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Abstract Revealing hidden geometry and topology in noisy data sets is a chal-
lenging task. An Elo-Elastic principal graph is a computationally efficient and
flexible data approximator based on embedding a graph into the data space and
minimizing the energy functional penalizing the deviation of graph nodes both
from data points and from a pluri-harmonic configuration (generalization of lin-
earity). The structure of the principal graph is learned from data by application
of a topological grammar which in the simplest case leads to the construction
of principal curves or trees. In order to more efficiently cope with noise and
outliers, we suggest using a trimmed data approximation term to increase the
robustness of the method. The modification of the method that we suggest does
not affect either computational efficiency or general convergence properties
of the original elastic graph method. The trimmed elastic energy functional
remains a Lyapunov function for the optimization algorithm. On several ex-
amples of complex data distributions we demonstrate how the robust principal
graphs learn the global data structure and show the advantage of using the
trimmed data approximation term for the construction of principal graphs and
other popular data approximators.
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1 Introduction

In this paper, we consider a classical problem: How to approximate a finite set
D in Rm for relatively large m by a finite subset of regular low-dimensional
objects in Rm. In applications this problems arises in many areas: From data
visualization (e.g., visualization of the differences between human genomes) to
fluid dynamics.

A typical data approximation task starts with the following question: Is the
dataset D situated near a low–dimensional affine manifold (plane) in Rm? If we
look for a point, straight line, plane, ... that minimizes the average squared dis-
tance to the datapoints, we immediately come to the Principal Component Anal-
ysis (PCA) which is one of the most seminal inventions in data analysis (Jolliffe,
2002). The nonlinear generalization of PCA remains a challenging task. One of
the earliest attempts suggested in this direction was the Self-Organizing Map
(SOM) (Kohonen, 2001) with its multiple generalizations and implementations
such as Growing SOM (GSOM) (Alahakoon et al, 2000). However, unlike clas-
sical PCA and k-means, the SOM algorithm is not based on optimization of
any explicit functional (Erwin et al, 1992).

For a known probability distribution, principal manifolds were introduced as
lines or surfaces passing through “the middle” of the data distribution (Hastie
and Stuetzle, 1989). Several algorithms for the construction of principal curves
(Kégl and Krzyźak, 2002) and surfaces for finite datasets were developed dur-
ing the last decade, as well as many applications of this idea. In the end of
1990s, a method of multidimensional data approximation based on elastic en-
ergy minimization was proposed (see (Gorban’ and Rossiev, 1999; Zinovyev,
2000; Gorban and Zinovyev, 2005, 2001; Gorban et al, 2008a; Gorban and
Zinovyev, 2009) and the bibliography there). This method is based on the anal-
ogy between the principal manifold and the elastic membrane. Following the
metaphor of elasticity, two quadratic regularization terms are introduced which
penalize the non-smoothness of data approximators. This allows one to apply
the standard expectation-minimization strategy with a quadratic form of the
optimized functionals at the minimization step (i.e., solving a system of linear
algebraic equations with a sparse matrix). Later on, the elastic energy was ap-
plied to constructing principal elastic graphs (Gorban et al, 2007). A related
idea of optimizing the elastic energy of a system of springs representing the
graph embedment in low-dimensional spaces was previously used in the de-
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velopment of graph drawing algorithms (Fruchterman and Reingold (1991);
Kobourov (2012)).

The method of elastic energy minimization allows creating analogs of SOM
(Kohonen, 1982) and neural gas (Martinetz et al, 1993) with an explicit func-
tional to minimize: The elastic map is an analog of SOM and the principal
graph is an analog of a neural gas. The main advantage of optimization-based
analogs is the ability to explicitly control for smoothness (or other types of
regularity, such as harmonicity) of data approximators.

However, the main drawback of all described methods of approximation
is sensitivity to outliers and noise, which is caused by the very nature of Eu-
clidean distance (or quadratic variance): data points distant to the approximator
have very large relative contributions. There exist several widely used ideas
for increasing an approximator’s robustness in the presence of strong noise in
data such as substituting the Euclidean norm by the L1 norm (e.g. Ding et al
(2006); Hauberg et al (2014)) and outliers exclusion or fixed weighting or iter-
ative reweighting during the construction of data approximators (e.g. Xu and
Yuille (1995); Allende et al (2004); Kohonen (2001)). In some works, it was
suggested to utilize “trimming” averages, e.g. in the context of the k-means clus-
tering or some generalizations of PCA (Cuesta-Albertos et al (1997); Hauberg
et al (2014)).

The general idea of trimming consists in penalizing the contribution of data
points distant from the mean to the estimation of variance. In the simplest
scenario the points that are too distant from the mean are completely neglected;
in more complex scenarios the distant points contribute less than the close ones.
This way of robustification probably goes back to the notion of a truncated (or
trimmed) mean by Huber (1981). The strategy of trimming can be used in the
construction of SOMs, elastic maps or almost any other data approximators.

2 Graph grammars and elastic principal graphs

For a description of the basic algorithms we refer to (Gorban et al, 2007). More
explanatory materials including the pseudo-codes can be found online1.

Let G be a simple undirected graph with a set of vertices Y and set of edges
E. For k ≥ 2 a k-star in G is a subgraph with k+ 1 vertices y0,1,...k ∈ Y and k
edges {(y0,yi) | i = 1, . . .k} ⊂ E. Suppose for each k ≥ 2, a set of Sk of k-stars

1 https://github.com/auranic/Elastic-principal-graphs/wiki

https://github.com/auranic/Elastic-principal-graphs/wiki
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in G (subgraphs) has been selected. We call a graph G with selected families
of k-stars Sk an elastic graph if, for all E(i) ∈ E and S( j)

k ∈ Sk, the correspon-
dent elasticity moduli λi > 0 and µk j > 0 are defined. Let E(i)(0),E(i)(1) be
vertices of an edge E(i) and S( j)

k (0), . . .S( j)
k (k) be vertices of a k-star subgraph

S( j)
k (among them, S( j)

k (0) is the central vertex). For any map φ : Y → Rm the
energy of the graph is defined as

Uφ (G) := ∑
E(i)

λi

∥∥∥φ(E(i)(0))−φ(E(i)(1))
∥∥∥2

(1)

+∑
S( j)

k

µk j

∥∥∥∥∥φ(S( j)
k (0))− 1

k

k

∑
i=1

φ(S( j)
k (i))

∥∥∥∥∥
2

.

For a given map φ :Y →Rm we divide the dataset D into node neighborhoods
Ky, y ∈ Y . The set Ky contains the data points for which the node φ(y) is the
closest one in φ(y). The energy of approximation is:

Uφ

A (G,D) =
1

∑x w(x) ∑
y∈Y

∑
x∈Ky

w(x)‖x−φ(y)‖2, (2)

where w(x) ≥ 0 are the point weights. A simple and fast algorithm for mini-
mization of the energy

Uφ =Uφ

A (G,D)+Uφ (G) (3)

is the splitting algorithm, in the spirit of the classical k-means clustering: For
a given system of sets {Ky | y ∈ Y} we minimize Uφ (optimization step, it is
the minimization of a positive quadratic functional), then for a given φ we find
new a {Ky} (re-partitioning), and so on. Stop when no change occurs.

In practice the structure and complexity of the optimal graph for the ap-
proximation of a complex dataset is not known. To learn it from the data, the
principal elastic graphs are constructed using a growing schema. All possible
graph structures are defined by a graph grammar. The optimal graph structure
is obtained by the sequential application of graph grammar operations to the
simplest initial graph (Gorban et al, 2007). A link in the energetically optimal
transformation chain is added by finding a transformation application that gives
the largest energy descent (after an optimization step). Then the next link is
added, and so on, until we achieve the desirable accuracy of approximation, or
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Iteration 4 Iteration 8 Iteration 16 Iteration 32

PG

RPG

PG

RPG

Fig. 1: Examples of principal graph (PG) and robust principal graph (RPG)
construction for: clear (two top rows) and noisy (two bottom rows) data patterns

the limit number of transformations. Other termination criteria are also possible
(Zinovyev and Mirkes, 2013)).

As simple (but already rather powerful) example we use a system of two
transformations: “add a node to a node” and “bisect an edge”. These transfor-
mations act on a class of primitive elastic graphs: all non-terminal nodes with
k edges are centers of elastic k-stars, which form all the k-stars of the graph.
This grammar produces elastic principal trees, i.e. graphs having no loops.

3 Robust elastic principal graphs

In order to introduce the robust elastic principal graphs, we consider the mo-
tivating toy problem of learning a complex one-dimensional pattern sampled
by points densely located around. The pattern can be accompanied by a back-
ground noisy, relatively sparse and stochastic distribution of points not con-
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nected to the pattern (see fig. 1). The top row in fig. 1 shows several steps of the
elastic principal graph construction in the case of absence of noise. From the
fig. 1, third row, it is clear that the presence of background noise can completely
distort the resulting principal graph, introducing excessive branching in order
to capture the variance of the noise points located distantly from the pattern.

Here we apply a particular variant of “impartial trimming” (Gordaliza, 1991)
or “data-driven trimming” suitable for principal graphs. We introduce a pa-
rameter R0 (called “robustness radius") which specifies what is the maximal
distance from a node of the principal graph at which a data point can affect
the position of the node during the current iteration of the energy optimization
process. We require that all the data points which are more distant than R0 from
any graph node, do not contribute to the gradient of the optimized functional
Uφ . However, they have a constant non-zero contribution R2

0 to the value of the
data approximation term which is required for preserving the properties of the
optimized functional Uφ to be a Lyapunov function (see sec. 4 and fig. 2).

In order to satisfy these requirements, we have to change the data approxi-
mation energy term only, because Uφ (G) term is independent of the data. The
data-dependent approximation energy term eg.(2) is modified as follow:

Uφ

R (G,D) =
1

∑x w(x) ∑
y∈Y

∑
x∈Ky

w(x)min{‖x−φ(y)‖2,R2
0}, (4)

where R0 is the robustness radius. All other terms in the energy function are
the same: Uφ = Uφ

R (G,D)+Uφ (G). It means that all optimization strategies
used for the construction of principal graphs are applicable for robust principal
graphs too, and that the optimization problem remains quadratic at the node
optimization step. Notice that eg. (4) can be re-written as

Uφ

R (G,D) =
1

∑x w(x) ∑
y∈Y

∑
x∈Ky,||x−φ(y)||<R0

w(x)‖x−φ(y)‖2 + (5)

+
1

∑x w(x) ∑
||x−φ(y)||≥R0,∀y

w(x)R2
0,

From this it becomes evident that the second term is constant and does not
contribute to the derivative U ′y.

The result of such a modification is shown in fig. 1, second and fourth rows.
A robust principal graph learns the data for a local fragment and traces the local
data structure, branching if this is energetically optimal. As a result, the global
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structure of the data distribution is detected only at the end of graph growth
and only if there are no gaps in the data distribution larger than the robustness
radius R0.

4 Convergence of robust elastic principal graphs

Adding trimming to the data approximation term as in eq. (4) does not change
the property of the elastic principal graph’s energy to converge to a local energy
minimum. Both energy functions, the one defined by eq. (3) and the robust one

U =
1

∑x w(x) ∑
y∈Y

∑
x∈Ky

w(x)min{‖x−φ(y)‖2,R2
0}+Uφ (G) (6)

are Lyapunov functions for the splitting-based optimization algorithm used for
constructing the elastic principal graphs. The existence of a Lyapunov function
guarantees convergence of the optimization algorithm based on the splitting
schema.

Let us formally demonstrate that at each step of the optimization splitting
algorithm, the energy (6) does not increase.

Each graph optimization algorithm step is split into two parts. First, with
fixed partitioning of the dataset D into graph node neighbourhoods Ky,y ∈ Y ,
the quadratic function (6) is minimized which leads to the new positions of the
nodes φ ′(y). At this step, the energy U can not increase because it is minimized:
U(φ ′(y))≤U(φ(y)).

Secondly, a new partitioning into sets Ky′ of data points x is computed with
respect to the new positions of the nodes φ ′(y). Let us denote by Ky

c the set of
points from Ky which are not more distant than R0 from φ(y): Ky

c = {x|‖φ(y)−
x‖ ≤ R0}, and let us denote the set of “distant” points as Ky

f = {x|‖φ(y)−x‖>
R0}. Of course, the whole neighbourhood is a union of these two sets, and their
intersection is empty: Ky = Ky

c ∪Ky
f . After the new partitioning, we will have a

new Ky′ = Ky′
c ∪Ky′

f . Let us consider one particular neighbourhood Ky1 and any
other one Ky2 . During the first step, φ(y1)→ φ ′(y1) and φ(y2)→ φ ′(y2). After
re-partitioning, we have four possible re-assignments of a data point x ∈ Ky1

(see Figure 2):
1. Ky1 → Ky′1 : In this case the energy Uφ

R (G,D) does not change since the
point x remains in the neighbourhood of y1.
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Fig. 2: A) The functional form of the trimmed approximation energy term. B)
Possible re-partitioning of the data points (only several of them are shown as
black circles with numbers) belonging to Ky1 after changing the node position
at the graph optimisation step. Four possible cases (1-4) are shown, and each
one leads to non-increasing approximation energy (see text for explanation).
Here the shaded area denotes the robustness radius R0 for a graph node, the big
solid circle denotes the neighbourhood Ky. The neighbourhood Ky is split into
“close” points Ky

c and “distant” points Ky
f .

2. Ky1
c → Ky′2 : In this case the energy term related to the node y2 in

Uφ

R (G,D) decreases because by the definition of a neighbourhood ‖φ ′(y1)−
x‖> ‖φ ′(y2)− x‖.

3. Ky1
f →Ky′2

c : In this case the energy term related to the node y2 in Uφ

R (G,D)

will not increase because it will change from R2
0 to ‖φ ′(y2)− x‖2 ≤ R2

0.

4. Ky1
f →Ky′2

f : In this case the energy term related to the node y2 in Uφ

R (G,D)

does not change (it equals R2
0 before and after re-partitioning).

The same four scenarios are valid for any pair yi 6= y j. Therefore, the total en-
ergy Uφ

R (G,D) can not increase while Uφ (G) is not affected by re-partitioning.
It is also clear that the non-negativity of the derivative of the trimmed approx-
imation energy function (Figure 2A) is essential that U does not increase, be-
cause otherwise case (3) can lead to an increase of Uφ

R (G,D). For example,
disregarding the contribution of “distant” points for their contribution to the
approximation of energy completely would lead to a violation of property (3).
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5 Comparing various types of robust and non-robust data
approximators

Let us further exploit the benefits that trimming the data approximation term
can bring to approximating complex toy 2D patterns. Fig. 3 shows the results
of application of the standard and the robust versions of SOM, elastic maps
and principal graphs for spiral and kappa-like data 2D patterns. 10% of noise
is introduced into the data distribution, e.g. the fraction of randomly positioned
points not belonging to the data pattern is 0.1 of the number of points in the
pattern. For robustification of the non-batch SOM, specific methods were used
as described in Allende et al (2004) and Kohonen (2001). All robust versions in
case of methods use the same robustness radius. For all methods, robustification
of approximators led to more exact approximation of the data pattern.

6 Application of robust graphs to the data on human genome
diversity

The Human Genome Diversity Project (HGDP) collected a large collection of
single nucleotide polymorphism (SNP) genotype profiles capturing the major
sources of variation between human genomes. The publicly available HGDP
dataset which can be downloaded from http://www.hagsc.org/hgdp/files.html
contains samples of 53 historically native populations from 7 large geographi-
cal regions (Africa, Near East, Europe, South Central Asia, East Asia, America,
Oceania). Each of the 1043 individuals in this dataset is represented by a profile
of 660 918 SNPs. It was demonstrated before that the dataset shows non-trivial
branching structure reflecting the combined effect of migration and adaptation
of humanity in various geographical conditions (Elhaik et al, 2014). Therefore,
it is interesting to approximate this dataset by an optimally branching approxi-
mator such as the principal tree.

In order to represent the dataset as a set of numerical vectors in a multidi-
mensional space, we’ve applied the standard SNP quantification approach. For
each row of the table corresponding to a particular SNP, the homozygous status
of the SNP was coded as ’0’, while two different heterozygous statuses were
assigned ’-1’ and ’+1’. All unreliably measured SNP statuses were filtered out,
which resulted in a numerical table of 1043 individuals (objects) and 429 830
SNPs (variables). At first, we have reduced the dimension of the dataset to R3

http://www.hagsc.org/hgdp/files.html
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Kappa Kappa noised Spiral Spiral Noised

GNG

GSOM

RGSOM

GEM

RGEM

PG

RPG

Fig. 3: Examples of different data approximator performances for four 2D toy
complex patterns: from left to right: clear kappa-like, noised kappa-like, clear
spiral, noised spiral; from top to bottom: Growing Neural Gas (GNG)(Martinetz
et al, 1993), Growing SOM (GSOM) and Robust GSOM (RGSOM) (Alahakoon
et al, 2000), growing elastic map (GEM), robust GEM (RGEM), principal graph
(PG)(Gorban et al, 2007; Gorban and Zinovyev, 2009), and robust principal
graph (RPG).
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by applying a standard principal component analysis (PCA). In this reduced
space we have constructed both standard and robust versions of principal trees.

Application of the standard principal trees was not successfull due to their
inability to capture fine local details of the data distribution (the figures can
be found online2), which resulted in mixing up the native populations belong-
ing to the same region. For example, all variants of the European population
were mapped to a single tree node. Changing the elasticity parameters did not
improve the situation.

At the same time, application of the robust principal trees with an initializa-
tion from two points belonging to a local neighborhood resulted only in a local
description of the variety of human genomes. This was probably due to the fact
that the distribution of individuals is characterized by certain gaps not covered
by 1043 genomes (and which could probably represent non-existent parts of
human genome diversity).

Therefore, it was not possible to find a combination of parameters which
could represent both global and local patterns of the branching distribution of
human genomes. However, we could significantly improve the result by appli-
cation of a hybrid approach. We trained the principal tree in two epochs. During
the first epoch, non-robust principal graphs were applied to outline the general
features of the global structure of the dataset, representing roughly the global
relations between geographical regions. By contrast, during the second epoch,
the robust principal tree approach was applied starting from the principal tree
configuration obtained at the first step. During the second stage, the elasticity
coefficients of the principal tree were significantly reduced in order to achieve
a better local approximation of the data. As a result, the constructed principal
tree was able to capture the global pattern of genomic diversity between geo-
graphical regions and the local patterns of genomic diversity between native
sub-populations of the same region. For example, Russian, Italian, Sardinian,
Orcadian, Druze, Basque, Kalash populations were mapped to their own nodes
(see fig. 4), resolving the structure of genomic diversity at a higher level of
detail.

In order to represent the principal tree on a 2D plane we used the previously
described metro map layout of a tree on the plane (Gorban et al, 2008b; Gor-
ban and Zinovyev, 2010). This layout is constructed in order to represent the
harmonical nature of the embedding of a principal tree into multidimensional
space in the best fashion. The center of each star of the tree is the mean point

2 http://goo.gl/CbFMlC

http://goo.gl/CbFMlC
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of the set of the star’s leaves (see fig. 4B). The number of individuals from dis-
tinct populations mapped to the same tree node were represented as a pie-chart
diagram (fig. 4B). The distances between tree nodes in 2D represent approxi-
mately the edge lengths in the multidimensional space, therefore, it is possible
to estimate which populations are more distinct than others. For example, in
the 2D PCA plot the composition of native american SNPs seems similar to
the composition asian populations (fig. 4A). Unfortunately this is not the case.
However, from the metro map layout (fig. 4B) it is clear that the composition
of SNPs of native Americans is significantly different from the one of Asian
populations, even more distinct the SNP profiles of population of Oceania. In-
terestingly, a part of East Asian populations (Kalashs and Pathans) was mapped
closer to the European populations than the rest of East Asia. Indeed, there ex-
ists a controversial discussion of whether Kalash and Pathan populations living
in Pakistan have European roots (e.g., originated from the troops of Alexander
the Great) (Firasat et al, 2007; Wood, 2001). Here we can not make any strong
conclusion regarding this point. However, construction of principal trees could
potentially contribute to discussions.

To conclude, we can observe that introducing robust principal trees in the
analysis of genomic data allows better tracing the local patterns in complex
real-life data distributions.

7 Implementation details and computational protocols

All 2D illustrations used in this paper are created by a Java applet, developed
by the authors, for constructing non-linear approximations of 2D data, using
various algorithms described in (Mirkes, 2011). The construction of principal
graphs in multidimensional space was performed using the VDAOEngine Java
library developed by the authors. The Parameters of the methods used are
provided together with the code from the corresponding GitHub page3.

3 https://github.com/auranic/Elastic-principal-graphs/wiki/Robust-principal-
graphs

https://github.com/auranic/Elastic-principal-graphs/wiki/Robust-principal-graphs
https://github.com/auranic/Elastic-principal-graphs/wiki/Robust-principal-graphs
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EAST ASIA

OCEANIA

NATIVE AMERICAN

PCA PLOT

(a) Principal component analysis of the HGDP
data, mapping data points from R429830 to R2. Red
line shows the embedding of the constructed ro-
bust principal tree into the data space.
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Russian

Adygei

Kalash Pathan

Beduoin
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Tuscan
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Si
n
d
h
i

Makrani

METROMAP PRINCIPAL TREE LAYOUT

(b) Robust principal tree is shown using 2D metro
map layout (planar harmonic representation of a
tree). A particular region of the graph is shown
zoomed on the left.

Fig. 4: Constructing a robust principal tree for the dataset mapping human
genome diversity measured by single nucleotide polymorphism (SNP) genome-
wide profiles (HGDP dataset). Large geographical regions are presented by a
color while various tints of the color represent the distinct native populations
within a region (only variability of European, Near East and part of South
Central Asia is shown by aspects of the same color).

8 Conclusion and Summary

We described our implementation of a robust version of a principal elastic
graph algorithm which is based on trimming the data approximation term in
the elastic energy equation of the graph. Growing principal graphs proceeds by
approximation of local data structures and tracing them till the global structure
is detected. For those data distributions which contain several isolated clusters,
it is necessary to restart robust principal graphs several times (one graph for
each cluster) or apply a hybrid approach as described in this paper. The algo-
rithm contains an additional parameter R0 which is called the robustness radius.
Only the data points inside this radius around a graph node y can influence
position of y at the next iteration step. The algorithm shows good performance
in the case when the global data structure is spoiled by a noisy background
distribution of data points, which makes the algorithm more suitable in many
practical applications (such as image recognition). The existence of for Lya-
punov function guarantees convergence of the optimization algorithm based on
the splitting schema.
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The suggested data trimming method can be applied for other data approx-
imators such as elastic maps and SOMs. In the future, we plan to apply the
recently suggested machine learning framework (price-wise quadratic based
optimization of sub-quadratic growth PQSQ-based optimization) to introduce
a piece-wise quadratic form of the data approximation term which will allow
taking into account the position of distant data points with smaller weights and
avoid the problem of defining the robustness radius (Gorban et al, 2016).
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