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Introduction

Science is the art of observing, rationalizing, and understanding. If we as humans

take a step outside, we observe a multitude of different organisms that we com-

monly refer to as nature. One of the greatest achievements in the early days of

19th century was the observation that all of these living organisms have a mutual,

smallest unit of organization, the cell. These results lead in their most prominent

way to the rationalization of the theory of Evolution by Darwin and Wallace, the

understanding of the origin of the complexity that we are faced with in any ecologi-

cal environment. Leaving aside the complexity of macroscopic organisms and their

mutual interactions, we understand that each of these organisms itself is formed

by a multitude of tissues; groups of cells living next to each other, performing a

collective task to ensure the well-being of the organism. In an analogous process to

the rationalization of the atom, and the discovery of smaller and smaller elementary

particles, we dwell deeper into the understanding of life and matter. Developmen-

tal biology has taken on the task to elucidate these developmental processes of

organisms. Nowadays, this process and the resolution of the employed microscopy

techniques have become so well-resolved that developmental biologists need the

help of physicists to further rationalize the observed processes. The boundaries,

differentiating biology and physics, are presently being obliterated.

At the beginning of every higher-order multicellular organism stands a complex

process known as embryogenesis. In this key process, the early organism will de-

velop from a single fertilized cell into a multitude of tissues of various forms, shapes,

and ultimately tasks. The earliest and most important result of developmental bi-

ology is that the processes taking place during embryogenesis are similar for any

vertebrate animal (which are also known as the phylum Chordata). This explains

the interest of man in these processes. It is not a self-forgetting quest for knowl-
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edge, but just one of the many facets of man to overcome its limitations. Every

cell in the organism contains the complete set of DNA that encodes the organism.

But in every tissue, we find different types of cells. These cells differentiate by

the pattern of which genes they express and produce. These patterns shape and

define the task of any cell. Thus, the common mechanics to embryogenesis is gene

expression. Gene expression is one of the many intercept points where biology and

physics meet, the former interested in the consequences of the expression, and the

latter interested in the physical and molecular means to achieve this goal.

Depending on the size of the organism embryogenesis can take from several hours

only to several weeks. The results in developmental biology are usually obtained

from a few fast-growing model organism. The most notable ones are Drosophila

melanogaster (a fly), Xenopus laevis (a frog), or Danio rerio (a fish). The results

presented in this study have been experimentally observed in Danio rerio, com-

monly known as zebrafish by the group of Steffen Scholpp, from the Institute of

Toxicology and Genetics (ITG) at the Karlsruhe Institute of Technology (KIT).

In this work, I want to showcase two interdisciplinary projects in which computer

simulations greatly enhanced the understanding of involved physical and biological

concepts. The introductory chapter focuses on a large number of concepts new

to the general physicist as the computational models and the necessary physical

concepts are heavily reliant on the biological systems in question. Both of these

works take place in the early developmental stages of zebrafish and elucidate the

early stages of brain development.

In the methods chapter I explain in thorough detail the physical models that I

either developed or used in a novel context. For both of the works introduced in this

study dynamical as well as statistical features were available. Therefore two hybrid

simulation schemes have been chosen, as they were the best adapted to the exper-

imentally available parameters. For the first work I developed a computationally

inexpensive grid-based tissue simulation scheme using discrete-event simulations.

The full parametrization from novel high-resolution microscopy results is explained

in detail. The second work modified and parametrized a cellular Potts model and

employed it in the novel context of notochord formation.
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The first work clarifies whether or not a novel short-range transport method

via specialized filopodia is able to form the necessary long-range gradient for the

hindbrain, midbrain, and forebrain differentiation. The second work employs a

cellular Potts model to clarify whether a single strongly adhesive progenitor cell

group is able to shape the early notochord. Furthermore, the work aims at clarifying

the formation of the notochord as several competing ideas have currently been

formed with the experimental results at hand. I was able to obtain crucial results

in regards to the current debate of the role of the LPM cells in notogenesis.
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Chapter 1.

Embryogenesis

Computer simulations are advancing to become the third pillar of science besides

theory and experiment. In this work, I want to showcase two interdisciplinary

projects in which computer simulations greatly enhanced the understanding of novel

experimental results. This introductory chapter focuses on a large number of con-

cepts new to the general physicist as the computational models and the necessary

physical concepts are heavily reliant on the biological systems in questions. Both

of these works cover events during the early developmental stages of zebrafish and

elucidate the early stages of brain development.

The first work clarifies whether or not a novel short-range transport method via

specialized filopodia is able to form the necessary long-range gradient for the hind-

brain, midbrain, and forebrain differentiation. The second work employs a cellular

Potts model to clarify if a single strongly adhesive progenitor cell group is able to

shape the early notochord.

The chapter introduces the necessary nomenclature important in the early embry-

onal development phases. Furthermore, it gives an overview over the most impor-

tant parameters of the reactive agents that form the basis of tissue differentiation,

the so-called morphogens. Afterward, the most important stages of embryonal devel-

opment are introduced along with the cellular movements that take place, necessary

to understand the role and the formation of the notochord. A short introduction to

1



1. Embryogenesis

the physical sampling methods and computer simulations is given at the end of the

chapter.

1.1. Overview

The early phases of the development are completed in just a couple of hours in

zebrafish [12]. As each event must be located in a timewise manner, it has become

common practice in zebrafish to locate an event at the hours past fecundation (hpf).

Initially, the fertilized egg cell divides into two different cells, one of which becomes

the embryo, and the other which transforms into the yolk. To not only locate

things in a timewise manner, but also spatially, the animal pole, the side where

the embryo develops, and the vegetal pole, the side where the yolk develops are

introduced. As the embryo is growing from the animal pole towards the vegetal pole

in a thin layer in the early developmental stages, an alternative naming scheme is

the % epiboly, the percentage of yolk’s surface coverage by the embryo. In figure 1.1,

these results are recapped. In this study, I will talk about two different processes.

The first one taking place during 30% (4.6 hpf [12, 13]) to 75% (8 hpf [12, 13])

epiboly, and the second during 50% (5.25 hpf [13]) to 100% (10.33 hpf [13]) epiboly.

The latter is so peculiar that it has received its own name, the gastrulation phase.

I will explain gastrulation in more detail in a separate chapter 1.5.

Having explained all the necessary phases of embryogenesis, we can take a further

look at what is happening during these phases. In each and every phase the tissue

will grow, and it will do so at specific speeds and directions. The cells will start

to differentiate into different types of tissues. This differentiation is known as

morphogenesis. Morphogenesis is a direct reaction of cells towards morphogens,

molecules that alter the gene expression in cells. This introduces the next physical

question of interest that will be further investigated in this study. How can these

morphogens be transported? In chapter 1.2 I will go more into detail on the various

means of transport within a cellular environment, and I will lay the foundations to

understand a novel way of morphogen transport that we were investigating in the

first study that I will introduce in chapter 3.
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1.1. Overview

Figure 1.1.: Developmental stages. During the early developmental stages,

the embryo grows from one side of the egg over the yolk. The

side of the embryo is known as the animal pole, the opposite

side is known as the vegetal pole. The time axis of this progress

can either be expressed in hpf (hours past fecundation), or in

% epiboly, which describes the percentage of the yolk’s surface

coverage by the embryo.

Along with the changes of gene expression, the physical properties of a cell will

change [14]. During embryogenesis, the cells are highly motile, and large rear-

rangements of cells and tissues take place [15]. The most basic parameters in the

context of cell motility are the size of a cell and its adhesiveness. The changes

of cell adhesiveness and the organization of tissue by differential cell adhesiveness

3



1. Embryogenesis

will lay the foundation for the second study that I will introduce in this work. In

this second work, we investigated notochord formation. The notochord is the

precursor of several parts of the embryo, the most notable one being the vertebral

column, the distinctive element of all Chordata. I will further describe the creation

of the notochord, notogenesis, in chapter 1.6.

The results presented in this work find their foundations in new experimental

approaches that were able to increase the spatial, and timewise resolution of molec-

ular processes in zebrafish embryos [2, 10, 11]. As these experiments still face a

resolution limit, only certain cellular properties were accessible. I chose statistical

simulation schemes based on the well established Monte Carlo simulation schemes

to further investigate these highly complex systems with the parameters that were

available to me. I explain the basics of these schemes in chapter 1.7.

1.2. Morphogens and Cellular Signaling

During the early phases of embryonal development, a whole array of molecules is

being transported throughout the embryo. The most notable of these molecules are

morphogens. From a molecular viewpoint, one can classify these molecules as a

type of hormone. As such they can either be small molecular compounds, or fully

developed proteins. The role of these molecules is to start or alter the expression

of different genetic pathways in a cell. A genetic pathway is a set of genes that

encode for new proteins that will perform various functions within the cell. The

most interesting case is when these proteins themselves act as morphogens, thus

providing a self governing and replicating unity. This already attracted the interest

of Alan Turing towards this class of molecules [16].

Morphogens can be locally expressed within the cell where it is acting, but are

most commonly produced in a source cell or source tissue. During embryogenesis,

specific well located tissues will initially form at specific places, and generate a large

morphogenetic field that is acting on a large amount of cells, forming larger tissues.

One example of such a morphogenetic source would be the Spemann organizer, a

cellular organizer that marks the beginning of gastrulation [17, 18], and will be

4



1.2. Morphogens and Cellular Signaling

Figure 1.2.: Crystal structure of XWnt8 in complex with its recep-

tor, the cysteine-rich domain of Frizzled 8. Wnts are lipid-

modified morphogens that bind to the Frizzled receptor. XWnt8

in blue and red, Frizzled 8 in violet. Rendering obtained from the

structure deposited in the PDB [7] under the ID: 4F0A [8].

further explained in chapter 1.5.

The morphogen poses several questions from a physical viewpoint. The most

interesting physical question for this study is the mode of transport that the newly

formed morphogen will take from its source cell towards the target cell where it will

be acting [19]. The transport of these molecules can be done in various different

ways that will give the organism different means of control over their action and

reach [20, 21].

In this regard, one differentiates between different types of transport. Transport

can be an active or an inactive process, along with being directed or undirected.

The most straightforward mode of transport is diffusion. Diffusion is an inactive,

and undirected mode of transport. The organism has no further abilities to alter the

reach of the morphogen other than changing the key parameter of the diffusion, the

diffusion constant. The diffusion constant depends entirely on geometric properties,

e.g., the radius, of the molecule that is transported. Even though diffusion has

only this parameter, the organism has a whole range of possibilities to alter this
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1. Embryogenesis

parameter. One common case, also found in the Wnt pathway, are larger lipid

transport vesicles [22, 23]. These vesicles can contain a varying amount of the

morphogen, which has a strong effect on the turnover rate of the process [24,

25]. As diffusion is the most basic long-range mode of transport, I will compare

my theoretical predictions to results obtained by modeling a diffusive transport.

Diffusive transport types for morphogens have been identified in several instances

[26], and also in zebrafish [27].

Diffusion is an inactive mode of transport. After the release not much can be

done by the body to distribute the molecules. However, there is a whole range of

active modes of transport. These modes of transport are very important within

an organism to expand the range of stochastic processes towards a deterministic

outcome. Often, molecules have to reach precise places. For this, the cell has

an array of protein made tubules, so-called actin tubules that are surrounding it

and can reach several cellular diameters. These actin protrusions are known as

cytonemes.

Cytonemes have different modes of action again, an excellent review is found in

[21]. They can either form a permanent bond with surrounding cells, in which differ-

ent molecules can be exchanged, or they can bridge a larger distance and only form

a temporary bond. In the first study that I present in this work, I focus on a spe-

cial subclass of cytonemes that have shown an interesting behavior during zebrafish

brain development and in Drosophilia [28, 29]. These special actin protrusions are

known as filopodia and play an important role in cellular signaling [30, 31]. They

grow from a morphogen active cell and can reach in average one cellular diameter.

At the tip of these filopodia, morphogens are located. Upon reaching a target, the

tip breaks off and the morphogen is transmitted. The formation of these filopodia

takes only several minutes as shown in figure 1.3.

In this study, we are interested in the morphogen class known as Wnt. Com-

munication of cells by paracrine signaling is essential for developmental processes,

tissue regeneration and stem cell regulation and is also a major cause of diseases

such as cancer when this type of communication becomes deregulated. The highly

conserved Wnt proteins are important regulators of all of the above-mentioned pro-
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Figure 1.3.: Filopodia growing from a cell. Filopodia are actin protru-

sions that grow from the cell. Experimental results suggest that

these cellular actin protrusions are not only used for cellular

movement but also have an important role in cellular signaling.

Time in (minutes:seconds). Text and figure [2].
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cesses reviewed in [32, 33]. Wnt proteins are secreted as palmitoylated glycoproteins

and can act as morphogens to induce responses in a concentration-dependent man-

ner [34, 35]. The secretion of Wnt ligand and its presentation at the plasma mem-

brane depends on the function of Evi/Wls [36, 37], the retromer complex [38] and

a functional microtubule network [39]. However, there is still considerable debate

with respect to the cellular mechanisms, which ensure the controlled release and

spreading of Wnt morphogens thereafter. Different transport mechanisms such as

diffusion with the aid of carrier proteins [40–42] or exovesicles [43] and more specif-

ically exosomes [22, 44] have been proposed for the passage of hydrophobic Wnt

molecules through a tissue. In those models, however, the source tissue has no con-

trol over direction and range of the signal after release and indeed these transport

mechanisms do not appear to be essential for Wnt gradient formation [44].

1.3. French Flag Model

After having explained how the morphogen is transported, the next interesting

question is how cells will react to the morphogen [45]. It would be highly uneco-

nomical and difficult for an organism to have a specific morphogen for each and

every tissue. It is much more economical, and therefore more likely, to have a single

source of morphogen and several layers of tissues reacting to this single morphogen.

The prevailing model that explains this is known as the French Flag Model. Intro-

duced by Lewis Wolpert in 1969 [46], it states that tissues will react differently to

different concentrations of morphogens. In this model, the morphogen is produced

at a source and forms a gradient. Depending on the gradient of the morphogen

that the cells experience, they will differentiate into different types of tissue.

In the first study of this work, we are interested in gradient formation of Wnt8a.

This morphogen is produced from 30% to 75% epiboly [47]. The gradient is at

the basis of the first large segmentation of the future zebrafish brain into three

distinct layers: the hindbrain, the midbrain, and the forebrain [48]. Figure 1.4

illustrates a hypothetical gradient based entirely on diffusion, along with different

cells. Furthermore, I show a top view of an early zebrafish embryo head, with the
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Figure 1.4.: French Flag Model. French Flag model of a hypothetical gradi-

ent. Shown is one cellular layer with morphogen producing cells

in violet, the hindbrain (HB) in blue, the midbrain (MB) in white,

and the forebrain (FB) in red. The second picture shows a top

down (dorsal) view of a zebrafish embryo’s head with the different

brain section in the same color coding. The embryo is facing to

the right, and the very large eyes are part of the forebrain section.
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different brain sections colored with the same color coding.

1.4. Cell Adhesion and Motility

Cells are self-replicating systems with metabolism and represent the smallest units

of life. They are composed of organelles and have a whole array of actions they

can perform. In the previous chapters, I already explained how important cellular

signaling is for cells in a multicellular environment. These are long-range means of

communication, in which a signaling molecule is released into a so-called morpho-

genetic field. The morphogenetic field is the part of a tissue in which cells react

to the morphogen in question.

But, cells do not only have these long-range modes of communication, they also

have direct interaction with their surrounding environment. These interactions are

driven by a cell’s ability to form and break bonds with next neighbors, along with

changing its own shape, hence cell motility and speed. The physical properties

of a complete tissue are emergent properties of the basic cells that compose it [49].

One of the key parameters in this is cell adhesiveness, which is directly influ-

enced by a cell’s ability to perform bonds and links with neighboring cells. These

interactions are transmitted by the actin network that we have already described

in chapter 1.2. Cells also have the ability to sense their surroundings and form

preferential attachments due to chemotaxis as a response to signaling molecules.

The ability to change its shape, and therefore move or attach to other objects, is

defined by its ability to change the surrounding actin network.

The molecular basis for adhesion and therefore also motility of cells are cadherins.

Cadherins accumulate at cell-cell contact sites to regulate cell migration and cell

adhesion [50]. The main functions of cadherins are reducing interfacial tension of

the actin network at a forming cell–cell contact and stabilizing the contact by resist-

ing mechanical forces [51] in a zipper-like fashion. The release of cellular contacts is

controlled by deregulating cadherins and inhibiting their function. Protocadherins

influence homophilic and heterophilic interactions of cadherins [52] and have been

observed to play a role in cadherin recycling [53]. Thus, cellular adhesion is an
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interplay between cadherins that promote cellular adhesion and protocadherin that

inhibit cellular adhesion. Coupling both produces synergetic effects in cell motility.

The second study presented in this work focuses on the next step of embryoge-

nesis: the organogenesis of the progenitor of the vertebral column, the notochord.

Differential cell adhesion and cell motility play a crucial role in the formation of

the notochord. A simulation scheme based on the Glazier-Graner-Hogeweg model

that only needs relative adhesion strengths and relative motilities is found to be

sufficient for explaining the behavior and forms witnessed in experimental results

by Steffen Scholpp (ITG, KIT).

1.5. Gastrulation

”It is not birth, marriage, or death, but gastrulation, which is truly the most im-

portant time in your life” - is a famous quote by the leading developmental biologist

Lewis Wolpert. Gastrulation is the most important phase in embryonal develop-

ment, when the previously singular sheeted embryo, folds and transforms into a

double sheeted layer. This stage starts at 50% (5.25 hpf [13]) and ends at 100%

(10.33 hpf [13]) epiboly in zebrafish. By folding, the embryo consists of two distinct

layers, each a few cells thick, and the inner and outer body plan comes into exis-

tence. The inner layer divides again and a three-fold organization emerges. The

outer layer, the ectoderm, transforms into the skin and tissues that later constitute

the nervous system. The innermost layer, the endoderm, transforms into most in-

ner organs. The middle layer, known as mesoderm gives rise to muscles and the

notochord, our target system in the second study. The gastrula is the onset of

organogenesis, it is at this stage when the whole body plan of the future organism

is defined [54].

The onset of gastrulation is marked by formation of the Spemann organizer [17].

An organizer is a group of cells that actively produce morphogens and determine

the fate of a large group of cells. The Spemann organizer forms between the animal

pole and vegetal pole at 50% epiboly. As soon as cells from the animal pole reach

this point, they receive a signal to move inwards. This inward movement is known
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1. Embryogenesis

Figure 1.5.: Cleavage, blastula and gastrula stages of four vertebrate
model organisms. Developmental stages of zebrafish (A,E,I,M,Q), the frog Xenopus

laevis (B,F,J,N,R), the chick (C,G,K,O,S) and the mouse (D,H,L,P,T). Cleavage, 8-cell stages (A-

D). Note the incomplete cleavage in zebrafish (A) and chick (C) and the complete cleavage with

differently sized blastomeres in Xenopus (B), and uniformly sized blastomeres in the mouse (D).

Early blastula (E–H), late blastula–early gastrula (I–L), late gastrula (M–P) and pharyngula (Q–T).

The position of the Nieuwkoop center (NC) and its equivalents is shown at cleavage stages and the

position of the Spemann-Mangold organizer region (SMO) at early and late gastrula stages. Colors:

light gray, cytoplasm; beige, yolk; dark gray, epiblast region of amniote embryos; red, mesoderm and

its precursors; dark red, prechordal mesendoderm; yellow, definitive endoderm and its precursors;

dark blue, epidermis; lighter blue, neuroectoderm; green, brown and violet, various extraembryonic

tissues; orange, blastopore. Abbreviations: ep, epidermis; fb, forebrain; mb, midbrain; hb, hind-

brain; sc, spinal cord; nt, notochord; pm, prechordal mesendoderm; som, somite; psm, presomitic

mesoderm; ge, gut endoderm; an, animal; vg, vegetal. Reprinted from Conserved patterns of cell

movements during vertebrate gastrulation, 15(6), Solnica-Krezel, Lilianna: 213-228, c©2005, with

permission from Elsevier [9].
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as ingression. Subsequently, the cells change direction and use the outer layer as a

substrate to move back upwards toward the animal pole. This backward growing

layer is known as hypoblast and transforms as already said into two distinct layers,

the endoderm and the middle layer, the mesoderm.

The mesoderm is nearly a cell monolayer and the starting point for most muscu-

lar tissues, and most notably the notochord. The notochord is the most prominent

hallmark of the phylum Chordata and serves as common embryonic midline struc-

ture for all of their members, including humans. It plays a central role in the

genesis of the vertebral body, as it serves as an embryonic scaffold for the sur-

rounding mesoderm to subsequently form the skull, the membranes of the brain,

and, most importantly, the vertebral column [55]. The notochord is an organ of a

rod-like structure. Later in embryonal development, this rod-like structure induces

the formation of the neural tube. Differential cell adhesion and cell motility play a

crucial role in the formation of the notochord.

1.6. Notogenesis

The process in which the notochord forms is known as notogenesis. The notochord

defines the axial structure of all vertebrates during development. Notogenesis is

a result of immense cell rearrangements in the mesoderm, the convergence of the

lateral cells, and the elongation of the axial cells. From a physical viewpoint, it is

an interesting system, as it is only defined by the interaction of four different cell

types [56]. In figure 1.6, these four cell types are shown at the onset of gastrulation,

and at the end of gastrulation. The outer epithelial layer (yellow) is known as

the prechordal plate mesoderm (PPM). The adhesive forces of the PPM are the

strongest in this system as it acts as a skin layer. The PPM serves as a front

towards the animal pole of the growing mesoderm. The cell group labeled in green

is the most important of the four cell groups. We define them as notochord tip cells

(NTC). They have a higher motility than any of the other groups, coupled with a

higher cell adhesiveness. Therefore, we hypothesize that these cells are crucial for

the exact formation of the notochord. In red and gray we have the lateral plate
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1. Embryogenesis

Figure 1.6.: Notochord at the onset and end of gastrulation. The

notochord is a cellular system composed of four cell types: pre-

chordal plate mesoderm (PPM) (yellow), notochord tip cells

(NTC) (green), lateral plate mesoderm (LPM) (gray), and the

axial notochordal plate (NP) (red).
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mesoderm and the axial notochordal plate. Physically, these two cell types do not

differ from each other, but their cellular fate does, as only the axial notochordal

plate cells (red) turn into the notochord. Prior to this study, the formation of the

notochord was highly debated.

It is unclear if the axial notochord forms by the LPM (gray) pushing inwards,

or if the physical behavior of the NTC is sufficient for notogenesis. I implemented

a modification of the cellular Potts model (CPM) [57], a so-called Glazier-Graner-

Hogeweg model (GGH) [58], as a minimal system to test whether the physical

properties of the NTC are sufficient for the shaping of the notochord or not.

1.7. Computer Simulations

The last 50 years brought incredible progress and the ubiquitous availability of

computational power established computer simulations, that is, “in silico experi-

ments”, as a new paradigm or “third fundamental pillar” besides theory and ex-

periment. Nowadays, scientific progress in fields as diverse as high-energy physics,

automotive or airplane engineering, materials sciences, climate simulations, or the

aforementioned quantum chemistry is driven by computer simulations, which allow

calculations and predictions with high accuracy. For different situations and types

of inputs, different simulation schemes have been developed. Not every parameter

of the system in question is always accessible, nor do we necessarily know the ex-

act time evolution of a system. Statistical physics expanded the array of possible

simulations through the introduction of phase space. With the tools provided by

statistical physics, it is possible to sample a system through the knowledge of its

energy function. It is the opposing extreme of dynamical simulations.

For both of the works introduced in this study, dynamical as well as statistical

features were available. Therefore, two hybrid simulation schemes have been cho-

sen, as they were the best adapted to the experimentally available parameters. In

the first study related to the deposition and spread of a morphogen, the dynam-

ical boundary conditions were quite clear. The system can be parametrized into

different time steps in which a specific amount of events are possible. For this,
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a discrete-event simulation (DES) was a good choice. In the second study, the

parametrization of an energy function to describe relative velocities and adhesive

forces is straight forward, but the system needs to be extended by a force term.

The GGH model was the best choice for achieving this as it was the only model

that could be parametrized with the available measurements. It is an extension of

the CPM. Both of these models are further explained in chapters 2.5 and 2.6.

Discrete-Event Simulation For the spread of morphogen, it was relatively easy

to describe the behavior of the involved cells in single cell experiments. These

experiments were capable of determining for every cellular behavior a probability

of occurrence per second. In a discrete-event simulation (DES) a system jumps

from one state to the next, after the occurence of a specific event. As I coupled this

with the experimentally obtained probabilities, the time scale of the simulation was

conserved.

The simulation cycles through each cell of a tissue and attempts the possible cel-

lular events, i.e., cell division, cell migration, filopodium generation. Consecutively,

it models the behaviors of producing layer and receiving morphogenetic field. The

producing layer respects the rates for morphogen deposition and the morphogenetic

field respects rates for tissue growth and cellular motility.

Events are accepted with a probability p event

p event =

1 r < p effect

0 p effect ≤ r
(1.1)

Even though the number of cells is large in these simulations, the nature of these

equations keeps the computational effort at a minimum. The probabilities are

stored in a lookup table, and one only has to cycle trough these events and only

do a relatively cheap random number generation.
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Metropolis-Monte-Carlo By describing the system through a Hamiltonian H, it

becomes possible to describe the statistics of a system through Monte-Carlo meth-

ods. In a Monte-Carlo scheme, the system hops randomly between any admissible

state of the system. This is of computational interest if it is easy to generate a

new conformation, but impossible of finding the next lowest energy in rugged land-

scapes. One example for the application of Monte-Carlo sampling would be the use

in protein folding [59]. If it is easy to find the next lowest conformation in very

smooth landscapes, the Metropolis acceptance criterion is of interest as acceptance

rates for proposed moves are high.

The probability p(γ → γ′) for switching from a state γ to a state γ′ reads as

p(γ → γ′) =

e
−∆HTot

T , if ∆HTot ≥ 0,

1, if ∆HTot < 0.
(1.2)

with the ’difference of energies’ between old and new conformation ∆HTot [60]

and the temperature T .

The parametrization of cells by an energy function to describe relative velocities

and adhesive forces is straight forward. For our applications of notogenesis this

basic system, known as cellular Potts model needs to be extended. The Glazier-

Graner-Hogeweg model, an extension of the CPM, was the best choice for achieving

this. It is an extension of the CPM. Both of these models are further explained in

chapters 2.5 and 2.6.
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Chapter 2.

Methods

For both of the works introduced in this study, dynamical as well as statistical

features were available. Therefore, two hybrid simulation schemes have been chosen,

as they were best adapted to the experimentally available parameters, a discrete-

event simulation and the Glazier-Graner-Hogeweg model.

For the formulation of the DES, simulation events are defined and parametrized.

These events can be split into morphogen related events and tissue related events.

An introduction to current tissue simulation schemes is given along with their limi-

tations to rationalize the exact choice of model. I introduce a grid-based simulation

scheme, as none of the other schemes could be parametrized with the available ex-

perimental results. The parametrization of the model from experimental results is

explained in detail.

Notogenesis is a result of immense cell rearrangements in the mesoderm, the

convergence of the lateral cells, and the elongation of the axial cells. However, it

is currently not known how these processes act together in a coordinated way. The

parametrization of the system from relative cell motility and cell adhesion is possible

through the CPM which is introduced in this chapter. An exact explanation for each

of the terms in the Hamiltonian is given. As notogenesis relies on directed cohort

cell migration the model needs to be modified into the GGH model. The existing

theoretical background for modifying the CPM Hamiltonian is described in detail.
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2.1. Morphogen Transport

The upkeeping of Moore’s law [61] since its formulation up to the present day,

and the subsequent falling prices have rendered computational power a ubiquitous

resource for nowadays science. With the increasing power of these computational

systems, more and more complex questions can be answered with computational in

silico methods. Biological systems are by their very nature large systems of high

complexity. They are composed of a large number, in a quantitative as well as a tax-

onomic way, of molecules or cells. Nevertheless, recent advances of computational

power could render these problems within the reach of solvability.

The modeling of morphogenetic fields and organogenesis is faced with two differ-

ent problems. The first is the correct distribution of the morphogens and molecules

in question. The second is to correctly model tissue reshaping, cellular rearrange-

ments, and cell motility. We are therefore faced with a twofold problem, first to

correctly model our substrate, and second, with modeling the substance set free

into this substrate. Furthermore, as morphogenetic changes will take place from

the earliest embryo on up to the fully developed organism a large range of scales

has to be covered. The scales can range from a few cell layers only, in an early

tissue, up to several layers of tissue or macroscopic entities, i.e. limbs [52]. The

last important problem is the resolution of experiments, the number of parameters

a model has to capture and the experimental availability of these parameters.

For this large range of scales, different simulation schemes have been developed.

An excellent review of the currently available models for substrate behavior and

growth has been published by Tanaka [62]. The following paragraph will resume the

most important points to further elucidate my exact choice of simulation schemes.

For the projects of this thesis two schemes have been chosen as giving the best avail-

able insights with the least amount of parameters, they will be further explained

in the following paragraphs.
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2.2. Tissue Simulations

Several tissue simulation schemes have been developed recently as a new field of

interest is emerging in science. These different methods all come at different res-

olutions and computational expense, ranging from continuous substrates or finite

elements towards complete cells with molecular details. A great review of the cur-

rent methods is found in [63] and the following short paragraph recapitulates the

main points. Substrate simulations can be classified into the following categories:

continuum models with finite elements, coarse-grained cellular models, vertex mod-

els, and continuous cell models in varying resolution.

The continuum model is a great model when the dispersal of a morphogen, or

multiple morphogens, can be explained in an analytical way using diffusion. In

this model, only the crude shape of the organism plays into the simulation. The

organism is simply visualized as consisting of a homogeneous physical material. The

substrate is represented as a soft incompressible and hyperelastic substance. As long

as cellular rearrangements do not play a role, this method is the least expensive to

produce valuable insights. It has been used to study many morphogenetic processes

ranging from stress-dependent bone growth [64], to brain morphology development

[65]. As our experimental procedures captured physical properties on the cellular

level, I did not choose this method.

Spheroid models would be the next step to increase the resolution of the tissue

simulation. In this type of simulation, the cells are represented by rigid spheres or

ellipsoid shapes to incorporate cell polarity into the model. It has been shown that

cells can be modeled by the Johnson-Kendall-Roberts (JKR) theory for adhesive

spheres [66]. In this model, cells lose their mutual contact at a larger distance

than the one where they engaged in a mutual contact. Nevertheless, the model has

also been applied and yielded results with simpler potentials, like simple harmonic

springs [67]. Not only has this model a higher resolution, but we have to keep in

mind the way how it is computed is completely different from the prior method.

The use of a force in simulation always results in the necessity for an integrator

to advance the simulation from one time step to the next. While this model is

computationally simple, the quantification of these forces is not always a trivial task
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for an experimentalist. As we were unable to obtain absolute values for adhesive

forces of the cell types involved in our notochord project, I chose another model

that could be fully parametrized with the knowledge at hand. Spheroid models are

a great way of getting insights at the tissue level of organogenesis, but you need to

have a lab at hand that knows both how to handle the cell cultures and an atomic

force microscope.

The continuous model was not suitable for simulating the filopodia related de-

position of morphogens as this model lacks the explicit representation of cells.

Furthermore, the spherical model was not suitable either as the parametrization

for the cellular adhesion forces are missing at the current time. Therefore I chose

to use a hybrid model by simulating rigid spheres on a fixed grid. This model is

not a dynamic model, but it does have a time scale because of the DES. The exact

model will be explained in more detail in chapter 2.4. For the formulation of this

model, we need a probability for two cells to change place and a probability of

tissue growth. These two parameters and the protocol of parametrization will be

explained chapter 3.3 and chapter 4.2 respectively.

Computationally, any model has to deal adequately with the interactions be-

tween different cells and avoid overlaps in their representations. When raising the

complexity of the cellular representation, and allowing for cellular motion, it is the

easiest to give up the intercellular cavities and simply represent the tissue by a

vertex model [68]. In this model, each cell is represented as a polygon or polyhe-

dron where the vertices of each surface are shared between neighboring cells. This

model is only suitable for densely packed tissues, as well as tissues that have high

adhesiveness such that no cellular displacements will happen. Epithelial tissues

are a good candidate for this model. As our systems did not qualify entirely as

epithelial tissues, this method was not suitable.

Another method of avoiding overlaps, but increasing the resolution of the cell

while keeping the intercellular cavities is to calculate on a grid. If we do this,

it is also not an option to stick with dynamic integrators, but one has to aban-

don molecular dynamics completely and start sampling the model with statistical

methods. The model in question is known as the cellular Potts model (CPM). This
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model is also known as Glazier-Graner-Hogeweg model after its most important

contributors. In this, cells are represented as occupying several grid spaces. A time

step does not exist, but the statistics of the model is sampled by the Metropo-

lis Algorithm. For this, a representative Hamiltonian is defined that assigns an

energy to each state. The model is similar, but not identical to the Ising model

[69, 70], and an adaptation of the Ising model’s many spin formulation, the Potts

model [71–73]. As this model was suitable to be formulated with our experimen-

tally accessible quantities it was my model of choice to gain further insights into

the questions raised for notogenesis. As such, it will be described in further detail,

with a complete explanation of all its parameters in chapter 2.5.

2.3. Diffusion

As already introduced in chapter 1.2, several modes of transport exist for mor-

phogens. Besides transport by filopodia there is a whole range of free diffusion

with carrier proteins [40], exovesicles [43] or exosomes [22, 44]. For the filopo-

dia simulations, it was essential to compare the obtained results with hypothetical

results for the case of a diffusive transport. These results could show possible am-

biguities in our results, or make a clear case for a transport by filopodia. These

verifications have been done with the aid of Jakob Rosenbauer.

The diffusion equation for a concentration C at the place x and time t for a

medium with non-growing domains reads as:

∂C

∂t
−D∂

2C

∂x2
= 0 (2.1)

with the diffusion constant D. The diffusion constant depends on the geometrical

properties of the morphogen.

Since the tissue is a growing and expanding medium, we have to alter equation

2.1. After Reynold’s theorem, the diffusion equation for a growing domain [74, 75]

is
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∂C

∂t
+ u

∂C

∂x
+ C

∂u

∂x
−D∂

2C

∂x2
= 0 (2.2)

with the growth field u. The growth field u describes the advection term. As

our cells are incompressible we can disregard the term proportional to ∂u
∂x . For our

problem of a growing tissue with length L(t) u is found by

u =
dx

dt
=

∂L(t)
∂t

L(t)
(2.3)

The exact derivation is found in appendix A. These simulations were solved with

a numerical solver that is also described in appendix A and provided the results

for diffusion in chapter 3.3.1.

2.4. DES of Filopodia

Each and every of the aforementioned models requires a specific set of parameters.

As the way the system is sampled varies in each of these models, i.e., statistical

versus dynamical, some of them require time-resolved results, while others are fine

with absolute values of force or even just relative values of force. Experimentally,

it was possible for the group of Steffen Scholpp to resolve time-related parameters

of morphogen deposition by filopodia [2]. The exact experimental procedures are

introduced in more detail in chapter 3.1. The early zebrafish brain development

takes places 30% to 80% epiboly. In this time frame, we had average results for the

frequency of formation of filopodia, a distribution of their reach, and a distribution

for their angle of formation. The nature of these results suggests the use of a

discrete-event simulation as explained in chapter 1.7.

For each effect, the probability of occurrence per time step is required and drawn

from the respective experimental distribution. The simulation proceeds by the

Monte-Carlo algorithm, this means that a random number r ∈ [0, 1] is taken
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and compared to the desired probability p effect of an effect, e.g., production of

a filopodium. When r is smaller than p effect the event is accepted, when r is larger

or equal to p effect, the event is discarded.

p event =

1 r < p effect

0 p effect ≤ r
(2.4)

Any further statistical measures linked to this effect are drawn from an exper-

imentally measured distribution. For example, the formation of a filopodium is

decided with the Monte-Carlo algorithm and p formation, but the necessary length

and angle of formation are drawn with the respective distribution from the exper-

imentally measured distributions. The probability to produce a filopodium within

a time step can be computed by

p formation =
Cp ·Np

Tsim
(2.5)

with the number of contacts per producer Cp, the number of producing cells Np,

and the simulation time Tsim. After formation, the Wnt molecule is then attributed

to the closest consumer cell, if the filopodia’s length is long enough to reach the

cunsumer cell’s surface. As I chose to compute on a grid, sometimes unnaturally

large cavities form far away from any cell. For this case, I introduced an additional

commitment length that I set to roughly 10% of the total filopodium’s length. A

further argument in favor of the commitment length is that we have to keep in mind

that the filopodium is not a static thing growing into a specific direction and way,

but it will move and thus might reach a little longer than the actual distribution

of actual deposition shown. Therefore, if an additional distance to the surface of

a consumer cell does not exceed the limit of 2 µm, signaling will still occur. The

numerical choice for this parameter only reflects the order of magnitude of the

effect.

While the production of filopodia is straightforward in this model, the tissue

simulation is not. A continuous model was not suitable for simulating the filopodia
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related deposition of morphogens as this model lacks the explicit representation of

cells. Furthermore, the spherical model was not suitable either as the parametriza-

tion for the cellular adhesion forces are missing at the current time. Therefore, I

chose to use a hybrid model by simulating rigid spheres on a fixed precomputed

grid. For the cell dynamics I had to parametrize the tissue growth and possible

mixings of cells, as the density in a growing embryonal tissue is first of all not as

high as to keep cells in fixed positions, and second, the initially very thick embryo

will flatten and several tissue layers will compact to only a few layers. The model’s

success will, therefore, depend on the parametrizability of these two events, and

the ability to bring them into a probability per time step.

Fortunately, the formulation of tissue growth in a probabilistic way is straight-

forward. During the simulation, the tissue is growing from a number of cells n0

to a number of cells n(t) within the time t. Furthermore, as we only consider the

expansion from the animal pole to the vegetal pole, we will keep the tissue thickness

perpendicular to the axis of spread as constant. Therefore, our tissue will simply

expand from a thickness D0 to a thickness D(t) within the time t. I simplified

the overall geometry of the problem by this approximation. I think that it is a

safe assumption as the brain will only form at one side of the embryo, and one

can disregard the circular shape of the tissue. Still, more elaborate simulations are

planned, where the curvature and real shape of the embryo should be taken into

consideration. The cellular growth is of exponential nature and we can relate the

introduced parameters for the probability of growth p division by

p division =
ln(2) · log2

(
DF
D0

)
Tsim

(2.6)

with the complete simulation time Tsim, the initial tissue thickness D0, and the

final tissue thickness DF . Furthermore, there are two different causes for growth

in the early zebrafish embryo tissue during the 4.6 hpf and 8 hpf stages. The first

one is a flattening of the early embryo that resides at the animal pole from several

tissue layers to only two layers before gastrulation as shown in chapter 1.5. The

second is the natural growth of the zebrafish tissue by cell division. The number of
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A

B

Figure 2.1.: (A) Tissue growth. Our simulations cover the time from 4.6

hpf to 8 hpf. In this time, the tissue grows from a thickness

of 50 µm to 600 µm. (B) Visualization of cell insertions.

Initially the embryo consists of many cell layers. Here we show

two example layers. Cells from the red cell layer insert into the

tissue. A net growth of the tissue is observed. As both layers

have the same distance from the source they will have similar

Wnt contents.
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A B C

Figure 2.2.: Tissue growth algorithm. Visualization of the tissue growth

algorithm for an example path. The Wnt content is represented

by different colors. The tissue is shown in light blue, with no

specific information of the exact Wnt content, and empty grid

positions by white cells. (A) First, a site where a cell will be

introduced is chosen (red circle, and red cell). (B) All of these

cells move across the shortest path to the nearest empty grid spot

(red circle). (C) All the Wnt contents are moved accordingly,

and a new cell (cyan) is introduced at the initial cell spot.
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cells is about 3 000 at 4.6 hpf (30% epiboly [13]) and about 13 000 at 8 hpf (80%

epiboly [13]) [10]. For the simulation of the Wnt distribution, it is only important

to look at the changes of cell fates that these two effects have. In the case of the

intercalation of tissue layers, it is safe to assume that geometrically the introduced

cell is at a similar distance to the source of Wnt and will have a similar morphogen

content as the surrounding cells of the grid space where we introduce a new cell. In

the case of cell division it is a safe assumption that the daughter cells will have the

same fate as the parent cell, especially later on, when cell division becomes a more

frequent and important effect than intercalation. Therefore, the Wnt content was

always copied when introducing a new cell into the tissue regardless of the origin of

the new cell. All of these simplifications have been done with the idea of producing

the simplest and most effective model from a computational point of view.

After defining the probability for the introduction of a new cell, and explaining

the microscopic origins of the new cells, along with their effect on the Wnt dis-

tribution, only one last thing is missing to understand the complete algorithm of

tissue growth as employed in my DES: the algorithm to introduce new cells. First

of all, I did not implement a refined algorithm that takes into account the meio-

sis cycle. If I had done so, each cell would cycle through the division cycle, and

every twenty minutes within the simulation, a division would become more prob-

able. For the aforementioned nondifferentiation between insertion and division, I

have not implemented such an algorithm. The probability given in equation 2.6 is

the probability per cell per time step. It effectively gives the number of divisions

or insertions that have to happen in a given time step to keep up with the ob-

served pattern of growth. Therefore, the simulation would cycle in each time step

through every cell, and attempt one of these growth events to happen. This may

not be the case for divisions, as already explained, but for the insertions, it is the

correct description, as we do not know where an insertion will happen. They can

happen anywhere in the tissue at any time. The differentiation between division

and insertion, therefore, becomes kind of obsolete. After the growth event has been

successful at a given place, the offsprings are placed at the locality of the parent cell

and one of its neighbors. Subsequently, the shortest path to the closest empty cell

spot is constructed to make room for the newly introduced cell. The neighboring
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cells are driven from their initial localities in a cascading event and translocated

towards the empty spot. In order to do so, a path is constructed that consists of a

series of next neighbouring cells towards the empty spot. The Wnt content of each

cell is passed on along this path until the final cell in the series occupies the empty

cell spot. A graphic explanation of this algorithm is shown in figure 2.2.

Displacements of cells caused by tissue layer insertions are not the only cellular

movements observed during early embryonic stages. As the tissue density is not

high enough to compact tissues, and a certain flexibility is needed for these large-

scale rearrangements, one will observe individual cell motility. This means that

cells move around and lose their specific neighbors. Within my grid mechanics,

this effect can be effectively described by a probability p motility of two neighboring

cells switching their respective grid places.

There are two ways of calculating this value. The first is to look at real cell

motility and cell speeds v cell within a tissue, and calculate from this speed an

average velocity of the cell. This value needs to be refactored to cell diameters

d cell = 16µm per time step, or basically, the probability of moving one cell further

within a single type step:

p motility =
v cell

d cell
(2.7)

This only gives an estimation for the definition of this parameter. With high-

resolution microscopy it is possible to find a more refined value for this parameter,

the reasoning on how to do this are explained in the following. A recently published

study by the research group of Prof. Nienhaus (CFN, KIT) [10] released a high-

resolution time tracked light scan of a zebrafish in development. In this study, the

placement of cellular centers was tracked in 500 individual scans. A collaboration

at the (SCC, KIT) further refined these static results computationally to identify

and map exact cellular movements and turn them into a dynamic dataset of the

full early development [76, 77]. Every single cell was tracked in 50-second intervals

from 40% epiboly up to the end of gastrulation and beyond (about 12 hpf). Figure

1.1 shows in panel A the 40%, in panel B the 80%, and in panel C the 50% epiboly
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stages as calculated and rendered from these results.

With the knowledge of how cells move in a dynamic way from frame to frame,

one is able to construct a next-neighbor tree. With this tree, it is possible to look

at the time each of these contacts remains. In figure 2.3 I report the times for the

neighborhood lifetime with a logarithmic plot and in minutes. In figure 2.4 I report

the times for the neighborhood lifetime with a linear scale. If one considers these

neighborhoods to act like independent entities that decay, an exponential decay can

be fitted to these lifetimes. From the fit parameters, one obtains the half-life of the

decay. This half-life can be transformed into a probability of decay. In figure 2.3

we see a strong difference between both fits. The red fit is taken along each of the

lifetimes, in contrast to the green fit where I exclude the prominent first peak. In

the absolute results in 2.4 one sees that the red fit mainly captures the initial peak,

which is solely caused by short term neighbor losses and fluctuations. Neither these

quick fluctuations, nor the long scale changes, should be included when determining

the average motility. Therefore, preference was given to the green fit. From this

one obtains a probability p exp.
motility for the loss of a neighbor in the experimental

results.

The experimental motility that we observe and the probability p exp.
motility is influ-

enced by two different base factors. We have to keep in mind that this parameter

is a combination of neighborhood-loss due to true cell motility and motility caused

by pushing tissue when cell insertions or cell divisions happen within the tissue.

This plays an especially large role in our grid-based simulations as cell insertions

or divisions push a large number of cells, and easily cause a large number of neigh-

borhood losses. The true cell motility p sim.
motility that we are looking after is found by

subtracting the neighborhood loss by tissue growth p pushing from the experimental

results:

p sim.
motility = p exp.

motility − p pushing (2.8)

The probability p pushing cannot be disentangled in the experimental results, but

it is possible to give an analytical derivation of p pushing for my grid-based simu-
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Figure 2.3.: Histogram of the neighborhood lifetimes in minutes with

a logarithmic scale. Histogram of the neighborhood lifetimes

extracted from the time tracked light scan. [10]

Figure 2.4.: Histogram of the neighborhood lifetimes in minutes with

a linear scale. Histogram of the neighborhood lifetimes extracted

from the time tracked light scan. [10]
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lations. All of the following considerations are done for a line of cells of length L

with L different cells. In each time step we know the probability for cell division to

occur, which is as previously explained p division. This value is constant throughout

the simulation. The probability for neighborhood loss through pushing cells does

not only depend on the probability of a cell to divide, but it also depends on where

this division occurs. If the first cell of the sequence L is to divide, this cell and all

the subsequent cells, i.e. L cells, lose their neighbors. If the second cell is to divide,

this cell and all of the following (L − 2), i.e. (L − 1) lose their neighbors. In the

first case we have L neighbouring loses with a probability p division. In the second

we have L − 1 cells losing their neighbors, but there is the probability for this to

occur by the first cell dividing or the second cell dividing. Therefore we have L− 1

losses of neighbors with the probability 2 · p division. We observe the pattern:

neighbor losses weight

L p division

L− 1 2 · p division

L− 2 3 · p division

... ...

L− (L− 1) (L− 1) · p division

These are the addends for obtaining the required probability p pushing:

p pushing =

p division ·
L−1∑
n=1

(L− n)(n+ 1)

L−1∑
n=1

n

(2.9)

With the gaussian summation formula 1 we obtain:

1In this case:
L−1∑
n=1

n = L·(L+1)
2

and
L−1∑
n=1

n2 = L·(L−1)·(2L−1)
6
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p pushing = p division

(
2 + L

)
3

(2.10)

Figure 2.5 recapitulates the different steps of the DES. During each simulation

step that covers 1 s in real time, we cycle through different phases of the simulation.

In the first, filopodia are produced with the probability of formation p formation and

an adequate angle and length from experimental distributions. After this step each

occupied grid space tries to divide or insert a cell of similar Wnt content with

p formation. After this, cells attempt to mix with next neighbours with a probability

p sim.
motility. Technically, there could also be morphogen decay, but as no experimental

evidence was available for this to happen on the relevant simulation timescale I

disregarded this step.

2.5. Cellular Potts Model

In 1992 Glazier and Graner published a work on the differential adhesion of cells

[57, 78, 79] that extended prior studies of coarsening of foam to biological systems.

In their work they introduce a formalism for the physics of cells that can, analogous

to foam bubbles, be expressed by an extension of the large-q Potts model [71].

The formalism equally employs a grid, on which calculations are performed. The

spins that aggregate for low temperatures into specific domains do not represent a

different orientation of any intrinsic spin value, but each domain simply represents

a specific cell with its spatial distribution [57].

Thus, one can introduce a cell σ
(
~x
)

at the lattice site ~x. For a tissue simulation

one will not have an infinite amount of different cell types, but a biological system

is made up of a large number of cells of the same type. Therefore we can simplify

interactions between cells to interactions between cell types τ
(
σ
(
~x
))

. The most

prominent, and for our intention only, cell interaction is the surface adhesion be-

tween different cell types J
τ
(
σ(~x)

)
τ
(
σ(~x′)

). J is a symmetric matrix defining the

strength of surface adhesion between different cell types.
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Figure 2.5.: Order of events in the DES. The DES cycles through each

possible event and accepts them with the given probabilites.
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Furthermore, we do not only have intercellular interactions, but we also have in-

tercellular boundary conditions. In the early foam models, different domains would

simply grow in size. The earliest model to impose a constraint on the growth of the

domains would be the Weaire-Kermode model [79] for soap froths that introduced

the Lagrangian multiplier

λ
∑
cells

(
V (σ)− V0 (σ)

)2
(2.11)

with an inverse gas constant λ and the volume of a cell V (σ) and the target

volume V0 (σ). Hence, the domains would not randomly grow but strive for a

specific volume. Cells do not only try to keep a constant volume, they also try to

minimize their surface. Therefore the CPM formulation adds a similar term with

a target cell surface S0.

The complete Hamiltonian of the grid, therefore, reads as

H =
∑
cells

∑
neighbors

J
τ
(
σ(~x)

)
τ
(
σ(~x′)

)(1− δσ(~x)σ(~x′)

)
+
∑
cells

λV

(
V (σ)− V0 (σ)

)2
+
∑
cells

λS(S(σ)− S0(σ))2

(2.12)

with interaction constants λV and λS for volume and surface of the cells, and the

Kronecker-delta2 δσ(~x)σ(~x′) to exclude self interactions.

The model as written in equation 2.12 describes only a single state of the system

in question. It does not describe any dynamics of the system, but this is what we are

effectively interested in when running these simulations. An excellent introduction

2δσ(~x)σ(~x′) =

1, if σ(~x) = σ(~x′),

0, if σ(~x) 6= σ(~x′).
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to the dynamics of the CPM and the GGH model are found in [58] and I want to

introduce the most important concepts at this point.

The Hamiltonian of equation 2.12 can be sampled by a simple Monte Carlo

algorithm, but it is much more interesting to use the Metropolis acceptance criterion

between different states γ and γ′ to sample the states of the system:

p(γ → γ′) =

e
−∆HTot

T , if ∆HTot ≥ 0,

1, if ∆HTot < 0.
(2.13)

In a Monte-Carlo scheme, the system hops randomly between any admissible

state of the system. This is of computational interest if it is easy to generate a new

conformation, but impossible to find the next lowest energy in rugged landscapes.

One example for the application of Monte-Carlo sampling would be the use in

protein folding [59]. If it is easy to find the next lowest conformation in very

smooth landscapes, the Metropolis acceptance criterion can be used to construct a

dynamic trajectory if the exponent in equation 2.13. For biological systems, this is

the case.

First, we have to take a look at the rate of a single change of a lattice site from

an initial configuration ~S to another configuration ~S′. We obtain for the rate r

with a small exponential argument:

r
(
~Si −→ ~Si+1

)
= p

(
~Si −→ ~Si+1

)
− p

(
~Si+1 −→ ~Si

)
= 1− exp

(
−Hi +Hi+1

)
T

∼
(
Hi −Hi+1

)
T

+O

((Hi −Hi+1

)
T

)2


(2.14)

Practically this means:

r
(
~Si −→ ~Si+1

)
∼ Hi −Hi+1 (2.15)
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This result can now be transformed into a generalized velocity between different

states, in which we assume the change of a single lattice site ~Si −→ ~Si+1 as our

basic time step:

~vel
(
~Si −→ ~Si+1

)
≡ 1

T
~∇H ·

(
~Si − ~Si+1

)
(2.16)

This equation fulfills the requirements of a linear dynamic of Aristotelean form

with

~∇H = ~F = µ · ~vel (2.17)

relating the gradient to ~∇H a force ~F and linking it linearly with constant µ to

the velocity ~vel for the case of overdamped dynamics.

Thus, the metropolis criterion will result in a slow sampling of the large phase

space in a deterministic way. It gives us a dynamic trajectory of the system. The

relation between the introduced time step and real time is a subject of controversial

debate. Unfortunately, it was not possible to study and clarify this debate within

my work. But, regardless of the exact relation between real time and the employed

time step, this result permits us to expand the Hamiltonian 2.12 with further

potentials to represent further sources of force in our simulations. When doing

so, the CPM is generally referred to as the Glazier-Graner-Hogeweg model (GGH)

[58]. The CPM and the GGH have numerous applications in studying biological

systems, e.g. the dynamics of glioma [80], tumor growth [81], amd blood vessel

growth [82]. I do keep in mind that an exact real-time scale is not given, therefore,

in my results section, I refrain from interpreting results that would need to pinpoint

a specific state to a specific point in time. For example, I can not decide with this

model if the notochord becomes shorter or longer, but I can tell if the notochord

has a concave or convex form.
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2.6. Glazier-Graner-Hogeweg Model

For our notochord simulation, it is necessary to incorporate the effects of gastru-

lation into the simulation. During the gastrulation phase, cells move from the

Spemann organizer up towards the animal pole. Thus, we have a border at the

bottom of our simulation field where new cells enter the field, and they move in

the upwards direction. For this, we use the extended CPM, the Glazier-Graner-

Hogeweg model.

Several implementations for chemotaxis and force gradients have been formulated

for the GGH model. I used a model in which the cell grid is extended by a further

dimension in which each grid space can also hold a specific concentration of a

signaling molecule, or simply a specific potential that acts as a force upon the

individual cells. The basic Hamiltonian difference ∆HB of equation 2.12 is extended

by another Hamiltonian difference of the following form

∆HM = µ

(
τ
(
~x′
))

λM

[
c
(
~x′
)
− c

(
~x
)]

(2.18)

with the concentration of a hypothetical signaling molecule c(~x) at a lattice

site ~x. µ

(
τ
(
~x′
))

is a type-dependent coupling constant as the premise of our

simulation was that we want to investigate the effects of a small, faster cell cluster

onto notochord formation. The potential I used was simply of linear form.

The GGH model that I implemented for this study, therefore, reads as:

∆H = ∆HB + ∆HM (2.19)
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3 Chapter 3.

Filopodia

In this chapter, I present my results from a joint experimental study targeting the

transport and distribution of Wnt8a in the early phases of gastrulation. Experimen-

tal results suggested that this morphogen is actively transported through specialized

cytonemes, namely filopodia, a class of cellular actin protrusions. Filopodia have a

mean length of one cell diameter and transport the signaling molecule from Wnt ac-

tive producer cells into the morphogenetic field. Subsequently, these cells transform

into hindbrain, midbrain, and forebrain.

The goal of the computational study was to clarify if such a short-range mode

of transport can result in the long-range effects and gradient necessary for brain

development. The results have been published in a joint publication by the group of

Steffen Scholpp [2]. By implementing a model with a minimal amount of parame-

ters, I was able to gain further insights into the correlation between filopodia lengths

and the hindbrain/midbrain axis. I concluded that, in this model, the flux of the

first few Wnt active layers is the defining parameter, and that, contrary to trivial

logic, it is important that the deposition of Wnt is imperfect. The predicted results

for the deposition ratio matched experimental results. Furthermore, the results give

further positive arguments for prepatterning in early morphogenetic fields.
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3.1. Motivation

As laid out in chapter 1 the early phases of organism development are the results

of a broad network of cellular signaling and tissue responses involving signaling

molecules. One of the most notable classes of these signaling molecules is the

highly conserved Wnt protein family. As explained in chapter 1.2 they are im-

portant regulators during tissue development, tissue regeneration, and stem cell

regulation [32, 33]. These molecules are secreted in complexes and form a class of

palmitoylated glycoproteins, vesicle-like agglomerations of a large number of these

molecules. The response to these vesicles follows the French flag model, hence in a

concentration-dependent manner [35]. The secretion and expression of Wnt depend

on several factors, the most interesting one being a functional microtubule network

[39]. While various modes of transport are known for Wnt, see chapter 1.2, it is

of interest to find out the reason for a positive correlation between Wnts and the

microtubule network. Furthermore, it is a key question of developmental biology to

formulate and understand the principles that enable an organism to have a precise

control over brain development.

Eliana Stanganello of the research group of Steffen Scholpp (ITG, KIT) used

various methods of high-resolution fluorescence microscopy to elucidate the link

between the actin network and the Wnt molecules. In her work, it became quite

clear that specialized filopodia actively transport Wnt molecules [2, 83]. Experi-

ments have been performed on single cells in vitro where different molecules were

fluorescently labeled. Figure 3.1 displays a high-resolution static image of a cell

with a cytoplasmic protrusion composed of actin, a filopodium. Two colors were

used to discriminate and identify objects in this image. The actin network tagged

in red and the Wnt8a molecules tagged with green fluorescent protein. It becomes

apparent that Wnt is localized at the distal tip of the filopodium. Further experi-

ments reported in figure 3.2 display the dynamic production of a filopodium with

temporal resolution. Morphogens are localized at the distal tips of filopodia and

grow outwards from Wnt active cells towards receiving epiboly cells. Finally, figure

3.3 unfolds the final steps of the proposed mechanism, the pruning of a filopodium.

After successfully targeting the receiving cell, the contact between filopodium and
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Wnt-producing cell breaks away. The transport of morphogens with filopodia has

been reported in several distinct cases during organism development, e.g., fibroblast

growth factor branchless [84], Notch-Delta ligands [85], and Dpp and Hh proteins

[86]. The most recent cases of this transport were reported in the chick limb bud

[87, 88] as well as in Drosophila during Hh signaling [89].

Figure 3.1.: Filopodium. At the 16-cell stage, zebrafish embryos were mi-

croinjected in one blastomere with 0.1 ng of mRNA of Wnt8a-

GFP and membrane-bound mCherry. Live cell imaging of a 15-

min stack of mCherry expressed in single epiblast cells in a ze-

brafish embryo at 50% epiboly, highlighting a network of long cy-

toplasmic extensions. The high magnification pictures of single

channels show Wnt8a-GFP localization to the distal tip (arrow).

Text and figure [2].

These previous experiments clearly indicate the transport of Wnt through filopo-

dia, over a short distance. But, Wnt is as previously said the key component in

the hindbrain, midbrain, and forebrain development, a differentiation that takes

place over several cellular diameters. A whole range of mutagenesis experiments

has been run to clarify the relation between filopodia and the hindbrain/midbrain

axis. Fortunately, it was not only possible to localize Wnt through high-resolution

fluorescence microscopy, but also to change the physical properties of these filopodia

by altering factors that had a positive or negative effect on their formation. Fig-

ure 3.4 illustrates filopodia under the effects of different regulators that have been
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Figure 3.2.: Filopodium formation. PAC2 fish fibroblast transfected with

Wnt8a-GFP and Evi-mCherry containing multiple filopodia with

Wnt8a present at the distal end (arrow) forming cell–cell contact

with a neighboring PAC2 fibroblast by filopodia (min:s). Text and

figure [2].

identified as key components in filopodia formation. Regular filopodia are shown

in the control (ctrl) panel, they have no branching and a mean length of 11.9 µm

and a standard deviation of 2.89 µm which is in the range of one cellular diameter

of 16 µm. Under the effect of Cdc42mRNA the length of filopodia is increased,

with a mean length of 23.84 µm and a standard deviation of 10.61 µm. Cdc42a/c

MOs deregulates the formation of filopodia and decreases the length substantially

to 1.41 µm with a standard deviation of 0.82 µm.

The most interesting effect of these alterations are the immediate macroscopic

effects upon brain development. In figure 3.5 the effects caused by longer filopodia

are displayed. Under the influence of Cdc42, the hindbrain/midbrain axis is shifted

and the hindbrain is larger. The hindbrain forms at the highest concentrations of

Wnt8a, the forebrain at the lowest concentrations of the morphogen. The source

of the morphogen, Wnt8a active cells are sitting next to the cells that later become

the hindbrain. Adding Wnt8a increases the overall Wnt8a concentration and the

gradient is shifted away from the producing cells. Embryos exposed to higher
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Figure 3.3.: Filopodium pruning process. Filopodium pruning process af-

ter transfer of Wnt8a-GFP of PAC2 cells. After the cutting off,

one part of the filopodium is retracted (blue arrows) and the other

part shrinks and forms a Wnt8a-positive vesicle at the membrane

of the contacted cell (yellow arrow). Scale bars as indicated.

Time in min:s. Text and figure [2].

Wnt8a concentration reacted with a similar shift and an enlarged hindbrain. The

combination of both substances resulted in a completely malformed brain with

only hindbrain present. Embryos with reduced filopodia lengths did not develop

sufficiently to gain any comparative results.

As experiments do lack the necessary time resolution to track the exact spread

of Wnt in the morphogenetic field, it is currently impossible to give a satisfactory

answer to the exact causes of the above observations. Computer simulations can fill

this gap by constructing a sufficient model from our current knowledge on filopodia

formation and tissue growth. The exact simulation scheme is explained in chapter

2.4. In the following paragraph, I explain the complete parametrization of the

model.
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Figure 3.4.: Filopodia with varying length. Live imaging of cell clones

expressing indicated constructs in zebrafish. Regular filopodia

are shown in the control (ctrl) panel. Under the effect of

Cdc42mRNA the length of filopodia is increased. Cdc42a/c MOs

deregulates the formation of filopodia and decreases the length

substantially. Text and figure [2].

Figure 3.5.: Hindbrain/Midbrain border with varying filopodia

lengths. Embryos were microinjected with mRNA for the in-

dicated constructs (Cdc42, 0.6 ng; Wnt8a, 0.2 ng; IRSp534 K,

1.2 ng) at the one-cell stage. Embryos were fixed at 26 hpf and

subjected to in situ hybridization with probes for fezf2 and pax6a.

Text and figure [2].
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3.2. Parametrization

3.2. Parametrization

To examine our hypothesis quantitatively, I developed a simulation of neural plate

patterning as explained in chapter 2.4. The scheme reduces the process described

in 3.1 to its core parameters. The simulation encompasses both a complete and

sufficient characterization of filopodia and filopodia-external effects like the migra-

tion of epiblast cells. The parameters necessary for the description and simulation

of filopodia, using the DES scheme as described in chapter 1.7 and 2.4, are based

on the experimental results provided by the group of Steffen Scholpp. Key param-

eters for the description of filopodia are the angle of formation with respect to the

producing cell, the filopodium’s length in accordance to experimentally measured

length distributions, and the frequency of production.

Experimentally, filopodia lengths could be determined by fixing a producing cell

onto a substrate and measuring the distance of fluorescently labeled Wnt with

respect to the cellular surface. For the wildtype, 391 filopodia have been measured.

From the mean value and the standard deviation of this distribution, I constructed

a gaussian distribution, from which in each simulation step filopodia lengths are

drawn. I chose the gaussian distribution over any other distribution as the process

of filopodia growth should comply with a random walk of the filopodia’s distal

tip. A non-gaussian, or non-random distribution, would imply that a filopodium’s

tip would exhibit guiding or would have means of chemical sensing. The process

of guidance would make further claims about a necessary long-range interaction

between filopodium and a hypothetical signaling molecule and the existence of

receptors on the filopodium itself. None of these have been experimentally observed.

Taking all this into consideration the best choice was to work with a gaussian

distribution. For the wildtype variants, filopodia are characterized by a mean

length of 11.9 µm and a standard deviation of 2.9 µm (standard error: 0.3 µm).

For a further understanding of the relation between filopodia length and brain

area development, two more distributions were measured and quantified. For the

longer Cdc42mRNA mutants, we performed similar measurements resulting in a

mean length of 23.8 µm with a standard deviation of 10.7 µm and for the shorter

Cdc42a/c MOs we found a mean length of 1.4 µm with a standard deviation of 0.9
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µm. In figure 3.6 the employed length distributions are illustrated.

Figure 3.6.: Filopodia lengths distributions. Length distributions for

short (red), wildtype (yellow), and long (blue) filopodia.

Unlike the distribution of lengths, the angle of formation is not determined by

the filopodium itself but depends entirely on the producing cell. Through receptors,

the cell has the means for directional sensing. The morphogenetic field is polarized

towards the animal pole. This means that filopodia are preferentially generated at

the cellular side facing towards the animal pole. Experimentally, angle distributions

were obtained in the same manner as length distributions by fixing a producing cell

on a substrate. The exact shape of the distribution relies on a multitude of factors.

There is no way of analytical deduction that would not need the exact quantification

of a multitude of additional factors. Given this, I rather chose an ad-hoc approach

and interpolated a suitable distribution from our experimentally obtained empirical

data. The interpolation1 was done using a cubic spline. No further smoothening

or symmetrification was applied to the function. The obtained function, as well as

1f(x) = 2.08674726E+01 ·x0−4.57694082E−01 ·x1+1.58367755E−02 ·x2−2.69223550E−04 ·
x3 +2.22174751E−06 ·x4−9.33019141E−09 ·x51.92437954E−11 ·x6−1.54624441E−14 ·x7
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the experimentally determined distribution, have a strong peak towards the animal

pole and are illustrated in figure 3.7.

Figure 3.7.: Angular distribution of filopodia. Experimental values are

reported in the inset, the function as used in the simulation within

the graph (blue).

The last missing parameter for filopodia generation is the frequency of formation.

The growth of filopodia is fast, and multiple filopodia can be produced at the same

time. The experimental results on wildtype cells suggested a production rate of

10.8 per 10 minutes per cell, or 0.018 filopodia per cell per one-second timestep.

The production and deposition of Wnt are within the simulation an instantaneous

effect with the given rate. No explicit modeling of the growth of a filopodium was

implemented. The rate of production has been kept constant in all three cases of

filopodia, regardless of length. Newer experimental results suggest that Wnt has

a self-controlling effect and that the rate of production should increase throughout

the simulation.

Although the method explained in 2.4 could incorporate an explicit term for
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ligand decay, it was disregarded for the given arguments. Experiments suggested

that the ligand is stable over several hours, hence a larger time frame than the ac-

tual simulations and developmental phase. I, therefore, disregarded explicit ligand

decay. Furthermore, the only net contribution would be a stronger gradient. The

more interesting question was if this gradient can exist despite ligand stability.

The following paragraphs describe the parametrization of the tissue dynamics.

The simulation is started from an initial 90 µm broad layer. The Wnt8a-positive

marginal zone was set to a 40-µm broad layer (± 3 densely packed cell rows)

containing 650 ligand-producing cells and the receiving tissue - the neural plate

anlage - was set to a 50-µm broad layer (± 4 densely packed cell rows) containing

888 epiblast cells. This corresponded to the number of cell rows as measured by

the group of Steffen Scholpp. The simulation is stopped after the field has grown to

600 µm. This corresponds to 8 hpf (75% epiboly stage) and 3.4 h of development.

During the simulation, cells move according to the algorithm described in 2.4.

As explained in chapter 2.4, tissue growth depends on p division. Due to the bound-

ary conditions imposed by the problem, this parameter is not free. The boundary

conditions of the embryonic development determine the size of the morphogenetic

field at the beginning and the end of our simulation. This end thickness needs to

be reached after 3.5h of development. These constraints set the precise value for

the division rate. With initial tissue size D0, final tissue DF , and simulation time

Tsim it evaluates to:

pDivision =
ln(2) · log2

(
DF
D0

)
Tsim

= 0.000156
1

s

(3.1)

The last parameter introduced in chapter 2.4 is the probability for cell moves,

p sim.
motility. The experimental probability can be obtained from the exponential fit in

figure 2.3. With f(x) = k0 · exp((−κ · t)) we identify κ as 0.5501
s . With T 1

2
= ln 2

κ

and the relation between probability and half life p = 1
2·T 1

2

we have the experimental

motility
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p exp.
motility = 0.0066

1

s
(3.2)

From this, we have to subtract the motility caused by tissue growth. With

equation 2.10 and a length L of approximately 38 cellular layers we have

p pushing = p division

(
2 + L

)
3

= 0.0021
1

s

(3.3)

which finally yields the result

p sim.
motility = 0.0045

1

s
(3.4)

3.3. Results

The simulation results exhibit a highly dynamic behavior throughout the whole

process. In the beginning, cell growth and tissue layer insertions, as explained in

figure 2.1 panel (B), are slow. The deposition of Wnt8a is the dominant factor.

My simulations show that the simulated concentration of the ligand peaked at

50µm from the body of the producing cells, forming a corona around the source

tissue, consistent with our previous observations of Wnt8a-mCherry distribution.

As cellular growth is not linear, the time intervals in which new cells enter the field

and push older cells outwards become smaller and smaller. This deviates the initial

gaussian from a simple gaussian to an elongated gradient in direction of the animal

pole.

During the first simulation runs it became apparent that the commitment length

introduced in chapter 1.7 became important for the process. As the endpoints of

filopodia would not always lie within a target cell, but intercellular space, one has
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to define what will happen to the morphogen in this case. In the first simulation

runs, the commitment length was set to ∞ and targeting would always occur. In

this case, no difference was observd between the gradients of longer and wildtype

filopodia as displayed in figure 3.8. Not even the peak of the filopodia was shifted

by the difference in filopodia length as the peak is only dependent on the ratio

between cell growth and filopodia formation.

Biologically, an infinite commitment length does not make any sense. The growth

of the filopodium is limited by the available resources. If the commitment length

is set to a finite value, the model starts to exhibit interesting behaviors in regards

to filopodia length. In the case of finite commitment length, the model becomes

flux dependent. An incomplete deposition of the filopodia has a direct effect upon

the peak value of the morphogen gradient. The decreased peak limits the amount

of morphogen flowing into the morphogenetic field by advection and subsequently

the gradient becomes shallower. Smaller absolute values of the gradient shift the

concentration dependent tissue borders substantially.

I tested three scenarios with varying filopodia lengths, based on our clonal in vivo

measurements. I found that ligand concentration within the entire morphogenetic

field depends on the length of the filopodia, when filopodia that can’t reach a cell are

retracted without depositing any Wnt into the morphogenetic field. As the mean

length of filopodia is in the order of one cell diameter, the flux is basically only

dependent on the first three layers of producing cells. Even in the wildtype case,

the flux towards the morphogenetic field is reduced. In the case of Cdc42mRNA

the second layer, and the first layer can nearly fully deposit their Wnt content.

For the Cdc42 knockout version, even the first layer is inhibited in its deposition

capability. The results for predicted Wnt gradients and varying filopodia lengths

are illustrated in figure 3.9.

After my prediction of this effect, the experimental group devised an experiment

aimed to measure the frequency of deposition. Indeed, we observed low deposition

frequencies with the epiblast cells resulting in lower Wnt8a concentrations for lower

filopodia lengths [2].

Furthermore, it was not only possible to predict the frequency of deposition,
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but also to relate them to the hindbrain/midbrain border. Experimentally it is

possible to color the hindbrain and midbrain with different dyes, such that the

hindbrain/midbrain axis can be measured. The position of the midbrain-hindbrain

boundary (MHB) was measured in 15 representative embryos from wt, Cdc42

mRNA-injected and Cdc42-knockdown groups. In figure 3.10 the distance from

either margin to the MHB is displayed. Axin2 measures the distance from the

producing border, Oxt2 from the opposite border. These data were compared with

values calculated from the simulation. The border in the wildtype was used to

define the concentration levels for cell differentiation. The other two values predict

the experimental results perfectly.

Not only did my simulations highlight the key components in morphogen trans-

port by filopodia and the magnitude of control the early organism has over its devel-

opment through them; they also have significant statements over a much-debated

topic in developmental biology: prepatterning.

3.3.1. Prepatterning

A currently unsolved question in developmental biology is the question of scaling.

Not every specimen of a specific organism grows to the same size, yet their organs

display the correct proportions. If cellular fates are dependent on a specific con-

centration of a gradient, and if the spreading of these morphogens follows distance

dependent laws, then how is it possible that the organism is able to scale correctly?

One solution for this problem is known as prepatterning. In prepatterning cells do

not take their final fates at the end of a developmental stage, but they take them

as fast as possible. Hence, the faster cellular fates stabilize, the more this speaks

in favor of prepatterning.

To solve the question if prepatterning plays a role in filopodia-based transport,

and if the filopodia-based transport has any advantage over diffusion in regard to

prepatterning, the previous results were further investigated. For this, we devised

simulations that could transport the morphogen by diffusion and have preferential

mixing. Generally, the migration by p motility would be random and have no pref-

erential direction. In preferential mixing, the Wnt content of the moving cell and
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Figure 3.8.: Results for infinite commitment length. With an infinite

commitement length no difference is observed in the gradients.

Figure [2]

its neighbors are compared to define a gradient related preferential direction. With

a probability of only 0.0002 1
event the parent cell would preferentially switch places

with a cell closer to the producing border if it had more Wnt, and move away

from the producing border if it had less Wnt. In figures 3.11 to 3.18 four different

cases are displayed: morphogen transport by diffusion with no preferential mix-

ing, morphogen transport by diffusion with a low preferential mixing, morphogen

transport by filopodia with no preferential mixing, and morphogen transport by

filopodia with preferential mixing. Simulations were run with p motility = 0.00451
s

and a diffusion constant of 0.1µm
2

s [26, 90].

Figures 3.11, 3.13, 3.15, and 3.17 display in their A panel a spatial cellular fate

map throughout the simulation time. Forebrain cells in red, midbrain cells in green,

and hindbrain cells in blue. As the growth of the tissue is not linear in time, a cell

54



3.3. Results

Figure 3.9.: Results for filopodia-based ligand distribution in mor-

phogenetic field. Wnt gradients for short, wildtype, and long

filopodia. Figure [2]

will move on a nonlinear trajectory in these plots. Two trajectories for two different

cells are displayed in white in each plot. In the B panel of the respective figures,

the time evolution of morphogen gradients is displayed.

Figures 3.12, 3.14, 3.16, and 3.18 take the results of the cellular fate map and

display them on a more visual way. As each cell in the simulation divides and the

number of cells increases through insertions, the number of daughter cells increases

throughout the simulation. For each parent cell of the starting tissue, we show the

relative number of daughter cells. Forebrain cells are colored in red, midbrain cells

in white, and hindbrain cells in blue. Each thirty-minute interval is either displayed

as a gray or white stripe.

For the case of morphogen transport by diffusion with no preferential mixing,
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Figure 3.10.: Position of the MHB within the neural plate. Position

of the MHB as measured by Axin2 and Otx2 in experiment and

simulation results. Figure [2]

we see that the final patterning only takes place within the last 50 minutes of the

simulation. Cells cycle through every cellular fate in a slow way. For the case of

morphogen transport by diffusion with a low preferential mixing the final patterning

happens earlier, but still relatively late. Also, cells have to cycle through many cell

fates on a long time scale.

For the case of morphogen transport by filopodia with no preferential mixing

we see that cell fates are very mixed, but the final cellular fates of the tissues are

already found within the first hour.

Morphogen transport by filopodia with preferential mixing already determines

the cellular fates within the first thirty minutes even though the rate of preferential

mixing is very low. The cellular fate map in figure 3.17 exhibits a near perfect sepa-

ration of cellular fates. This mode of transport can explain dynamic scaling entirely

by prepatterning. These results are complementary to results in Drosophilia where

pre-steady-state dynamics enable dynamic scaling [74, 91].
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Figure 3.11.: Diffusion and no directed migration. (A) A spatial cellular

fate map throughout the simulation time. Forebrain cells in red,

midbrain cells in green, and hindbrain cells in blue. Examplary

cell trajectories in white. (B) Time evolution of morphogen

gradients.
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Figure 3.12.: Diffusion and no directed migration. Fate map with initial

tissue and relative number of daughter cells. Forebrain cells are

colored in red, midbrain cells in white, and hindbrain cells in

blue. Each thirty-minute interval is either displayed as a gray

or white stripe.
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Figure 3.13.: Diffusion and directed migration. (A) A spatial cellular

fate map throughout the simulation time. Forebrain cells in red,

midbrain cells in green, and hindbrain cells in blue. Examplary

cell trajectories in white. (B) Time evolution of morphogen

gradients.
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Figure 3.14.: Diffusion and directed migration. Fate map with initial

tissue and relative number of daughter cells. Forebrain cells are

colored in red, midbrain cells in white, and hindbrain cells in

blue. Each thirty-minute interval is either displayed as a gray

or white stripe.
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Figure 3.15.: Filopodia and no directed migration. (A) A spatial cel-

lular fate map throughout the simulation time. Forebrain cells

in red, midbrain cells in green, and hindbrain cells in blue. Ex-

amplary cell trajectories in white. (B) Time evolution of mor-

phogen gradients.
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Figure 3.16.: Filopodia and no directed migration. Fate map with initial

tissue and relative number of daughter cells. Forebrain cells are

colored in red, midbrain cells in white, and hindbrain cells in

blue. Each thirty-minute interval is either displayed as a gray

or white stripe.
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Figure 3.17.: Filopodia and directed migration. (A) A spatial cellular

fate map throughout the simulation time. Forebrain cells in red,

midbrain cells in green, and hindbrain cells in blue. Examplary

cell trajectories in white. (B) Time evolution of morphogen

gradients.
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Figure 3.18.: Filopodia and directed migration. Fate map with initial

tissue and relative number of daughter cells. Forebrain cells are

colored in red, midbrain cells in white, and hindbrain cells in

blue. Each thirty-minute interval is either displayed as a gray

or white stripe.
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Chapter 4.

Notochord

The following chapter introduces my results for the formation of the notochord.

The notochord takes its origin during the gastrulation phase of the early zebrafish

embryo. It is the common feature of Chordates and serves as a common embryonic

midline structure for all of their members. It forms in the mesoderm from a highly

interesting cellular system from a physical viewpoint. During notogenesis, the main

interaction of these four cell types is not through cellular signaling, but mainly

through their physical properties.

The notochord is an organ of rod-like structure. Experiments done by the group

of Steffen Scholpp confirmed a group of highly adhesive and mobile cells in the

formation of the notochord. These notochord tip cells (NTC) have a higher motility

than any of the other groups, coupled with a higher cell adhesiveness. Therefore,

we hypothesize that these cells are crucial for the exact formation of the notochord.

Computer simulations based on a Glazier-Graner-Hogeweg model are introduced

and parametrized to make the best use of the experimentally available relative forces

of the system in question. The simulations were able to clarify the effect of each

cellular property on the shape of the newly forming notochord. The simulations

give crucial results in regards to the current debate of the role of the LPM cells in

notogenesis.
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4.1. Motivation

As laid out in chapter 1.6 the notochord is the most prominent hallmark of the

phylum Chordata and serves as common embryonic midline structure for all of their

members, including humans. It plays a central role in the genesis of the vertebral

body plan, as it serves as an embryonic scaffold for the surrounding mesoderm to

subsequently form the skull, the membranes of the brain and, most importantly,

the vertebral column [55]. Hence, among others, it is the progenitor of the vertebral

column. As laid out in chapter 1.5 the notochord originates when cells break their

cell-cell junctions and undergo single-cell ingression at the onset of gastrulation

[92, 93]. This newly formed sheet of cells organizes into a coherent cell sheet, the

mesoderm, and migrates from the embryonic margin towards the animal pole, using

the overlying ectodermal cells as a substrate [94, 95].

The early mesoderm is our system of interest. As explained in chapter 1.6, and

illustrated in figure 1.6, this sheet can be divided into four distinct regions: the

prechordal plate mesoderm, the notochord tip cells, the axial notochordal plate,

and the lateral plate mesoderm. The prechordal plate mesoderm serves as an outer

epithelial layer. The adhesive forces of the PPM are the strongest and act as a

skin layer. The PPM serves as a front towards the animal pole of the growing

mesoderm. The notochord tip cells (NTC) have a higher motility than any of the

other groups, coupled with a higher cell adhesiveness. The axial notochordal plate

cells turn into the notochord.

The notochordal plate narrows and elongates in the migration directory of the

cell sheet and finally transforms into the notochord, whereas the LPM cells migrate

towards the midline to form the remaining mesodermal organs in the embryo. Up

to date, it is not clear which process is the driving force behind the shaping of the

notochord.

One possibility highlights the importance of the LPM and suggests that the

notochordal plate compacts as a consequence of LPM pushing forces [96]. In this

scenario, the outer cells push towards the midline and elongate the notochordal

plate towards the animal pole as cells are being pushed and compressed into the
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forward direction.

Another possibility is a cell-specific mechanisms in which a group of cells col-

lectively reshapes to give rise to larger deformations in a tissue. The molecular

mechanisms, generally known as convergence and extension, has been extensively

studied in the LPM. Through cadherin-based junctions, neighboring cells are able

to communicate with each other and mediate collective cell polarizations. This col-

lective reshaping is able to elongate all cells of a tissue and produce an elongated

structure [97]. Wnt-planar cell polarity (PCP) signaling controls the internaliza-

tion of E-cadherin cell adhesion complexes. As explained in chapter 1.4, cadherins

form the molecular basis for cell adhesion. The expression, or retraction, of these

cell adhesion complexes, is able to guide cellular movement into a specific direction

[98]. By lowering cellular adhesiveness at one pole of the cell, and increasing it at

the other, cell motility in direction of the gradient is increased. Directed migration

is a prerequisite for coordinated cohort movement of cellular clusters [99]. There-

fore, a common hypothesis for notochord formation suggests that, similar to the

LPM, Wnt-PCP-driven cell migration leads to the intercalation and elongation of

the notochord plate cells to form the rod-shaped notochord [100].

The experimental group of Steffen Scholpp identified a possible key component

in notogenesis. In experiments undertaken by Bernadett Bösze, the group mapped

both the expression of key cell adhesion molecules and genes that are expressed

in the axial mesoderm. With this protocol they were able to generate a map of

strongly adhesive cell regions and the future notochord. Figure 4.1 identifies a

peculiar cell cluster that expressed all of the relevant adhesion genes pcdh18a, e-

cad, and fzd7a. This cell cluster contains approximately 70-80 cells and is localized

in the axial mesoderm between the e-cad/gsc-positive PPM and the ntl-positive

notochord. Strictly speaking, just below the outer epithelial layer, and in front of

the future notochord. In the remainder of the text, this confined cell population is

referred to as the notochord tip cells (NTC).

Not only was it possible to identify the location of this cell cluster, but it was

also possible to identify the key element in the adhesive forces of the NTC. A Mor-

pholino (MO)-based antisense approach [101] and a CRISPR/Cas9-based knockout
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Figure 4.1.: Cellular map of key adhesion molecules and axial meso-

derm. Genes typical for the axial mesoderm are mapped in red,

and Pcdh18a in blue at 8.5 hpf. Figure [11].

strategy [102] suggested the levels of Pcdh18a to be the main components of cellular

adhesiveness in the NTC [11]. The reduction of pcdh18a expression led to a wider

axial mesoderm as illustrated in figure 4.2.

They were also able to investigate the shape of the notochord cells and found

that the cells were less elongated and displayed a more circular form in embryos

with reduced Pcdh18a levels, as shown in figure 4.3. From a physical viewpoint

this suggests that there is less pressure in the cellular field, and less directionality

in subsequent movements.

For complete verification of the importance of the NTCs, further experiments are
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Figure 4.2.: Effects of Pcdh18a in notogenesis. Notochord formation by

reduction of Pcdh18a in the NTCs. NTL in blue. Figure [11].

Figure 4.3.: Shape analysis of cells At reduced levels of Pcdh18a cells be-

come more circular. Figure [11].

necessary. If we can alter the physical properties of these cells experimentally, it is

possible to prove that these cells are sufficient to explain notogenesis when simula-

tions in a minimal model display the same results. The most notable properties of

the NTCs are adhesiveness and speed. In Xenopus explants, it is known that Fzd7

influences cadherin-mediated adhesion [103]. Fortunately, the experimental group

observed a similar reduction of migration after co-expression of E-cad and Fzd7a.

Further experiments were undertaken to understand the exact role and interplay
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of Pcdh18a, E-cad, and Fzd7a. In these experiments, it became apparent that E-

cad leads to cell cluster compaction and decreases cell migration. The expression of

Pcdh18a in the E-cad-positive cells sped up cell migration to levels comparable to

wildtype cells. This result is in concordance with recently published data showing

that Pcdh8 suppresses C-cadherin-mediated cell adhesion and promotes the Wnt-

PCP pathway-dependent cell motility [104].

Experimentally, it was, therefore, possible to gain results for NTCs with increased

cell adhesiveness, NTCs with increased cell motility but same cell adhesiveness, and

wildtype cells with increased speed and cell adhesiveness. The simulation results

are expressed for these three cases.

4.2. Parametrization

I implemented a lattice-based Glazier-Graner-Hogeweg model as explained in chap-

ter 2.6 based on the cellular Potts model [57] to study the self-organization of the

mesodermal tissue during gastrulation. I chose this model for several reasons. First,

the number of parameters is minimal. Second, it recaptures our experimentally ac-

cessible cell properties and the model is sufficiently defined by intercellular adhesion

energies, intracellular surface and volume constraints, and migration properties.

Third, while it was impossible to quantitatively define cell adhesion properties, it

was at least possible to define them in a relative manner for each cell type. The

quantitative knowledge of the cellular adhesion force would have enabled the formu-

lation of an explicit model, for example, the spheres model as introduced in chapter

2.2. Nevertheless, the available parameters in combination with this semi-statistical

model are sufficient to address the important question: which properties of indi-

vidual cells or cell groups are required to generate compaction of the migrating cell

layer into a notochord-like structure?

In the modeling framework implemented in Python, every cell is represented

in an object-oriented fashion by a physical location in the tissue, as well as cell-

type-dependent physical properties such as cell-cell adhesiveness, relative migration

speed, and migration direction. To reproduce the system, I specified four different
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cell types: the leading PPM cluster, the central NTC, the trailing notochord plate

and the surrounding LPM. The trailing notochord plate, and the surrounding LPM

bear no physical difference, but their distinction was important for visual purposes

and the purpose of clear representation of the results. It is this part of the LPM

that can be experimentally tagged and highlighted in fluorescence microscopy.

The simulation runs on a grid in which each grid space only contains the index

of the cell that currently occupies this spot. Each of these cells occupies several

grid spaces. This defines the resolution of the system. The more grid spaces a cell

occupies, the more refined the results will be, but also the higher the computational

cost. I chose a cell size similar to other implementations of the GGH of 10 · 15 grid

spaces in the initial state of the cell [82]. During the simulation, new cells ingress

into the field as space permits, but none of the cells runs through cell division.

Every cell, together with its next neighbor interactions, gives an energetic contri-

bution to the total energy of the system, as specified in the Hamiltonian function

of the CPM (see equation 2.12). The system evolves from one state to the next by

employing the Metropolis Monte-Carlo criterion as explained in chapter 2.5. The

role of the parameter T of the Metropolis Monte-Carlo criterion for the biological

simulations is debatable [58]. I express the following parameters for T = 1. The

GGH has only four parameters: the coupling parameter λV for constant volume,

the coupling parameter λS for constant surface, the cell adhesiveness matrix J, and

the coupling to the underlying potential λM. The latter is the cause of cellular mo-

bility. The first two parameters have not much of an effect on the other properties.

By scaling λV to 1, λS has to be scaled such that cells do not increase their surface

when moving, or experience weird shapes. A low parameter of λS will result in

elongated cells, that only elongate instead of moving towards the animal pole. I

have found that λS = 5 results in a meaningful behaviour.

The strength of the coupling λM of the cellular field has to be weak enough that

the ideas expressed in 2.5 hold true. If this is not the case, the cells display again

a whole range of unphysical deformities and behaviors. The opposing factor of cell

motility is the cell adhesiveness matrix J. The parameter needs to be sufficiently

high to allow for cellular movement. I have chosen a parameter of λM = 120. None
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of the introduced parameters represents a physical unit as we calculate in units of

spin changes as introduced in chapter 2.5.

The coupling matrix J defines a strength of cell adhesiveness between each cellular

type and the medium (M). The magnitude of these parameters is similar to the

parameters introduced in [82]. The coupling matrix J reads as

Jmobile =



M LPM NTC PPM

M 60 60 60 60

LPM 60 50 35 20

NTC 60 35 20 15

PPM 60 20 15 10


(4.1)

(4.2)

for the case of strong adhesion and

Jnon mobile =



M LPM NTC PPM

M 60 60 60 60

LPM 60 50 50 30

NTC 60 50 50 30

PPM 60 30 30 10


(4.3)

for the case of weak adhesion. The PPM must exhibit a small differential adhesion

to the other cell types, as otherwise, the NTC could freely pass this cellular layer.

In the case of strong adhesion, the NTCs are bound twice as strong as the LPM.

The simulation started with cells ingressing from the epiblast and forming the

mesendodermal cell layer, without any substrate curvature. The start of the simu-

lation is shown in figure 4.4. Each simulation is started from the same equilibrated

distribution that has been run until every cell was in maximal contact, and the

tissue has not moved yet towards the animal pole. The NTC (green) has 31 cells in

roughly 3 times 10 cells, and the PPM has three layers. The system is representative

for cell distributions as found at the beginning of ingression.
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Figure 4.4.: Start conformation Equilibrated distribution with NTC

(green), three-layered PPM (yellow), axial mesoderm (red), and

LPM (gray).

We studied three different scenarios for the NTC - mobile leaders, adhesive lead-

ers, and mobile & adhesive leaders - to answer the question which of these cell

properties are important for notogenesis, and if a model without pushing forces of

the LPM is sufficient to describe the experimentally observed patterns.
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4.3. Results

Based on observations in vitro, I ran simulations in which I increased the cell

motility µ of the mobile leading NTC by 100% compared to their neighbors. Results

for this case of mobile leaders are reported in figure 4.6. One observes that the

NTC exhibits an oblong shape that is perpendicular to the anteroposterior axis.

This result suggested that the differential adhesion between the PPM and the

NTC, along with the weak cell-substrate interaction, inhibited the elongation of

the notochordal plate.

In the next experiment, I increased the adhesion of the NTC without altering the

cell migration speed (adhesive leaders). Results are reported in figure 4.5. Again,

one is able to observe an oblong shape and perpendicular orientation of the leading

NTC. The trailing notochordal plate is broad and does not show any difference

to newly inflowing cells. The broad notochordal plate agrees with the results of

experiments with reduced Pcdh18a levels 4.2.

In the final simulation, I increased both the migration speed and adhesion (mo-

bile & adhesive leaders). Results are reported in figure 4.7. The shape of the

tissue changed. The E-cad-positive leading PPM forms a convex outline and thus

resembles the curved shape of the prechordal plate in vivo as reported in figure

4.2. Furthermore, one observes that the centrally NTC-trailing cells of the noto-

chordal plate condensed to a rod-shaped structure. This suggests the hypothesis

that the transformation into a 3D condensed chord requires the stretching force

of the NTC on the notochordal plate. As the GGH is exclusively next neighbour-

based, stretching forces generated from the NTC will primarily operate on the

trailing notochordal plate and secondarily on the adjacent LPM cells. The mi-

gration of the LPM should thus be generated by them being pulled towards the

midline, and not of an active force that the LPM generates as the only direction

of migration was in the anteroposterior direction. Remarkably, this simulation also

reflects the changes in the expression pattern of Pcdh18a in the NTCs from a wide,

round group into an elongated, stretched cell cluster. Thus far, the previous exper-

iments and my simulations suggest that Pcdh18a expression in the NTC is required

to organize the shape of a notochord either by regulating gene expression in the
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notochord or by controlling the cellular mechanics of the rod-shaped organ. The

means for answering this question are only found in the experiment.

Simulation alone of the system in question could not solve the exact mechanism

of notogenesis. Nevertheless, it could elucidate key roles of the cellular functions

and emergent behaviors. My simulations suggest that the condensation of the

notochord facilitates movement of the LPM cells towards the midline. Consistent

with this observation, there are no obvious convergent extension movements in the

LPM in mice [105].
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Figure 4.5.: Adhesive leaders. Simulation results with NTCs twice as ad-

hesive. An oblong shape forms and the notochord widens as the

PPM inhibits forward motion. Rendering of the grid-based sim-

ulation results with spheres at each cell center using Pymol.
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Figure 4.6.: Mobile leaders. Simulation results with NTCs twice as motile.

An oblong shape forms and the notochord widens as the PPM still

inhibits forward motion. Rendering of the grid-based simulation

results with spheres at each cell center using Pymol.
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Figure 4.7.: Mobile and adhesive leaders. Simulation results with NTCs

twice as motile and adhesive. The PPM is deformed in a convex

way due to the traction of the NTCs. The wildtype shape of the

notochord is recovered. Rendering of the grid-based simulation

results with spheres at each cell center using Pymol.
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5 Chapter 5.

Conclusions

The study of the physical limitations imposed on biological systems during the early

embryonal stages has proven to be a fruitful collaboration between physics and de-

velopmental biology. The interplay of experiment and theory was able to clarify and

identify key parameters in two important developmental stages. Here I give a brief

summary of my findings, and an outlook to future work that can benefit from my

results.

5.1. Summary

During this thesis I introduced results of my scientific work within the context of two

applications that take place during the early phase of zebrafish gastrulation. They

both employ Monte-Carlo based algorithms and minimal parameter simulations

for highly complex biological applications in which physical factors are the key

ingredients. The first application targets a novel transport mechanism for the

morphogen Wnt during the early brain development of zebrafish [2, 83]. The second

study is the application of a specialized cellular Potts model, the Glazier-Graner-

Hogeweg, in the context of notochord formation [11].

In the context of morphogen transport, I presented my results from a joint exper-

imental study targeting the transport and distribution of Wnt8a in the early phase
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of gastrulation. Experimental results suggested that the respective morphogen is

actively transported through specialized cytonemes, namely filopodia, a class of cel-

lular actin protrusions. The goal of the computational study was to clarify if such

a short-range mode of transport can result in the necessary long-range effects and

gradient needed for brain development. The results are reported in a publication

by the group of Steffen Scholpp [2].

By implementing a model with a minimal amount of parameters I was able to

further study the correlation between filopodia length and the hindbrain/midbrain

axis. The complicated tissue dynamics were covered with grid-based simulations

for which I fully quantified the necessary parametrization. I concluded that in this

model the flux of the first few Wnt active layers is the defining parameter, and that,

contrary to trivial logic, it is important that the deposition of Wnt is not perfect.

The predicted results for the deposition frequency, along with macroscopic changes

for varying filopodia lengths, matched with experimental results.

I was not only able to explain these experimental findings, but also give further

theoretical arguments for the role of prepatterning in dynamic scaling. A filopodia-

based transport of morphogens determines the cellular fate on a very short time

scale, and makes the transport mechanics independent of the spatial size of the

individual embryo.

In the second work I used a modified cellular Potts model to study the role of the

notochord tip cells within notogenesis. During embryogenesis, elaborate movements

and cellular rearrangements take place to generate many organs. The notochord

originates from cellular rearrangements in the mesoderm during the gastrulation

phase of the embryo. The system is of physical interest as the cellular rearrange-

ments are entirely dependent of the physical properties of three different cell types.

I was able to fully parametrize my model from relative forces gained in experiment.

The simulations showed that the NTC marched towards the animal pole as a

cohesive cell group during gastrulation. The NTC pushed the anteriorly located

PPM ahead, leading to the formation of a convexly curved mesodermal cell sheet.
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These results find further evidence in literature. A leading-edge mesodermal cell

group to exert a pushing force on the PPM is reported from Xenopus [106]. Further

insights from the simulation are that the NTC pulled the notochord plate cells

towards the anterior, causing the notochordal plate to intercalate and elongate.

To date, there are two hypotheses explaining the transition of the axial mesoder-

mal sheet into the elongated rod-shaped structure of the notochord. One hypothesis

suggests that the notochordal plate cells actively migrate towards the animal pole

and thereby extend their cell shape in the anteroposterior direction [107, 108].

However, the blockage of Pcdh18a function, which is equivalent to a speeding up

cell motility without increasing cell adheviness, indicate that the inhibition of NTC

migration results in a halt in the condensation of the notochordal plate and inhi-

bition of its extension. Therefore, we conclude that highly mobile and adhesive

NTCs are required to push against the resistance of the PPM [109]. Only then,

the compressive force generated by the notochordal plate cells is released along the

anteroposterior axis, leading to the elongation, alignment, and intercalation of the

notochord cells.

An additional hypothesis suggests that the two mesodermal wings push the no-

tochordal plate and help to generate the rod-shaped structure of the notochord

[110]. This is contrary to the course of events in our simulations as no force or

movement of the LPM towards the midline was implemented. Still, LPM cells

moved towards the midline as cellular rearrangements condensed the cells of the

axial plate. Therefore, simulations suggest that the condensation of the notochord

facilitates movement of the LPM cells towards the midline. Consistent with this

observation, there is no obvious convergent extension movements in the LPM in

mice [105].
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5.2. Outlook

While the introduced methods were able to gain a wealth of knowledge, modifi-

cations and new experimental setups are still possible. The ideas reported in this

work do not only spark new ideas for investigations in physics, but also in biology.

It would be interesting to know, what purpose the undeposited Wnt could serve,

or if they are recycled.

The simulation scheme introduced for the filopodia-based morphogen transport

only covered the basic case of linear and flat tissue growth. Modifications could

investigate the role of curvature in the dynamics of the system, or even exact

distributions of the ongrowing brain using the three-dimensional results obtained

from high-resolution microscopy [10].

Future work could also tackle different patterning scenarios, some of which rely

on multiple gradients. One example would be the dorsal-ventral patterning that

further modifies the body plan of the embryo.

The Glazier-Graner-Hogeweg models pose interesting questions in non equilib-

rium thermodynamics. I think a further refinement of these efforts would be fruitful

as they scale well on high-performance computing systems and contemporary can-

cer research is in dire need of models that can describe cell motility and growth.

As always in science, many questions have been solved, but more have been

raised.
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Appendix

The diffusion equation for a concentration C at place x at time t for a medium with

non-growing domains reads as:

∂C

∂t
−D∂

2C

∂x2
= 0 (A.1)

with diffusion constant D. The diffusion constant depends on the geometrical

properties of the morphogen.

Since the tissue is a growing and expanding medium, we have to alter equation

A.1. After Reynold’s theorem, the diffusion equation for a growing domain [74, 75]

is

∂C

∂t
+ u

∂C

∂x
+ C

∂u

∂x
−D∂

2C

∂x2
= 0 (A.2)

with the growth field u. The growth field u describes the advection term. As

our cells are incompressible, we can disregard the term proportional to ∂u
∂x . For our

problem of a growing tissue with length L(t), u is found by

u =
dx

dt
=

∂L(t)
∂t

L(t)
(A.3)
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The length L(t) of the exponentially growing tissue is found by

L(t) = L0 · eκ·t (A.4)

Therefore we have

u = κ (A.5)

So u is a constant determined by the growth of the tissue.

To solve this differential equation, numerical methods are available. For this we

have to bring equation A.2 into matrix form. A Taylor expansion for the individual

derivatives gives the system of equations

∂C

∂t
=
C(t+ ∆t)− C(t)

∆t
(A.6)

∂2C

∂x2
=
C(x+ ∆x)− 2C(x) + C(x−∆x)

∆x2
(A.7)

Combining equations A.6 and A.7 with equation A.2 leads to

C(t+ ∆t) = C(t) +D
∆t

∆x2︸ ︷︷ ︸
=s

[
C(x+ ∆x)− 2C(x) + C(x−∆x)

]
−

− u∆t

∆x︸ ︷︷ ︸
=v

[
C(x+ ∆x)− C(x)

] (A.8)
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The discretized version of equation A.8 with the time index n and the spatial

index j reads as

C[n, j] = C[n+ 1, j + 1](v − s) + C[n+ 1, j](1 + 2s− v)+

+ C[n+ 1, j − 1](−s)
(A.9)

For five discrete sites the time propagation for one step would read as

C[0, 1] = −s · C[1, 0] + (1 + 2s− v) · C[1, 1] + (v − s) · C[1, 2] + 0 · C[1, 3] + 0 · C[1, 4]

C[0, 2] = 0 · C[1, 0]− s · C[1, 1] + (1 + 2s− v) · C[1, 2] + (v − s) · C[1, 3] + 0 · C[1, 4]

C[0, 3] = 0 · C[1, 0] + 0 · C[1, 1] +−s · C[1, 2] + (1 + 2s− v) · C[1, 3] + (v − s) · C[1, 4]

or as

 1 + 2s− v v − s 0

−s 1 + 2s− v v − s
0 −s 1 + 2s− v


 C[1, 1]

C[1, 2]

C[1, 3]

 =

 C[0, 1] + sC[1, 0]

C[0, 2]

C[0, 3] + (s− v)C[1, 4]


Larger systems can be parametrized in the same way. Linear algebraic solvers

are readily available in most programing languages for soving these systems and

evolve the system from one time step to the next.
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[24] Clotilde Théry, Laurence Zitvogel, and Sebastian Amigorena. Exosomes:

composition, biogenesis and function. Nature reviews. Immunology, 2(8):

569–579, 2002. ISSN 1474-1733. doi: 10.1038/nri855.

(Cited on page 6.)

[25] Marina Colombo, Graça Raposo, and Clotilde Théry. Biogenesis, Secretion,
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Özbek, and Dietmar Gradl. Live imaging of active fluorophore labelled

Wnt proteins. FEBS Letters, 586(11):1638–1644, 2012. ISSN 00145793.

doi: 10.1016/j.febslet.2012.04.035. URL http://dx.doi.org/10.1016/j.

febslet.2012.04.035.

(Cited on pages 8 and 42.)

[40] Kimberly A Mulligan, Christophe Fuerer, Wendy Ching, Matt Fish,

Karl Willert, and Roeland Nusse. Secreted Wingless-interacting molecule

{(Swim)} promotes long-range signaling by maintaining Wingless solubility.

Proc. Natl. Acad. Sci. {U.S.A.}, 109(2):370–377, 2012. ISSN 0027-8424. doi:

10.1073/pnas.1119197109.

(Cited on pages 8 and 23.)

[41] Shinya Matsuda and Osamu Shimmi. Directional transport and active reten-

tion of Dpp/BMP create wing vein patterns in Drosophila. Developmental

Biology, 366(2):153–162, 2012. ISSN 00121606. doi: 10.1016/j.ydbio.2012.04.

009. URL http://dx.doi.org/10.1016/j.ydbio.2012.04.009.

(Not cited.)

[42] A Sawala, C Sutcliffe, and H L Ashe. Multistep molecular mecha-

nism for bone morphogenetic protein extracellular transport in the

101

http://dx.doi.org/10.1016/j.febslet.2012.04.035
http://dx.doi.org/10.1016/j.febslet.2012.04.035
http://dx.doi.org/10.1016/j.ydbio.2012.04.009


Bibliography

Drosophila embryo. Proc Natl Acad Sci U S A, 109(28):11222–11227,

2012. ISSN 0027-8424. doi: 10.1073/pnas.1202781109. URL http://

www.ncbi.nlm.nih.gov/pubmed/22733779$\delimiter"026E30F$nhttp:

//www.pnas.org/content/109/28/11222.full.pdf.

(Cited on page 8.)

[43] Valentina Greco, Michael Hannus, and Suzanne Eaton. Argo-

somes. Cell, 106(5):633–645, 2001. ISSN 00928674. doi: 10.

1016/S0092-8674(01)00484-6. URL http://linkinghub.elsevier.com/

retrieve/pii/S0092867401004846.

(Cited on pages 8 and 23.)

[44] Karen Beckett, Solange Monier, Lucy Palmer, Cyrille Alexandre, Hannah

Green, Eric Bonneil, Graca Raposo, Pierre Thibault, Roland Le Borgne, and

Jean Paul Vincent. Drosophila S2 cells secrete wingless on exosome-like vesi-

cles but the wingless gradient forms independently of exosomes. Traffic, 14

(1):82–96, 2013. ISSN 13989219. doi: 10.1111/tra.12016.

(Cited on pages 8 and 23.)

[45] Katherine W. Rogers and Alexander F. Schier. Morphogen Gradients:

From Generation to Interpretation. Annual Review of Cell and Devel-

opmental Biology, 27(1):377–407, 2011. ISSN 1081-0706. doi: 10.1146/

annurev-cellbio-092910-154148.

(Cited on page 8.)

[46] L. Wolpert. Positional information and the spatial pattern of cellular differ-

entiation. Journal of Theoretical Biology, 25(1):1–47, 1969. ISSN 00225193.

doi: 10.1016/S0022-5193(69)80016-0. URL http://www.sciencedirect.

com/science/article/pii/S0022519369800160.

(Cited on page 8.)

[47] Anja I H Hagemann, Jennifer Kurz, Silke Kauffeld, Qing Chen, Patrick M

Reeves, Sabrina Weber, Simone Schindler, Gary Davidson, Tomas Kirch-

hausen, and Steffen Scholpp. In-vivo analysis of formation and endocytosis

of the Wnt/β-Catenin signaling complex in zebrafish embryos. Journal of cell

102

http://www.ncbi.nlm.nih.gov/pubmed/22733779$\delimiter "026E30F $nhttp://www.pnas.org/content/109/28/11222.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22733779$\delimiter "026E30F $nhttp://www.pnas.org/content/109/28/11222.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22733779$\delimiter "026E30F $nhttp://www.pnas.org/content/109/28/11222.full.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0092867401004846
http://linkinghub.elsevier.com/retrieve/pii/S0092867401004846
http://www.sciencedirect.com/science/article/pii/S0022519369800160
http://www.sciencedirect.com/science/article/pii/S0022519369800160


Bibliography

science, (July):3970–3982, 2014. ISSN 1477-9137. doi: 10.1242/jcs.148767.

URL http://www.ncbi.nlm.nih.gov/pubmed/25074807.

(Cited on page 8.)

[48] Daniela Peukert, Sabrina Weber, Andrew Lumsden, and Steffen Scholpp.

Lhx2 and Lhx9 determine neuronal differentiation and compartition in the

caudal forebrain by regulating Wnt signaling. PLoS Biology, 9(12), 2011.

ISSN 15449173. doi: 10.1371/journal.pbio.1001218.

(Cited on page 8.)

[49] S a Sandersius, C J Weijer, and T J Newman. Emergent cell and tissue dy-

namics from subcellular modeling of active biomechanical processes. Physical

biology, 8(4):045007, 2011. ISSN 1478-3975. doi: 10.1088/1478-3975/8/4/

045007.

(Cited on page 10.)

[50] Shuichi Hayashi and Masatoshi Takeichi. Emerging roles of protocadherins:

from self-avoidance to enhancement of motility. Journal of cell science, 128

(8):1455–1464, 2015. ISSN 1477-9137. doi: 10.1242/jcs.166306. URL http:

//jcs.biologists.org/content/128/8/1455.full.

(Cited on page 10.)
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men Rodŕıguez-Navas, Laura González-Méndez, and Isabel Guerrero.

Cytonemes are required for the establishment of a normal Hedge-

hog morphogen gradient in Drosophila epithelia. Nature cell biol-

ogy, 15(11):1269–81, 2013. ISSN 1476-4679. doi: 10.1038/ncb2856.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3840581{&}tool=pmcentrez{&}rendertype=abstract.

(Cited on page 43.)

[90] A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis, T. Bittig, F. Julicher,

and M. Gonzalez-Gaitan. Kinetics of Morphogen Gradient Formation. Sci-

ence, 315(5811):521–525, jan 2007. ISSN 0036-8075. doi: 10.1126/science.

1135774. URL http://www.sciencemag.org/cgi/doi/10.1126/science.

109

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4336149{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4336149{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/23624372
http://dx.doi.org/10.1016/j.gde.2014.03.013
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3840581{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3840581{&}tool=pmcentrez{&}rendertype=abstract
http://www.sciencemag.org/cgi/doi/10.1126/science.1135774
http://www.sciencemag.org/cgi/doi/10.1126/science.1135774


Bibliography

1135774.

(Cited on page 54.)
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