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1 Introduction

Hyperspectral images allow for the extraction of rich information about
the considered scene. The downside of hyperspectral imaging, how-
ever, is the high cost for acquisition devices and the subsequent elabo-
rate image processing hardware and software. In this paper, we inves-
tigate an alternative approach to spectral unmixing based on recorded
images. Spectral unmixing denotes the process of extracting the mate-
rial abundances in mixtures. Bypassing the need for acquisition, pro-
cessing and information extraction, we use programmable spectral fil-
ters that allow for the acquisition of a single intensity image. When
the spectral filter is chosen adequately, this image encodes the spatial
abundance of the considered target spectrum. We present filter de-
sign methods that take the spectral variability of the target spectra into
account.
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2 Spectral filter design methods

The optical measurement of material abundances in mixtures uses
specificially designed spectral filters. Their calculation is described in
this section. Their implementation will be discussed in Section 4. Each
of the following methods for the analytical design of spectral filters is
based on the linear mixing model (LMM)

yij =
p

∑
k=1

aijk mk + εij = ŷij + εij , (9.1)

where yij denotes the spectrum at pixel i, j of the hyperspectral image
Y ∈ Rnx×ny×Λ and Y ≥ 0, measured at Λ wavelengths. The spectra
of the p pure materials assumed to be present in the observed scene
are described by mk, whereas the aijk denote the corresponding abun-
dances. To account for a physically meaningful representation, the
abundances are commonly restricted by the constraints ∑

p
k=1 aijk = 1

and aijk ≥ 0 ∀i, j, k. Both measurement noise and deviations from solely
linear mixing are taken into account by εij.

The following methods for the design of spectral filters assume that
the mk are known, whereas Y is not recorded and, consequently, not
available for any subsequent derivations. Particularly, for each material
k, a collection of n spectra mkl (l = 1, . . . , n) exists in addition to the
corresponding mean spectrum m�

k . The differences between the mkl
within the collection are mainly the result of chemical, microscopic and
macroscale geometric effects. The so-called endmember variability [1]
denotes this variability of pixel spectra of the same pure material and
will be considered by an instability index [2, 3], which is used as a
preprocessing step for the endmember collections in some of the next
derivations of the spectral filters.

Following the LMM (9.1), the mathematical derivation of material
abundances results in

aijk = fT
k yij =

p

∑
k=1

aijk fT
k mk , (9.2)

where fk denotes the spectral filter used to obtain the abundances of
the pure material k assuming εij = 0. The determination of the abun-
dances in (9.2) will be performed optically. It should be noted that
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(9.2) obviously stipulates both fT
k mk = 1 and fT

k mj = 0 for k 
= j and
j = 1, 2, . . . , p. However, not only εij 
= 0, but also the endmember vari-
ability substantially hamper that these conditions be exactly fulfilled.

As a general method for deriving fk, we consider the least-squares
estimator. Using (9.1) and performing some further calculations, omit-
ted for the sake of space, leads to

aij =

⎡
⎢⎣

aij1
...

aijp

⎤
⎥⎦ =

⎡
⎢⎣

fT
1
...

fT
p

⎤
⎥⎦ yij =

(
MTM

)−1
MTyij , (9.3)

where M =
[
m1, . . . , mp

]
holds and

(
MTM

)−1 MT is called the
Moore–Penrose pseudoinverse of M.

The design of spectral filters according to (9.3), where M is replaced
by M� =

[
m�

1, . . . , m�
p

]
, describes the first method considered for the

optical determination of material abundances. The spectral filters de-
rived by this method are denoted as pseudoinverse spectral filters fPS

k .
In contrast, the following methods first apply the spectral manipulation
C yij = C Maij, where C ∈ RΛ×Λ denotes a non-orthogonal matrix.
Then, the spectral filters are derived by

ãij =

⎡
⎢⎣

ãij1
...

ãijp

⎤
⎥⎦ =

⎡
⎢⎣

f̃T
1
...

f̃T
p

⎤
⎥⎦ yij =

(
(CM)T CM

)−1
(CM)T Cyij (9.4)

denoting a similar approach as (9.3).
Searching for a meaningfully defined C, [3] proposes to account for

the shape of mk in order to improve the estimates of the material abun-
dances. Spectral differences Δmki = mki+1 − mki (i = 1, . . . , Λ − 1)
leading to spectra Δmk are calculated therefor. This can be performed
by a suitably chosen C. Applying the differences on material spectra
tends to significantly increase the endmember variability. To mitigate
this drawback, we smooth each spectrum beforehand by applying the
discrete cosine transform [4] first and then removing coefficients rep-
resenting high frequencies. Note that the discrete cosine transform is
a linear transformation and, consequently, can be integrated into an
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appropriate C. The spectral filters, named differential filters Δf̃k in the
following, finally result by using C = CdiffCdct

TCsmCdct, where Cdct ∈
RΛ×Λ denotes the discrete cosine transform matrix. Csm ∈ RΛ×Λ de-
notes the identity matrix, where csm,nn = 0 for n = m, . . . , Λ for the
m highest frequencies that belong to sharp edges of mk and therefore
should be suppressed. The matrix Cdiff ∈ RΛ×Λ is used to derive Δmk,
where Δm�

k denotes the differences of the mean spectra that are con-
sidered for Δf̃k. Cdiff consists of ones on the main diagonal and −1 on
the first diagonal above the main diagonal.

The next methods for the derivation of the spectral filters extend fPS
k

and Δf̃k to incorporate the endmember variability contained within the
collections of the pure materials. In detail, the endmember variability
is valued by the instability index, abbreviated with ISI, and defined as

ISIλ =
Δwithin λ

Δbetween λ
=

P
P − 1

P−1

∑
k=1

P

∑
r=k+1

1.96 (σkλ − σrλ)∣∣Rmean,kλ − Rmean,rλ

∣∣ (9.5)

for each wavelength λ = 1, . . . , Λ. In this equation, Rmean,kλ denotes the
mean reflectance value of class k at wavelength λ and σkλ the standard
deviation of class k at the same wavelength.

The variability at wavelength λ within each collection of spectra re-
ferring to a certain material class is taken into account by Δwithin λ,
whereby the sum of the one-sided 95 % confidence interval is used un-
der the assumption that each collection contains normally distributed
spectra. Conversely, Δbetween λ accounts for the distances between the
mean spectra of the pure materials k and r at wavelength λ, i.e., m�

kλ
and m�

rλ. Using (9.5) allows to assess the endmember variability at each
wavelength. A large value of ISIλ indicates a greater value of Δwithin λ

than the value of Δbetween λ. Wavelength λ should consequently be dis-
carded for the design of the spectral filters.

To incorporate the ISI index into the filter design (9.4), we propose
two different versions of the transformation matrix C. The first one
uses (9.5) for defining additional weightings for each wavelength by

CISI =

⎡
⎢⎢⎢⎣

ISI−1
1 0 . . . 0

0 ISI−1
2 0 . . . 0

...
. . . . . . . . .

...
0 . . . 0 ISI−1

Λ

⎤
⎥⎥⎥⎦ ∈ RΛ×Λ , (9.6)
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whereas the second one not only considers these weightings, but also
completely removes wavelengths corresponding to high values of (9.5)
by using CISI,Thresh = CThreshCISI. Here, CThresh ∈ RΛ×Λ denotes a unit
matrix with cThresh,ii = 0 if ISIλ > τ holds. For the threshold τ we
consider a multiple of the mean of the ISI, τ = c μISI and c > 0.

Combining CISI and CISI,Thresh with fk and Δf̃PS
k is achieved by

setting C = CISI, C = CISI,Thresh and C = CISICdiffCdct
TCsmCdct,

C = CISI,ThreshCdiffCdct
TCsmCdct, respectively, and yields the spectral

filters denoted by f̃PS,ISI
k , f̃ISI,Th

k , Δf̃ISI
k and Δf̃ISI,Th

k .
In total, 6 types of spectral filters have been presented. The following

section shows our approach for their optical implementation, whereas
in Section 4, each of them is applied experimentally to evaluate its
performance in estimating material abundances.

3 Optical implementation of spectral filters

In order to realize the spectral filters derived in the previous section,
we customize the measuring system which is normally used to record
common hyperspectral images. The following measuring approach re-
sults in an innovative procedure for deriving material abundances in
mixtures.

Hyperspectral images are obtained by first discretizing the consid-
ered wavelength range into a finite number of wavelength channels.
The scalar images, which finally form a hyperspectral image by ar-
ranging them to a stack, are then measured with a constant exposure
time in each wavelength channel. Thus, each wavelength is weighted
equally. Conversely, to optically realize the designed spectral filters,
we adjust the exposure time of each wavelength channel with respect
to the spectral filter coefficients. Large values in the magnitudes of
the coefficients result in higher exposure times and vice versa. Even-
tually, the grayscale intensity images only have to be summed up in
order to obtain spatial estimates for the material abundances. Note
that keeping the camera shutter open during the complete measuring
time even supersedes the need for recording numerous grayscale im-
ages and summing them up, and directly yields the intensity image
showing the material abundances. Because of hardware restrictions,
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this advanced exposure technique has not been investigated experi-
mentally yet, though.

Since negative values of spectral filter coefficients may occur,
whereas physically meaningful exposure times are restricted to positive
values, the spectral filters have to be split into a positive and a negative
part, fk = f+k + f−k , where f+kλ ≥ 0 and f−kλ < 0 hold for λ = 1, 2, . . . , Λ.
Hence, instead of fk, two grayscale images are recorded that represent
the optical realization of f+k and f−k . As mandatory postprocessing step,
they have to be subtracted.

4 Experimental evaluation

For the evaluation of the optical determination of material abundances
in mixtures we used an experimental setup consisting of a 300 W
Xenon lamp as the light source, an EMCCD camera (Andor iXon3897)
and a spectral filter, namely an acousto-optical tunable filter (AOTF,
Gooch&Housego HSi-300), which allows to tune the mean wavelength
and bandwidth of each wavelength channel. The following evaluations
consider the wavelength range between 450 and 810 nm, in which the
sampling is accomplished in steps of 4 nm resulting in 91 wavelength
channels.

As samples we examine mixtures of color powders and mixtures cre-
ated by a laser printer with reference to an artificially derived image.
The additional investigation of the second mixture scheme results from
former examinations, which exhibit significant violations of the LMM
by mixtures of color powders. In contrast, the printed mixtures approx-
imate the LMM sufficiently well due to the fact that they were designed
aiming for meeting assumptions belonging to the LMM, such as that
spectral mixing occurs only on the macroscopic scale [5]. The determi-
nation of the material abundances with the printed mixtures remains
challenging because the number of raw materials is increased by a fifth
color.

Since in each mixture regions including a single material are present,
spectra of the corresponding pixels are used to build the collections of
spectra of pure materials. The mean spectra and variances are shown
in Figures 9.1 and 9.2. Note that the spectrum of color 5 exhibits a re-
markable similarity to the spectrum of color 2, whereas the pure spec-
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Figure 9.1: Powder mixtures: mean spectra (left), 20 pixel samples of pure
spectra as an excerpt of the used collections (right).

tra within the mixture of the color powders are visually more distin-
guishable. The variances demonstrate notable endmember variability
throughout the considered wavelength range. Using the information
about ultramarine, Figure 9.3 illustrates the normalized (i.e., the max-
imum value is normalized to 1) spectral filters following from Section
2. Though the spectral filters aim for estimating the abundances of the
same material, their shapes vary substantially.
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Figure 9.2: Printed mixtures: mean spectra (left), 20 pixel samples of pure
spectra as an excerpt of the used collections (right).
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The assessment of the spectral filters’ performance in accurately esti-
mating material abundances is conducted using the root mean square

error eθ = 1
nxny

√
∑nx

i=1 ∑
ny
j=1 θ2

ij where θij denotes the angle between the
estimated abundances âij and the true abundances aij (ground truth)
at pixel i, j, calculated by θij = âT

ijaij/‖âij‖‖aij‖. The root mean square
error is invariant to the normalization of âij [6] and therefore provides
qualitative results. It will be used to evaluate both the optically de-
termined abundances and the abundances derived by mathematically
applying the spectral filters on recorded full hyperspectral images of
the mixtures.

Tables 9.1 and 9.2 show the results of eθ for both mixing schemes. In
addition, the intensity images following from the use of the spectral fil-
ters for ultramarine and color 3, as illustrative examples, are presented
in Figure 9.4. The evaluation exhibits slight differences of eθ with re-
spect to the application of different spectral filters for the determination
of material abundances.

Figure 9.4 allows the implication that the optical use of spectral fil-
ters based on shapes of the pure spectra leads to the largest deviations
comparing with the derived results. Probably, the differences depend
on the shape of the spectral filters. As a consequence, efforts for more
detailed investigations focusing on the capability of the optical imple-
mentation of different types of shapes of spectral filters including com-
parisons with derived results, should be taken in future work.
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Figure 9.3: Ultramarine: spectral filters using the original spectra (left) and
their differences (right).
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Powder derived Powder optical Printed derived Printed optical

Figure 9.4: The two left columns show the ultramarine abundances, while the
two right columns show the abundances of color 3. Top row: ground truth,
second row: pure pseudoinverse (fPS

k ), third row: differences (Δf̃k), fourth row:
ISI index (f̃PS,ISI

k ), fifth row: ISI index with differences Δf̃ISI
k , sixth row: ISI

index with threshold (f̃ISI,Th
k ), last row: ISI index with threshold and differences

(Δf̃ISI,Th
k ).

5 Summary

The use of spectral filters for directly acquiring abundances in mix-
tures using grayscale images has been shown both theoretically and
experimentally. Various filter design methods demonstrating some of
the possibilities for incorporating additional information have been de-



98 W. Krippner et al.

Table 9.1: Powder mixtures: root mean square error.

fPS Δf̃ f̃ISI Δf̃ISI f̃ISI,Th Δf̃ISI,Th

eθ optical 0.0001 0.0020 0.0001 0.0023 0.0001 0.0023
eθ derived 0.0011 0.0010 0.0011 0.0013 0.0011 0.0013

Table 9.2: Printed mixtures: root mean square error.

fPS Δf̃ f̃ISI Δf̃ISI f̃ISI,Th Δf̃ISI,Th

eθ optical 0.0017 0.0013 0.0016 0.0015 0.0012 0.0015
eθ derived 0.0013 0.0010 0.0011 0.0013 0.0001 0.0013

scribed, e.g., the ISI index has been used that evaluates endmember
variability. Although the results point into the right direction, filter
design improvements have to be achieved in future. One possibility
would be to include the conditions that the abundances of each pixel
should be nonnegative and sum to one.
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