained subspace
D' {Mi + P TMPv +VV(u)+B u} =0 (4.22)

which is called the tangential projection [27] of Equation (4.11b). After the projection
procedure, Equation (4.11b) can be replaced by Equation (4.21) and (4.22). This provi-
des the projected formulation in terms of generalized coordinates. Then the governing
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equations of motion can be summarized as

j—v=0 (4.23a)

D'Mv 4+ D {P"TMPv + VV(4) + B u} =0 (4.23b)
CM {P"TMPv +VV(u)+ B u} —E=0 (4.23¢)
) =0 (4.23d)

Similar to the semi-explicit DAEs [6, 21], the resulting set of equations (4.23a)—(4.23d)
can be cast into the form
H(y)y = f(y,z1)

4.24
0=nh(y,zt) (4.24)

where, in the present case,

y= [ﬂ and z=u (4.25)
v

Note that the application of the tangential projection (4.22) yields a reduction of the
number of differential equations from 7 in (4.11b) to 7i — 71 in (4.23b) and the ortho-
gonal projection (4.21) yields 771 algebraic equations in (4.23c). Thus the size-reduction
of the differential part is accompanied by an increase of the algebraic equations from
1 in DAEs (4.11a)—(4.11c) to 2 in DAEs (4.23a)—(4.23d). After the application of the
projected formulation, the (differentiation) index has been reduced. If the index of the
original DAEs (4.11a)—(4.11c) is five, the index of the DAEs (4.23a)—(4.23d) is reduced
to three. Then a direct time discretization can be applied to the DAEs (4.23a)—(4.23d)

and the numerical solution to the inverse dynamics simulation can be obtained.

4.2.2 Projected formulation in terms of redundant coordinates

Similar to Section 4.2.1, the projected formulation can also be applied to the high index
DAEs (4.2a)—(4.2d) in terms of redundant coordinates. The projected formulation has
been presented in [2(, 21] and refined in [94] later. It is closely related to the projection
method applied to the formulation in terms of dependent coordinates in Blajer and
Kotodziejczyk [30, 31].

Differentiating the servo constraints (4.2c) twice with respect to time yields the con-
dition at the acceleration level

d2

Wc(q, ty=Cv+ (Co—4)=0 (4.26)
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with the constraint Jacobian
C = Ds(q) (4.27)

Upon introduction of the constraint-induced acceleration [27]
F=Cv—¥% (4.28)
the servo constraint condition (4.26) can be written as
Co=—-¢ (4.29)

To perform the projection method, an appropriate matrix D € R"*("~7) needs to be
set up such that the relationship
CD=0 (4.30)

is satisfied.

The orthogonal projection is performed by premultiplying Equation (4.2b) by CM !
and taking into account Equation (4.29). This leads to 17 algebraic equations

— &+ CM Y VV(q)+ G (qg)A + BTu} =0 (4.31)

Note that, for simplicity, it has been tacitly assumed that the mass matrix M is non-
singular. The tangential projection is performed by premultiplying Equation (4.2b) by
DT. This leads to n — 1 differential equations

DT{Mv+VV(q)+GT(g)A+BTu} =0 (4.32)

By replacing Equation (4.2b) with (4.31) and (4.32), the projected formulation in terms
of redundant coordinates is obtained, and the equations of motion are given by

g—v=0 (4.33a)

D'Mv +D"{VV(q) + G"(9)A + BTu} =0 (4.33b)
CM YVV(g) + Gl (g)A+BTu} —¢=0 (4.33¢)
c(g,t)=0 (4.33d)

®(q) =0 (4.33¢)

The index of the resulting set of DAEs (4.33a)—(4.33e) has been reduced to a lower
number after the application of the projection method. Then the direct time discreti-
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zation can be performed by applying the numerical integrators (see Chapter 3). The
control strategy can thus be obtained for the trajectory tracking control problem. It is
worth mentioning that the rotationless formulation of multibody dynamics for trajec-
tory tracking control problems typically yields projection matrices C and D of Boolean
(or binary) type [21]. This feature is highly beneficial to the time discretization of the
underlying DAEs (4.33a)—(4.33e), which can be written in the form of Equation (4.24)

again, with
y= {q] and z = [A] (4.34)
v

u

Note that the incorporation of servo constraint-induced acceleration in Equation (4.29)

turns 771 of the original differential equations (4.2b) into algebraic equations (4.31).

4.2.3 Projected formulation in terms of dependent coordinates

Generalized coordinates are called independent (minimal) coordinates in the formula-
tion of cranes in Blajer and Kotodziejczyk [30, 31]. Therein dependent (non-minimal)
coordinates can be regarded as redundant coordinates. However, due to the use of
rotational parameters in the robot coordinates (see Section 4.4), dependent coordi-
nates do have distinction from redundant coordinates which employ directors (see
Subsection 2.4.2).

In the simulation of overhead and rotary cranes, dependent coordinates are often divi-
ded into two groups (see [30, 53]), which are the robot coordinates p € R"~™ and the
load coordinates x € R™. They are related through the geometric constraints (4.2d).
Then the coordinates can be expressed by

q= [p } (4.35)

X

Using these coordinates, the servo constraints (4.5) are simplified to the following
trivial form
x=(t) (4.36)
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and the original DAEs (4.2a)—(4.2d) can be rewritten as

p—w=0 (4.37a)
Mp) | %]+ VV(p,7) + G (py)A + BTu =0 (4.37b)
P(p,v)=0 (4.37¢)

in which the vector w denotes the robot velocities and the load coordinates x have
been replaced by the time specified output function 7(#). Note that due to the use of
rotational parameters the mass matrix M(p) here is configuration dependent in the

dependent coordinates formulation of overhead and rotary cranes.

The projected formulation in terms of dependent coordinates can be applied, which
has also been provided in [30, 31]. Differentiating the holonomic constraints (4.37c)

twice with respect to time yields the constraint condition at the acceleration level

2
T (p,7) = Gla)o + Glg)o = 0 (438)

with the constraint Jacobian G(g) = D®(q) € R"*". Again the associated constraint-

induced acceleration is introduced as

¢ =Glq)v (4.39)
and Equation (4.38) can be rewritten as

Glq)o = ¢ (4.40)

Then a suitable projection matrix D € R™* ("=~ can be devised, such that the

relationship
AD =0 (4.41)
or in an equivalent form
C CD
D= =0 (4.42)
G GD
with the expression
a-|€ (4.43)
G

is satisfied and the servo constraint Jacobian C is given by Equation (4.27) with the
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expression s(g) = x. Premultiplying Equation (4.37b) by DT and taking into account
the relationship in Equation (4.42)
GD =0 (4.44)

yield the tangential projection
w

D’ {M(p) 5

+VVi(g)+ BTu} =0 (4.45)

In the redundant coordinates formulation, the servo constraint Jacobian C is Boolean
type, thus the servo constraint condition at the acceleration level (see Equation (4.29))
can be written as

Co=1% (4.46)

Premultiplying Equation (4.37b) by CM~! and making use of Equation (4.46) yield
the projection into the specified subspace C. That is

44+ CMYVV(g)+GTA} =0 (4.47)

Here, the relationship of the inner product of the specified subspace C and the con-

trolled subspace B (for more details, see [30, 31]) is given by
cM BT =0 (4.48)

because the two #i-subspaces C and B are complementary and disjoint.

Premultiplying Equation (4.37b) by GM ! with the incorporation of Equation (4.40)
yields the projection into the constrained subspace G. That is

~ &+ GM H{VV(g)+G"A+Bu} =0 (4.49)

The constrained subspace G has a nonzero inner product with both the controlled
subspace B and the specified subspace C.

If the original set of DAEs (4.37a)—(4.37c) has the index of 5, after the application of
the projection method, the governing equations are the following 2n — 7it 4+ m index-3
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DAEs in the same number of variables p, w, # and A:

p—w=0 (4.50a)
D™™M(p) || + DT{VV(p,y) + BTu} =0 (4.50b)
F+CM HVV(p,y) +GA} =0 (4.50c)
~E+GM YVV(p,9)+G"A+BTu} =0 (4.50d)
®(p, ) =0 (4.50¢)
which can be written in the form of (4.24), with
A
y= [P} and z = [ } (4.51)
w u

It is to be noted that only the case, in which the dimension of the constrained subspace
G is lower than the dimension of the specified space C, is considered, that is, m < 7.

4.2.4 Numerical discretization

The projected formulations in terms of generalized coordinates (4.23a)—(4.23d), re-
dundant coordinates (4.33a)—(4.33e) and dependent coordinates (4.50a)—(4.50e) yield
DAEs in semi-explicit form (4.24). In a first step towards the time discretization of
the DAEs a backward Euler-type method is applied. Accordingly, the time-stepping
scheme is given by

H(y, . 1) Y1~ Y,) = MY, Zur1 tnr1)

4.52)
0= h(yn+1/ Zn+1s tn+1)

where At is the time step size. The corresponding discretization of the projected
formulation in terms of generalized coordinates (4.23a)—(4.23d) leads to the scheme
originally proposed by Blajer and Kotodziejczyk [27].
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4.3 Differential flatness

Besides the numerical integration, the inverse dynamics control problems of unde-
ractuated mechanical systems can be viewed from the perspective of differentially
flatness introduced by Fliess et al. [39]. If the underactuated mechanical system is
differentially flat, the specified outputs play the role of flat outputs, which can be
used to completely determine the motion of the underactuated system. One main
property of differential flatness is that all the state variables and control inputs can
be directly expressed in terms of the flat outputs and their time derivatives up to a
certain order, without integrating any differential equation. The system of DAEs ex-
pressed in Equation (4.24) is differentially flat if the following algebraic functions can
be obtained:

y = fy(')// ;)// ey ’)’(0‘71)) (4533)
u=f, (v, 9. ., v (4.53b)

The value of « is by one smaller than the value of index of the DAEs (4.24). More
detailed background about differential flatness can be found in [53, 78, 90]. In the
following numerical examples, it is shown that differential flatness yields the flatness-
based solution, which can be considered as the analytical solution. However, it is ge-
nerally not feasible to get such an analytical solution for more complicated multibody
systems, and then numerical methods such as index reduction approaches are needed
to solve the inverse dynamics problems of underactuated multibody systems.

4.4 Numerical examples

The numerical integration approach (projected formulation) and the analytical appro-
ach (formulation based on differential flatness) will be applied to two examples, the
planar overhead crane and the three-dimensional rotary crane, respectively.

4.4.1 Planar overhead crane
As shown in Fig. 4.1, the planar example of an overhead crane is considered (see

also [27, 30]) as a prototypical example of an underactuated mechanical system, which
has three degrees of freedom and is composed of the trolley, the winch and the load.
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prescribed trajectory, v(¢)

yZ2

Figure 4.1: The model of the planar overhead crane.

Rotationless formulation in terms of redundant coordinates

A rotationless formulation! is first considered, which relies on n = 4 redundant coor-
dinates? given by
g=1s B x 2T (4.54)

where the trolley position is specified by s, the rotation angle of the winch is denoted
by B, and the load coordinates (see Fig. 4.1) are given by x and z.

Note that the hoisting cable connecting the load with the winch is assumed to be

massless and inextensible. The corresponding 4 x 4 mass matrix is constant and

-

Strictly speaking, the present formulation is not rotationless due to the presence of angle . However,
the present description in terms of redundant coordinates for the planar overhead crane still leads
to a constant mass matrix which is a prominent feature of the rotationless formulation. By contrast,
the formulation in terms of robot coordinates and load coordinates for the three-dimensional rotary
crane leads to configuration-dependent mass matrix which will be shown in the examples later.
Therefore, redundant coordinates of this type are also called dependent coordinates by Blajer and
Kotodziejczyk. The truly rotationless formulation has been discussed thoroughly in Subsection 2.4
(see also [88]).

Instead of the rotation angle  of the winch, the length I of the cable can also be used.

N
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diagonal:
mg 0 0 0
0 0 0
M = J (4.55)
0 0m O
0 0 0 m

in which the trolley mass is m1;, the moment of inertia of the winch is J, and the load
mass is m. Furthermore, the radius of the winch is given by r.

Gravity is acting on the system such that
V(g) = —mgz (4.56)

where the gravitational acceleration is denoted by g. To link the position of the load

to the rotation (angle B) of the winch, the holonomic constraint function (m = 1)
O(q) = (x—s)*+2* - (rp)* (4.57)

is introduced. Correspondingly, the constraint Jacobian G = D®(q) assumes the
following form
G=2|s—x —rPp x—s 2 (4.58)

The specified trajectory of the load is expressed by the servo constraint function given
by Equation (4.5) with /1 = 2. In this connection,

X
s(q) =Cq = Z] (4.59)
with the constant Boolean Jacobian
0010
C=D = 4.60
s(q) {0 00 1] (4.60)

Moreover, the prescribed trajectory function 7(t) € R? in Equation (4.5) takes the

y(t) = [xd(t)] (4.61)

where the desired time-specified coordinates of the trajectory of the load are x;(t)

following form

and z4(t), i.e. appropriately smooth functions of time. The actuator forces as control
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inputs follow from

F
u= 4.62
H we
and the input transformation matrix B is given by
-1 0 00
B = (4.63)
0 -1 00

To summarize, the above quantities completely specify the DAEs (4.2a)—(4.2d) and
the resulting set of DAEs has the index of five.

Projected formulation in terms of redundant coordinates
The application of the projected formulation in terms of redundant coordinates (see

Subsection 4.2.2) is performed next. It is easy by inspection to find the special Boolean
matrix

(4.64)

o O O =
oS O = O

which qualifies as viable projection matrix and satisfies the condition (4.30). Moreover,
in view of Equation (4.28) and (4.60), the constraint-induced acceleration is given by

c=—% (4.65)

which is calculated by using Equation (4.61). The prescribed trajectory -y(t) can
be generated by using a reference function in the motion planning. These quanti-
ties are required to set up the DAEs (4.33a)—(4.33e) pertaining to the projected for-
mulation in terms of redundant coordinates. Note that the index of the resulting
DAEs (4.33a)—(4.33e) has been reduced to three after the projection method is perfor-

med in the planar overhead crane example.

Projected formulation in terms of dependent coordinates

As mentioned above, the present redundant (dependent) coordinates g can be divided
into two groups, the robot coordinates p € IR? and the load coordinates x € R?, which
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are given by
p= {s ﬁr and x = [x Z}T (4.66)

In this simple example, the matrix A in Equation (4.43) is given by

0 0 1 0
A= 0 0o 0 1 (4.67)
s—x —1’B x—s z

Then the projection matrix D can be easily found by guess, such as

_ T
D= [1 % 0 0} (4.68)

which satisfies the condition (4.41). Furthermore, in view of Equation (4.39) and
(4.58), the constraint-induced acceleration of constraint (4.57) is calculated by

F=2 [(s —2)s— PR+ (1 -8+ 22} (4.69)

Then the above quantities can specify the index-3 DAEs (4.50a)—(4.50e) pertaining to
the projected formulation in terms of dependent coordinates.

Generalized coordinates formulation in terms of minimal coordinates

To set up the problem formulation of the overhead crane in terms of minimal coordi-
nates, the reduction procedure (see Subsection 4.1.3) on the basis of the rotationless
formulation in terms of redundant coordinates is performed to achieve the transition
to the DAEs (4.11a)—(4.11c) in terms of minimal coordinates. To this end, the i = 3

dimensional configuration manifold is parameterized with minimal coordinates
u=11 (4.70)

Here, the variable [ denotes the length of the inextensional hoisting cable connecting
(the axis of) the winch with the load. Moreover, the variable ¢ measures the angle
between the vertical and the hoisting cable (see Fig. 4.1).
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There exists a mapping F : U — Q C R*, which can be written as

S

I/r
—F = 4.71
1 () s+Ising ( )

Icos ¢

Then the associated Jacobian yields a convenient null space matrix P = DF(u) of the

following form

1 0 0

p_ |0 11 0 4.72)
1 sing Icosg
0 cosep —Ising

Now, a straightforward calculation yields the additional terms that appear in Equa-
tion (4.11a)—(4.11¢):

[m¢+m  msing mlcos e
M =P'MP = | msing m+ ]/ 0 (4.73a)
| ml cos ¢ 0 mi?
[2mi¢ cos ¢ — mlg?sin ¢
PTMPv = —ml@? (4.73b)
i 2mli¢
o
VV(u) =P'VV(q) = | —mgcos ¢ (4.73c)
| mglsing |
1 o0
B =pPB"=|0 —1/r (4.73d)
0 o
ol
Sy =cp=TTNY (4.73¢)
| lcosg

Projected formulation in terms of minimal coordinates

The projected formulation in terms of minimal coordinates (see Subsection 4.2.1) can
now be performed. According to Equation (4.15), the constraint Jacobian is given

79



4 Inverse dynamics simulation of multibody systems

by
C=D3(u)=CP =

1 sing Icosg 474)
0 cosep —Ising '

Moreover, in view of Equation (4.16), the constraint-induced acceleration can be obtai-
ned. That is )
io 2(pllco'sq)flq')zzsinq)fjéd 4.75)
—2¢lsing —1¢~cosp —Z,

with the expression

Cv =

2¢lcosp—1¢?sing (4.76)
—2¢lsing —1¢?cos ¢ .

Then a suitable projection matrix can be found by inspection (as in [27])

-1
D= 1sin ¢ (4.77)

7 oS¢

which satisfies the complementary condition (4.20). Using the projection matrices, the
projection method in terms of minimal coordinates can be applied and the resulting
index-3 DAEs (4.23a)—(4.23d) can be set up to perform the inverse dynamics ana-
lysis of the planar overhead crane. It is obvious that the quantities are much more
complicated than those in the formulation of employing redundant coordiantes.

Analytical solution based on differential flatness

The planar overhead crane can be classified as a differentially flat system, in which the
property of differential flatness provides the analytical solution as the reference solu-
tion. It will be verified that Equation (4.61) plays indeed the role of flat outputs. This
can be easily deduced from the projected formulation in terms of redundant coor-
dinates. In particular, for the overhead crane, Equation (4.33¢c) yields the following

equations

2(xg—s)A+mi; =0 (4.78a)
2zgA+m(23—g) =0 (4.78b)

These equations can be solved for Lagrange multiplier A(¢) and the trolley position
s(t) in terms of the prescribed outputs together with their derivatives thereof up to
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the second order:

A= Z—Zd(g —Zy) (4.79a)
zaX 4

s = x5+ - 4.79b

— ( )

Here, the time-specified flat outputs are x; and z;. Moreover, the holonomic con-
straint equation (4.33e) yields the rotation angle B(t) of the winch in terms of the
prescribed outputs and their derivatives up to the second order:

B= gy (G + (5~ 2P (4.80)

r(g—Za

Eventually, the control inputs (4.62) are determined by Equation (4.33b). Since the
product of the transpose of the projection and the transpose of the input transforma-
tion matrix yields

D'BT = -1 (4.81)

where I is a 2 x 2 identity matrix, Equation (4.33b) yields
u=DT{Mv+VV(q)+ G (q)A} (4.82)
or in an alternative expression

F=ms+2(s—x4)A (4.83a)
M =] —2r*BA (4.83b)

Obviously, the control inputs can be expressed by flat outputs along with their time
derivatives up to the fourth order, i.e. « = 4. It indicates that the index of the original
governing DAEs (4.2a)—(4.2d) is five. The above flatness-based analytical solution is
provided as the reference solution for the following numerical experiments.

Inverse dynamics simulation
The present numerical experiment is taken from Blajer and Kotodziejczyk [27] and

deals with the feedforward control of the planar overhead crane (Fig. 4.1). As flat
outputs, the desired trajectory of the load with mass m is prescribed by

v(t) = v+ (75— ¥0)e(T) (4.84)
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with the initial position

T T
Yo = {xd(to) Zd(to)} = [O 4m} at tpr=0 (4.85)
and the final destination
T T
Yf= {xd(tf) Zd(tf)} = {5111 1m} at tf =3s (4.86)

Furthermore, in Equation (4.84), ¢(7) is a 5-6-7-8-9 interpolating polynomial of the
following form

c(t) = 707° — 3157° 4 54077 — 4207° + 1267° (4.87)
where the term ;

T= - (4.88)

It can be easily checked that Equation (4.84) prescribes a rest-to-rest maneuver of the
load. Starting at rest, the initial configuration of the overhead crane can be specified

by minimal coordinates

wo=[so lo 9| =[0 4m o] (4.89)

The remaining parameters are m; = 10kg,m = 100kg, ] = 0.1kg - m? and ¥ = 0.1m.
For the numerical calculations four different formulations are applied in the follo-
wing:

GEN: Backward Euler scheme based on DAEs (4.23a)—(4.23d) in terms of

generalized coordinates

RED: Backward Euler scheme based on DAEs (4.33a)—(4.33e) in terms of
redundant coordinates

ALT: Backward Euler scheme based on DAEs (4.50a)—(4.50e) in terms of
dependent coordinates

REF: Reference solution provided by the flatness-based approach

The calculated motion of the inverse dynamics simulation of the overhead crane is
illustrated in Fig. 4.2, which contains the snapshots of the system at successive points
in time. The simulation yields the numerical results obtained by different projected
formulations, which are depicted in Fig. 4.3 and 4.4 for different time step sizes,

respectively. It can be observed that all the numerical solutions of the coordinates,
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the Lagrange multiplier and the control inputs converge to the analytical reference
solution if the time step size is reduced.

Figure 4.2: Snapshots of the simulation of overhead crane at specific points in time.
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Figure 4.3: Planar overhead crane: Comparison between the numerical results of different projected
formulations obtained with At = 10~!'s and the analytical reference solution.
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REF
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Figure 4.4: Planar overhead crane: Comparison between the numerical results of different projected
formulations obtained with At = 10~3s and the analytical reference solution.
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Figure 4.5: The model of the rotary crane.

4.4.2 Three-dimensional rotary crane
The three-dimensional rotary crane, as depicted in Fig. 4.5, is now considered for

the inverse dynamics simulation of underactuated systems, which has five degrees of
freedom. It has been introduced in the forward dynamics simulation (see Section 2.4).
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Rotationless formulation in terms of redundant coordinates

The rotationless formulation in terms of redundant coordinates has been completely
presented in the previous three-dimensional rotary crane example (see Section 2.4).
The rotationless formulation relies on n = 42 redundant coordinates subject to 18
internal constraints (rigidity), 16 external constraints (joints) and 3 additional con-
straints (coordinate augmentation). Altogether there are m = 37 constraints resulting
infi = n—m = 5 degrees of freedom. Moreover, the configuration vector of redun-
dant coordinates is given by g in Equation (2.103), and the constant mass matrix takes
the form of (2.114). The prescribed trajectory function 7(t) € R® in Equation (4.5) is
given by
xX4(t)
y(t) = |ya(t) (4.90)
z4(t)
where the coordinates x;(t), y4(t) and z;(t) are the desired time-specified coordinates
of the trajectory of the load. The actuator forces (see Fig. 4.5) as control inputs follow
from the expression
My
u= | F (4.91)
My

in which the torque M, is acting on the rotary pillar about the vertical rotation axis
(Z-axis), the force F; is acting on the trolley along the girder bridge and the torque
My, is acting on the winch about its rotation axis. The input transformation matrix B
is given by
01x36 —1 0 0
B= 013 0 -1 0 (4.92)
01x36 0 0 -1

Accordingly, the actuator forces (control inputs) are incorporated into the present
rotationless formulation by applying the coordinate augmentation. All the quantities
completely specify the underlying DAEs (4.2a)—(4.2d) which has the index of five.

Projected formulation in terms of redundant coordinates

Similar to the example of the planar overhead crane, the prescribed trajectory of the
load leads to 7t = 3 servo constraints of the form (4.5). At this point, the position of
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the load is determined by
x
s(g) =¢*=Cq=|y (4.93)
z

with the constant Jacobian C = Ds(q) of Boolean type

0136 1 0 0 091x3
C= {01036 0 1 0 01x3 (4.94)
01536 0 0 1 0943

To obtain the projected formulation, the projection matrix D satisfying the condi-
tion (4.30) can be determined by applying the method in Blajer and Kotodziejczyk [28].
The Jacobian C is assumed to have full row rank (equal to 77), and it can always be
factorized to

C= {u : w] (4.95)

so that U has the dimension 7 x (n — 1) and W has the dimension 77 x 71, and the
determinant of W is not equal to zero. The orthogonal complement D to C can then

D= [—Wllu] (4.96)

be found from

Then the DAEs (4.33a)—(4.33e) can be set up, which are pertaining to the projected

formulation in terms of redundant coordinates.

Projected formulation in terms of dependent coordinates

The dependent coordinates [31] can be employed as redundant coordinates to formu-
late the problem of the rotary crane as well. Then the robot coordinates p € R3 and

the load coordinates x € R3 are given by

1) x
p=|s and x= |y (4.97)
l b4

which are related through the passive constraint (m = 1)

D(p,x)=L—-1= \/(x—scosg0)2+(y—ssingo)2+zz—l =0 (4.98)
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with the length

L= \/(x —scos )2 + (y — ssin ¢)? + 22 (4.99)

Correspondingly, the constraint Jacobian G = D®(p, x) assumes the form

G— (xsing —ycosp)s s—xcos@—ysing _, X—scosg y—ssing z
L L L L L
(4.100)

The specified trajectory of the load is described by the servo constraint function (4.5)
with #1 = 3 and that is

X
s(g)=Cq= |y (4.101)
z

with the constant Boolean Jacobian
000100
C=Ds(g)=10 00 0 10 (4.102)
000O0O0T1

Moreover, the corresponding 6 x 6 mass matrix is given by

[Jo+ms> 0 0 0 0 0
0 mig 0 0 0 0
0 0 Ju/r3 0 0 0
M = 4.103
(p) 0 0 0 mo0 0 (4-109)
0 0 0 0 m 0
0 0 0 0 0 m

Here, the inertia value J, is the sum of the moment of inertia of the girder bridge,
the trolley and the winch relative to the axis of rotation, i.e. Z-axis. The inertia value
Jw indicates the moment of inertia of the winch relative to its axis of rotation d% (see
Fig. 2.9). The mass m; includes the mass of the trolley and the winch, and m is the
mass of the load. Accordingly, there are

h=+32+]3 and Ju=1]3 (4.104)

my=my+mz and m =1y (4.105)

Note that the mass matrix M(p) is configuration dependent in the formulation in
terms of dependent coordinates for the rotary crane example. Furthermore, the gene-
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ralized and applied forces contained in the force vector f are given by

[ 2mss¢ |
—ms¢?
f= 8 (4.106)

0
_mg

The control inputs are given by Equation (4.91) and the input transformation matrix
is given by

-1 0 0

B=|0 -1 0

0
0 (4.107)
0 0 —1/rp, 0 0 0

Considering Equation (4.39) and (4.100), the constraint-induced acceleration ¢ can be

calculated. The same projection matrix as provided in [31] is used here, that is

10 (xsing — ycos @)s 00 0

DT = B L (4.108)
01 S XCOS(p ysmq) 00 0

L

Using these quantities, the DAEs (4.50a)—(4.50e) can eventually be set up, which are
more tractable to be dealt with numerically. Note that besides the gravitational force
the generalized forces in (4.106) should also be considered in the DAEs (4.37a)—(4.37c)
for the dependent coordinates formulation of the rotary crane.

Generalized coordinates formulation in terms of minimal coordinates

The 71 = 5 dimensional configuration manifold of the rotary crane can be parameteri-

zed with minimal coordinates
T
p=1|p s 1 & 92} (4.109)

where the rotation angle of the girder bridge is given by ¢, the trolley position on
the girder bridge is s, the length of the hoisting cable is /, and the swing angles are
given by 61, 0 . The governing equations of the system can be derived either by the
Lagrange equations of the second kind (see Subsection 2.4.1) or by the discrete null

space method (see Subsection 2.4.2). If the latter method is applied, the mapping
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F: U+ Q € R¥ can be written as

-

I

=

=

I
I
a1 = @ N/_\
\/\/S\/\/

where
9

(4.110)

4.111)

4.112)
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5COS @
ssin ¢
0
cos ¢ cos
sin ¢ cos 0
Fu) = :SSI;‘Z (4.113)
cos ¢
0
cos @ sin 0
sin ¢ sin 6

cos 6

(s +1sin6;) cos ¢ + 1 cos B, sin 6y sin ¢
F*(u) = |(s +1sinf) sin ¢ — [ cos 0 sin 6 cos ¢ (4.114)
—1cos 6, cos 01

Pp)=| s 4.115)

I/
Then these mappings can be used to perform the transition from the rotationless
formulation to the formulation in terms of minimal coordinates. At this point it is
to be noted that the resulting description in terms of minimal coordinates is quite

awkward due to the elaborate expressions.

Projected formulation in terms of minimal coordinates

To perform the projected formulation, the constraint Jacobian needs to be calculated.
That is,
C = D5(u) = DF*(n) (4.116)

and the constraint-induced acceleration is given by
I=Cv—4 4.117)

Similar to the overhead crane example, a suitable projection matrix D can be compu-
ted by symbolic manipulations, which satisfies the relationship (4.20). Besides, it can

be computed by Equation (4.96). Note that the projection matrices are cumbersome
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and much more complicated in the minimal coordinates formulation for the rotary

crane example.

Analytical solution based on differential flatness

The rotary crane example can be classified as a differentially flat system. Then the ana-
lytical solution [31] can be obtained through purely algebraic manipulations instead
of integrating the DAEs (4.37a)—(4.37c). In the rotary crane example, the projection
of the dynamic equations in the specified subspace yields three algebraic equations

Byt %A ~0 (4.118a)
4+ %/\ ~0 (4.118b)
Zit g+ mZTdLA —0 (4.118¢)
with the length
L? = (x4 —scos )? + (yq — ssin ¢)? + 23 (4.119)

From the above three nonlinear equations (4.118a)—(4.118c), the variables can be

obtained after some manipulations, which are expressed by

A= maJ83+ 5+ (24 + g)2 (4.120a)
s=1/AL+ A (4.120b)
Ay
@ = arctan A (4.120¢)
X
with the expressions
Z4 Xq
Ay =x5— 4.121a
x d Zd +g ( )
Z4 Ya
Ay =vyg— 4.121b
y = Ya itg ( )

From the constraint equation (4.98), the length of the cable is calculated by

Z1+8

= VBB (2t g)? 4.122)
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Then the actuator (control) forces can be determined from Equation (4.50b) in terms
of the flat outputs and their time derivatives up to the fourth order, i.e. « = 4. This
implies that the initial governing DAEs have the index of five. The above analytical
solution provides the flatness-based solution to the differentially flat rotary crane for
the inverse dynamics analysis. It is shown that all the state variables and control
inputs can be algebraically expressed in terms of the desired outputs and their time
derivatives up to a certain order. It is obviously seen that the flatness-based solution is
featured by enormous complexity, especially for the acceleration @ and control inputs
u, and thus they may be considered as impractical in applications. In contrast, the
numerical approach is much more straightforward and applicable.

Inverse dynamics simulation

body mlkg] Jikg-m?] J5  length[m] width depth

1 100 21667 21667 16.67 5 1 1

2 50 2.08 208 208 0.5 05 05
3 3 0.26 002 026 1 02 02
4 10 — - — — - —

Table 4.1: The data of mass, moment of inertia and dimension of each body of the rotary crane.

The simulation data used for the example of the rotary crane is summarized in Ta-

ble 4.1. The required trajectory of the load is prescribed by

V() =70+ (vf —v0)c(t) (4.123)
with the start position
T
v = [Sm 0 f5m} at fg=0 (4.124)
and the target position
T
vp=[-2m 2m —2m| at t;=20s (4.125)

The same reference function ¢(t) as in [28] is used here, which prescribes a rest-to-
rest motion (see Fig. 4.6) of the load and is composed of three phases: the acceleration
phase (I) for 0 <t < 5s5,

1 ( 58 107 141° 7t5>

f = _ A 4126
ai(t) T— 1) 21/ T 210 21t ( )

92



4.4 Numerical examples

the steady velocity phase (II) for 5s < t < 155,

1
nlt) = —— (t - ?) (4.127)

and the deceleration phase (III) for 15s <t < 20s,

1 5(t—t)8 10(t—1t)7 14(r—1t)° 7(r—1t)>
t)=1 — — 4.128
cn(t) + T— T ( 2797 + T0° 279° + 2704 ( )

where T = tf —fo, and 71 is the acceleration/deceleration time. Here, T = 20s,

Tp = 5s. The reference function c(t) and its time derivatives are illustrated in Fig. 4.6.
The design of the reference function c(t) can follow the idea posed in [5]. The sy-

1
® 05
0 ‘
0 5 10 15 20
0.1 :
® 0.05
0
0 5 10 15 20
0.05
0
-0.05 : ‘ :
0 5 10 15 20

Time

Figure 4.6: Reference function s(t) and its derivatives for the load position.

nchronized time function (4.123) for the reference load coordinates yields a straight
line trajectory from the start position to the target position.

Starting at rest, the initial configuration of the rotary crane is specified by minimal
coordinates . .
po = {qvo so Iy 6y 920] = [0 5m 5m 0 0 (4.129)

The following four formulations are applied to the numerical experiments:

GEN: Backward Euler scheme based on DAEs (4.23a)—(4.23d) in terms of

minimal coordinates
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RED: Backward Euler scheme based on DAEs (4.33a)—(4.33e) in terms of

redundant coordinates

ALT: Backward Euler scheme based on DAEs (4.50a)—(4.50e) in terms of
dependent coordinates

REF: Reference solution provided by the flatness-based approach

The calculated motion of the inverse dynamics simulation of the rotary crane is il-
lustrated in Fig. 4.7, which includes the snapshots of the system at successive points
in time. Furthermore, the numerical results are obtained by different projected for-
mulations and presented in Fig. 4.8 and Fig. 4.9 for different time step sizes. It can
be concluded that the numerical solutions of the coordinates and the control forces
converge to the analytical reference solution as the time step size is reduced. Note
that the small discrepancy between the projected formulation ALT and the other for-
mulations is a value of 0.1, even for very small time step sizes. The distinction may

come from the formulation (ALT) of the rotary crane.

Figure 4.7: Snapshots of the simulation of rotary crane at specific points in time.
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Figure 4.8: Rotary crane: Comparison between numerical results of different formulations obtained
with At = 107! s and the analytical reference solution.
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Figure 4.9: Rotary crane: Comparison between numerical results of different formulations obtained
with At =5 x 10735 and the analytical reference solution.
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5 Index reduction by minimal extension

for the inverse dynamics simulation

So far index reduction by minimal extension [62] has been succesfully applied to
circuit simulation [62, Sec. 4], multibody systems [62, Sec. 5] and infinite dimensional
systems arising in elastodynamics and flexible multibody systems [1]. However, it
has not been applied to underactuated servo constraint problems. To develop the
new method for such problems, a class of differentially flat cranes will be considered
at first, in which the load coordinates play the role of flat outputs (see also Chapter 4).
For the problem formulation, both redundant coordinates and minimal coordinates
can be employed within the newly developed method. The formulation of some
cranes fits into the more general framework presented in [58].

The underactuated servo constraint problem is governed by differential-algebraic
equations with high index (e.g. index 5), which makes the simulation of the pro-
blem highly challenging. Therefore, index reduction methods need to be applied to
reduce the index of the DAE:s to facilitate a stable numerical integration. In Chapter 4
the specific projection method has been used to yield a reduction of the index from
5 to 3. Now an alternative method, which relies on the index reduction by mini-
mal extension originally developed by Kunkel and Mehrmann [62] for more general
DAEs, is newly proposed to reduce the index of the DAEs. For the purpose of index
reduction, the technique of minimal extension turns out to be especially attractive
due to the semi-explicit structure of the DAEs (e.g. see (4.1a)—(4.1b)) and it is not
necessary to construct projection matrices as in the projection method. Thus, index
reduction by minimal extension can be easily applied to underactuated systems (i.e.
a < f, e.g. cranes and flexible multibody systems) to reduce the index of the DAEs
to 3 or even to 1. As a result, a set of index-3 or index-1 DAEs can be obtained and
easily discretized in the numerical integration. Moreover, the reduced index-1 DAEs

is purely algebraic and reflects the fact that the system at hand can be classified as
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differentially flat system. In the end, the DAEs can be solved to determine the asso-
ciated control inputs, which are required to steer the system such that the prescribed
trajectories are tracked. In this way a simulation approach to the feedforward control
of multibody systems can be realized. The application of the proposed method will

be demonstrated with three representative numerical examples in the following.

5.1 Index reduction by minimal extension

In this section a short introduction to the index reduction approach by minimal ex-
tension will be provided. Then its application to the servo constraint problem will be

presented.

A common approach for the reduction of the index of general nonlinear DAEs

F(t,y,y)=0 (5.1a)
y(to) = ¥o (5.1b)

is given by the derivative array approach [63, Chap. 6.2]. In this equation, y, € R”"
are prescribed initial conditions and F : I x R" x R" — R". Let the DAEs be of
index! y;. Then all equations need to be differentiated (4 — 1) times and suitable
projections are computed to find algebraic and differential equations ,which together
form an equivalent system of index 1. It is worth mentioning that a general index
concept has been introduced, the so-called strangeness index y, which generalizes
other index concepts, e.g. the concept of the differentiation index py [35]. Further
details can be found in [63]. For large systems of high index, the derivative array may
become very large and cause memory problems. In addition, high computational
effort needs to be invested to find the mentioned projection matrices, which leads
to high computational complexity and makes the general method impracticable for
large scale problems.

The complexity of the index reduction method can be significantly reduced if additi-
onal information about the structure of the system is available, such as DAEs arising
in the simulation of multibody systems. This is the case for the semi-explicit DAEs of
interest for which the algebraic constraints are explicitly given. The main idea relies

on this structural information about the equations that lead to high index. Hence, it

1 Index indicates the differentiation index in this chapter.
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is sufficient to add the derivatives of those equations. This extra information is used
to create a reduced size derivative array, so that the computational effort is highly
reduced. Even with these improvements, for the reduced size derivative array, local
nullspace computations still require large memory storage and arithmetic complex-
ity. To deal with this difficulty, another index reduction concept introduced in [73]
is modified. The basic idea of this approach is to introduce new variables, so-called
dummy derivatives, to reduce the index. In fact, after introducing so-called dummy
variables, projection matrices are even not needed any more. This procedure is then

called minimal extension [62].

5.1.1 Minimal extension for mechanical systems

The index reduction technique of minimal extension is applied to the system of equa-
tions typically governing the motion of a multibody system (see also [62]). To this
end, the DAEs?

M(q)i = f(q,q4) — G"(q)A (5.2a)
®(q)=0 (5.2b)

are considered. The redundant coordinates g € R" are subject to m holonomic con-
straints with associated constraint functions ®(g) € R™. Lagrange multipliers are
given by A € R™ and the constraint Jacobian is calculated by G(g) = D®(g) € R™",
which is assumed to have full rank. Moreover, M(g) € R™" is a symmetric mass
matrix, and f € R” contains the conjugate forces acting on the system, except for the

forces of constraint.

It is well known that the present DAEs have index 3 or strangeness index 2 [63,
Ex. 4.22]. Since G(q) has full rank, there exists an orthogonal matrix Q € R™" such
that G(q)Q has the block structure

G(9)Q = [Gl Gz] (5.3)

with an invertible matrix G, € R™"™. The matrix Q then allows to partition the

2 For convenience, the equations of motion will not be written in the form of first order.
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position variables g into g; € R"~"™ and g, € R by

m = Qg (5.4)
9>

For the reduced derivative array, the two derivatives of the constraints are added to

the original system, that is,

0=G(q)q (5.50)
0=G(q)q4+G(q9)i (5.5b)

To avoid the expensive search for projectors, two dummy variables are introduced as

qr =4, (5.6a)
q, =, (5.6b)

With the variables g, q,, ﬁz, Eiz, and A, the minimally extended strangeness free
(strangeness index 0) system is obtained, which is square. Replacing every occur-
rence of ¢, and §, by the corresponding dummy variables g, and ¢,, the overall

system now reads

M(q)Q Bl} = f(91, 92 31, 9,) — G" (9)A (5.7a)
2
0=2=®(qy,q,) (5.7b)
0=G(g)Q M (5.70)
q
0= G || +ce M (5.7d)
q q;

Note that, to prevent clumsy notation, G(q) is used instead of G(q,,4,) and simi-
larly M(q) instead of M(q,,q,). The following theorem [63, Th. 6.12] shows that the
extended system (5.7a)—(5.7d) is strangeness free.

Theorem 5.1. Consider a multibody system of the form (5.2a)—(5.2b) with M(q) symmetric
and positive definite and suppose that G(q) has full row rank. Then the extended system
(5.7a)—(5.7d) is strangeness free.
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Proof. Since G in (5.3) is square nonsingular, Equation (5.7b) can be solved by means
of the implicit function theorem for g, in terms of g, and Equation (5.7c) can be solved
for g, in terms of g, and §,. Since M(q) is symmetric and positive definite, Equation
(5.7a) can be solved for 4, and g,. Moreover, it follows that

W(q) = G(q)M'G"(q) (5.8)

due to the full row rank of G(g). Hence, §, and g, can be eliminated from Equation
(5.7d) and A can be obtained according to

I

A=WwW"(q) (G(q)Q
Up)

+ G(‘])le(qquzf‘71le\2)> (5.9)

In the end an ordinary differential equation is obtained in the unknowns g, and ¢;.
The system has strangeness index y = 0. O

The proof that the resulting DAEs have index 1 (strangeness index 0) is given in [63,
Th. 6.12]. Note that the size of the system has been increased by twice the number of

constraints. Thus, for most applications, the system is still of moderate format.

Remark 1. In general the transformation matrix Q can be found by a Gaussian elimination.
In many applications, however, it is possible to guess a permutation matrix Q that yields the
needed reqular block Go. In this case, it is possible to choose Q as the identity matrix if a
suitable reordering of the variables is assumed and all variables keep their physical meaning.

5.1.2 Application to the inverse dynamics simulation of cranes

The DAESs describing mechanical systems subject to servo constraints (see Subsection
4.1.1) or, more generally, systems subject to both servo and holonomic constraints
(see Subsection 4.1.2), exhibit a semi-explicit structure and are thus very similar to the
system dealt with in the previous subsection. Consequently, a similar procedure can
be applied to achieve an index reduction for this kind of problems.

In this chapter the focus is placed on the minimal extension approach for cranes.
At first the specific redundant (dependent) coordinates are used for the description
of the inverse dynamics problem. In addition, the method can also be applied to the
corresponding crane formulation in terms of minimal coordinates. This will be shown

subsequently in Subsection 5.1.4.
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As has been demonstrated in previous works dealing with the description of crane
models (see, e.g., Fliess et al. [39, Section 4.1] for a planar overhead crane, Blajer and
Kolodziejczyk [31] for a three-dimensional rotary crane, and Heyden and Woernle
[53] for a parallel wire-suspended mechanism (see also Section 6.3)), it is especially
convenient to divide the crane system into two separate subsystems (Subection 4.4.1).
The first subsystem belongs to the motor drives, whereas the second subsystem be-
longs to the load. Correspondingly, the coordinates are distinguished between crane
(actuated, robot) coordinates p € R"~* and load coordinates x € R®. Using these coordi-
nates, the index-5 DAEs, which govern the controlled motion of cranes, can be written

in the form

Ml(p) 0 Pl _ fl(p/i’) B{(p) B GlT(p,x)

o - e s e
0= 2(p.x) (5.10b)

e (5.10¢)

Here, the first row block in Equation (5.10a) corresponds to the actuated subsystem,
whereas the second row block in Equation (5.10a) corresponds to the load. The re-
dundant coordinates

q:
X

P ] (.11)

are subject to the holonomic constraints (5.10b) with associated constraint functions
® < R™ and constraint Jacobian G = [G1 G| € R™". In this connection,

G = 0,®(p,x) € R""" (5.12)
denotes the partial derivative w.r.t. the crane coordinates p, and
G, = 0,®(p,x) € R™* (5.13)

denotes the partial derivative w.r.t. the load coordinates x. The holonomic constraints
link both subsystems at hand and lead to constraint forces with associated Lagrange

multipliers A € R™ in Equation (5.10a).

The servo constraints (5.10c) specify the desired trajectory of the load via the prescri-
bed function v : I — R?. The control inputs u# € R* regulate the control forces acting
on the first subsystem. In this connection, B; € R*"™* denotes the input transforma-

tion matrix. Besides the constraint and control forces, additional forces acting on the
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system are contained in the conjugate force vectors f; € R""" and f, € R”. Similarly,

the mass matrix is split into the submatrices M; € R"~*"~% and M, € R*“.

Next, the index reduction technique outlined in Subsection 5.1.1 will be applied to the
index-5 DAEs (5.10a)—(5.10c) in order to obtain an extended but equivalent system
of index 3. Since the holonomic constraint (5.10b) only causes an index of 3, just the
derivatives of the servo constraints (5.10c) need to be added. The addition of these
two derivatives and the introduction of two dummy variables ¥ := % and x := ¥ lead
to the system

[Mmp) 0 } m _ lfl(r» |, [B <p>] et (,,,xq \ (5.142)
0 M| |x fr(x,x) 0 Gl(p,x)

0=@(p,x) (5.14b)

x=1 (5.14c)

=4 (5.14d)

¥=9 (5.14e)

As it will be shown in Proposition 1, under certain assumptions, this system of equa-

tions has index three.

Proof of index 3

In the following, several assumptions, that are typically satisfied for crane models,
will be stated. In particular, these assumptions hold for the examples investigated
in Subsection 5.3.1 and 5.3.2. It is emphasized that the most general case will not
be analyzed. The analysis is only restricted to the model which ensures that the
underlying DAEs (5.10a)—(5.10c) have index 5. The assumptions serve the purpose to
minimize technical issues in the subsequent analysis. Furthermore, the assumptions
guarantee that the procedure of minimal extension can be applied twice in order to
obtain an equivalent system of index 1. This will be shown in Subsection 5.1.3.

Assumption 1. Consider system (5.10a)—(5.10c) withm < a < n —a. Let M; € R"~%"~¢
be positive definite, and G, € R™* have full rank. This implies that there exists a matrix
P, € R*~™, whose columns span the null space of Go. Thus

G2(p, v)P2(p,v) =0 (5.15)
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Define z € R*~™ by

Z(t,p) =Pi(p,7) (f2(7,7) — M2¥) (5.16)
and introduce h € R® by
h(t,p) = [q’(” ’ 7)] (5.17)
z(t,p)
Let H € R*" given by
H(t,p) := 9ph(t, p) (5.18)

have full rank, and let P € R defined by

P(t,p) == H(t,p)M; " (p)B] (p) (5.19)
be invertible.

Proposition 1. Given Assumption 1, the DAEs (5.14a)—(5.14e) are of index 3.

Proof. The idea of the proof is to reduce the system (5.14a)—(5.14e) to a system that
has the structure of a constrained multibody system for which the index is known to
be 3. At first the variables x, ¥, and ¥ can be eliminated since they are directly given
by v and its derivatives. Then the second part of equation (5.14a), namely

Moy = fy(7,9) — G3 (P, 7)A (5.20)

is used to extract an equation for A. Since G, € R™* is assumed to have full rank,

Equation (5.20) yields

A= (Gap 6P M) Galp,7) (faln4) ~ May) = Altp) (521

In addition, premultiplying Equation (5.20) by P} (p,v) and taking into account Equa-
tion (5.15) give
zZ(t,p) =0 (5.22)

where Z(t, p) has been defined in Equation (5.16). Accordingly, the a equations in
(5.20) yield m equations for the determination of A(t, p) along with a — m equations

z(t,p) = 0, which can be viewed as additional algebraic constraints. To summarize,
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the system is eventually obtained, that is

Mi(p)p = f1(t,p,p) + Bl (p)u (5.23a)
0=h(tp) (5.23b)

where
f1lt.p.p) = f1(p.p) — G1 (p,v)A(t,p) (5.24)

and h(t, p) has been defined in Equation (5.17). The DAEs (5.23a)—(5.23b) consist of
n — a differential equations (5.23a) and m + (a2 — m) = a algebraic equations (5.23b) for
the determination of p € R"™? and u € R*. In particular, the DAEs (5.23a)—(5.23b)
assume the semi-explicit structure known from multibody dynamics. More precisely,
the DAEs (5.23a)—(5.23b) are Hessenberg index-3 (see, e.g., Ascher and Petzold [6,
Sect. 9.1.1]). Provided that Assumption 1 holds, the DAEs (5.23a)—(5.23b) have index
3. To see this, it can be argued along the lines of Subsection 4.1.1. In particular, the
argument hinges on the full rank assumption for the matrix P defined in Equation
(5.19). O

Remark 2. Proposition 1 implies that the original DAEs (5.10a)—(5.10c) have index 5 at
most. This follows from the fact that two differentiation steps were sufficient to obtain DAEs
of index 3.

5.1.3 Reduction to index 1

The procedure of minimal extension can be applied a second time to eventually reach
DAEs of index 1. However, due to the fact that the extended system (5.14a)—(5.14e)
does not exhibit the desired Hessenberg form anymore, the index reduction method
can not be directly applied to the DAEs (5.14a)—(5.14e). Then it is necessary to find
the equations that need to be differentiated.

Here these equations have already been identified in the proof of Proposition 1. Ac-
cordingly, to apply index reduction by minimal extension a second time, the deri-
vatives of the constraints (5.23b) need to be added. In this way, the original system
is extended by 2a algebraic constraints. Correspondingly, 2a additional dummy va-
riables need to be introduced to reach a square system. For this purpose, the first
and second time derivative of the crane coordinates p € R"~* are available . That is,
there are 2(n — a) variables at the disposal. Note that this complies with the relation

a < n—ain Assumption 1. Although the second index reduction can be performed
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for the general case a < n — g, the focus will be placed on the special case a = n —a

in the following part.

The special case of purely algebraic equations

In the sequel the special case 2 = n — a is mainly considered and it applies to the nu-
merical examples dealt with in Subsection 5.3.1 and 5.3.2. In this case the introduction
of dummy derivatives implies that all differential variables in DAEs (5.23a)—(5.23b)
are converted to algebraic ones. Thus, after the second index reduction, no differen-
tial variables are present any more, and the resulting system of equations is purely
algebraic. This indicates that the specific systems under consideration are classified
as differentially flat systems.

Provided that a = n—a, p := p and p := p are introduced as additional dummy
variables. Eventually the system reads

Mi(p)p = Fi(tp.P) + Bl (p)u, (5.25a)
0=nh(t,p) (5.25b)
0=H(t,p)p +th(t,p) (5.25¢)
0=H(t,p)p+n(t,pp) (5.25d)

where the i-th component of the vector-valued function #(t, p, p) is given by

it p, B) = P 3, hilt, p)P + 200t p)p + i, p) (5.26)

fori =1,...,a. Since system (5.25a)—(5.25d) is purely algebraic, it is easy to see that
the DAEs have index 1. In particular, system (5.25a)—(5.25d) constitutes 4a algebraic

equations for the determination of the 44 variables p, p, p and u.

Remark 3. The assumptions made in Assumption 1 guarantee the unique solvability of the
algebraic system (5.25a)—(5.25d).

Remark 4. Alternatively, the above extension procedure can also be applied directly to system
(5.14a)—(5.14e). In this case the new constraints (5.25¢) and (5.25d) need to be appended to
the DAEs (5.14a)— (5.14e). In addition, the dummy variabels p := p and p := p need to
be introduced. Again a purely algebraic system of equations, which is equivalent to system
(5.25a)—(5.25d), is obtained.
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Remark 5. A careful inspection of the present index-1 formulation shows that all unknowns
(redundant coordinates, Lagrange multipliers, and control inputs) can be expressed in terms
of the flat output function «(t) along with the derivatives thereof up to the fourth order.
This corresponds to the fact that the crane models under consideration can be classified as
differentially flat systems (see [26, 33, 82]).

Remark 6. As mentioned before, the second index reduction can also be performed for the case
n —a > a. In this case the introduction of dummy derivatives still leaves differential variables
in the resulting index-1 DAEs. This is indicative for systems with internal dynamics (or
zero dynamics). In this case additional issues may arise such as the stability of the internal
dynamics.

5.1.4 Minimal coordinates

The minimal extension procedure of index reduction can also be applied to crane
formulations in terms of minimal coordinates. Based on the minimally extended
index-3 formulation (5.14a)—(5.14e), the redundant coordinates (5.11) are expressed
in terms of minimal coordinates # € R/ with f = n — m. Thus

_ r| _ |ei(m)
q=¢(u) or M = Lﬂl(#)} (5.27)

Note that by definition the coordinate mapping?® (5.27) satisfies identically the holo-
nomic constraints (5.14b), that is, ® o @(u) = 0 for all # € R/. In Subsection 5.3.1 and
5.3.2, the coordinate mapping (5.27) will be described in detail in the context of the
specific examples.

Using the redundant coordinates (5.11), it is natural to select the derivatives of the
load coordinates x € R? as dummy variables (cf. Subsection 5.1.2). Similarly, differen-
tiating the minimal coordinates twice with respect to time leads to the corresponding
velocities ji € R/ and accelerations ji € Rf, from which appropriate dummy variables
need to be selected. To this end, the minimal coordinates are split into y#; € R/~ and
#, € R” such that

Do, (p1,11,) € R™  is nonsingular. (5.28)

With a slight abuse of notation, ¢(y;, ;) is used to express the mapping (5.27) after
the coordinate partition has been performed. Furthermore, in Equation (5.28) and in

3 Note that ¢ denotes here the mapping rather than the position vector used previously.
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the sequel, Dyg(pq, #,) with « = 1 or & = 2 denotes the partial derivative with respect

to the first or second argument, respectively.

Now the dummy variables or dummy derivatives are chosen as

Hy =iy (5.29a)
i, = i, (5.29b)

Differentiating the mapping (5.27) with respect to time leads to

P = Doy (1, o)ty + Dagpy (1, 1) 1y (5.30a)

P = D1y (1, 1)ty + Doy (1, ) 1y + &1 (11, B 11, 1) (5.30b)
and

x = D19, (py, 1)ty + D2y (1, 112 )15 (5.31a)

X = D1, (py, pp)ity + Dogy (e, po ) iy + 82 (1 oy 11, ) (5.31b)
where

N d . d ~
(M1 iy iy, 1y) = 3t (D1, (11, 12)) g + &t (Dagp, (11, 12)) iy (5.32)

These relationships can now be inserted into the minimally extended index-3 DAEs
(5.14a)—(5.14e). In addition, in order to eliminate the Lagrange multipliers A from
(5.14a), Equation (5.14a) is multiplied from the left by Deg(u)T. A straightforward
calculation yields the minimally extended index-3 formulation in terms of minimal

coordinates given by

M (wjiy = b (p, iy, iy) — M (Wi — Bi (w)u (5.33a)
Mo ()jiy = ha(p, iy, 1iy) — Moo (), — BZT(y)u (5.33b)
D1y (my, 1y ity = 7 — 82 (1, 11, 1) — Doy (y, 1y 1, (5.33¢)
0 = D1y (1, 1)ty + Doy (g, 2 )1y — ¥ (5.33d)

0=gy(u) = (5.33e)
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Here the components are given by

2
Mus(#) = Dagpl (111, 1) Moy Dipgp. (1, 1) (5.34a)
y=1
2
a(p, iy i) = > Dagph (1, 13) (£, = Mog,) (5.34b)
y=1
BL(#) = Dugf (11, 11,)B] (5.34¢)

Note that, to simplify the notation, (p;, it,) has often been replaced by u as an argu-
ment of the functions considered. Similarly, the arguments of functions pertaining to
the underlying formulation in terms of redundant coordinates have been suppressed.
The above procedure coincides with the reduced formulation of the DAEs (Subsection
2.3.2). Besides, the minimal coordinates formulation can also be obtained by applying
Lagrange’s equations of the second kind (see Section 2.2).

System (5.33a)—(5.33e) constitutes a set of f + 3a index-3 DAEs for the determination
of the differential variables p; € Rf~% and the algebraic variables u, p,, fi,, i, € R".

Commutative process

Minimal coordinates can also be employed from the outset, prior to the index re-
duction approach. Indeed, the index reduction by minimal extension may also start

from the formulation in terms of minimal coordinates given by the system (4.1a)—(4.1c).

1. In a first step the coordinate mapping (5.27) is employed to convert the index-
5 formulation in terms of redundant coordinates (5.10a)—(5.10c) to the corre-
sponding index-5 formulation in terms of minimal coordinates (4.1a)—(4.1c).
This conversion is a standard procedure relying on the projection matrix De(p).
Thus, the index-5 DAEs are obtained and read

M ()it = h(p, jr) — B (u)u (5.35a)
0=g,(n) — v (5.35b)

where the reduced mass matrix M () = D’ (u) MDg() assumes the partiti-
oned form

Mi(p) Ma(p)

5.36
Moi(p) Mxn(p) (530

M(u) = [
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Here, the submatrices are given by Equation (5.34a). Similarly, h and B in
Equation (5.35a) can be assembled from Equation (5.34b) and (5.34c), respecti-
vely. Note that comparing the servo constraints (5.35b) with (4.1c) shows that

() = s(p).

2. Now index reduction by minimal extension can be applied to the system of
equations (5.35a)—(5.35b). To this end, partition the minimal coordinates subject
to condition (5.28), differentiate the servo constraints (5.35b) twice with respect
to time, and introduce the dummy variables (5.29a)—(5.29b). It is easy to see

that this procedure yields again the index-3 DAEs (5.33a)—(5.33e).

Obviously, the two steps to arrive at the minimally extended set of index-3 DAEs in
terms of minimal coordinates (5.33a)—(5.33e) do commute. That is, the final result is
independent of the order of the steps (i) minimal extension and (ii) introduction of

minimal coordinates. This is summarized in the commutative diagram in Fig. 5.1.

Index-5 DAEs (5.10)

Minimal coordinates

Redundant coordinates

Index-3 DAEs (5.14)

Minimal extension

Minimal coordinates

Index-5 DAEs (5.35)
Minimal coordinates

Minimal extension

Redundant coordinates

Figure 5.1: Commutative diagram for index reduction and the introduction of minimal coordinates.

Remark 7. An alternative way of reducing the index from 5 to 3 is the projection method
originally proposed by Blajer and Kolodziejczyk [27]. This approach requires the design of a
suitable projection matrix and eventually yields f + a index-3 DAEs. Whereas in the present
approach the servo constraints are enforced on position, velocity and acceleration level (see
(5.33e), (5.33d) and (5.33c)), the projection method enforces the servo constraints only on
position and acceleration level. Correspondingly, the present approach is characterized by

f + 3a index-3 DAEs.
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5.2 Discretization

5.2 Discretization

After the index of the equations of motion has been reduced to three, it is necessary to
discuss the temporal discretization for the numerical simulation. For general DAEs of
index 3, the stability of the used numerical integration method needs special attention.
However, the semi-explicit form allows to apply the backward Euler scheme. Here the
simple structure of the system, which is obtained by the minimal extension procedure,
is beneficial to the following time discretization.

5.2.1 Index-3 formulation in terms of dependent coordinates

The minimally extended index-3 formulation in terms of redundant (dependent) coor-

dinates (5.14a)—(5.14e) can be recast in the form

Mi(p)p = f1(p, ) + Bl (p)u— G{(p,7)A (5.37a)
0= Mai — f,(v,%) + G (p,v)A (5.37b)
0=12=2(p,7) (5.37¢)

The DAEs (5.37a)—(5.37¢) provide n — a differential equations (5.37a) along with a +m
algebraic equations (5.37b) and (5.37c) for the determination of p € R"7%, u € R*,
and A € R™. In particular, the DAEs (5.37a)—(5.37c) are in semi-explicit form, so that
the simple backward Euler discretization is expected to work well (see Ascher and
Petzold [6, Sec. 10.1.1]). Accordingly, the scheme

Ppi1 — Pn = Doy (5.38a)
Ml(pn ) (Un 1—0 )
o ; . (5.38b)
= At (f1(lf’n+1r7’n+l) + By (py1)ttn1 — Gy (anrl/'Y(tﬂ-‘rl))AVH-l)
0= Mo¥(tns1) = fo(¥(tnin), ¥(tns1)) + GZT(pn+1f V(tns1))Ansa (5.38¢)
0==2(p,17(tns1)) (5.38d)

is considered. In a typical step of size At = t,41 — t, approximations (e),4+1 to
() (ty+1) need to be found if the corresponding quantities (o), are given as the re-

sult of the previous step. For the initial step, consistent initial values p, and vg are
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required and they need to satisfy ®(p,, y(fo)) = 0 along with

G1(po, 7(t0))v0 + Ga(p, ¥(t0))7(f0)) = 0 (5.39)

The scheme (5.38a)—(5.38d) provides 2n + m — a algebraic equations for the determi-
nation of Pni1,Ont1 € R, u,11 € R, and A, 11 € R™

5.2.2 Index-3 formulation in terms of minimal coordinates

For the minimally extended index-3 formulation in terms of minimal coordinates

(5.33a)— (5.33e), the backward Euler discretization can also be applied.

The corresponding scheme is given by

ﬂ1n+l o ﬂln = AtV1n+1 (5403)
M (ﬂn+1) (V1n+1 - Vln)

(5.40b)
= At (hl(ﬂnuzvl,,“,ﬁzm) — M), — B1T(P‘n+1)un+1)
Mo (i) (V1,5 — v1,) 5.40
= At (hz(ﬂnﬂf‘/l,,ﬂzﬁznﬂ) - MZZ(”ln+l)ﬁ2n+] - BzT(P’nH)unH) (5409
Dyt t2,,,) (Vi — V1) 5 40
= At ("Y(tn+1) - gz(ﬂn+1/‘/1,,+1/ﬁz,,+1) - /:)2(1”2(7/’1,,“/.1‘2"+1 )ﬁzn“) 40D
0=Digy(py,, /1o, W1, T Doy, o1, It — Y (Eas1) (5.40e)
0=, (1t 1) — ¥(tus1) (5.40f)

The scheme (5.40a)—(5.40f) provides 2(f + a) algebraic equations for the determina-
tion of B, V1, € Rf~% and P‘Znﬂfﬁznﬂfﬁz”“/”nﬂ € R7.

5.3 Numerical examples

Here the crane examples treated in Section 4.4 will be used again to demonstrate
the application of index reduction by minimal extension to the crane formulations in

terms of both redundant (dependent) and minimal coordinates.

112



5.3 Numerical examples

5.3.1 Planar overhead crane

Figure 5.2: The model of the planar overhead crane.

As the first example, the planar overhead crane, that allows traveling and hoisting
motions (see Fig. 5.2), is considered. This servo constraint problem has originally
been formulated in terms of minimal coordinates in [27] and recast in redundant
coordinates in [20, 30, 94] (see also Subsection 4.4.1).

The description of the overhead crane is based on 1 = 4 redundant coordinates, m = 1
holonomic constraint, and a = 2 controls. In particular, the crane coordinates p € R2

and the load coordinates x € R? are given by

p= [Sl and x = [x] (5.41)
) z

As before, the horizontal position of the trolley is given by s, the cable length is [, and
the coordinates of the load are denoted by (x,z). The redundant coordinates need to

satisfy the holonomic constraint

O(p,x) = % ((x — 522 — 12) =0 (5.42)

The holonomic constraint gives rise to the associated constraint Jacobian, which can

be decomposed into

Gi(p, %) = [~(x—s) ] (5.43a)
Ga(p,x) = [x—s z} (5.43b)
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In addition, the underlying index-5 DAEs (5.10a)—(5.10c) employ the mass matrices

M, = lmt (])] and M, = [m O} (5.44)
0 P 0 m

where the mass of the trolley is m;, the moment of inertia of the winch is J, the
winch radius is 7, and the mass of the load is m. Further, the quantities needed in
(5.10a)—(5.10c) are given by

f1_[8}r fz_[—fng]' By =

The servo constraints (5.10c) are used to prescribe the trajectory of the load. Accor-

10
. 1] (5.45)

r

dingly, there is
y= lxd} (5.46)

Z4q

where the coordinates x; and z; are prescribed functions of time. The corresponding

u= [Mzu] (5.47)

control inputs assume the form

where the force acting on the trolley is given by F;, and the torque acting on the winch
is given by My,

Verification of Assumption 1

To verify Assumption 1, at first a matrix

Py(p,7) = [xd_idsl (5.48)

is chosen such that condition (5.15) is satisfied. Then Equation (5.16) yields
z(t, p) = m (zg%a — (x4 — 5)(8 + Za)) (5:49)
Furthermore, the constraint function (5.17) reads

A 3 ((xg =9 +25- 1)

WP = as— (v —5) (g + 22)) (550
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such that Equation (5.18) yields

H(t,p) = Gl_(’””)} = |l l] 551
9pz(t, p) m(g+24) O
Eventually, Equation (5.19) gives
. _ X4—s _Ir
P(t,p) = (g 1‘%) o] ] (5.52)

Note that in practical applications there are | > 0 and g + Z; > 0. The last inequality
holds due to the fact that the cable (which in the present model is assumed to be
inextensible and massless) connecting the load with the winch can only sustain tensile
(and no compressive) forces. This can be easily verified by applying Newton’s second
law of motion. Thus, H(t, p) has full rank, and P(t, p) is invertible. Consequently,

Assumption 1 is satisfied, and Proposition 1 holds.

It should be further noted that the minimally extended index-3 DAEs (5.23a)—(5.23b)
can now be set up for the overhead crane. It only remains to calculate

Filt,p) = 55 (v = 9)8a +24(g + 2)) {_(xil_ 5)1 (5.53)

to complete the description of the DAEs (5.23a)—(5.23b).

Index-1 formulation

As explained in Section 5.1.3, the index-1 formulation (5.25a)—(5.25d) yields a purely
algebraic system of equations that facilitates an analytical solution to the inverse dy-
namics problem under consideration. The additional quantities needed in (5.25¢) and
(5.25d) read

oth(t,p) =

(x4 —8)%g + zaZq ] (5.54)

[m (z'djc'd —x5(g+24) + zdxff) — (xg — s)sz))
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and also
phi(t p) = (1) _01] (5.55a)
Ippha(t,p) = 8 8] (5.55b)
Ot p) = ;’gi) g] (5.55¢)
h(t, p) = _ o +(3§§+(.xd<§)5)xd e ” ] (5.55d)
m (—xdg—l—szxd — 24z +zqx; — (x4 —5)z4 )

In the present case it is possible to get a closed-form analytical solution to system
(5.25a)— (5.25d), which serves as reference solution in the numerical simulation pre-
sented later. Note that the fourth order derivative of the prescribed output appears
in the above index-1 formulation, and that means « = 4. Thus, it proves that the ori-
ginal DAEs (5.10a)—(5.10c) have the index of five. It is identical to the flatness-based
solution given in Subsection 4.4.1.

Minimal coordinates
Next the minimally extended index-3 system (5.33a)—(5.33e) will be considered for

the overhead crane in terms of minimal coordinates. Since the planar overhead crane

has f = n —m = 3 degrees of freedom, minimal coordinates are expressed by

u= |1 (5.56)

These coordinates have been also used in the original description of the present servo
constraint problem in [27]. The coordinate mappings in (5.27) assume the form

s
@, (1) = H (5.57)
and also
s + Isin
@y(1) = (’)} (5.58)
—lcos ¢
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For the minimal extension procedure, the minimal coordinates are split into

m=s] (559)
and
!
By = L{J (5.60)

such that the Jacobian

sing Ilcos qo} 5.61)

DZ?’Z(I”l’IuZ) - |: cos¢ Ising

is guaranteed to be nonsingular. Thus, condition (5.28) is satisfied. Furthermore,

00 1
, DZ?l(ﬂlrﬂz)_[ ] Doy (py,112) = H (5.62)

1
Dy (py,1p) = [O 10

Now, Equation (5.32) gives rise to

0 29l cos ¢ — 1¢? sin
8 = and g, = ({)A . ? (f)z ? (5.63)
0 2¢lsin ¢ + 1§~ cos ¢

Note that the minimal extension procedure implies the equalities | = [ and ¢ = ¢ due
to the introduction of dummy variables [ and ¢. Furthermore, (5.34a)—(5.34c) yields

My (p) = {mt +m} M (p) = {m sing mlcos go} (5.64a)
J
S+m 0
Mo (u) = M () Man(p) =" mlz} (5.64b)
and also
hy(p, 1y, 1) = [mlg?)z sin ¢ — 2m@l cos go} (5.65a)
N [ ml§?* + mg cos ¢
ha(p, iy, = 5.65b
2(# 11, Ha) | mi(gsing +2¢1) (5.65b)
Bl =1 0 (5.65¢)
B (n) = o (5.65d)
2\#) = 00 .
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5 Index reduction by minimal extension for the inverse dynamics simulation

This completes the index-3 DAEs (5.33a)—(5.33e) for the overhead crane in terms of
minimal coordinates. It is obviously seen that the above quantities are identical to
the quantities that have been deduced in the projection method for the minimal coor-
dinates formulation (see Subsection 4.4.1). Instead of differential variables, dummy

variables appear in the minimal coordinates formulation here.

Inverse dynamics simulation

The data for the present numerical example have been taken from [27]. Accordingly,
the prescribed trajectory of load m is defined by

() =0+ (v5 = Y0)e(7) (5.66)
with the initial position
x4(to) 0
Yo Ld(tO):| LMJ a 0 ( )
and the final position
xd(tf) 5m
= = t tr=3 5.68
f [Zd(tf) —1m a f s ( )

The interpolating polynomial ¢(7) takes the form

t
tf—to

(1) = 7077 — 3157 + 54077 — 4207° + 1267° with T = (5.69)

Accordingly, the motion of load m is subjected to a rest-to-rest maneuver on a straight-

line trajectory. Starting at rest, the initial configuration of the system is given by
T T
Gy = [so lo %o zo] = [o 4m 0 —4m (5.70)

The remaining parameters are given by m; = 10kg, m = 100kg, | = 0.1kg-m?,
¢=981m/s?> and r = 0.1 m.

The simulation results for different time step sizes are depicted in Fig. 5.3 and 5.4.
In each diagram, the numerical solution (NUM) is compared to the analytical refe-
rence solution (REF). It can be observed that the numerical solution converges to the
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analytical reference solution when the time step size is reduced. Here, the use of

coordinates between redundant and minimal coordinates is not distinguished since

both formulations yield very similar results. This also applies for the implementation

of the projection method proposed in [27]. The motion of the overhead crane is illus-

trated in Fig. 5.5 with some snapshots at consecutive points in time. It shows that the

snapshots are the same as in Subsection 4.4.1.

al
21 ,
NUM
0 | . . . REF
0 0.5 1 15 2 25 3
T2t i
0
0 0.5 1 15 2 25 3
1000 -
~ 500 ;_/_—/
0 . . . . .
0 0.5 1 15 2 25 3
Time

NUM

-160

05 1 15 2 25 3
Time

Figure 5.3: Planar overhead crane: Comparison between the numerical results (NUM) obtained with
At = 0.1s and the analytical reference solution (REF).
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) -‘\
~,l |
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-160
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Figure 5.4: Planar overhead crane: Comparison between the numerical results (NUM) obtained with
At = 0.01s and the analytical reference solution (REF).
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5 Index reduction by minimal extension for the inverse dynamics simulation

Figure 5.5: Planar overhead crane: Snapshots at specific points in time.

7 A

Figure 5.6: The model of the three-dimensional rotary crane.
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5.3.2 Three-dimensional rotary crane

As the second example depicted in Fig. 5.6, the three-dimensional rotary crane treated
in the forward dynamics simulation in Section 2.4, will be treated in the context of
servo constraint problems again. This servo constraint problem has originally been
dealt with in [31].

This problem can also be viewed as a 3d extension of the planar crane treated in
the previous subsection. The 3d crane makes use of n = 6 redundant (dependent)
coordinates that are subject to m = 1 holonomic constraint. Moreover, a = 3 servo
constraints are used to prescribe the trajectory of the load. The crane coordinates

p € R® and the load coordinates x € R? are given by

p:[q) s I}T and x:[x Y Z}T (5.71)

The position of the load (mass m) is specified by the Cartesian coordinates (x,y,z)
relative to an inertial reference frame. In addition to the location s of the trolley and
the length [ of the hoisting cable, the angle ¢ measures the rotation of the girder bridge
about the Z-axis relative to the X-axis. Accordingly, the motion of the suspension
point is described by polar coordiantes (s, ¢) relative to the origin of the reference
frame. The redundant coordinates need to satisfy the holonomic constraint

1
P(p,x) = 5 ((x —scos @)? + (y —ssin@)? + 2% — lz) =0 (5.72)
The associated constraint Jacobian assumes the partitioned form

Gi(p,x) = {(x sing —ycos¢)s (s—xcos¢@ —ysing) —l} (5.73a)
Ga(p,x) = {(x —scosp) (y—ssing) z} (5.73b)

In the underlying index-5 DAEs (5.10a)—(5.10c), the mass matrices are given by

Jo+ms® 0 0 m 0 0
M, = 0 mg 0], M;=10 m O (5.74)
0 0 L 0 0 m

where the inertia value Jj, is the moment of inertia of the bridge relative to the Z-axis,

the inertia value [, is the moment of inertia of the winch (of radius ry,), and the mass
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5 Index reduction by minimal extension for the inverse dynamics simulation

of the trolley is m;. Further, the quantities needed in (5.10a)—(5.10c) are given by

2mss 0 1 0 0
fi=|—ms¢? fr=1 0 Bi=1{0 1 0 (5.75)
0 —mg 00 ;L

The servo constraints (5.10c) are used to prescribe the trajectory of the load. Accor-
dingly, there is

Y= {xd Ya Zd]T (5.76)

where the coordinates x;, y; and z; are prescribed functions of time. The control
inputs assume the form

w= [Mb F Mw]T (.77)

Here, the variable M, is the torque acting about the Z—axis on the bridge, the variable
F; is the force acting along the girder bridge on the trolley, and the variable M, is the

torque acting on the winch.

Verification of Assumption 1

To verify Assumption 1, at first a matrix

—Z4 0
Py(p,y) = 0 —zy (5.78)
X —SCOSQ Yz —ssing

is chosen such that condition (5.15) is satisfied. Now Equation (5.16) yields

m(zgxg — (xg —scos @) (g + %))

) ) ) (5.79)
m (zq¥jg — (Yq — ssing)(g +24))

z(t,p) =

Furthermore, the constraint function (5.17) reads

- 2 ((xg —scos @)2 + (yq — ssin)? + 22 — 12)
h(t,p) = m (zg%g — (xg3 —scos @) (g +Z4)) (5.80)
m (zgfja — (Ya — ssin@)(g +Z4))
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such that Equation (5.18) yields

] (xgsinp —ygcos @)s (s —xzcos @ —ygsing) —I

= Gi(p, . .
H(t,p) = Lﬂ 12((pt "y; = | —ms(g+2Zy)sine m(g +Z;) cos ¢ 0
pEi P ms(g + Z4) cos ¢ m(g + Z4) sin ¢ 0
(5.81)
Eventually, Equation (5.19) gives
(xgsin@—y cos@)s s—xjcos p—yysing  Iry
. ](b“::?}ts)z . ( +{”I) Jw
Pt,p)=| - =& ifnfitsszmq’ me f";t il 4 0 (5.82)
ms(g+%4) cos @ m(g+z,)sing 0
]b+m[52 my

As in the case of the planar overhead crane, the hoisting cable can only sustain tensile
forces such that g +Z; > 0. Moreover, in practical applications, | > 0. This implies
that H(t, p) has full rank and P(t,p) is invertible. Consequently, Assumption 1 is
satisfied, and Proposition 1 holds.

It should be further noted that the minimally extended index-3 DAEs (5.23a)—(5.23b)
can now be set up for the rotary crane. To complete the description of the DAEs
(5.23a)—(5.23b), it only remains to calculate

2mss ¢
Filtp) = | =musg? | + 5 ((xa = scos @) %q + (ya — ssin@)ia +24(8 + 2a))
0

(5.83)
(x4sin ¢ — y4cos @)s
X |§ —x4C08 ¢ — Yyysin ¢
-1

Index-1 formulation

As explained in Section 5.1.3, the index-1 formulation (5.25a)—(5.25d) of the three-
dimensional rotary crane model yields a purely algebraic system of equations, which
facilitates to provide an analytical solution to the inverse dynamics simulation pro-

blem under consideration.
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5 Index reduction by minimal extension for the inverse dynamics simulation

The additional quantities needed in (5.25c) and (5.25d) read

(x4 —scos@)xg+ (yg — ssin@)ys + 2424
dth(t,p) = |m (de.f) + 248 — (xg — scos @)z} — (g + Zd)) (5.84)

m (z’dyd + zdyff) — (yqg —ssin go)zf’) —ya(g+ zd))

and
[(xgcos ¢ +y sing)s x4sing —yscosp 0
a%,pﬂ (t,p) = | x4sing —y, cos @ 1 0 (5.85a)
L 0 0 -1
[—ms(g+24)cos @ —m(g+24)sing 0
I pha(t,p) = | —m(g+Z4)sing 0 0 (5.85b)
I 0 0 0
[—ms(g+24)sing m(g+%;)cosg O]
st p) = | m(g+24)cosg 0 0 (5.85¢)
I 0 0 0]
_s(xd sing —y cosp) —(%;cos @+ sing) 0]
8%pﬁ(t, p) = —mszéa) sin ¢ mzf;) cos ¢ 0 (5.86a)
®) ©)
msz; " cos ¢ mz;" sin ¢ 0

(xq — scos @)%y + X5+ (yg — ssin @)ijg + Y3 + 23 + 2424
OLh(t, p) = |m <x£l4)zd + szx,(13) + X424 — %a(g + Za) — (xa — scos 40)2,514) - zxdsz))
L™ (y§4)zd + 220y + aZa = Ga(§ +24) — (ya — ssin )z — 2y'dzf,3’)

(5.86b)

As in the case of the planar overhead crane example, it is also possible to get a closed-
form analytical solution from the system of equations (5.25a)—(5.25d). The analytical
solution derived in this case serves as a reference solution, which is compared to the

numerical results in the simulations performed below.

Minimal coordinates

Next the minimally extended index-3 system of equations (5.33a)—(5.33e) will be con-
sidered for the rotary crane in terms of minimal coordinates.
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To this end, the load position relative to the suspension point is expressed by means
of the cable length I and three angles (¢, 81, 6,), which is shown in Fig. 5.6. That is,

X4 — SCOS P
yq—ssing | = In(¢p,01,60,) (5.87)
Zq

Here, the vector n(¢p,61,62) = R(¢,01,62)(—e3) is a unit vector (see Fig. 2.6) that
points from the suspension point to the load and follows from the canonical base

T
vector —e3 = {O 0 —1} by applying successive elementary rotations with angles
(62,601, @) about fixed axes (—ey, —eq, e3) (see also Subsection 2.4.1). This procedure
leads to the associated rotation matrix R(¢, 61, 6,) and eventually yields

sin 0 cos ¢ + cos 6, sin 0] sin ¢
n(¢,01,6,) = | sinf,sin ¢ — cos 6, sin 67 cos @ (5.88)
— cos 0, cos By

Then the coordinate mappings in Equation (5.27) can be written in the form

(s 4+ 1sin6,) cos ¢ + 1 cos B, sin 0y sin ¢
@ (n) = |s| and @,(u) = | (s+1Isinb,)sin g — I cos b sinb; cos ¢ (5.89)
I —1 cos 6, cos 01

such that f = n — m = 5 minimal coordinates

T
H=|p s I 91 92 (590)

are used. The same set of coordinates has also been employed in [28]. For the minimal

extension procedure of index reduction, the minimal coordinates are split into

I
= [q’] and 1, = |6, (5.91)
S
62
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5 Index reduction by minimal extension for the inverse dynamics simulation

In this case there is

Doy (11, 115) =
sin @, cos ¢ + cos by sinfysing  Icosbycosfysing  Icosb,cos @ —Isinb,sinb; sin ¢
sinf, sin ¢ — cos By sinfcosp —Ilcosbrcostcosg Icosb;sin ¢ + Isinb, sin by cos ¢
— cos 0, cos 07 [ cos 6 sin 61 Isin 6, cos 64
(5.92)

This matrix is nonsingular for realistic parameter values (! > 0 and [6,| < %). Accor-

dingly, condition (5.28) is satisfied. The partial derivatives are expressed by

10

Dy (py, 1) = |0 1 (5.93a)
00
[0 0 0

Dogy(py,2) = [0 0 0 (5.93b)
100
[—(s +1sin6,)sin ¢ + [ cos By sin by cos ¢ cos @

Dig, (1, py) = | (s+1sinbp)cos ¢+l cosbrsinf;sing sing (5.93¢)

0 0

Now, Equation (5.32) gives rise to g, = 0. Furthermore, g, (1, jt;, #,) and hy (u, 1y, 1)
can be calculated straightforwardly from Equation (5.32) and (5.34b), respectively. In
this connection, it is to be noted that the minimal extension procedure implies the
equalities [=16, =6, and 6, = 6,. Eventually, (5.34a)—(5.34c) yields

Jp + ms® +m ((s+Isin 62)? + (I cos 6, sin 91)2) ml cos 0, sin 01
Mu(p) = .
ml cos 0, sin 01 m+ m;
(5.94a)
—mscosBrsinf; —ml(s+1sinb)costcosf; mlsinby (I + ssinb,)
M (p) = .
m sin 6, 0 ml cos 0
(5.94b)
Mo (p) = Mi,(n) (5.94¢)
m+ ly 0 0
Mpmp)=1| 0 mPcos’d, 0 (5.94d)
0 0 ml?

126



5.3 Numerical examples

and

Inverse dynamics simulation

(5.95)

In the numerical simulation the data provided in [28] are used. In particular, the in-

ertia parameters are given by m = 100 kg, m; = 10kg, J,, = 0.1kg - m?, r;, = 0.1m,

and J, = 480 kg - m?. The servo constraints are used to prescribe a rest-to-rest maneu-

ver of the load specified by

() =70+ (75— v0)c(t) (5.96)
with the initial position
5m
Yo=1| 0 at tH=0 (5.97)
—5m
and the final position
—2m
Y= | 2m at ty=20s (5.98)
—2m
The reference function c(t) is composed of three phases,
ci(t)  for 0<t<5s
c(t) = cr(t)  for 5s <t <15s (5.99)
crpr(t) for15s <t < 20s
with each phase
1 505 1047 14t 7P
H=——|—+—F—=—=+-— 1
CI( ) T—1T ( 2T07 + T06 2T05 2’[04) (5 Ooa)
o 1 T0
en(t) = — o (t 2) (5.100b)
1 5(t—t)8 10(t—t)7 14(r—1t)° 7(r—1t)>
=1 - - 1
CHI( ) + T—17 ( 21’07 + T()6 21’05 2T04 (5 OOC)
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5 Index reduction by minimal extension for the inverse dynamics simulation

Using the minimal coordinates (5.90), the initial configuration of the rotary crane at
to = 0 is defined by
T
#o=10 5m 5m 0 O (5.101)

The motion of the crane is starting at rest such that ji; = 0.

The simulation results for different time step sizes are depicted in Fig. 5.7 and 5.8. In
each diagram, the numerical solution (NUM) is compared to the analytical reference
solution (REF). It can be observed that the numerical solution converges to the ana-
lytical reference solution when the time step size is reduced. Both formulations in
terms of redundant and minimal coordinates yield practically the same results. Simi-
lar observations can be made for the implementation of the projection method due
to [31]. The motion of the rotary crane is illustrated in Fig. 5.9 with some snapshots

at consecutive points in time.

150
100 -
5
50 - NUM
0 . —~—"REF . . .
0 5 10 15 20 0 5 10 15 20
T T T 10 T T T
5 0 7 P
“ S0 \ / N/ 1
0 . . . 20 = . . . i 1
0 5 10 15 20 0 5 10 15 20
6 T T T -97 T T T —
4 \ =98 \f N
2r -99 - = 1
0 5 10 15 20 0 5 10 15 20
Time Time

Figure 5.7: Rotary crane: Comparison between the numerical results (NUM) obtained with At = 1s
and the analytical reference solution (REF).
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Figure 5.8: Rotary crane: Comparison between the numerical results (NUM) obtained with At = 0.1s

and the analytical reference solution (REF).

Figure 5.9: Rotary crane: Snapshots at specific points in time.
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5.4 Redundant coordinates formulation

In Subsection 5.1.2, the index reduction by minimal extention procedure has been
discussed in the dependent coordinates formulation of cranes. This index reduction
appoach is based on the introduction of new algebraic variables along with the enlar-

gement of the DAEs by appending time derivatives of the constraints.

It has been shown that index reduction by minimal extension can be applied very
efficiently by exploiting the specific structure provided by underactuated mechanical

systems. In this connection, either minimal or redundant coordinates can be used.

It is verified that the index reduction by minimal extension approach is a viable alter-
native to the projection method. It has also been shown that in a first step the minimal
extension approach can be used to lower the index of the DAEs from five to three and
in a second step the index can even be reduced to one.

The next goal of the present work is to extend the applicability of the index reduction
approach to mechanical models of underactuated systems that rely on arbitrarily se-
lected redundant coordinates. Specifically, in contrast to the above sections in this
chapter, the number of holonomic constraints is not limited. Consequently, general
crane formulations such as those developed in [58] can now be included into the
present index reduction approach. Similarly, other rotationless formulations of mul-
tibody dynamics such as natural coordinates or Cosserat-type descriptions in terms
of directors (including rigid bodies and nonlinear beams and shells) typically yield
a large number of holonomic constraints. These formulations are now embraced as
well by the newly developed index reduction method. In the following part the main
focus is placed on the inverse dynamics of a family of crane models that are known

to belong to the class of differentially flat systems.

5.4.1 Inverse dynamics of underactuated mechanical systems

At first a general formulation of mechanical systems subjected to both holonomic and

servo constraints will be introduced. In particular, the equations of motion of the
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5.4 Redundant coordinates formulation

following form

) r
lMlo(” ) A?Ij [Z } = [?2((’; : )) + Blé” =67 (pxn (5.102a)
0= h(p) (5.102b)
0=2=®(p,x) (5.102¢)
x=1 (5.102d)

are considered. The first row block in (5.102a) corresponds to the robot (or input)
subsystem with coordinates p € R"™“, whereas the second row block in (5.102a)

corresponds to the output subsystem with coordinates x € R?. The n redundant

q= [” } (5.103)

X

coordinates

are subject to the holonomic constraints (5.102b) and (5.102c), with associated con-
straint functions h € R™ and ® € R"2. The total number of holonomic constraints is
denoted by m = m; + my. Note that the constraint function h does not depend on the

output variables x. The Jacobian of the holonomic constraints assumes the form

Hi(p) 0 } _ [ oph(p) 0 ] c R™" (5.104)

Glp.x) = Gi(p,x) Ga(p,x) p®(p,x) 0xP(p,x)

The Lagrange multipliers associated to the m holonomic constraints are contained in

the vector

A
= [;] €R”, with A € R™, A, € R™ (5.105)
2

Due to the presence of holonomic constraints, the configuration space of the constrai-

ned mechanical system under consideration is defined by
Q={qeR"[n(p) =0,®(p,x) =0} (5.106)

It is assumed that the constraints are independent. Consequently, the constraint Jaco-
bian G has full row rank and the discrete mechanical system under consideration has
n — m degrees of freedom.

The servo constraints (5.102d) specify the desired trajectory of the load via the pres-
cribed function y: I — R?, where I = [to, f] is the time interval of interest.
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5 Index reduction by minimal extension for the inverse dynamics simulation

Note that the attention is focused on underactuated mechanical systems in which
the number of controls is fewer than the number of degrees of freedom, that is, 2 <

n—m.

The control inputs # € IR? regulate the control forces acting on the robot subsystem.
In this connection, the matrix B; € R*"~? denotes the input transformation matrix.
Besides the constraint and control forces, additional forces acting on the system are
contained in the conjugate force vectors f; € R"~? and f, € R”. Similarly, the mass
matrix is split into the submatrices M; € R"™*"~% and M, € R*“.

Due to the presence of servo constraints, the index of the DAEs (5.102a)—(5.102d)
often exceeds 3. This has been proved in the examples before. For example, the
application of servo constraints to (differentially flat) crane systems typically yields
an index of 5. Consequently, prior to the application of a numerical integrator the
index of the DAEs should be lowered. For that purpose, following the treatment in
the previous sections (see also [2]), the index reduction by minimal extension can be
applied to the DAEs (5.102a)—(5.102d) as well.

At this point it should be emphasized that in the above formulation (5.102a)—(5.102d)
the number of holonomic constraints, m, is just restricted by m < n. This facilitates
the arbitrary selection of redundant coordinates best suited for the description and
numerical simulation of the specific inverse dynamics problem at hand. This is in
contrast to the case treated in the previous sections in this chapter (see also [2]),

where m < a has been assumed.

5.4.2 Index reduction by minimal extension procedure

Guided by the mininal extension procedure [2], the system of DAEs (5.102a)—(5.102d)
is enlarged by appending the first and second time derivative of the servo con-

straints.

To maintain a square system, additional dummy derivatives ¥ := % and ¥ := ¥ are
introduced, and they replace the corresponding derivatives of the outputs x in the

following square system of equations.
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5.4 Redundant coordinates formulation

Accordingly, the minimally extended system reads

M 0 .. N BT HT GT X A

] B ) P 1 ) e
0= h(p) (5.107b)
0=2®(p,x) (5.107¢)
x= (5.107d)
Fo 4 (5.107e)
Fo g (5.107f)

Next it will be shown that - provided certain assumptions apply - the minimally
extended system (5.107a)—(5.107f) has index 3. Typical applications are differentially
flat crane models* where the index equals 5 in the original form. Previously the
special case m < a and M1(p) non-singular has been shown. Here it is allowed that
there are more holonomic constraints than servo constraints.

To guarantee the index-3 property of system of equations (5.107a)—(5.107f), the follo-
wing two assumptions are stated. The first assumption ensures, amongst others, that
the number of holonomic constraints depending on x is bounded by the dimension

of x, namely a.

Assumption 2. The block G1(p, ) of the Jacobian G is of full rank and my < a. Further-
more, the dimensions satisfy

2a+mi<n and a<n—m

The last inequality ensures that the system is underactuated. Note that the two previous
assumptions already imply a < n —m.

Within the proof of Theorem 5.2 below, the equations will be reduced and rewritten
such that the resulting system has the typical multibody structure and thus, is of
index 3. This requires a certain matrix to be invertible, which will be summarized in

the following assumption.

Assumption 3. If Assumption 2 is satisfied, then there exists a matrix P, € R**~"2, whose
columns span the null space of Gy, i.e., Go(p,v)Pa2(p,y) = 0. Then z € R* "2 is defined

4 Some advanced crane examples are given in Chapter 6.
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by the equation
z(p,7) = P2(p, ) (f2(7, %) — M2¥) (5108)

and its derivative with respect to p is denoted by Z1(p,y) = 9pz(p, ). After that, with G,
and Hy from Equation (5.104), it is assumed that the matrix

Mi(p) —B{(p) Hi(p)
Zi(p,7) 0 0
Gi(p,7) 0 0
H,(p) 0 0

€ RrHmyntm (5.109)

is invertible. Note that the matrix M1 (p) itself is not asked to be invertible.

With the two assumptions in hand, the following theorem can be formulated.

Theorem 5.2. Given the Assumptions 2 and 3, the extended system (5.107a)—(5.107f) is a
set of index-3 DAEs.

Proof. As mentioned before, the idea of proof is to reduce the DAEs (5.107a)—(5.107f)
to a system which has a similar structure as a constrained multibody system.

Since the variables x, & and ¥ are directly given by the prescribed trajectory -y and its
derivatives, they may be eliminated from the system equations. Consider the second
part of Equation (5.107a), namely

My = f5(v,%9) — GL(p,7)Az.

Then the full rank property of G, together with m, < a from Assumption 2 implies
that A can be obtained by

A2 = (Ga(p. )G (p, 7)) “Galp, ) (ol ) — M)

With the matrix P, € R*?~"2 from Assumption 3, which spans the null space of G,
z(p,v) € R " can be defined according to Equation (5.108). Note that this defines

an algebraic constraint, that is

z(p,v) =0.
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In summary, the remaining variables need to satisfy the system

Mi(p)p = f1(p, p) + Bl (p)u — H{ (p)M1 (5.110a)
0==z(p,7) (5.110b)
0=®(p,v) (5.110c¢)
0=h(p) (5.110d)

with the term

Filp ) = Fi(p.0) — Gl (p A2 = 1 — 6] (6268) ' Galf, — M)

The resulting system of equations (5.110a)—(5.110d) consists of n — a dynamic equati-
ons and my + my + (a — mp) = a+ my constraints. After replacing the three constraints
by their second derivatives, the system of equations (5.110a)—(5.110d) can be written

in the form

p fi(p. )
5|y | = | 2P )
Al q)Z(p/Pr’Y/;Y/;)./)
ha(p, p)

Therein, M denotes the matrix in (5.109) and z,, ®,, and h; are the functions which
include the remaining terms of the differentiation. Since M is non-singular by As-
sumption 3, a multiplication by its inverse matrix from the left yields an ODE for p
and algebraic equations for u# and A;. Since only two differentiations are necessary,
the system (5.110a)—(5.110d) and thus, also system (5.107a)—(5.107f) need to be (at
most) of index 3. O

Reduction of the number of redundant coordinates

Next the present formulation will be connected to the formulation described in Subection 5.1.2.
To this end, the holonomic constraints (5.107b) are eliminated by reducing the num-

ber of redundant coordinates from n to 7 = n — my. This is possible if a mapping

@ :R"™% — R"~? can be found such that

r=9(p) (5.111)
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5 Index reduction by minimal extension for the inverse dynamics simulation

where 7 € R""? denotes the new redundant coordinates. The mapping (5.111) has to
satisfy the constraints (5.107b) identically for arbitrary 7 € R"~%. Consequently,

h(g(p)) =0 and Hi(p)De(p) =0 (5.112)

for p = @(p). Premultiplying the first row block in Equation (5.107a) by De’ (p) and
taking into account Equation (5.111) and (5.112) yield the size-reduced DAEs

Mip) o | [p] _[n@p], [Bie], _[6E0] s
0 M| | £,(x,%) 0 G. (7, %) ‘
0="%(p,x) (5.113b)
x=v (5.113¢)
T=5 (5.113d)
=7 (5.113e)
where

M, (p) = D¢’ (p)M1(p)De(p) (5.114a)

_ . d .
£.(p5) = D¢ () ( £1(p. 1)~ M) 5, (Do) ) (5.114b)
B (p) = D¢’ (5)B] (p) (5.114¢)
®(p,x) = @(p,x) (5.114d)
G1(p,x) = G1(p,x)De(p) (5.114e)
Go(P, x) = 0, (P, x) (5.114f)

for p = ¢(P). In this way, the number of redundant coordinates is reduced by m; such

that the remaining coordinates are given by the 77-dimensional configuration vector

g= ﬂ (5.115)

X

Note that Equation (5.113b) contains the 1, remaining holonomic constraints with as-
sociated Lagrange multipliers A, € R™2 in Equation (5.113a). The configuration space
of the constrained mechanical system under consideration can now be expressed in
the form

Q= {7 eR"|®(p,x) =0} (5.116)
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5.4 Redundant coordinates formulation

The DAEs (5.113a)—(5.113e) lie at the heart of the work in previous sections of this
chapter. It has been shown that under certain conditions (e.g. 7, < a and M1(p) non-
singular) the minimally extended DAEs (5.113a)—(5.113e) attain an index reduction
by two. In the case of differentially flat crane models, the original DAEs have index 5,
whereas the index-reduced DAEs (5.113a)—(5.113e) (and, correspondingly, the DAEs
(56.107a)—(5.107f) as well) have index 3. It has also been shown that a second appli-
cation of index reduction by minimal extension can achieve a reduction to index-1
DAEs.

5.4.3 Numerical discretization

For the specific inverse dynamics problems, which will be dealt with in the next
subsection, the proposed index reduction approach yields DAEs (5.107a)—(5.107f)
with index 3. Due to the semi-explicit form of the DAEs (5.107a)—(5.107f), the simple
backward Euler discretization can be expected to work well (see Ascher and Petzold
[6, Sec. 10.1.1]). The DAEs (5.107a)—(5.107f) can be recast in the form

M (p)p = f1(p, ) + B (p)u — Hi (p)A1 — G{ (p,7)A2 (5.117a)
0 = Mai — f,(7,%) + G3 (P, 7)A2 (5.117b)
0=2=2(p,7) (5.117¢)
0=nh(p) (5.117d)

The DAEs (5.117a)—(5.117d) provide n — a differential equations (5.117a) along with
a+ m algebraic equations (5.117b) through (5.117d) for the determination of p € R"~¢,
u € R% and A € R™. Application of the backward Euler method yields

Pui1— P = Dtog (5.118a)

Uyt — 0
Ml(’%ﬂ»l)%

= f1(Pn+1/77n+1) + B{(pnﬂ)”n—&-l - HlT(pn-H)/\l,,H - GlT(an,'y(th))Aan

(5.118b)
0= MZ;;’(tn+1) - fz(’)’(thrl)r ;)'(tnjtl)) + Gg(pnﬂl ’Y(tﬂ+1))/\2n+1 (5.118¢)
0= (D(pn+1, Y(tns1)) (5.118d)
0=rh(p,, ) (5.118e)
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5 Index reduction by minimal extension for the inverse dynamics simulation

In a typical time step of size At = t,,11 — t, approximations (e),1 to ()(t,+1) need
to be found if the corresponding quantities (e), are given as the result of the previous
step. For the initial time step, the consistent initial values p, and vg are required and
they have to satisfy ®(p,,y(to)) = 0 and h(p,) = 0 along with

9p®(po, v(to))vo + 0x®(py, ¥(to))¥(t) =0 (5.119a)
dph(py)vo =0 (5.119b)

The scheme (5.118a)—(5.118e) provides 2n + m — a algebraic equations for the deter-
mination of p,_ 1, v,41 € R"7%, 4,11 € R?, and A1 € R™.

5.4.4 Sample application: Three-dimensional rotary crane

(Xl,y1, 21)

]b\y

Figure 5.10: The three-dimensional rotary crane model in terms of 7 = 10 redundant coordinates.
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5.4 Redundant coordinates formulation

The present approach will be demonstrated with the inverse dynamics simulation of
a specific three-dimensional rotary crane. Previously, in Section 5.3.2 the rotary crane
under consideration has been formulated in terms of # = 6 redundant coordinates
(see also [2, 31]) or 5 minimal coordinates (see also [2, 28]). Alternatively, the much
more general framework [58] is now used for the modeling of cranes. For this, n = 10
redundant coordinates are used and they are subject to m = 5 holonomic constraints.

The enlarged set of redundant crane coordinates, as shown in Fig. 5.10, is given by

T
p= {xz Y2 xo Yo L1 L2 Lo} (5.120)

and .
x = [x v z} (5.121)

Similarly, the last equation specifies the load (mass 1) coordinates relative to a Carte-
sian inertial frame. The load is connected to the hoisting winch 2 (Cartesian coordi-
nates x2, 12, zp = 0, actuating torque M, radius r,, moment of inertia J,) via a cable
of length L,. The position of the trolley (Cartesian coordinates xg, yo, zo = 0, mass
mg) on the girder bridge relative to the hoisting winch 2 is given by Ly. The trolley
contains a pulley (radius ry, moment of inertia J,) and is moved along the girder
bridge under the action of a second winch 1 (Cartesian coordinates x1, y1, z1 = 0,
actuating torque Mj, radius r;, moment of inertia J;) whose position on the girder
bridge relative to the hoisting winch 2 is fixed by the parameter « = 1. The distance
between winch 1 and the trolley is given by L;. The holonomic constraints h(p) = 0
are given by
3((x0 — ax2)® + (yo — ay2)® — L)
h(p) = %((xo - f2)22+ (]é() - ]gZ>2 - L%) (5.122)
2+ — 1)
X2Yo — XoY2

Accordingly, m; = 4. Note that the first two constraints link the coordinates L; and
Lo to the position of the trolley and, respectively, winch 1 and winch 2. Moreover,
the third constraint links the parameter r to the position of winch 2, and the fourth
constraint confines the relative motion of the trolley to the longitudinal direction along
the girder bridge. The last holonomic constraint ®(p, x) = 0 is specified by

(p, ) = 5((x = %0+ (y — yo)? + 22— (L2 — Lo)?) (5129

and connects the load coordinates with the robot (or crane) coordinates. Accordingly,
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5 Index reduction by minimal extension for the inverse dynamics simulation

my = 1. The total kinetic energy of the mechanical system under consideration assu-

mes the form

1, 1 .
T—§p~Mlp+§x-M2x

(5.124)

in which the mass matrices corresponding to the robot coordinates and the load coor-

dinates are given by

M 0 0 0
0 M 0 0
0 0 m O
M, =|0 0 0 mp
00 0 0
00 0 0
(0 0 0 0

S

[~

5

+ o o o o

Sh
&N

S

=~

an|

S

o O O O

_Jo
737

RN

5]

0

w

oSO O O O o o o

(5.125)

o o =
o I o
S o o

Here, the mass M is connected to the moment of inertia of the girder bridge relative

to the Z-axis, J,, via M = Z—Z Further quantities needed in system of equations

(5.102a)—(5.102d) are given by

0 0 _%_
0 0 f—%
0 0 O
Bl=|0 0 0|, f
1
a2 0 O
0 & 0
0 0 0
and
a(xg—axy) xo— X
a(yo —1y2) Yo — Y2
axXy — X0 X2 — X0
Hi=| app—y  ¥2— Y%
L 0
0 0
L0 Lo

—X2
_yz

o O O O

O O O O O O O

X0
Y2
_xz

0
0

7

f2

0 My
= 0|, u=|M| (5126
—mg M,
S
0
X — X0 Xp— X
Gl=|y-w|, GI=|w-y
0 -z
Ly — Lo
[Lo — Lo}
(5.127)

Note that there are 2 = 3 control inputs given by the two winch torques M;, My,

along with the torque M}, acting about the Z-axis of the rotary crane.
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5.4 Redundant coordinates formulation

Check of the assumptions

In order to show that the three-dimensional rotary crane with redundant variables
fits into the given framework, it is necessary to check whether Assumptions 2 and 3

are satisfied.

Clearly GI is of full rank if either x # xo, y # yo, or z # 0. Note that this is a
reasonable assumption since otherwise the position of the trolley would be equal to
the position of the load. Furthermore, the dimensions satisfy n = 10, m; =4, mp =1,
and a = 3 such that

l=my<a=3 10=2a+m<n=10, 3=a<n—m=>5 (5.128)

For the second assumption, the matrix P, € R**~"2 is needed, which spans the null
space of Gy. Depending on the case whether x # xg, ¥ # yo, or z # 0, the projection
P; may be given by

Yo—Y z Yo—Y 0 z 0
P, = |x—xg 0 , Pr=|x—1xg z ,or P, = 0 z
0 X — Xp 0 Yo—VY Xo—X Yo—Y
(5.129)
Without loss of generality, it is assumed in the sequel that z # 0 which leads to

. .. X0 — X zy1 + (xo — x)Y
z=PL(p,7) (f2(7. %) — Ma¥) = —mg | —m |1 (xo )73 (5.130)
Yoy 22 + (Yo — )73
and thus,
00 —m(g+s3) 0 000
Zi(p.v) = 9pz(p,7) = 5.131
1P 1) = pz(p. ) [0 0 0 —m(g+43) 0 0 0 (5-131)
Since in this special case the matrices
Bl ()] ad [ 6l HE)] 612

are square, it is sufficient to show the invertibility of the two matrices in order to prove
that the matrix in (5.109) is invertible and thus Assumption 3 is satisfied. A close look
at the matrices then shows that minimal extension reduces the system equations of

the three-dimensional rotary crane to index-3 DAEs if the following conditions are
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5 Index reduction by minimal extension for the inverse dynamics simulation

satisfied:

z,Lo, L1, Ly #0, Lo# Ly, §# —%3 Xoxo+Yyoy2#0, x3+1y5#0 (5.133)

Reduction of the number of redundant coordinates

7 A

Ib

Figure 5.11: The three-dimensional rotary crane model in terms of a reduced set of n = 6 redundant
coordinates.

Next, the above formulation of the rotary crane is linked to the original one (see also
[2, 31]) relying on the reduced set of crane coordinates (Fig. 5.11)

7= [q) s Z}T (5.134)

Here, the angle ¢ measures the rotation of the girder bridge about the Z-axis relative
to the X-axis, the displacement s specifies the position of the trolley on the girder
bridge, and the variable I denotes the length of the hoisting cable connecting the load
with the winch contained in the trolley. In contrast to the previous crane model in Fig.
5.10, the winch contained in the trolley is now assumed to be actuated (torque My).
The previous crane coordinates p in (5.120) can now be expressed in terms of the
reduced set of crane coordinates (5.134) and this gives rise to the mapping p = ¢(p)
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5.4 Redundant coordinates formulation

in (5.111). Accordingly,

X —rcos @] [ rsing 0 0
Y2 —rsin ¢ —rcosp 0 0
X0 5cos @ —ssing cos¢ 0
Yo| = | ssing and Dg(p) = | scosp sing 0 (5.135)
L1 S+ar 0 1 0
Ly s+r+1 0 1 1
| Lo | | s+7 | . O 1 0]

Furthermore, the quantities in (5.114) can now be calculated in a straightforward way

and it leads to

[ Mr? + mgs? 0 0
M, (7) = 0 m+5+% 4 (5.136)
I L e
and i
—2mpss$¢ 0 0 1
e . =T
@D = | mes¢* |, Bi(P)= |5 5 0 (5.137)
L O 0 £ 0

There remains one holonomic constraint (5.113b) which is given by
— 1
P(p,x) = E((x —scos@)> 4 (y —ssing)? +22 —1?) =0 (5.138)
Finally, note that the control inputs
u= | F (5.139)

My

Tw

conjugated to the reduced crane coordinates (5.134) can be obtained from # = ElT (p)u.

In particular,

M M
=142 (5.140a)
1 r2
My = :ﬂMz (5.140b)
2

That is, the two winch torques M; and M, of the original model are linked to the
force F; acting on the trolley and the winch torque My, (cf. Fig. 5.11).
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5 Index reduction by minimal extension for the inverse dynamics simulation

Numerical results

In the numerical simulation, the same data are used as in [2, 28]. In particular, the

inertia parameters are given by m = 100kg, mg = 10kg, J, = 480kg - m?, and M = {—3

with r = 4m. Concerning the moment of inertia corresponding to the winches,

Jo =0.1kg- m? and J; = J, = 0 are chosen. Moreover, r, = 0.1m.

The servo constraints are used to prescribe a rest-to-rest maneuver of the load speci-

fied by
() =70+ (vf —v0)c(t)
with the initial position
5m
Yo = 0 at tp=0
—5m
and the final position
—2m
Y= | 2m at ty=20s

—2m

The reference function c(t) is composed of three phases,

ci(t)  for 0<t<5s
c(t) =< cy(t) for 55s<t<15s
CH[(i’) for 155§t§208

with each phase

cr(t) =

1 5t 10#7 B 146 7P
CT—T1

B 2T07 T06 2T05 21’04

1 T0
t) = t——
cn(t) T—1T ( 2 )
1 5(t—t)8 10(t—1t)7 14(r —t)°
CIH(t) =1+ T—1T7 <_ 2TQ7 + T()6 B 2T05 +

(5.141)

(5.142)

(5.143)

Using the reduced crane coordinates, the initial configuration of the rotary crane at

T
to = 0 is defined by p, = [0 5m Sm} , while the initial load coordinates are

T
given by xp = [Sm 0 -5 m} . The motion of the crane is starting at rest such that

fto = 0.
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5.4 Redundant coordinates formulation

In Fig. 5.12 and 5.13, the numerical solution (NUM) is compared to the analytical
reference solution (REF) obtained in [2]. It can be observed that the numerical solution
converges to the reference solution when the time step size is reduced. In addition
to that, Fig. 5.14 displays the numerical solution for the extended crane coordinates
p. The two alternative formulations in terms of redundant coordinates (p and p,
respectively) yield practically indistinguishable results. The simulated motion of the
rotary crane in terms of extended crane coordinates p is illustrated in Fig. 5.15 with
some snapshots at consecutive points in time. Similarly, snapshots obtained with the

formulation in terms of the reduced crane coordinates p are shown in Fig. 5.16.

Fi(

1
v s oo
M.,(= My)
o ©
s &

0 5 10 15 20 0 5 10 15 20
Time Time

Figure 5.12: Rotary crane: Comparison between the numerical results (NUM) obtained with At = 1s
and the reference solution (REF) for the reduced crane coordinates p(t).
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Figure 5.13: Rotary crane: Comparison between the numerical results (NUM) obtained with At = 0.1s
and the reference solution (REF) for the reduced crane coordinates p(t).
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Figure 5.14: Rotary crane: Numerical results (NUM) for the extended crane coordinates p(t) obtained
with At =0.1s.
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5.4 Redundant coordinates formulation

Figure 5.15: Rotary crane (formulation in terms of the extended crane coordinates p): Snapshots at
specific points in time.

Figure 5.16: Rotary crane (formulation in terms of the reduced crane coordinates p): Snapshots at
specific points in time.
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6 Index reduction by minimal

extension for advanced examples

In this chapter the effective application of index reduction by minimal extension will
be demonstrated by several advanced examples of underactuated systems, for which
the formulation in terms of redundant coordinates is employed within the inverse
dynamics simulation. The numerical examples are the planar US Navy crane, the

three-dimensional US Navy crane and a cable suspension manipulator.

6.1 Planar US Navy crane

The example of US Navy crane in the plane was originally treated as a crane control
problem in [65]. It is a simplified version of the crane used by the US Navy.

6.1.1 Planar US Navy crane with neglected pulley mass

The case, in which the mass of the mobile pulley at point B (see Fig. 6.1) is neglected
(mg = 0), is first considered.

As illustrated in Fig. 6.1, the crane consists of a pole and a system of two cables
actuated by two winches and linked by a mobile pulley. The pole is assumed to make
a fixed angle « with respect to the vertical, and is equipped with two winches, one
located at the origin P, and the other located at point A, at a fixed distance ! from
point P.



6 Index reduction by minimal extension for advanced examples

A7

Figure 6.1: The planar US Navy crane model with neglected pully mass (m9 = 0) in terms of n = 7
redundant coordinates.

The first cable of variable length L,, whose upper part of variable length Ly makes an
angle B with the pole and whose lower part of variable length L, — Ly makes an angle
6 with the vertical, starts from the winch at point P (radius r,, moment of inertia J,,
actuating torque u), passes through the mobile pulley located at point B, and ends
up on the load (mass m) located at point C. The second cable of variable length L,
relates the winch at point A (radius r;, moment of inertia J;, actuating torque u1) to

the pulley at point B. All the cables are assumed to be massless and unstretchable.

Redundant coordinates formulation
The very general framework in [58] can be used to model the cranes. Accordingly,
n = 7 redundant coordinates subjected to m = 3 holonomic constraints are used. The

enlarged set of redundant crane coordinates (see Fig. 6.1) is given by

T
p=1L Ly Lo x zo] ©6.1)
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6.1 Planar US Navy crane

and .
x = [x z} (6.2)

Similarly, the coordinates of the load (mass m) are described in a Cartesian inertial
frame such that the servo constraints can be expressed in a simple manner. The

holonomic constraints h(p) = 0 are given by

h(p) = [ (6.3)

3 ((xo +Isina)? + (zo + I cos ) — L2)
5 (o + 25— L)

Accordingly, my = 2. The first constraint links the coordinate L; to the position
of pulley and the position of winch at point A, and the second constraint links the
coordinate Ly to the position of pulley and the position of winch at point P. Moreover,
the holonomic constraint ®(p, x) = 0 is specified by

((x —x0)* + (z —20)* — (Lo — Lo)?) (6.4)

NI —

D(p,x) =

and relates the load coordinates to the crane (or robot) coordinates. Accordingly,
my = 1. The total kinetic energy of the crane system under consideration can be
written in the form

T:%p-Mlp—i—%fc-sz (6.5)

in which the mass matrices corresponding to the crane coordinates and the load coor-

dinates are given by

%0000
0{—2000 o
0 0 00O
0 0 00 0

Further quantities needed in Equations (5.102a)—(5.102d) are given by

f1=
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6 Index reduction by minimal extension for advanced examples

and by
—IL4 0 0
0 0 Lo— L,
X—Xx
H{ = 0 ~Lo|, Gi=|L—-L|, G = ZZO} (6.8)
Xo+1Isinae  xg Xg— X 0
zo+lcosa  zp zZ0 — Z

To summarize, the crane system has f = 4 degrees of freedom and a = 2 control
inputs given by the two winch torques u#; and u;. Therefore, the US Navy crane
at hand is a typical underactuated mechanical system. The equations of motion are

given in detail in Appendix A.2.

Analytical solution based on differential flatness

The US Navy crane can be classified as differentially flat system. Then by proceeding
along the lines of Lévine et al. [65] one obtains the analytical reference solution based
on differential flatness. This means that all the system variables can be expressed
as functions of the load coordinates (also flat outputs) and a finite number of their

derivatives.

Inverse dynamics simulation

The numerical simulation is performed with the following parameters: m = 100kg,
Ji=J»=01kg- m2r=r=01m a = %, and [ = 10m. The partially specified
motion of the load is rest-to-rest and the same functions are used to generate the
prescribed trajectory as in the example of the planar overhead crane. The initial
position is specified by

T
'yoz[O —15m} at t=0 (6.9)

and the final position is given by
T
= [—5m —12m} at t=3s (6.10)

The initial configuration of the crane is defined by

T
p= [5ﬁm 15m 5m 0 —5m 6.11)
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6.1 Planar US Navy crane

at tp = 0, and the initial load coordinates are given by
T
x = [O —-15 m} (6.12)

As shown in Fig. 6.2, the numerical results of the coordinates are identical to the
analytical reference solution even for the coarse time step size At = 0.1s. This implies
that the numerical results based on redundant coordinates are independent from the
selected time step size due to the property of differential flatness. Fig. 6.3 shows
that the numerical solution of the control inputs converges to the reference solution
when the time step size is reduced, and Fig. 6.4 displays the numerical solution of the
Lagrange multipliers for the time step size At = 0.01s. The simulated motion of the
crane in terms of redundant coordinates is presented in Fig. 6.5 with some snapshots
at consecutive points in time. Note that the cable of variable length L; is horizontal
in the initial configuration since the pulley mass is neglected, otherwise a third cable

is needed to suspend the mobile pulley from its right hand side (see Fig. 6.6).

NUM
———-REF NUM

~ 50 - REF
0 0.5 1 15 2 25 3 4t 4
18 T T T T T
. 16 1 0 0.5 1 1.5 2 25 3
~
14+ 1
-5 T T T T T

0 0.5 1 15 2 25 3 6

= 8r I
~
6 — 8

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time Time

]
N

Figure 6.2: Planar US Navy crane with neglected pulley mass: Comparison between numerical results
(NUM) obtained with At = 0.1s and the analytical reference solution (REF).
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0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time Time

Figure 6.3: Planar US Navy crane with neglected pulley mass: Comparison between numerical results
(NUM) with At = 0.1s (left Fig.) and At = 0.01s (right Fig.) and the analytical reference
solution (REF).
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Figure 6.4: Planar US Navy crane with neglected pulley mass: Numerical results (NUM) of the La-
grange multipliers obtained with At = 0.01s.

154



6.1 Planar US Navy crane

Figure 6.5: Planar US Navy crane with neglected pulley mass: Snapshots of the load mass and the pul-
ley at specific points in time. Besides the trajectory of pulley and the prescribed trajectory
of load mass is shown.

6.1.2 Planar US Navy crane with nonzero pulley mass

Next, we consider the case in which the mass of the mobile pulley at point B (see
Fig. 6.6) is nonzero (mgy > 0).

As illustrated in Fig. 6.6, the crane consists of a pole and a system of three cables
actuated by three winches and linked by a mobile pulley. The pole is assumed to
make a fixed angle a with respect to the vertical, and is equipped with three winches,
one located at the origin S, the second located at point P, at a fixed distance s from
point S, and the third located at point A, at a fixed distance ! from point P.

The vertical cable of variable length Ly, whose upper part of variable length Ly makes
an angle B with the pole and whose lower part of variable length L, — Ly makes an
angle 6 with the vertical, starts from the winch at point P (radius r,, moment of inertia
J2, actuating torque u5), passes through the mobile pulley located at point B, and ends
up on the load (mass m) located at point C.
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6 Index reduction by minimal extension for advanced examples

Z“

Figure 6.6: The planar US Navy crane model with nonzero pully mass (my > 0) in terms of n = 8
redundant coordinates.

The second cable of variable length L; relates the winch at point A (radius r;, moment
of inertia [, actuating torque u1) to the pulley at point B. The suspension cable for the
mobile pulley of variable length L3 starts from the winch at point S (radius 3, moment
of inertia J3, actuating torque u3), makes an angle u with the pole, and ends at the
free pulley at point B. All the cables are assumed to be massless and unstretchable.
Note that the number of control inputs is now increased by one, the new input u3 is
required to hoist the suspension cable of the mobile pulley. Nevertheless, the flatness

property is still conserved, which has been proved in the dissertation of Kiss [57].
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6.1 Planar US Navy crane

Redundant coordinates formulation

According to the general framework in [58], the mathematical model of the planar US
Navy crane with nonzero pulley mass can be formulated in terms of n = 8 redundant
coordinates, which are subject to m = 4 holonomic constraints. The enlarged set of

redundant crane coordinates, as depicted in Fig. 6.6, is expressed by
T
p= [Ll L, Ly Lo xo} (6.13)

and by
x = [x z zor (6.14)

Note that the coordinate zp of the mobile pulley is selected as the third flat output,
since there are three control inputs for the crane system at hand. In addition, other
possible choices for the third flat output could be the cable length variable L, — Ly or
the coordinate xg of the mobile pulley.

The holonomic constraints h(p) = 0 vanish, since the coordinate zj is present in
each constraint equation. Accordingly, m; = 0. Moreover, the holonomic constraints
®(p, x) = 0 are given by

T((xo+ (I +s)sina)? + (zo + (I + ) cosa)? — L2)
3((xo + s sina)? + (zo + s cosa)? — L2)
4 +3 - 1)
3((x = x0)? + (z — 20)* = (L2 — Lo)?)

P(p,x) = (6.15)

The first constraint links the coordinate L to the position of pulley and the position
of winch at point A, the second constraint links the coordinate Ly to the position of
pulley and the position of winch at point P, the third constraint links the coordinate
L3 to the position of pulley and the position of winch at point S, and the fourth
constraint connects the load coordinates with the position of pulley.

Accordingly, my = 4. The total kinetic energy of the crane system assumes the form
1. 1 .
T=5p Mip+ i M (6.16)

in which the mass matrices corresponding to the crane coordinates and the extended
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load coordinates in Equation (6.14) are given by

L o 00 0
6}
03000 m 0 0
2
Mi=|0 0 i_;o ol, My=1[0 m 0 (6.17)
3
0000 0 0 0 mo
10 0 0 0 m
Further quantities needed in Equations (5.102a)—(5.102d) are given by
- -
=00 0
0+ 0 0 0 U
Bi=10 0 L, fi=|0o|, fo=|-mg|, u=|u (6.18)
0 0 0 0 —1mpg us
0 0 0 0
and by
[ —ILy 0 0 0
0 0 0 Lo—L,
GT = 0 0 —Ls 0 (6.19)
0 —Lo 0 L,—Lg
[ x0+ (I+s)sine xg+ssine  xg xp—x
0 0 0 x—xp
Gl = 0 0 0 z—z2 (6.20)

zo+ (I +s)cosa zp+scosa zy zo—z

Analytical solution based on differential flatness

The US Navy crane with nonzero pulley mass has f = 4 degrees of freedom and a = 3
control inputs. As has been mentioned before, this system can also be classified as
a differentially flat system. Accordingly, all the system variables can be expressed as
functions of the flat output x and its derivatives up to a certain order. The derivation
of the analytical solution, which has been applied in the case of my = 0, can also be
used here to provide the reference solution for the case of mg > 0. An alternative
approach to the method given in Lévine et al. [65] is introduced to get the flatness-

based solution. In this connection, the equations of motion for the crane model at

158



6.1 Planar US Navy crane

hand can be given as follows:

1_1 — ML + L2} (6.21a)
"
L2, L2 = Ay(Lo — Ly) + -2 (6.21b)
]—3L3 — Malg+ (6.21¢)
3 r3
0= —AsLo+ As(Ly — Lo) (6.21d)
moXo = Aq(xo + (I 4 8)sina) + Ax(xo + ssina) + Azxg + Ag(xo — x) (6.21e)
moZo = A (zo + (I +8) cosa) + Ap(zo + scosa) + Azzg + Mgz — z) —mpg  (6.21f)
mi = Ag(x — xq) (6.21g)
= Ay(z — z9) —mg (6.21h)
%((xo + (I +s)sina)? + (zo + (I +5) cosa)® — L?) (6.211)
0= %((xo + s sina)? + (z9 + s cosa)? — L3) (6.21j)
1
0= E(xﬁ +2z2 - 13) (6.21K)
1
0= ((x—x0)* + (z = 20)* = (L2 — Lo)?) (6.211)
x=7(f) (6.21m)
z = 7(t) (6.21n)
zo = 73(t) (6.210)

Due to the differential flatness property, the analytical reference solution can be deri-

ved through purely algebraic manipulations from the above equations.

At first, A4 and x can be obtained from the equations (6.21h) and (6.21g) as a funtion
of x and ¥. Then the equations (6.21i), (6.21j), (6.21k), (6.211) and (6.21d) are used to
express the variables L1, Lo, L3, Lp and A, as function of x and ¥. Next A; and A3 can
be expressed as function of x and X from the equations (6.21e) and (6.21f). At last the
equations (6.21a), (6.21b) and (6.21c) are used to express uj, up, and u3 as functions of

x, X, X, x3) and x4,

Obviously the fourth order derivative of the flat output x is present in the expression
of the flatness-based solution. Thus it can be concluded that the differential index of
the DAEs (A.3) is five.
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Inverse dynamics simulation

For the numerical simulation, the following parameters are given: m = 100kg,
mg = 150kg, 1 = J» = J3 = 0.1kg-m?, r = 01m,a = Z,5 = 5m, [ = 10m and
k = 10m. The prescribed trajectory of the load can be obtained in the same way as in

the case of neglected pulley mass. The initial position is given by

_gﬁm
Y= | -225m| at t=0 (6.22)
—125m
and the final position is given by
—1m
yf=|-175m| at t=3s (6.23)
—10.5m

The initial configuration of the crane model is specified by

T
p= {10m 20m 1323m 10m —g\/gm] (6.24)

at top = 0, and the initial load coordinates are given by

T
x= {gﬁm —225m 12.5m} (6.25)

Fig. 6.7 shows that the numerical results of the coordinates coincide with the analytical
reference solution for the coarse time step size At = 0.1s. This implies that the
numerical solution of redundant coordinates is independent from the chosen time
step size due to the property of differential flatness. Fig. 6.8 shows that the numerical
solution of the control inputs converges to the reference solution with the reduced
time step size, and Fig. 6.9 displays the numerical solution of the Lagrange multipliers
for the time step size At = 0.01s. The simulated motion of the crane in terms of
redundant coordinates is presented in Fig. 6.10 with some snapshots at consecutive

points in time.
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Figure 6.7: Planar US Navy crane with nonzero pulley mass: Comparison between the numerical re-
sults (NUM) obtained with At = 0.1s and the analytical reference solution (REF).
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Figure 6.8: Planar US Navy crane with nonzero pulley mass: Comparison between the numerical re-

sults (NUM) obtained with At = 0.1s (left Fig.) and At = 0.01s (right Fig.) and the
analytical reference solution (REF).
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Figure 6.9: Planar US Navy crane with nonzero pulley mass: Numerical results (NUM) of the Lagrange
multipliers obtained with At = 0.01s.

Figure 6.10: Planar US Navy crane with nonzero pulley mass: Snapshots of the load mass and the pul-
ley at specific points in time. Besides the trajectory of pulley and the prescribed trajectory
of load mass is shown.
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6.2 Three-dimensional US Navy crane

Uy

Figure 6.11: The three-dimensional US Navy crane model with nonzero pulley mass.

The planar US Navy crane can be extended to the case in three dimensions as de-
picted in Fig. 6.11. In three dimensions the whole mechanical system of the US Navy
crane can rotate about the Z-axis of the inertial reference frame (see Fig. 6.11). Accor-
dingly, additional variables, such as the actuating torque 14, are needed to describe
the mechanical state of the crane. In view of the mass of the free pulley, two cases are
distinguished again: my = 0 and mg > 0.
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~—1 v uyy

>

Figure 6.12: The three-dimensional US Navy crane model with neglected pulley mass (19 = 0) in terms
of n = 11 redundant coordinates.

6.2.1 Three-dimensional US Navy crane with neglected pulley mass

At first, the case, in which the mass of the free pulley is neglected (my = 0), is
considered. Therefore, the suspension cable at the top position of the pole is slack
and can be omitted.

As shown in Fig. 6.12, the crane consists of a pole and a system of two cables actuated
by two winches and linked by a free pulley. The pole makes a fixed angle & with
the vertical rotation axis (Z-axis) of the crane, and is equipped with two winches,
one located at point P with Cartesian coordinates (x3, 3, z3), and the other located at

point A with Cartesian coordinates (x1, y1, z1) , at a fixed distance ! from point P (or
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6.2 Three-dimensional US Navy crane

at a fixed distance k from the origin O of the inertial reference frame).

The first cable of variable length L3, whose upper part of variable length Ly makes an
angle B with the pole and whose lower part of variable length Lz — Ly makes an angle
6 with the vertical, starts from the winch at point P (radius 73, moment of inertia J3,
actuating torque u3), passes through the free pulley located at point B, and ends up
on the load (mass m) located at point C.

The second cable of variable length L; relates the winch at point A (radius r;, moment
of inertia J;, actuating torque u1) to the pulley at point B with Cartesian coordinates
(x0, Yo, 20)- All the cables are assumed to be massless and unstretchable.

It is obviously seen that the control input u4 is newly required and makes the rotation
of the whole crane system possible. The additional inertial parameter is the rotational
inertia of the platform which is denoted by the mass M. Moreover, r denotes the
perpendicular distance between the winch at point P and the rotation axis of the

crane.

Redundant coordinates formulation

Proceeding along the lines in [58], n = 11 redundant coordinates subjected to m = 4
holonomic constraints are used to model the three-dimensional US Navy crane with
neglected pulley mass. The enlarged set of redundant crane coordinates (see Fig. 6.12)
is given by
T
p= {Ll Ly Lo xo Yo zo X3 ]/3} (6.26)
and by
T
x = [x v z} (6.27)

Note that the position of the winch at point A is fixed relative to the position of the
winch at point P by a parameter 1 = % The holonomic constraints h(p) = 0 are
given by

3 ((x0— B1xs)? + (yo — Brya)? + (20 — P123)? — 1)
h(p) = | 3 ((xo—x3)2+ (yo —y3)* + (20 — 23)* — L) (6.28)
2 (3+y3-17)

Accordingly, m1 = 3. The first constraint links the coordinate L; to the position of

the pulley and the winch at point A, the second constraint links the coordinate Lo
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to the position of the pulley and the winch at point P, and the third constraint links
the parameter r to the position of the winch at point P. Furthermore, the holonomic

constraint ®(p, x) = 0 is specified by

O(p ) = 5 (=50 + -y + (=22~ (L L) (629)

and connects the load coordinates with the crane coordinates. Accordingly, m, = 1.

The total kinetic energy of the crane system under consideration assumes the form
1. o1 .
T = §p~Mlp+§x~M2x (6.30)

in which the mass matrices corresponding to the crane coordinates and the load coor-

dinates are given by

o -
"
JE}
3
0 m
M, = 0 ., M= m (6.31)
0 m
0
M
L M_
Further quantities needed in Equations (5.102a)—(5.102d) are given by
- - - -
= 0 0 0
0oL o0 0
3
0 0 O 0
00 0 0 0 .
B = , =11, =1 0|, wu=|u 6.32
1 00 0 fi 0 fa o u3 (6.32)
00 0 0 g !
0 0 -2 0
T
00 % 0
L r L
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and by
L 0 0] [0 ]
0 0 0 Lo—Ls
0 Ly 0 Ly — Lo x
— — 0 _
i I B R e A= Kl D S VRS (5
Yo—piys  vo—ys O Yo—Yy - %
zZo0 — ﬁ]Z3 Zp — Z3 0 Zo0— 2
—B1(xo — B1x3) x3—x0 X3 0
| —B1(yo = Bry3) Y3 —Yo s . 0]

In summary, the three-dimensional US Navy crane with neglected pulley mass has
f =7 degrees of freedom, a = 3 control inputs and can be classified as differentially
flat system. Nevertheless, the flatness-based solution is much more complicated to be
derived in the three-dimensional case. The equations of motion are given in detail in
Appendix A 4.

Inverse dynamics simulation

The numerical experiment makes use of the following parameters: m = 100kg,

M =64kg, J1 = 5 =01kg-m? r; =r3 =01m a = Z,and [ = k = 5m. The
prescribed trajectory can be calculated in the same way as in the three-dimensional
rotary crane example. The initial position is given by

5\/§m
Yo = 0 at t=0 (6.34)
—15m
and the final position is given by
—2m
Vr= |4/3m| at t=20s (6.35)
—13m

The initial configuration of the crane system is specified by

T
p— g\/gm 20m 25m 5y3m 0 25m 5v3m 0 (6.36)
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at tp = 0, and the initial load coordinates are given by

T
x = [5\/§m 0 —15m (6.37)

The numerical results for the time step size At = 0.01s are displayed in Fig. 6.13,
in which the coordinates, control inputs and the Lagrange multipliers are presented.
The simulated motion of the crane in terms of redundant coordinates is presented in

Fig. 6.14 with some snapshots at consecutive points in time.
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Figure 6.13: Three-dimensional US Navy crane with neglected pulley mass: Numerical results (NUM)
obtained with At = 0.01s.
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Figure 6.14: Three-dimensional US Navy crane with neglected pulley mass: Snapshots of the load mass
and the pulley at specific points in time. Besides the trajectory of pulley and the prescribed
trajectory of load mass is shown.
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Figure 6.15: The three-dimensional US Navy crane model with nonzero pulley mass (1 > 0) in terms
of n = 12 redundant coordinates.

6.2.2 Three-dimensional US Navy crane with nonzero pulley mass

The case, in which the mass of the pulley is nonzero (1 > 0), is here considered. The

suspension cable of variable length L, is now needed to pull the pulley.

As shown in Fig. 6.15, the crane is made up of a pole and a system of three cables
actuated by three winches and linked by a free pulley. The pole makes a fixed angle
« with the vertical rotation axis (Z-axis) of the crane, and is equipped with three
winches, one located at point S with Cartesian coordinates (xp, y2, z2), at a fixed
distance s from point P, the second located at point P with Cartesian coordinates
(x3, y3, z3), at a fixed distance [ from point A, and the third located at point A with
Cartesian coordinates (x1, y1, z1), at a fixed distance k from the origin O of the inertial
reference frame. The first cable of variable length L3, whose upper part of variable
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length Ly makes an angle B with the pole and whose lower part of variable length
Lz — Ly makes an angle 6 with the vertical, starts from the winch at point P (radius
r3, moment of inertia J3, actuating torque u3), passes through the free pulley located
at point B with Cartesian coordinates (xo, Yo, zo), and ends up on the load (mass m)
located at point C. The second cable of variable length L, relates the winch at point
A (radius r1, moment of inertia J;, actuating torque u;) to the pulley at point B. The
third cable of variable length L, connects the winch at point S (radius r;, moment
of inertia J,, actuating torque uy) to the free pulley. All the cables are assumed to
be massless and unstretchable. It is necessary to use the control input u4 to rotate
the whole crane system in three dimensions. The rotational inertia of the platform is
denoted by the mass M. Moreover, r denotes the perpendicular distance between the

winch at point P and the rotation axis of the crane.

Redundant coordinates formulation

Similar to the model in the previous subsection, the three-dimensional US Navy crane
with nonzero pulley mass can be formulated in terms of n = 12 redundant coordina-

tes subjected to m = 5 holonomic constraints.

The enlarged set of redundant crane coordinates (see Fig. 6.15) is given by

T
p= {L1 L2 L3 LO X0 Yo X3 ]/3} (638)

and by
x = {x y z Zo}T (6.39)

The coordinate zy of the free pulley is chosen as the fourth flat output due to the
introduction of the new control input u4. Other possible choices for the fourth flat

output could be the cable variable Lz — Ly, the coordinate x( or yy of the free pulley.

The position of the winch at point A is fixed relative to the position of the winch at
point P by a parameter 31 = %, while the position of the winch at point S is fixed
relative to the position of the winch at point P by a parameter 8, = % The holonomic
constraint h(p) = 0 is given by

hp) = 503+~ 1) (640)
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Accordingly, m; = 1. The above constraint links the parameter r to the position of the

winch at point P.

Furthermore, the holonomic constraints ®(p, x) = 0 are specified by

% ((xo - ‘B1X3)2 + (.1/0 - .Bly3)2 + (Zo — ,5123)2 — L%)
3 ((x0 = B2x3)* + (Yo — Boy3)? + (20 — P223)* — L3)
5 ((x0 — x3)% + (yo — y3)* + (20 — 23)* — L3)

3 ((x = x0)2 + (y — y0)* + (z — 20)* — (L3 — Lo)?)

P(p,x) = (6.41)

The first constraint links the coordinate L; to the position of the pulley and the winch
at point A, the second constraint links the coordinate L, to the position of the pulley
and the winch at point S, the third constraint links the coordinate Ly to the position
of the pulley and the winch at point P, and the last constraint connects the load
coordinates to the position of the pulley. Accordingly, my = 4.

The total kinetic energy of the crane system can be expressed in terms of redundant

coordinates by

1 1
T = EPM1P+§xM2x (6.42)

in which the mass matrices corresponding to the crane coordinates and the extended

load coordinates in Equation (6.39) are given by

%0000000
01—;000000
ooi—zooooo m 0 0 0
M—|0 0000 0 0 0 pp|0™m00 (6.43)
00 00m 0 0 0 0 0 m
00000 m 0 0 0 0 0 mo
00000 0 MO
0000 0 0 0 M|
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Further quantities needed in Equations (5.102a)—(5.102d) are given by

200 0 0
o Lo o 0
2
1
00 2L o 0 0 i
0 0
L P e N ,u= "] e
0 0 0 O 0 —mg us
0 0 0 O 0 —mog Uy
00 0 -4 0
000 % 0
and
(0] [ L 0 0 0 |
0 0 —L, 0 0
0 0 0 0 Lo—Ls
0 0 0 —Ly L3—L
HT = , GT = 0 BT (6.45)
0 Xo — ﬁ1X3 X0 — ‘329@; X — X3 Xp— X
0 Yo — P1ys Yo—P2ys  Yo—Y3 Yo—Y
x3 —B1(xo — B1x3) —Pa(xo—P2x3) x3—x O
ys] | —B1(yo—Prys) —Pa(vo—Pays) ys—yo O |
and
0 0 0 X — Xp
0 0 0 —
Gl = ¥y (6.46)
0 0 0 Z — 29

zo— P1z3 zo—Pozs zo—23 Z0—Z
In summary, the three-dimensional US Navy crane with nonzero pulley mass has
f =7 degrees of freedom, a = 4 control inputs and can be classified as differentially
flat system. However, it is very difficult to derive the flatness-based solution as well.

The equations of motion are given in detail in Appendix A.5.

Inverse dynamics simulation
In the numerical experiment, the following parameters are applied: m = 100kg,

mg =5kg, M = 64kg, Jy = o =3 =01kg-m*, 1 =r, =r;3 =01m, a = %, and
s = I = k = 5m. The prescribed trajectory is obtained in the same way as before. The
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initial position is given by

5v3m
0
= at t=0 6.47
Yo —15m ( )
25m

and the final position is given by

—2m

4\/§m
= at t=20s 6.48
Vr “13m ( )

1.5m
The initial configuration of the crane system is specified by
5 T
p= {E\/gm 6.6144m 20m 25m 5v3m 0 5v3m 0] (6.49)
at tp = 0, and the initial load coordinates are given by

T
x=[5/3m 0 ~15m 25m| (6.50)
The numerical results for the time step size At = 0.1s are displayed in Fig. 6.16,
in which the coordinates, control inputs and the Lagrange multipliers are presented.

The simulated motion of the crane in terms of redundant coordinates is presented in

Fig. 6.17 with some snapshots at consecutive points in time.
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Figure 6.16: Three-dimensional US Navy crane with nonzero pulley mass: Numerical results (NUM)
obtained with At = 0.1s.
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Figure 6.17: Three-dimensional US Navy crane with nonzero pulley mass: Snapshots of the load mass
and the pulley at specific points in time. Besides the trajectory of pulley and the prescribed
trajectory of load mass is shown.
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6.3 Cable suspension manipulator

Cable suspension manipulators support a payload platform in space by several spa-
tially arranged cables with computer-controlled winches. The winches are mounted
on movable trolleys and are responsible for regulating the lengths of the cables. Com-
pared to the crane models considered before, it is possible to control not only the
translational motion of the payload but also its orientation in order to perform, for
example, assembly tasks. Therefore, cable suspension manipulators combine the abi-
lity of cranes to support heavy payloads in a large workspace with the dexterity of

robot manipulators [53].

Cable suspension manipulators can be classified as kinematically/statically determi-
ned or kinematically/statically undetermined. The elaborate description can be found
in [53]. Here a prototype of the three-cable suspension manipulator (CABLEV) is con-
sidered (see Fig. 6.18), which has been developed at the University of Rostock and
treated in nonlinear trajectory tracking control problems (see [53, 52, 70]).

The CABLEV manipulator under consideration is kinematically undetermined be-
cause the platform is (finitely or infinitesimally) movable while the cable lengths are
kept constant. It implies that the payload platform may perform sway motions with
three degrees of freedom. The payload platform is suspended by three cables with
three winches mounted on trolleys that move themselves on a gantry. It is also possi-
ble for the gantry to move on the rails. Applications for such systems are, for example,
precise handling and assembling large and heavy components on construction sites

or on shipyards [53].

Since the kinematically undetermined cable suspension manipulator can be classified
as an underactuated mechanical system, the platform can not be controlled like the
end-effector of a conventional robot by inverse dynamics control. The position of the
platform is not uniquely determined by the robot (crane) coordinates of the trolleys
and winches. In contrast to the flatness-based feedforward and nonlinear feedback
control applied in [53], the new approach, index reduction by minimal extension, is
applied to the dynamic model of the cable suspension manipulator to obtain the feed-
forward control law in the case of vanishing disturbances. In addition, a closed-loop
control strategy with feedback of actual errors in load position and orientation provi-
des stable tracking of required reference load trajectory in presence of pertubations.

178



6.3 Cable suspension manipulator

Figure 6.18: The three-cable suspension manipulator model (CABLEV).

6.3.1 Redundant coordinates

The dynamic model of CABLEV can be formulated in terms of n = 13 redundant
coordinates subjected to m = 3 holonomic constraints. The set of redundant crane
coordinates p € R” (see Fig. 6.18) is given by

p= {p g] (6.51)
P
with gantry coordinates
Py = [Pgo Pg1 Pg2 Pg3}T (6.52)
and cable coordinates
Pc= {Pcl Pe2 P@}T (6.53)
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Here, pgo denotes the position of the gantry on the rails. The displacements of three
trolleys on the movable gantry are described by pg; (i = 1,2,3). Moreover, the coordi-
nates p.; (i = 1,2,3), are the lengths of three cables connecting the platform with the
winches.

The platform coordinates x € R® are expressed by

x= H (6.54)
P
with the position vector
T
r= {rx ry rz} (6.55)
and the angles
T

¢= [401 P2 993} (6.56)

Here, the spatial position and orientation of the platform-fixed frame /C, relative to
the inertial fram Ky are described by three Cartesian coordinates ry, ry, 1z of the origin
of K, and three Bryant angles @1, 2, 3. Note that the origin of the body-fixed frame
Kp coincides with the center of mass of the payload platform.

The spatial velocity of the platform relative to Ky is given by the twist

= H (6.57)
w
with the velocity vector
0= [i’x iy fz} ! (6.58)
and the angular velocities
w = [wx wy wz}T (6.59)

Here, #y, #,, 7 are the translational velocity coordinates of the origin of Xp, and wy,
wy, w, are the coordinates of the angular velocity w in Ky. The relation between the
derivative x and the twist ¢ is then given by

x=H(x)t (6.60a)

rl_ I3 0 v
M B {0 Hw((,;)] L,} (6.60b)
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with the expression

H(x) = {13 0 (6.61)

0 Hu(p)

The kinematic differential equation related to the Bryant angles can be found from

the second matrix equation in (6.60b). It is

¢ = Holp)w (6.62a)
¢1 cos @y singpsingy —cosg@isings]| [wy
. 1 _
P2 = o . 0  cos@jcos@y sin@qcos @y wy (6.62Db)
] 0 —sin ¢ Cos @1 w;

with the expression

cos @y sing@isingy — cos @qsin@;
H,(p) = o5 93 0 cos 901' cos @y  sin ¢qcos ¢ (6.63)
— S @1 COS @1

Furthermore, the inverse kinematic differential equation is
t=H'(x)x (6.64)

The same notation as in [53] is also used here. For the convenience of expressing the

constraint Jacobian matrix, the quasi-coordinates s, that exist only as differentials, can

s=t= H (6.65)

w

be defined. That implies

With 3 suspending cables the system is kinematically undetermined, i.e. the payload
platform can perform sway motions with f = 6 — 3 = 3 degrees of freedom [53]. The
sway coordinates x1, that describe the sway motions, are chosen as

x| = {rx ry g03}T (6.66)

and the remaining coordinates read

Xy = [rz P1 q)z} (6.67)
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Figure 6.19: Schematic of one holonomic constraint.

6.3.2 Constraints

The relations between robot coordinates p and platform coordinates x in Fig. 6.19 can
be described by the holonomic constraints ®(p, x) = 0, that can be written as

1 .
®i(p,x) = 5 (f (px)eilpx) —ph), =123 (6.68)

The cable vectors c¢; are expressed in Ky by

c1 =1+dy — pgoey — pg1 ex (6.69a)
oo =r+d,— (ng + 12) ey — Pg2 €x (6.69b)
c3=r+ds;— (PgO - 12) ey — Pg3 €x (6.69¢)
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6.3 Cable suspension manipulator

Here, I, denotes the distance between the rails (see Fig. 6.18), and the unit vectors ey

and e, of Ky are expressed by e, = {1 0 0} ' and ey = {O 1 O] T. It is assumed that
the platform is an equilateral triangle with the side length /1. The body-fixed vectors
d; point from the origin of K, to each corner point of the equilateral triangle. The
constant coordinates of the body-fixed vectors d; can be expressed in K}, by

T
X, = [%\/511 0 0] (6.70a)
T
X, = [—%\/511 1 o} (6.70b)
T
Xs=[-1v3h —ih 0] (6.700)

d;=R(@)X;, =123 (6.71)

with the transformation (rotation) matrix R(¢) from the body-fixed frame /K, to the

inertial frame K.

K, ej_&(sr Roc(sr)
\\Rtu(ir) e

Initial orientation A . _ ] Final orientation £
Orientation C at time ¢

\_]CC/'
R, (Sre)

Figure 6.20: Rotational motion of the payload platform about the axis of rotation e, with the rotation
angle s, between the initial and final orientation.

183



6 Index reduction by minimal extension for advanced examples

For example, as depicted in Fig. 6.20, the rotation matrix R(¢) from the current

orientation /C; at time ¢ to the inertial frame Ky reads

Roc(sr) = Roa(@,)Rac(er,sr) (6.72)

The rotation matrix Rg, is described by application of three Bryant angles ¢,. The
rotation matrix Ry is described by using Rodrigues formula. In this connection, e,
is the unit vector of the rotation axis between the initial orientation /C, and the final
orientation K,. Moreover, s, is the rotation angle of the frame K. at time f about the
rotation axis e,. Similarly, the rotation matrix Rq. can be described by application of
three Bryant angles ¢,. In order to calculate the constraint Jacobian matrices associ-
ated to the holonomic constraints (6.68), differentiating the cable vectors (6.69) with

respect to time yields
¢i=t+di—peoey—pgiex =123 (6.73)

Similar to the director velocities introduced in Subsection 2.3.2, the first time deriva-
tive of the body-fixed vectors d; can be calculated through the angular velocity of the
platform w [10]. Thus

di=wxd=—dixw=—djw (6.74)

with the skew-symmetric matrix

0 —ds dy,
di=|ds 0 —d (6.75)
—dy, dy, O

Then differentiating the constraint equations (6.68) with respect to time leads to
& =cléi—pipi=0 =123 (6.76)

By inserting Equation (6.73) with (6.74) into (6.76), the constraint equation at the

velocity level can be written as

® = Gs(p, %)

| +6Gylp,x) [?8} —0 6.77)
w P
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with the constraint Jacobian matrix

I —cTdy
Gs= |c] —cld, (6.78)
I —cld;
and
cle, cfex 0 0 pa 0 O
Gp=—|cle, 0 clex 0 0 po O (6.79)
C3T ey 0 0 c3T ex 0 0 pea

The above Equation (6.77) can be rewritten in x, &, p and p by inserting the inverse
kinematic Equation (6.64). That is
v

®=Gs(px)H ' | | +Gyp,x) {’:’8] =0 (6.80)
@

c

Kinematic redundancy and flat outputs

The system of CABLEV is kinematically redundant, since it has seven control inputs
corresponding to the robot coordinates p and six load coordinates of the platform x.
Accordingly, a seventh flat output xy can be defined as the residual of the implicit

control constraint

1
X0 = Po(p) = pg1 — 5(pg2 +pga) ~b =0 (6.81)

It implies that the distance b between the inner trolley and the intersection point P
(between the line through the outer trolleys and the intermediate rail) is constant, for
example, b = V31, (see Fig. 6.18). This constraint makes sure that the shape of the
triangle, whose vertices are the three trolleys, is constrained. To summarize, the flat
outputs are composed of the load coordinates x and the additional output variable
X0,

x
Xf = %o (6.82)

The flat outputs at the velocity level are expressed by the time derivative of quasi-
coordinates $ and X,

e y (6.83)
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Correspondingly, the flat outputs at the acceleration level are defined as

s

8= [ } (6.84)
¥o

These constraint conditions will be used in the index reduction by minimal extension

method in the sequel.

6.3.3 Dynamic equations

The dynamic equations of CABLEV consist of the equations of the drive system inclu-
ding the gantry, trolleys and winches, the equations of the payload platform, and the
holonomic and servo constraint equations. The governing equations assume the form
of differential-algebraic equations with high index, since CABLEV is an underactua-

ted mechanical system with f = 10 degrees of freedom and a = 7 control inputs.

Dynamics of the drive system

The equations of motion of the drive system are formulated in terms of the robot
coordinates p,
M p = fi(p,p) +Blu+Gy(p,x)A (6.85)

with the mass matrix M; € R?7, the force vector f; € R” and the input transforma-
tion vector B; € R”7,

myo 0

0 0 000 0 10000 00

0 m 0 0 0 0 0 0 01000 0 O

0 0 m 0 0 0 O 0 00100 0 0
M1:000m3?00,f1—0,B1:0001000
000 0 0 %o o0 0 00002 00
0.0 0 0 0 20 0 00000 %0

0 0 0 0 00 L 0] 00000 03

L 3- B y
(6.86)

The gantry and trolley mass are denoted by m and m;, and the radius and moment

of inertia of the winch are given by r; and J; (i = 1,2, 3).
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6.3 Cable suspension manipulator

The control forces are given by

Ug T T
U= ul’ Uug = {”gO Ugl Ug ug3} ;o U= {ucl U uc3} (6.87)
c

with the gantry force ug, the trolley forces u,; and the winch torques u; (i = 1,2,3).
T

The Lagrange multipliers are described by A = [/\1 Ay /\3} .

Dynamics of the payload platform

The classical Newton-Euler equations for rigid bodies can be applied to derive the

governing equations of the payload platform. Thus they are expressed by
Myé=f,+Gl(p,x)A (6.88)

with the mass matrix M, € R%®, the generalized applied and gyroscopic forces f,,

o mI3 0 . mg
M, = { 0 I]' fa= [—G)Iw} (6.89)
and the other terms
J. 0 0 (]z*]y)wywz 0
J=10 J, 0|, @w=|(Jr—])w:wx|, §= |0 (6.90)
0 0 J (]y_]x)wxwy

Here, m denotes the mass of the platform, and Jy, Jy, ] are the principal mass mo-
ments of inertia with respect to the center of mass of the equilateral triangle platform
represented in coordinates of Ky, i.e. ] = RJ* RT. The inertia tensor with respect to
the center of the platform is represented in the body-fixed principal axes system by

Jx 0 0
JP=10 7], 0 (6.91)
0 0 I

Next differentiating the inverse kinematic differential Equation (6.64) with respect to
time gives

s=H %+ H '% (6.92)
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Inserting the above Equation (6.92) into (6.88) yields the alternative form of the dyn-

amic equations of the platform

MoH ‘% + MoH ' = f,+ GI(p,x)A (6.93)

6.3.4 Motion planning

During the operation of CABLEYV, the payload platform is required to move from an
initial position and/or orientation to a desired final destination and/or orientation in
its working space along a trajectory. This procedure needs motion planning for the
position of the center of mass of the platform and/or for the spatial orientation of the
rigid platform.

For the translational motion of the payload platform, the trajectory of the center of
mass can be prescribed by using a reference function ¢(f) in a similar manner as
before. This provides a rest-to-rest maneuver, which can be divided into three phases:

the acceleration, steady velocity and deceleration phase.

In Fig. 6.20, for the rotational motion of the payload platform, the Bryant angles ¢
can be employed to describe the motion of rotations between the initial orientation ¢,
and the final orientation ¢,.

In addition, the rotational motion of the payload platform between the initial and final
orientation can be represented by the rotation motion around a space-fixed vector e,
which comes from the origin of the body-fixed frame K, with the angle of rotation
Sre. Thus, the rotation matrix can be calculated by the given axis of rotation e, with
angle of rotation s, via the Rodrigues formula. The conversion between the two
formalisms of rotation is necessary for motion planning of rotation in the numerical

example at hand.

Given ¢, and ¢,, the rotation matrix between the initial and final orientation is calcu-
lated relative to Ky by

Rﬂ@ ((Pgl (Pe) = Rgu ((Pu)ROC ((Pe) (694)

By using Rodrigues formula [52, 70], the rotation matrix Ry (e;, sre) is given by

Ryc(er, Sre) = cos(sre) I3+ sin(sye)er + (1 — cos(sye)) ere,T (6.95)
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The rotation matrix in Equation (6.94) and (6.95) are both equal to each other and the

equality leads to the computation of the angle of rotation s, ! [92]

S7e = arccos (% (Rae(1,1) + Rpe(2,2) + Rpe(3,3) — 1)) (6.96)

and the vector of the rotation axis e, [92]

R40(3,2) — Ree(2,3)
Rue(lr 3) - Rue(3r 1) (6-97)
R (2,1) — R (1,2)

1
ey = —
Sin Sye

where R, (i,j) denotes the element at the i-th row and j-th column of the rotation
matrix Re.(@,,¢,). The rotation matrix Ro, from Ky to the current orientation C can

now be calculated through Equation (6.72).

Then the Bryant angles corresponding to the current orientation C are given by [92]

@1(sr
@(sr) = | a(sr) (6.98)
@3 (Sr
with the components
_ Ro.(3,3)
¢1(sy) = arccos (7(105 ” ) (6.99a)
@2(sy) = arccos (\/1 — R%C(1,3)> (6.99b)
_ Ry (1,1)
@3(sy) = arccos (COS ” ) (6.99¢c)

Similar to the prescribed translational motion, the desired trajectory of rotational mo-

tion of the platform is specified by

Ys(t) = 7150 + (Ysr — ¥s0)c(t) (6.100)

with 750 = 0 at tg and ysf = spe at ty.

1 Note that the angle of rotation s,, belongs to the interval 0 < s,, < 180°.
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The reference function c(t) is composed of three phases,

ci(f)  for 0<t<5s
c(t) = cpp(t) for 5s<t<15s
C[]](t) for 158< fSZOS

with each phase

() = 1 51 107 14t 7P

RO =% 2w " b 21 | 21t
1 T

cr(t) = (t - 50)

T—1T7
1 ([ 5(t—1t)pP N 10(t )7  14(r—1)° N 7(t —t)°
T— 1) 2797 T0° 279° 2704

crr(t) =1+

where 7 =t F—to, and Ty is the acceleration/deceleration time.

The Bryant angles corresponding to s,(t) = ys(t) can be computed through Equation
(6.72) and Equations (6.99a)—(6.99c). This provides the prescribed Bryant angles 'yq,(t)
in Equation (6.103h).

Accordingly, the angular velocity about the space-fixed axis of rotation e, and its
derivatives are given by

w(t) = s (t)er (6.101a)
w(t) = 5 (He, (6.101b)
w(t) = s (He, (6.101c)
w®(t) = s (t)e, (6.101d)

x= lr(ﬂ (6.102)

Then the servo constraints are used to prescribe the desired movement of the payload
platform.
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6.3.5 Application of index reduction by minimal extension

The equations of motion of CABLEV are composed of the kinematic differential Equa-
tion (6.60), the dynamic equations of the drive system (6.85), the dynamic equations
of the platform (6.88), the holonomic constraints (6.68), the control constraint (6.81),
and the control constraints in terms of the load coordinates of the platform (6.102).

The resulting index-5 DAEs assume the form

i=v (6.103a)
@ = Ho(g)w (6.103b)

Mip = fi(p,p) +Biu+Gy(p,x)A (6.103¢)
Myt=f,+GL(p,x)A (6.103d)
®(p,x)=0 (6.103e)
do(p) =0 (6.103f)
r=7,(t) (6.103g)

¢ =7,(t) (6.103h)

The detailed description of equations of motion are given in Appendix A.6. As descri-
bed in Chapter 5, the index reduction by minimal extension approach can be applied
to the DAEs (6.103a)—(6.103h) as well.

The holonomic constraints (6.103e) are enforced by the Lagrange multipliers in Equa-
tion (6.103c), and thus are not responsible for the index 5 structure of the DAEs. Ac-
cordingly, the control constraints (6.103f) and (6.103g) should be differentiated twice
with respect to time. The constraint conditions at the acceleration level are appended
to the original DAEs (6.103a)—(6.103h).

In general, the control constraint (6.103h) should also be differentiated twice with
respect to time. However, instead of the Bryant angles ¢, the angular velocity w € R®
of the rigid platform represented in X has been used to describe the rotational motion
of the platform in Equation (6.103d). Therefore, the motion planning of the trajectory
of the platform provides directly the prescribed angular velocity and acceleration as
function of time.

Then the dummy derivatives are introduced to replace the corresponding derivatives
of the coordinates. After the application of index reduction by minimal extension, the
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index-reduced DAEs are written in the following form

Mip = fi(p.p) +Biu+Gyp,x)A (6.104a)
Myt =f,+GL(p,x)A (6.104b)
P(p,x)=0 (6.104c)
Dy(p) =0 (6.104d)
&by(p) =0 (6.104€)
r=,(t) (6.104f)

¢ = %,,(t) (6.104g)

= 4,(t) (6.104h)
=7, (6.104i)
=Yo(t) (6.104j)

Here, the vector p denotes the second derivative of the robot coordinates p,

T
P = {ﬁgo ﬁgl fng fng ﬁcl ijZ fjc3} (6-105)
where i1 is replaced by the dummy variable pg;. The remaining dummy variables
are then defined by
F=t @=w I= H (6.106)
w
The constraint condition (6.104e) is represented by
~ 1. ,
o 2 (B2 +89) = 0 6107

Note that the acceleration figs or fgs could also be selected as an alternative derivative
which would be replaced by the corresponding dummy variable, for example, pg> or
P¢3- The resulting DAEs (6.104a)—(6.104j) have the index of 3 after the application of
index reduction by minimal extension procedure. Similarly, the index-3 DAEs after
index reduction are given in detail in Appendix A.6.

6.3.6 Differential flatness

The mechanical system under consideration can be classified as a differentially flat

system, since all the state variables as well as control inputs, can be algebraically
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expressed in terms of the flat outputs (¢) and the time derivatives up to a certain
order without integrating any differential equations [39, 53]. In particular, the system

dynamics can be inverted according to

y= fy(')// ’)’/ Tt /7(“71)) (6108&)
w=f, (v 4 7 (6.108b)

where « is a finite natural number by one smaller than the index of DAEs. The
inversion of the system dynamics is realized by the generalized inverse kinematics

and inverse dynamics as in [53].

Generalized inverse kinematics

The robot coordinates p as well as the Lagrange multipliers A can be expressed in
terms of the flat outputs x and the derivatives up to the second order, for example

p=f,(x553) (6.109)

For this, the dynamic equations (6.104b), constraint equations (6.104c) and (6.104d)

constitute a new set of differential-algebraic equations in the following form

M5 = f,(x,35) + Gl (p,x)A (6.110a)
P(p,x)=0 (6.110b)
Py(p) =0 (6.110¢)

For the unknown robot coordinates p € R” and Lagrange multipliers A € R3, New-
ton’s method can be applied to solve the above nonlinear equations (6.110a)—(6.110c).
In this case, the generalized inverse kinematics is performed at the position level.

The robot velocities p are expressed in terms of the flat outputs x and the derivatives
up to the third order, such as

p=f,(x35:s%) (6.111)
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Differentiating Equation (6.110a)—(6.110c) with respect to time yields a set of linear

equations for p and A,

Ly GIlrq [Mas® +Los+Lis
G, 0 /’{ = —G.s (6.112)
GpO 0 - 0
or in compact form )
A(x,p,A) K = fo (x,s,é,s(3), p,A) (6.113)
with the terms
T
Ly= 9(G: M) (6.114a)
ap
— J A T
L= (Mzs — f,— Gl A) H (6.114b)
L, = _Bif.z (6.114c¢)
0s
_ 9% _ 1 1
Cpo=3, = [0 1 -1 -1oo o} (6.114d)

At the velocity level, the robot velocities p and A can thus be obtained by solving
Equation (6.112) via Newton’s method numerically.

Analogously, the robot accelerations p are expressed in terms of the flat outputs x

and the derivatives up to the fourth order,
p=fy(x535s%,s) (6.115)

Differentiating Equation (6.113) with respect to time yields the linear equations for p
and A at the acceleration level,

Ly GZ . M25(4) + L25(3) + (L1 + Lz)s + 15— L3
G, 0 A] = —Gs§ — Gss — Gpp (6.116)
Gy 0 0
or in compact form
A(x,p,A) [ﬂ =f. (x, 5,553 s¥ v A, /\) (6.117)
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with the terms

I, =25 (6.118a)
d5
. 9Ly, L. ALy,
Ly = Lop+ GIA (6.118¢)
. 3Ly, oL,
Ly=""Hs+ 504 (6.118d)
T _9Gl _ 9GI.
G, = —=>Hs+ 5 " (6.118e)
. 3G, 3G,
Gy == LHs+ o (6.118f)

Symbolic manipulations can be used to obtain the sets of equations (6.110), (6.112)
and (6.117).

Inverse dynamics

Since the robot coordinates p, velocities p and accelerations p are already known, the
control inputs u can be algebraically calculated by solving Equation (6.104c),

u=(B))"" (Mip — f1(p. ) — Gp(p.x))) (6.119)

which are expressed in terms of the flat outputs x and their derivatives up to the
fourth order,
u=f,(x5, §,s(3),s(4)) (6.120)

The fourth order derivative in the expression of control inputs u# implies that « = 4
and the index of DAEs is v = &« +1 = 5. The inversion of the system dynamics
of CABLEV naturally provides the feedforward control law by Equation (6.119) and
proves that the mechanical system under consideration is differentially flat.

6.3.7 Numerical example
The numerical simulation makes use of the following parameters: my = 380kg,

my = my = my = 35kg, m = 12.5kg, J; = J = 0.75kg - m?, J3 = 1.5kg - m?,
rn=rp,=r3=01m,and I, = 0.6m.

195



6 Index reduction by minimal extension for advanced examples

Different trajectories of translational or/and rotational motion of the playload plat-

form are then investigated to present the simulation results.

Rotation about space-fixed vertical axis

The prescribed trajectory of rotational motion is generated as explained in Subsection 6.3.4
and there exists no translational motion in this case study. The initial orientation des-
cribed by the Bryant angles is given by

0
p,= (0| at t=0 (6.121)
0
and the final orientation is given by
0
¢, = |0| at t=20s (6.122)
3

The initial configuration of the robot system is specified by

T
p= [1.2m (1+3V3m 1m 1m 3m 3m Bm} (6.123)

at tg = 0, and the initial platform coordinates are given by

x:[r q)}TZ{(l—l—@)m 1.2m 3m 0 0 O}T (6.124)

Note that the position vector r keeps constant during the rotational motion. The
numerical results for the time step size At = 0.01s are presented in Fig. 6.21 and 6.22,
in which the robot coordinates, control inputs and Lagrange multipliers are displayed.
The simulated rotational motion of CABLEV is presented in Fig. 6.23 and 6.24 with

some snapshots at consecutive points in time.
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Figure 6.21: CABLEV: Numerical results of rotational motion with At = 0.01s.
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Figure 6.22: CABLEV: Numerical results of rotational motion with At = 0.01s.
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t=20 t=10 t=0

Figure 6.23: CABLEV: Snapshots of rotational motion at specific points in time.

Figure 6.24: CABLEV: Snapshots of rotational motion at specific points in time.
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Translation along a straight line

The prescribed trajectory of translational motion is generated in the same way as
before and there exists no rotational motion in this case study. The initial position of

the center of mass of platform is given by

(1+ @) m
o= 12m at t=0 (6.125)

3m

and the final position is given by

(3+%)m
Yef = 5m at t=20s (6.126)

Im

The initial configuration of the robot system is specified by
T
p=[12m (1+3V3m 1m 1m 3m 3m 3m] (6.127)
at tg = 0, and the initial platform coordinates are given by
T /3 T
x=[r ¢ =[1+%)m 12m 3m 0 0 0] (6.128)

Note that the orientation ¢ of the platform keeps unchanged during the translational
motion. The numerical results for the time step size At = 0.01s are shown in Fig.
6.25, in which the robot coordinates, control inputs and Lagrange multipliers are
presented. The simulated translational motion of CABLEV is presented in Fig. 6.26

with some snapshots at consecutive points in time.
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Figure 6.25: CABLEV: Numerical results of translational motion with At = 0.01s.
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6.3 Cable suspension manipulator

Figure 6.26: CABLEV: Snapshots of translational motion at specific points in time.
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6 Index reduction by minimal extension for advanced examples

Translation with rotation

A combination of translational and rotational motion of the payload platform is inves-

tigated in this case study. The initial position and orientation of the payload platform

are given by
(1+ ‘/Tg)m 0
Yo = 1.2m ¢, = |0 at t=0
0

3m

and the final position and orientation are given by

GB+L)m /6
Yef = 5m ¢,= |m/4| at t=20s
1m /3

The initial configuration of the robot system is specified by

T
p= [1.2m (1+2V3)m 1m 1m 3m 3m Sm}

at tp = 0, and the initial load coordinates are given by

x:[r (p}T:{(l—F@)m 1.2m 3m 0 0 O}T

(6.129)

(6.130)

(6.131)

(6.132)

The numerical results for the time step size At = 0.01s are shown in Fig. 6.27 and

6.28, in which the robot coordinates, control inputs and Lagrange multipliers are
presented. The simulated motion of CABLEV is presented in Fig. 6.29 and 6.30 with

some snapshots at consecutive points in time.
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6.3 Cable suspension manipulator
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Figure 6.27: CABLEV: Numerical results obtained with At = 0.01s.

Figure 6.28: CABLEV: Numerical results obtained with At = 0.01s.
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6 Index reduction by minimal extension for advanced examples

t=20

Figure 6.29: CABLEV: Snapshots of CABLEV at specific points in time.

Figure 6.30: CABLEV: Snapshots of CABLEV at specific points in time.
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7 Summary and outlook

7.1 Summary

This thesis deals with the inverse dynamics simulation of underactuated multibody
systems. In particular, the focus is laid on differentially flat underactuated mechanical
systems. The formulation of underactuated systems relies on the choice of coordina-
tes. In the present thesis, minimal coordinates, dependent coordinates and redundant
coordinates are used to formulate either the feedforward dynamics problems or the
inverse dynamics problems for underactuated systems. In addition, the use of servo
constraints provides an approach to the formulation of the inverse dynamics analysis.
In this case numerical methods are needed to solve such servo constraint problems of
underactuated systems, since the governing equations of motion of the system are in

the form of DAEs with high index, for example, index five.

The projection method is investigated in depth for diverse formulations within two
numerical examples. The numerical simulation results agree well with the reference
analytical solution derived by using the property of differential flatness. The pro-
jection method requires the computation of projection matrices, which are constant
Boolean-type in the case of using redundant coordinates and are time-dependent in
the case of using minimal coordinates. The projection matrices for the redundant
coordinates formulation are much simpler than those for the minimal coordinates
formulation, since the use of redundant coordinats or dependent coordinates leads
to some simplifications in the formulation of the problem. In addition, the redun-
dant coordinates formulation is characterized by a constant mass matrix, whereas the
minimal coordinates formulation leads to a complex configuration-dependent mass
matrix. Special attention is thus paid to the formulation in terms of redundant coordi-
nates and dependent coordinates. The projection method can yield an index reduction
from five to three and can not be applied to systems with a singular mass matrix, such

as the examples of US Navy cranes described in Chapter 6.



7 Summary and outlook

A newly proposed index reduction method, called index reduction by minimal exten-
sion, is developed in this work. It can be applied to solve servo constraint problems
of underactuated mechanical systems. In the applications index reduction by mini-
mal extension is also performed for different formulations of representative numerical
examples, such as for the redundant coordinates formulation and the minimal coordi-
nates formulation. The numerical simulation results are identical to the flatness-based
solution in the case of very small time step size. The new approach can reduce the
index from five to three and even to one if it is applied twice to the problem at hand.
The resulting index-1 DAEs are purely algebraic and this shows that the underactua-
ted system under consideration is differentially flat. Moreover, in the new approach it
is not necessary to compute projection matrices. In addition, index reduction by mi-
nimal extension is applied to some advanced examples, such as the US Navy crane,
for which the mass matrix is singular in the redundant coordinates formulation, and
the undetermined cable suspension manipulator, for which the payload is modeled

as a rigid body and the motion is thus much more complicated.

7.2 Outlook

In this thesis the backward Euler method is used as a time stepping scheme for the
direct discretization of the resulting DAEs, whose index has been reduced by applying
appropriate index reduction methods. Since the backward Euler method is only first
order accurate, the design of energy consistent second order or higher order accurate
schemes needs to be further considered and investigated in future work. For example,
the dynamic behaviour of underactuated servo constraint problems is very sensitive
to the application of the mid-point-type rule. Oscillations in the numerical results are
often observed for very small time step size and this indicates that the integration
scheme is not numerically stable.

The study in this work focuses on differentially flat underactuated multibody systems,
which have no internal dynamics in the system. There exist also nonflat underactua-
ted multibody systems such as manipulators with both passive and active joints [32]
and the Blajer” car example [33, 82]. In the case of nonflat underactuated systems, the
stability of the internal dynamics [82, 81, 26, 33] ensures the controllability of the sy-
stem and thus is of paramount importance. The stability can be ensured through the
design of the system’s properties like the inertial value or the position of the center

of percussion chosen as the control output.
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7.2 Outlook

The theory of a Cosserat point has been applied to the rotationless formulation of
both rigid and flexible multibody dynamics. In the case of rigid multibody dynamics,
the rotationless formulation yields a set of index-3 DAEs for constrained mechanical
systems. Thus, the reduction of index from three to one may be investigated by ap-
plication of index reduction by minimal extension in the context of the Cosserat point
so that computation time can be saved further. In the case of flexible multibody dyn-
amics, there exist also many underactuated multibody systems such as manipulators
with flexible members. The solution of trajectory tracking control problems of such

systems needs to be developed by applying index reduction by minimal extension.
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A Detailed explanations

A.1 Gateaux derivative

Using Gateaux derivative, Equation (3.11) yields

H

N— N—
8684 = 5Ld B Gir) Z

i

qn + Séqn/ anrl + €5qn+1>

;-\O

(A1)

z:

[DlLd(qn/ qn+l) : 5‘7;1 + D2Ld(qnf qn+1) : (Sqn—o—l]
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A Detailed explanations

A.2 Planar US Navy crane with neglected mass

The equations of motion are given in detail as follows:

210

0=
0=
0_

0:

/\(LO*LZ)+_

—A2Lo + A3(L2 — Lo)
A (xg+ Isina) + Arxg + Az(xp — x)
M (zo +1cosa) + Apzg + Az(zg — 2)

(
= As(x — xo) (A2)
= A3(z —z0) —mg
%((xo +1sina)® + (20 +1 cosa)® — L7)
%(x% +z5— L)
3= 50 + (2= 20— (L2~ L))
71(t)
Y2(t)



A.3 Planar US Navy crane with nonzero mass

A.3 Planar US Navy crane with nonzero mass

The equations of motion are given in detail as follows:

. u
%Ll = — ML+ —
7‘1 r
25 Uup
]—ZLz = Mg(Lo — Lp) +—=
r5 oy
. u
]—;Ly, = —A3l3+ =3
7’3 r3

0= —AzLo + Ag(Lo — Lo)
moXo = A (xo+ (I +s)sina) + Ax(xg + ssina) + Azxg + Ag(xg — x)
moZo = M (zo + (I +5) cosa) + Ay(zo + scosa) + Azzg + Ag(zo — 2) — mpg

mi = Ag(x — xp)
= Ag(z — z9) —mg (A3)
%((xo + (I4s)sina)® + (zo + (I +5) cosa)? — L?)
0= %((xo + s sina)? + (zo +s cosa)? — L3)
0= %(x% + 25— L3)
0= %((X —x0)°+ (z—20)* = (L2 — Lo)?)
x=m(t)
z="(t)
zo = 73(t)
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A Detailed explanations

A.4 3D US Navy crane with neglected mass

The equations of motion are given in detail as follows:

]—§ 3—A4(L0*L3)+u—j

0= —AaLo + Ag(L3 — Lo)

0 = A1(x0 — B1x3) + A2(x0 — x3) + Ag(x0 — x)
0 =A1(yo — Brys) + A2(yo — ¥3) + Aalyo — ¥)
0 = A (zo — B1z3) + Aa(zo — z3) + Aa(zo — 2)

Miz = 7/\1,31 (xo — ,B1X3) + /\2(X3 — XO) + Azxz — u;;%

.. X
Mijz = —MPB1(yo — P1ys) + A2(y3 — yo) + Asys + u47§

= Ag(x — x0)
myj = As(y — yo)
mzZ = Ay(z —zo) — mg
%((xo — B1x3)* + (vo — B1y3)* + (z0 — P123)* — L)
0= 3((x0 — ) + (o — y5)2 + (20 — 23)2 — I3)
0= 33+~ 7)
0= S((x =% + (y ~ y0)* + (2 — 2)* (L5 — Lo)?)
x=m(t)
y="2(t)
z=7s(t)
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A.5 3D US Navy crane with nonzero mass

A.5 3D US Navy crane with nonzero mass

The equations of motion are given in detail as follows:

1

. u
]_;Ll = —-ML+ -1
T "

. u
LS W .
r3 )

JEP

3

u
Sls=As(Lo—Ls) + —
T r3

0= —A4Lg + As(L3 — Lo)

moXg = Aa(xo — B1x3) + A3(x0 — B2x3) + Ag(x0 — x3) + As(x0 — x)
moiio = A2(Yo — P1ys) + As(yo — P2y3) + Aa(vo — y3) + As(yo — y)
moZo = A2(z0 — B123) + A3(20 — B223) + Aa(20 — 2z3) + As(20 — 2) — mog
M3 = Ayx3 — A2B1(x0 — B1x3) — A3Ba(xo — Baxz) — Ag(xo — x3) — u4%

(
.. X
Mijz = Ayz — A2B1(Yo — B1ya) — AsB2(yo — Bays) — Aa(yo — y3) + M4r—§’

m

m

% = As(x — x0) (A5)
¥ =As(y —yo)

mz = As(z —zg) — mg

1
0=3(3+3-1)

0= %((XO - :le3)2 + (Yo — ,Bly3)2 + (z0 — ‘3123)2 . L%)

0= 1((950 — B2x3)* + (vo — Baya)® + (20 — P2z3)* — L3)

2
0= 5((x0 = x5+ (g0 — y3)? o+ (20 — 25 — 1)
0= 3((x= %0 + (y — yo) + (= — )* ~ (Ls ~ Lo)?)
x=m(t)
y="7(t)
z = 7s(t)
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A Detailed explanations

A.6 Cable suspension manipulator

The index-5 DAEs of CABLEV model assume the form:

Ty Ux
Tyl = | vy
7z | Uy
g‘ol_ 1 Ccos @y sing@isingy —cos@isingy| |wy
pr| = 0 COS (1 COS sin @1 cos w
2| = os ga 108 $2 $1.€08 §2 y
@3 0 —sin ¢ cos @1 Wy
Peo 1 Ug0 —clTey —czTey —cgey
P 1 Ugl —clTex 0 0
Pe2 1 Ugr 0 —cgex 0
M || = 1 g3 0 0 —cles
. 1
Pa i Uci —Pa 0 0
. 1
Pe2 7 U 0 —Pc2 0
| Pe3 ] % Uc3 L 0 0 —Pe3 |
Oy 0
v 0
N M
[ mg c1 (5] Cc3
M| | = < T < T < T A2
Wy _(]x _]y)wywz —di ¢p —dy ¢o —d3 c3 A
. 3
Wy —(Jx — J2)wzwx
| @z | =y = Jx)wxwy |

1
0==(c1-c1—ply)

2

1
0=-(c2-c2—pl)

2

1
0==(c3-c3—pZ)

2

1
0=pg — E(PgZ + pgS) - \/glz

Tx = Tx
Ty =7y
Tz =7z
P1="
@2 =72
¢3 =173
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A.6 Cable suspension manipulator

After application of index reduction by minimal extension, the index-3 DAEs of CA-

BLEV model assume the form

M,

M;

PN _ T

Ps0 1
Pa 1
fng 1
P3| = 1
Pe1 %
P %
LPe3 ] i
BT . -
7y 0
rz| mg
| | U= Jy)wyw:
Zy —(Jx = J2)wzwy
1Z] | Uy = Jo)wswy |
0= %(Cl o1 - p7)
0= %(Cz 02— pR)
0= %(03 -3 — Pgs)
0=pa— %(sz +pe3) — V31,
0= ?gl - %(ﬁgZ + Pg3)
Tx = Yx
Ty ="y
rz =7z
Tx = Yx
Ty ="y
72 =%z
P1=m
P2 =72
¢3 =173
w(t) = es5.(t)
Z = e,5,(t)

T

Ugp —cie;, —cyey
g1 —cley 0
Ug 0 —cTley
ugz | + 0 0
Ucl —Pc1 0
Ucp 0 —Pe2

LUc3 L 0 0
€1 (&) c3

T
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0
0
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A
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