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Abstra
t

The present thesis deals with the inverse dynamics simulation of underactuated mul-

tibody systems. In particular, the study focuses on solving trajectory tracking control

problems of differentially flat underactuated systems. The use of servo constraints

provides an approach to formulate trajectory tracking control problems of unde-

racutated systems, which are also called underactuated servo constraint problems.

The formulation of underactuated servo constraint problems makes use of minimal

coordinates and dependent (or redundant) coordinates to yield a set of differential-

algebraic equations (DAEs) with high index. The transition between the redundant

coordinates formulation and the minimal coordinates formulation is achieved by ap-

plying the discrete null space method. Since the numerical solution to the DAEs with

high index is a challenging task and the flatness-based analytical solution is not fea-

sible for complicated underactuated systems, it is necessary to apply index reduction

methods to reduce the index before the direct time discretization is performed. A

specific projection method is applied to reduce the index from five to three and it re-

quires the computation of projection matrices, which are constant Boolean-type in the

redundant coordinates formulation and are time-dependent in the minimal coordina-

tes formulation. A newly proposed index reduction method called index reduction

by minimal extension is developed in this thesis and applied to servo constraint pro-

blems of underactuated systems. Representative numerical examples are used to

demonstrate the application of both index reduction methods. Special attention is

placed on the new index reduction by minimal extension method through several ad-

vanced examples, which can not be solved by application of the projection method.

Keywords: Inverse dynamics, differential-algeraic equations, trajectory tracking, servo

constraints, differential flatness, index reduction, projection method, minimal exten-

sion, multibody dynamics, underactuated mechanical systems, feedforward control,

cranes, manipulators
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Kurzfassung

In der vorliegenden Dissertation wird die Simulation der inversen Dynamik unter-

aktuierter Mehrkörpersysteme behandelt. Insbesondere werden Steuerungsprobleme

der Bahnverfolgung für differentiell flache unteraktuierte Systeme untersucht. Mit

Hilfe von Servobindungen werden die Steuerungsprobleme der Bahnverfolgung für

unteraktuierte Systeme formuliert. Die betrachteten Probleme werden unteraktuierte

Servobindungsprobleme genannt. Minimalkoordinaten, abhängige oder redundante

Koordinaten werden zur Formulierung unteraktuierter Servobindungsprobleme ver-

wendet. Die Formulierung ergibt differential-algebraische Gleichungen mit hohem

Index. Die diskrete Nullraum-Methode ermöglicht den Übergang von redundanten

Koordinaten zu Minimalkoordinaten. Da die numerische Lösung der differential-

algebraischen Gleichungen mit hohem Index anspruchsvoll ist und die flachheitsba-

sierte analytische Lösung für komplizierte unteraktuierte Systeme nicht praktikabel

ist, werden Methoden zur Indexreduktion vor der direkten Zeitdiskretisierung einge-

setzt. Eine spezielle Projektionsmethode wird angewendet, um den Index von fünf

auf drei zu reduzieren. Die Methode erfordert die Berechnung von Projektionsmatri-

zen, die in der redundanten Koordinaten Formulierung konstant und in der Minimal-

koordinaten Formulierung zeitabhängig sind. Eine neue Methode, Indexreduktion

durch minimale Erweiterung genannt, wird in dieser Dissertation entwickelt und für

Servobindungsprobleme unteraktuierter Systeme verwendet. Die beiden Methoden

werden auf repräsentative numerische Beispiele angewandt. Insbesondere wird schon

gezeigt, dass sich die neu entwickelte Indexreduktionsmethode zur Lösung invol-

vierter Probleme eignet, die bislang mit der Projektionsmethode nicht gelöst werden

konnten.

S
hlüsselwörter: Inverse Dynamik, Indexreduktion, Bahnverfolgung, Servobindun-

gen, Mehrkörperdynamik, unteraktuierte Systeme, differential-algebraische Gleichun-

gen, Differentielle Flachheit, Projektionsmethode, minimale Erweiterung, Vorsteue-

rung, Krane, Manipulatoren

iii





A
knowledgements

This thesis was carried out during my research work from 2010 to 2013 at the Chair

of Computational Mechanics at the University of Siegen, and from 2013 to 2016 at the

Institute of Mechanics (IFM) at Karlsruhe Institute of Technology (KIT). I would like

to thank those people who gave me support and help during this important period

in my life.

First and foremost, I would like to express my sincere appreciation and deepest grati-

tude to my supervisor, Prof. Dr.-Ing. habil. Peter Betsch, for offering me the opportu-

nity to start my career in the academic field and for bringing me into the interesting

field of computational mechanics. I am also grateful for his constant encourage-

ment and support and invaluable guidance and suggestions in completing this thesis.

Throughout my research study, he has always been patient and encouraging in gui-

ding me to the right direction and solving various problems. I also appreciate all his

contributions of time, ideas, and suggestions to this thesis. His encouragement has

been a great source of my confidence and motivation. I also would like to thank Prof.

Dr.-Ing. habil. Robert Seifried, for his effort being my second supervisor and for his

interest in my thesis. I also would like to thank Prof. Dr.-Ing. habil. Thomas Seelig

for being my examiner.

I would like to thank Prof. Dr.-Ing. habil. Christian Hesch for his help in computer-

related technical problems. Particularly, I appreciate Dr.-Ing. Marlon Franke for his

patient answers of my questions and kindly help in the daily life. Many thanks

go to all the colleagues at IFM for providing such a wonderful environment for my

research.

Most importantly, I would like to give my special thanks to my wife Lihui for her

continuous supporting and encouraging. Her love is the driving force of all my in-

spiration and energy.

Karlsruhe, December 2016 Yinping Yang

v





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Glossary of notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modeling of rigid multibody dynami
s . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Hamilton’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Lagrange’s equations of the second kind . . . . . . . . . . . . . . 8

2.1.2 Lagrange’s equations of the first kind . . . . . . . . . . . . . . . . 10

2.2 Generalized coordinates formulation . . . . . . . . . . . . . . . . . . . . . 11

2.3 Rotationless formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Reduced formulation of the DAEs . . . . . . . . . . . . . . . . . . 14

2.3.3 Spatial rigid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Kinematic pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Coordinate augmentation . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Three-dimensional rotary crane . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Generalized coordinates formulation . . . . . . . . . . . . . . . . . 27

2.4.2 Rotationless formulation . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Numeri
al integration s
hemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Implicit Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Mid-point-type rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Energy-momentum scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Variational integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



Contents

3.5 Andrew’s squeezer mechanism . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Inverse dynami
s simulation of multibody systems . . . . . . . . . . . . . . . 59

4.1 Underactuated mechanical systems with servo constraints . . . . . . . . 60

4.1.1 Generalized coordinates formulation . . . . . . . . . . . . . . . . . 61

4.1.2 Rotationless formulation . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Reduced formulation of the DAEs . . . . . . . . . . . . . . . . . . 64

4.2 Numerical integration of underactuated systems with servo constraints 65

4.2.1 Projected formulation in terms of generalized coordinates . . . . 66

4.2.2 Projected formulation in terms of redundant coordinates . . . . . 68

4.2.3 Projected formulation in terms of dependent coordinates . . . . . 70

4.2.4 Numerical discretization . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Differential flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Planar overhead crane . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Three-dimensional rotary crane . . . . . . . . . . . . . . . . . . . . 84

5 Index redu
tion by minimal extension for the inverse dynami
s simulation . 97

5.1 Index reduction by minimal extension . . . . . . . . . . . . . . . . . . . . 98

5.1.1 Minimal extension for mechanical systems . . . . . . . . . . . . . 99

5.1.2 Application to the inverse dynamics simulation of cranes . . . . 101

5.1.3 Reduction to index 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.4 Minimal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Index-3 formulation in terms of dependent coordinates . . . . . . 111

5.2.2 Index-3 formulation in terms of minimal coordinates . . . . . . . 112

5.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Planar overhead crane . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Three-dimensional rotary crane . . . . . . . . . . . . . . . . . . . . 121

5.4 Redundant coordinates formulation . . . . . . . . . . . . . . . . . . . . . 130

5.4.1 Inverse dynamics of underactuated mechanical systems . . . . . 130

5.4.2 Index reduction by minimal extension procedure . . . . . . . . . 132

5.4.3 Numerical discretization . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.4 Sample application: Three-dimensional rotary crane . . . . . . . 138

6 Index redu
tion by minimal extension for advan
ed examples . . . . . . . . 149

6.1 Planar US Navy crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.1 Planar US Navy crane with neglected pulley mass . . . . . . . . . 149

viii



Contents

6.1.2 Planar US Navy crane with nonzero pulley mass . . . . . . . . . 155

6.2 Three-dimensional US Navy crane . . . . . . . . . . . . . . . . . . . . . . 163

6.2.1 Three-dimensional US Navy crane with neglected pulley mass . 164

6.2.2 Three-dimensional US Navy crane with nonzero pulley mass . . 171

6.3 Cable suspension manipulator . . . . . . . . . . . . . . . . . . . . . . . . 178

6.3.1 Redundant coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3.3 Dynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3.4 Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.3.5 Application of index reduction by minimal extension . . . . . . . 191

6.3.6 Differential flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3.7 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Appendix A Detailed explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.1 Gâteaux derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.2 Planar US Navy crane with neglected mass . . . . . . . . . . . . . . . . . 210

A.3 Planar US Navy crane with nonzero mass . . . . . . . . . . . . . . . . . . 211

A.4 3D US Navy crane with neglected mass . . . . . . . . . . . . . . . . . . . 212

A.5 3D US Navy crane with nonzero mass . . . . . . . . . . . . . . . . . . . . 213

A.6 Cable suspension manipulator . . . . . . . . . . . . . . . . . . . . . . . . 214

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

ix





List of Figures

2.1 Spatial rigid body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Revolute pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Prismatic pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 3D rotary crane example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Rotary crane model with generalized coordinates. . . . . . . . . . . . . . . . 28

2.6 Rotary crane model with body-fixed frames. . . . . . . . . . . . . . . . . . . 29

2.7 Simulation results of the generalized coordinates formulation. . . . . . . . . 33

2.8 Simulation snapshots of the generalized coordinates formulation. . . . . . . 34

2.9 Rotationless formulation of the rotary crane. . . . . . . . . . . . . . . . . . . 35

2.10 Simulation results of the rotationless formulation. . . . . . . . . . . . . . . . 42

2.11 Simulation snapshots of the rotationless formulation. . . . . . . . . . . . . . 43

3.1 Andrew’s squeezer mechanism: Setup. . . . . . . . . . . . . . . . . . . . . . 53

3.2 Displacement of hinge (P). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Angle β [rad]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Time step ∆t = 3 · 10−4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Time step ∆t = 3 · 10−4s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Time step ∆t = 3 · 10−5s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Time step ∆t = 3 · 10−5s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Simulation snapshots of Andrew’s squeezer. . . . . . . . . . . . . . . . . . . 57

4.1 Planar overhead crane model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Simulation snapshots of the overhead crane. . . . . . . . . . . . . . . . . . . 83

4.3 Results comparison of projected formulations of the overhead crane. . . . . 83

4.4 Results comparison of projected formulations of the overhead crane. . . . . 84

4.5 Rotary crane model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Reference function and derivatives. . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Simulation snapshots of the rotary crane. . . . . . . . . . . . . . . . . . . . . 94

4.8 Results comparison of diverse formulations of the rotary crane. . . . . . . . 95

4.9 Results comparison of diverse formulations of the rotary crane. . . . . . . . 95

xi



List of Figures

5.1 Commutative diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Planar overhead crane model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Results comparison of the overhead crane. . . . . . . . . . . . . . . . . . . . 119

5.4 Results comparison of the overhead crane. . . . . . . . . . . . . . . . . . . . 119

5.5 Simulation snapshots of the overhead crane. . . . . . . . . . . . . . . . . . . 120

5.6 3D rotary crane model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Results comparison of the rotary crane. . . . . . . . . . . . . . . . . . . . . . 128

5.8 Results comparison of the rotary crane. . . . . . . . . . . . . . . . . . . . . . 129

5.9 Simulation snapshots of the rotary crane. . . . . . . . . . . . . . . . . . . . . 129

5.10 3D rotary crane with redundant coordinates. . . . . . . . . . . . . . . . . . . 138

5.11 3D rotary crane with reduced redundant coordinates. . . . . . . . . . . . . . 142

5.12 Results comparison of the rotary crane. . . . . . . . . . . . . . . . . . . . . . 145

5.13 Results comparison of the rotary crane. . . . . . . . . . . . . . . . . . . . . . 145

5.14 Results of the rotary crane with extended crane coordinates. . . . . . . . . . 146

5.15 Snapshots of the rotary crane with extended crane coordinates. . . . . . . . 147

5.16 Snapshots of the rotary crane with reduced crane coordinates. . . . . . . . . 147

6.1 2D US Navy crane model type A. . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Results comparison of 2D US Navy crane type A. . . . . . . . . . . . . . . . 153

6.3 Results comparison of 2D US Navy crane type A. . . . . . . . . . . . . . . . 154

6.4 Results of 2D US Navy crane type A. . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Simulation snapshots of 2D US Navy crane type A. . . . . . . . . . . . . . . 155

6.6 2D US Navy crane model type B. . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.7 Results comparison of 2D US Navy crane type B. . . . . . . . . . . . . . . . 161

6.8 Results comparison of 2D US Navy crane type B. . . . . . . . . . . . . . . . 161

6.9 Results of 2D US Navy crane type B. . . . . . . . . . . . . . . . . . . . . . . . 162

6.10 Simulation snapshots of 2D US Navy crane type B. . . . . . . . . . . . . . . 162

6.11 3D US Navy crane model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.12 3D US Navy crane model type A. . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.13 Results of 3D US Navy crane type A. . . . . . . . . . . . . . . . . . . . . . . 169

6.14 Simulation snapshots of 3D US Navy crane type A. . . . . . . . . . . . . . . 170

6.15 3D US Navy crane model type B. . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.16 Results of 3D US Navy crane type B. . . . . . . . . . . . . . . . . . . . . . . . 176

6.17 Simulation snapshots of 3D US Navy crane type B. . . . . . . . . . . . . . . 177

6.18 Cable suspension manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.19 Schematic of one holonomic constraint. . . . . . . . . . . . . . . . . . . . . . 182

6.20 Rotational motions of the payload platform. . . . . . . . . . . . . . . . . . . 183

xii



List of Figures

6.21 Results of the rotational motion. . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.22 Results of the rotational motion. . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.23 Snapshots of top view of the rotational motion. . . . . . . . . . . . . . . . . 198

6.24 Snapshots of perspective view of the rotational motion. . . . . . . . . . . . . 198

6.25 Results of the translational motion. . . . . . . . . . . . . . . . . . . . . . . . . 200

6.26 Snapshots of the translational motion. . . . . . . . . . . . . . . . . . . . . . 201

6.27 Results of the general motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.28 Results of the general motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.29 Snapshots of top view of the general motion. . . . . . . . . . . . . . . . . . . 204

6.30 Snapshots of perspective view of the general motion. . . . . . . . . . . . . . 204

xiii





List of Tables

2.1 Simulation data of the rotary crane. . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Simulation data of the rotary crane. . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Joint coordinates of Andrew’s squeezer. . . . . . . . . . . . . . . . . . . . . . 55

3.2 Simulation data of Andrew’s squeezer. . . . . . . . . . . . . . . . . . . . . . 55

4.1 Simulation data of the rotary crane. . . . . . . . . . . . . . . . . . . . . . . . 92

xv





Glossary of notation

Notation Description

J inertia tensor

∈ for all

R real numbers

Q configuration manifold

TqQ tangent space of Q at q

⊂ is a subset of

SO(3) special orthogonal group

E Euler tensor

g standard gravity

∇ f discrete derivative of a function f

In a representative time interval

Abbreviation Description

DAE differential-algebraic equation

ODE ordinary differential equation

BEM basic energy momentum scheme

EM energy momentum scheme

VI variational integrator

Gen-α generalized-α scheme

xvii





1 Introdu
tion

Inverse dynamics problems arise in many applications of feedforward control pro-

blems, such as robotic control, aircraft control or crane control. The present thesis

deals with inverse dynamics simulation problems and especially focuses on solving

trajectory tracking control problems. The goal of trajectory tracking control problems

is to determine control inputs that force a mechanical system to complete a prescri-

bed motion. The determination of control inputs is based on the dynamic model

of the controlled mechanical system, which can be formulated by employing either

generalized coordinates or redundant coordinates.

The formulation of inverse dynamics simulation problems yields differential-algebraic

equations (DAEs), because the desired system outputs expressed in terms of state

variables lead to servo constraints on the system. If fully actuated systems are con-

sidered, the number of control inputs/outputs is equal to the number of degrees of

freedom. In fully actuated systems control inputs are easily solved from the dyna-

mic equations by the routine inverse dynamics analysis, since the system motion is

fully specified by the task requirements. Besides, the governing equations for servo

constraint problems of fully actuated systems are (differentiation) index-3 DAEs. The

servo constraint problem of fully actuated systems is well understood in the applica-

tion of robot control. For example, the inverse dynamics control of such problems can

be used to generate manipulator control torques.

In contrast to fully actuated systems, the situation changes considerably for unde-

ractuated systems in which the number of control inputs/outputs is lower than the

number of degrees of freedom. The system motion is specified by desired system

outputs with the same number as control inputs. Due to the property of underac-

tuation, the inverse dynamics simulation of underactuated systems is much more

demanding. Control inputs can not be solved from the dynamic equations by model

inversion, since the input distribution matrix in the governing equations is not in-

vertible. Therefore, the determination of control inputs that force the underactuated

system to complete the partly specified motion is a challenging task. In particular, the
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governing equations for servo constraint problems of underactuated systems arise as

a set of DAEs with high index. Servo constraint problems of underactuated systems

in partly specified motion can be viewed from the perspective of constrained motion.

From the geometric viewpoint of Blajer [27], similar to geometric constraint forces

in constrained multibody systems, control inputs (actuator forces) can be regarded

as reaction forces of servo constraints. However, the reactions of servo constraints

may have any direction with respect to the manifold of servo constraints, and in the

extreme case may be tangent, while the reactions of geometric constraints are ortho-

gonal to the respective constraint manifold. The realization of servo constraints with

the use of control forces can range from orthogonal to tangential. In the case of tan-

gential realization, underactuated systems are differentially flat. The solvability of the

DAEs with high index for differentially flat underactuated systems (the controllability

of differentially flat underactuated systems in partly specified motions) is closely re-

lated to the mathematical property known as differential flatness [39], which implies

that all system state variables and control inputs can be algebraically expressed in

terms of desired outputs and their time derivatives up to a certain order, without in-

tegrating any differential equations. However, the flatness-based analytical approach

is not feasible for more complicated underactuated systems and the derivations are

featured by substantial complexity. The DAE formulation provides a more convenient

appraoch to the inverse dynamics analysis of underactuated systems in partly speci-

fied motion. Servo constraint problems of differentially flat underactuated systems

arise in many applications, such as control of cranes, control of robots with flexible

joints or flexible members and control of cable suspension manipulators.

In the formulation of underactuated multibody systems, the choice of coordinates

has strong impact on the form of the equations of motion. If generalized (minimal)

coordinates are used, the governing equations of motion are in the form of ordinary

differential equations (ODEs), which are in general highly nonlinear. The orientation

of rigid bodies is described by rotational parameters such as Euler angles, which give

rise to the singularity problem. By contrast, if redundant coordinates are applied, the

formulation of constrained mechanical systems yields differential-algebraic equations

(DAEs), which exhibit a comparatively simple structure. The description of the orien-

tation of rigid bodies relies on direction cosines instead of rotational parameters such

as Euler angles, rotation vectors or other 3-parameter description of finite rotations.

Thus, the rotationless formulation is featured by a constant mass matrix and can be

easily extended to flexible multibody dynamics.
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1.1 Literature review

In the present thesis, numerical methods are developed to deal with servo constraint

problems of underactuated multibody systems. In particular, the study focuses on

differentially flat underactuated mechanical systems, in which the index of the DAEs

exeeds three. The high index value causes difficulties in the direct numerical inte-

gration of the DAEs. Therefore, to facilitate a stable numerical integration, index

reduction methods are preferred to reduce the high index value of the DAEs to three

or even lower. A specific projection method proposed by Blajer and Kołodziejczyk

[27] yields an index reduction from five to three. The projection method requires the

computation of projection matrices, which are time-dependent for the formulation in

terms of generalized coordinates and constant Boolean-type for the formulation in

terms of redundant coordinates. The purpose of the projection matrices is to split

the dynamics of the underactuated system into constrained and unconstrained parts.

After the application of the projection method, the high index DAEs are transfor-

med to a more tractable index-3 form, which is amenable to a direct discretization

with common numerical integration schemes such as the backward Euler method.

An alternative index reduction method is the newly proposed method to reduce the

index of the DAEs. The new approach relies on the index reduction by minimal ex-

tension originally developed by Kunkel and Mehrmann [62] for more general DAEs.

The technique of minimal extension is especially suited for the semi-explicit structure

of the DAEs and it is not necessary to compute projection matrices as in the pro-

jection method. Therefore, the new method, also called index reduction by minimal

extension, can be applied to servo constraint problems of underactuated systems to

reduce the index value of the DAEs to three or even to one. Moreover, the reduced

index-1 DAEs are purely algebraic and reflect the fact that the underactuated system

at hand is differentially flat. At last, the desired control inputs that force the unde-

ractuated system to complete the partly specified motion are determined by solving

the resulting DAEs and the feedforward control strategy is obtained for the trajectory

tracking control of underactuated systems.

1.1 Literature review

A bief literature review on servo constraint problems of underactuated systems is

given below.

In servo constraint problems, control outputs (specified in time load coordinates) lead

to servo [56] (control [76] or program [25]) constraints. The formulation of underactu-

3
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ated servo constraint problems is accomplished by employing either minimal coordi-

nates [28, 20, 21, 94, 2] or redundant coordinates [20, 21, 30, 31, 94, 2]. The rotationless

formulation in terms of redundant coordinates is widely employed in diverse nu-

merical problems, such as the numerical integration for constrained rigid multibody

dynamics [17, 9, 13, 19, 87], for flexible multibody dynamics [14, 15, 79], for optimal

control problems [23, 84], for contact problems of flexible bodies [12, 51, 41, 40], and

for nonlinear thermo-viscoelastodynamics problems [47, 48, 49, 61, 60]. The present

rotationless formulation has similarities to the formulation based on natural coordina-

tes advocated by García de Jalón et al. [37, 38]. It can be reduced to the formulation in

terms of generalized coordinates by application of the discrete null space method with

nodal reparametrization [9, 13, 67, 87]. In addition, a specific coordinate augmenta-

tion technique [19, 88, 87, 40] is applied in the rotationless formulation to incorporate

rotational variables and associated torques. The formulation of underactuated servo

constraint problems yields equations of motion in the form of DAEs with high index,

which are difficult to be treated in the numerical integration. Therefore, index re-

duction methods are applied to transform the high index DAEs to lower index DAEs,

which are amenable to a direct discretization. Blajer and Kołodziejczyk [25, 27] have

originally proposed a specific projection method to deal with servo constraint pro-

blems. In particular, two projected formulations are distinguished in the application

of the projection method. These are the projected formulation in terms of minimal

coordinates [28, 29, 21, 94] and the projected formulation in terms of redundant coor-

dinates [30, 31, 21, 94]. A new index reduction method is called index reduction

by minimal extension, which was originally developed by Kunkel and Mehrmann

[62, 63]. The new index reduction method has been applied to the servo constraint

problems of underactuated systems in [2, 24], to the inverse dynamics simulation

[95, 96] of a class of cranes [65, 59, 57], whose formulation fits into the general fra-

mework [58], and to servo constraint problems of kinematically undetermined cable

suspension manipulators [53, 70, 52]. Differential flatness [39, 78] is one important

mathematical property for differentially flat underactuated systems and yields the

flatness-based solution. However, it is not possible to derive the flatness-based ana-

lytical solution for complicated servo constraint problems. Numerical methods are

therefore much more preferable for solving the problem.

4



1.2 Outline

1.2 Outline

This section gives an overview over the thesis and the main contents of each chapter.

Chapter 2 provides the basic theoretical concepts for the modeling of rigid multi-

body systems. It first introduces Hamilton’s principle, which is used to derive the

Lagrange’s equations of the second and first kind. Then the application of Lagrange’s

equations yields equations of motion for discrete rigid multibody systems under con-

sideration. The governing equations take the form of ordinary differential equations

(ODEs) in the generalized coordinates formulation or the form of differential-algeraic

equations (DAEs) in the redundant coordinates formulation. In particular, the dis-

crete null space method can be applied to reduce the large number of equations and

unknowns present in the rotationless formulation. Therefore, the generalized coor-

dinates formulation can be derived from the redundant coordinates formulation as

well. In addition, the descriptions of rigid bodies and two basic kinematic pairs are

given in the case of the rotationless formulation. The coordinate augmentation is also

shortly introduced. To this end, the numerical example of a three-dimensional rotary

crane demonstrates the comparison of two different formulations of rigid multibody

systems and their corresponding influences on the numerical integration.

Chapter 3 presents several numerical time-stepping schemes, such as the implicit

Euler method, the mid-point-type rule, the energy-momentum scheme and the va-

riational integrator. These methods can be used for the direct time discretization of

the DAEs for constrained multibody systems. In this connection, a classical bench-

mark problem for rigid multibody dynamics is used to demonstrate the application

of different numerical integration schemes and the numerical results are discussed

and compared with each other.

Chapter 4 describes the inverse dynamics simulation problems of underactuated me-

chanical systems, which are formulated by using servo constraints. The formulation

of servo constraint problems makes use of either generalized coordinates or redun-

dant coordinates. In the case of redundant coordinates, the discrete null space method

can be applied to yield the size reduction. The formulation of underactuated servo

constraint problems yields differential-algebraic equations (DAEs) with high index.

As a specific index reduction method, the projection method is applied to yield the

index reduction in order to solve servo constraint problems. In this connection, the

projected formulation is used for the formulation in terms of generalized coordinates,

redundant coordinates and dependent coordinates, respectively. In addition, the pro-

perty of differential flatness is introduced and used to derive the analytical reference

5
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solution for differentially flat underactuated systems. Two numerical examples are

analyzed and demonstrate the comparison between different projected formulations

and the flatness-based approach.

Chapter 5 introduces a new index reduction method, which is called index reduction

by minimal extension. The method is first described for constrained mechanical sy-

stems. Then it is applied to the inverse dynamics simulation of cranes, which are

formulated by using dependent coordinates. In this case, index reduction by mini-

mal extension can be applied once more and DAEs of index 1 can be obtained. This

proves that the cranes under consideration are differentially flat. Besides, index re-

duction by minimal extension can also be applied to the formulation of cranes in

terms of minimal coordinates. In this case, the procedure is more complicated than in

the dependent coordinates formulation. The commutative process between minimal

extension and size reduction is proved and shown in a diagram. This chapter in-

troduces also a general formulation in terms of redundant coordinates, in which the

number of holonomic constraints is greater than the number of servo constraints. It is

proved that index reduction by minimal extension can be applied to this formulation

as well. The number of redundant coordinates can be reduced by application of the

discrete null space method. For simplicity, the backward Euler scheme is applied for

the time discretization of the resulting index-3 DAEs. Two numerical examples show

the application of index reduction by minimal extension to the formulation in terms

of dependent coordinates and minimal coordinates, respectively. The third example

demonstrates the application of index reduction by minimal extension to the formula-

tion in terms of redundant coordinates and the size reduction procedure. The results

are presented and compared with the analytical reference solution.

Chapter 6 gives several advanced numerical examples of underactuated mechanical

systems and demonstrates the effective application of index reduction by minimal

extension to the formulation in terms of redundant coordinates.

Eventually conclusions are drawn and an outlook for future developments is provided

in Chapter 7.

6



2 Modeling of rigid multibody

dynami
s

Multibody systems are composed of interconnected rigid or flexible bodies that per-

form translational or rotational motions, and the motion of the bodies is constrained

by different types of joints [83]. In computational multibody dynamics, different

formulations are used to study the dynamic behaviour of multibody systems. The

formulation of multibody systems depends on the choice of coordinates for the des-

cription of multibody dynamics and the choice of coordinates also has strong impact

on the form of equations of motion.

There will be two alternative formulations introduced in this chapter: the formulation

in terms of generalized (or minimal) coordinates along with Euler (or Bryant) angles

for the description of the orientation of rigid bodies, and the formulation in terms

of redundant coordinates, in which the orientation of rigid bodies is described in

terms of direction cosines (see, for example, [9, 13]). The formulation in terms of

generalized coordinates yields equations of motion in the form of ordinary differential

equations (ODEs). In contrast, the formulation in terms of redundant coordinates

yields differential-algebraic equations (DAEs). In addition, a numerical example of a

three-dimensional rotary crane will be presented, which demonstrates the application

of the two formulations and their influences on the numerical time integration.

2.1 Hamilton's prin
iple

In analytical mechanics one important variational principle is Hamilton’s principle [43,

64], from which some fundamental laws of mechanics, like Lagrange’s equations and

Hamilton’s equations, can be derived. Hamilton’s principle is an integral principle,

which considers the motion of an entire system between two time points t1 and t2.

It reduces the problem of dynamics to the investigation of a scalar definite integral
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and has the remarkable advantage of being invariant to the coordinate system used

to describe the Lagrangian [74].

The action (or action integral) is defined as

S =

t2∫

t1

L(q, q̇)dt (2.1)

where the Lagrangian L is expressed in the form

L = T − V (2.2)

with the system kinetic energy T and the system potential energy V.

Hamilton’s principle can be stated as follows: The actual path in the configuration space

renders the value of the definite integral S =
∫ t2

t1
L(q, q̇)dt stationary with respect to all

arbitrary variations of the path between two instants t1 and t2 provided that the path variations

vanish at these two end points [74]. Mathematically it implies that the motion of a

dynamical system is such that the variation of the line integral S for fixed t1 and t2 is

zero [43]:

δS = δ

t2∫

t1

L(q, q̇)dt = 0 (2.3)

2.1.1 Lagrange's equations of the se
ond kind

In rigid multibody systems Lagrange’s equations can be derived from Hamilton’s

principle by using either generalized coordinates or redundant coordinates. Genera-

lized coordinates µ ∈ R
f can be used to describe the configuration of the mechanical

system and the dimension f is equal to the degrees of freedom of the mechanical

system.

8



2.1 Hamilton’s principle

For mechanical systems, if generalized coordinates µ ∈ R
f are used, the variation of

the action integral reads

δS = δ

t2∫

t1

L(µ, µ̇)dt =

t2∫

t1

δL(µ, µ̇)dt

=

t2∫

t1

[
∂L

∂µ
· δµ +

∂L

∂µ̇
· δµ̇

]
dt

=

t2∫

t1

[
∂L

∂µ
− d

dt

(
∂L

∂µ̇

)]
· δµ dt

(2.4)

where the integration by parts is expressed as

t2∫

t1

∂L

∂µ̇
· δµ̇ dt = −

t2∫

t1

d
dt

(
∂L

∂µ̇

)
· δµ dt +

[
∂L

∂µ̇
· δµ

]t2

t1

(2.5)

with the endpoint conditions δµ(t1) = δµ(t2) = 0. Requiring that the variations of

the action integral be zero for all δµ implies that the integrand must be zero for all

time t, giving the well-known Euler-Lagrange equations for conservative holonomic

systems [71],
d
dt

(
∂L

∂µ̇

)
− ∂L

∂µ
= 0 (2.6)

which are also called Lagrange’s equations of the second kind. Based on Lagrange-

d’Alembert’s principle, for non-conservative holonomic systems there is

δS = δ

t2∫

t1

L(µ, µ̇)dt +

t2∫

t1

Q∗ · δµ dt = 0 (2.7)

which leads to Euler-Lagrange equations for non-conservative holonomic systems,

d
dt

(
∂L

∂µ̇

)
− ∂L

∂µ
= Q∗ (2.8)

where Q∗ are non-conservative generalized forces, and more specifically, the applied

forces that can not be derived from a potential, such as the friction force and the

actuation force.

9



2 Modeling of rigid multibody dynamics

2.1.2 Lagrange's equations of the �rst kind

If redundant coordinates q ∈ R
n are used, the coordinates are not independent, and

then constraint equations are required to restrict the motion of the mechanical system

and constrain the mechanical system to a lower dimensional manifold.

In the case of holonomic mechanical systems, the constraints can be expressed as

constraint functions

Φ(q, t) = 0 (2.9)

where Φ ∈ R
m and the dimension m denotes the number of independent holonomic

constraints. If redundant coordinates q ∈ R
n have the dimension n, the degrees of

freedom of the mechanical system can be calculated by f = n − m, which is equal to

the number of generalized coordinates µ ∈ R
f .

If the constraints can not be expressed in the form of Equation (2.9), the constraints

are nonholonomic. If constraint equations are not explicitly dependent on time, the

constraints are scleronomic and can be expressed as

Φ(q) = 0 (2.10)

Otherwise the constraints are rheonomic.

For constrained mechanical systems with holonomic constraints, the action integral

needs to be modified as

S̃ = S −
t2∫

t1

λ · Φ(q)dt =

t2∫

t1

(L(q, q̇)− λ · Φ(q)) dt (2.11)

with Lagrange multipliers λ ∈ R
m. Then the variation of the modified action reads

δS̃ =

t2∫

t1

[
∂L

∂q
· δq +

∂L

∂q̇
· δq̇ − λ · ∂Φ

∂q
δq − δλ · Φ

]
dt

=

t2∫

t1

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)
−
(

∂Φ

∂q

)T

λ

]
· δq dt −

t2∫

t1

Φ · δλ dt

(2.12)

10



2.2 Generalized coordinates formulation

where the integration by parts

t2∫

t1

∂L

∂q̇
· δq̇ dt = −

t2∫

t1

d
dt

(
∂L

∂q̇

)
· δq dt +

[
∂L

∂q̇
· δq

]t2

t1

(2.13)

is used with the endpoint conditions δq(t1) = δq(t2) = 0. Hamilton’s principle

implies that the variation of the modified action integral in the actual path followed

by the system must be equal to zero. Then according to the fundamental lemma of

the calculus of variations, the coefficients of δq and δλ in Equation (2.12) are both

equal to zero. For conservative holonomic systems this leads to the Euler-Lagrange

equations

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
+

(
∂Φ

∂q

)T

λ = 0 (2.14a)

Φ(q) = 0 (2.14b)

which are also called Lagrange’s equations of the first kind. Analogously, for non-

conservative holonomic mechanical systems, the Euler-Lagrange equations read

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
+

(
∂Φ

∂q

)T

λ = Q∗ (2.15a)

Φ(q) = 0 (2.15b)

2.2 Generalized 
oordinates formulation

The generalized coordinates formulation can be employed to model the dynamics

of mechanical systems. In this formulation the Lagrange’s equations of the second

kind in Equation (2.6) (see also [46]) is applied to derive the equations of motion for

conservative constrained mechanical systems. In Equation (2.2) the kinetic energy T

and potential energy V of a mechanical system need to be determined. The total

kinetic energy of the system is the sum of all bodies’ translational and rotational

energy parts:

T =
N∑

I=1

(
1
2

mIvI · vI +
1
2

ωI · J IωI

)
(2.16)

Here, the mass of the body is denoted by mI and the velocity of the center of mass of

the body is specified by vI . The angular velocity of the body about an axis is given by

11
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ωI and the inertia tensor of the body is represented by J I. For the orthogonal principal

axis, the products of inertia are equal to zero, and then the inertia tensor is reduced

to a diagonal matrix. Besides, the total number of bodies is N. The calculation of the

potential energy V is simple and will not be discussed here.

Then, inserting the derived Lagrangian into Equation (2.6) leads to the equations of

motion of mechanical systems in the form of ODEs:

µ̇ = ν (2.17a)

M(µ)ν̇ = f (µ, µ̇) (2.17b)

with generalized coordinates µ ∈ R
f , generalized velocities ν ∈ R

f , the positive-

definite mass matrix M(µ) ∈ R
f , f , generalized dynamic (centrifugal, Coriolis and

gyroscopic) and applied forces f ∈ R
f . However, the equations of motion in terms

of rotational degrees of freedom (for example, Euler angles) are highly nonlinear

and their derivation is quite cumbersome. In particular, the mass matrix M(µ) is

configuration-dependent and very complicated.

2.3 Rotationless formulation

In contrast to the generalized coordinates formulation, the rotationless formulation

relies on direction cosines and makes use of redundant coordinates to circumvent the

use of rotational parameters such as Euler angles, joint angles, rotation vectors or

quaternions [16] for the description of the orientation of rigid bodies. In this section

the Lagrange’s equations of the first kind will be applied to derive the equations of

motion in terms of redundant coordinates for conservative constrained mechanical

systems. Then the reduced formulation of the DAEs will be introduced and the

rotationless formulation will be described in detail.

2.3.1 Equations of motion

In the application of the Lagrange’s equations of the first kind, the kinetic energy of

the finite-dimensional mechanical system can be given by

T(q̇) =
1
2

q̇ · Mq̇ (2.18)

12



2.3 Rotationless formulation

Here, M ∈ R
n×n is a constant and symmetric positive-definite mass matrix and the

constant mass matrix is an essential property of the rotationless formulation. As

before, the superposed dot denotes the time differentiation. The potential energy is

given by a function V(q) ∈ R. Then the equations (2.14a)−(2.14b) are used to derive

the dynamic equations for mechanical systems subject to holonomic constraints. The

terms in the equations (2.14a)−(2.14b) are determined by

d
dt

(
∂L

∂q̇

)
= Mq̈ (2.19a)

∂L

∂q
= −∇V(q) (2.19b)

Then the equations of motion for conservative constrained mechanical systems can be

written in the form of differential-algebraic equations (DAEs):

q̇ − v = 0 (2.20a)

Mv̇ +∇V(q) + GT(q)λ = 0 (2.20b)

Φ(q) = 0 (2.20c)

Here, a vector of redundant coordinates is given by q ∈ R
n which specifies the confi-

guration of the mechanical system. A vector of redundant velocities is denoted by v ∈
R

n. Moreover, a vector of holonomic constraint functions is expressed by Φ(q) ∈ R
m

with the corresponding constraint Jacobian matrix G(q) = DΦ(q) ∈ R
m×n and a vec-

tor of Lagrange multipliers is given by λ ∈ R
m which specifies the relative magnitude

of constraint forces. In addition, the m constraints are assumed to be independent.

Consequently, the constraint Jacobian matrix G has full row rank.

Due to the holonomic constraints in Equation (2.20c), the n − m dimensional configu-

ration manifold of the mechanical system can be expressed by

Q = {q(t) ∈ R
n | Φ(q) = 0} (2.21)

Accordingly, the degrees of freedom of the discrete mechanical system is f = n − m.

In summary, the equations (2.20a)−(2.20c) are index-3 differential-algebraic equati-

ons (see [35, 63]), which consist of 2n + m equations for the unknown variable vectors

(q, v, λ) ∈ R
n × R

n × R
m. Obviously the DAEs (2.20a)−(2.20c) exhibit a comparati-

vely simple structure, which makes possible the design of energy-momentum conser-

ving schemes (see Section 3.3). Some time-stepping schemes will be explained in the

following chapter.
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2 Modeling of rigid multibody dynamics

2.3.2 Redu
ed formulation of the DAEs

The DAEs (2.20a)−(2.20c) can be reformulated by premultiplying an appropriate ma-

trix (i.e. the null space matrix) and reparameterizing the configuration manifold Q.

This size-reduction procedure (i.e. discrete null space method) has been dealt with

in several works (see [9, 13, 19, 84, 87]). Due to the holonomic constraints (2.20c),

redundant velocities are restricted to the tangent space TqQ ⊂ R
n. The geometric

constraint equations (2.20c) can be differentiated once with respect to time to obtain

the constraint conditions at the velocity level. Accordingly, the kinematic constraints

assume the form

G(q)v = 0 (2.22)

and the tangent space at q ∈ Q can be identified with the null space of the constraint

Jacobian, that means

TqQ = null(G(q)) (2.23)

Suppose that there exists a matrix P(q) ∈ R
n× f , whose column vectors span the null

space of G(q) ∈ R
m×n. The matrix P(q) is the null space matrix, which satisfies the

mathmatical condition

range(P(q)) = null(G(q)) (2.24)

or in the alternative form

GP = 0 (2.25)

Then admissible velocities v ∈ TqQ can be written as

v = Pν (2.26)

with independent generalized velocities ν ∈ R
f . These velocities ν may be classified

as quasi-velocities because their time integrals do not result in generalized coordina-

tes [13]. Equation (2.26) shows that the null space matrix P(q) maps R
f into TqQ.

After inserting Equation (2.26) into (2.18), the reduced form of the kinetic energy T̃ is

expressed as

T̃(q, ν) =
1
2

ν · M̃ν (2.27)

where the reduced mass matrix M̃ is given by

M̃ = PT MP (2.28)

and coincides with the configuration-dependent mass matrix M in Equation (2.17b).
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2.3 Rotationless formulation

In order to eliminate the constraint forces, Equation (2.20b) is premultiplied by PT,

which means the equations in (2.20b) are projected onto the tangent space TqQ. Then

using the equations (2.25) and (2.26) leads to the reduced formulation of the DAEs:

q̇ − Pν = 0 (2.29a)

M̃ν̇ + PT MṖν + PT∇V(q) = 0 (2.29b)

Φ(q) = 0 (2.29c)

which govern the motion of the constrained mechanical system. By introducing ap-

propriate generalized coordinates or local coordinates µ ∈ U ⊂ R
f , a second size-

reduction can be performed for the parameterization of the configuration manifold

Q. Accordingly, the holonomic constraints (2.29c) can be eliminated if a mapping

F : R
f 7→ R

n can be found such that

q = F(µ) (2.30)

Then the constraints

Φ(F(µ)) = 0 (2.31)

vanish from Equation (2.29c). It should be noted that the differentiation of Equation

(2.30) with respect to time gives rise to the consistency condition (2.26). The null space

matrix P is then calculated by

P = DF(µ) (2.32)

Generally the size-reduction procedure leads to equations of motion (2.17a)−(2.17b),

which have already been derived by applying the Lagrange’s equations of the second

kind in the generalized coordinates formulation.

2.3.3 Spatial rigid body

The specific rotationless formulation [17] of rigid bodies fits into the framework for

constrained mechanical systems, makes use of redundant coordinates and circum-

vents the use of any type of rotational parameters. Thus, it can be employed to

describe the position and orientation of a spatial rigid body.

In the present rotationless formulation, the orientation (rotation) of the rigid body

is characterized by nine redundant coordinates di ∈ R
3, (i = 1, 2, 3) (see Fig. 2.1),
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2 Modeling of rigid multibody dynamics

which constitute the rotation matrix (direction cosine matrix). The nine redundant

coordinates are subject to six independent holonomic constraints (2.44), sometimes

called the internal constraints, which ensure the assumption of the rigidity of the

body. Due to the assumption of the rigidity, the orthogonal rotation matrix R ∈ SO(3)

satisfies the following conditions:

RRT = I, RT = R−1, det(R) = 1 (2.33)

The rotational degrees of freedom of rigid body are calculated by f = 9 − 6 = 3.

e1

e2

e3
ϕ

d1

d2

d3
g

S

Figure 2.1: Spatial rigid body.

The configuration of the rigid body (Fig. 2.1) in three-dimensional Euclidean space

can be described by the position vector of the body’s center of mass ϕ ∈ R
3 and a

right-handed body-fixed coordinate system {di}, di ∈ R
3, (i = 1, 2, 3). The vectors

di are called the directors of the body and for simplicity the axes of the body-fixed

director frame {di} are assumed to be aligned with the principal axes of the rigid

body. Then the set of 12 redundant coordinates comprises the configuration vector

q =




ϕ

d1

d2

d3




(2.34)

which describes the configuration of the rigid body in the three-dimensional space.

The configuration vector is specified relative to the inertial Cartesian basis {ei}. If a

material point X = Xiei
1 belongs to the reference configuration B0 ⊂ R

3 of the rigid

1 The Einstein summation convention is used in the context.
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2.3 Rotationless formulation

body, the current spatial positon of X ∈ B0 at time t relative to the inertial Cartesian

basis {ei} is expressed by

x(X , t) = ϕ(t) + Xidi(t) (2.35)

and the time derivative of x(X , t) yields the velocity of the material point

v(X , t) = ϕ̇(t) + Xiḋi(t) (2.36)

Thus the kinetic energy can be written as

T =
1
2

∫

B0

v(X , t) · v(X , t)ρ(X)dV (2.37)

Since the axes of the body-fixed frame are aligned with the principal axes of the rigid

body, the kinetic energy of the rigid body can be given by

T =
1
2

Mϕϕ̇ · ϕ̇+
1
2

3∑

i=1

Eiḋi · ḋi (2.38)

where ϕ̇ and ḋi are redundant velocities, Mϕ and Ei are expressed by

Mϕ =

∫

B0

ρ(X)dV (2.39a)

Ei =

∫

B0

(Xi)
2ρ(X)dV (2.39b)

The mass density at X ∈ B0 is denoted by ρ(X), the total mass of the body is Mϕ and

the principal values of the Euler tensor with respect to the center of mass is expressed

by Ei. The current Euler tensor with respect to the center of mass is given by

E =
3∑

i=1

Eidi ⊗ di (2.40)

The Euler tensor is symmetric, positive-definite and can be related to the inertia tensor

via the relationship

J = (trE)I − E (2.41)
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2 Modeling of rigid multibody dynamics

According to Equations (2.18) and (2.38), the mass matix for a rigid body is given

by

M =




Mϕ I 0 0 0

0 E1I 0 0

0 0 E2I 0

0 0 0 E3I




(2.42)

in which each identity matrix I and zero matrix 0 has the dimension three. The above

constant and diagonal 12 × 12 mass matrix M exhibits the specific characteristic of

the rotationless formulation, whereas the mass matrix M derived in the generalized

coordinates formulation is configuration dependent.

Then the potential energy of the rigid body is given by

V = Mϕ gϕ · e3 (2.43)

when the gravity is considered. Due to the assumption of the rigidity, the body-

fixed frame keeps orthonormal for all times t ∈ R+. Thus, there are six independent

internal constraints with associated constraint functions:

Φint(q) =




1
2(d1 · d1)− 1
1
2(d2 · d2)− 1
1
2(d3 · d3)− 1

d1 · d2

d1 · d3

d2 · d3




(2.44)

According to Gint = ∇qΦint(q), the internal constraints give rise to the corresponding

constraint Jacobian:

Gint(q) =




0T dT
1 0T 0T

0T 0T dT
2 0T

0T 0T 0T dT
3

0T dT
2 dT

1 0T

0T dT
3 0T dT

1

0T 0T dT
3 dT

2




(2.45)

in which the vector 0 has the dimension three and the constraint Jacobian matrix

has the dimension 6× 12. Additional details about the rigid body formulation can be

found in [13, 17, 84, 87]. Note that the present rotationless formulation has similarities

to the natural coordinates formulation advocated by García de Jalón et al. [37, 38].
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2.3 Rotationless formulation

Redu
ed formulation of the rigid body

Next the reduced dynamic equations (2.29a)−(2.29c) will be considered in depth for

the spatial rigid body. First, the redundant velocities v ∈ R
12 of the rigid body are

expressed in terms of the twist [3], which is composed of the translational velocity

ϕ̇ ∈ R
3 of the body’s center of mass and the angular velocity ω ∈ R

3 of the rigid

body. That is

t =

[
ϕ̇

ω

]
(2.46)

Then the director velocities ḋi ∈ R
3 are expressed in terms of the angular velocity of

the rigid body through

ḋi = ω × di = −di × ω = −d̂iω (2.47)

Here, d̂i denotes the skew-symmetric 3× 3 matrix with the corresponding axial vector

di ∈ R
3, that is

d̂i =




0 −di3 di2

di3 0 −di1

−di2 di1 0


 (2.48)

provided that

di =




di1

di2

di3


 (2.49)

In view of Equation (2.26), the components of the twist t ∈ R
6 play the role of in-

dependent pseudo velocities of rigid body. The tangent space TqQ = ker (Gint(q)) is

determined and admissible velocities v ∈ TqQ are specified through the relation

v = Pint(q)t (2.50)

where the 12 × 6 null space matrix Pint for the free rigid body is given by

Pint(q) =




I 0

0 −d̂1

0 −d̂2

0 −d̂3




(2.51)
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2 Modeling of rigid multibody dynamics

Here, each 0 and I matrix has the dimesion three. In view of Equation (2.45), the

condition GintPint = 0 is fully satisfied.

Then the reduced mass matrix M̃ for the rigid body can be calculated through

M̃ = PT
intMPint =

[
Mϕ I 0

0 −∑3
i=1 Ei(d̂i)

2

]
(2.52)

Using the identity (d̂i)
2 = di ⊗ di − (di · di)I, Equation (2.41) leads to

−
3∑

i=1

Ei(d̂i)
2 = −

3∑

i=1

Ei [di ⊗ di − (di · di)I] = −E + (trE)I = J (2.53)

with the customary inertia tensor of the rigid body J. Thus, the reduced mass matrix

can also be written as

M̃ =

[
Mϕ I 0

0 J

]
(2.54)

In addition, PT MṖt in Equation (2.29b) is expressed as

PT MṖt =

[
0

−ω ×
(∑3

i=1 Eidi ⊗ di

)
ω

]
=

[
0

ω × Jω

]
(2.55)

by using Equation (2.41). The last term in Equation (2.29b) is calculated by

PT∇V(q) =




∂V
∂ϕ∑3

i=1

(
di × ∂V

∂di

)

 = −

[
f

m

]
(2.56)

where f and m are the resultant force and torque relative to the rigid body’s center

of mass. In the end the reduced equations of motion (2.29a)−(2.29c) for the free rigid

body are written as

Mϕϕ̇ = f (2.57a)

Jω̇ + ω × Jω = m (2.57b)

which are the Newton-Euler equations for rigid bodies.

Generalized coordinates, such as Euler angles or the rotation vector θ ∈ R
3, can be

employed to describe the orientation of the rigid body instead of the directors di.

Therefore, the number of redundant coordinates q ∈ R
12 can be further reduced
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2.3 Rotationless formulation

by reparameterization of the configuration space. A rotation matrix R ∈ SO(3) is

introduced, which is parameterized in terms of θ ∈ R
3, and the directors of the rigid

body can be expressed by

di = R(θ)di0 (2.58)

where di0 denotes the initial directors relative to the inertial Cartesian basis {ei} at

time t = 0. The rotation matrix can be calculated through the Rodrigues formula [42,

72], that may be expressed by the exponential map representation:

R(θ) = exp(θ̂) = I +
sin ‖θ‖
‖θ‖ θ̂+

1 − cos ‖θ‖
‖θ‖2 θ̂

2
(2.59)

After the reparametrization of the unknowns the configuration of the free rigid body

is specified by six coordinates µ = (ϕ, θ) ∈ U ⊂ R
3 × R

3. A mapping F : U 7→ Q is

given by

q = F(µ) =




ϕ

exp(θ̂)d10

exp(θ̂)d20

exp(θ̂)d30




(2.60)

2.3.4 Kinemati
 pairs

Rigid multibody systems consist of rigid bodies interconnected by different types of

joints, which can be classified into two groups: lower pairs and higher pairs. The

joints with surface contact are referred to as lower pairs and the joints with point or

line contact are called higher pairs [42]. The basic kinematic pairs have been treated

thoroughly in several works [13, 79, 84, 87]. Here only the revolute pair and the

prismatic pair will be introduced so that they can be used in the three-dimensional

rotary crane example in the sequel.

A simple multibody system is now considered, which consists of two rigid bodies

coupled by lower kinematic pairs. The configuration of the α-th rigid body2 can be

characterized by redundant coordinates qα ∈ R
12 (α = 1, 2), which has been given in

Equation (2.34). Then the configuration of two rigid bodies can be characterized by

2 In the framework of the rotationless formulation the superscript denotes the respective rigid body.
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2 Modeling of rigid multibody dynamics

24 redundant coordinates. Thus, the configuration vector is written as

q =

[
q1

q2

]
(2.61)

Due to the assumption of the rigidity, each rigid body is subject to six internal con-

straints. For the two-body multibody system, 12 internal constraint functions are

described by

Φint(q) =

[
Φ

1
int(q

1)

Φ
2
int(q

2)

]
(2.62)

and the associated constraint Jacobian Gint(q) ∈ R
12×24 is given by

Gint(q) =

[
G1

int(q
1) 0

0 G2
int(q

2)

]
(2.63)

Here, Φ
α
int(q

α) and Gα
int(q

α) have already been given in Equations (2.44) and (2.45),

respectively.

In addition, the connection of two rigid bodies by a specific joint leads to the external

constraints expressed by constraint functions Φext(q). Accordingly, the kinematic pair

can be characterized by the constraint functions

Φ(q) =

[
Φint(q)

Φext(q)

]
(2.64)

and the corresponding constraint Jacobian

G(q) =

[
Gint(q)

Gext(q)

]
(2.65)

The equations of motion of the kinematic pair can then be expressed by Equation

(2.20a)−(2.20c). The constant mass matrix M ∈ R
24×24 then reads

M =

[
M1 0

0 M2

]
(2.66)

in which the submatrix Mα ∈ R
12×12 is given in Equation (2.42).

Next two primitive kinematic pairs will be presented in the framework of the rotati-

onless formulation.
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2.3 Rotationless formulation

Revolute pair

e1

e2

e3

ϕ1

d1
1

d1
2

d1
3

ϕ2

d2
1

d2
2

d2
3

ρ1

ρ2

n1R

n1

Figure 2.2: Revolute pair.

The revolute pair is a basic kinematic joint for multibody systems. As shown in

Fig. 2.2, it consists of two rigid bodies (α = 1, 2) and the corresponding director frame

{dα
i } (i = 1, 2, 3) is fixed to each individual body. The location of the joint is specified

by coordinates ρα
i with respect to the individual body frame {dα

i }. That is

ρα = ρα
i dα

i (2.67)

Then a unit vector n1 is introduced, which is fixed to the first body and specified by

coordinates n1
i with respect to the director frame

{
d1

i

}
:

n1 = n1
i d1

i (2.68)

Additionally, two more vectors (see Fig. 2.3) can be introduced and defined as

m1
α = (m1

α)id
1
i (2.69)

such that
{

m1
1, m1

2, n1
}

constitute a right-handed orthonormal frame. For the revolute

pair, the axis of rotation of the second body relative to the first body is specified by

the unit vector n1 and the relative degree of freedom is one. The revolute pair entails
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2 Modeling of rigid multibody dynamics

5 external constraint functions, which can be written in the following form

Φext(q) =




ϕ2 + ρ2 −ϕ1 − ρ1

n1 · d2
1 − η1

n1 · d2
2 − η2


 (2.70)

where η1 and η2 are constant and need to be consistent with the initial conditions.

Moreover, the corresponding constraint Jacobian of the external constraint functions

is given by the 5 × 24 matrix

Gext(q) =



−I −ρ1

1I −ρ1
2I −ρ1

3I I ρ2
1I ρ2

2I ρ2
3I

0T n1
1(d

2
1)

T n1
2(d

2
1)

T n1
3(d

2
1)

T 0T (n1)T 0T 0T

0T n1
1(d

2
2)

T n1
2(d

2
2)

T n1
3(d

2
2)

T 0T 0T (n1)T 0T


 (2.71)

where the vector 0 and the identity matrix I have the dimension three. In conclu-

sion, for the two-body multibody system with revolute pair, there are 24 redundant

coordinates expressed in Equation (2.61), which are subject to 12 internal constraint

functions (2.62) and 5 external constraint functions (2.70). The degrees of freedom of

the revolute pair is then calculated by f = 24 − 12 − 5 = 7.

Prismati
 pair

The prismatic pair as shown in Fig. 2.3, is also used as a basic kinematic joint to

connect rigid bodies. In the two-body multibody system with prismatic pair, the

translational motion of the second body relative to the first body occurs along the

translational axis specified by the unit vector n1, which is fixed at the first body and

can be expressed by Equation (2.68). Therefore, the prismatic joint has one relative

degree of freedom.
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Figure 2.3: Prismatic pair.

Analogously, the prismatic pair entails 5 external constraint functions, which may be

written in the form

Φext(q) =




m1
1 ·
(
ϕ2 + ρ2 −ϕ1 − ρ1

)

m1
2 ·
(
ϕ2 + ρ2 −ϕ1 − ρ1

)

d1
1 · d2

2 − η1

d1
2 · d2

3 − η2

d1
3 · d2

1 − η3




(2.72)

where η1, η2 and η3 are constant and need to be consistent with the initial conditions.

Similarly, the prismatic pair has 7 degrees of freedom. Furthermore, the correspon-

ding constraint Jacobian of the external constraint functions is given by the following
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2 Modeling of rigid multibody dynamics

5 × 24 matrix:

Gext(q) =




−(m1
1)

T GT
11 GT

12 GT
13 (m1

1)
T ρ2

1(m
1
1)

T ρ2
2(m

1
1)

T ρ2
3(m

1
1)

T

−(m1
2)

T GT
21 GT

22 GT
23 (m1

2)
T ρ2

1(m
1
2)

T ρ2
2(m

1
2)

T ρ2
3(m

1
2)

T

0T (d2
2)

T 0T 0T 0T 0T (d1
1)

T 0T

0T 0T (d2
3)

T 0T 0T 0T 0T (d1
2)

T

0T 0T 0T (d2
1)

T 0T (d1
3)

T 0T 0T




(2.73)

with the expression

Gαi = (m1
α)i

(
ϕ2 + ρ2

−ϕ1
− ρ1

)
− ρ1

i m1
α (2.74)

for α = 1, 2 and i = 1, 2, 3. More details about the null space reduction and reparame-

trization of unknowns can be found in [13].

2.3.5 Coordinate augmentation

The rotationless formulation circumvents the use of rotational parameters. Howe-

ver, in many practical applications the rotational degrees of freedom with associated

torques need to be considered in the formulation of multibody dynamics. A spe-

cific coordinate augmentation technique [19, 88, 87] can be applied to incorporate

the rotational parameters with associated torques into the rotationless formulation

of multibody systems. It is to be noted that the coordinate augmentation does not

destroy the advantageous features of the rotationless formulation.

In the following section a three-dimensional rotary crane example will demonstrate

the application of the coordinate augmentation technique.

2.4 Three-dimensional rotary 
rane

There are many different types of cranes like overhead cranes or rotary cranes, which

are widely used in various fields like in the transportation or construction industries.

In practical applications, they are operated by the human crane operator to move a

payload from the initial position to the end position along a trajectory in the working

space. The operation needs to avoid the obstacles and sways of the payload [28, 59]

and requires the motion planning for the payload position.
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2.4 Three-dimensional rotary crane

Figure 2.4: The three-dimensional rotary crane example.

In the inverse dynamics simulation, cranes are underactuated (a < f ) mechanical sy-

stems, in which the number a of control inputs/outputs is smaller than the number f

of degrees of freedom [26]. Besides, there are also fully actuated (a = f ) or overactu-

ated (a > f ) mechanical systems. The subsequent chapters will focus on the inverse

dynamics simulation of underactuated systems.

The three-dimensional rotary crane example depicted in Fig. 2.4 has originally been

dealt with in the inverse dynamics simulation by Blajer and Kołodziejczyk [28], where

generalized coordinates were used to formulate the dynamics of the system. As des-

cribed in the previous sections, for the same rotary crane example, either the ge-

neralized coordinates formulation in terms of minimal coordinates or the rotationless

formulation in terms of redundant coordinates can be applied to perform the forward

dynamics simulations [93]. Both formulations will be provided in the following.

2.4.1 Generalized 
oordinates formulation

The model of the rotary crane, as shown in Fig. 2.5, is considered as a rigid multibody

system, that is comprised of three rigid bodies and one payload. The payload is here

assumed as a point mass (mass m4). The first rigid body consists of the girder bridge

and the pillar, and its moment of inertia relative to the rotation axis d1
3

3 is expressed

by J1
3 . Here the vector d1

3 is identical to the unit vector e3 in the direction of Z-axis

(see also Fig. 2.9). The second rigid body is the trolley (mass m2), which undergoes

3 The subscript indicates which axis of the body frame is regarded as the rotation axis of the rigid
body, and the superscript indicates which rigid body is considered.
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2 Modeling of rigid multibody dynamics

the translational motion on the girder bridge. The third rigid body is the winch (mass

m3), which is contained in the trolley. The moment of inertia of the winch relative to

the rotation axis d3
2 (see also Fig. 2.9) is given by J3

2 .

X

Y

Z

ϕ

s

l

X′

m4

m2J3
2

J1
3

θ

θ1

θ2

Figure 2.5: The rotary crane model in terms of 5 generalized coordinates.

The rotary crane model is an underactuated mechanical system with 5 degrees of

freedom, that is, f = 5. Then the configuration of the system can be described by a

set of generalized coordinates:

µ =
[

ϕ s l θ1 θ2

]T
(2.75)

Here, the rotation angle of the girder bridge about the Z-axis relative to the X-axis is

given by ϕ, the position of the trolley on the girder bridge is specified by s, the length

of the hoisting cable is denoted by l which connects the payload with the winch, and

the swing angles depicted in Fig. 2.5 are given by θ1 and θ2. Moreover, the rotation

angle θ of the winch, as shown in Fig. 2.5, is related to the cable length l and can be

expressed by

θ =
l − l0

rw
(2.76)

in which the winch radius is denoted by rw and the initial cable length is l0.
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Figure 2.6: The rotary crane model with body frames {d1, d2, d3} and
{

d′
1, d′

2, d′
3
}

.

During the movement of the rotary crane the first body only has the rotational motion

about the Z-axis (see Fig. 2.6). The center of mass of the first body is assumed to be

at the origin of the inertial Cartesian coordinate system. Then the position vector of

the first body reads

ϕ1 =




0

0

0


 (2.77)

The position vectors of the trolley and the winch read

ϕ2 = ϕ3 =




s cos ϕ

s sin ϕ

0


 (2.78)

The position vector of the payload has been provided by Blajer and Kołodziejczyk [28]

and it reads

ϕ4 =



(s + l sin θ2) cos ϕ + l cos θ2 sin θ1 sin ϕ

(s + l sin θ2) sin ϕ − l cos θ2 sin θ1 cos ϕ

−l cos θ2 cos θ1


 (2.79)
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2 Modeling of rigid multibody dynamics

The position vector of the payload can also be calculated by

ϕ4 = ϕ3 + ln (2.80)

Here, a unit vector (see Fig. 2.6) is given by n, which is directed along the cable and

points to the payload .

A sequence of finite rotations about the body-fixed frame axis can be applied to cal-

culate the unit vector ñ:

ñ = R(−e3) = R(θ1)R(θ2)(−e3) = exp(θ̂1)exp(θ̂2)(−e3) =




sin θ2

− sin θ1 cos θ2

− cos θ1 cos θ2


 (2.81)

where the components of ñ are expressed in the initial body frame {d1, d2, d3} and

e3 =
[
0 0 1

]T
.

For Equation (2.81) it is necessary to first calculate the rotation matrix. At first, the

body frame of the winch is rotated clockwise from its initial orientation {d1, d2, d3}
to the current orientation

{
d′

1, d′
2, d′

3
}

by an angle (−θ1) about the body-fixed frame

axis d1 of the winch. The rotation matrix of the first rotation is then expressed by

R(θ1) = exp(θ̂1) = exp(θ1d̂1) =




1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1


 (2.82)

Then the body frame of the winch is rotated clockwise about the body-fixed frame

axis d′
2 by an angle of (−θ2). The rotation matrix of the second rotation is given by

R(θ2) = exp(θ̂2) = exp(θ2d̂′
2) =




cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2


 (2.83)

Next the unit vector n expressed in the inertial Cartesian coordinate system is calcu-

lated by

n = ñ1 d1 + ñ2 d2 + ñ3 d3 = (sin θ2) d1 − (sin θ1 cos θ2) d2 − (cos θ1 cos θ2) d3 (2.84)
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where the unit vectors of the initial body frame {d1, d2, d3} are expressed by

d1 =




cos ϕ

sin ϕ

0


 d2 =



− sin ϕ

cos ϕ

0


 d3 =




0

0

1


 (2.85)

At last, inserting the unit vector n into Equation (2.80) yields the same expression as

provided in Equation (2.79).

The Lagrangian fun
tion

The total kinetic energy of the three rigid bodies and one mass point is given by

T = T1 + T2 + T3 + T4 (2.86)

with the energy components

T1 =
1
2

J1
3 ϕ̇2 (2.87a)

T2 =
1
2

m2 ṡ2 +
1
2
(J2

3 + m2 s2) ϕ̇2 (2.87b)

T3 =
1
2

m3 ṡ2 +
1
2
(J3

3 + m3 s2) ϕ̇2 +
1
2

J3
2

(
l̇

rw

)2

(2.87c)

T4 =
1
2

m4 ϕ̇4 · ϕ̇4 (2.87d)

The potential energy of the rotary crane is given by

V = m4 g ϕ4 · e3 (2.88)

Then the Lagrangian of the mechanical system is calculated by Equation (2.2) and the

Lagrange’s equations of the second kind are applied to obtain the ODEs (2.17a)−(2.17b)

for the rotary crane model. It is to be noted that symbolic manipulations are used to

compute the differentiation of the Lagrangian.

Numeri
al dis
retization

To solve the ordinary differential equations of the rotary crane model, the second

order accurate mid-point-type rule is used and its application yields the discretized
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2 Modeling of rigid multibody dynamics

version of (2.17a)−(2.17b)

µn+1 − µn = ∆t νn+ 1
2

(2.89a)

M(µn+ 1
2
) (νn+1 − νn) = ∆t f (µn+ 1

2
, νn+ 1

2
) (2.89b)

with the time step size ∆t = tn+1 − tn in a representative time interval [tn, tn+1]. It

should be noted that (•)n and (•)n+1 represent the evaluation of the corresponding

vector at the time point tn and tn+1, respectively. Moreover, (•)n+ 1
2
= 1

2 [(•)n + (•)n+1]

denotes the mid-point evaluation of the corresponding vector.

Forward dynami
s simulation

In the forward dynamics simulation, the initial configuration of the rotary crane is

specified by the generalized coordinates

µ0 =
[
0 1.5 m 5 m 0 0

]T
(2.90)

and the initial generalized velocities are given by

ν0 =
[
1 m/s 0 0 0 0

]T
(2.91)

During the simulation time of t = 1 s, for example, the girder bridge rotates with

an initial angular velocity ϕ̇ = 1 m/s. As there are no other external forces and

torques acting on the mechanical system except the gravitational force, the payload

falls down. Table 2.1 presents the data of mass and moment of inertia for each body

of the rotary crane. In the numerical experiment, the winch radius is rw = 0.1 m, the

gravitational acceleration is g = 9.81 m/s2 and the masses and moments of inertia

are: m2 = 50 kg, m3 = 3 kg, m4 = 10 kg, J1
3 = 16.67 kg · m2, J2

3 = 2.08 kg · m2,

J3
3 = 0.26 kg · m2, J3

2 = 0.02 kg · m2.

body m [kg] J1 [kg · m2] J2 [kg · m2] J3 [kg · m2]
1 100 216.67 216.67 16.67
2 50 2.08 2.08 2.08
3 3 0.26 0.02 0.26
4 10 — — —

Table 2.1: Data of mass and moment of inertia for each body of the rotary crane.

32



2.4 Three-dimensional rotary crane

Numeri
al results

The numerical results of the forward dynamics simulation of the rotary crane are

presented in Fig. 2.7. They show that the total energy of the system and the Z-axis

component of the angular momentum Lz are conserved quantities because this rotary

crane model is a conservative system with rotational symmetry about the Z-axis.

Some snapshots of the movement of the rotary crane are presented in Fig. 2.8. It is to

be noted that in the simulation the origin of the inertial Cartesian coordinate system

XYZ is placed at the half height position of the pillar rather than at the top of it.
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Figure 2.7: Generalized coordinates formulation: Energy and angular momentum of the rotary crane
with the time step of ∆t = 10−4 s.
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2 Modeling of rigid multibody dynamics

Figure 2.8: Generalized coordinates formulation: Snapshots of the simulation of the rotary crane at
specific time points.

2.4.2 Rotationless formulation

The rotationless formulation in terms of redundant coordinates will be applied to

formulate the numerical model of the rotary crane, which is shown in Fig. 2.9.
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2.4 Three-dimensional rotary crane
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Figure 2.9: The model of the rotary crane with the position vectors ϕI , ϕ4 and the body frames{
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1, dI
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}
, I = 1, 2, 3.

Rigid bodies

Proceeding along the lines of Uhlar and Betsch [88], the configuration of each rigid

body (I = 1, 2, 3) and the point mass can be specified by the configuration vector

qI ∈ R
12 in Equation (2.34) and q4 ∈ R

3. Then the configuration of the rotary crane

model can be described by 39 redundant coordinates, which comprise the configura-

tion vector

q =




q1

q2

q3

q4




(2.92)

with each component

qI =




ϕI

dI
1

dI
2

dI
3




(I = 1, 2, 3) (2.93)

and the position vector of load mass

q4 = ϕ4 (2.94)
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2 Modeling of rigid multibody dynamics

Constraints

Due to the assumption of rigidity, each rigid body gives rise to six internal constraints

(Equation (2.44)). Three rigid bodies lead to 18 internal constraints. Besides, the ex-

ternal constraints describing the joints should also be considered in the model. Ac-

cordingly, the first body is connected to the ground via a revolute joint. The external

constraint functions are written as

Φrev1(q) =




ϕ1

d1
1 · e3

d1
2 · e3


 (2.95)

The associated constraint Jacobian is given by

Grev1(q) =




I 03×3 03×3 03×3 03×12 03×12 03×3

0T (e3)
T 0T 0T 01×12 01×12 01×3

0T 0T (e3)
T 0T 01×12 01×12 01×3


 (2.96)

The trolley is then connected to the girder bridge by a prismatic joint. The external

constraint functions are written as

Φpris(q) =




d1
2 ·ϕ2

d1
3 ·ϕ2

d1
1 · d2

2

d1
2 · d2

3

d1
3 · d2

1




(2.97)

The corresponding constraint Jacobian is given by

Gpris(q) =




0T 0T (ϕ2)T 0T (d1
2)

T 0T 0T 0T 01×12 01×3

0T 0T 0T (ϕ2)T (d1
3)

T 0T 0T 0T 01×12 01×3

0T (d2
2)

T 0T 0T 0T 0T (d1
1)

T 0T 01×12 01×3

0T 0T (d2
3)

T 0T 0T 0T 0T (d1
2)

T 01×12 01×3

0T 0T 0T (d2
1)

T 0T (d1
3)

T 0T 0T 01×12 01×3




(2.98)
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2.4 Three-dimensional rotary crane

The winch is connected to the trolley also by a revolute joint. The external constraint

functions are written as

Φrev2(q) =




ϕ3 −ϕ2

d2
2 · d3

1

d2
2 · d3

3


 (2.99)

and the corresponding constraint Jacobian is given by

Grev2(q) =




03×12 −I 03×3 03×3 03×3 I 03×3 03×3 03×3 03×3

01×12 0T 0T (d3
1)

T 0T 0T 0T 0T 0T 01×3

01×12 0T 0T (d3
3)

T 0T 0T 0T 0T (d2
2)

T 01×3


 (2.100)

The payload is connected to the winch, and the constraint function is described by

Φ =
(

ϕ4 −ϕ3
)
·
(

ϕ4 −ϕ3
)
− (rwθ + l0)

2 (2.101)

in which the cable length is specified. The constraint Jacobian is then given by

G =
[
01×24 2(ϕ3 −ϕ4)T 01×9 2(ϕ4 −ϕ3)T 0 0 −2rw(rwθ + l0)

]
(2.102)

The additional coordinates θ, s and θ, shown in Fig. 2.9, are introduced into the

rotationless formulation by applying a specific coordinate augmentation technique

[87]. The variable θ denotes the rotation angle of the girder bridge about the Z-axis

relative to the X-axis, the variable s specifies the displacement of the trolley and the

variable θ describes the rotation angle of the winch about the axis d3
2 of the body

frame. In addition, in the inverse dynamics simulation the external force or torque,

associated to the new coordinates θ, s and θ, can be incorporated into the rotatinless

formulation as well.

The extended configuration vector is expressed by

q =




q

θ

s

θ




42×1

(2.103)

The introduction of the three additional coordinates leads to three new constraints.

The first constraint corresponding to θ is expressed by

Φaug1(q) = d1
2 · e1 + sin θ + d1

2 · e2 − cos θ (2.104)
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2 Modeling of rigid multibody dynamics

and the constraint Jacobian is given by

Gaug1(q) =
[
0T 0T (e1 + e2)

T 0T 01×27 (cos θ + sin θ) 0 0
]

(2.105)

The second constraint corresponding to s is expressed by

Φaug2(q) = d1
1 ·ϕ2 − s (2.106)

which specifies the translational motion of the trolley. The constraint Jacobian is

Gaug2(q) =
[
0T ϕ2T

0T 0T (d1
1)

T 01×24 0 −1 0
]

(2.107)

The third constraint corresponding to θ is expressed by

Φaug3(q) = d3
1 · d2

3 + sin θ + d3
1 · d2

1 − cos θ (2.108)

With regard to the treatment of the discretization, Equation (2.108) is rewritten in

partitioned form

Φaug3(q) = Φ
1
aug3(q) + Φ

2
aug3(θ) (2.109)

with

Φ
1
aug3(q) = d3

1 · d2
3 + d3

1 · d2
1 (2.110a)

Φ
2
aug3(θ) = sin θ − cos θ (2.110b)

The corresponding constraint Jacobian is written as

Gaug3(q) =
[
01×15 (d3

1)
T 0T (d3

1)
T 0T (d2

3 + d2
1)

T 01×9 0 0 (cos θ + sin θ)
]

(2.111)

or in an alternative form

Gaug3(q) =
[
G1

aug3(q) G2
aug3(θ)

]
(2.112)

with the components

G1
aug3(q) =

[
01×15 (d3

1)
T 0T (d3

1)
T 0T (d2

3 + d2
1)

T 01×9 0 0
]

(2.113a)

G2
aug3(θ) = cos θ + sin θ (2.113b)

38



2.4 Three-dimensional rotary crane

In summary, the formulation of the rotary crane model has 42 redundant coordina-

tes, 18 internal constraints, 16 external constraints and 3 additional constraints. The

degrees of freedom of the system is calculated by f = 42 − 18 − 16 − 3 = 5. It is to

be noted that many external constraints are only linear and thus can be eliminated

without destroying the structure of the DAEs (2.20). The reduction procedure can be

found in Subsection 2.3.2.

Mass matrix and potential energy

After the application of the coordinate augmentation, the diagonal mass matrix of the

system needs to be extended as:

M =




M1

M2

M3

M4

0

0

0




42×42

(2.114)

where M I(I = 1, 2, 3) is given in Equation (2.42) and

M4 =




m4

m4

m4


 (2.115)

The potential energy of the rotary crane model is calculated by

V = m1 g e3 ·ϕ1 + m2 g e3 ·ϕ2 + m3 g e3 ·ϕ3 + m4 g e3 ·ϕ4 (2.116)

The differential-algebraic equations (2.20) are obtained for the rotary crane model.
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2 Modeling of rigid multibody dynamics

Redu
ed formulation of the rotary 
rane

The DAEs of the rotary crane model can be reduced by premultiplying the null space

matrix. A mapping F : R
f 7→ R

n can be found such that

q = F(µ) (2.117)

then the null space matrix P can be calculated through

P = DF(µ) (2.118)

Following the reduction procedure in Subsection 2.3.2, the ODEs (2.17a)−(2.17b) of

the rotary crane model can also be derived from the rotationless formulation.

Numeri
al dis
retization

For the direct discretization of the DAEs, the methodology developed by Gonzalez

[45] is employed. This yields a specific second-order accurate algorithm called the ba-

sic energy-momentum (BEM) scheme [19], which is energy consistent and conserves

momentum maps associated with symmetries of the underlying mechanical system.

A representative time interval [tn, tn+1] with the time step ∆t = tn+1 − tn is considered,

and the state space coordinates qn ∈ Q, vn ∈ R
n at tn are given.

Then the discretized version of (2.20a)−(2.20c) is given by

qn+1 − qn =
∆t

2
(vn + vn+1) (2.119a)

M (vn+1 − vn) = −∆t
[
∇V(qn, qn+1) + GT(qn, qn+1)λn,n+1

]
(2.119b)

Φ
(
qn+1

)
= 0 (2.119c)

where the discrete Lagrange multipliers λn,n+1 are assumed to be constant in the time

interval [tn, tn+1].

The advantageous algorithmic conservation properties of the BEM scheme are linked

to the discrete gradient of a function F : R
n 7→ R. If F is at most quadratic, then

the discrete gradient is identical to the standard gradient, which is evaluated in the

mid-point configuration qn+ 1
2
. This implies that ∇F (qn, qn+1) = ∇F (qn+ 1

2
). In

Equation (2.119b) the discrete gradient is applied to the potential energy function V,
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2.4 Three-dimensional rotary crane

i.e. ∇V(qn, qn+1), and to the constraint functions Φ. The discrete constraint Jacobian

of Φ is expressed by

GT(qn, qn+1) =
[
∇Φ1(qn, qn+1),∇Φ2(qn, qn+1), · · · ,∇Φm(qn, qn+1)

]
(2.120)

Considering the constraints of the rotary crane example again, the associated discrete

gradient coincides with the mid-point evaluation of the continuous constraint Jaco-

bian, since most of the constraints are at most quadratic. In contrast, the additional

constraint functions require a special treatment. Taking the third additional constraint

function Φaug3(q) as an example, the discrete gradient is expressed as

Gaug3(qn, qn+1) =
[
G1

aug3(qn+ 1
2
) G2

aug3(θn, θn+1)
]

(2.121)

with the component

G2
aug3(θn, θn+1) =

Φ
2
aug3(θn+1)− Φ

2
aug3(θn)

θn+1 − θn
(2.122)

If θn+1 → θn, then G2
aug3(θn, θn+1) → (Φ2

aug3(θn))′, where the constraint derivative is

given by (Φ2
aug3(θ))

′ = cos θ + sin θ.

To solve the discretized equations of motion (2.119a)−(2.119c), inserting vn+1 cal-

culated from Equation (2.119a) into (2.119b) leads to a system of nonlinear alge-

braic equations, which can be solved for the n + m unknowns (qn+1, λn,n+1). Thus,

qn+1 ∈ Q, vn+1 ∈ R
n, λn,n+1 ∈ R

m can be determined by applying the BEM scheme,

which is discussed thoroughly in [9].

Forward dynami
s simulation

body m [kg] E1 [kg · m2] E2 E3 length [m] width depth
1 100 8.33 8.33 208.33 5 1 1
2 50 1.04 1.04 1.04 0.5 0.5 0.5
3 3 0.01 0.25 0.01 1 0.2 0.2
4 10 — — — — — —

Table 2.2: Data of mass, Euler tensor and dimension for each body of the rotary crane.
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2 Modeling of rigid multibody dynamics

Next the simulation4 of the rotary crane now using the redundant coordinates is

repeated. The simulation will focus on the algorithmic conservation properties of the

BEM scheme.

In the simulation, the mass, value of Euler tensor and dimension of each rigid body

of the rotary crane are listed in Table 2.2. The principal values of the Euler tensor Ei

can be calculated by

Ei =
1
2
(Jj + Jk − Ji) (2.123)

for even permutations of the indices (i, j, k) and the principal values of the classical

(convected) inertia tensor are given by Ji, Jj, Jk. Moreover, the initial configuration is

defined by: θ = 0, s = 2.5 m, θ = 0, l0 = 5 m. The initial angular velocity of the first

body is given by θ̇ = 1 m/s. During the simulation there are no other external forces

and torques except the gravitational force.

The rotary crane system can be classified as an autonomous Hamiltonian system with

symmetry. As shown in Fig. 2.10, the total energy and the third component of the

angular momentum Lz are conserved quantities. Some snapshots of the simulated

motion of the rotary crane model are illustrated in Fig. 2.11. Obviously, the nume-

rical results and the snapshots are identical to those obtained from the generalized

coordinates formulation. It is to be noted that the present energy-momentum scheme

conserves the quantities independent of the time step size.
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Figure 2.10: Rotationless formulation: Energy and angular momentum of the rotary crane with the
time step of ∆t = 10−2 s.

4 The origin of the inertial Cartesian coordinate system XYZ is placed at the half height position of
the pillar rather than at the top of the pillar (see Fig. 2.9). The placement of the origin of the inertial
Cartesian coordinate system has no influence on the rotationless formulation.
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2.4 Three-dimensional rotary crane

Figure 2.11: Rotationless formulation: Snapshots of the simulation of the rotary crane at specific time
points.
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3 Numeri
al integration s
hemes

In Chapter 2 the equations of motion of mechanical systems have been derived by

applying the Lagrange’s equations. The equations of motion pertaining to constrai-

ned mechanical systems are index-3 differential-algebraic equations, which can be

recapitulated here:

q̇ − v = 0 (3.1a)

Mv̇ +∇V(q) + GT(q)λ = 0 (3.1b)

Φ(q) = 0 (3.1c)

Then the numerical time-stepping schemes are applied to solve the above continuous

equations of motion (3.1a)−(3.1c). For the time discretization, a representative time

interval In = [tn, tn+1] with the time step ∆t = tn+1 − tn is considered, and the

coordinates qn ∈ Q, velocities vn ∈ R
n and the Lagrange multipiers λn ∈ R

m at the

time node tn are given. The task is to compute the coordinates qn+1 ∈ Q, velocities

vn+1 ∈ R
n and the Lagrange multipliers λn+1 ∈ R

m at the next time node tn+1.

Some numerical integration schemes, which are usually used for the direct time dis-

cretization of the underlying DAEs, will be outlined in this chapter.

3.1 Impli
it Euler method

The implicit Euler method is a basic time-stepping scheme for the numerical integra-

tion of DAEs. The application of the implict Euler method leads to the direct time



3 Numerical integration schemes

discretization of the index-3 DAEs (3.1a)−(3.1c):

qn+1 − qn = ∆t vn+1 (3.2a)

M (vn+1 − vn) = −∆t
[
∇V(qn+1) + GT(qn+1)λn+1

]
(3.2b)

Φ
(
qn+1

)
= 0 (3.2c)

Then the Newton-Raphson method can be applied to solve the resulting nonlinear

algebraic equations (3.2a)−(3.2c). The details about the Newton-Raphson method can

be found in [40]. Accordingly, the coordinates, velocities qn+1 ∈ Q, vn+1 ∈ R
n as well

as the Lagrange multipliers λn+1 ∈ R
m at the time node tn+1 can be obtained.

It is worth noting that the implicit Euler method is first order accurate and exhibits

numerical damping. Due to the numerical damping the total energy of a conservative

mechanical system is not conserved, but decays with the time during the numerical

simulation.

3.2 Mid-point-type rule

The mid-point-type rule has been applied to discretize the ordinary differential equa-

tions in the example of the rotary crane. It can also be used for the time discretization

of the differential-algebraic equations (3.1a)−(3.1c). Then the set of discretized equa-

tions is expressed as

qn+1 − qn = ∆t vn+ 1
2

(3.3a)

M (vn+1 − vn) = −∆t
[
∇V(qn+ 1

2
) + GT(qn+ 1

2
)λn,n+1

]
(3.3b)

Φ
(
qn+1

)
= 0 (3.3c)

in which the Lagrange multipliers λ ∈ R
m are approximated by constant values

λn,n+1 ∈ R
m during the time interval In. This approximation leads to possible discon-

tinuities on the boundaries of the time interval In. Besides, the geometric constraint

conditions need to be satisfied at each time node tn and tn+1. It is to be noted that

in nonlinear elastodynamics the mid-point rule does not conserve the total energy of

the mechanical system.
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3.3 Energy-momentum scheme

3.3 Energy-momentum s
heme

The energy-momentum scheme is a structure-preserving time-stepping scheme, which

was originally proposed by Simo and Tarnow [85] in the context of nonlinear elasto-

dynamics. It inherits conservation of energy and momentum maps and has also been

applied to rigid body dynamics, in which the rotationless formulation of multibody

systems benefits the design of the energy-momentum scheme [19]. The application

of the energy-momentum scheme in various problems can be found for example in

[12, 14, 18, 23, 24, 45, 49].

The energy-momentum scheme has already been applied to discretize the differential-

algebraic equations in the example of the rotary crane. The set of discretized equati-

ons is recapitulated:

qn+1 − qn =
∆t

2
(vn + vn+1) (3.4a)

M (vn+1 − vn) = −∆t
[
∇V(qn, qn+1) + GT(qn, qn+1)λn,n+1

]
(3.4b)

Φ
(
qn+1

)
= 0 (3.4c)

where the discrete constraint Jacobian is defined by

GT(qn, qn+1) =
[
∇Φ1(qn, qn+1),∇Φ2(qn, qn+1), · · · ,∇Φm(qn, qn+1)

]
(3.5)

The discrete gradient (derivative) denoted by ∇ is crucial to the algorithmic conserva-

tion of both energy and angular momentum. It satisfies the directionality property

∇ f (qn, qn+1) · (qn+1 − qn) = f (qn+1)− f (qn) (3.6)

which is of key importance for algorithmic energy conservation. It is worth mentio-

ning that if the function F : R
n 7→ R is at most quadratic then the discrete gradient

coincides with the mid-point evaluation of the standard gradient. That is

∇F (qn, qn+1) = ∇F (qn+ 1
2
) (3.7)

An in-depth investigation of properties of discrete derivatives can be found in [44].

In contrast to the implicit Euler method, the energy-momentum scheme is second

order accurate and exhibits superior numerical stability. The drawback of both sche-

mes lies in the condition number of the interation matrix for the solution of the
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3 Numerical integration schemes

nonlinear system of equations (3.4a)−(3.4c). It implies that the condition number

of the iteration matrix becomes more and more ill-conditioned for decreasing time

steps. To remedy this drawback, a further modification can be accomplished by ap-

plying the discrete null space method and the reparametrization of the remaining

unknows. Application of the two size-reduction steps yields the so-called reduced

energy-momentum scheme. Further details about the reduction method can be found

in [7, 8, 9, 13, 79, 87].

3.4 Variational integrator

The concept of a variational integrator is based on a direct discretization of the action

integral, whereas the previous time-stepping schemes rely on the direct discretization

of the underlying equations of motion. In this section specific variational integrators

will be derived according to the lecture notes from Betsch [11]. For this purpose, it

is assumed that the time interval I = [0, T] is divided into N equidistant intervals

In = [tn, tn+1] with the time step ∆t = tn+1 − tn.

Minimal 
oordinates

Here the configuration vector q is used to represent the minimal coordinates. The

action integral is then defined as

S =

T∫

0

L(q, q̇)dt =
N−1∑

n=0

tn+1∫

tn

L(q, q̇)dt (3.8)

The discrete Lagrangian is introduced to approximate the integral
tn+1∫
tn

L(q, q̇)dt. In

this case there is

Ld(qn, qn+1) ≈
tn+1∫

tn

L(q, q̇)dt (3.9)

Accordingly, the discrete action integral is expressed by

Sd(q0, . . . , qN) =
N−1∑

n=0

Ld(qn, qn+1) (3.10)
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3.4 Variational integrator

The application of the discrete variational principle requires that δSd = 0 with the

boundary points q0 and qN held fixed. This yields

δSd = δ
N−1∑

n=0

Ld(qn, qn+1) =
N−1∑

n=0

δLd(qn, qn+1) = 0 (3.11)

By using the Gâteaux derivative (see Appendix A.1), the partial derivatives 1 can be

calculated and the variation of the discrete action integral reads

δSd =
N−1∑

n=0

δLd(qn, qn+1) =
N−1∑

n=0

[
D1Ld(qn, qn+1) · δqn + D2Ld(qn, qn+1) · δqn+1

]

=D1Ld(q0, q1) · δq0 +
N−1∑

n=1

δqn ·
[
D1Ld(qn, qn+1) + D2Ld(qn−1, qn)

]
+

D2Ld(qN−1, qN) · δqN

=
N−1∑

n=1

δqn ·
[
D1Ld(qn, qn+1) + D2Ld(qn−1, qn)

]
= 0

(3.12)

where a discrete integration by parts [71] is used and the end point conditions

δq(t0) = δq0 = 0 and δq(tN) = δqN = 0 are considered. It is required that the

variation of the discrete action integral is equal to zero for any choice of δqn. This

leads to the discrete Euler-Lagrange (DEL) equations:

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) = 0 (3.13)

which must hold for n = 1, . . . , N − 1.

The trapezoidal rule is used to approximate the integral in Equation (3.9), which can

be expressed by

Ld(qn, qn+1) =
∆t

2

[
L

(
qn,

qn+1 − qn

∆t

)
+ L

(
qn+1,

qn+1 − qn

∆t

)]
(3.14)

1 Here the notations D1Ld(x, y) =
∂Ld

∂x
and D2Ld(x, y) =

∂Ld

∂y
are used.
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3 Numerical integration schemes

by using the following expressions

q |In = qn +
t − tn

∆t
(qn+1 − qn)

q̇ |In =
(qn+1 − qn)

∆t

(3.15)

The continuous Lagrangian of the mechanical system under consideration can be

given by

L(q, q̇) =
1
2

q̇ · Mq̇ − V(q) (3.16)

With regard to Equation (3.14), the discrete Lagrangian is thus written as

Ld(qn, qn+1) =
1

2∆t

(
qn+1 − qn

)
· M

(
qn+1 − qn

)
− ∆t

2

[
V (qn) + V

(
qn+1

)]
(3.17)

Then the discrete Euler-Lagrange equations in (3.13) are applied and the partial deri-

vatives are

D1Ld(qn, qn+1) = −M
qn+1 − qn

∆t
− ∆t

2
∇V (qn) (3.18a)

D2Ld(qn, qn+1) = M
qn+1 − qn

∆t
− ∆t

2
∇V

(
qn+1

)
(3.18b)

Equation (3.18b) can also be expressed by

D2Ld(qn−1, qn) = M
qn − qn−1

∆t
− ∆t

2
∇V (qn) (3.19)

Inserting Equation (3.19) and (3.18a) into Equation (3.13) leads to the following non-

linear algebraic equations

1
∆t

M
(
−qn+1 + 2qn − qn−1

)
− ∆t∇V (qn) = 0 (3.20)

and an alternative form is given by

1
(∆t)2 M

(
qn+1 − 2qn + qn−1

)
= −∇V (qn) (3.21)

in which the acceleration has been approximated through the second order central

difference, that is

q̈ =
qn+1 − 2qn + qn−1

(∆t)2 (3.22)
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3.4 Variational integrator

If the coordinates qn−1 at the time node tn−1 and qn at tn are already known, then the

coordinates qn+1 at tn+1 can be calculated. It is obvious that the variational integrator

is an explicit two-step method, that is, (qn−1, qn) → (qn, qn+1). Nevertheless, it can

be implemented as an one-step method by introducing the discrete momentum

Pn = −D1Ld(qn, qn+1) (3.23)

Due to Equation (3.13), the discrete momentum is also given by

Pn = D2Ld(qn−1, qn) (3.24)

or in an alternative form

Pn+1 = D2Ld(qn, qn+1) (3.25)

In this case, if qn and Pn are given, then qn+1 can be calculated from Equation (3.23).

Then the momentum Pn+1 can be obtained from Equation (3.25). The procedure is

expressed by (qn, Pn) → (qn+1, Pn+1). Instead of the trapezoidal rule, the mid-point

rule can also be used to approximate the integral in Equation (3.9)

Ld(qn, qn+1) = ∆tL

(
qn+1 + qn

2
,

qn+1 − qn

∆t

)
(3.26)

Other descriptions of the variational integrator can be found in [22, 68, 66, 71].

Redundant 
oordinates

Here the configuration vector q is used to represent the redundant coordinates. Ac-

cording to the variational symplectic-momentum integrator proposed by Leyendecker

et al. [68] (see also [22]), for constrained mechanical systems, the discretization of the

extended action integral (2.11) with t1 = 0 and t2 = T yields the discrete extended

action integral

S̃d =
N−1∑

n=0

[
Ld(qn, qn+1)−

∆t

2

(
λn · Φ(qn) + λn+1 · Φ(qn+1)

)]
(3.27)

with the expression

T∫

0

λ · Φ(q)dt ≈ ∆t

2

(
λn · Φ(qn) + λn+1 · Φ(qn+1)

)
(3.28)
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3 Numerical integration schemes

Similarly, the variational principle requires that δS̃d = 0 for fixed end points q0 and

qN. This yields

δq0 ·
[

D1Ld(q0, q1)−
1
2

DΦ
T
d(q0)λ0

]
+ δqN ·

[
D2Ld(qN−1, qN)−

1
2

DΦ
T
d(qN)λN

]

+
N−1∑

n=1

δqn ·
[

D1Ld(qn, qn+1) + D2Ld(qn−1, qn)− DΦ
T
d(qn)λn

]
= 0

(3.29)

for any choice of δqn with 0 6 n 6 N and the end point conditions δq0 = δqN = 0,

and the condition

1
2

δλ0 · Φd(q0) +
1
2

δλN · Φd(qN) +
N−1∑

n=1

δλn · Φd(qn) = 0 (3.30)

for any choice of λn with 0 6 n 6 N. Here the abbreviation Φd(q) = ∆t Φ(q) is used.

Eventually, the discrete Euler-Lagrange (DEL) equations for constrained mechanical

systems read

D2Ld(qn−1, qn) + D1Ld(qn, qn+1)− GT
d(qn)λn = 0 (3.31a)

Φ(qn+1) = 0 (3.31b)

where Gd(q) = ∆t DΦ(q). In view of the continuous Lagrangian in Equation (3.16),

the discrete Lagrangian in Equation (3.14) is given by

Ld(qn, qn+1) =
1

2∆t

(
qn+1 − qn

)
· M

(
qn+1 − qn

)
− ∆tV

(
qn+1 + qn

2

)
(3.32)

Applying the discrete Euler-Lagrange equations (3.31a)−(3.31b) leads to

M

(
qn+1 − 2qn + qn−1

)

∆t
+

∆t

2

[
∇V(qn− 1

2
) +∇V(qn+ 1

2
)
]
+ GT

d(qn)λn = 0 (3.33a)

Φ(qn+1) = 0 (3.33b)

with the expressions

qn− 1
2
=

1
2
(qn−1 + qn), qn+ 1

2
=

1
2
(qn + qn+1) (3.34)
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3.5 Andrew’s squeezer mechanism

The discrete momentum can be defined by

P−
n = −D1Ld(qn, qn+1) +

1
2

GT
d(qn)

P+
n = −D2Ld(qn−1, qn)−

1
2

GT
d(qn)

(3.35)

Accordingly, the DEL equations can be written in an alternative form

P+
n − P−

n = 0 (3.36)

3.5 Andrew's squeezer me
hanism

A

B

C

DE

F

G

O K1K2

K3

K4

K5

K6

K7

β

P
x

y

Figure 3.1: Andrew’s squeezer mechanism: Setup.

A classical benchmark problem for multibody dynamics is used to demonstrate the

application of numerical integration schemes. In this benchmark problem the ro-

tationless formulation (see Section 2.3) is used. According to [91, Sec. 3.6.9] this
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3 Numerical integration schemes

mechanism can be traced back to the PhD thesis by G.C. Andrews (1971). A detailed

description of Andrews’ squeezer mechanism can be found in the Multibody Sys-

tems Handbook [80], the book [50, Ch. VII.7] and the Technical Report [55]. Related

numerical investigations have also been documented in [4, Sec. 5.2].

As shown in Fig. 3.1, the multibody system at hand consists of 7 rigid bodies inter-

connected by frictionless revolute joints. The coordinates of the joints are given in

Table 3.1. In addition, the inertia properties as well as the coordinates of the center of

mass for all bodies are given in Table 3.2.

Moreover a spring with spring coefficient c0 = 4530 N/m and unstretched length

l0 = 7.785× 10−2 m is connected to the present multibody system. The spring length

in the initial configuration (t0 = 0) is 5.267× 10−2 m.

The body-fixed frames are located in the center of mass of each body. The mechanism

is driven by a motor located at point O. A constant torque M = 0.033 N · m is applied.

In the initial configuration (t0 = 0) the mechanism is at rest. Obviously, the mecha-

nism at hand has one degree of freedom. In the numerical simulations gravitation is

not taken into account.

In Fig. 3.2 the two displacement components corresponding to joint (P) are plotted

versus time. Similarly the angle β is plotted over time in Fig. 3.3. Again it can be

observed from Fig. 3.4 that the EM scheme adheres to the balance law for energy,

whereas both Gen-α2 and VI fail to satisfy this balance law. The situation is shown in

more detail in Fig. 3.5. Of course, since Gen-α and VI are consistent, refinement of

the time step yields an improved fulfillment of the balance of energy. This is shown

in Figs. 3.6 and 3.7. Finally, to illustrate the motion of the whole multibody system at

hand several snapshots are plotted in Fig. 3.8.

2 More details about the generalized-α scheme can be found for example in [4].
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3.5 Andrew’s squeezer mechanism

Joints x [m] y [m]

O 0 0
A -0.06934 -0.00227
B -0.03635 0.03273
C 0.01400 0.07200
D -0.01047 0.02536
E -0.03400 0.01646
F -0.03163 -0.01562
G 0.00699 -0.00043
P -0.02096 0.00130

Table 3.1: Andrew’s squeezer mechanism. Coordinates of the joints.

Link Mass [kg] Rotational inertia [kg · m2] x [m] y [m]

1 0.04325 2.194 · 10−6 9.182 · 10−4 5.700 · 10−5

2 0.00365 4.410 · 10−7 -4.491 · 10−3 2.788 · 10−4

3 0.02373 5.255 · 10−6 1.874 · 10−2 2.048 · 10−2

4 0.00706 5.667 · 10−7 -3.022 · 10−2 1.207 · 10−2

5 0.07050 1.169 · 10−5 -5.324 · 10−2 1.663 · 10−2

6 0.00706 5.667 · 10−7 -2.854 · 10−2 -1.072 · 10−2

7 0.05498 1.912 · 10−5 -5.926 · 10−2 -1.060 · 10−2

Table 3.2: Andrew’s squeezer mechanism: Inertia data and coordintates of the center of mass.
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Figure 3.2: Displacement of hinge (P).

0 0.005 0.01 0.015 0.02 0.025 0.03
-3

-2

-1

0

1

2

3

time

an
gl

e

Figure 3.3: Angle β [rad].
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Figure 3.4: Time step ∆t = 3 · 10−4s.
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Figure 3.5: Time step ∆t = 3 · 10−4s.
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Figure 3.6: Time step ∆t = 3 · 10−5s.
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Figure 3.7: Time step ∆t = 3 · 10−5s.
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3.5 Andrew’s squeezer mechanism

Figure 3.8: Andrew’s squeezer mechanism: Snapshots at t = {0, 3, 6, 9, 12, 15}ms.
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4 Inverse dynami
s simulation of

multibody systems

The inverse dynamics control problem can be stated as follows: given a desired or

prescribed motion of a mechanical system, determine the control inputs that force

the system to complete this specified motion, and the determination is based on the

dynamic model of the controlled mechanical system [29]. The derivation of the dyna-

mic model of the controlled mechanical system can be achieved by either generalized

coordinates formulation in terms of minimal coordinates or rotationless formulation

in terms of redundant coordinates (see Chapter 2). The method of inverse dynamics is

often most suitable for the trajectory tracking control problems of multibody systems.

Depending on the ratio of the number a of independent control inputs to the num-

ber f of degrees of freedom, the multibody systems fall into three main categories:

overactuated (a > f ), fully actuated (a = f ) and underactuated (a < f ) mechanical

systems [26].

Overactuated systems have more control inputs than degrees of freedom and are

ofen found in aerospace, automotive, robotics applications and biomechanical mo-

dels. Fully actuated systems have as many control inputs/outputs as degrees of free-

dom and the motion of the systems is fully specified by the task requirements. Given

a fully prescribed motion of a system at the position, velocity and acceleration levels,

the desired feedforward control law is the consequent result of a pure algebraic reso-

lution of the dynamic equations [26]. The inverse dynamics control of this type has

been intensively described in robotic textbooks, such as Craig [36], Murray et al. [75],

Spong et al. [86] (see Seifried [81]). Moreover, the previously developed structure-

preserving integrators for index-3 DAEs have been applied successfully (see Uhlar

and Betsch [89]), where servo constraints are incorporated into an energy-momentum

scheme emanating from the direct discretization of the underlying DAEs.

In fully actuated and overactuated multibody systems, all degrees of freedom can

explicitly be regulated by available controls, such as control forces and torques. This



4 Inverse dynamics simulation of multibody systems

is not the case for underactuated multibody systems, which have fewer control inputs

than degrees of freedom. The underactuation makes the inverse dynamics control

problem more challenging. Moreover, for trajectory tracking control of underactuated

systems required to complete a partly specified motion, an accurate and efficient

feedforward control law is often necessary. Therefore, the main focus is on the inverse

dynamics simulation of underactuated mechanical systems, which relies on servo

constraints for the partial specification of the motion of the systems.

4.1 Undera
tuated me
hani
al systems with servo


onstraints

In underactuated mechanical systems, the number a of control inputs, equal to the

number of control outputs, which are in general desired performance goals of a dy-

namical system, is smaller than the number f of degrees of freedom, a < f [29].

Typical examples of underactuated mechanical systems are cranes like overhead cra-

nes, rotary cranes, and flexible multibody systems like manipulators with flexible

joints or members [54, 69]. Some other examples of underactuated systems can be

found in [25, 27].

A possible performance task of underactuated systems is the output trajectory tracking,

for example, the trajectory tracking of the end-effector of manipulators. Thus, the

main focus here is on the specification of trajectories of specific points of a multibody

system such as the end-effector of a robot. In this connection, the desired system

outputs can be described in terms of the system states and modeled as servo con-

straints [56, 29] (also called control constraints or program constraints), which can

be imposed onto the controlled system as additional constraint functions. The servo

constraints enforce the desired motion along prescribed trajectories and thus can be

used to partially prescribe the motion of the discrete mechanical systems. The use of

servo constraints makes possible a simulation approach to the inverse dynamics of

underactuated multibody systems.

The partial specification of the motion of underactuated multibody systems by means

of servo constraints typically leads to a problem formulation in terms of differential-

algebraic equations (DAEs). If minimal coordinates are used, the differential part of

the DAEs corresponds to the equations of motion (4.1b), whereas the algebraic part is

related to the servo constraints (4.1c). In the special case of fully actuated multibody
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4.1 Underactuated mechanical systems with servo constraints

systems, the simulation approach to the inverse dynamics problem yields index-3

DAEs that can be integrated in analogy to the DAEs corresponding to constrained

mechanical systems (see, e.g., [89]). However, the situation changes considerably if

underactuated mechanical systems are dealt with. In this type of systems, the number

of degrees of freedom exceeds the number of controls. The use of servo constraints

in the context of underactuated multibody systems leads to a broad diversity of servo

constraint problems (see, in particular, [26, 33, 82]). One indicator of problem di-

versity is the (differentiation) index [6] of the underlying DAEs that typically ranges

from three to five and even higher. The index of a set of DAEs is an important charac-

teristic, which is a measure of singularity of the DAEs and indicates difficulty in their

numerical treatment. The index of a DAE system denotes also the number of times the

algebraic equations of the system need to be differentiated with respect to time to get a

set of ordinary differential equations in all the involved variables [30]. Consequently,

to facilitate a stable numerical integration, some kind of index reduction approach

needs to be applied. This issue will be discussed in detail in the subsequent chap-

ters. The other indicator of problem diversity is related to the differential flatness [78]

of underactuated mechanical systems. If the underactuated system is differentially

flat, the analytical solution can be obtained through the flatness-based formulation.

If the underactuated system is non-flat, the stability of the internal dynamics is of

paramount importance and ensures the controllability of the system [26, 33, 82]. Here

only differentially flat systems are considered.

4.1.1 Generalized 
oordinates formulation

Servo constraints can be appended to the previously derived equations of motion to

formulate the inverse dynamics control problem of underactuated mechanical sys-

tems. Using minimal coordinates, the DAEs governing the inverse dynamics of dis-

crete underactuated mechanical systems consist of the equations of motion and the

servo constraints [25, 27]. In particular, the equations of motion have the form

µ̇ = ν (4.1a)

M(µ)ν̇ = f (µ, µ̇) +B
T(µ)u (4.1b)

with minimal coordinates µ ∈ R
f , generalized velocities ν ∈ R

f , positive definite

mass matrix M ∈ R
f , f , generalized forces f ∈ R

f , control inputs u ∈ R
a, and

input transformation matrix B ∈ R
a, f . Furthermore, t ∈ I denotes the time, and
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4 Inverse dynamics simulation of multibody systems

I = [t0, t f ] ⊂ R is the time interval of interest. The equations of motion are subject to

the servo constraints

s(µ) = γ(t) (4.1c)

where γ(t) : I → R
a is the desired output function. Note that the number a of

control inputs is assumed to be equal to the number of independent servo constraints.

Correspondingly, the Jacobian of the servo constraints S(µ) := Ds(µ) is assumed to

have full (row) rank. At this point the control inputs are regarded as variables [63,

Ch. 3.6]. The attention is focused on underactuated mechanical systems in which the

number of controls is lower than the number of degrees of freedom, that is, a < f .

A distinguishing feature of the DAEs (4.1a)−(4.1c) is that, in general, B 6= S . This

is in sharp contrast to mechanical systems subject to holonomic constraints. The

difference between holonomic and servo constraints is further reflected in the rank

of the matrix P := SM
−1

B
T and in the index of the DAEs (4.1a)−(4.1c). A precise

definition of the differentiation index, denoted simply by index, can be found in [34].

If the matrix P has full rank (equal to a), then there should exist an invertible matrix

H ∈ R
a,a such that B = HS . This implies that there exist Lagrange multipliers

λ ∈ R
a such that BTu = S

Tλ. Accordingly, the DAEs (4.1a)−(4.1c) assume the well-

known structure of the equations of motion pertaining to (holonomically) constrained

mechanical systems written in terms of redundant coordinates. In this special case,

the DAEs (4.1a)−(4.1c) are known to have the index of 3. Using the terminology

introduced by Blajer [25], this case is called the orthogonal realization of the servo

constraints.

In general the matrix P is rank deficient and the realization of the servo constraints

is either mixed orthogonal-tangential or purely tangential in the sense of Blajer [25].

Then the so-called controlled and constrained subspaces do not coincide. In particu-

lar, the rank of the matrix P measures the number of directions of the constrained

space which can be directly actuated by the control inputs [27]. For rank(P) < a the

index of the DAEs (4.1a)−(4.1c) always exceeds 3.

It has already been mentioned that many examples of mechanical systems employing

servo constraints lead to DAEs of index 5. Nevertheless, there are examples with

arbitrarily high index, see Example 2 in [25]. In the present work crane models that

typically yield DAEs of index 5 (see, for example [27, 30, 31]) are considered first.

Similarly, the motion of more involved crane-type manipulators such as the wire
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4.1 Underactuated mechanical systems with servo constraints

mechanism dealt with in [53] is governed by DAEs of index 5. This wire mechanism

example will be discussed in the sequel.

4.1.2 Rotationless formulation

The underactuated multibody systems can be formulated by a specific rotationless

formulation [17] in terms of redundant coordinates as well. One of the main fea-

tures of the rotationless formulation is the constant mass matrix. Using redundant

coordinates, the servo constraints can be expressed by time specified outputs, such as

the load coordinates of the end-effector. The servo constraints can be easily appen-

ded to the DAEs pertaining to the rotationless formulation of multibody dynamics.

This yields a mixed set of standard (passive) constraints and servo constraints. The

motion of the discrete underactuated mechanical systems under consideration is go-

verned by differential-algebraic equations with a mixed set of holonomic (4.2d) and

control constraints (4.2c).

q̇ − v = 0 (4.2a)

Mv̇ +∇V(q) + GT(q)λ + BTu = 0 (4.2b)

c(q, t) = 0 (4.2c)

Φ(q) = 0 (4.2d)

Here, the vector of redundant coordinates is denoted by q ∈ R
n which specifies the

configuration of the underactuated mechanical system at time t. The vector of redun-

dant velocities is expressed by v = q̇, where a superposed dot indicates differentiation

with respect to time. Accordingly, the configuration vector q and the velocity vector

v comprise the vector of state space coordinates (q, v) (see, for example, Rosenberg

[77]). The mass matrix M ∈ R
n×n is assumed to be constant, symmetric and non-

singular. The kinetic energy of the underactuated system can be written as

T(v) =
1
2

v · Mv (4.3)

Moreover, the potential energy function is denoted by V(q) ∈ R. The holonomic

constraints are represented by a vector of geometric functions Φ(q) ∈ R
m and the

associated constraint Jacobian is described by G(q) = DΦ(q) ∈ R
m×n and λ ∈ R

m

represents a vector of Lagrange-multipliers, which specify the relative magnitude of

the constraint forces. The m holonomic constraints are assumed to be independent.
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4 Inverse dynamics simulation of multibody systems

Due to the presence of the holonomic constraints, the constrained underactuated me-

chanical system has ñ = n − m degrees of freedom. The corresponding configuration

space of the underactuated system is given by

Q = {q(t) ∈ R
n | Φ(q) = 0} (4.4)

Furthermore, a vector of servo constraint functions c(q, t) ∈ R
m̃ is expressed in the

form of

c(q, t) = s(q)− γ(t) (4.5)

The servo constraints serve the purpose of partially specifying the motion of underac-

tuated systems (m̃ < ñ) and the system outputs are specified by s(q) ∈ R
m̃ together

with the given desired trajectory γ(t) ∈ R
m̃. Note that the servo constraints comprise

rheonomic holonomic constraints as well. The formulation of control constraints in

Equation (4.5) is much simpler compared to the formulation in Equation (4.1c) and

this will be demonstrated in the numerical examples in the sequel. The corresponding

actuator forces are determined by the control inputs u ∈ R
m̃ in conjunction with the

input transformation matrix B ∈ R
m̃×n.

4.1.3 Redu
ed formulation of the DAEs

The generalized coordinates formulation in terms of minimal coordinates can also be

obtained by applying the null space method introduced in Section 2.3.2 to the DAEs

(4.2a)−(4.2d) emanating from the rotationless formulation in terms of redundant coor-

dinates. This yields the same equations of motion in terms of minimal coordinates as

the DAEs (4.1a)−(4.1c).

Assume that it is possible to choose ñ generalized coordinates µ ∈ U ⊂ R
ñ for

the parameterization of the configuration manifold Q. Then there exists a mapping

F : U 7→ Q such that

q = F(µ) (4.6)

Admissible velocities v ∈ TqQ = null(G(q)) can be written in the form

v = Pν (4.7)

with the generalized velocities ν = µ̇ and the null space matrix P = DF(µ). Since the
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4.2 Numerical integration of underactuated systems with servo constraints

columns of P ∈ R
n×ñ span the null space of G ∈ R

m×n, this implies

GP = 0 (4.8)

Using Equation (4.7), the reduced form of the kinetic energy T̃ is given by

T̃ =
1
2

ν · M̃ν (4.9)

with the reduced mass matrix

M̃ = PT MP (4.10)

Note that the mass matrix M̃ is generally configuration dependent and assumed to

be positive definite. Premultiplying Equation (4.2b) by PT and making use of Equa-

tion (4.7) and (4.8) yield the reduced formulation

µ̇ − ν = 0 (4.11a)

M̃ν̇ + PT MṖν +∇Ṽ(µ) + B̃
T

u = 0 (4.11b)

c̃(µ, t) = 0 (4.11c)

where the servo constraints are given by

c̃(µ, t) = s̃(µ)− γ(t) (4.12)

is obtained by inserting Equation (4.6) into the servo constraints (4.5). Furthermore,

∇Ṽ(µ) = PT ∇V(q) and B̃
T
= PTBT (4.13)

The resulting DAEs (4.11a)−(4.11c) in terms of generalized coordinates can be re-

garded as the starting point for index reduction approaches, such as the Blajer-type

projection method [25, 27] and the newly proposed index reduction by minimal ex-

tension method [2].

4.2 Numeri
al integration of undera
tuated systems with

servo 
onstraints

In underactuated mechanical systems, more challenging problems may arise due to

the underactuation property. In this case the Jacobian of the servo constraints does
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4 Inverse dynamics simulation of multibody systems

not span the space of the control inputs any more. This case is termed by Blajer and

Kołodziejczyk [27] mixed orthogonal-tangent realization of servo constraints. Conse-

quently, the index of the corresponding DAEs exeeds three in general and this makes

the numerical integration of underactuated mechanical systems and the simulation

of index-5 problems much more demanding. Even the popular Radau IIa scheme,

a Runge-Kutta method with three stages, which is a method of order 5 for ODEs,

does not converge for general index-5 problems. Thus, index reduction methods are

preferred to reduce the index of the DAEs to 3 or even lower. To yield an index re-

duction from 5 to 3, Blajer and Kołodziejczyk [27] have proposed a specific projection

technique that has been further refined in [31]. The projection approach requires the

computation of time-dependent [27, 31] or constant Boolean-type [20, 21] projection

matrices in order to split the dynamics of the underactuated system into constrained

and unconstrained parts.

The aim here is to get a reformulation of the DAEs which is amenable to a direct dis-

cretization. To this end, the specific projection method [20, 21, 27, 31, 94] is applied to

the underlying DAEs in terms of generalized coordinates and redundant coordinates,

respectively.

4.2.1 Proje
ted formulation in terms of generalized 
oordinates

In the inverse dynamics formulation, the equations of motion in terms of generali-

zed coordinates can be derived in different ways. The set of DAEs (4.1a)−(4.1c) in

terms of generalized coordinates is identical to the resulting set of governing equa-

tions (4.11a)−(4.11c) derived by applying the null space method to the rotationless

formulation. In the following the latter one will be used as the starting point to apply

the projection method proposed in [27].

Differentiating the servo constraints (4.11c) twice with respect to time yields the con-

sistency condition (constraint condition at the acceleration level)

d2

dt2 c̃(µ, t) = C̃(µ)ν̇ + ξ̃ = 0 (4.14)

together with the constraint Jacobian

C̃(µ) = Ds̃(µ) (4.15)
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4.2 Numerical integration of underactuated systems with servo constraints

and the constraint-induced acceleration [27]

ξ̃ = ˙̃
Cν − γ̈ (4.16)

Note that the initial values of state variables should satisfy the constraint condition

s̃(µ0)− γ(t0) = 0 (4.17)

and the constraint condition at the velocity level

C̃(µ0)ν0 − γ̇(t0) = 0 (4.18)

To perform the projection method, a suitable projection matrix D̃ ∈ R
ñ×(ñ−m̃) needs

to be devised, such that the condition

rank(D̃) = ñ − m̃ (4.19)

and the relationship

C̃D̃ = 0 (4.20)

are satisfied.

The projections can be accomplished by premultiplying the dynamic equation (4.11b)

with C̃M̃
−1

and D̃
T

, respectively. Premultiplying Equation (4.11b) by C̃M̃
−1

and

using the servo constraint condition at the acceleration level (4.14) yields the pro-

jection of Equation (4.11b) into the constrained subspace

− ξ̃ + C̃M̃
−1{PT MṖν +∇Ṽ(µ) + B̃

T
u} = 0 (4.21)

which is called the orthogonal projection [27] of Equation (4.11b).

Next, premultiplying Equation (4.11b) by D̃
T

yields the projection of Equation (4.11b)

into the unconstrained subspace

D̃
T{M̃ν̇ + PT MṖν +∇Ṽ(µ) + B̃

T
u} = 0 (4.22)

which is called the tangential projection [27] of Equation (4.11b). After the projection

procedure, Equation (4.11b) can be replaced by Equation (4.21) and (4.22). This provi-

des the projected formulation in terms of generalized coordinates. Then the governing
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4 Inverse dynamics simulation of multibody systems

equations of motion can be summarized as

µ̇ − ν = 0 (4.23a)

D̃
T

M̃ν̇ + D̃
T{PT MṖν +∇Ṽ(µ) + B̃

T
u} = 0 (4.23b)

C̃M̃
−1{PT MṖν +∇Ṽ(µ) + B̃

T
u} − ξ̃ = 0 (4.23c)

c̃(µ, t) = 0 (4.23d)

Similar to the semi-explicit DAEs [6, 21], the resulting set of equations (4.23a)−(4.23d)

can be cast into the form
H(y)ẏ = f (y, z, t)

0 = h(y, z, t)
(4.24)

where, in the present case,

y =

[
µ

ν

]
and z = u (4.25)

Note that the application of the tangential projection (4.22) yields a reduction of the

number of differential equations from ñ in (4.11b) to ñ − m̃ in (4.23b) and the ortho-

gonal projection (4.21) yields m̃ algebraic equations in (4.23c). Thus the size-reduction

of the differential part is accompanied by an increase of the algebraic equations from

m̃ in DAEs (4.11a)−(4.11c) to 2m̃ in DAEs (4.23a)−(4.23d). After the application of the

projected formulation, the (differentiation) index has been reduced. If the index of the

original DAEs (4.11a)−(4.11c) is five, the index of the DAEs (4.23a)−(4.23d) is reduced

to three. Then a direct time discretization can be applied to the DAEs (4.23a)−(4.23d)

and the numerical solution to the inverse dynamics simulation can be obtained.

4.2.2 Proje
ted formulation in terms of redundant 
oordinates

Similar to Section 4.2.1, the projected formulation can also be applied to the high index

DAEs (4.2a)−(4.2d) in terms of redundant coordinates. The projected formulation has

been presented in [20, 21] and refined in [94] later. It is closely related to the projection

method applied to the formulation in terms of dependent coordinates in Blajer and

Kołodziejczyk [30, 31].

Differentiating the servo constraints (4.2c) twice with respect to time yields the con-

dition at the acceleration level

d2

dt2 c(q, t) = Cv̇ + (Ċv − γ̈) = 0 (4.26)
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4.2 Numerical integration of underactuated systems with servo constraints

with the constraint Jacobian

C = Ds(q) (4.27)

Upon introduction of the constraint-induced acceleration [27]

ξ = Ċv − γ̈ (4.28)

the servo constraint condition (4.26) can be written as

Cv̇ = −ξ (4.29)

To perform the projection method, an appropriate matrix D ∈ R
n×(n−m̃) needs to be

set up such that the relationship

CD = 0 (4.30)

is satisfied.

The orthogonal projection is performed by premultiplying Equation (4.2b) by CM−1

and taking into account Equation (4.29). This leads to m̃ algebraic equations

− ξ + CM−1{∇V(q) + GT(q)λ + BTu} = 0 (4.31)

Note that, for simplicity, it has been tacitly assumed that the mass matrix M is non-

singular. The tangential projection is performed by premultiplying Equation (4.2b) by

DT. This leads to n − m̃ differential equations

DT{Mv̇ +∇V(q) + GT(q)λ + BTu} = 0 (4.32)

By replacing Equation (4.2b) with (4.31) and (4.32), the projected formulation in terms

of redundant coordinates is obtained, and the equations of motion are given by

q̇ − v = 0 (4.33a)

DT Mv̇ + DT{∇V(q) + GT(q)λ + BTu} = 0 (4.33b)

CM−1{∇V(q) + GT(q)λ + BTu} − ξ = 0 (4.33c)

c(q, t) = 0 (4.33d)

Φ(q) = 0 (4.33e)

The index of the resulting set of DAEs (4.33a)−(4.33e) has been reduced to a lower

number after the application of the projection method. Then the direct time discreti-
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zation can be performed by applying the numerical integrators (see Chapter 3). The

control strategy can thus be obtained for the trajectory tracking control problem. It is

worth mentioning that the rotationless formulation of multibody dynamics for trajec-

tory tracking control problems typically yields projection matrices C and D of Boolean

(or binary) type [21]. This feature is highly beneficial to the time discretization of the

underlying DAEs (4.33a)−(4.33e), which can be written in the form of Equation (4.24)

again, with

y =

[
q

v

]
and z =

[
λ

u

]
(4.34)

Note that the incorporation of servo constraint-induced acceleration in Equation (4.29)

turns m̃ of the original differential equations (4.2b) into algebraic equations (4.31).

4.2.3 Proje
ted formulation in terms of dependent 
oordinates

Generalized coordinates are called independent (minimal) coordinates in the formula-

tion of cranes in Blajer and Kołodziejczyk [30, 31]. Therein dependent (non-minimal)

coordinates can be regarded as redundant coordinates. However, due to the use of

rotational parameters in the robot coordinates (see Section 4.4), dependent coordi-

nates do have distinction from redundant coordinates which employ directors (see

Subsection 2.4.2).

In the simulation of overhead and rotary cranes, dependent coordinates are often divi-

ded into two groups (see [30, 53]), which are the robot coordinates p ∈ R
n−m̃ and the

load coordinates x ∈ R
m̃. They are related through the geometric constraints (4.2d).

Then the coordinates can be expressed by

q =

[
p

x

]
(4.35)

Using these coordinates, the servo constraints (4.5) are simplified to the following

trivial form

x = γ(t) (4.36)
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4.2 Numerical integration of underactuated systems with servo constraints

and the original DAEs (4.2a)−(4.2d) can be rewritten as

ṗ − w = 0 (4.37a)

M(p)

[
ẇ

γ̈

]
+∇V(p, γ) + GT(p, γ)λ + BTu = 0 (4.37b)

Φ(p, γ) = 0 (4.37c)

in which the vector w denotes the robot velocities and the load coordinates x have

been replaced by the time specified output function γ(t). Note that due to the use of

rotational parameters the mass matrix M(p) here is configuration dependent in the

dependent coordinates formulation of overhead and rotary cranes.

The projected formulation in terms of dependent coordinates can be applied, which

has also been provided in [30, 31]. Differentiating the holonomic constraints (4.37c)

twice with respect to time yields the constraint condition at the acceleration level

d2

dt2 Φ(p, γ) = G(q)v̇ + Ġ(q)v = 0 (4.38)

with the constraint Jacobian G(q) = DΦ(q) ∈ R
m×n. Again the associated constraint-

induced acceleration is introduced as

ξ = Ġ(q)v (4.39)

and Equation (4.38) can be rewritten as

G(q)v̇ = −ξ (4.40)

Then a suitable projection matrix D ∈ R
n×(n−m−m̃) can be devised, such that the

relationship

AD = 0 (4.41)

or in an equivalent form [
C

G

]
D =

[
CD

GD

]
= 0 (4.42)

with the expression

A =

[
C

G

]
(4.43)

is satisfied and the servo constraint Jacobian C is given by Equation (4.27) with the
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expression s(q) = x. Premultiplying Equation (4.37b) by DT and taking into account

the relationship in Equation (4.42)

GD = 0 (4.44)

yield the tangential projection

DT

{
M(p)

[
ẇ

γ̈

]
+∇V(q) + BTu

}
= 0 (4.45)

In the redundant coordinates formulation, the servo constraint Jacobian C is Boolean

type, thus the servo constraint condition at the acceleration level (see Equation (4.29))

can be written as

Cv̇ = γ̈ (4.46)

Premultiplying Equation (4.37b) by CM−1 and making use of Equation (4.46) yield

the projection into the specified subspace C. That is

γ̈ + CM−1{∇V(q) + GTλ} = 0 (4.47)

Here, the relationship of the inner product of the specified subspace C and the con-

trolled subspace B (for more details, see [30, 31]) is given by

CM−1BT = 0 (4.48)

because the two m̃-subspaces C and B are complementary and disjoint.

Premultiplying Equation (4.37b) by GM−1 with the incorporation of Equation (4.40)

yields the projection into the constrained subspace G. That is

− ξ + GM−1{∇V(q) + GTλ + BTu} = 0 (4.49)

The constrained subspace G has a nonzero inner product with both the controlled

subspace B and the specified subspace C.

If the original set of DAEs (4.37a)−(4.37c) has the index of 5, after the application of

the projection method, the governing equations are the following 2n − m̃ + m index-3
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4.2 Numerical integration of underactuated systems with servo constraints

DAEs in the same number of variables p, w, u and λ:

ṗ − w = 0 (4.50a)

DT M(p)

[
ẇ

γ̈

]
+ DT{∇V(p, γ) + BTu} = 0 (4.50b)

γ̈ + CM−1{∇V(p, γ) + GTλ} = 0 (4.50c)

−ξ + GM−1{∇V(p, γ) + GTλ + BTu} = 0 (4.50d)

Φ(p, γ) = 0 (4.50e)

which can be written in the form of (4.24), with

y =

[
p

w

]
and z =

[
λ

u

]
(4.51)

It is to be noted that only the case, in which the dimension of the constrained subspace

G is lower than the dimension of the specified space C, is considered, that is, m < m̃.

4.2.4 Numeri
al dis
retization

The projected formulations in terms of generalized coordinates (4.23a)−(4.23d), re-

dundant coordinates (4.33a)−(4.33e) and dependent coordinates (4.50a)−(4.50e) yield

DAEs in semi-explicit form (4.24). In a first step towards the time discretization of

the DAEs a backward Euler-type method is applied. Accordingly, the time-stepping

scheme is given by

H(yn+1)(yn+1 − yn) = ∆t f (yn+1, zn+1, tn+1)

0 = h(yn+1, zn+1, tn+1)
(4.52)

where ∆t is the time step size. The corresponding discretization of the projected

formulation in terms of generalized coordinates (4.23a)−(4.23d) leads to the scheme

originally proposed by Blajer and Kołodziejczyk [27].
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4.3 Di�erential �atness

Besides the numerical integration, the inverse dynamics control problems of unde-

ractuated mechanical systems can be viewed from the perspective of differentially

flatness introduced by Fliess et al. [39]. If the underactuated mechanical system is

differentially flat, the specified outputs play the role of flat outputs, which can be

used to completely determine the motion of the underactuated system. One main

property of differential flatness is that all the state variables and control inputs can

be directly expressed in terms of the flat outputs and their time derivatives up to a

certain order, without integrating any differential equation. The system of DAEs ex-

pressed in Equation (4.24) is differentially flat if the following algebraic functions can

be obtained:

y = f y(γ, γ̇, . . . , γ(α−1)) (4.53a)

u = f u(γ, γ̇, . . . , γ(α)) (4.53b)

The value of α is by one smaller than the value of index of the DAEs (4.24). More

detailed background about differential flatness can be found in [53, 78, 90]. In the

following numerical examples, it is shown that differential flatness yields the flatness-

based solution, which can be considered as the analytical solution. However, it is ge-

nerally not feasible to get such an analytical solution for more complicated multibody

systems, and then numerical methods such as index reduction approaches are needed

to solve the inverse dynamics problems of underactuated multibody systems.

4.4 Numeri
al examples

The numerical integration approach (projected formulation) and the analytical appro-

ach (formulation based on differential flatness) will be applied to two examples, the

planar overhead crane and the three-dimensional rotary crane, respectively.

4.4.1 Planar overhead 
rane

As shown in Fig. 4.1, the planar example of an overhead crane is considered (see

also [27, 30]) as a prototypical example of an underactuated mechanical system, which

has three degrees of freedom and is composed of the trolley, the winch and the load.
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x

z

s

mt

ϕ

x(t)

z(t)l

M, β

m

F

prescribed trajectory, γ(t)

Figure 4.1: The model of the planar overhead crane.

Rotationless formulation in terms of redundant 
oordinates

A rotationless formulation1 is first considered, which relies on n = 4 redundant coor-

dinates2 given by

q = [s β x z]T (4.54)

where the trolley position is specified by s, the rotation angle of the winch is denoted

by β, and the load coordinates (see Fig. 4.1) are given by x and z.

Note that the hoisting cable connecting the load with the winch is assumed to be

massless and inextensible. The corresponding 4 × 4 mass matrix is constant and

1 Strictly speaking, the present formulation is not rotationless due to the presence of angle β. However,
the present description in terms of redundant coordinates for the planar overhead crane still leads
to a constant mass matrix which is a prominent feature of the rotationless formulation. By contrast,
the formulation in terms of robot coordinates and load coordinates for the three-dimensional rotary
crane leads to configuration-dependent mass matrix which will be shown in the examples later.
Therefore, redundant coordinates of this type are also called dependent coordinates by Blajer and
Kołodziejczyk. The truly rotationless formulation has been discussed thoroughly in Subsection 2.4
(see also [88]).

2 Instead of the rotation angle β of the winch, the length l of the cable can also be used.
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diagonal:

M =




mt 0 0 0

0 J 0 0

0 0 m 0

0 0 0 m




(4.55)

in which the trolley mass is mt, the moment of inertia of the winch is J, and the load

mass is m. Furthermore, the radius of the winch is given by r.

Gravity is acting on the system such that

V(q) = −mgz (4.56)

where the gravitational acceleration is denoted by g. To link the position of the load

to the rotation (angle β) of the winch, the holonomic constraint function (m = 1)

Φ(q) = (x − s)2 + z2 − (rβ)2 (4.57)

is introduced. Correspondingly, the constraint Jacobian G = DΦ(q) assumes the

following form

G = 2
[
s − x −r2β x − s z

]
(4.58)

The specified trajectory of the load is expressed by the servo constraint function given

by Equation (4.5) with m̃ = 2. In this connection,

s(q) = Cq =

[
x

z

]
(4.59)

with the constant Boolean Jacobian

C = Ds(q) =

[
0 0 1 0

0 0 0 1

]
(4.60)

Moreover, the prescribed trajectory function γ(t) ∈ R
2 in Equation (4.5) takes the

following form

γ(t) =

[
xd(t)

zd(t)

]
(4.61)

where the desired time-specified coordinates of the trajectory of the load are xd(t)

and zd(t), i.e. appropriately smooth functions of time. The actuator forces as control
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inputs follow from

u =

[
F

M

]
(4.62)

and the input transformation matrix B is given by

B =

[
−1 0 0 0

0 −1 0 0

]
(4.63)

To summarize, the above quantities completely specify the DAEs (4.2a)−(4.2d) and

the resulting set of DAEs has the index of five.

Proje
ted formulation in terms of redundant 
oordinates

The application of the projected formulation in terms of redundant coordinates (see

Subsection 4.2.2) is performed next. It is easy by inspection to find the special Boolean

matrix

D =




1 0

0 1

0 0

0 0




(4.64)

which qualifies as viable projection matrix and satisfies the condition (4.30). Moreover,

in view of Equation (4.28) and (4.60), the constraint-induced acceleration is given by

ξ = −γ̈ (4.65)

which is calculated by using Equation (4.61). The prescribed trajectory γ(t) can

be generated by using a reference function in the motion planning. These quanti-

ties are required to set up the DAEs (4.33a)−(4.33e) pertaining to the projected for-

mulation in terms of redundant coordinates. Note that the index of the resulting

DAEs (4.33a)−(4.33e) has been reduced to three after the projection method is perfor-

med in the planar overhead crane example.

Proje
ted formulation in terms of dependent 
oordinates

As mentioned above, the present redundant (dependent) coordinates q can be divided

into two groups, the robot coordinates p ∈ R
2 and the load coordinates x ∈ R

2, which
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are given by

p =
[
s β

]T
and x =

[
x z

]T
(4.66)

In this simple example, the matrix A in Equation (4.43) is given by

A =




0 0 1 0

0 0 0 1

s − x −r2β x − s z


 (4.67)

Then the projection matrix D can be easily found by guess, such as

D =

[
1

s − x

r2β
0 0

]T

(4.68)

which satisfies the condition (4.41). Furthermore, in view of Equation (4.39) and

(4.58), the constraint-induced acceleration of constraint (4.57) is calculated by

ξ = 2
[
(ṡ − ẋ)ṡ − r2β̇2 + (ẋ − ṡ)ẋ + ż2

]
(4.69)

Then the above quantities can specify the index-3 DAEs (4.50a)−(4.50e) pertaining to

the projected formulation in terms of dependent coordinates.

Generalized 
oordinates formulation in terms of minimal 
oordinates

To set up the problem formulation of the overhead crane in terms of minimal coordi-

nates, the reduction procedure (see Subsection 4.1.3) on the basis of the rotationless

formulation in terms of redundant coordinates is performed to achieve the transition

to the DAEs (4.11a)−(4.11c) in terms of minimal coordinates. To this end, the ñ = 3

dimensional configuration manifold is parameterized with minimal coordinates

µ =




s

l

ϕ


 (4.70)

Here, the variable l denotes the length of the inextensional hoisting cable connecting

(the axis of) the winch with the load. Moreover, the variable ϕ measures the angle

between the vertical and the hoisting cable (see Fig. 4.1).
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There exists a mapping F : U 7→ Q ⊂ R
4, which can be written as

q = F(µ) =




s

l/r

s + l sin ϕ

l cos ϕ




(4.71)

Then the associated Jacobian yields a convenient null space matrix P = DF(µ) of the

following form

P =




1 0 0

0 1/r 0

1 sin ϕ l cos ϕ

0 cos ϕ −l sin ϕ




(4.72)

Now, a straightforward calculation yields the additional terms that appear in Equa-

tion (4.11a)−(4.11c):

M̃ = PT MP =




mt + m m sin ϕ ml cos ϕ

m sin ϕ m + J/r2 0

ml cos ϕ 0 ml2


 (4.73a)

PT MṖν =




2ml̇ ϕ̇ cos ϕ − ml ϕ̇2 sin ϕ

−ml ϕ̇2

2mll̇ ϕ̇


 (4.73b)

∇Ṽ(µ) = PT∇V(q) =




0

−mg cos ϕ

mgl sin ϕ


 (4.73c)

B̃
T
= PTBT =



−1 0

0 −1/r

0 0


 (4.73d)

s̃(µ) = CF =

[
s + l sin ϕ

l cos ϕ

]
(4.73e)

Proje
ted formulation in terms of minimal 
oordinates

The projected formulation in terms of minimal coordinates (see Subsection 4.2.1) can

now be performed. According to Equation (4.15), the constraint Jacobian is given
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by

C̃ = Ds̃(µ) = CP =

[
1 sin ϕ l cos ϕ

0 cos ϕ −l sin ϕ

]
(4.74)

Moreover, in view of Equation (4.16), the constraint-induced acceleration can be obtai-

ned. That is

ξ̃ =

[
2 ϕ̇ l̇ cos ϕ − l ϕ̇2 sin ϕ − ẍd

−2 ϕ̇ l̇ sin ϕ − l ϕ̇2 cos ϕ − z̈d

]
(4.75)

with the expression

˙̃
Cν =

[
2 ϕ̇ l̇ cos ϕ − l ϕ̇2 sin ϕ

−2 ϕ̇ l̇ sin ϕ − l ϕ̇2 cos ϕ

]
(4.76)

Then a suitable projection matrix can be found by inspection (as in [27])

D̃ =




−1

sin ϕ
1
l

cos ϕ


 (4.77)

which satisfies the complementary condition (4.20). Using the projection matrices, the

projection method in terms of minimal coordinates can be applied and the resulting

index-3 DAEs (4.23a)−(4.23d) can be set up to perform the inverse dynamics ana-

lysis of the planar overhead crane. It is obvious that the quantities are much more

complicated than those in the formulation of employing redundant coordiantes.

Analyti
al solution based on di�erential �atness

The planar overhead crane can be classified as a differentially flat system, in which the

property of differential flatness provides the analytical solution as the reference solu-

tion. It will be verified that Equation (4.61) plays indeed the role of flat outputs. This

can be easily deduced from the projected formulation in terms of redundant coor-

dinates. In particular, for the overhead crane, Equation (4.33c) yields the following

equations

2(xd − s)λ + mẍd = 0 (4.78a)

2zdλ + m(z̈d − g) = 0 (4.78b)

These equations can be solved for Lagrange multiplier λ(t) and the trolley position

s(t) in terms of the prescribed outputs together with their derivatives thereof up to
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the second order:

λ =
m

2zd
(g − z̈d) (4.79a)

s = xd +
zd ẍd

g − z̈d
(4.79b)

Here, the time-specified flat outputs are xd and zd. Moreover, the holonomic con-

straint equation (4.33e) yields the rotation angle β(t) of the winch in terms of the

prescribed outputs and their derivatives up to the second order:

β = ± zd

r(g − z̈d)

√
(ẍd)2 + (g − z̈d)2 (4.80)

Eventually, the control inputs (4.62) are determined by Equation (4.33b). Since the

product of the transpose of the projection and the transpose of the input transforma-

tion matrix yields

DTBT = −I (4.81)

where I is a 2 × 2 identity matrix, Equation (4.33b) yields

u = DT{Mv̇ +∇V(q) + GT(q)λ} (4.82)

or in an alternative expression

F = mt s̈ + 2(s − xd)λ (4.83a)

M = Jβ̈ − 2r2βλ (4.83b)

Obviously, the control inputs can be expressed by flat outputs along with their time

derivatives up to the fourth order, i.e. α = 4. It indicates that the index of the original

governing DAEs (4.2a)−(4.2d) is five. The above flatness-based analytical solution is

provided as the reference solution for the following numerical experiments.

Inverse dynami
s simulation

The present numerical experiment is taken from Blajer and Kołodziejczyk [27] and

deals with the feedforward control of the planar overhead crane (Fig. 4.1). As flat

outputs, the desired trajectory of the load with mass m is prescribed by

γ(t) = γ0 + (γ f − γ0)c(τ) (4.84)
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with the initial position

γ0 =
[

xd(t0) zd(t0)
]T

=
[
0 4 m

]T
at t0 = 0 (4.85)

and the final destination

γ f =
[

xd(t f ) zd(t f )
]T

=
[
5 m 1 m

]T
at t f = 3 s (4.86)

Furthermore, in Equation (4.84), c(τ) is a 5-6-7-8-9 interpolating polynomial of the

following form

c(τ) = 70τ9 − 315τ8 + 540τ7 − 420τ6 + 126τ5 (4.87)

where the term

τ =
t

t f − t0
(4.88)

It can be easily checked that Equation (4.84) prescribes a rest-to-rest maneuver of the

load. Starting at rest, the initial configuration of the overhead crane can be specified

by minimal coordinates

µ0 =
[
s0 l0 ϕ0

]T
=
[
0 4 m 0

]T
(4.89)

The remaining parameters are mt = 10 kg, m = 100 kg, J = 0.1 kg · m2 and r = 0.1 m.

For the numerical calculations four different formulations are applied in the follo-

wing:

GEN: Backward Euler scheme based on DAEs (4.23a)−(4.23d) in terms of

generalized coordinates

RED: Backward Euler scheme based on DAEs (4.33a)−(4.33e) in terms of

redundant coordinates

ALT: Backward Euler scheme based on DAEs (4.50a)−(4.50e) in terms of

dependent coordinates

REF: Reference solution provided by the flatness-based approach

The calculated motion of the inverse dynamics simulation of the overhead crane is

illustrated in Fig. 4.2, which contains the snapshots of the system at successive points

in time. The simulation yields the numerical results obtained by different projected

formulations, which are depicted in Fig. 4.3 and 4.4 for different time step sizes,

respectively. It can be observed that all the numerical solutions of the coordinates,
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the Lagrange multiplier and the control inputs converge to the analytical reference

solution if the time step size is reduced.

Figure 4.2: Snapshots of the simulation of overhead crane at specific points in time.
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Figure 4.3: Planar overhead crane: Comparison between the numerical results of different projected
formulations obtained with ∆t = 10−1 s and the analytical reference solution.
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Figure 4.4: Planar overhead crane: Comparison between the numerical results of different projected
formulations obtained with ∆t = 10−3 s and the analytical reference solution.
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Figure 4.5: The model of the rotary crane.

4.4.2 Three-dimensional rotary 
rane

The three-dimensional rotary crane, as depicted in Fig. 4.5, is now considered for

the inverse dynamics simulation of underactuated systems, which has five degrees of

freedom. It has been introduced in the forward dynamics simulation (see Section 2.4).

84



4.4 Numerical examples

Rotationless formulation in terms of redundant 
oordinates

The rotationless formulation in terms of redundant coordinates has been completely

presented in the previous three-dimensional rotary crane example (see Section 2.4).

The rotationless formulation relies on n = 42 redundant coordinates subject to 18

internal constraints (rigidity), 16 external constraints (joints) and 3 additional con-

straints (coordinate augmentation). Altogether there are m = 37 constraints resulting

in ñ = n − m = 5 degrees of freedom. Moreover, the configuration vector of redun-

dant coordinates is given by q in Equation (2.103), and the constant mass matrix takes

the form of (2.114). The prescribed trajectory function γ(t) ∈ R
3 in Equation (4.5) is

given by

γ(t) =




xd(t)

yd(t)

zd(t)


 (4.90)

where the coordinates xd(t), yd(t) and zd(t) are the desired time-specified coordinates

of the trajectory of the load. The actuator forces (see Fig. 4.5) as control inputs follow

from the expression

u =




Mb

Ft

Mw


 (4.91)

in which the torque Mb is acting on the rotary pillar about the vertical rotation axis

(Z-axis), the force Ft is acting on the trolley along the girder bridge and the torque

Mw is acting on the winch about its rotation axis. The input transformation matrix B

is given by

B =




01×36 −1 0 0

01×36 0 −1 0

01×36 0 0 −1


 (4.92)

Accordingly, the actuator forces (control inputs) are incorporated into the present

rotationless formulation by applying the coordinate augmentation. All the quantities

completely specify the underlying DAEs (4.2a)−(4.2d) which has the index of five.

Proje
ted formulation in terms of redundant 
oordinates

Similar to the example of the planar overhead crane, the prescribed trajectory of the

load leads to m̃ = 3 servo constraints of the form (4.5). At this point, the position of
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the load is determined by

s(q) = ϕ4 = Cq =




x

y

z


 (4.93)

with the constant Jacobian C = Ds(q) of Boolean type

C =




01×36 1 0 0 01×3

01×36 0 1 0 01×3

01×36 0 0 1 01×3


 (4.94)

To obtain the projected formulation, the projection matrix D satisfying the condi-

tion (4.30) can be determined by applying the method in Blajer and Kołodziejczyk [28].

The Jacobian C is assumed to have full row rank (equal to m̃), and it can always be

factorized to

C =
[
U

... W

]
(4.95)

so that U has the dimension m̃ × (n − m̃) and W has the dimension m̃ × m̃, and the

determinant of W is not equal to zero. The orthogonal complement D to C can then

be found from

D =

[
I

−W−1U

]
(4.96)

Then the DAEs (4.33a)−(4.33e) can be set up, which are pertaining to the projected

formulation in terms of redundant coordinates.

Proje
ted formulation in terms of dependent 
oordinates

The dependent coordinates [31] can be employed as redundant coordinates to formu-

late the problem of the rotary crane as well. Then the robot coordinates p ∈ R
3 and

the load coordinates x ∈ R
3 are given by

p =




ϕ

s

l


 and x =




x

y

z


 (4.97)

which are related through the passive constraint (m = 1)

Φ(p, x) = L − l =
√
(x − s cos ϕ)2 + (y − s sin ϕ)2 + z2 − l = 0 (4.98)
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with the length

L =
√
(x − s cos ϕ)2 + (y − s sin ϕ)2 + z2 (4.99)

Correspondingly, the constraint Jacobian G = DΦ(p, x) assumes the form

G =

[
(x sin ϕ − y cos ϕ)s

L

s − x cos ϕ − y sin ϕ

L
−1

x − s cos ϕ

L

y − s sin ϕ

L

z

L

]

(4.100)

The specified trajectory of the load is described by the servo constraint function (4.5)

with m̃ = 3 and that is

s(q) = Cq =




x

y

z


 (4.101)

with the constant Boolean Jacobian

C = Ds(q) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 (4.102)

Moreover, the corresponding 6 × 6 mass matrix is given by

M(p) =




Jb + mts
2 0 0 0 0 0

0 mt 0 0 0 0

0 0 Jw/r2
w 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m




(4.103)

Here, the inertia value Jb is the sum of the moment of inertia of the girder bridge,

the trolley and the winch relative to the axis of rotation, i.e. Z-axis. The inertia value

Jw indicates the moment of inertia of the winch relative to its axis of rotation d3
2 (see

Fig. 2.9). The mass mt includes the mass of the trolley and the winch, and m is the

mass of the load. Accordingly, there are

Jb = J1
3 + J2

3 + J3
3 and Jw = J3

2 (4.104)

mt = m2 + m3 and m = m4 (4.105)

Note that the mass matrix M(p) is configuration dependent in the formulation in

terms of dependent coordinates for the rotary crane example. Furthermore, the gene-
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ralized and applied forces contained in the force vector f are given by

f =




2mtsṡϕ̇

−mtsϕ̇2

0

0

0

−mg




(4.106)

The control inputs are given by Equation (4.91) and the input transformation matrix

is given by

B =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1/rw 0 0 0


 (4.107)

Considering Equation (4.39) and (4.100), the constraint-induced acceleration ξ can be

calculated. The same projection matrix as provided in [31] is used here, that is

DT =




1 0
(x sin ϕ − y cos ϕ)s

L
0 0 0

0 1
s − x cos ϕ − y sin ϕ

L
0 0 0


 (4.108)

Using these quantities, the DAEs (4.50a)−(4.50e) can eventually be set up, which are

more tractable to be dealt with numerically. Note that besides the gravitational force

the generalized forces in (4.106) should also be considered in the DAEs (4.37a)−(4.37c)

for the dependent coordinates formulation of the rotary crane.

Generalized 
oordinates formulation in terms of minimal 
oordinates

The ñ = 5 dimensional configuration manifold of the rotary crane can be parameteri-

zed with minimal coordinates

µ =
[

ϕ s l θ1 θ2

]T
(4.109)

where the rotation angle of the girder bridge is given by ϕ, the trolley position on

the girder bridge is s, the length of the hoisting cable is l, and the swing angles are

given by θ1, θ2 . The governing equations of the system can be derived either by the

Lagrange equations of the second kind (see Subsection 2.4.1) or by the discrete null

space method (see Subsection 2.4.2). If the latter method is applied, the mapping
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F : U 7→ Q ∈ R
39 can be written as

q = F(µ) =




F1(µ)

F2(µ)

F3(µ)

F4(µ)

F5(µ)




(4.110)

where

F1(µ) =




ϕ1

cos ϕ

sin ϕ

e3 ·ϕ1

− sin ϕ

cos ϕ

e3 ·ϕ1

e3




(4.111)

F2(µ) =




s cos ϕ

s sin ϕ

0

cos ϕ

sin ϕ

0

− sin ϕ

cos ϕ

0

e3




(4.112)

89



4 Inverse dynamics simulation of multibody systems

F3(µ) =




s cos ϕ

s sin ϕ

0

cos ϕ cos θ

sin ϕ cos θ

− sin θ

− sin ϕ

cos ϕ

0

cos ϕ sin θ

sin ϕ sin θ

cos θ




(4.113)

F4(µ) =



(s + l sin θ2) cos ϕ + l cos θ2 sin θ1 sin ϕ

(s + l sin θ2) sin ϕ − l cos θ2 sin θ1 cos ϕ

−l cos θ2 cos θ1


 (4.114)

F5(µ) =




ϕ

s

l/rw


 (4.115)

Then these mappings can be used to perform the transition from the rotationless

formulation to the formulation in terms of minimal coordinates. At this point it is

to be noted that the resulting description in terms of minimal coordinates is quite

awkward due to the elaborate expressions.

Proje
ted formulation in terms of minimal 
oordinates

To perform the projected formulation, the constraint Jacobian needs to be calculated.

That is,

C̃ = Ds̃(µ) = DF4(µ) (4.116)

and the constraint-induced acceleration is given by

ξ̃ =
˙̃
Cν − γ̈ (4.117)

Similar to the overhead crane example, a suitable projection matrix D̃ can be compu-

ted by symbolic manipulations, which satisfies the relationship (4.20). Besides, it can

be computed by Equation (4.96). Note that the projection matrices are cumbersome
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and much more complicated in the minimal coordinates formulation for the rotary

crane example.

Analyti
al solution based on di�erential �atness

The rotary crane example can be classified as a differentially flat system. Then the ana-

lytical solution [31] can be obtained through purely algebraic manipulations instead

of integrating the DAEs (4.37a)−(4.37c). In the rotary crane example, the projection

of the dynamic equations in the specified subspace yields three algebraic equations

ẍd +
xd − s cos ϕ

m4L
λ = 0 (4.118a)

ÿd +
yd − s sin ϕ

m4L
λ = 0 (4.118b)

z̈d + g +
zd

m4L
λ = 0 (4.118c)

with the length

L2 = (xd − s cos ϕ)2 + (yd − s sin ϕ)2 + z2
d (4.119)

From the above three nonlinear equations (4.118a)−(4.118c), the variables can be

obtained after some manipulations, which are expressed by

λ = m4

√
ẍ2

d + ÿ2
d + (z̈d + g)2 (4.120a)

s =
√

Ax
2 + Ay

2 (4.120b)

ϕ = arctan
Ay

Ax
(4.120c)

with the expressions

Ax = xd −
zd ẍd

z̈d + g
(4.121a)

Ay = yd −
zd ÿd

z̈d + g
(4.121b)

From the constraint equation (4.98), the length of the cable is calculated by

l = − zd

z̈d + g

√
ẍ2

d + ÿ2
d + (z̈d + g)2 (4.122)

91



4 Inverse dynamics simulation of multibody systems

Then the actuator (control) forces can be determined from Equation (4.50b) in terms

of the flat outputs and their time derivatives up to the fourth order, i.e. α = 4. This

implies that the initial governing DAEs have the index of five. The above analytical

solution provides the flatness-based solution to the differentially flat rotary crane for

the inverse dynamics analysis. It is shown that all the state variables and control

inputs can be algebraically expressed in terms of the desired outputs and their time

derivatives up to a certain order. It is obviously seen that the flatness-based solution is

featured by enormous complexity, especially for the acceleration ẇ and control inputs

u, and thus they may be considered as impractical in applications. In contrast, the

numerical approach is much more straightforward and applicable.

Inverse dynami
s simulation

body m [kg] J1 [kg · m2] J2 J3 length [m] width depth
1 100 216.67 216.67 16.67 5 1 1
2 50 2.08 2.08 2.08 0.5 0.5 0.5
3 3 0.26 0.02 0.26 1 0.2 0.2
4 10 — — — — — —

Table 4.1: The data of mass, moment of inertia and dimension of each body of the rotary crane.

The simulation data used for the example of the rotary crane is summarized in Ta-

ble 4.1. The required trajectory of the load is prescribed by

γ(t) = γ0 + (γ f − γ0)c(t) (4.123)

with the start position

γ0 =
[
5 m 0 −5 m

]T
at t0 = 0 (4.124)

and the target position

γ f =
[
−2 m 2 m −2 m

]T
at t f = 20 s (4.125)

The same reference function c(t) as in [28] is used here, which prescribes a rest-to-

rest motion (see Fig. 4.6) of the load and is composed of three phases: the acceleration

phase (I) for 0 6 t < 5 s,

cI(t) =
1

τ − τ0

(
− 5t8

2τ0
7 +

10t7

τ0
6 − 14t6

2τ0
5 +

7t5

2τ0
4

)
(4.126)

92



4.4 Numerical examples

the steady velocity phase (I I) for 5 s 6 t < 15 s,

cI I(t) =
1

τ − τ0

(
t − τ0

2

)
(4.127)

and the deceleration phase (I I I) for 15 s 6 t 6 20 s,

cI I I(t) = 1 +
1

τ − τ0

(
−5(τ − t)8

2τ0
7 +

10(τ − t)7

τ0
6 − 14(τ − t)6

2τ0
5 +

7(τ − t)5

2τ0
4

)
(4.128)

where τ = t f − t0, and τ0 is the acceleration/deceleration time. Here, τ = 20 s,

τ0 = 5 s. The reference function c(t) and its time derivatives are illustrated in Fig. 4.6.

The design of the reference function c(t) can follow the idea posed in [5]. The sy-
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Figure 4.6: Reference function s(t) and its derivatives for the load position.

nchronized time function (4.123) for the reference load coordinates yields a straight

line trajectory from the start position to the target position.

Starting at rest, the initial configuration of the rotary crane is specified by minimal

coordinates

µ0 =
[

ϕ0 s0 l0 θ10 θ20

]T
=
[
0 5 m 5 m 0 0

]T
(4.129)

The following four formulations are applied to the numerical experiments:

GEN: Backward Euler scheme based on DAEs (4.23a)−(4.23d) in terms of

minimal coordinates
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4 Inverse dynamics simulation of multibody systems

RED: Backward Euler scheme based on DAEs (4.33a)−(4.33e) in terms of

redundant coordinates

ALT: Backward Euler scheme based on DAEs (4.50a)−(4.50e) in terms of

dependent coordinates

REF: Reference solution provided by the flatness-based approach

The calculated motion of the inverse dynamics simulation of the rotary crane is il-

lustrated in Fig. 4.7, which includes the snapshots of the system at successive points

in time. Furthermore, the numerical results are obtained by different projected for-

mulations and presented in Fig. 4.8 and Fig. 4.9 for different time step sizes. It can

be concluded that the numerical solutions of the coordinates and the control forces

converge to the analytical reference solution as the time step size is reduced. Note

that the small discrepancy between the projected formulation ALT and the other for-

mulations is a value of 0.1, even for very small time step sizes. The distinction may

come from the formulation (ALT) of the rotary crane.

Figure 4.7: Snapshots of the simulation of rotary crane at specific points in time.
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Figure 4.8: Rotary crane: Comparison between numerical results of different formulations obtained
with ∆t = 10−1 s and the analytical reference solution.
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Figure 4.9: Rotary crane: Comparison between numerical results of different formulations obtained
with ∆t = 5 × 10−3 s and the analytical reference solution.
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5 Index redu
tion by minimal extension

for the inverse dynami
s simulation

So far index reduction by minimal extension [62] has been succesfully applied to

circuit simulation [62, Sec. 4], multibody systems [62, Sec. 5] and infinite dimensional

systems arising in elastodynamics and flexible multibody systems [1]. However, it

has not been applied to underactuated servo constraint problems. To develop the

new method for such problems, a class of differentially flat cranes will be considered

at first, in which the load coordinates play the role of flat outputs (see also Chapter 4).

For the problem formulation, both redundant coordinates and minimal coordinates

can be employed within the newly developed method. The formulation of some

cranes fits into the more general framework presented in [58].

The underactuated servo constraint problem is governed by differential-algebraic

equations with high index (e.g. index 5), which makes the simulation of the pro-

blem highly challenging. Therefore, index reduction methods need to be applied to

reduce the index of the DAEs to facilitate a stable numerical integration. In Chapter 4

the specific projection method has been used to yield a reduction of the index from

5 to 3. Now an alternative method, which relies on the index reduction by mini-

mal extension originally developed by Kunkel and Mehrmann [62] for more general

DAEs, is newly proposed to reduce the index of the DAEs. For the purpose of index

reduction, the technique of minimal extension turns out to be especially attractive

due to the semi-explicit structure of the DAEs (e.g. see (4.1a)−(4.1b)) and it is not

necessary to construct projection matrices as in the projection method. Thus, index

reduction by minimal extension can be easily applied to underactuated systems (i.e.

a < f , e.g. cranes and flexible multibody systems) to reduce the index of the DAEs

to 3 or even to 1. As a result, a set of index-3 or index-1 DAEs can be obtained and

easily discretized in the numerical integration. Moreover, the reduced index-1 DAEs

is purely algebraic and reflects the fact that the system at hand can be classified as



5 Index reduction by minimal extension for the inverse dynamics simulation

differentially flat system. In the end, the DAEs can be solved to determine the asso-

ciated control inputs, which are required to steer the system such that the prescribed

trajectories are tracked. In this way a simulation approach to the feedforward control

of multibody systems can be realized. The application of the proposed method will

be demonstrated with three representative numerical examples in the following.

5.1 Index redu
tion by minimal extension

In this section a short introduction to the index reduction approach by minimal ex-

tension will be provided. Then its application to the servo constraint problem will be

presented.

A common approach for the reduction of the index of general nonlinear DAEs

F(t, y, ẏ) = 0 (5.1a)

y(t0) = y0 (5.1b)

is given by the derivative array approach [63, Chap. 6.2]. In this equation, y0 ∈ R
n

are prescribed initial conditions and F : I × R
n × R

n → R
n. Let the DAEs be of

index1 µd. Then all equations need to be differentiated (µd − 1) times and suitable

projections are computed to find algebraic and differential equations ,which together

form an equivalent system of index 1. It is worth mentioning that a general index

concept has been introduced, the so-called strangeness index µ, which generalizes

other index concepts, e.g. the concept of the differentiation index µd [35]. Further

details can be found in [63]. For large systems of high index, the derivative array may

become very large and cause memory problems. In addition, high computational

effort needs to be invested to find the mentioned projection matrices, which leads

to high computational complexity and makes the general method impracticable for

large scale problems.

The complexity of the index reduction method can be significantly reduced if additi-

onal information about the structure of the system is available, such as DAEs arising

in the simulation of multibody systems. This is the case for the semi-explicit DAEs of

interest for which the algebraic constraints are explicitly given. The main idea relies

on this structural information about the equations that lead to high index. Hence, it

1 Index indicates the differentiation index in this chapter.
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5.1 Index reduction by minimal extension

is sufficient to add the derivatives of those equations. This extra information is used

to create a reduced size derivative array, so that the computational effort is highly

reduced. Even with these improvements, for the reduced size derivative array, local

nullspace computations still require large memory storage and arithmetic complex-

ity. To deal with this difficulty, another index reduction concept introduced in [73]

is modified. The basic idea of this approach is to introduce new variables, so-called

dummy derivatives, to reduce the index. In fact, after introducing so-called dummy

variables, projection matrices are even not needed any more. This procedure is then

called minimal extension [62].

5.1.1 Minimal extension for me
hani
al systems

The index reduction technique of minimal extension is applied to the system of equa-

tions typically governing the motion of a multibody system (see also [62]). To this

end, the DAEs2

M(q)q̈ = f (q, q̇)− GT(q)λ (5.2a)

Φ(q) = 0 (5.2b)

are considered. The redundant coordinates q ∈ R
n are subject to m holonomic con-

straints with associated constraint functions Φ(q) ∈ R
m. Lagrange multipliers are

given by λ ∈ R
m and the constraint Jacobian is calculated by G(q) = DΦ(q) ∈ R

m,n,

which is assumed to have full rank. Moreover, M(q) ∈ R
n,n is a symmetric mass

matrix, and f ∈ R
n contains the conjugate forces acting on the system, except for the

forces of constraint.

It is well known that the present DAEs have index 3 or strangeness index 2 [63,

Ex. 4.22]. Since G(q) has full rank, there exists an orthogonal matrix Q ∈ R
n,n such

that G(q)Q has the block structure

G(q)Q =
[
G1 G2

]
(5.3)

with an invertible matrix G2 ∈ R
m,m. The matrix Q then allows to partition the

2 For convenience, the equations of motion will not be written in the form of first order.
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5 Index reduction by minimal extension for the inverse dynamics simulation

position variables q into q1 ∈ R
n−m and q2 ∈ R

m by

[
q1

q2

]
:= QTq (5.4)

For the reduced derivative array, the two derivatives of the constraints are added to

the original system, that is,

0 = G(q)q̇ (5.5a)

0 = Ġ(q)q̇ + G(q)q̈ (5.5b)

To avoid the expensive search for projectors, two dummy variables are introduced as

q̂2 := q̇2 (5.6a)

q̃2 := q̈2 (5.6b)

With the variables q1, q2, q̂2, q̃2, and λ, the minimally extended strangeness free

(strangeness index 0) system is obtained, which is square. Replacing every occur-

rence of q̇2 and q̈2 by the corresponding dummy variables q̂2 and q̃2, the overall

system now reads

M(q)Q

[
q̈1

q̃2

]
= f (q1, q2, q̇1, q̂2)− GT(q)λ (5.7a)

0 = Φ(q1, q2) (5.7b)

0 = G(q)Q

[
q̇1

q̂2

]
(5.7c)

0 = Ġ(q)Q

[
q̇1

q̂2

]
+ G(q)Q

[
q̈1

q̃2

]
(5.7d)

Note that, to prevent clumsy notation, G(q) is used instead of G(q1, q2) and simi-

larly M(q) instead of M(q1, q2). The following theorem [63, Th. 6.12] shows that the

extended system (5.7a)−(5.7d) is strangeness free.

Theorem 5.1. Consider a multibody system of the form (5.2a)−(5.2b) with M(q) symmetric

and positive definite and suppose that G(q) has full row rank. Then the extended system

(5.7a)−(5.7d) is strangeness free.
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5.1 Index reduction by minimal extension

Proof. Since G2 in (5.3) is square nonsingular, Equation (5.7b) can be solved by means

of the implicit function theorem for q2 in terms of q1 and Equation (5.7c) can be solved

for q̇2 in terms of q1 and q̇1. Since M(q) is symmetric and positive definite, Equation

(5.7a) can be solved for q̈1 and q̃2. Moreover, it follows that

W(q) = G(q)M−1GT(q) (5.8)

due to the full row rank of G(q). Hence, q̈1 and q̃2 can be eliminated from Equation

(5.7d) and λ can be obtained according to

λ = W−1(q)

(
Ġ(q)Q

[
q̇1

q̂2

]
+ G(q)M−1 f (q1, q2, q̇1, q̂2)

)
(5.9)

In the end an ordinary differential equation is obtained in the unknowns q1 and q̇1.

The system has strangeness index µ = 0.

The proof that the resulting DAEs have index 1 (strangeness index 0) is given in [63,

Th. 6.12]. Note that the size of the system has been increased by twice the number of

constraints. Thus, for most applications, the system is still of moderate format.

Remark 1. In general the transformation matrix Q can be found by a Gaussian elimination.

In many applications, however, it is possible to guess a permutation matrix Q that yields the

needed regular block G2. In this case, it is possible to choose Q as the identity matrix if a

suitable reordering of the variables is assumed and all variables keep their physical meaning.

5.1.2 Appli
ation to the inverse dynami
s simulation of 
ranes

The DAEs describing mechanical systems subject to servo constraints (see Subsection

4.1.1) or, more generally, systems subject to both servo and holonomic constraints

(see Subsection 4.1.2), exhibit a semi-explicit structure and are thus very similar to the

system dealt with in the previous subsection. Consequently, a similar procedure can

be applied to achieve an index reduction for this kind of problems.

In this chapter the focus is placed on the minimal extension approach for cranes.

At first the specific redundant (dependent) coordinates are used for the description

of the inverse dynamics problem. In addition, the method can also be applied to the

corresponding crane formulation in terms of minimal coordinates. This will be shown

subsequently in Subsection 5.1.4.
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5 Index reduction by minimal extension for the inverse dynamics simulation

As has been demonstrated in previous works dealing with the description of crane

models (see, e.g., Fliess et al. [39, Section 4.1] for a planar overhead crane, Blajer and

Kołodziejczyk [31] for a three-dimensional rotary crane, and Heyden and Woernle

[53] for a parallel wire-suspended mechanism (see also Section 6.3)), it is especially

convenient to divide the crane system into two separate subsystems (Subection 4.4.1).

The first subsystem belongs to the motor drives, whereas the second subsystem be-

longs to the load. Correspondingly, the coordinates are distinguished between crane

(actuated, robot) coordinates p ∈ Rn−a and load coordinates x ∈ R
a. Using these coordi-

nates, the index-5 DAEs, which govern the controlled motion of cranes, can be written

in the form
[

M1(p) 0

0 M2

][
p̈

ẍ

]
=

[
f 1(p, ṗ)

f 2(x, ẋ)

]
+

[
BT

1 (p)

0

]
u −

[
GT

1 (p, x)

GT
2 (p, x)

]
λ (5.10a)

0 = Φ(p, x) (5.10b)

x = γ (5.10c)

Here, the first row block in Equation (5.10a) corresponds to the actuated subsystem,

whereas the second row block in Equation (5.10a) corresponds to the load. The re-

dundant coordinates

q =

[
p

x

]
(5.11)

are subject to the holonomic constraints (5.10b) with associated constraint functions

Φ ∈ R
m and constraint Jacobian G = [G1 G2] ∈ R

m,n. In this connection,

G1 = ∂pΦ(p, x) ∈ R
m,n−a (5.12)

denotes the partial derivative w.r.t. the crane coordinates p, and

G2 = ∂xΦ(p, x) ∈ R
m,a (5.13)

denotes the partial derivative w.r.t. the load coordinates x. The holonomic constraints

link both subsystems at hand and lead to constraint forces with associated Lagrange

multipliers λ ∈ R
m in Equation (5.10a).

The servo constraints (5.10c) specify the desired trajectory of the load via the prescri-

bed function γ : I → R
a. The control inputs u ∈ R

a regulate the control forces acting

on the first subsystem. In this connection, B1 ∈ R
a,n−a denotes the input transforma-

tion matrix. Besides the constraint and control forces, additional forces acting on the
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system are contained in the conjugate force vectors f 1 ∈ R
n−a and f 2 ∈ R

a. Similarly,

the mass matrix is split into the submatrices M1 ∈ R
n−a,n−a and M2 ∈ R

a,a.

Next, the index reduction technique outlined in Subsection 5.1.1 will be applied to the

index-5 DAEs (5.10a)−(5.10c) in order to obtain an extended but equivalent system

of index 3. Since the holonomic constraint (5.10b) only causes an index of 3, just the

derivatives of the servo constraints (5.10c) need to be added. The addition of these

two derivatives and the introduction of two dummy variables x̂ := ẋ and x̃ := ẍ lead

to the system

[
M1(p) 0

0 M2

][
p̈

x̃

]
=

[
f 1(p, ṗ)

f 2(x, x̂)

]
+

[
BT

1 (p)

0

]
u −

[
GT

1 (p, x)

GT
2 (p, x)

]
λ (5.14a)

0 = Φ(p, x) (5.14b)

x = γ (5.14c)

x̂ = γ̇ (5.14d)

x̃ = γ̈ (5.14e)

As it will be shown in Proposition 1, under certain assumptions, this system of equa-

tions has index three.

Proof of index 3

In the following, several assumptions, that are typically satisfied for crane models,

will be stated. In particular, these assumptions hold for the examples investigated

in Subsection 5.3.1 and 5.3.2. It is emphasized that the most general case will not

be analyzed. The analysis is only restricted to the model which ensures that the

underlying DAEs (5.10a)−(5.10c) have index 5. The assumptions serve the purpose to

minimize technical issues in the subsequent analysis. Furthermore, the assumptions

guarantee that the procedure of minimal extension can be applied twice in order to

obtain an equivalent system of index 1. This will be shown in Subsection 5.1.3.

Assumption 1. Consider system (5.10a)−(5.10c) with m 6 a 6 n − a. Let M1 ∈ R
n−a,n−a

be positive definite, and G2 ∈ R
m,a have full rank. This implies that there exists a matrix

P2 ∈ R
a,a−m, whose columns span the null space of G2. Thus

G2(p, γ)P2(p, γ) = 0 (5.15)
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Define z ∈ R
a−m by

z(t, p) := PT
2 (p, γ) ( f 2(γ, γ̇)− M2γ̈) (5.16)

and introduce h ∈ R
a by

h(t, p) :=

[
Φ(p, γ)

z(t, p)

]
(5.17)

Let H ∈ R
a,n−a given by

H(t, p) := ∂ph(t, p) (5.18)

have full rank, and let P ∈ R
a,a defined by

P(t, p) := H(t, p)M−1
1 (p)BT

1 (p) (5.19)

be invertible.

Proposition 1. Given Assumption 1, the DAEs (5.14a)−(5.14e) are of index 3.

Proof. The idea of the proof is to reduce the system (5.14a)−(5.14e) to a system that

has the structure of a constrained multibody system for which the index is known to

be 3. At first the variables x, x̂, and x̃ can be eliminated since they are directly given

by γ and its derivatives. Then the second part of equation (5.14a), namely

M2γ̈ = f 2(γ, γ̇)− GT
2 (p, γ)λ (5.20)

is used to extract an equation for λ. Since G2 ∈ R
m,a is assumed to have full rank,

Equation (5.20) yields

λ =
(

G2(p, γ)GT
2 (p, γ)

)−1
G2(p, γ) ( f 2(γ, γ̇)− M2γ̈) =: λ(t, p) (5.21)

In addition, premultiplying Equation (5.20) by PT
2 (p, γ) and taking into account Equa-

tion (5.15) give

z(t, p) = 0 (5.22)

where z(t, p) has been defined in Equation (5.16). Accordingly, the a equations in

(5.20) yield m equations for the determination of λ(t, p) along with a − m equations

z(t, p) = 0, which can be viewed as additional algebraic constraints. To summarize,
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5.1 Index reduction by minimal extension

the system is eventually obtained, that is

M1(p)p̈ = f 1(t, p, ṗ) + BT
1 (p)u (5.23a)

0 = h(t, p) (5.23b)

where

f 1(t, p, ṗ) := f 1(p, ṗ)− GT
1 (p, γ)λ(t, p) (5.24)

and h(t, p) has been defined in Equation (5.17). The DAEs (5.23a)−(5.23b) consist of

n− a differential equations (5.23a) and m+ (a−m) = a algebraic equations (5.23b) for

the determination of p ∈ R
n−a and u ∈ R

a. In particular, the DAEs (5.23a)−(5.23b)

assume the semi-explicit structure known from multibody dynamics. More precisely,

the DAEs (5.23a)−(5.23b) are Hessenberg index-3 (see, e.g., Ascher and Petzold [6,

Sect. 9.1.1]). Provided that Assumption 1 holds, the DAEs (5.23a)−(5.23b) have index

3. To see this, it can be argued along the lines of Subsection 4.1.1. In particular, the

argument hinges on the full rank assumption for the matrix P defined in Equation

(5.19).

Remark 2. Proposition 1 implies that the original DAEs (5.10a)−(5.10c) have index 5 at

most. This follows from the fact that two differentiation steps were sufficient to obtain DAEs

of index 3.

5.1.3 Redu
tion to index 1

The procedure of minimal extension can be applied a second time to eventually reach

DAEs of index 1. However, due to the fact that the extended system (5.14a)−(5.14e)

does not exhibit the desired Hessenberg form anymore, the index reduction method

can not be directly applied to the DAEs (5.14a)−(5.14e). Then it is necessary to find

the equations that need to be differentiated.

Here these equations have already been identified in the proof of Proposition 1. Ac-

cordingly, to apply index reduction by minimal extension a second time, the deri-

vatives of the constraints (5.23b) need to be added. In this way, the original system

is extended by 2a algebraic constraints. Correspondingly, 2a additional dummy va-

riables need to be introduced to reach a square system. For this purpose, the first

and second time derivative of the crane coordinates p ∈ R
n−a are available . That is,

there are 2(n − a) variables at the disposal. Note that this complies with the relation

a 6 n − a in Assumption 1. Although the second index reduction can be performed
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5 Index reduction by minimal extension for the inverse dynamics simulation

for the general case a 6 n − a, the focus will be placed on the special case a = n − a

in the following part.

The spe
ial 
ase of purely algebrai
 equations

In the sequel the special case a = n − a is mainly considered and it applies to the nu-

merical examples dealt with in Subsection 5.3.1 and 5.3.2. In this case the introduction

of dummy derivatives implies that all differential variables in DAEs (5.23a)−(5.23b)

are converted to algebraic ones. Thus, after the second index reduction, no differen-

tial variables are present any more, and the resulting system of equations is purely

algebraic. This indicates that the specific systems under consideration are classified

as differentially flat systems.

Provided that a = n − a, p̂ := ṗ and p̃ := p̈ are introduced as additional dummy

variables. Eventually the system reads

M1(p)p̃ = f 1(t, p, p̂) + BT
1 (p)u, (5.25a)

0 = h(t, p) (5.25b)

0 = H(t, p)p̂ + ∂th(t, p) (5.25c)

0 = H(t, p)p̃ + η(t, p, p̂) (5.25d)

where the i-th component of the vector-valued function η(t, p, p̂) is given by

ηi(t, p, p̂) = p̂T∂2
pphi(t, p)p̂ + 2∂2

tphi(t, p)p̂ + ∂2
tthi(t, p) (5.26)

for i = 1, . . . , a. Since system (5.25a)−(5.25d) is purely algebraic, it is easy to see that

the DAEs have index 1. In particular, system (5.25a)−(5.25d) constitutes 4a algebraic

equations for the determination of the 4a variables p, p̂, p̃ and u.

Remark 3. The assumptions made in Assumption 1 guarantee the unique solvability of the

algebraic system (5.25a)−(5.25d).

Remark 4. Alternatively, the above extension procedure can also be applied directly to system

(5.14a)−(5.14e). In this case the new constraints (5.25c) and (5.25d) need to be appended to

the DAEs (5.14a)− (5.14e). In addition, the dummy variabels p̂ := ṗ and p̃ := p̈ need to

be introduced. Again a purely algebraic system of equations, which is equivalent to system

(5.25a)−(5.25d), is obtained.
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5.1 Index reduction by minimal extension

Remark 5. A careful inspection of the present index-1 formulation shows that all unknowns

(redundant coordinates, Lagrange multipliers, and control inputs) can be expressed in terms

of the flat output function γ(t) along with the derivatives thereof up to the fourth order.

This corresponds to the fact that the crane models under consideration can be classified as

differentially flat systems (see [26, 33, 82]).

Remark 6. As mentioned before, the second index reduction can also be performed for the case

n − a > a. In this case the introduction of dummy derivatives still leaves differential variables

in the resulting index-1 DAEs. This is indicative for systems with internal dynamics (or

zero dynamics). In this case additional issues may arise such as the stability of the internal

dynamics.

5.1.4 Minimal 
oordinates

The minimal extension procedure of index reduction can also be applied to crane

formulations in terms of minimal coordinates. Based on the minimally extended

index-3 formulation (5.14a)−(5.14e), the redundant coordinates (5.11) are expressed

in terms of minimal coordinates µ ∈ R
f with f = n − m. Thus

q = ϕ(µ) or

[
p

x

]
=

[
ϕ1(µ)

ϕ2(µ)

]
(5.27)

Note that by definition the coordinate mapping3 (5.27) satisfies identically the holo-

nomic constraints (5.14b), that is, Φ ◦ϕ(µ) = 0 for all µ ∈ R
f . In Subsection 5.3.1 and

5.3.2, the coordinate mapping (5.27) will be described in detail in the context of the

specific examples.

Using the redundant coordinates (5.11), it is natural to select the derivatives of the

load coordinates x ∈ R
a as dummy variables (cf. Subsection 5.1.2). Similarly, differen-

tiating the minimal coordinates twice with respect to time leads to the corresponding

velocities µ̇ ∈ R
f and accelerations µ̈ ∈ R

f , from which appropriate dummy variables

need to be selected. To this end, the minimal coordinates are split into µ1 ∈ R
f−a and

µ2 ∈ R
a such that

D2ϕ2(µ1, µ2) ∈ R
a,a is nonsingular. (5.28)

With a slight abuse of notation, ϕ(µ1, µ2) is used to express the mapping (5.27) after

the coordinate partition has been performed. Furthermore, in Equation (5.28) and in

3 Note that ϕ denotes here the mapping rather than the position vector used previously.
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5 Index reduction by minimal extension for the inverse dynamics simulation

the sequel, Dαϕ(µ1, µ2) with α = 1 or α = 2 denotes the partial derivative with respect

to the first or second argument, respectively.

Now the dummy variables or dummy derivatives are chosen as

µ̂2 = µ̇2 (5.29a)

µ̃2 = µ̈2 (5.29b)

Differentiating the mapping (5.27) with respect to time leads to

ṗ = D1ϕ1(µ1, µ2)µ̇1 + D2ϕ1(µ1, µ2)µ̂2 (5.30a)

p̈ = D1ϕ1(µ1, µ2)µ̈1 + D2ϕ1(µ1, µ2)µ̃2 + g1(µ1, µ2, µ̇1, µ̂2) (5.30b)

and

x̂ = D1ϕ2(µ1, µ2)µ̇1 + D2ϕ2(µ1, µ2)µ̂2 (5.31a)

x̃ = D1ϕ2(µ1, µ2)µ̈1 + D2ϕ2(µ1, µ2)µ̃2 + g2(µ1, µ2, µ̇1, µ̂2) (5.31b)

where

gα(µ1, µ2, µ̇1, µ̂2) =
d
dt

(D1ϕα(µ1, µ2)) µ̇1 +
d
dt

(D2ϕα(µ1, µ2)) µ̂2 (5.32)

These relationships can now be inserted into the minimally extended index-3 DAEs

(5.14a)−(5.14e). In addition, in order to eliminate the Lagrange multipliers λ from

(5.14a), Equation (5.14a) is multiplied from the left by Dϕ(µ)T. A straightforward

calculation yields the minimally extended index-3 formulation in terms of minimal

coordinates given by

M11(µ)µ̈1 = h1(µ, µ̇1, µ̂2)−M12(µ)µ̃2 −B
T
1 (µ)u (5.33a)

M21(µ)µ̈1 = h2(µ, µ̇1, µ̂2)−M22(µ)µ̃2 −B
T
2 (µ)u (5.33b)

D1ϕ2(µ1, µ2)µ̈1 = γ̈ − g2(µ, µ̇1, µ̂2)− D2ϕ2(µ1, µ2)µ̃2 (5.33c)

0 = D1ϕ2(µ1, µ2)µ̇1 + D2ϕ2(µ1, µ2)µ̂2 − γ̇ (5.33d)

0 = ϕ2(µ)− γ (5.33e)
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5.1 Index reduction by minimal extension

Here the components are given by

Mαβ(µ) =
2∑

γ=1

DαϕT
γ(µ1, µ2)MγDβϕγ(µ1, µ2) (5.34a)

hα(µ, µ̇1, µ̂2) =
2∑

γ=1

DαϕT
γ(µ1, µ2)

(
f γ − Mγgγ

)
(5.34b)

B
T
α (µ) = DαϕT

1 (µ1, µ2)B
T
1 (5.34c)

Note that, to simplify the notation, (µ1, µ2) has often been replaced by µ as an argu-

ment of the functions considered. Similarly, the arguments of functions pertaining to

the underlying formulation in terms of redundant coordinates have been suppressed.

The above procedure coincides with the reduced formulation of the DAEs (Subsection

2.3.2). Besides, the minimal coordinates formulation can also be obtained by applying

Lagrange’s equations of the second kind (see Section 2.2).

System (5.33a)−(5.33e) constitutes a set of f + 3a index-3 DAEs for the determination

of the differential variables µ1 ∈ R
f−a and the algebraic variables u, µ2, µ̂2, µ̃2 ∈ R

a.

Commutative pro
ess

Minimal coordinates can also be employed from the outset, prior to the index re-

duction approach. Indeed, the index reduction by minimal extension may also start

from the formulation in terms of minimal coordinates given by the system (4.1a)−(4.1c).

1. In a first step the coordinate mapping (5.27) is employed to convert the index-

5 formulation in terms of redundant coordinates (5.10a)−(5.10c) to the corre-

sponding index-5 formulation in terms of minimal coordinates (4.1a)−(4.1c).

This conversion is a standard procedure relying on the projection matrix Dϕ(µ).

Thus, the index-5 DAEs are obtained and read

M(µ)µ̈ = h(µ, µ̇)−B
T(µ)u (5.35a)

0 = ϕ2(µ)− γ (5.35b)

where the reduced mass matrix M(µ) = DϕT(µ)MDϕ(µ) assumes the partiti-

oned form

M(µ) =

[
M11(µ) M12(µ)

M21(µ) M22(µ)

]
(5.36)

109



5 Index reduction by minimal extension for the inverse dynamics simulation

Here, the submatrices are given by Equation (5.34a). Similarly, h and B in

Equation (5.35a) can be assembled from Equation (5.34b) and (5.34c), respecti-

vely. Note that comparing the servo constraints (5.35b) with (4.1c) shows that

ϕ2(µ) = s(µ).

2. Now index reduction by minimal extension can be applied to the system of

equations (5.35a)−(5.35b). To this end, partition the minimal coordinates subject

to condition (5.28), differentiate the servo constraints (5.35b) twice with respect

to time, and introduce the dummy variables (5.29a)−(5.29b). It is easy to see

that this procedure yields again the index-3 DAEs (5.33a)−(5.33e).

Obviously, the two steps to arrive at the minimally extended set of index-3 DAEs in

terms of minimal coordinates (5.33a)−(5.33e) do commute. That is, the final result is

independent of the order of the steps (i) minimal extension and (ii) introduction of

minimal coordinates. This is summarized in the commutative diagram in Fig. 5.1.

Index-5 DAEs (5.10)
Redundant coordinates

Minimal coordinates Index-5 DAEs (5.35)
Minimal coordinates

Minimal extension

Index-3 DAEs (5.33)
Minimal coordinates

Minimal coordinatesIndex-3 DAEs (5.14)
Redundant coordinates

Minimal extension

Figure 5.1: Commutative diagram for index reduction and the introduction of minimal coordinates.

Remark 7. An alternative way of reducing the index from 5 to 3 is the projection method

originally proposed by Blajer and Kołodziejczyk [27]. This approach requires the design of a

suitable projection matrix and eventually yields f + a index-3 DAEs. Whereas in the present

approach the servo constraints are enforced on position, velocity and acceleration level (see

(5.33e), (5.33d) and (5.33c)), the projection method enforces the servo constraints only on

position and acceleration level. Correspondingly, the present approach is characterized by

f + 3a index-3 DAEs.
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5.2 Discretization

5.2 Dis
retization

After the index of the equations of motion has been reduced to three, it is necessary to

discuss the temporal discretization for the numerical simulation. For general DAEs of

index 3, the stability of the used numerical integration method needs special attention.

However, the semi-explicit form allows to apply the backward Euler scheme. Here the

simple structure of the system, which is obtained by the minimal extension procedure,

is beneficial to the following time discretization.

5.2.1 Index-3 formulation in terms of dependent 
oordinates

The minimally extended index-3 formulation in terms of redundant (dependent) coor-

dinates (5.14a)−(5.14e) can be recast in the form

M1(p)p̈ = f 1(p, ṗ) + BT
1 (p)u − GT

1 (p, γ)λ (5.37a)

0 = M2γ̈ − f 2(γ, γ̇) + GT
2 (p, γ)λ (5.37b)

0 = Φ(p, γ) (5.37c)

The DAEs (5.37a)−(5.37c) provide n− a differential equations (5.37a) along with a+m

algebraic equations (5.37b) and (5.37c) for the determination of p ∈ R
n−a, u ∈ R

a,

and λ ∈ R
m. In particular, the DAEs (5.37a)−(5.37c) are in semi-explicit form, so that

the simple backward Euler discretization is expected to work well (see Ascher and

Petzold [6, Sec. 10.1.1]). Accordingly, the scheme

pn+1 − pn = ∆tvn+1 (5.38a)

M1(pn+1) (vn+1 − vn)

= ∆t
(

f 1(pn+1, vn+1) + BT
1 (pn+1)un+1 − GT

1 (pn+1, γ(tn+1))λn+1

) (5.38b)

0 = M2γ̈(tn+1)− f 2(γ(tn+1), γ̇(tn+1)) + GT
2 (pn+1, γ(tn+1))λn+1 (5.38c)

0 = Φ(pn+1γ(tn+1)) (5.38d)

is considered. In a typical step of size ∆t = tn+1 − tn approximations (•)n+1 to

(•)(tn+1) need to be found if the corresponding quantities (•)n are given as the re-

sult of the previous step. For the initial step, consistent initial values p0 and v0 are
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5 Index reduction by minimal extension for the inverse dynamics simulation

required and they need to satisfy Φ(p0, γ(t0)) = 0 along with

G1(p0, γ(t0))v0 + G2(p0, γ(t0))γ̇(t0)) = 0 (5.39)

The scheme (5.38a)−(5.38d) provides 2n + m − a algebraic equations for the determi-

nation of pn+1, vn+1 ∈ R
n−a, un+1 ∈ R

a, and λn+1 ∈ R
m.

5.2.2 Index-3 formulation in terms of minimal 
oordinates

For the minimally extended index-3 formulation in terms of minimal coordinates

(5.33a)− (5.33e), the backward Euler discretization can also be applied.

The corresponding scheme is given by

µ1n+1
− µ1n

= ∆tν1n+1 (5.40a)

M11(µn+1)
(
ν1n+1 − ν1n

)

= ∆t
(

h1(µn+1, ν1n+1 , µ̂2n+1
)−M12(µn+1)µ̃2n+1

−B
T
1 (µn+1)un+1

) (5.40b)

M21(µn+1)
(
ν1n+1 − ν1n

)

= ∆t
(

h2(µn+1, ν1n+1 , µ̂2n+1
)−M22(µn+1)µ̃2n+1

−B
T
2 (µn+1)un+1

) (5.40c)

D1ϕ2(µ1n+1
, µ2n+1

)
(
ν1n+1 − ν1n

)

= ∆t
(

γ̈(tn+1)− g2(µn+1, ν1n+1 , µ̂2n+1
)− D2ϕ2(µ1n+1

, µ2n+1
)µ̃2n+1

) (5.40d)

0 = D1ϕ2(µ1n+1
, µ2n+1

)ν1n+1 + D2ϕ2(µ1n+1
, µ2n+1

)µ̂2n+1
− γ̇(tn+1) (5.40e)

0 = ϕ2(µn+1)− γ(tn+1) (5.40f)

The scheme (5.40a)−(5.40f) provides 2( f + a) algebraic equations for the determina-

tion of µ1n+1
, ν1n+1 ∈ R

f−a and µ2n+1
, µ̂2n+1

, µ̃2n+1
, un+1 ∈ R

a.

5.3 Numeri
al examples

Here the crane examples treated in Section 4.4 will be used again to demonstrate

the application of index reduction by minimal extension to the crane formulations in

terms of both redundant (dependent) and minimal coordinates.
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5.3 Numerical examples

5.3.1 Planar overhead 
rane

x

z

s

Ft Mw

ϕ

l

(x, z)

γ(t)

Figure 5.2: The model of the planar overhead crane.

As the first example, the planar overhead crane, that allows traveling and hoisting

motions (see Fig. 5.2), is considered. This servo constraint problem has originally

been formulated in terms of minimal coordinates in [27] and recast in redundant

coordinates in [20, 30, 94] (see also Subsection 4.4.1).

The description of the overhead crane is based on n = 4 redundant coordinates, m = 1

holonomic constraint, and a = 2 controls. In particular, the crane coordinates p ∈ R
2

and the load coordinates x ∈ R
2 are given by

p =

[
s

l

]
and x =

[
x

z

]
(5.41)

As before, the horizontal position of the trolley is given by s, the cable length is l, and

the coordinates of the load are denoted by (x, z). The redundant coordinates need to

satisfy the holonomic constraint

Φ(p, x) =
1
2

(
(x − s)2 + z2 − l2

)
= 0 (5.42)

The holonomic constraint gives rise to the associated constraint Jacobian, which can

be decomposed into

G1(p, x) =
[
−(x − s) −l

]
(5.43a)

G2(p, x) =
[

x − s z
]

(5.43b)
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5 Index reduction by minimal extension for the inverse dynamics simulation

In addition, the underlying index-5 DAEs (5.10a)−(5.10c) employ the mass matrices

M1 =

[
mt 0

0 J
r2

]
and M2 =

[
m 0

0 m

]
(5.44)

where the mass of the trolley is mt, the moment of inertia of the winch is J, the

winch radius is r, and the mass of the load is m. Further, the quantities needed in

(5.10a)−(5.10c) are given by

f 1 =

[
0

0

]
, f 2 =

[
0

−mg

]
, B1 =

[
1 0

0 1
r

]
(5.45)

The servo constraints (5.10c) are used to prescribe the trajectory of the load. Accor-

dingly, there is

γ =

[
xd

zd

]
(5.46)

where the coordinates xd and zd are prescribed functions of time. The corresponding

control inputs assume the form

u =

[
Ft

Mw

]
(5.47)

where the force acting on the trolley is given by Ft, and the torque acting on the winch

is given by Mw.

Veri�
ation of Assumption 1

To verify Assumption 1, at first a matrix

P2(p, γ) =

[
−zd

xd − s

]
(5.48)

is chosen such that condition (5.15) is satisfied. Then Equation (5.16) yields

z(t, p) = m (zd ẍd − (xd − s)(g + z̈d)) (5.49)

Furthermore, the constraint function (5.17) reads

h(t, p) =

[
1
2

(
(xd − s)2 + z2

d − l2
)

m (zd ẍd − (xd − s)(g + z̈d))

]
(5.50)
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such that Equation (5.18) yields

H(t, p) =

[
G1(p, γ)

∂pz(t, p)

]
=

[
−(xd − s) −l

m(g + z̈d) 0

]
(5.51)

Eventually, Equation (5.19) gives

P(t, p) =

[
− xd−s

mt
− lr

J
m
mt
(g + z̈d) 0

]
(5.52)

Note that in practical applications there are l > 0 and g + z̈d > 0. The last inequality

holds due to the fact that the cable (which in the present model is assumed to be

inextensible and massless) connecting the load with the winch can only sustain tensile

(and no compressive) forces. This can be easily verified by applying Newton’s second

law of motion. Thus, H(t, p) has full rank, and P(t, p) is invertible. Consequently,

Assumption 1 is satisfied, and Proposition 1 holds.

It should be further noted that the minimally extended index-3 DAEs (5.23a)−(5.23b)

can now be set up for the overhead crane. It only remains to calculate

f 1(t, p) =
m

l2 ((xd − s)ẍd + zd(g + z̈d))

[
−(xd − s)

−l

]
(5.53)

to complete the description of the DAEs (5.23a)−(5.23b).

Index-1 formulation

As explained in Section 5.1.3, the index-1 formulation (5.25a)−(5.25d) yields a purely

algebraic system of equations that facilitates an analytical solution to the inverse dy-

namics problem under consideration. The additional quantities needed in (5.25c) and

(5.25d) read

∂th(t, p) =

[
(xd − s)ẋd + zd żd

m
(

żd ẍd − ẋd(g + z̈d) + zdx
(3)
d − (xd − s)z

(3)
d

)
]

(5.54)
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5 Index reduction by minimal extension for the inverse dynamics simulation

and also

∂2
pph1(t, p) =

[
1 0

0 −1

]
(5.55a)

∂2
pph2(t, p) =

[
0 0

0 0

]
(5.55b)

∂2
tph(t, p) =

[
−ẋd 0

mz
(3)
d 0

]
(5.55c)

∂2
tth(t, p) =

[
ẋ2

d + ż2
d + (xd − s)ẍd + zd z̈d

m
(
−ẍdg + 2żdx

(3)
d − 2ẋdz

(3)
d + zdx

(4)
d − (xd − s)z

(4)
d

)
]

(5.55d)

In the present case it is possible to get a closed-form analytical solution to system

(5.25a)− (5.25d), which serves as reference solution in the numerical simulation pre-

sented later. Note that the fourth order derivative of the prescribed output appears

in the above index-1 formulation, and that means α = 4. Thus, it proves that the ori-

ginal DAEs (5.10a)−(5.10c) have the index of five. It is identical to the flatness-based

solution given in Subsection 4.4.1.

Minimal 
oordinates

Next the minimally extended index-3 system (5.33a)−(5.33e) will be considered for

the overhead crane in terms of minimal coordinates. Since the planar overhead crane

has f = n − m = 3 degrees of freedom, minimal coordinates are expressed by

µ =




s

l

ϕ


 (5.56)

These coordinates have been also used in the original description of the present servo

constraint problem in [27]. The coordinate mappings in (5.27) assume the form

ϕ1(µ) =

[
s

l

]
(5.57)

and also

ϕ2(µ) =

[
s + l sin ϕ

−l cos ϕ

]
(5.58)
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For the minimal extension procedure, the minimal coordinates are split into

µ1 =
[
s
]

(5.59)

and

µ2 =

[
l

ϕ

]
(5.60)

such that the Jacobian

D2ϕ2(µ1, µ2) =

[
sin ϕ l cos ϕ

− cos ϕ l sin ϕ

]
(5.61)

is guaranteed to be nonsingular. Thus, condition (5.28) is satisfied. Furthermore,

D1ϕ1(µ1, µ2) =

[
1

0

]
, D2ϕ1(µ1, µ2) =

[
0 0

1 0

]
, D1ϕ2(µ1, µ2) =

[
1

0

]
(5.62)

Now, Equation (5.32) gives rise to

g1 =

[
0

0

]
and g2 =

[
2ϕ̂l̂ cos ϕ − l ϕ̂2 sin ϕ

2ϕ̂l̂ sin ϕ + l ϕ̂2 cos ϕ

]
(5.63)

Note that the minimal extension procedure implies the equalities l̂ = l̇ and ϕ̂ = ϕ̇ due

to the introduction of dummy variables l̂ and ϕ̂. Furthermore, (5.34a)−(5.34c) yields

M11(µ) =
[
mt + m

]
M12(µ) =

[
m sin ϕ ml cos ϕ

]
(5.64a)

M21(µ) = M
T
12(µ) M22(µ) =

[
J

r2 + m 0

0 ml2

]
(5.64b)

and also

h1(µ, µ̇1, µ̂2) =
[
ml ϕ̂2 sin ϕ − 2mϕ̂l̂ cos ϕ

]
(5.65a)

h2(µ, µ̇1, µ̂2) =

[
ml ϕ̂2 + mg cos ϕ

−ml(g sin ϕ + 2ϕ̂l̂)

]
(5.65b)

B
T
1 (µ) =

[
1 0

]
(5.65c)

B
T
2 (µ) =

[
0 1

r

0 0

]
(5.65d)
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5 Index reduction by minimal extension for the inverse dynamics simulation

This completes the index-3 DAEs (5.33a)−(5.33e) for the overhead crane in terms of

minimal coordinates. It is obviously seen that the above quantities are identical to

the quantities that have been deduced in the projection method for the minimal coor-

dinates formulation (see Subsection 4.4.1). Instead of differential variables, dummy

variables appear in the minimal coordinates formulation here.

Inverse dynami
s simulation

The data for the present numerical example have been taken from [27]. Accordingly,

the prescribed trajectory of load m is defined by

γ(t) = γ0 + (γ f − γ0)c(τ) (5.66)

with the initial position

γ0 =

[
xd(t0)

zd(t0)

]
=

[
0

−4 m

]
at t0 = 0 (5.67)

and the final position

γ f =

[
xd(t f )

zd(t f )

]
=

[
5 m

−1 m

]
at t f = 3 s (5.68)

The interpolating polynomial c(τ) takes the form

c(τ) = 70τ9 − 315τ8 + 540τ7 − 420τ6 + 126τ5 with τ =
t

t f − t0
(5.69)

Accordingly, the motion of load m is subjected to a rest-to-rest maneuver on a straight-

line trajectory. Starting at rest, the initial configuration of the system is given by

q0 =
[
s0 l0 x0 z0

]T
=
[
0 4 m 0 −4 m

]T
(5.70)

The remaining parameters are given by mt = 10 kg, m = 100 kg, J = 0.1 kg · m2,

g = 9.81 m/s2 and r = 0.1 m.

The simulation results for different time step sizes are depicted in Fig. 5.3 and 5.4.

In each diagram, the numerical solution (NUM) is compared to the analytical refe-

rence solution (REF). It can be observed that the numerical solution converges to the
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analytical reference solution when the time step size is reduced. Here, the use of

coordinates between redundant and minimal coordinates is not distinguished since

both formulations yield very similar results. This also applies for the implementation

of the projection method proposed in [27]. The motion of the overhead crane is illus-

trated in Fig. 5.5 with some snapshots at consecutive points in time. It shows that the

snapshots are the same as in Subsection 4.4.1.
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Figure 5.3: Planar overhead crane: Comparison between the numerical results (NUM) obtained with
∆t = 0.1 s and the analytical reference solution (REF).
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Figure 5.4: Planar overhead crane: Comparison between the numerical results (NUM) obtained with
∆t = 0.01 s and the analytical reference solution (REF).
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5 Index reduction by minimal extension for the inverse dynamics simulation

Figure 5.5: Planar overhead crane: Snapshots at specific points in time.
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Figure 5.6: The model of the three-dimensional rotary crane.
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5.3.2 Three-dimensional rotary 
rane

As the second example depicted in Fig. 5.6, the three-dimensional rotary crane treated

in the forward dynamics simulation in Section 2.4, will be treated in the context of

servo constraint problems again. This servo constraint problem has originally been

dealt with in [31].

This problem can also be viewed as a 3d extension of the planar crane treated in

the previous subsection. The 3d crane makes use of n = 6 redundant (dependent)

coordinates that are subject to m = 1 holonomic constraint. Moreover, a = 3 servo

constraints are used to prescribe the trajectory of the load. The crane coordinates

p ∈ R
3 and the load coordinates x ∈ R

3 are given by

p =
[

ϕ s l
]T

and x =
[

x y z
]T

(5.71)

The position of the load (mass m) is specified by the Cartesian coordinates (x, y, z)

relative to an inertial reference frame. In addition to the location s of the trolley and

the length l of the hoisting cable, the angle ϕ measures the rotation of the girder bridge

about the Z-axis relative to the X-axis. Accordingly, the motion of the suspension

point is described by polar coordiantes (s, ϕ) relative to the origin of the reference

frame. The redundant coordinates need to satisfy the holonomic constraint

Φ(p, x) =
1
2

(
(x − s cos ϕ)2 + (y − s sin ϕ)2 + z2 − l2

)
= 0 (5.72)

The associated constraint Jacobian assumes the partitioned form

G1(p, x) =
[
(x sin ϕ − y cos ϕ)s (s − x cos ϕ − y sin ϕ) −l

]
(5.73a)

G2(p, x) =
[
(x − s cos ϕ) (y − s sin ϕ) z

]
(5.73b)

In the underlying index-5 DAEs (5.10a)−(5.10c), the mass matrices are given by

M1 =




Jb + mts
2 0 0

0 mt 0

0 0 Jw

r2
w


 , M2 =




m 0 0

0 m 0

0 0 m


 (5.74)

where the inertia value Jb is the moment of inertia of the bridge relative to the Z-axis,

the inertia value Jw is the moment of inertia of the winch (of radius rw), and the mass
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5 Index reduction by minimal extension for the inverse dynamics simulation

of the trolley is mt. Further, the quantities needed in (5.10a)−(5.10c) are given by

f 1 =




2mtsṡϕ̇

−mtsϕ̇2

0


 f 2 =




0

0

−mg


 B1 =




1 0 0

0 1 0

0 0 1
rw


 (5.75)

The servo constraints (5.10c) are used to prescribe the trajectory of the load. Accor-

dingly, there is

γ =
[

xd yd zd

]T
(5.76)

where the coordinates xd, yd and zd are prescribed functions of time. The control

inputs assume the form

u =
[

Mb Ft Mw

]T
(5.77)

Here, the variable Mb is the torque acting about the Z−axis on the bridge, the variable

Ft is the force acting along the girder bridge on the trolley, and the variable Mw is the

torque acting on the winch.

Veri�
ation of Assumption 1

To verify Assumption 1, at first a matrix

P2(p, γ) =




−zd 0

0 −zd

xd − s cos ϕ yd − s sin ϕ


 (5.78)

is chosen such that condition (5.15) is satisfied. Now Equation (5.16) yields

z(t, p) =

[
m (zd ẍd − (xd − s cos ϕ)(g + z̈d))

m (zdÿd − (yd − s sin ϕ)(g + z̈d))

]
(5.79)

Furthermore, the constraint function (5.17) reads

h(t, p) =




1
2

(
(xd − s cos ϕ)2 + (yd − s sin ϕ)2 + z2

d − l2
)

m (zd ẍd − (xd − s cos ϕ)(g + z̈d))

m (zdÿd − (yd − s sin ϕ)(g + z̈d))


 (5.80)
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such that Equation (5.18) yields

H(t, p) =

[
G1(p, γ)

∂pz(t, p)

]
=



(xd sin ϕ − yd cos ϕ)s (s − xd cos ϕ − yd sin ϕ) −l

−ms(g + z̈d) sin ϕ m(g + z̈d) cos ϕ 0

ms(g + z̈d) cos ϕ m(g + z̈d) sin ϕ 0




(5.81)

Eventually, Equation (5.19) gives

P(t, p) =




(xd sin ϕ−yd cos ϕ)s
Jb+mts2

s−xd cos ϕ−yd sin ϕ
mt

− lrw
Jw

−ms(g+z̈d) sin ϕ
Jb+mts2

m(g+z̈d) cos ϕ
mt

0
ms(g+z̈d) cos ϕ

Jb+mts2
m(g+z̈d) sin ϕ

mt
0


 (5.82)

As in the case of the planar overhead crane, the hoisting cable can only sustain tensile

forces such that g + z̈d > 0. Moreover, in practical applications, l > 0. This implies

that H(t, p) has full rank and P(t, p) is invertible. Consequently, Assumption 1 is

satisfied, and Proposition 1 holds.

It should be further noted that the minimally extended index-3 DAEs (5.23a)−(5.23b)

can now be set up for the rotary crane. To complete the description of the DAEs

(5.23a)−(5.23b), it only remains to calculate

f 1(t, p) =




2mtsṡϕ̇

−mtsϕ̇2

0


+

m

l2 ((xd − s cos ϕ)ẍd + (yd − s sin ϕ)ÿd + zd(g + z̈d))

×



(xd sin ϕ − yd cos ϕ)s

s − xd cos ϕ − yd sin ϕ

−l




(5.83)

Index-1 formulation

As explained in Section 5.1.3, the index-1 formulation (5.25a)−(5.25d) of the three-

dimensional rotary crane model yields a purely algebraic system of equations, which

facilitates to provide an analytical solution to the inverse dynamics simulation pro-

blem under consideration.
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5 Index reduction by minimal extension for the inverse dynamics simulation

The additional quantities needed in (5.25c) and (5.25d) read

∂th(t, p) =




(xd − s cos ϕ)ẋd + (yd − s sin ϕ)ẏd + zd żd

m
(

zdx
(3)
d + żd ẍd − (xd − s cos ϕ)z

(3)
d − ẋd(g + z̈d)

)

m
(

żdÿd + zdy
(3)
d − (yd − s sin ϕ)z

(3)
d − ẏd(g + z̈d)

)


 (5.84)

and

∂2
pph1(t, p) =



(xd cos ϕ + yd sin ϕ)s xd sin ϕ − yd cos ϕ 0

xd sin ϕ − yd cos ϕ 1 0

0 0 −1


 (5.85a)

∂2
pph2(t, p) =



−ms(g + z̈d) cos ϕ −m(g + z̈d) sin ϕ 0

−m(g + z̈d) sin ϕ 0 0

0 0 0


 (5.85b)

∂2
pph3(t, p) =



−ms(g + z̈d) sin ϕ m(g + z̈d) cos ϕ 0

m(g + z̈d) cos ϕ 0 0

0 0 0


 (5.85c)

∂2
tph(t, p) =




s(ẋd sin ϕ − ẏd cos ϕ) −(ẋd cos ϕ + ẏd sin ϕ) 0

−msz
(3)
d sin ϕ mz

(3)
d cos ϕ 0

msz
(3)
d cos ϕ mz

(3)
d sin ϕ 0


 (5.86a)

∂2
tth(t, p) =




(xd − s cos ϕ)ẍd + ẋ2
d + (yd − s sin ϕ)ÿd + ẏ2

d + ż2
d + zd z̈d

m
(

x
(4)
d zd + 2żdx

(3)
d + ẍdz̈d − ẍd(g + z̈d)− (xd − s cos ϕ)z

(4)
d − 2ẋdz

(3)
d

)

m
(

y
(4)
d zd + 2żdy

(3)
d + ÿd z̈d − ÿd(g + z̈d)− (yd − s sin ϕ)z

(4)
d − 2ẏdz

(3)
d

)




(5.86b)

As in the case of the planar overhead crane example, it is also possible to get a closed-

form analytical solution from the system of equations (5.25a)−(5.25d). The analytical

solution derived in this case serves as a reference solution, which is compared to the

numerical results in the simulations performed below.

Minimal 
oordinates

Next the minimally extended index-3 system of equations (5.33a)−(5.33e) will be con-

sidered for the rotary crane in terms of minimal coordinates.
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5.3 Numerical examples

To this end, the load position relative to the suspension point is expressed by means

of the cable length l and three angles (ϕ, θ1, θ2), which is shown in Fig. 5.6. That is,




xd − s cos ϕ

yd − s sin ϕ

zd


 = ln(ϕ, θ1, θ2) (5.87)

Here, the vector n(ϕ, θ1, θ2) = R(ϕ, θ1, θ2)(−e3) is a unit vector (see Fig. 2.6) that

points from the suspension point to the load and follows from the canonical base

vector −e3 =
[
0 0 −1

]T
by applying successive elementary rotations with angles

(θ2, θ1, ϕ) about fixed axes (−e2,−e1, e3) (see also Subsection 2.4.1). This procedure

leads to the associated rotation matrix R(ϕ, θ1, θ2) and eventually yields

n(ϕ, θ1, θ2) =




sin θ2 cos ϕ + cos θ2 sin θ1 sin ϕ

sin θ2 sin ϕ − cos θ2 sin θ1 cos ϕ

− cos θ2 cos θ1


 (5.88)

Then the coordinate mappings in Equation (5.27) can be written in the form

ϕ1(µ) =




ϕ

s

l


 and ϕ2(µ) =



(s + l sin θ2) cos ϕ + l cos θ2 sin θ1 sin ϕ

(s + l sin θ2) sin ϕ − l cos θ2 sin θ1 cos ϕ

−l cos θ2 cos θ1


 (5.89)

such that f = n − m = 5 minimal coordinates

µ =
[

ϕ s l θ1 θ2

]T
(5.90)

are used. The same set of coordinates has also been employed in [28]. For the minimal

extension procedure of index reduction, the minimal coordinates are split into

µ1 =

[
ϕ

s

]
and µ2 =




l

θ1

θ2


 (5.91)
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5 Index reduction by minimal extension for the inverse dynamics simulation

In this case there is

D2ϕ2(µ1, µ2) =



sin θ2 cos ϕ + cos θ2 sin θ1 sin ϕ l cos θ2 cos θ1 sin ϕ l cos θ2 cos ϕ − l sin θ2 sin θ1 sin ϕ

sin θ2 sin ϕ − cos θ2 sin θ1 cos ϕ −l cos θ2 cos θ1 cos ϕ l cos θ2 sin ϕ + l sin θ2 sin θ1 cos ϕ

− cos θ2 cos θ1 l cos θ2 sin θ1 l sin θ2 cos θ1




(5.92)

This matrix is nonsingular for realistic parameter values (l > 0 and |θ2| < π
2 ). Accor-

dingly, condition (5.28) is satisfied. The partial derivatives are expressed by

D1ϕ1(µ1, µ2) =




1 0

0 1

0 0


 (5.93a)

D2ϕ1(µ1, µ2) =




0 0 0

0 0 0

1 0 0


 (5.93b)

D1ϕ2(µ1, µ2) =



−(s + l sin θ2) sin ϕ + l cos θ2 sin θ1 cos ϕ cos ϕ

(s + l sin θ2) cos ϕ + l cos θ2 sin θ1 sin ϕ sin ϕ

0 0


 (5.93c)

Now, Equation (5.32) gives rise to g1 = 0. Furthermore, g2(µ, µ̇1, µ̂2) and hα(µ, µ̇1, µ̂2)

can be calculated straightforwardly from Equation (5.32) and (5.34b), respectively. In

this connection, it is to be noted that the minimal extension procedure implies the

equalities l̂ = l̇, θ̂1 = θ̇1 and θ̂2 = θ̇2. Eventually, (5.34a)−(5.34c) yields

M11(µ) =

[
Jb + mts

2 + m
(
(s + l sin θ2)

2 + (l cos θ2 sin θ1)
2
)

ml cos θ2 sin θ1

ml cos θ2 sin θ1 m + mt

]

(5.94a)

M12(µ) =

[
−ms cos θ2 sin θ1 −ml(s + l sin θ2) cos θ2 cos θ1 ml sin θ1(l + s sin θ2)

m sin θ2 0 ml cos θ2

]

(5.94b)

M21(µ) = M
T
12(µ) (5.94c)

M22(µ) =




m + Jw

r2
w

0 0

0 ml2 cos2 θ2 0

0 0 ml2


 (5.94d)
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and

B
T
1 (µ) =

[
1 0 0

0 1 0

]
, B

T
2 (µ) =




0 0 1
rw

0 0 0

0 0 0


 (5.95)

Inverse dynami
s simulation

In the numerical simulation the data provided in [28] are used. In particular, the in-

ertia parameters are given by m = 100 kg, mt = 10 kg, Jw = 0.1 kg · m2, rw = 0.1 m,

and Jb = 480 kg · m2. The servo constraints are used to prescribe a rest-to-rest maneu-

ver of the load specified by

γ(t) = γ0 + (γ f − γ0)c(t) (5.96)

with the initial position

γ0 =




5 m

0

−5 m


 at t0 = 0 (5.97)

and the final position

γ f =



−2 m

2 m

−2 m


 at t f = 20 s (5.98)

The reference function c(t) is composed of three phases,

c(t) =





cI(t) for 0 6 t < 5 s

cI I(t) for 5 s 6 t < 15 s

cI I I(t) for 15 s 6 t 6 20 s

(5.99)

with each phase

cI(t) =
1

τ − τ0

(
− 5t8

2τ0
7 +

10t7

τ0
6 − 14t6

2τ0
5 +

7t5

2τ0
4

)
(5.100a)

cI I(t) =
1

τ − τ0

(
t − τ0

2

)
(5.100b)

cI I I(t) = 1 +
1

τ − τ0

(
−5(τ − t)8

2τ0
7 +

10(τ − t)7

τ0
6 − 14(τ − t)6

2τ0
5 +

7(τ − t)5

2τ0
4

)
(5.100c)
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5 Index reduction by minimal extension for the inverse dynamics simulation

Using the minimal coordinates (5.90), the initial configuration of the rotary crane at

t0 = 0 is defined by

µ0 =
[
0 5 m 5 m 0 0

]T
(5.101)

The motion of the crane is starting at rest such that µ̇0 = 0.

The simulation results for different time step sizes are depicted in Fig. 5.7 and 5.8. In

each diagram, the numerical solution (NUM) is compared to the analytical reference

solution (REF). It can be observed that the numerical solution converges to the ana-

lytical reference solution when the time step size is reduced. Both formulations in

terms of redundant and minimal coordinates yield practically the same results. Simi-

lar observations can be made for the implementation of the projection method due

to [31]. The motion of the rotary crane is illustrated in Fig. 5.9 with some snapshots

at consecutive points in time.
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Figure 5.7: Rotary crane: Comparison between the numerical results (NUM) obtained with ∆t = 1 s
and the analytical reference solution (REF).
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Figure 5.8: Rotary crane: Comparison between the numerical results (NUM) obtained with ∆t = 0.1 s
and the analytical reference solution (REF).

Figure 5.9: Rotary crane: Snapshots at specific points in time.
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5 Index reduction by minimal extension for the inverse dynamics simulation

5.4 Redundant 
oordinates formulation

In Subsection 5.1.2, the index reduction by minimal extention procedure has been

discussed in the dependent coordinates formulation of cranes. This index reduction

appoach is based on the introduction of new algebraic variables along with the enlar-

gement of the DAEs by appending time derivatives of the constraints.

It has been shown that index reduction by minimal extension can be applied very

efficiently by exploiting the specific structure provided by underactuated mechanical

systems. In this connection, either minimal or redundant coordinates can be used.

It is verified that the index reduction by minimal extension approach is a viable alter-

native to the projection method. It has also been shown that in a first step the minimal

extension approach can be used to lower the index of the DAEs from five to three and

in a second step the index can even be reduced to one.

The next goal of the present work is to extend the applicability of the index reduction

approach to mechanical models of underactuated systems that rely on arbitrarily se-

lected redundant coordinates. Specifically, in contrast to the above sections in this

chapter, the number of holonomic constraints is not limited. Consequently, general

crane formulations such as those developed in [58] can now be included into the

present index reduction approach. Similarly, other rotationless formulations of mul-

tibody dynamics such as natural coordinates or Cosserat-type descriptions in terms

of directors (including rigid bodies and nonlinear beams and shells) typically yield

a large number of holonomic constraints. These formulations are now embraced as

well by the newly developed index reduction method. In the following part the main

focus is placed on the inverse dynamics of a family of crane models that are known

to belong to the class of differentially flat systems.

5.4.1 Inverse dynami
s of undera
tuated me
hani
al systems

At first a general formulation of mechanical systems subjected to both holonomic and

servo constraints will be introduced. In particular, the equations of motion of the
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5.4 Redundant coordinates formulation

following form

[
M1(p) 0

0 M2

][
p̈

ẍ

]
=

[
f 1(p, ṗ)

f 2(x, ẋ)

]
+

[
BT

1 (p)

0

]
u − GT(p, x)λ (5.102a)

0 = h(p) (5.102b)

0 = Φ(p, x) (5.102c)

x = γ (5.102d)

are considered. The first row block in (5.102a) corresponds to the robot (or input)

subsystem with coordinates p ∈ R
n−a, whereas the second row block in (5.102a)

corresponds to the output subsystem with coordinates x ∈ R
a. The n redundant

coordinates

q =

[
p

x

]
(5.103)

are subject to the holonomic constraints (5.102b) and (5.102c), with associated con-

straint functions h ∈ R
m1 and Φ ∈ R

m2 . The total number of holonomic constraints is

denoted by m = m1 + m2. Note that the constraint function h does not depend on the

output variables x. The Jacobian of the holonomic constraints assumes the form

G(p, x) =

[
H1(p) 0

G1(p, x) G2(p, x)

]
=

[
∂ph(p) 0

∂pΦ(p, x) ∂xΦ(p, x)

]
∈ R

m,n (5.104)

The Lagrange multipliers associated to the m holonomic constraints are contained in

the vector

λ =

[
λ1

λ2

]
∈ R

m, with λ1 ∈ R
m1 , λ2 ∈ R

m2 (5.105)

Due to the presence of holonomic constraints, the configuration space of the constrai-

ned mechanical system under consideration is defined by

Q = {q ∈ R
n|h(p) = 0 , Φ(p, x) = 0} (5.106)

It is assumed that the constraints are independent. Consequently, the constraint Jaco-

bian G has full row rank and the discrete mechanical system under consideration has

n − m degrees of freedom.

The servo constraints (5.102d) specify the desired trajectory of the load via the pres-

cribed function γ : I → R
a, where I = [t0, t f ] is the time interval of interest.

131



5 Index reduction by minimal extension for the inverse dynamics simulation

Note that the attention is focused on underactuated mechanical systems in which

the number of controls is fewer than the number of degrees of freedom, that is, a <

n − m.

The control inputs u ∈ R
a regulate the control forces acting on the robot subsystem.

In this connection, the matrix B1 ∈ R
a,n−a denotes the input transformation matrix.

Besides the constraint and control forces, additional forces acting on the system are

contained in the conjugate force vectors f 1 ∈ R
n−a and f 2 ∈ R

a. Similarly, the mass

matrix is split into the submatrices M1 ∈ R
n−a,n−a and M2 ∈ R

a,a.

Due to the presence of servo constraints, the index of the DAEs (5.102a)−(5.102d)

often exceeds 3. This has been proved in the examples before. For example, the

application of servo constraints to (differentially flat) crane systems typically yields

an index of 5. Consequently, prior to the application of a numerical integrator the

index of the DAEs should be lowered. For that purpose, following the treatment in

the previous sections (see also [2]), the index reduction by minimal extension can be

applied to the DAEs (5.102a)−(5.102d) as well.

At this point it should be emphasized that in the above formulation (5.102a)−(5.102d)

the number of holonomic constraints, m, is just restricted by m < n. This facilitates

the arbitrary selection of redundant coordinates best suited for the description and

numerical simulation of the specific inverse dynamics problem at hand. This is in

contrast to the case treated in the previous sections in this chapter (see also [2]),

where m 6 a has been assumed.

5.4.2 Index redu
tion by minimal extension pro
edure

Guided by the mininal extension procedure [2], the system of DAEs (5.102a)−(5.102d)

is enlarged by appending the first and second time derivative of the servo con-

straints.

To maintain a square system, additional dummy derivatives x̂ := ẋ and x̃ := ẍ are

introduced, and they replace the corresponding derivatives of the outputs x in the

following square system of equations.
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Accordingly, the minimally extended system reads

[
M1(p) 0

0 M2

][
p̈

x̃

]
=

[
f 1(p, ṗ)

f 2(x, x̂)

]
+

[
BT

1 (p)

0

]
u −

[
HT

1 (p) GT
1 (p, x)

0 GT
2 (p, x)

][
λ1

λ2

]
(5.107a)

0 = h(p) (5.107b)

0 = Φ(p, x) (5.107c)

x = γ (5.107d)

x̂ = γ̇ (5.107e)

x̃ = γ̈ (5.107f)

Next it will be shown that - provided certain assumptions apply - the minimally

extended system (5.107a)−(5.107f) has index 3. Typical applications are differentially

flat crane models4 where the index equals 5 in the original form. Previously the

special case m 6 a and M1(p) non-singular has been shown. Here it is allowed that

there are more holonomic constraints than servo constraints.

To guarantee the index-3 property of system of equations (5.107a)−(5.107f), the follo-

wing two assumptions are stated. The first assumption ensures, amongst others, that

the number of holonomic constraints depending on x is bounded by the dimension

of x, namely a.

Assumption 2. The block GT
2 (p, γ) of the Jacobian G is of full rank and m2 6 a. Further-

more, the dimensions satisfy

2a + m1 6 n and a < n − m

The last inequality ensures that the system is underactuated. Note that the two previous

assumptions already imply a 6 n − m.

Within the proof of Theorem 5.2 below, the equations will be reduced and rewritten

such that the resulting system has the typical multibody structure and thus, is of

index 3. This requires a certain matrix to be invertible, which will be summarized in

the following assumption.

Assumption 3. If Assumption 2 is satisfied, then there exists a matrix P2 ∈ R
a,a−m2 , whose

columns span the null space of G2, i.e., G2(p, γ)P2(p, γ) = 0. Then z ∈ R
a−m2 is defined

4 Some advanced crane examples are given in Chapter 6.
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5 Index reduction by minimal extension for the inverse dynamics simulation

by the equation

z(p, γ) := PT
2 (p, γ) ( f 2(γ, γ̇)− M2γ̈) (5.108)

and its derivative with respect to p is denoted by Z1(p, γ) = ∂pz(p, γ). After that, with G1

and H1 from Equation (5.104), it is assumed that the matrix




M1(p) −BT
1 (p) HT

1 (p)

Z1(p, γ) 0 0

G1(p, γ) 0 0

H1(p) 0 0



∈ R

n+m1,n+m1 (5.109)

is invertible. Note that the matrix M1(p) itself is not asked to be invertible.

With the two assumptions in hand, the following theorem can be formulated.

Theorem 5.2. Given the Assumptions 2 and 3, the extended system (5.107a)−(5.107f) is a

set of index-3 DAEs.

Proof. As mentioned before, the idea of proof is to reduce the DAEs (5.107a)−(5.107f)

to a system which has a similar structure as a constrained multibody system.

Since the variables x, x̂ and x̃ are directly given by the prescribed trajectory γ and its

derivatives, they may be eliminated from the system equations. Consider the second

part of Equation (5.107a), namely

M2γ̈ = f 2(γ, γ̇)− GT
2 (p, γ)λ2.

Then the full rank property of G2 together with m2 6 a from Assumption 2 implies

that λ2 can be obtained by

λ2 =
(

G2(p, γ)GT
2 (p, γ)

)−1
G2(p, γ) ( f 2(γ, γ̇)− M2γ̈) .

With the matrix P2 ∈ R
a,a−m2 from Assumption 3, which spans the null space of G2,

z(p, γ) ∈ R
a−m2 can be defined according to Equation (5.108). Note that this defines

an algebraic constraint, that is

z(p, γ) = 0.
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5.4 Redundant coordinates formulation

In summary, the remaining variables need to satisfy the system

M1(p)p̈ = f 1(p, ṗ) + BT
1 (p)u − HT

1 (p)λ1 (5.110a)

0 = z(p, γ) (5.110b)

0 = Φ(p, γ) (5.110c)

0 = h(p) (5.110d)

with the term

f 1(p, ṗ) := f 1(p, ṗ)− GT
1 (p, γ)λ2 = f 1 − GT

1

(
G2GT

2

)−1
G2( f 2 − M2γ̈)

The resulting system of equations (5.110a)−(5.110d) consists of n − a dynamic equati-

ons and m2 +m1 +(a−m2) = a+m1 constraints. After replacing the three constraints

by their second derivatives, the system of equations (5.110a)−(5.110d) can be written

in the form

M̂




p̈

u

λ1


 =




f 1(p, ṗ)

z2(p, ṗ, γ, γ̇, γ̈)

Φ2(p, ṗ, γ, γ̇, γ̈)

h2(p, ṗ)




Therein, M̂ denotes the matrix in (5.109) and z2, Φ2, and h2 are the functions which

include the remaining terms of the differentiation. Since M̂ is non-singular by As-

sumption 3, a multiplication by its inverse matrix from the left yields an ODE for p

and algebraic equations for u and λ1. Since only two differentiations are necessary,

the system (5.110a)−(5.110d) and thus, also system (5.107a)−(5.107f) need to be (at

most) of index 3.

Redu
tion of the number of redundant 
oordinates

Next the present formulation will be connected to the formulation described in Subection 5.1.2.

To this end, the holonomic constraints (5.107b) are eliminated by reducing the num-

ber of redundant coordinates from n to n = n − m1. This is possible if a mapping

ϕ : R
n−a → R

n−a can be found such that

p = ϕ(p) (5.111)
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5 Index reduction by minimal extension for the inverse dynamics simulation

where p ∈ R
n−a denotes the new redundant coordinates. The mapping (5.111) has to

satisfy the constraints (5.107b) identically for arbitrary p ∈ R
n−a. Consequently,

h(ϕ(p)) = 0 and H1(p)Dϕ(p) = 0 (5.112)

for p = ϕ(p). Premultiplying the first row block in Equation (5.107a) by DϕT(p) and

taking into account Equation (5.111) and (5.112) yield the size-reduced DAEs

[
M1(p) 0

0 M2

][
p̈

x̃

]
=

[
f 1(p, ṗ)

f 2(x, x̂)

]
+

[
B

T
1 (p)

0

]
u −

[
G

T
1 (p, x)

G
T
2 (p, x)

]
λ2 (5.113a)

0 = Φ(p, x) (5.113b)

x = γ (5.113c)

x̂ = γ̇ (5.113d)

x̃ = γ̈ (5.113e)

where

M1(p) = DϕT(p)M1(p)Dϕ(p) (5.114a)

f 1(p, ṗ) = DϕT(p)

(
f 1(p, ṗ)− M1(p)

d

dt

(
Dϕ(p)

)
ṗ

)
(5.114b)

B
T
1 (p) = DϕT(p)BT

1 (p) (5.114c)

Φ(p, x) = Φ(p, x) (5.114d)

G1(p, x) = G1(p, x)Dϕ(p) (5.114e)

G2(p, x) = ∂xΦ(p, x) (5.114f)

for p = ϕ(p). In this way, the number of redundant coordinates is reduced by m1 such

that the remaining coordinates are given by the n-dimensional configuration vector

q =

[
p

x

]
(5.115)

Note that Equation (5.113b) contains the m2 remaining holonomic constraints with as-

sociated Lagrange multipliers λ2 ∈ R
m2 in Equation (5.113a). The configuration space

of the constrained mechanical system under consideration can now be expressed in

the form

Q = {q ∈ R
n|Φ(p, x) = 0} (5.116)
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5.4 Redundant coordinates formulation

The DAEs (5.113a)−(5.113e) lie at the heart of the work in previous sections of this

chapter. It has been shown that under certain conditions (e.g. m2 6 a and M1(p) non-

singular) the minimally extended DAEs (5.113a)−(5.113e) attain an index reduction

by two. In the case of differentially flat crane models, the original DAEs have index 5,

whereas the index-reduced DAEs (5.113a)−(5.113e) (and, correspondingly, the DAEs

(5.107a)−(5.107f) as well) have index 3. It has also been shown that a second appli-

cation of index reduction by minimal extension can achieve a reduction to index-1

DAEs.

5.4.3 Numeri
al dis
retization

For the specific inverse dynamics problems, which will be dealt with in the next

subsection, the proposed index reduction approach yields DAEs (5.107a)−(5.107f)

with index 3. Due to the semi-explicit form of the DAEs (5.107a)−(5.107f), the simple

backward Euler discretization can be expected to work well (see Ascher and Petzold

[6, Sec. 10.1.1]). The DAEs (5.107a)−(5.107f) can be recast in the form

M1(p)p̈ = f 1(p, ṗ) + BT
1 (p)u − HT

1 (p)λ1 − GT
1 (p, γ)λ2 (5.117a)

0 = M2γ̈ − f 2(γ, γ̇) + GT
2 (p, γ)λ2 (5.117b)

0 = Φ(p, γ) (5.117c)

0 = h(p) (5.117d)

The DAEs (5.117a)−(5.117d) provide n − a differential equations (5.117a) along with

a+m algebraic equations (5.117b) through (5.117d) for the determination of p ∈ R
n−a,

u ∈ R
a, and λ ∈ R

m. Application of the backward Euler method yields

pn+1 − pn = ∆tvn+1 (5.118a)

M1(pn+1)
(vn+1 − vn)

∆t

= f 1(pn+1, vn+1) + BT
1 (pn+1)un+1 − HT

1 (pn+1)λ1n+1 − GT
1 (pn+1, γ(tn+1))λ2n+1

(5.118b)

0 = M2γ̈(tn+1)− f 2(γ(tn+1), γ̇(tn+1)) + GT
2 (pn+1, γ(tn+1))λ2n+1 (5.118c)

0 = Φ(pn+1, γ(tn+1)) (5.118d)

0 = h(pn+1) (5.118e)

137



5 Index reduction by minimal extension for the inverse dynamics simulation

In a typical time step of size ∆t = tn+1 − tn approximations (•)n+1 to (•)(tn+1) need

to be found if the corresponding quantities (•)n are given as the result of the previous

step. For the initial time step, the consistent initial values p0 and v0 are required and

they have to satisfy Φ(p0, γ(t0)) = 0 and h(p0) = 0 along with

∂pΦ(p0, γ(t0))v0 + ∂xΦ(p0, γ(t0))γ̇(t0) = 0 (5.119a)

∂ph(p0)v0 = 0 (5.119b)

The scheme (5.118a)−(5.118e) provides 2n + m − a algebraic equations for the deter-

mination of pn+1, vn+1 ∈ R
n−a, un+1 ∈ R

a, and λn+1 ∈ R
m.

5.4.4 Sample appli
ation: Three-dimensional rotary 
rane

X

Y

Z

ϕ

s

l

Jb

Mb

X′

γ(t)

(x, y, z)
m

(x0, y0, z0)
(x1, y1, z1)

(x2, y2, z2)

L2 − L0

L1

L0
r

M1M2

Figure 5.10: The three-dimensional rotary crane model in terms of n = 10 redundant coordinates.
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5.4 Redundant coordinates formulation

The present approach will be demonstrated with the inverse dynamics simulation of

a specific three-dimensional rotary crane. Previously, in Section 5.3.2 the rotary crane

under consideration has been formulated in terms of n = 6 redundant coordinates

(see also [2, 31]) or 5 minimal coordinates (see also [2, 28]). Alternatively, the much

more general framework [58] is now used for the modeling of cranes. For this, n = 10

redundant coordinates are used and they are subject to m = 5 holonomic constraints.

The enlarged set of redundant crane coordinates, as shown in Fig. 5.10, is given by

p =
[

x2 y2 x0 y0 L1 L2 L0

]T
(5.120)

and

x =
[

x y z
]T

(5.121)

Similarly, the last equation specifies the load (mass m) coordinates relative to a Carte-

sian inertial frame. The load is connected to the hoisting winch 2 (Cartesian coordi-

nates x2, y2, z2 = 0, actuating torque M2, radius r2, moment of inertia J2) via a cable

of length L2. The position of the trolley (Cartesian coordinates x0, y0, z0 = 0, mass

m0) on the girder bridge relative to the hoisting winch 2 is given by L0. The trolley

contains a pulley (radius rw, moment of inertia Jw) and is moved along the girder

bridge under the action of a second winch 1 (Cartesian coordinates x1, y1, z1 = 0,

actuating torque M1, radius r1, moment of inertia J1) whose position on the girder

bridge relative to the hoisting winch 2 is fixed by the parameter α = 1
2 . The distance

between winch 1 and the trolley is given by L1. The holonomic constraints h(p) = 0

are given by

h(p) =




1
2((x0 − αx2)

2 + (y0 − αy2)
2 − L2

1)
1
2((x0 − x2)

2 + (y0 − y2)
2 − L2

0)
1
2(x

2
2 + y2

2 − r2)

x2y0 − x0y2




(5.122)

Accordingly, m1 = 4. Note that the first two constraints link the coordinates L1 and

L0 to the position of the trolley and, respectively, winch 1 and winch 2. Moreover,

the third constraint links the parameter r to the position of winch 2, and the fourth

constraint confines the relative motion of the trolley to the longitudinal direction along

the girder bridge. The last holonomic constraint Φ(p, x) = 0 is specified by

Φ(p, x) =
1
2
((x − x0)

2 + (y − y0)
2 + z2 − (L2 − L0)

2) (5.123)

and connects the load coordinates with the robot (or crane) coordinates. Accordingly,
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5 Index reduction by minimal extension for the inverse dynamics simulation

m2 = 1. The total kinetic energy of the mechanical system under consideration assu-

mes the form

T =
1
2

ṗ · M1 ṗ +
1
2

ẋ · M2ẋ (5.124)

in which the mass matrices corresponding to the robot coordinates and the load coor-

dinates are given by

M1 =




M 0 0 0 0 0 0

0 M 0 0 0 0 0

0 0 m0 0 0 0 0

0 0 0 m0 0 0 0

0 0 0 0 J1
r2

1
+ Jw

r2
w

− Jw

r2
w

0

0 0 0 0 − Jw

r2
w

J2
r2

2
+ Jw

r2
w

0

0 0 0 0 0 0 0




, M2 =




m 0 0

0 m 0

0 0 m


 (5.125)

Here, the mass M is connected to the moment of inertia of the girder bridge relative

to the Z-axis, Jb, via M = Jb
r2 . Further quantities needed in system of equations

(5.102a)−(5.102d) are given by

BT
1 =




0 0 − y2
r2

0 0 x2
r2

0 0 0

0 0 0
1
r1

0 0

0 1
r2

0

0 0 0




, f 1 =




0

0

0

0

0

0

0




, f 2 =




0

0

−mg


 , u =




M1

M2

Mb


 (5.126)

and

HT
1 =




α(x0 − αx2) x0 − x2 −x2 −y0

α(y0 − α1y2) y0 − y2 −y2 x0

αx2 − x0 x2 − x0 0 y2

αy2 − y0 y2 − y0 0 −x2

L1 0 0 0

0 0 0 0

0 L0 0 0




, GT
1 =




0

0

x − x0

y − y0

0

L2 − L0

L0 − L2




, GT
2 =




x0 − x

y0 − y

−z




(5.127)

Note that there are a = 3 control inputs given by the two winch torques M1, M2,

along with the torque Mb acting about the Z-axis of the rotary crane.
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5.4 Redundant coordinates formulation

Che
k of the assumptions

In order to show that the three-dimensional rotary crane with redundant variables

fits into the given framework, it is necessary to check whether Assumptions 2 and 3

are satisfied.

Clearly GT
2 is of full rank if either x 6= x0, y 6= y0, or z 6= 0. Note that this is a

reasonable assumption since otherwise the position of the trolley would be equal to

the position of the load. Furthermore, the dimensions satisfy n = 10, m1 = 4, m2 = 1,

and a = 3 such that

1 = m2 6 a = 3, 10 = 2a + m1 6 n = 10, 3 = a < n − m = 5 (5.128)

For the second assumption, the matrix P2 ∈ R
a,a−m2 is needed, which spans the null

space of G2. Depending on the case whether x 6= x0, y 6= y0, or z 6= 0, the projection

P2 may be given by

P2 =




y0 − y z

x − x0 0

0 x − x0


 , P2 =




y0 − y 0

x − x0 z

0 y0 − y


 , or P2 =




z 0

0 z

x0 − x y0 − y




(5.129)

Without loss of generality, it is assumed in the sequel that z 6= 0 which leads to

z = PT
2 (p, γ) ( f 2(γ, γ̇)− M2γ̈) = −mg

[
x0 − x

y0 − y

]
− m

[
zγ̈1 + (x0 − x)γ̈3

zγ̈2 + (y0 − y)γ̈3

]
(5.130)

and thus,

Z1(p, γ) = ∂pz(p, γ) =

[
0 0 −m(g + γ̈3) 0 0 0 0

0 0 0 −m(g + γ̈3) 0 0 0

]
(5.131)

Since in this special case the matrices

[
−BT

1 (p) HT
1 (p)

]
and

[
ZT

1 (p, γ) GT
1 (p, γ) HT

1 (p)
]

(5.132)

are square, it is sufficient to show the invertibility of the two matrices in order to prove

that the matrix in (5.109) is invertible and thus Assumption 3 is satisfied. A close look

at the matrices then shows that minimal extension reduces the system equations of

the three-dimensional rotary crane to index-3 DAEs if the following conditions are
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5 Index reduction by minimal extension for the inverse dynamics simulation

satisfied:

z, L0, L1, L2 6= 0, L0 6= L2, g 6= −γ̈3, x0x2 + y0y2 6= 0, x2
2 + y2

2 6= 0 (5.133)

Redu
tion of the number of redundant 
oordinates

X

Y

Z

ϕ

s

l

Jb

Ft

Mb

Mw
X′

γ(t)

(x, y, z)
m

Figure 5.11: The three-dimensional rotary crane model in terms of a reduced set of n = 6 redundant
coordinates.

Next, the above formulation of the rotary crane is linked to the original one (see also

[2, 31]) relying on the reduced set of crane coordinates (Fig. 5.11)

p =
[

ϕ s l
]T

(5.134)

Here, the angle ϕ measures the rotation of the girder bridge about the Z-axis relative

to the X-axis, the displacement s specifies the position of the trolley on the girder

bridge, and the variable l denotes the length of the hoisting cable connecting the load

with the winch contained in the trolley. In contrast to the previous crane model in Fig.

5.10, the winch contained in the trolley is now assumed to be actuated (torque Mw).

The previous crane coordinates p in (5.120) can now be expressed in terms of the

reduced set of crane coordinates (5.134) and this gives rise to the mapping p = ϕ(p)
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5.4 Redundant coordinates formulation

in (5.111). Accordingly,




x2

y2

x0

y0

L1

L2

L0




=




−r cos ϕ

−r sin ϕ

s cos ϕ

s sin ϕ

s + αr

s + r + l

s + r




and Dϕ(p) =




r sin ϕ 0 0

−r cos ϕ 0 0

−s sin ϕ cos ϕ 0

s cos ϕ sin ϕ 0

0 1 0

0 1 1

0 1 0




(5.135)

Furthermore, the quantities in (5.114) can now be calculated in a straightforward way

and it leads to

M1(p) =




Mr2 + m0s2 0 0

0 m0 +
J1
r2

1
+ J2

r2
2

J2
r2

2

0 J2
r2

2

J2
r2

2
+ Jw

r2
w


 (5.136)

and

f 1(p, ṗ) =



−2m0sṡϕ̇

m0sϕ̇2

0


 , B

T
1 (p) =




0 0 1
1
r1

1
r2

0

0 1
r2

0


 (5.137)

There remains one holonomic constraint (5.113b) which is given by

Φ(p, x) =
1
2
((x − s cos ϕ)2 + (y − s sin ϕ)2 + z2 − l2) = 0 (5.138)

Finally, note that the control inputs

u =




Mb

Ft
Mw
rw


 (5.139)

conjugated to the reduced crane coordinates (5.134) can be obtained from u = B
T
1 (p)u.

In particular,

Ft =
M1

r1
+

M2

r2
(5.140a)

Mw =
rw

r2
M2 (5.140b)

That is, the two winch torques M1 and M2 of the original model are linked to the

force Ft acting on the trolley and the winch torque Mw (cf. Fig. 5.11).
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5 Index reduction by minimal extension for the inverse dynamics simulation

Numeri
al results

In the numerical simulation, the same data are used as in [2, 28]. In particular, the

inertia parameters are given by m = 100 kg, m0 = 10 kg, Jb = 480 kg · m2, and M = Jb
r2

with r = 4 m. Concerning the moment of inertia corresponding to the winches,

Jw = 0.1 kg · m2 and J1 = J2 = 0 are chosen. Moreover, rw = 0.1 m.

The servo constraints are used to prescribe a rest-to-rest maneuver of the load speci-

fied by

γ(t) = γ0 + (γ f − γ0)c(t) (5.141)

with the initial position

γ0 =




5 m

0

−5 m


 at t0 = 0 (5.142)

and the final position

γ f =



−2 m

2 m

−2 m


 at t f = 20 s (5.143)

The reference function c(t) is composed of three phases,

c(t) =





cI(t) for 0 ≤ t < 5 s

cI I(t) for 5 s ≤ t < 15 s

cI I I(t) for 15 s ≤ t ≤ 20 s

with each phase

cI(t) =
1

τ − τ0

(
− 5t8

2τ0
7 +

10t7

τ0
6 − 14t6

2τ0
5 +

7t5

2τ0
4

)

cI I(t) =
1

τ − τ0

(
t − τ0

2

)

cI I I(t) = 1 +
1

τ − τ0

(
−5(τ − t)8

2τ0
7 +

10(τ − t)7

τ0
6 − 14(τ − t)6

2τ0
5 +

7(τ − t)5

2τ0
4

)

Using the reduced crane coordinates, the initial configuration of the rotary crane at

t0 = 0 is defined by p0 =
[
0 5 m 5 m

]T
, while the initial load coordinates are

given by x0 =
[
5 m 0 −5 m

]T
. The motion of the crane is starting at rest such that

µ̇0 = 0.
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5.4 Redundant coordinates formulation

In Fig. 5.12 and 5.13, the numerical solution (NUM) is compared to the analytical

reference solution (REF) obtained in [2]. It can be observed that the numerical solution

converges to the reference solution when the time step size is reduced. In addition

to that, Fig. 5.14 displays the numerical solution for the extended crane coordinates

p. The two alternative formulations in terms of redundant coordinates (p and p,

respectively) yield practically indistinguishable results. The simulated motion of the

rotary crane in terms of extended crane coordinates p is illustrated in Fig. 5.15 with

some snapshots at consecutive points in time. Similarly, snapshots obtained with the

formulation in terms of the reduced crane coordinates p are shown in Fig. 5.16.
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Figure 5.12: Rotary crane: Comparison between the numerical results (NUM) obtained with ∆t = 1 s
and the reference solution (REF) for the reduced crane coordinates p(t).
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Figure 5.13: Rotary crane: Comparison between the numerical results (NUM) obtained with ∆t = 0.1 s
and the reference solution (REF) for the reduced crane coordinates p(t).
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Figure 5.14: Rotary crane: Numerical results (NUM) for the extended crane coordinates p(t) obtained
with ∆t = 0.1 s.
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5.4 Redundant coordinates formulation

Figure 5.15: Rotary crane (formulation in terms of the extended crane coordinates p): Snapshots at
specific points in time.

Figure 5.16: Rotary crane (formulation in terms of the reduced crane coordinates p): Snapshots at
specific points in time.
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6 Index redu
tion by minimal

extension for advan
ed examples

In this chapter the effective application of index reduction by minimal extension will

be demonstrated by several advanced examples of underactuated systems, for which

the formulation in terms of redundant coordinates is employed within the inverse

dynamics simulation. The numerical examples are the planar US Navy crane, the

three-dimensional US Navy crane and a cable suspension manipulator.

6.1 Planar US Navy 
rane

The example of US Navy crane in the plane was originally treated as a crane control

problem in [65]. It is a simplified version of the crane used by the US Navy.

6.1.1 Planar US Navy 
rane with negle
ted pulley mass

The case, in which the mass of the mobile pulley at point B (see Fig. 6.1) is neglected

(m0 = 0), is first considered.

As illustrated in Fig. 6.1, the crane consists of a pole and a system of two cables

actuated by two winches and linked by a mobile pulley. The pole is assumed to make

a fixed angle α with respect to the vertical, and is equipped with two winches, one

located at the origin P, and the other located at point A, at a fixed distance l from

point P.



6 Index reduction by minimal extension for advanced examples
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Figure 6.1: The planar US Navy crane model with neglected pully mass (m0 = 0) in terms of n = 7
redundant coordinates.

The first cable of variable length L2, whose upper part of variable length L0 makes an

angle β with the pole and whose lower part of variable length L2 − L0 makes an angle

θ with the vertical, starts from the winch at point P (radius r2, moment of inertia J2,

actuating torque u2), passes through the mobile pulley located at point B, and ends

up on the load (mass m) located at point C. The second cable of variable length L1

relates the winch at point A (radius r1, moment of inertia J1, actuating torque u1) to

the pulley at point B. All the cables are assumed to be massless and unstretchable.

Redundant 
oordinates formulation

The very general framework in [58] can be used to model the cranes. Accordingly,

n = 7 redundant coordinates subjected to m = 3 holonomic constraints are used. The

enlarged set of redundant crane coordinates (see Fig. 6.1) is given by

p =
[

L1 L2 L0 x0 z0

]T
(6.1)
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6.1 Planar US Navy crane

and

x =
[

x z
]T

(6.2)

Similarly, the coordinates of the load (mass m) are described in a Cartesian inertial

frame such that the servo constraints can be expressed in a simple manner. The

holonomic constraints h(p) = 0 are given by

h(p) =

[
1
2

(
(x0 + l sin α)2 + (z0 + l cos α)2 − L2

1

)

1
2

(
x2

0 + z2
0 − L2

0

)
]

(6.3)

Accordingly, m1 = 2. The first constraint links the coordinate L1 to the position

of pulley and the position of winch at point A, and the second constraint links the

coordinate L0 to the position of pulley and the position of winch at point P. Moreover,

the holonomic constraint Φ(p, x) = 0 is specified by

Φ(p, x) =
1
2
((x − x0)

2 + (z − z0)
2 − (L2 − L0)

2) (6.4)

and relates the load coordinates to the crane (or robot) coordinates. Accordingly,

m2 = 1. The total kinetic energy of the crane system under consideration can be

written in the form

T =
1
2

ṗ · M1 ṗ +
1
2

ẋ · M2 ẋ (6.5)

in which the mass matrices corresponding to the crane coordinates and the load coor-

dinates are given by

M1 =




J1
r2

1
0 0 0 0

0 J2
r2

2
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, M2 =

[
m 0

0 m

]
(6.6)

Further quantities needed in Equations (5.102a)−(5.102d) are given by

BT
1 =




1
r1

0

0 1
r2

0 0

0 0

0 0




, f 1 =




0

0

0

0

0




, f 2 =

[
0

−mg

]
, u =

[
u1

u2

]
(6.7)
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6 Index reduction by minimal extension for advanced examples

and by

HT
1 =




−L1 0

0 0

0 −L0

x0 + l sin α x0

z0 + l cos α z0




, GT
1 =




0

L0 − L2

L2 − L0

x0 − x

z0 − z




, GT
2 =

[
x − x0

z − z0

]
(6.8)

To summarize, the crane system has f = 4 degrees of freedom and a = 2 control

inputs given by the two winch torques u1 and u2. Therefore, the US Navy crane

at hand is a typical underactuated mechanical system. The equations of motion are

given in detail in Appendix A.2.

Analyti
al solution based on di�erential �atness

The US Navy crane can be classified as differentially flat system. Then by proceeding

along the lines of Lévine et al. [65] one obtains the analytical reference solution based

on differential flatness. This means that all the system variables can be expressed

as functions of the load coordinates (also flat outputs) and a finite number of their

derivatives.

Inverse dynami
s simulation

The numerical simulation is performed with the following parameters: m = 100 kg,

J1 = J2 = 0.1 kg · m2, r1 = r2 = 0.1 m, α = π
3 , and l = 10 m. The partially specified

motion of the load is rest-to-rest and the same functions are used to generate the

prescribed trajectory as in the example of the planar overhead crane. The initial

position is specified by

γ0 =
[
0 −15 m

]T
at t = 0 (6.9)

and the final position is given by

γ f =
[
−5 m −12 m

]T
at t = 3 s (6.10)

The initial configuration of the crane is defined by

p =
[
5
√

3 m 15 m 5 m 0 −5 m
]T

(6.11)
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6.1 Planar US Navy crane

at t0 = 0, and the initial load coordinates are given by

x =
[
0 −15 m

]T
(6.12)

As shown in Fig. 6.2, the numerical results of the coordinates are identical to the

analytical reference solution even for the coarse time step size ∆t = 0.1 s. This implies

that the numerical results based on redundant coordinates are independent from the

selected time step size due to the property of differential flatness. Fig. 6.3 shows

that the numerical solution of the control inputs converges to the reference solution

when the time step size is reduced, and Fig. 6.4 displays the numerical solution of the

Lagrange multipliers for the time step size ∆t = 0.01 s. The simulated motion of the

crane in terms of redundant coordinates is presented in Fig. 6.5 with some snapshots

at consecutive points in time. Note that the cable of variable length L1 is horizontal

in the initial configuration since the pulley mass is neglected, otherwise a third cable

is needed to suspend the mobile pulley from its right hand side (see Fig. 6.6).
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Figure 6.2: Planar US Navy crane with neglected pulley mass: Comparison between numerical results
(NUM) obtained with ∆t = 0.1 s and the analytical reference solution (REF).
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Figure 6.3: Planar US Navy crane with neglected pulley mass: Comparison between numerical results
(NUM) with ∆t = 0.1 s (left Fig.) and ∆t = 0.01 s (right Fig.) and the analytical reference
solution (REF).
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grange multipliers obtained with ∆t = 0.01 s.
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6.1 Planar US Navy crane

Figure 6.5: Planar US Navy crane with neglected pulley mass: Snapshots of the load mass and the pul-
ley at specific points in time. Besides the trajectory of pulley and the prescribed trajectory
of load mass is shown.

6.1.2 Planar US Navy 
rane with nonzero pulley mass

Next, we consider the case in which the mass of the mobile pulley at point B (see

Fig. 6.6) is nonzero (m0 > 0).

As illustrated in Fig. 6.6, the crane consists of a pole and a system of three cables

actuated by three winches and linked by a mobile pulley. The pole is assumed to

make a fixed angle α with respect to the vertical, and is equipped with three winches,

one located at the origin S, the second located at point P, at a fixed distance s from

point S, and the third located at point A, at a fixed distance l from point P.

The vertical cable of variable length L2, whose upper part of variable length L0 makes

an angle β with the pole and whose lower part of variable length L2 − L0 makes an

angle θ with the vertical, starts from the winch at point P (radius r2, moment of inertia

J2, actuating torque u2), passes through the mobile pulley located at point B, and ends

up on the load (mass m) located at point C.
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Figure 6.6: The planar US Navy crane model with nonzero pully mass (m0 > 0) in terms of n = 8
redundant coordinates.

The second cable of variable length L1 relates the winch at point A (radius r1, moment

of inertia J1, actuating torque u1) to the pulley at point B. The suspension cable for the

mobile pulley of variable length L3 starts from the winch at point S (radius r3, moment

of inertia J3, actuating torque u3), makes an angle µ with the pole, and ends at the

free pulley at point B. All the cables are assumed to be massless and unstretchable.

Note that the number of control inputs is now increased by one, the new input u3 is

required to hoist the suspension cable of the mobile pulley. Nevertheless, the flatness

property is still conserved, which has been proved in the dissertation of Kiss [57].
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6.1 Planar US Navy crane

Redundant 
oordinates formulation

According to the general framework in [58], the mathematical model of the planar US

Navy crane with nonzero pulley mass can be formulated in terms of n = 8 redundant

coordinates, which are subject to m = 4 holonomic constraints. The enlarged set of

redundant crane coordinates, as depicted in Fig. 6.6, is expressed by

p =
[

L1 L2 L3 L0 x0

]T
(6.13)

and by

x =
[

x z z0

]T
(6.14)

Note that the coordinate z0 of the mobile pulley is selected as the third flat output,

since there are three control inputs for the crane system at hand. In addition, other

possible choices for the third flat output could be the cable length variable L2 − L0 or

the coordinate x0 of the mobile pulley.

The holonomic constraints h(p) = 0 vanish, since the coordinate z0 is present in

each constraint equation. Accordingly, m1 = 0. Moreover, the holonomic constraints

Φ(p, x) = 0 are given by

Φ(p, x) =




1
2((x0 + (l + s) sin α)2 + (z0 + (l + s) cos α)2 − L2

1)
1
2((x0 + s sin α)2 + (z0 + s cos α)2 − L2

0)
1
2(x

2
0 + z2

0 − L2
3)

1
2((x − x0)

2 + (z − z0)
2 − (L2 − L0)

2)




(6.15)

The first constraint links the coordinate L1 to the position of pulley and the position

of winch at point A, the second constraint links the coordinate L0 to the position of

pulley and the position of winch at point P, the third constraint links the coordinate

L3 to the position of pulley and the position of winch at point S, and the fourth

constraint connects the load coordinates with the position of pulley.

Accordingly, m2 = 4. The total kinetic energy of the crane system assumes the form

T =
1
2

ṗ · M1 ṗ +
1
2

ẋ · M2 ẋ (6.16)

in which the mass matrices corresponding to the crane coordinates and the extended
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6 Index reduction by minimal extension for advanced examples

load coordinates in Equation (6.14) are given by

M1 =




J1
r2

1
0 0 0 0

0 J2
r2

2
0 0 0

0 0 J3
r2

3
0 0

0 0 0 0 0

0 0 0 0 m0




, M2 =




m 0 0

0 m 0

0 0 m0


 (6.17)

Further quantities needed in Equations (5.102a)−(5.102d) are given by

BT
1 =




1
r1

0 0

0 1
r2

0

0 0 1
r3

0 0 0

0 0 0




, f 1 =




0

0

0

0

0




, f 2 =




0

−mg

−m0g


 , u =




u1

u2

u3


 (6.18)

and by

GT
1 =




−L1 0 0 0

0 0 0 L0 − L2

0 0 −L3 0

0 −L0 0 L2 − L0

x0 + (l + s) sin α x0 + s sin α x0 x0 − x




(6.19)

GT
2 =




0 0 0 x − x0

0 0 0 z − z0

z0 + (l + s) cos α z0 + s cos α z0 z0 − z


 (6.20)

Analyti
al solution based on di�erential �atness

The US Navy crane with nonzero pulley mass has f = 4 degrees of freedom and a = 3

control inputs. As has been mentioned before, this system can also be classified as

a differentially flat system. Accordingly, all the system variables can be expressed as

functions of the flat output x and its derivatives up to a certain order. The derivation

of the analytical solution, which has been applied in the case of m0 = 0, can also be

used here to provide the reference solution for the case of m0 > 0. An alternative

approach to the method given in Lévine et al. [65] is introduced to get the flatness-

based solution. In this connection, the equations of motion for the crane model at
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6.1 Planar US Navy crane

hand can be given as follows:

J1

r2
1

L̈1 = −λ1L1 +
u1

r1
(6.21a)

J2

r2
2

L̈2 = λ4(L0 − L2) +
u2

r2
(6.21b)

J3

r2
3

L̈3 = −λ3L3 +
u3

r3
(6.21c)

0 = −λ2L0 + λ4(L2 − L0) (6.21d)

m0ẍ0 = λ1(x0 + (l + s) sin α) + λ2(x0 + s sin α) + λ3x0 + λ4(x0 − x) (6.21e)

m0z̈0 = λ1(z0 + (l + s) cos α) + λ2(z0 + s cos α) + λ3z0 + λ4(z0 − z)− m0g (6.21f)

mẍ = λ4(x − x0) (6.21g)

mz̈ = λ4(z − z0)− mg (6.21h)

0 =
1
2
((x0 + (l + s) sin α)2 + (z0 + (l + s) cos α)2 − L2

1) (6.21i)

0 =
1
2
((x0 + s sin α)2 + (z0 + s cos α)2 − L2

0) (6.21j)

0 =
1
2
(x2

0 + z2
0 − L2

3) (6.21k)

0 =
1
2
((x − x0)

2 + (z − z0)
2 − (L2 − L0)

2) (6.21l)

x = γ1(t) (6.21m)

z = γ2(t) (6.21n)

z0 = γ3(t) (6.21o)

Due to the differential flatness property, the analytical reference solution can be deri-

ved through purely algebraic manipulations from the above equations.

At first, λ4 and x0 can be obtained from the equations (6.21h) and (6.21g) as a funtion

of x and ẍ. Then the equations (6.21i), (6.21j), (6.21k), (6.21l) and (6.21d) are used to

express the variables L1, L0, L3, L2 and λ2 as function of x and ẍ. Next λ1 and λ3 can

be expressed as function of x and ẍ from the equations (6.21e) and (6.21f). At last the

equations (6.21a), (6.21b) and (6.21c) are used to express u1, u2, and u3 as functions of

x, ẋ, ẍ, x(3) and x(4).

Obviously the fourth order derivative of the flat output x is present in the expression

of the flatness-based solution. Thus it can be concluded that the differential index of

the DAEs (A.3) is five.
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6 Index reduction by minimal extension for advanced examples

Inverse dynami
s simulation

For the numerical simulation, the following parameters are given: m = 100 kg,

m0 = 150 kg, J1 = J2 = J3 = 0.1 kg · m2, r = 0.1 m, α = π
3 , s = 5 m, l = 10 m and

k = 10 m. The prescribed trajectory of the load can be obtained in the same way as in

the case of neglected pulley mass. The initial position is given by

γ0 =



−5

2

√
3 m

−22.5 m

−12.5 m


 at t = 0 (6.22)

and the final position is given by

γ f =




−1 m

−17.5 m

−10.5 m


 at t = 3 s (6.23)

The initial configuration of the crane model is specified by

p =

[
10 m 20 m 13.23 m 10 m −5

2

√
3 m

]T

(6.24)

at t0 = 0, and the initial load coordinates are given by

x =

[
−5

2

√
3 m −22.5 m −12.5 m

]T

(6.25)

Fig. 6.7 shows that the numerical results of the coordinates coincide with the analytical

reference solution for the coarse time step size ∆t = 0.1 s. This implies that the

numerical solution of redundant coordinates is independent from the chosen time

step size due to the property of differential flatness. Fig. 6.8 shows that the numerical

solution of the control inputs converges to the reference solution with the reduced

time step size, and Fig. 6.9 displays the numerical solution of the Lagrange multipliers

for the time step size ∆t = 0.01 s. The simulated motion of the crane in terms of

redundant coordinates is presented in Fig. 6.10 with some snapshots at consecutive

points in time.
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Figure 6.7: Planar US Navy crane with nonzero pulley mass: Comparison between the numerical re-
sults (NUM) obtained with ∆t = 0.1 s and the analytical reference solution (REF).
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Figure 6.8: Planar US Navy crane with nonzero pulley mass: Comparison between the numerical re-
sults (NUM) obtained with ∆t = 0.1 s (left Fig.) and ∆t = 0.01 s (right Fig.) and the
analytical reference solution (REF).
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Figure 6.9: Planar US Navy crane with nonzero pulley mass: Numerical results (NUM) of the Lagrange
multipliers obtained with ∆t = 0.01 s.

Figure 6.10: Planar US Navy crane with nonzero pulley mass: Snapshots of the load mass and the pul-
ley at specific points in time. Besides the trajectory of pulley and the prescribed trajectory
of load mass is shown.
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6.2 Three-dimensional US Navy 
rane
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Figure 6.11: The three-dimensional US Navy crane model with nonzero pulley mass.

The planar US Navy crane can be extended to the case in three dimensions as de-

picted in Fig. 6.11. In three dimensions the whole mechanical system of the US Navy

crane can rotate about the Z-axis of the inertial reference frame (see Fig. 6.11). Accor-

dingly, additional variables, such as the actuating torque u4, are needed to describe

the mechanical state of the crane. In view of the mass of the free pulley, two cases are

distinguished again: m0 = 0 and m0 > 0.
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Figure 6.12: The three-dimensional US Navy crane model with neglected pulley mass (m0 = 0) in terms
of n = 11 redundant coordinates.

6.2.1 Three-dimensional US Navy 
rane with negle
ted pulley mass

At first, the case, in which the mass of the free pulley is neglected (m0 = 0), is

considered. Therefore, the suspension cable at the top position of the pole is slack

and can be omitted.

As shown in Fig. 6.12, the crane consists of a pole and a system of two cables actuated

by two winches and linked by a free pulley. The pole makes a fixed angle α with

the vertical rotation axis (Z-axis) of the crane, and is equipped with two winches,

one located at point P with Cartesian coordinates (x3, y3, z3), and the other located at

point A with Cartesian coordinates (x1, y1, z1) , at a fixed distance l from point P (or
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6.2 Three-dimensional US Navy crane

at a fixed distance k from the origin O of the inertial reference frame).

The first cable of variable length L3, whose upper part of variable length L0 makes an

angle β with the pole and whose lower part of variable length L3 − L0 makes an angle

θ with the vertical, starts from the winch at point P (radius r3, moment of inertia J3,

actuating torque u3), passes through the free pulley located at point B, and ends up

on the load (mass m) located at point C.

The second cable of variable length L1 relates the winch at point A (radius r1, moment

of inertia J1, actuating torque u1) to the pulley at point B with Cartesian coordinates

(x0, y0, z0). All the cables are assumed to be massless and unstretchable.

It is obviously seen that the control input u4 is newly required and makes the rotation

of the whole crane system possible. The additional inertial parameter is the rotational

inertia of the platform which is denoted by the mass M. Moreover, r denotes the

perpendicular distance between the winch at point P and the rotation axis of the

crane.

Redundant 
oordinates formulation

Proceeding along the lines in [58], n = 11 redundant coordinates subjected to m = 4

holonomic constraints are used to model the three-dimensional US Navy crane with

neglected pulley mass. The enlarged set of redundant crane coordinates (see Fig. 6.12)

is given by

p =
[

L1 L3 L0 x0 y0 z0 x3 y3

]T
(6.26)

and by

x =
[

x y z
]T

(6.27)

Note that the position of the winch at point A is fixed relative to the position of the

winch at point P by a parameter β1 = 1
2 . The holonomic constraints h(p) = 0 are

given by

h(p) =




1
2

(
(x0 − β1x3)

2 + (y0 − β1y3)
2 + (z0 − β1z3)

2 − L2
1

)

1
2

(
(x0 − x3)

2 + (y0 − y3)
2 + (z0 − z3)

2 − L2
0

)

1
2

(
x2

3 + y2
3 − r2

)


 (6.28)

Accordingly, m1 = 3. The first constraint links the coordinate L1 to the position of

the pulley and the winch at point A, the second constraint links the coordinate L0
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6 Index reduction by minimal extension for advanced examples

to the position of the pulley and the winch at point P, and the third constraint links

the parameter r to the position of the winch at point P. Furthermore, the holonomic

constraint Φ(p, x) = 0 is specified by

Φ(p, x) =
1
2

(
(x − x0)

2 + (y − y0)
2 + (z − z0)

2 − (L3 − L0)
2
)

(6.29)

and connects the load coordinates with the crane coordinates. Accordingly, m2 = 1.

The total kinetic energy of the crane system under consideration assumes the form

T =
1
2

ṗ · M1 ṗ +
1
2

ẋ · M2ẋ (6.30)

in which the mass matrices corresponding to the crane coordinates and the load coor-

dinates are given by

M1 =




J1
r2

1
J3
r2

3

0

0

0

0

M

M




, M2 =




m

m

m


 (6.31)

Further quantities needed in Equations (5.102a)−(5.102d) are given by

BT
1 =




1
r1

0 0

0 1
r3

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 − y3
r2

0 0 x3
r2




, f 1 =




0

0

0

0

0

0

0

0




, f 2 =




0

0

−mg


 , u =




u1

u3

u4


 (6.32)
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6.2 Three-dimensional US Navy crane

and by

HT
1 =




−L1 0 0

0 0 0

0 −L0 0

x0 − β1x3 x0 − x3 0

y0 − β1y3 y0 − y3 0

z0 − β1z3 z0 − z3 0

−β1(x0 − β1x3) x3 − x0 x3

−β1(y0 − β1y3) y3 − y0 y3




, GT
1 =




0

L0 − L3

L3 − L0

x0 − x

y0 − y

z0 − z

0

0




, GT
2 =




x − x0

y − y0

z − z0


 (6.33)

In summary, the three-dimensional US Navy crane with neglected pulley mass has

f = 7 degrees of freedom, a = 3 control inputs and can be classified as differentially

flat system. Nevertheless, the flatness-based solution is much more complicated to be

derived in the three-dimensional case. The equations of motion are given in detail in

Appendix A.4.

Inverse dynami
s simulation

The numerical experiment makes use of the following parameters: m = 100 kg,

M = 6.4 kg, J1 = J3 = 0.1 kg · m2, r1 = r3 = 0.1 m, α = π
3 , and l = k = 5 m. The

prescribed trajectory can be calculated in the same way as in the three-dimensional

rotary crane example. The initial position is given by

γ0 =




5
√

3 m

0

−15 m


 at t = 0 (6.34)

and the final position is given by

γ f =



−2 m

4
√

3 m

−13 m


 at t = 20 s (6.35)

The initial configuration of the crane system is specified by

p =

[
5
2

√
3 m 20 m 2.5 m 5

√
3 m 0 2.5 m 5

√
3 m 0

]T

(6.36)
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6 Index reduction by minimal extension for advanced examples

at t0 = 0, and the initial load coordinates are given by

x =
[
5
√

3 m 0 −15 m
]T

(6.37)

The numerical results for the time step size ∆t = 0.01 s are displayed in Fig. 6.13,

in which the coordinates, control inputs and the Lagrange multipliers are presented.

The simulated motion of the crane in terms of redundant coordinates is presented in

Fig. 6.14 with some snapshots at consecutive points in time.
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Figure 6.13: Three-dimensional US Navy crane with neglected pulley mass: Numerical results (NUM)
obtained with ∆t = 0.01 s.
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Figure 6.14: Three-dimensional US Navy crane with neglected pulley mass: Snapshots of the load mass
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Figure 6.15: The three-dimensional US Navy crane model with nonzero pulley mass (m0 > 0) in terms
of n = 12 redundant coordinates.

6.2.2 Three-dimensional US Navy 
rane with nonzero pulley mass

The case, in which the mass of the pulley is nonzero (m0 > 0), is here considered. The

suspension cable of variable length L2 is now needed to pull the pulley.

As shown in Fig. 6.15, the crane is made up of a pole and a system of three cables

actuated by three winches and linked by a free pulley. The pole makes a fixed angle

α with the vertical rotation axis (Z-axis) of the crane, and is equipped with three

winches, one located at point S with Cartesian coordinates (x2, y2, z2), at a fixed

distance s from point P, the second located at point P with Cartesian coordinates

(x3, y3, z3), at a fixed distance l from point A, and the third located at point A with

Cartesian coordinates (x1, y1, z1), at a fixed distance k from the origin O of the inertial

reference frame. The first cable of variable length L3, whose upper part of variable
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6 Index reduction by minimal extension for advanced examples

length L0 makes an angle β with the pole and whose lower part of variable length

L3 − L0 makes an angle θ with the vertical, starts from the winch at point P (radius

r3, moment of inertia J3, actuating torque u3), passes through the free pulley located

at point B with Cartesian coordinates (x0, y0, z0), and ends up on the load (mass m)

located at point C. The second cable of variable length L1 relates the winch at point

A (radius r1, moment of inertia J1, actuating torque u1) to the pulley at point B. The

third cable of variable length L2 connects the winch at point S (radius r2, moment

of inertia J2, actuating torque u2) to the free pulley. All the cables are assumed to

be massless and unstretchable. It is necessary to use the control input u4 to rotate

the whole crane system in three dimensions. The rotational inertia of the platform is

denoted by the mass M. Moreover, r denotes the perpendicular distance between the

winch at point P and the rotation axis of the crane.

Redundant 
oordinates formulation

Similar to the model in the previous subsection, the three-dimensional US Navy crane

with nonzero pulley mass can be formulated in terms of n = 12 redundant coordina-

tes subjected to m = 5 holonomic constraints.

The enlarged set of redundant crane coordinates (see Fig. 6.15) is given by

p =
[

L1 L2 L3 L0 x0 y0 x3 y3

]T
(6.38)

and by

x =
[

x y z z0

]T
(6.39)

The coordinate z0 of the free pulley is chosen as the fourth flat output due to the

introduction of the new control input u4. Other possible choices for the fourth flat

output could be the cable variable L3 − L0, the coordinate x0 or y0 of the free pulley.

The position of the winch at point A is fixed relative to the position of the winch at

point P by a parameter β1 = 1
2 , while the position of the winch at point S is fixed

relative to the position of the winch at point P by a parameter β2 = 3
2 . The holonomic

constraint h(p) = 0 is given by

h(p) =
1
2
(x2

3 + y2
3 − r2) (6.40)
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6.2 Three-dimensional US Navy crane

Accordingly, m1 = 1. The above constraint links the parameter r to the position of the

winch at point P.

Furthermore, the holonomic constraints Φ(p, x) = 0 are specified by

Φ(p, x) =




1
2

(
(x0 − β1x3)

2 + (y0 − β1y3)
2 + (z0 − β1z3)

2 − L2
1

)

1
2

(
(x0 − β2x3)

2 + (y0 − β2y3)
2 + (z0 − β2z3)

2 − L2
2

)

1
2

(
(x0 − x3)

2 + (y0 − y3)
2 + (z0 − z3)

2 − L2
0

)

1
2

(
(x − x0)

2 + (y − y0)
2 + (z − z0)

2 − (L3 − L0)
2
)




(6.41)

The first constraint links the coordinate L1 to the position of the pulley and the winch

at point A, the second constraint links the coordinate L2 to the position of the pulley

and the winch at point S, the third constraint links the coordinate L0 to the position

of the pulley and the winch at point P, and the last constraint connects the load

coordinates to the position of the pulley. Accordingly, m2 = 4.

The total kinetic energy of the crane system can be expressed in terms of redundant

coordinates by

T =
1
2

ṗ · M1 ṗ +
1
2

ẋ · M2 ẋ (6.42)

in which the mass matrices corresponding to the crane coordinates and the extended

load coordinates in Equation (6.39) are given by

M1 =




J1
r2

1
0 0 0 0 0 0 0

0 J2
r2

2
0 0 0 0 0 0

0 0 J3
r2

3
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 m0 0 0 0

0 0 0 0 0 m0 0 0

0 0 0 0 0 0 M 0

0 0 0 0 0 0 0 M




, M2 =




m 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m0




(6.43)
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Further quantities needed in Equations (5.102a)−(5.102d) are given by

BT
1 =




1
r1

0 0 0

0 1
r2

0 0

0 0 1
r3

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 − y3
r2

0 0 0 x3
r2




, f 1 =




0

0

0

0

0

0

0

0




, f 2 =




0

0

−mg

−m0g




, u =




u1

u2

u3

u4




(6.44)

and

HT
1 =




0

0

0

0

0

0

x3

y3




, GT
1 =




−L1 0 0 0

0 −L2 0 0

0 0 0 L0 − L3

0 0 −L0 L3 − L0

x0 − β1x3 x0 − β2x3 x0 − x3 x0 − x

y0 − β1y3 y0 − β2y3 y0 − y3 y0 − y

−β1(x0 − β1x3) −β2(x0 − β2x3) x3 − x0 0

−β1(y0 − β1y3) −β2(y0 − β2y3) y3 − y0 0




(6.45)

and

GT
2 =




0 0 0 x − x0

0 0 0 y − y0

0 0 0 z − z0

z0 − β1z3 z0 − β2z3 z0 − z3 z0 − z




(6.46)

In summary, the three-dimensional US Navy crane with nonzero pulley mass has

f = 7 degrees of freedom, a = 4 control inputs and can be classified as differentially

flat system. However, it is very difficult to derive the flatness-based solution as well.

The equations of motion are given in detail in Appendix A.5.

Inverse dynami
s simulation

In the numerical experiment, the following parameters are applied: m = 100 kg,

m0 = 5 kg, M = 6.4 kg, J1 = J2 = J3 = 0.1 kg · m2, r1 = r2 = r3 = 0.1 m, α = π
3 , and

s = l = k = 5 m. The prescribed trajectory is obtained in the same way as before. The
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initial position is given by

γ0 =




5
√

3 m

0

−15 m

2.5 m




at t = 0 (6.47)

and the final position is given by

γ f =




−2 m

4
√

3 m

−13 m

1.5 m




at t = 20 s (6.48)

The initial configuration of the crane system is specified by

p =

[
5
2

√
3 m 6.6144 m 20 m 2.5 m 5

√
3 m 0 5

√
3 m 0

]T

(6.49)

at t0 = 0, and the initial load coordinates are given by

x =
[
5
√

3 m 0 −15 m 2.5 m
]T

(6.50)

The numerical results for the time step size ∆t = 0.1 s are displayed in Fig. 6.16,

in which the coordinates, control inputs and the Lagrange multipliers are presented.

The simulated motion of the crane in terms of redundant coordinates is presented in

Fig. 6.17 with some snapshots at consecutive points in time.
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Figure 6.16: Three-dimensional US Navy crane with nonzero pulley mass: Numerical results (NUM)
obtained with ∆t = 0.1 s.
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Figure 6.17: Three-dimensional US Navy crane with nonzero pulley mass: Snapshots of the load mass
and the pulley at specific points in time. Besides the trajectory of pulley and the prescribed
trajectory of load mass is shown.
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6.3 Cable suspension manipulator

Cable suspension manipulators support a payload platform in space by several spa-

tially arranged cables with computer-controlled winches. The winches are mounted

on movable trolleys and are responsible for regulating the lengths of the cables. Com-

pared to the crane models considered before, it is possible to control not only the

translational motion of the payload but also its orientation in order to perform, for

example, assembly tasks. Therefore, cable suspension manipulators combine the abi-

lity of cranes to support heavy payloads in a large workspace with the dexterity of

robot manipulators [53].

Cable suspension manipulators can be classified as kinematically/statically determi-

ned or kinematically/statically undetermined. The elaborate description can be found

in [53]. Here a prototype of the three-cable suspension manipulator (CABLEV) is con-

sidered (see Fig. 6.18), which has been developed at the University of Rostock and

treated in nonlinear trajectory tracking control problems (see [53, 52, 70]).

The CABLEV manipulator under consideration is kinematically undetermined be-

cause the platform is (finitely or infinitesimally) movable while the cable lengths are

kept constant. It implies that the payload platform may perform sway motions with

three degrees of freedom. The payload platform is suspended by three cables with

three winches mounted on trolleys that move themselves on a gantry. It is also possi-

ble for the gantry to move on the rails. Applications for such systems are, for example,

precise handling and assembling large and heavy components on construction sites

or on shipyards [53].

Since the kinematically undetermined cable suspension manipulator can be classified

as an underactuated mechanical system, the platform can not be controlled like the

end-effector of a conventional robot by inverse dynamics control. The position of the

platform is not uniquely determined by the robot (crane) coordinates of the trolleys

and winches. In contrast to the flatness-based feedforward and nonlinear feedback

control applied in [53], the new approach, index reduction by minimal extension, is

applied to the dynamic model of the cable suspension manipulator to obtain the feed-

forward control law in the case of vanishing disturbances. In addition, a closed-loop

control strategy with feedback of actual errors in load position and orientation provi-

des stable tracking of required reference load trajectory in presence of pertubations.
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Figure 6.18: The three-cable suspension manipulator model (CABLEV).

6.3.1 Redundant 
oordinates

The dynamic model of CABLEV can be formulated in terms of n = 13 redundant

coordinates subjected to m = 3 holonomic constraints. The set of redundant crane

coordinates p ∈ R
7 (see Fig. 6.18) is given by

p =

[
pg

pc

]
(6.51)

with gantry coordinates

pg =
[

pg0 pg1 pg2 pg3

]T
(6.52)

and cable coordinates

pc =
[

pc1 pc2 pc3

]T
(6.53)
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Here, pg0 denotes the position of the gantry on the rails. The displacements of three

trolleys on the movable gantry are described by pgi (i = 1, 2, 3). Moreover, the coordi-

nates pci (i = 1, 2, 3), are the lengths of three cables connecting the platform with the

winches.

The platform coordinates x ∈ R
6 are expressed by

x =

[
r

ϕ

]
(6.54)

with the position vector

r =
[
rx ry rz

]T
(6.55)

and the angles

ϕ =
[

ϕ1 ϕ2 ϕ3

]T
(6.56)

Here, the spatial position and orientation of the platform-fixed frame Kp relative to

the inertial fram K0 are described by three Cartesian coordinates rx, ry, rz of the origin

of Kp and three Bryant angles ϕ1, ϕ2, ϕ3. Note that the origin of the body-fixed frame

Kp coincides with the center of mass of the payload platform.

The spatial velocity of the platform relative to K0 is given by the twist

t =

[
v

ω

]
(6.57)

with the velocity vector

v =
[
ṙx ṙy ṙz

]T
(6.58)

and the angular velocities

ω =
[
ωx ωy ωz

]T
(6.59)

Here, ṙx, ṙy, ṙz are the translational velocity coordinates of the origin of Kp, and ωx,

ωy, ωz are the coordinates of the angular velocity ω in K0. The relation between the

derivative ẋ and the twist t is then given by

ẋ = H(x) t (6.60a)
[

ṙ

ϕ̇

]
=

[
I3 0

0 Hω(ϕ)

][
v

ω

]
(6.60b)

180



6.3 Cable suspension manipulator

with the expression

H(x) =

[
I3 0

0 Hω(ϕ)

]
(6.61)

The kinematic differential equation related to the Bryant angles can be found from

the second matrix equation in (6.60b). It is

ϕ̇ = Hω(ϕ)ω (6.62a)



ϕ̇1

ϕ̇2

ϕ̇3


 =

1
cos ϕ2




cos ϕ2 sin ϕ1 sin ϕ2 − cos ϕ1 sin ϕ2

0 cos ϕ1 cos ϕ2 sin ϕ1 cos ϕ2

0 − sin ϕ1 cos ϕ1







ωx

ωy

ωz


 (6.62b)

with the expression

Hω(ϕ) =
1

cos ϕ2




cos ϕ2 sin ϕ1 sin ϕ2 − cos ϕ1 sin ϕ2

0 cos ϕ1 cos ϕ2 sin ϕ1 cos ϕ2

0 − sin ϕ1 cos ϕ1


 (6.63)

Furthermore, the inverse kinematic differential equation is

t = H−1(x) ẋ (6.64)

The same notation as in [53] is also used here. For the convenience of expressing the

constraint Jacobian matrix, the quasi-coordinates s, that exist only as differentials, can

be defined. That implies

ṡ = t =

[
v

ω

]
(6.65)

With 3 suspending cables the system is kinematically undetermined, i.e. the payload

platform can perform sway motions with f = 6 − 3 = 3 degrees of freedom [53]. The

sway coordinates x1, that describe the sway motions, are chosen as

x1 =
[
rx ry ϕ3

]T
(6.66)

and the remaining coordinates read

x2 =
[
rz ϕ1 ϕ2

]
(6.67)
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Figure 6.19: Schematic of one holonomic constraint.

6.3.2 Constraints

The relations between robot coordinates p and platform coordinates x in Fig. 6.19 can

be described by the holonomic constraints Φ(p, x) = 0, that can be written as

Φi(p, x) =
1
2

(
cT

i (p, x)ci(p, x)− p2
ci

)
, i = 1, 2, 3 (6.68)

The cable vectors ci are expressed in K0 by

c1 = r + d1 − pg0 ey − pg1 ex (6.69a)

c2 = r + d2 − (pg0 + l2) ey − pg2 ex (6.69b)

c3 = r + d3 − (pg0 − l2) ey − pg3 ex (6.69c)
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6.3 Cable suspension manipulator

Here, l2 denotes the distance between the rails (see Fig. 6.18), and the unit vectors ex

and ey of K0 are expressed by ex =
[
1 0 0

]T
and ey =

[
0 1 0

]T
. It is assumed that

the platform is an equilateral triangle with the side length l1. The body-fixed vectors

di point from the origin of Kp to each corner point of the equilateral triangle. The

constant coordinates of the body-fixed vectors di can be expressed in Kp by

X1 =
[

1
3

√
3l1 0 0

]T
(6.70a)

X2 =
[
− 1

6

√
3l1

1
2 l1 0

]T
(6.70b)

X3 =
[
− 1

6

√
3l1 − 1

2 l1 0
]T

(6.70c)

The body-fixed vectors di expressed in K0 can be given by

di = R(ϕ)X i, i = 1, 2, 3 (6.71)

with the transformation (rotation) matrix R(ϕ) from the body-fixed frame Kp to the

inertial frame K0.

ϕa

R0a

Rac(sr)

Rae(sre)

Initial orientation A Final orientation E
Orientation C at time t

K0

K e

Ka

Kc

ϕe

R0e

ϕ(sr)

R0c(sr)
er sr

Figure 6.20: Rotational motion of the payload platform about the axis of rotation er with the rotation
angle sre between the initial and final orientation.
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For example, as depicted in Fig. 6.20, the rotation matrix R(ϕ) from the current

orientation Kc at time t to the inertial frame K0 reads

R0c(sr) = R0a(ϕa)Rac(er, sr) (6.72)

The rotation matrix R0a is described by application of three Bryant angles ϕa. The

rotation matrix Rac is described by using Rodrigues formula. In this connection, er

is the unit vector of the rotation axis between the initial orientation Ka and the final

orientation Ke. Moreover, sr is the rotation angle of the frame Kc at time t about the

rotation axis er. Similarly, the rotation matrix R0e can be described by application of

three Bryant angles ϕe. In order to calculate the constraint Jacobian matrices associ-

ated to the holonomic constraints (6.68), differentiating the cable vectors (6.69) with

respect to time yields

ċi = ṙ + ḋi − ṗg0 ey − ṗgi ex i = 1, 2, 3 (6.73)

Similar to the director velocities introduced in Subsection 2.3.2, the first time deriva-

tive of the body-fixed vectors di can be calculated through the angular velocity of the

platform ω [10]. Thus

ḋi = ω × di = −di × ω = −d̂iω (6.74)

with the skew-symmetric matrix

d̂i =




0 −d3i
d2i

d3i
0 −d1i

−d2i
d1i

0


 (6.75)

Then differentiating the constraint equations (6.68) with respect to time leads to

Φ̇i = cT
i ċi − pci ṗci = 0 i = 1, 2, 3 (6.76)

By inserting Equation (6.73) with (6.74) into (6.76), the constraint equation at the

velocity level can be written as

Φ̇ = Gs(p, x)

[
v

ω

]
+ Gp(p, x)

[
ṗg

ṗc

]
= 0 (6.77)
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6.3 Cable suspension manipulator

with the constraint Jacobian matrix

Gs =




cT
1 −cT

1 d̂1

cT
2 −cT

2 d̂2

cT
3 −cT

3 d̂3


 (6.78)

and

Gp = −




cT
1 ey cT

1 ex 0 0 pc1 0 0

cT
2 ey 0 cT

2 ex 0 0 pc2 0

cT
3 ey 0 0 cT

3 ex 0 0 pc3


 (6.79)

The above Equation (6.77) can be rewritten in x, ẋ, p and ṗ by inserting the inverse

kinematic Equation (6.64). That is

Φ̇ = Gs(p, x)H−1

[
v

ϕ̇

]
+ Gp(p, x)

[
ṗg

ṗc

]
= 0 (6.80)

Kinemati
 redundan
y and �at outputs

The system of CABLEV is kinematically redundant, since it has seven control inputs

corresponding to the robot coordinates p and six load coordinates of the platform x.

Accordingly, a seventh flat output x0 can be defined as the residual of the implicit

control constraint

x0 = Φ0(p) = pg1 −
1
2
(pg2 + pg3)− b = 0 (6.81)

It implies that the distance b between the inner trolley and the intersection point P

(between the line through the outer trolleys and the intermediate rail) is constant, for

example, b =
√

3 l2 (see Fig. 6.18). This constraint makes sure that the shape of the

triangle, whose vertices are the three trolleys, is constrained. To summarize, the flat

outputs are composed of the load coordinates x and the additional output variable

x0,

x f =

[
x

x0

]
(6.82)

The flat outputs at the velocity level are expressed by the time derivative of quasi-

coordinates ṡ and ẋ0,

ṡ f =

[
ṡ

ẋ0

]
(6.83)
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Correspondingly, the flat outputs at the acceleration level are defined as

s̈ f =

[
s̈

ẍ0

]
(6.84)

These constraint conditions will be used in the index reduction by minimal extension

method in the sequel.

6.3.3 Dynami
 equations

The dynamic equations of CABLEV consist of the equations of the drive system inclu-

ding the gantry, trolleys and winches, the equations of the payload platform, and the

holonomic and servo constraint equations. The governing equations assume the form

of differential-algebraic equations with high index, since CABLEV is an underactua-

ted mechanical system with f = 10 degrees of freedom and a = 7 control inputs.

Dynami
s of the drive system

The equations of motion of the drive system are formulated in terms of the robot

coordinates p,

M1 p̈ = f 1(p, ṗ) + BT
1 u + GT

p(p, x)λ (6.85)

with the mass matrix M1 ∈ R
7,7, the force vector f 1 ∈ R

7 and the input transforma-

tion vector B1 ∈ R
7,7,

M1 =




m0 0 0 0 0 0 0

0 m1 0 0 0 0 0

0 0 m2 0 0 0 0

0 0 0 m3 0 0 0

0 0 0 0 J1
r2

1
0 0

0 0 0 0 0 J2
r2

2
0

0 0 0 0 0 0 J3
r2

3




, f 1 =




0

0

0

0

0

0

0




, B1 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1
r1

0 0

0 0 0 0 0 1
r2

0

0 0 0 0 0 0 1
r3




(6.86)

The gantry and trolley mass are denoted by m0 and mi, and the radius and moment

of inertia of the winch are given by ri and Ji (i = 1, 2, 3).
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6.3 Cable suspension manipulator

The control forces are given by

u =

[
ug

uc

]
, ug =

[
ug0 ug1 ug2 ug3

]T
, uc =

[
uc1 uc2 uc3

]T
(6.87)

with the gantry force ug0, the trolley forces ugi and the winch torques uci (i = 1, 2, 3).

The Lagrange multipliers are described by λ =
[
λ1 λ2 λ3

]T
.

Dynami
s of the payload platform

The classical Newton-Euler equations for rigid bodies can be applied to derive the

governing equations of the payload platform. Thus they are expressed by

M2 s̈ = f 2 + GT
s (p, x)λ (6.88)

with the mass matrix M2 ∈ R
6,6, the generalized applied and gyroscopic forces f 2,

M2 =

[
mI3 0

0 J

]
, f 2 =

[
mg

−ω̂Jω

]
(6.89)

and the other terms

J =




Jx 0 0

0 Jy 0

0 0 Jz


 , ω̂Jω =



(Jz − Jy)ωy ωz

(Jx − Jz)ωz ωx

(Jy − Jx)ωx ωy


 , g =




0

0

g


 (6.90)

Here, m denotes the mass of the platform, and Jx, Jy, Jz are the principal mass mo-

ments of inertia with respect to the center of mass of the equilateral triangle platform

represented in coordinates of K0, i.e. J = R Jp RT. The inertia tensor with respect to

the center of the platform is represented in the body-fixed principal axes system by

Jp =




Jx 0 0

0 Jy 0

0 0 Jz


 (6.91)

Next differentiating the inverse kinematic differential Equation (6.64) with respect to

time gives

s̈ = H−1ẍ + Ḣ
−1

ẋ (6.92)
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Inserting the above Equation (6.92) into (6.88) yields the alternative form of the dyn-

amic equations of the platform

M2H−1ẍ + M2Ḣ
−1

ẋ = f 2 + GT
s (p, x)λ (6.93)

6.3.4 Motion planning

During the operation of CABLEV, the payload platform is required to move from an

initial position and/or orientation to a desired final destination and/or orientation in

its working space along a trajectory. This procedure needs motion planning for the

position of the center of mass of the platform and/or for the spatial orientation of the

rigid platform.

For the translational motion of the payload platform, the trajectory of the center of

mass can be prescribed by using a reference function c(t) in a similar manner as

before. This provides a rest-to-rest maneuver, which can be divided into three phases:

the acceleration, steady velocity and deceleration phase.

In Fig. 6.20, for the rotational motion of the payload platform, the Bryant angles ϕ

can be employed to describe the motion of rotations between the initial orientation ϕa

and the final orientation ϕe.

In addition, the rotational motion of the payload platform between the initial and final

orientation can be represented by the rotation motion around a space-fixed vector er,

which comes from the origin of the body-fixed frame Kp, with the angle of rotation

sre. Thus, the rotation matrix can be calculated by the given axis of rotation er with

angle of rotation sre via the Rodrigues formula. The conversion between the two

formalisms of rotation is necessary for motion planning of rotation in the numerical

example at hand.

Given ϕa and ϕe, the rotation matrix between the initial and final orientation is calcu-

lated relative to K0 by

Rae(ϕa,ϕe) = RT
0a(ϕa)R0e(ϕe) (6.94)

By using Rodrigues formula [52, 70], the rotation matrix Rac(er, sre) is given by

Rae(er, sre) = cos(sre)I3 + sin(sre)êr + (1 − cos(sre)) ereT
r (6.95)
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The rotation matrix in Equation (6.94) and (6.95) are both equal to each other and the

equality leads to the computation of the angle of rotation sre
1 [92]

sre = arccos
(

1
2
(Rae(1, 1) + Rae(2, 2) + Rae(3, 3)− 1)

)
(6.96)

and the vector of the rotation axis er [92]

er =
1

sin sre




Rae(3, 2)− Rae(2, 3)

Rae(1, 3)− Rae(3, 1)

Rae(2, 1)− Rae(1, 2)


 (6.97)

where Rae(i, j) denotes the element at the i-th row and j-th column of the rotation

matrix Rae(ϕa,ϕe). The rotation matrix R0c from K0 to the current orientation C can

now be calculated through Equation (6.72).

Then the Bryant angles corresponding to the current orientation C are given by [92]

ϕ(sr) =




ϕ1(sr)

ϕ2(sr)

ϕ3(sr)


 (6.98)

with the components

ϕ1(sr) = arccos
(

R0c(3, 3)
cos ϕ2

)
(6.99a)

ϕ2(sr) = arccos
(√

1 − R2
0c(1, 3)

)
(6.99b)

ϕ3(sr) = arccos
(

R0c(1, 1)
cos ϕ2

)
(6.99c)

Similar to the prescribed translational motion, the desired trajectory of rotational mo-

tion of the platform is specified by

γs(t) = γs0 + (γs f − γs0)c(t) (6.100)

with γs0 = 0 at t0 and γs f = sre at t f .

1 Note that the angle of rotation sre belongs to the interval 0 < sre < 180◦.
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The reference function c(t) is composed of three phases,

c(t) =





cI(t) for 0 6 t < 5 s

cI I(t) for 5 s 6 t < 15 s

cI I I(t) for 15 s 6 t 6 20 s

with each phase

cI(t) =
1

τ − τ0

(
− 5t8

2τ0
7 +

10t7

τ0
6 − 14t6

2τ0
5 +

7t5

2τ0
4

)

cI I(t) =
1

τ − τ0

(
t − τ0

2

)

cI I I(t) = 1 +
1

τ − τ0

(
−5(τ − t)8

2τ0
7 +

10(τ − t)7

τ0
6 − 14(τ − t)6

2τ0
5 +

7(τ − t)5

2τ0
4

)

where τ = t f − t0, and τ0 is the acceleration/deceleration time.

The Bryant angles corresponding to sr(t) = γs(t) can be computed through Equation

(6.72) and Equations (6.99a)−(6.99c). This provides the prescribed Bryant angles γϕ(t)

in Equation (6.103h).

Accordingly, the angular velocity about the space-fixed axis of rotation er and its

derivatives are given by

ω(t) = ṡr(t)er (6.101a)

ω̇(t) = s̈r(t)er (6.101b)

ω̈(t) = s
(3)
r (t)er (6.101c)

ω(3)(t) = s
(4)
r (t)er (6.101d)

In summary, the prescribed trajectory, that CABLEV has to follow, is specified by

x =

[
r(t)

ϕ(t)

]
(6.102)

Then the servo constraints are used to prescribe the desired movement of the payload

platform.
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6.3 Cable suspension manipulator

6.3.5 Appli
ation of index redu
tion by minimal extension

The equations of motion of CABLEV are composed of the kinematic differential Equa-

tion (6.60), the dynamic equations of the drive system (6.85), the dynamic equations

of the platform (6.88), the holonomic constraints (6.68), the control constraint (6.81),

and the control constraints in terms of the load coordinates of the platform (6.102).

The resulting index-5 DAEs assume the form

ṙ = v (6.103a)

ϕ̇ = Hω(ϕ)ω (6.103b)

M1 p̈ = f 1(p, ṗ) + BT
1 u + GT

p(p, x)λ (6.103c)

M2 ṫ = f 2 + GT
s (p, x)λ (6.103d)

Φ(p, x) = 0 (6.103e)

Φ0(p) = 0 (6.103f)

r = γr(t) (6.103g)

ϕ = γϕ(t) (6.103h)

The detailed description of equations of motion are given in Appendix A.6. As descri-

bed in Chapter 5, the index reduction by minimal extension approach can be applied

to the DAEs (6.103a)−(6.103h) as well.

The holonomic constraints (6.103e) are enforced by the Lagrange multipliers in Equa-

tion (6.103c), and thus are not responsible for the index 5 structure of the DAEs. Ac-

cordingly, the control constraints (6.103f) and (6.103g) should be differentiated twice

with respect to time. The constraint conditions at the acceleration level are appended

to the original DAEs (6.103a)−(6.103h).

In general, the control constraint (6.103h) should also be differentiated twice with

respect to time. However, instead of the Bryant angles ϕ, the angular velocity ω ∈ R
3

of the rigid platform represented in K0 has been used to describe the rotational motion

of the platform in Equation (6.103d). Therefore, the motion planning of the trajectory

of the platform provides directly the prescribed angular velocity and acceleration as

function of time.

Then the dummy derivatives are introduced to replace the corresponding derivatives

of the coordinates. After the application of index reduction by minimal extension, the
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6 Index reduction by minimal extension for advanced examples

index-reduced DAEs are written in the following form

M1 p̃ = f 1(p, ṗ) + BT
1 u + GT

p(p, x)λ (6.104a)

M2 t̃ = f 2 + GT
s (p, x)λ (6.104b)

Φ(p, x) = 0 (6.104c)

Φ0(p) = 0 (6.104d)

Φ̈0(p̃) = 0 (6.104e)

r = γr(t) (6.104f)

ϕ = γϕ(t) (6.104g)

r̃ = γ̈r(t) (6.104h)

ω = γω(t) (6.104i)

ω̃ = γ̇ω(t) (6.104j)

Here, the vector p̃ denotes the second derivative of the robot coordinates p,

p̃ =
[

p̈g0 p̃g1 p̈g2 p̈g3 p̈c1 p̈c2 p̈c3

]T
(6.105)

where p̈g1 is replaced by the dummy variable p̃g1. The remaining dummy variables

are then defined by

r̃ = r̈, ω̃ = ω̇, t̃ =

[
r̃

ω̃

]
(6.106)

The constraint condition (6.104e) is represented by

p̃g1 −
1
2

(
p̈g2 + g̈g3

)
= 0 (6.107)

Note that the acceleration p̈g2 or p̈g3 could also be selected as an alternative derivative

which would be replaced by the corresponding dummy variable, for example, p̃g2 or

p̃g3. The resulting DAEs (6.104a)−(6.104j) have the index of 3 after the application of

index reduction by minimal extension procedure. Similarly, the index-3 DAEs after

index reduction are given in detail in Appendix A.6.

6.3.6 Di�erential �atness

The mechanical system under consideration can be classified as a differentially flat

system, since all the state variables as well as control inputs, can be algebraically
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6.3 Cable suspension manipulator

expressed in terms of the flat outputs γ(t) and the time derivatives up to a certain

order without integrating any differential equations [39, 53]. In particular, the system

dynamics can be inverted according to

y = f y(γ, γ̇, · · · , γ(α−1)) (6.108a)

u = f u(γ, γ̇, · · · , γ(α)) (6.108b)

where α is a finite natural number by one smaller than the index of DAEs. The

inversion of the system dynamics is realized by the generalized inverse kinematics

and inverse dynamics as in [53].

Generalized inverse kinemati
s

The robot coordinates p as well as the Lagrange multipliers λ can be expressed in

terms of the flat outputs x and the derivatives up to the second order, for example

p = f p(x, ṡ, s̈) (6.109)

For this, the dynamic equations (6.104b), constraint equations (6.104c) and (6.104d)

constitute a new set of differential-algebraic equations in the following form

M2 s̈ = f 2(x, ṡ) + GT
s (p, x)λ (6.110a)

Φ(p, x) = 0 (6.110b)

Φ0(p) = 0 (6.110c)

For the unknown robot coordinates p ∈ R
7 and Lagrange multipliers λ ∈ R

3, New-

ton’s method can be applied to solve the above nonlinear equations (6.110a)−(6.110c).

In this case, the generalized inverse kinematics is performed at the position level.

The robot velocities ṗ are expressed in terms of the flat outputs x and the derivatives

up to the third order, such as

ṗ = f ṗ(x, ṡ, s̈, s(3)) (6.111)
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6 Index reduction by minimal extension for advanced examples

Differentiating Equation (6.110a)−(6.110c) with respect to time yields a set of linear

equations for ṗ and λ̇,




L0 GT
s

Gp 0

Gp0 0



[

ṗ

λ̇

]
=




M2s(3) + L2s̈ + L1ṡ

−Gsṡ

0


 (6.112)

or in compact form

A(x, p, λ)

[
ṗ

λ̇

]
= f v

(
x, ṡ, s̈, s(3), p, λ

)
(6.113)

with the terms

L0 =
∂(GT

s λ)

∂p
(6.114a)

L1 =
∂

∂x

(
M2s̈ − f 2 − GT

s λ
)

H (6.114b)

L2 = −∂ f 2

∂ṡ
(6.114c)

Gp0 =
∂Φ0

∂p
=
[
0 1 − 1

2 − 1
2 0 0 0

]
(6.114d)

At the velocity level, the robot velocities ṗ and λ̇ can thus be obtained by solving

Equation (6.112) via Newton’s method numerically.

Analogously, the robot accelerations p̈ are expressed in terms of the flat outputs x

and the derivatives up to the fourth order,

p̈ = f p̈(x, ṡ, s̈, s(3), s(4)) (6.115)

Differentiating Equation (6.113) with respect to time yields the linear equations for p̈

and λ̈ at the acceleration level,




L0 GT
s

Gp 0

Gp0 0



[

p̈

λ̈

]
=




M2s(4) + L2s(3) + (L1 + L̇2)s̈ + L̇1ṡ − L3

−Gss̈ − Ġs ṡ − Ġp ṗ

0


 (6.116)

or in compact form

A(x, p, λ)

[
p̈

λ̈

]
= f a

(
x, ṡ, s̈, s(3), s(4), p, ṗ, λ, λ̇

)
(6.117)
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6.3 Cable suspension manipulator

with the terms

L̇2 =
∂L2

∂ṡ
s̈ (6.118a)

L̇1 =
∂L1

∂x
Hṡ +

∂L1

∂p
ṗ +

∂L1

∂λ
λ̇ (6.118b)

L3 = L̇0 ṗ + Ġ
T
s λ̇ (6.118c)

L̇0 =
∂L0

∂x
Hṡ +

∂L0

∂λ
λ̇ (6.118d)

Ġ
T
s =

∂GT
s

∂x
Hṡ +

∂GT
s

∂p
ṗ (6.118e)

Ġp =
∂Gp

∂x
Hṡ +

∂Gp

∂p
ṗ (6.118f)

Symbolic manipulations can be used to obtain the sets of equations (6.110), (6.112)

and (6.117).

Inverse dynami
s

Since the robot coordinates p, velocities ṗ and accelerations p̈ are already known, the

control inputs u can be algebraically calculated by solving Equation (6.104c),

u = (BT
1 )

−1
(

M1 p̈ − f 1(p, ṗ)− GT
p(p, x)λ

)
(6.119)

which are expressed in terms of the flat outputs x and their derivatives up to the

fourth order,

u = f u(x, ṡ, s̈, s(3), s(4)) (6.120)

The fourth order derivative in the expression of control inputs u implies that α = 4

and the index of DAEs is ν = α + 1 = 5. The inversion of the system dynamics

of CABLEV naturally provides the feedforward control law by Equation (6.119) and

proves that the mechanical system under consideration is differentially flat.

6.3.7 Numeri
al example

The numerical simulation makes use of the following parameters: m0 = 380 kg,

m1 = m2 = m3 = 35 kg, m = 12.5 kg, J1 = J2 = 0.75 kg · m2, J3 = 1.5 kg · m2,

r1 = r2 = r3 = 0.1 m, and l2 = 0.6 m.
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6 Index reduction by minimal extension for advanced examples

Different trajectories of translational or/and rotational motion of the playload plat-

form are then investigated to present the simulation results.

Rotation about spa
e-�xed verti
al axis

The prescribed trajectory of rotational motion is generated as explained in Subsection 6.3.4

and there exists no translational motion in this case study. The initial orientation des-

cribed by the Bryant angles is given by

ϕa =




0

0

0


 at t = 0 (6.121)

and the final orientation is given by

ϕe =




0

0
π
3


 at t = 20 s (6.122)

The initial configuration of the robot system is specified by

p =
[
1.2 m (1 + 3

5

√
3)m 1 m 1 m 3 m 3 m 3 m

]T
(6.123)

at t0 = 0, and the initial platform coordinates are given by

x =
[
r ϕ

]T
=
[
(1 +

√
3

5 )m 1.2 m 3 m 0 0 0
]T

(6.124)

Note that the position vector r keeps constant during the rotational motion. The

numerical results for the time step size ∆t = 0.01 s are presented in Fig. 6.21 and 6.22,

in which the robot coordinates, control inputs and Lagrange multipliers are displayed.

The simulated rotational motion of CABLEV is presented in Fig. 6.23 and 6.24 with

some snapshots at consecutive points in time.
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Figure 6.21: CABLEV: Numerical results of rotational motion with ∆t = 0.01 s.

0 5 10 15 20

u
g
0

-20

0

20

0 5 10 15 20

u
g
1

-5

0

5

0 5 10 15 20

u
g
2

-40

-20

0

T ime
0 5 10 15 20

u
g
3

0

10

20

0 5 10 15 20

u
c1

-4.2

-4.15

-4.1

-4.05

0 5 10 15 20

u
c2

-5

-4.5

-4

T ime
0 5 10 15 20

u
c3

-4.6

-4.4

-4.2

-4

0 5 10 15 20

λ
1

-13.625

-13.625

-13.625

0 5 10 15 20

λ
2

-13.625

-13.625

-13.625

T ime
0 5 10 15 20

λ
3

-13.625

-13.625

-13.625

Figure 6.22: CABLEV: Numerical results of rotational motion with ∆t = 0.01 s.
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t=0 t=10 t=20 

Figure 6.23: CABLEV: Snapshots of rotational motion at specific points in time.

t=0 
t=10 

t=20 

Figure 6.24: CABLEV: Snapshots of rotational motion at specific points in time.
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6.3 Cable suspension manipulator

Translation along a straight line

The prescribed trajectory of translational motion is generated in the same way as

before and there exists no rotational motion in this case study. The initial position of

the center of mass of platform is given by

γr0 =



(1 +

√
3

5 )m

1.2 m

3 m


 at t = 0 (6.125)

and the final position is given by

γr f =



(3 +

√
3

5 )m

5 m

1 m


 at t = 20 s (6.126)

The initial configuration of the robot system is specified by

p =
[
1.2 m (1 + 3

5

√
3)m 1 m 1 m 3 m 3 m 3 m

]T
(6.127)

at t0 = 0, and the initial platform coordinates are given by

x =
[
r ϕ

]T
=
[
(1 +

√
3

5 )m 1.2 m 3 m 0 0 0
]T

(6.128)

Note that the orientation ϕ of the platform keeps unchanged during the translational

motion. The numerical results for the time step size ∆t = 0.01 s are shown in Fig.

6.25, in which the robot coordinates, control inputs and Lagrange multipliers are

presented. The simulated translational motion of CABLEV is presented in Fig. 6.26

with some snapshots at consecutive points in time.
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Figure 6.25: CABLEV: Numerical results of translational motion with ∆t = 0.01 s.
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Figure 6.26: CABLEV: Snapshots of translational motion at specific points in time.
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6 Index reduction by minimal extension for advanced examples

Translation with rotation

A combination of translational and rotational motion of the payload platform is inves-

tigated in this case study. The initial position and orientation of the payload platform

are given by

γr0 =



(1 +

√
3

5 )m

1.2 m

3 m


 ϕa =




0

0

0


 at t = 0 (6.129)

and the final position and orientation are given by

γr f =



(3 +

√
3

5 )m

5 m

1 m


 ϕe =




π/6

π/4

π/3


 at t = 20 s (6.130)

The initial configuration of the robot system is specified by

p =
[
1.2 m (1 + 3

5

√
3)m 1 m 1 m 3 m 3 m 3 m

]T
(6.131)

at t0 = 0, and the initial load coordinates are given by

x =
[
r ϕ

]T
=
[
(1 +

√
3

5 )m 1.2 m 3 m 0 0 0
]T

(6.132)

The numerical results for the time step size ∆t = 0.01 s are shown in Fig. 6.27 and

6.28, in which the robot coordinates, control inputs and Lagrange multipliers are

presented. The simulated motion of CABLEV is presented in Fig. 6.29 and 6.30 with

some snapshots at consecutive points in time.
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Figure 6.27: CABLEV: Numerical results obtained with ∆t = 0.01 s.
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Figure 6.28: CABLEV: Numerical results obtained with ∆t = 0.01 s.
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Figure 6.29: CABLEV: Snapshots of CABLEV at specific points in time.
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Figure 6.30: CABLEV: Snapshots of CABLEV at specific points in time.
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7 Summary and outlook

7.1 Summary

This thesis deals with the inverse dynamics simulation of underactuated multibody

systems. In particular, the focus is laid on differentially flat underactuated mechanical

systems. The formulation of underactuated systems relies on the choice of coordina-

tes. In the present thesis, minimal coordinates, dependent coordinates and redundant

coordinates are used to formulate either the feedforward dynamics problems or the

inverse dynamics problems for underactuated systems. In addition, the use of servo

constraints provides an approach to the formulation of the inverse dynamics analysis.

In this case numerical methods are needed to solve such servo constraint problems of

underactuated systems, since the governing equations of motion of the system are in

the form of DAEs with high index, for example, index five.

The projection method is investigated in depth for diverse formulations within two

numerical examples. The numerical simulation results agree well with the reference

analytical solution derived by using the property of differential flatness. The pro-

jection method requires the computation of projection matrices, which are constant

Boolean-type in the case of using redundant coordinates and are time-dependent in

the case of using minimal coordinates. The projection matrices for the redundant

coordinates formulation are much simpler than those for the minimal coordinates

formulation, since the use of redundant coordinats or dependent coordinates leads

to some simplifications in the formulation of the problem. In addition, the redun-

dant coordinates formulation is characterized by a constant mass matrix, whereas the

minimal coordinates formulation leads to a complex configuration-dependent mass

matrix. Special attention is thus paid to the formulation in terms of redundant coordi-

nates and dependent coordinates. The projection method can yield an index reduction

from five to three and can not be applied to systems with a singular mass matrix, such

as the examples of US Navy cranes described in Chapter 6.



7 Summary and outlook

A newly proposed index reduction method, called index reduction by minimal exten-

sion, is developed in this work. It can be applied to solve servo constraint problems

of underactuated mechanical systems. In the applications index reduction by mini-

mal extension is also performed for different formulations of representative numerical

examples, such as for the redundant coordinates formulation and the minimal coordi-

nates formulation. The numerical simulation results are identical to the flatness-based

solution in the case of very small time step size. The new approach can reduce the

index from five to three and even to one if it is applied twice to the problem at hand.

The resulting index-1 DAEs are purely algebraic and this shows that the underactua-

ted system under consideration is differentially flat. Moreover, in the new approach it

is not necessary to compute projection matrices. In addition, index reduction by mi-

nimal extension is applied to some advanced examples, such as the US Navy crane,

for which the mass matrix is singular in the redundant coordinates formulation, and

the undetermined cable suspension manipulator, for which the payload is modeled

as a rigid body and the motion is thus much more complicated.

7.2 Outlook

In this thesis the backward Euler method is used as a time stepping scheme for the

direct discretization of the resulting DAEs, whose index has been reduced by applying

appropriate index reduction methods. Since the backward Euler method is only first

order accurate, the design of energy consistent second order or higher order accurate

schemes needs to be further considered and investigated in future work. For example,

the dynamic behaviour of underactuated servo constraint problems is very sensitive

to the application of the mid-point-type rule. Oscillations in the numerical results are

often observed for very small time step size and this indicates that the integration

scheme is not numerically stable.

The study in this work focuses on differentially flat underactuated multibody systems,

which have no internal dynamics in the system. There exist also nonflat underactua-

ted multibody systems such as manipulators with both passive and active joints [32]

and the Blajer’ car example [33, 82]. In the case of nonflat underactuated systems, the

stability of the internal dynamics [82, 81, 26, 33] ensures the controllability of the sy-

stem and thus is of paramount importance. The stability can be ensured through the

design of the system’s properties like the inertial value or the position of the center

of percussion chosen as the control output.
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7.2 Outlook

The theory of a Cosserat point has been applied to the rotationless formulation of

both rigid and flexible multibody dynamics. In the case of rigid multibody dynamics,

the rotationless formulation yields a set of index-3 DAEs for constrained mechanical

systems. Thus, the reduction of index from three to one may be investigated by ap-

plication of index reduction by minimal extension in the context of the Cosserat point

so that computation time can be saved further. In the case of flexible multibody dyn-

amics, there exist also many underactuated multibody systems such as manipulators

with flexible members. The solution of trajectory tracking control problems of such

systems needs to be developed by applying index reduction by minimal extension.
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A Detailed explanations

A.1 Gâteaux derivative

Using Gâteaux derivative, Equation (3.11) yields

δSd =
N−1∑

n=0

δLd(qn, qn+1) =
N−1∑

n=0

d

dε

∣∣∣
ε=0

Ld(qn + εδqn, qn+1 + εδqn+1)

=
N−1∑

n=0

[D1Ld(qn, qn+1) · δqn + D2Ld(qn, qn+1) · δqn+1]

(A.1)



A Detailed explanations

A.2 Planar US Navy 
rane with negle
ted mass

The equations of motion are given in detail as follows:

J1

r2
1

L̈1 = −λ1L1 +
u1

r1

J2

r2
2

L̈2 = λ3(L0 − L2) +
u2

r2

0 = −λ2L0 + λ3(L2 − L0)

0 = λ1(x0 + l sin α) + λ2x0 + λ3(x0 − x)

0 = λ1(z0 + l cos α) + λ2z0 + λ3(z0 − z)

mẍ = λ3(x − x0)

mz̈ = λ3(z − z0)− mg

0 =
1
2
((x0 + l sin α)2 + (z0 + l cos α)2 − L2

1)

0 =
1
2
(x2

0 + z2
0 − L2

0)

0 =
1
2
((x − x0)

2 + (z − z0)
2 − (L2 − L0)

2)

x = γ1(t)

z = γ2(t)

(A.2)
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A.3 Planar US Navy crane with nonzero mass

A.3 Planar US Navy 
rane with nonzero mass

The equations of motion are given in detail as follows:

J1

r2
1

L̈1 = −λ1L1 +
u1

r1

J2

r2
2

L̈2 = λ4(L0 − L2) +
u2

r2

J3

r2
3

L̈3 = −λ3L3 +
u3

r3

0 = −λ2L0 + λ4(L2 − L0)

m0 ẍ0 = λ1(x0 + (l + s) sin α) + λ2(x0 + s sin α) + λ3x0 + λ4(x0 − x)

m0z̈0 = λ1(z0 + (l + s) cos α) + λ2(z0 + s cos α) + λ3z0 + λ4(z0 − z)− m0g

mẍ = λ4(x − x0)

mz̈ = λ4(z − z0)− mg

0 =
1
2
((x0 + (l + s) sin α)2 + (z0 + (l + s) cos α)2 − L2

1)

0 =
1
2
((x0 + s sin α)2 + (z0 + s cos α)2 − L2

0)

0 =
1
2
(x2

0 + z2
0 − L2

3)

0 =
1
2
((x − x0)

2 + (z − z0)
2 − (L2 − L0)

2)

x = γ1(t)

z = γ2(t)

z0 = γ3(t)

(A.3)

211



A Detailed explanations

A.4 3D US Navy 
rane with negle
ted mass

The equations of motion are given in detail as follows:

J1

r2
1

L̈1 = −λ1L1 +
u1

r1

J3

r2
3

L̈3 = λ4(L0 − L3) +
u3

r3

0 = −λ2L0 + λ4(L3 − L0)

0 = λ1(x0 − β1x3) + λ2(x0 − x3) + λ4(x0 − x)

0 = λ1(y0 − β1y3) + λ2(y0 − y3) + λ4(y0 − y)

0 = λ1(z0 − β1z3) + λ2(z0 − z3) + λ4(z0 − z)

Mẍ3 = −λ1β1(x0 − β1x3) + λ2(x3 − x0) + λ3x3 − u4
y3

r2

Mÿ3 = −λ1β1(y0 − β1y3) + λ2(y3 − y0) + λ3y3 + u4
x3

r2

mẍ = λ4(x − x0)

mÿ = λ4(y − y0)

mz̈ = λ4(z − z0)− mg

0 =
1
2
((x0 − β1x3)

2 + (y0 − β1y3)
2 + (z0 − β1z3)

2 − L2
1)

0 =
1
2
((x0 − x3)

2 + (y0 − y3)
2 + (z0 − z3)

2 − L2
0)

0 =
1
2
(x2

3 + y2
3 − r2)

0 =
1
2
((x − x0)

2 + (y − y0)
2 + (z − z0)

2 − (L3 − L0)
2)

x = γ1(t)

y = γ2(t)

z = γ3(t)

(A.4)
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A.5 3D US Navy crane with nonzero mass

A.5 3D US Navy 
rane with nonzero mass

The equations of motion are given in detail as follows:

J1

r2
1

L̈1 = −λ2L1 +
u1

r1

J2

r2
2

L̈2 = −λ3L2 +
u2

r2

J3

r2
3

L̈3 = λ5(L0 − L3) +
u3

r3

0 = −λ4L0 + λ5(L3 − L0)

m0 ẍ0 = λ2(x0 − β1x3) + λ3(x0 − β2x3) + λ4(x0 − x3) + λ5(x0 − x)

m0ÿ0 = λ2(y0 − β1y3) + λ3(y0 − β2y3) + λ4(y0 − y3) + λ5(y0 − y)

m0z̈0 = λ2(z0 − β1z3) + λ3(z0 − β2z3) + λ4(z0 − z3) + λ5(z0 − z)− m0g

Mẍ3 = λ1x3 − λ2β1(x0 − β1x3)− λ3β2(x0 − β2x3)− λ4(x0 − x3)− u4
y3

r2

Mÿ3 = λ1y3 − λ2β1(y0 − β1y3)− λ3β2(y0 − β2y3)− λ4(y0 − y3) + u4
x3

r2

mẍ = λ5(x − x0)

mÿ = λ5(y − y0)

mz̈ = λ5(z − z0)− mg

0 =
1
2
(x2

3 + y2
3 − r2)

0 =
1
2
((x0 − β1x3)

2 + (y0 − β1y3)
2 + (z0 − β1z3)

2 − L2
1)

0 =
1
2
((x0 − β2x3)

2 + (y0 − β2y3)
2 + (z0 − β2z3)

2 − L2
2)

0 =
1
2
((x0 − x3)

2 + (y0 − y3)
2 + (z0 − z3)

2 − L2
0)

0 =
1
2
((x − x0)

2 + (y − y0)
2 + (z − z0)

2 − (L3 − L0)
2)

x = γ1(t)

y = γ2(t)

z = γ3(t)

(A.5)
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A Detailed explanations

A.6 Cable suspension manipulator

The index-5 DAEs of CABLEV model assume the form:




ṙx

ṙy

ṙz


 =




vx

vy

vz







ϕ̇1

ϕ̇2

ϕ̇3


 =

1
cos ϕ2




cos ϕ2 sin ϕ1 sin ϕ2 − cos ϕ1 sin ϕ2

0 cos ϕ1 cos ϕ2 sin ϕ1 cos ϕ2

0 − sin ϕ1 cos ϕ1







ωx

ωy

ωz




M1




p̈g0

p̈g1

p̈g2

p̈g3

p̈c1

p̈c2

p̈c3




=




1

1

1

1
1
r1

1
r2

1
r3







ug0

ug1

ug2

ug3

uc1

uc2

uc3




+




−cT
1 ey −cT

2 ey −cT
3 ey

−cT
1 ex 0 0

0 −cT
2 ex 0

0 0 −cT
3 ex

−pc1 0 0

0 −pc2 0

0 0 −pc3







λ1

λ2

λ3




M2




v̇x

v̇y

v̇z

ω̇x

ω̇y

ω̇z




=




0

0

mg

−(Jx − Jy)ωyωz

−(Jx − Jz)ωzωx

−(Jy − Jx)ωxωy




+

[
c1 c2 c3

−d̃1
T

c1 −d̃2
T

c2 −d̃3
T

c3

]


λ1

λ2

λ3




0 =
1
2
(c1 · c1 − p2

c1)

0 =
1
2
(c2 · c2 − p2

c2)

0 =
1
2
(c3 · c3 − p2

c3)

0 = pg1 −
1
2
(pg2 + pg3)−

√
3l2

rx = γx

ry = γy

rz = γz

ϕ1 = γ1

ϕ2 = γ2

ϕ3 = γ3

(A.6)
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A.6 Cable suspension manipulator

After application of index reduction by minimal extension, the index-3 DAEs of CA-

BLEV model assume the form

M1




p̈g0

pg1

p̈g2

p̈g3

p̈c1

p̈c2

p̈c3




=




1

1

1

1
1
r1

1
r2

1
r3







ug0

ug1

ug2

ug3

uc1

uc2

uc3




+




−cT
1 ey −cT

2 ey −cT
3 ey

−cT
1 ex 0 0

0 −cT
2 ex 0

0 0 −cT
3 ex

−pc1 0 0

0 −pc2 0

0 0 −pc3







λ1

λ2

λ3




M2




rx

ry

rz

zx

zy

zz




=




0

0

mg

−(Jx − Jy)ωyωz

−(Jx − Jz)ωzωx

−(Jy − Jx)ωxωy




+

[
c1 c2 c3

−d̃1
T

c1 −d̃2
T

c2 −d̃3
T

c3

]


λ1

λ2

λ3




0 =
1
2
(c1 · c1 − p2

c1)

0 =
1
2
(c2 · c2 − p2

c2)

0 =
1
2
(c3 · c3 − p2

c3)

0 = pg1 −
1
2
(pg2 + pg3)−

√
3l2

0 = pg1 −
1
2
(p̈g2 + p̈g3)

rx = γx

ry = γy

rz = γz

rx = γ̈x

ry = γ̈y

rz = γ̈z

ϕ1 = γ1

ϕ2 = γ2

ϕ3 = γ3

ω(t) = er ṡr(t)

z = er s̈r(t)

(A.7)
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