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Zusammenfassung

Fortgeschrittene Fahrerassistenzsysteme (FAS) spielen eine sehr wichtige Rolle in zukünf-
tigen Fahrzeugen um die Sicherheit für den Fahrer, der Fahrgäste und ungeschützte Ver-
kehrsteilnehmer wie Fußgänger und Radfahrer zu erhöhen. Diese Art von Systemen ver-
sucht in begrenztem Rahmen, Zusammenstöße in gefährlichen Situationen mit einem unauf-
merksamen Fahrer und Fußgänger durch das Auslösen einer automatischen Notbremsung zu
vermeiden. Aufgrund der hohen Variabilität an Fußgängerbewegungsmustern werden beste-
hende Systeme in einer konservativen Art und Weise konzipiert, um durch eine Restriktion
auf beherrschbare Umgebungen mögliche Fehlauslöseraten drastisch zu reduzieren, wie z.B.
in Szenarien in denen Fußgänger plötzlich anhalten und dadurch die Situation deeskalieren.
Um dieses Problem zu überwinden, stellt eine zuverlässige Fußgängerabsichtserkennung und
Pfadvorhersage einen großen Wert dar.
In dieser Arbeit wird die gesamte Ablaufkette eines Stereo-Video basierten Systems zur
Intentionsschätzung und Pfadvorhersage von Fußgängern beschrieben, welches in einer spä-
teren Funktionsentscheidung für eine automatische Notbremsung verwendet wird.
Im ersten von drei Hauptbestandteilen wird ein Echtzeit-Verfahren vorgeschlagen, das in
niedrig aufgelösten Bildern aus komplexen und hoch dynamischen Innerstadt-Szenarien ver-
sucht, die Köpfe von Fußgängern zu lokalisieren und deren Pose zu schätzen. Einzelbild-
basierte Schätzungen werden aus den Wahrscheinlichkeitsausgaben von acht angelernten
Kopfposen-spezifischen Detektoren abgeleitet, die im Bildbereich eines Fußgängerkandida-
ten angewendet werden. Weitere Robustheit in der Kopflokalisierung wird durch Hinzunah-
me von Stereo-Tiefeninformation erreicht. Darüber hinaus werden die Kopfpositionen und
deren Pose über die Zeit durch die Implementierung eines Partikelfilters geglättet.
Für die Intentionsschätzung von Fußgängern wird die Verwendung eines robusten und leis-
tungsstarken Ansatzes des Maschinellen Lernens in unterschiedlichen Szenarien untersucht.
Dieser Ansatz ist in der Lage, für Zeitreihen von Beobachtungen, die inneren Unterstruktu-
ren einer bestimmten Absichtsklasse zu modellieren und zusätzlich die extrinsische Dynamik
zwischen unterschiedlichen Absichtsklassen zu erfassen. Das Verfahren integriert bedeutsa-
me extrahierte Merkmale aus der Fußgängerdynamik sowie Kontextinformationen mithilfe
der menschlichen Kopfpose.
Zum Schluss wird ein Verfahren zur Pfadvorhersage vorgestellt, welches die Prädiktions-
schritte eines Filters für multiple Bewegungsmodelle für einen Zeithorizont von ungefähr
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einer Sekunde durch Einbeziehung der geschätzten Fußgängerabsichten steuert. Durch Hil-
festellungen für den Filter das geeignete Bewegungsmodell zu wählen, kann der resultie-
rende Pfadprädiktionsfehler um ein signifikantes Maß reduziert werden. Eine Vielzahl von
Szenarien wird behandelt, einschließlich seitlich querender oder anhaltender Fußgänger oder
Personen, die zunächst entlang des Bürgersteigs gehen aber dann plötzlich in Richtung der
Fahrbahn einbiegen.
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Abstract

Advanced driver assistance systems (ADAS) play a very important role in manufacturing fu-
ture vehicles to enhance safety for human drivers, passengers and vulnerable road users like
pedestrians and cyclists. These systems try to avoid collisions in dangerous situations in-
volving an inattentive driver and pedestrian by triggering an autonomous emergency braking.
Due to the high variability in pedestrian movement behavior, existing systems are designed
in a conservative way by decreasing benefit in order to reduce false activation rates in scenar-
ios where pedestrians are suddenly stopping and deescalating the situation. To overcome this
problem, a reliable pedestrian intention recognition and path prediction are of great value.
This work presents the overall processing chain of a stereo-video based system for pedes-
trian intention recognition and path prediction in daily traffic scenarios to be integrated into
a function for automatic emergency braking.
As one of three major parts, first, a real-time method is proposed that tries to localize pedes-
trian heads and to estimate their poses in low resolution gray value images including complex
highly dynamic inner-city scenarios. Single frame based estimates are derived using confi-
dence outputs of eight trained head pose classifiers applied at the image region of a pedestrian
candidate. Further robustness in head localization is achieved by incorporating stereo depth
information. Furthermore, head positions and head poses are tracked over time by imple-
menting a particle filter.
For the task of intention recognition, the use of a robust and highly performing machine
learning approach is investigated in different scenarios. This approach is able to model the
intrinsic sub-structure of a specific intention class while additionally capturing extrinsic dy-
namics between different intention classes in time-series. Powerful features are integrated
namely pedestrian dynamics by means of estimated lateral and longitudinal velocity compo-
nents resulting from a pedestrian detection and tracking system as well as the pedestrian’s
awareness of an oncoming vehicle indicated by the human head pose.
Finally, a method for path prediction is developed that controls the prediction steps of a mul-
tiple motion-model filter for a time horizon of approximately one second by incorporating
the estimated pedestrian intentions. By helping the filter to choose the appropriate motion
model, the resulting path prediction error can be reduced by a significant amount. A wide
range of scenarios is addressed including lateral crossing or stopping pedestrians or pedes-
trians that initially are walking along the sidewalks but then suddenly bend in towards the
road.
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1 Introduction

During the past years, worldwide commissions for transport and road traffic are increasingly
focusing on the reduction of the number of pedestrian injuries and fatalities due to road ac-
cidents. First measures for infrastructure, e.g. signalizing pedestrian areas and crosswalks,
safety barriers and speed limits [WHO, 2013], and early active and passive safety systems
for vehicles [Lawrence et al., 2004] resulted in a significant reduction of the total number
of fatalities [Yannis et al., 2015]. But nevertheless, in 2013, 22% of all fatalities in road
accidents within Europe still were pedestrians, see Figure 1.1.

Figure 1.1: Number of pedestrian fatalities and percentage of all road fatalities within EU,
2004-2013, [Yannis et al., 2015].

Additionally, in the U.S., the number of pedestrian fatalities of about 4,500 corresponding to
15% of all fatalities [NHTSA, 2016] still remains critically stable.
In this context, advanced driver assistance systems (ADAS) play an important role in man-
ufacturing future vehicles to enhance safety for human drivers, passengers, and vulnerable
road users such as pedestrians and cyclists. There are several reasons, namely increasing
computational power of embedded platforms at low cost or emerging technologies in the
sector of intelligent sensors like video, radar, laser or ultrasonic. Especially, the static im-
proving performance of video-based pedestrian detection resulted in first commercial active
pedestrian protection systems available for a wide range of vehicles, including Mercedes
Benz, Volvo, or Volkswagen. Those kinds of systems try to avoid collisions to a limited
extent in dangerous situations involving an inattentive driver and pedestrians by warning
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the driver or triggering an automatic emergency braking (AEB), cf. [Euro NCAP, 2016].
Recently, new growing up companies from the Silicon Valley like Tesla Motors or Google
integrate these kinds of technologies with additional extensions to manufacture completely
self-driving vehicles realizing a fusion of multiple redundant sensors.

1.1 Motivation and Challenges

Most of those systems are already able to reliably detect pedestrians. However, for a higher
benefit in collision avoidance or preventive actions one needs to get deeper information about
the underlying scene and the pedestrian’s future behavior. One of the most challenging task
is to interpret situations correctly, where pedestrians are laterally approaching the roadside.
Due to the ability of having a high variability of movement patterns, pedestrians can change
their walking direction within a short time period or suddenly start or stop. In the latter case
of an abruptly stopping pedestrian, triggering an autonomous braking would be a false reac-
tion, which could result in consequential damages involving the driver, passengers, and other
traffic participants. Therefore, existing systems are designed in a very conservative way by
limiting the system’s availability to a small set of controllable scenarios in order to reduce
potential false activations (FAs) and thus, to meet the requirements of automotive safety in-
tegrity levels (ASIL), cf. [ISO 26262-1:2011, 2011]. To overcome this limitation, a reliable
pedestrian intention recognition and path prediction is of a great value. In this context the
human head pose plays an important role as it gives a hint of the pedestrian’s awareness of
an approaching vehicle. A pedestrian facing the vehicle may be aware of it and thus, is less
likely to cause a critical situation in comparison to pedestrians just walking towards the road
without observing the environment. A following derived intention recognition helps improv-
ing situation interpretation and therefore, to avoid system false activations and at the same
time keeping the benefit at a sufficiently high level.
As one can expect, a lot of difficult scenarios and reactions have to be considered and fig-
ured out. [Schmidt and Färber, 2009] provide dominant features and their significance for
pedestrian intention recognition, see Figure 1.2. Three quarter of the most powerful fea-
tures, i.e., head/leg movement, dynamics, and characteristics, are related to the pedestrian
itself. The remaining quarter includes aspects depending on the environment and context.
This motivates to focus on pedestrian intention recognition, where most of these features are
derived from internal data provided by an available stereo-video based driver assistance sys-
tem. [Oxley et al., 1995] propose a study on head movement behavior for older and younger
people during road crossings. In their experiments it turns out, that crossing pedestrians
spend a dominant amount of time (>45%) in facing the nearside traffic, i.e., oncoming ve-
hicles, while approaching the curbside. On average 1.4 to 1.5 dominant head turnings can
be observed during that time. [Hamaoka et al., 2013] present similar results on head turning
rates especially when pedestrians are already very close to the road. As a result thereof, the
head pose is the important hint (most dominant feature in [Schmidt and Färber, 2009]) on
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Figure 1.2: Feature categories for pedestrian intention recognition, [Schmidt and Färber,
2009]. Head (focusing, left/right turnings), Legs (foot liftings on the street), Dy-
namics (running, walking, standing still), pedestrian characteristics (upper body
movement, distance to curb, age), Traffic (traffic density, speed of oncoming ve-
hicles), other (zebra crossing, mother with child, group behavior)

what the pedestrian will do next. In the context of ADAS, the head pose indicates the pedes-
trians’ awareness of the vehicle existence but it also helps to predict the intended movement
direction of the pedestrian for a further use within tracking methods or risk assessment. For
the task of head pose estimation in video-based driver assistance systems using a vehicle
mounted camera, one has to deal with low resolution, gray-value images, as well as highly
dynamic variations in illumination and complex environment. Furthermore, operation should
be possible at daytime, nighttime and under different weather conditions. Such a system also
needs to be robust to large variations in pedestrian and head appearances, and it needs to
guarantee a high degree of reliability.
From algorithmic point of view, the following problems arise. Because of the low resolution
images and the wide head pan angle range required for such a system, head pose estima-
tion based on facial feature detection, as for example in [Gee and Cipolla, 1994, Horprasert
et al., 1996, Vatahska et al., 2007], will not be suitable. The lack of color information also
prevents the use of color histograms, cf. the works of [Benfold and Reid, 2008, Benfold and
Reid, 2009, Canton-Ferrer et al., 2007, Canton-Ferrer et al., 2008, Siriteerakul et al., 2010]
or [Robertson and Reid, 2006] for skin color detection. The main challenges in the context
of this work are person bodies appearing on very low resolutions in inner-city scenarios, i.e.,
head sizes down to approximately 6×6 pixels in order to estimate the pedestrians’ intention
as soon as possible, see Figure 1.3. Additionally, heads strongly vary in their appearances,
e.g. for people wearing hats or umbrellas, with or without beard or having long or short hair.
For intention recognition itself, one has to find a way to integrate all necessary information
within a model that is robust against people dependent variations. For instance, elder pedes-
trians are normally walking slower than younger ones. Some people turn their heads faster
or slower than others or even do face the approaching vehicle but still cross the road.
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One of the main critical aspects for current systems realizing an AEB on pedestrians is the
predicted lateral impact point between approaching vehicle and pedestrian. Already a pre-
diction error larger than 30cm can make the difference of having a false activation or saving
a pedestrian life. Therefore, current systems restrict the range for the predicted impact point
relevant for a brake intervention till a desired FA-rate is achieved over a larger endurance
run while still guaranteeing a certain level of benefit. Without any further information as
given by an estimated pedestrian intention recognition, the error in path prediction hardly
lies below the desired threshold, especially for an abruptly stopping pedestrian. The arising
question is then how to integrate pedestrian intentions in order to achieve better results. Also
the path prediction result still has to show acceptable performance in case of an uncertain
intention recognition.
Besides the functional requirements, algorithms have to operate in real-time with the compu-
tational power of hardware that is used for automotive systems. In general, this is restricted
in processor performance and on board memory, which prevents to application of more com-
plex algorithms.
Another system requirement is a high degree of availability in terms of functional range.
Figure 1.3 shows a typical brake characteristic of an AEB system. Visualized is the object
distance relative to the ego vehicle, at which an automatic braking action has to be triggered,
over the ego vehicle’s speed.
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Figure 1.3: Typical brake characteristic curve for AEB systems. Object distance at which
an AEB with a maximum deceleration of -8.9m/s2 has to be triggered over ego
vehicle speed.

For the addressed inner city scenarios, where vehicles are moving with a speed up to 60km/h,
it is mandatory to reliably detect objects, more specifically pedestrians, and provide all nec-
essary information for a later function reaction up to 25m. This means, that an initial object
hypothesis already has to be generated at higher distances of up to 30m approximately, in
order to be able to perform object plausibility checks and derive temporal information for
a safe function decision. Later experiments will focus on system performance within this
range.
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1.2 Contribution

This work presents a system for pedestrian intention recognition and path prediction in city
traffic scenarios. The scope of application is a video-based advanced driver assistance sys-
tem for forward collision warning and collision avoidance of a driving car with other vul-
nerable road users (VRU) such as pedestrians. The group of VRUs is a risky class because
lack of attention by the driver and the pedestrian could result in a collision. Pedestrian
candidates are detected by a stereo-video system mounted behind the windshield of an ap-
proaching vehicle. Motivated by scientific evidence about pedestrian behavior in city traffic
situations, [Hamaoka et al., 2013, Oxley et al., 1995, Schmidt and Färber, 2009], intention
decisions will be made by two dominant factors. Firstly, the pedestrian dynamics by means
of predicted lateral and longitudinal velocity components as a result of a non-linear dynam-
ical system. Secondly, the pedestrian’s awareness of an oncoming vehicle with the help of
observing the human head pose. Figure 1.4 shows a rough overview of the presented system.

Chapters 3 and 4 Chapters 5 and 6

50

Figure 1.4: System Overview. Pedestrians are detected and tracked by a stereo-video based
generic obstacle detection and tracking approach and verified by an image
intensity-value based classifier. For each pedestrian candidate the head orien-
tation will be estimated from the image data. The previous extracted information
serves as input for an iterative intention recognition and path prediction.

The overall processing pipeline of the system starts with the estimation of the pedestrian’s
head pose and ends with a concrete prediction of the pedestrian’s future position and in-
tention that can be incorporated into a function for automatic emergency braking. Similar
to recent contributions to pedestrian intention recognition and the closely related field of
pedestrian path prediction, this work uses the outputs from an existing system for video-
based pedestrian detection. The main contributions of this work are:

1. A method for video-based pedestrian head localization and head pose estimation in
low-resolution images taken from a stereo-video camera.
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2. A system for pedestrian intention recognition using the information of the human head
pose and additional features.

3. Integration of the pedestrian intention into an improved path prediction to be used for
a later decision on forward collision warning (FCW) or automatic emergency braking.

Pedestrian Head Pose Estimation

In the first part of this work, a real-time method is proposed, that realizes a combined pedes-
trian head localization and head pose estimation. The underlying resources are gray value im-
ages taken from a vehicle mounted camera. These images contain complex highly dynamic
inner-city scenarios, where pedestrian heads appear at very low resolution. In a first step
a single frame based approach is developed, where the confidence outputs of eight trained
head pose classifiers applied to the image region of a pedestrian candidate are processed to
result in a head location and head pose estimate. Furthermore, head positions and head poses
are tracked over time by implementing a particle filter. This leads to a more robust, more
reliable and more efficient pedestrian head pose estimation. In addition, through the nature
of the proposed method it is possible to estimate continuous head pan angles instead of de-
termining only one of eight discrete head pose classes, cf. [Orozco et al., 2009, Siriteerakul
et al., 2010]. By incorporating stereo depth information, head localization and head pose
estimation results are improved in two ways. First, an additional stereo-based head local-
ization achieves more robustness in scenarios with highly structured background. Second,
estimates on the 3D object movement direction serve as prior knowledge for expected human
head poses. The presented approach is applied on top of an overall system for stereo-vision
based pedestrian detection and tracking and will serve as input for a later pedestrian intention
recognition and path prediction. In comparison, recent approaches mainly rely on a pedes-
trian orientation estimation to get an idea of the pedestrian intention, cf. [Gandhi and Trivedi,
2008, Shimizu and Poggio, 2004, Enzweiler and Gavrila, 2010]. However, the pedestrian’s
movement direction does not indicate the real pedestrian’s awareness of an approaching ve-
hicle a priori. Hence, with the head pose estimation, a more reliable long-term intention
recognition for the upcoming few seconds can be derived.

Pedestrian Intention Recognition

In this work, the use of a robust and highly performing machine learning approach, namely
Latent-Dynamic Conditional Random Fields [Morency et al., 2007], for the task of intention
recognition in different scenarios is investigated. This approach is able to model the intrin-
sic sub-structure of a specific intention class while additionally capturing extrinsic dynamics
between different intention classes in time-series. The method integrates features extracted
from pedestrian dynamics as well as contextual information using the human head pose.
An additional benefit of this model is the fact that it can work with time series of arbitrary
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length, where additional confidence about pedestrian intentions can be retrieved by temporal
integration. By the nature of the model, it is possible to capture dynamical changes for sin-
gle features, such as head turnings or different movement behaviors. Different connections
of features can be learned automatically from training data but nevertheless, expert knowl-
edge still can be brought in when designing the structure of the model. Compared to recent
approaches in literature, besides stopping and crossing pedestrians, a wider range of scenar-
ios is addressed including pedestrians that initially walk along the sidewalks but then turn
towards the road. The proposed latent-dynamic discriminative model applied on extracted
time-series is then able to integrate all the previous mentioned features including pedestrian
dynamics and pedestrian awareness, and to learn inner connections within a specific type of
scenario and external correlations between different types of scenarios. The output of the
presented approach will be integrated into a later system for pedestrian path prediction, but
could also be used for controlling the switching states of the Switching Linear Dynamical
System (SLDS) presented in [Kooij et al., 2014a].

Pedestrian Path Prediction

General object tracking algorithms basically consist of two steps, Prediction and Update.
For prediction the object state is propagated using suitable motion models, resulting in an
object state hypothesis for the next time instance. During the update step new sensor mea-
surements are incorporated to correct the previously performed prediction. The underlying
object tracking method consists of the well-known Interacting Multiple Model Filter (IMM),
as this filter is able to deal with multiple motion models, which turned out to be practica-
ble for the task of pedestrian tracking. Path prediction can be performed by applying the
prediction steps multiple times for a small time horizon (< 1 second) without incorporating
new measurements. In this context, a method is developed that controls the filter prediction
steps by incorporating the estimated pedestrian intentions. In doing so, the filter is supported
to choose the appropriate motion model and thus, the resulting path prediction error can be
reduced by a significant amount.

1.3 Outline

The remainder of this work is organized as follows. Chapter 2 presents an overview of related
work in the field of video-based pedestrian detection, stereo-video based object detection and
tracking and focuses on human head pose estimation in low resolution images as well as on
pedestrian intention recognition and path prediction. The approach for pedestrian head pose
estimation developed in this work is presented in Chapter 3. Chapter 4 demonstrates the
benefits of using stereo vision for a more robust and reliable head localization and head pose
estimation. The second major contribution of this work on pedestrian intention recognition
is presented in Chapter 5, where the head pose estimation is integrated as a powerful feature.
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Chapter 6 finally combines pedestrian intention recognition and tracking for path prediction
within a controlled framework. The overall approach is embedded into an existing stereo-
video system for pedestrian forward collision warning and automatic emergency braking.
The work concludes with a discussion in Chapter 7.
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2 Related Literature

This chapter gives an overview of related contributions. Since the substantial part of this
work is based on the reliable detection and tracking of pedestrians in video sequences, related
literature to this topic will be presented here. Furthermore, methods for 3D object detection
using stereo video sensor data follows. As presented in Chapter 1, one core part of this work
deals with the estimation of pedestrian head poses, which directly has impact on an intention
recognition in a subsequent step. The latter in turn is used in order to achieve an improved
path prediction to increase the benefit of automatic emergency braking systems. For all
three contribution topics current related literature is presented. This chapter is structured as
follows. Section 2.1 presents an overview of current approaches for image-based pedestrian
recognition. General methods for 3D object detection and tracking using stereo-vision will
be introduced in Section 2.2. In Section 2.3 pursuing approaches for detection of human
heads and head pose estimation are introduced. Section 2.4 and 2.5 finally deal with the
intention recognition of pedestrians and followed path prediction.

2.1 Monocular Pedestrian Detection

There has been done a lot of research in the field of video-based pedestrian detection during
the past decade. Especially in the field of ADAS this task is very hard to handle due to a wide
range of challenging scenarios, i.e., high variations in pedestrian appearance in highly dy-
namic scenes. A broad overview of the research area on pedestrian detection for driver assis-
tance systems is given by [Gandhi and Trivedi, 2007]. Here, besides video-based approaches,
further methods using different sensor technologies like radar or laser are summarized. For
the main subject of video-based pedestrian detection, [Enzweiler and Gavrila, 2009, Dollár
et al., 2012b] and [Benenson et al., 2014] provide detailed evaluations of state-of-the-art
approaches. Currently, so-called discriminative methods distinguished themselves. Here,
one tries to learn decision functions based on extracted features using a huge amount of la-
beled training examples, which allows a separation of pedestrians from other image contents.
Available methods basically differ in the type of extracted features, the fusion of multiple fea-
tures and the use of machine learning methods for determination of the separating plane. One
of the most powerful features is given by the Histogram of oriented Gradients (HoG), which
is robust against changes in scale and illumination and initially was introduced by [Dalal and
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Triggs, 2005]. Variations thereof are presented and used in [Dalal et al., 2006,Jia and Zhang,
2007,Zhu et al., 2006,Wang et al., 2009,Maji et al., 2008,Dollár et al., 2010,Benenson et al.,
2012b]. The basic idea is to represent the pedestrian appearance and shape in the image by
a distribution of edge gradients. For this, a selected image patch is divided into overlapping
blocks consisting of multiple cells. Image gradients contribute to a histogram per cell based
on their orientation. The final feature vector is obtained by concatenating the normalized
orientation histograms with respect to each block. [Wang et al., 2009] and [Zhu et al., 2006]
describe HoG similar features, which are calculated using integral histograms and therefore
significantly reduce computational effort compared to the conventional feature in order to
achieve real-time capability. Other approaches for pedestrian recognition use illumination
invariant local binary pattern (LBP) descriptors [Mu et al., 2008, Wang et al., 2009]. LBP
features in their original form represent the 3×3 neighborhood of a pixel using a bit-string by
comparing the intensity values of all pixels in the neighborhood with the one for the center
pixel and hence are very fast to compute.
For discriminative methods different types of classifiers are used. In this context, Support
Vector Machines (SVM) are widely used in both linear, [Dalal and Triggs, 2005, Dalal et al.,
2006, Enzweiler and Gavrila, 2011, Wojek et al., 2009], and non-linear variants, see [Pa-
pageorgiou and Poggio, 1999, Dalal and Triggs, 2005, Maji et al., 2008]. Other popular
classifiers include neural networks, [Gavrila and Munder, 2007, Enzweiler et al., 2010, En-
zweiler and Gavrila, 2010], Adaptive Boosting (AdaBoost), [Dollár et al., 2010,Wojek et al.,
2009] and cascades of boosted classifiers, [Tuzel et al., 2008, Viola et al., 2003, Zhu et al.,
2006, Wang et al., 2009, Jia and Zhang, 2007]. In general, Adaboost classifiers as presented
by [Freund and Schapire, 1997, Freund and Schapire, 1999] help to select the most power-
ful features from an over-complete set of features, like Haar wavelets, cf. [Viola and Jones,
2001a].
Recent methods combine multiple features using shape-, texture- and color information in
the form of integral channels in order to achieve higher detection rates, see [Dollár et al.,
2009a,Dollár et al., 2010] and [Benenson et al., 2012b]. Most of the publications concerning
automotive applications, use a fusion of several cues from depth, motion and intensity to-
gether with object detection and classification techniques. [Gavrila and Munder, 2007,Keller
et al., 2011a, Keller et al., 2011b, Schneider and Gavrila, 2013] for instance use stereo infor-
mation, shape and texture based features as well as tracking approaches. Similar approaches
are also used by [Bajracharya et al., 2009, Wojek et al., 2009, Walk et al., 2010, Enzweiler
et al., 2010, Rohrbach et al., 2009]. Other methods directly make the use of stereo depth
information in order to restrict the search space for a following pedestrian classification,
cf. [Bertozzi et al., 2005, Bajracharya et al., 2009, Enzweiler et al., 2010, Enzweiler et al.,
2012, Keller et al., 2011b]. Related to this topic, [Llorca et al., 2012] present a survey on
stereo region of interest (ROI) selection. This significantly reduces the run-time for monoc-
ular pedestrian detection resulting in real-time systems and helps to reduce the false positive
rate while keeping a suitable detection rate, e.g., see [Enzweiler and Gavrila, 2011].

10



2.2 Stereo-Vision based Object Detection and Tracking

Further improvements can be achieved by incorporating scene context [Hoiem et al., 2006,
Torralba, 2003] or contextual information from neighboring regions on detector level [Ding
and Xiao, 2012, Dollár et al., 2012a].

2.2 Stereo-Vision based Object Detection and

Tracking

Recent approaches for autonomous driving use the benefits provided by a stereo vision sen-
sor. The idea is to extract 3D depth measurements in terms of disparities calculated by
matching images regions from the left and right camera images. There already exists a wide
range of stereo algorithms that differ in run-time, density and accuracy, see [Geiger et al.,
2012] just like standard block matching or semi global matching. These algorithms mostly
differ in the way how to describe image areas in order to easily find the best matching areas
in both images in addition to smoothness assumptions for estimated disparities within a pixel
neighborhood.
Most of existing methods for stereo-based object recognition try to divide the given dis-
parity map into clusters or regions of interest belonging to raised obstacles, cf. [Labayrade
et al., 2002, Leibe et al., 2007, Ess et al., 2007, Leibe et al., 2008, Ess et al., 2009, Nedevschi
et al., 2009]. Some methods first try to extract the ground plane in order to restrict search
space for vertical oriented column-wise features, also known as Stixels, cf. [Labayrade et al.,
2002, Badino et al., 2009, Pfeiffer and Franke, 2011]. For real-time applications, [Benenson
et al., 2011,Benenson et al., 2012a] propose very fast versions for Stixel calculation without
the necessity of a computed disparity map in a pre-processing step. Other methods, for in-
stance [Ess et al., 2007,Ess et al., 2009], try to simultaneously infer the ground plane and the
set of valid pedestrian hypotheses using a Bayesian Network for temporal stability and accu-
racy. Concatenating similar segments in terms of similar depth estimates together results in
larger object hypothesis or clusters. These generic obstacles are then tracked with a sequence
of images using Kalman Filters, cf. [Bar-Shalom et al., 2002,Blackman and Popoli, 1999,Li
and Jilkov, 2001, Li and Jilkov, 2003, Li and Jilkov, 2005], or particle filters, [Arulampalam
et al., 2002, Isard and Blake, 1998], to get smooth, stable and more accurate estimates. Ad-
ditionally, further unobservable information about the object state like velocity, acceleration
or collision risk with respect to the ego vehicle can be obtained out of the filter. A fur-
ther processing step involves object classification to separate vehicles, pedestrians or other
classes from objects generated on remaining infrastructure, [Leibe et al., 2007, Keller et al.,
2011b, Enzweiler et al., 2012, Ess et al., 2009, Gavrila and Munder, 2007].
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2.3 Human Head Localization and Head Pose

Estimation on low Resolution Images

yaw

pitch

roll

Figure 2.1: Headpose coordinate system.

As this work focuses on the head localization and head pose estimation problem for pedes-
trians, related literature dealing with both problems is discussed here. Moreover, this section
introduces some approaches for pedestrian orientation estimation due to their application
similarity in the field of driver assistance systems.
The task of human head pose estimation mostly has to be divided into the two major parts,
namely head localization or head detection and the actual head pose estimation given a head
candidate. This work differentiates between head localization and head or face detection.
Head localization is a specific type of head detection, where the number of heads in a given
image is already known. In comparison to face detection, which usually deals with frontal
poses of human heads, head localization tries to localize the head in any given pose. Nev-
ertheless, the approach of this work is largely related to the problem of face detection in
general. One of the most related contribution in this field is the work of [Viola and Jones,
2001a], where a cascade of boosting classifiers based on Haar-like features is used to detect
faces in gray-value images. Due to the cascaded structure of the classifiers and the fast fea-
ture computation using integral images, face detection can be performed in real-time. [Jones
and Viola, 2003] generalize their method to detect faces appearing in multiple views and
heads under various poses. Another major approach for face detection is the use of the
Modified Census Transform (MCT) presented by [Fröba and Ernst, 2004] to describe the
neighborhood around pixel positions by binary structures similar to the LBP feature. Fea-
tures based on the MCT will be combined in a similar way to [Viola and Jones, 2001a] by
training a cascaded boosting classifier. Recently, [Zheng et al., 2010] suggested an extended
12-bit MCT feature set for low resolution face detection in color images. Others like [Roy
and Marcel, 2009] propose the Haar-LBP feature, a hybrid between Haar-like features and
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Local Binary Patterns, to achieve an illumination-invariant face detection.
Head pose estimation approaches are usually application driven. [Murphy-Chutorian and
Trivedi, 2009] present a survey of existing head pose estimation approaches for different
scenarios and variable kinds of input data. Depending on the application, head pose estima-
tion methods vary in their requirements on input data, accuracy, and run-time. Applications
in human machine interaction, for example addressed by [Vatahska et al., 2007], require
more precise pose measures related to rotations around the main axes of a head located
coordinate system (pan/yaw, tilt/pitch, roll), see Figure 2.1. There, the input data mostly
contains high resolution head images and sometimes depth information using stereo or mul-
tiple camera systems, cf. [Fanelli et al., 2011, Martin et al., 2014, Seemann et al., 2004, Voit
et al., 2008, Voit and Stiefelhagen, 2009]. These approaches mostly consider the range from
frontal face poses to side views of heads (-90◦,...,90◦). Recent literature about head pose
estimation for driver assistance systems mostly considers the determination of the driver’s
head pose in the vehicle interior for health monitoring and intention recognition, cf. [Bär
et al., 2012, Murphy-Chutorian et al., 2007] and [Martin et al., 2014]. In contrast, this work
focuses on pedestrian head pose estimation using a vehicle mounted camera. For this task,
also addressed by [Flohr et al., 2014, Rehder et al., 2014], or in the field surveillance as
presented in [Benfold and Reid, 2009, Hirata et al., 2008, Orozco et al., 2009, Siriteerakul
et al., 2010, Chen et al., 2011, Chen and Odobez, 2012, Robertson and Reid, 2006], one has
to deal with low resolution images under harsh conditions in order to provide head pose
estimates covering the full head pan angle. Fortunately, there are usually weaker demands
such as estimating a discrete head pose class and larger pose steps without the necessity
to give estimates on tilt and roll angles. Regarding the camera setup and available infor-
mation, many approaches use a network of two or more calibrated cameras, cf. [Bäuml
et al., 2010, Canton-Ferrer et al., 2008, Niese et al., 2006, Zhang et al., 2007, Seemann et al.,
2004,Fanelli et al., 2011]. Nevertheless, some approaches are based on conventional 2D im-
age signals, see [Ba and Odobez, 2004,Benfold and Reid, 2008,Benfold and Reid, 2009,Hi-
rata et al., 2008, Orozco et al., 2009, Siriteerakul et al., 2010, Robertson and Reid, 2006].
To estimate the head pose, different algorithms have been presented. Recent methods make
use of the Iterative Closest Point algorithm (ICP, [Chen and Medioni, 1992]) to find rigid
transformations between a pre-defined 3D head model and sequentially extracted point clouds
from consumer depth cameras to achieve highly accurate angle measurements, cf. [Bär et al.,
2012,Martin et al., 2014]. However, high resolution images are required in addition to a pre-
cise head position and head pose initialization. For the problem in this work, a so-called
detector array-based approach is chosen, where a series of head detectors each assigned
to a specific head pose is trained. To estimate the head pose, a discrete pose class will be
determined based on the detector with the greatest support over a given image region. Re-
lated work on this can be found in [Jones and Viola, 2003, Rowley et al., 1998, Flohr et al.,
2014,Zhang et al., 2007]. One advantage of this type of methods is, that it can be easily used
for head localization as well by explicitly learning the separation from background regions
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during the training process. In contrast, other methods have to work with regions including
head candidates, that have to be generated in advance using generally trained head detectors
or foreground-background segmentation as an output of complex environment models. An-
other benefit of the chosen approach is the possibility to make use of head detectors, that are
well suited for evaluation on low resolution images due to their integrated features which
can work on lowest pixel level as presented in [Fröba and Ernst, 2004] and [Viola and Jones,
2004]. Some works estimate the head pose of a given head candidate by measuring the sim-
ilarity to discrete appearance templates, cf. [Orozco et al., 2009], while others try to detect
facial features and then estimate the head pose according to the geometrical positions of
these features, cf. [Gee and Cipolla, 1994, Horprasert et al., 1996, Stiefelhagen et al., 1996]
and [Vatahska et al., 2007]. [Benfold and Reid, 2008] and [Benfold and Reid, 2009] use
Ferns to determine skin and non-skin segments of the head, based on color information. In a
second step they estimate the head pose to be one of eight pose classes.
The following two methods are presented in more detail as they serve as a baseline for later
performance evaluation in this work. The method of [Orozco et al., 2009] builds upon a
similarity distance between a given head sample and a set of pre-computed mean head pose
templates. Motivated by the Kullback Leibler divergence, which was originally introduced
in [Kullback and Leibler, 1951] to compare two probability density functions, they define
Kullback Leibler coefficients δKL to measure the pixel-wise similarity of a given head image
with all head pose templates. Defining the intensity values of the mean template corre-
sponding to head pose class c and the input sample at pixel position (i, j) by mc

i,j and ni,j ,
respectively, the divergence coefficient can be expressed as

δKL(mc
i,j||ni,j) = max

RGB

{
mc
i,j

(
log

mc
i,j

ni,j

)}
. (2.1)

The final feature descriptor is a 2D similarity distance weighting map {xi,j}i,j , where each
pixel position (i, j) is determined by taking the maximum KL divergence coefficient at that
position over all head pose templates, i.e.,

xi,j = max
c∈{1,...,8}

δKL(mc
i,j||ni,j). (2.2)

Figure 2.2 shows the mean pose templates for their eight head pose clusters and some input
head samples with their corresponding descriptor.
For the final classifiers they compute the introduced descriptors on a set of training samples
and train a multi-class one-vs.-all SVM. In their experiments they show better results in terms
of higher classification rates compared to [Robertson and Reid, 2006].
The second method to compare with was introduced by [Siriteerakul et al., 2010]. Here,
the basic idea is, that on very low resolution images one has to directly work on pixel level.
The feature they propose, namely non-local Intensity Difference Feature (iDF) compares the
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Figure 2.2: Method proposed by [Orozco et al., 2009]. Upper image: Head pose templates
for each of eight discrete head pose classes using mean intensity image over
training data. Lower Image Calculated Descriptor on a set of test samples.

Figure 2.3: The method of [Siriteerakul et al., 2010]. Non-local intensity differences features
are calculated at multiple image positions to train a classifier.

intensity values of two arbitrarily chosen pixel positions p1 and p2 as follows.

iDF(p1,p2) =


0 if I(p1) = I(p2)

1 if I(p1) > I(p2)

2 if I(p1) < I(p2)

, (2.3)

where I(p) denotes the image intensity value at pixel position p. Figure 2.3 shows different
choices of pixel pairs for some input test samples. For training, 10000 random pixel pairs
are chosen within a 20×20 image patch. Considering eight head pose classes, the iDF is
calculated for a set of training samples to train a multi-class one-vs.-all SVM. After several
training loops, choosing a random subset of pixel pairs to be considered and varying the sam-
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ples taken for training and validation, they choose the best performing classifier at the end.
Additionally, they present a non-local Color Difference Feature (cDF) using color images,
which further improves classification rates in combination with the iDF.
Within the context of pedestrian intention recognition for driver assistance systems, ap-
proaches on pedestrian orientation estimation are presented. From the application point of
view, in video driver assistance systems the head pose is used as a cue for pedestrian inten-
tion recognition. Some works discuss the pedestrian body pose as an alternative measure
of a pedestrian’s intention and gaze in order to improve tracking algorithms, cf. [Enzweiler
and Gavrila, 2010, Gandhi and Trivedi, 2008, Shimizu and Poggio, 2004]. Most of them
assume already detected pedestrians and try to estimate their orientations, see [Gandhi and
Trivedi, 2008, Shimizu and Poggio, 2004]. Others integrate the pedestrian detection and
orientation estimation within a probabilistic mixture of experts framework to achieve better
results, cf. [Enzweiler and Gavrila, 2010]. [Shimizu and Poggio, 2004] use Haar-like features
to train one-vs.-all SVMs, while [Gandhi and Trivedi, 2008] train one-vs.-one SVMs using
Histograms of oriented Gradients from [Dalal and Triggs, 2005]. [Enzweiler and Gavrila,
2010] also use HoG features combined with support vector machines, as well as adaptive lo-
cal receptive fields (LRF) in combination with a multilayer neural network. Evaluations on
their test data show the positive effect of the integrated detection and orientation estimation
in comparison to the results of [Gandhi and Trivedi, 2008, Shimizu and Poggio, 2004]. Cur-
rent methods in the field of surveillance or driver assistance systems take advantage of the
fact, that the observed head pose is dependent on the human body pose and vice versa. [Chen
et al., 2011, Flohr et al., 2014] give estimates for both head- and human body pose within
a joint probabilistic framework, taking into account anatomical constraints and detector un-
certainties.

2.4 Pedestrian Intention Recognition

This section lists the main recent contributions on pedestrian intention recognition. Pedes-
trian behavior and intention in daily traffic situation has been studied for years from vari-
ous perspectives like crash studies, crowd behavior and optimizing infrastructure to enhance
pedestrian safety. In this context, many approaches from psychological aspect are based on
statistical models, which are determined on the basis of collected data, see [Oxley et al.,
1995,Schmidt and Färber, 2009,Fugger et al., 2001,Avineri et al., 2012,Evans and Norman,
2003, Kadari and Vedagiri, 2013, Bernhoft and Carstensen, 2008]. To take environmental
aspects into account, [Hamaoka et al., 2013] analyze pedestrian head turning behaviors at
crosswalks regarding the best point of warning for inattentive pedestrians. In the field of
intelligent vehicles, one attempts to derive potential intentions of a pedestrian using sensor
data like video sequences for instance. One related subject area is the field of action recogni-
tion for human machine interaction, where a humanoid robot shall recognize a certain kind
of human actions, gestures or facial expressions in order to react by offering support or ex-
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ecuting commands. [Turaga et al., 2008] present a survey on this field. One basic idea is
the use of the so-called motion history feature, where extracted human shapes are aggre-
gated over a sequence of images to learn a template for one particular action. A derivation
of this approach is used by [Köhler et al., 2012] and [Köhler et al., 2013] in the automo-
tive field for early detection of a starting action for an initially standing pedestrian at the
curbside. This only involves an infrastructure-based sensor setup, i.e., no on-board vehicle
mounted camera. For a given pedestrian track, they calculate a motion contour image-based
HoG-like descriptor. The differentiation of a standing pedestrian and a potential starting ac-
tion is trained using the motion-contour images in combination with a linear support vector
machine (SVM). [Schindler and Van Gool, 2008] extract textural information using Gabor
filters and motion information using optical flow for a given action snippet to train linear
one-vs.-all classifiers for a pre-defined set of actions. [Laptev et al., 2008] propose the use
of local space-time features using HoG and Histograms of oriented Flow (HoF) within a
cuboid around extracted Harris interest points, space-time pyramids and multichannel non-
linear SVMs for human action recognition in movies. [Matikainen et al., 2009] choose the
standard bag-of-words approach to set up a dictionary of trajectory words (trajectons) from
a clustered set of trajectory snippets including temporally extracted features. A given sam-
ple trajectory is represented by a normalized histogram of accumulated trajecton indices
assigned to each snippet. This histogram is used to classify action categories using a trained
linear SVM. [Matikainen et al., 2009] show an overall better classification performance com-
pared to the method of [Laptev et al., 2008].
In the research area of intention recognition in comparison to action recognition one han-
dles with the prediction of a future action and not the actual recognition thereof to perform
preventive actions. Nevertheless, the step from action to intention recognition is a small
one. [Wakim et al., 2004] formulate a Markov chain for the four discrete states "standing
still", "walking", "jogging" and "running". Model transitions are influenced by successive
pedestrian states within a trajectory including estimates for the pedestrian’s velocity magni-
tude and direction. Initial state and transition probability distributions are statistically deter-
mined from various studies on human gait pattern analysis. During simulations, the actual
motion state is used to predict the potential impact of a crossing pedestrian and an approach-
ing vehicle. [Furuhashi and Yamada, 2011] extract HoG descriptors for a set of pedestrian
postures in a sequences and principal component analysis (PCA) to learn a model for cross-
ing pedestrians using a k-means classifier. [Kitani et al., 2012] use physical scene features
(e.g., parking cars, buildings,...) within a static environment using semantic scene labeling
from noisy visual input in combination with optimal control theory to infer future actions of
pedestrians. For their system it is assumed, that people are fully aware of their environment
in order to account for preferences to move around certain regions like sidewalks. [Tamura
et al., 2012] define three types of pedestrian intentions, namely free walk, avoid and follow,
to formulate sub-goals, which are used to enhance the social force model of [Helbing and
Molnár, 1995] for pedestrian behavior analysis.
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Figure 2.4: Method for pedestrian intention recognition proposed by [Keller et al., 2011c].
For a given pedestrian candidate valid disparity and flow entries are filtered in
a first step. A parallax flow field is computed by normalizing flow vectors with
disparity and subtracting the influence of ego-motion. The resulting flow vectors
contribute to a motion histogram over the upper and lower pedestrian body. PCA
achieves dimensionality reduction. Histograms are extracted over time to result
in a database of trajectories for stopping and crossing scenarios. For a given
sample, the scenario given by the best matching trajectory from the database is
chosen, performing an intelligent probabilistic tree search for efficiency.

Recent approaches for pedestrian intention recognition build upon an existing system for
video-based pedestrian detection and mainly focus onto the situation of lateral approaching
pedestrians. As accident statistics show, this covers the main scenario of accidents involving
vehicles and pedestrians, cf. [Marchal et al., 2003]. [Keller and Gavrila, 2014] for example,
propose two non-linear, higher order Markov models to estimate whether an approaching
pedestrian will cross the street or stop at the curbside. First a Probabilistic Hierarchical Tra-
jectory Matching (PHTM) is used to match an actual observation of a pedestrian track with
a database of trajectory snippets. Using the information of future locations and pedestrian
behavior from the best matching snippets future pedestrian motion and hence intention is
extrapolated. In addition, a Gaussian Process Dynamical Model (GPDM) which models the
dense flow for walking and stopping motions is suggested to predict future flow fields. Both
suggested models integrate features that capture pedestrian positions and dynamics by means
of dense optical flow. See Figure 2.4 for a basic overview of the PHTM approach. All these
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models only try to access features from pedestrian moving dynamics but do not take the un-
derlying scene context into account. [Bonnin et al., 2014] propose a generic context based
model to predict crossing behaviors of pedestrians. Multiple models are combined within
a Context Model Tree capturing general inner-city scenarios, as well as the special context
of zebra crossings. Contextual features, e.g. distance/time to curbstone or distance/time to
zebra crossing, are extracted with a stereo camera.
A common part of most of these methods is the use of machine learning approaches to clas-
sify a series of extracted observations. At this point, the choice of the right method can
have significant impact on later performance. [Morency et al., 2007] investigate the use of
Latent-dynamic Conditional Random Fields (LDCRF) as an extension of conventional Con-
ditional Random Fields (CRF, [Lafferty et al., 2001]) for labeled time series of observations
by adding a layer of hidden latent states. These hidden state variables can model the intrin-
sic sub-structure of a specific class label and capture extrinsic dynamics between different
classes. Furthermore, LDCRFs proved to outperform typical CRF models, the well-known
Hidden Markov Models (HMM) and conventional machine learning algorithms like Support
Vector Machines (SVMs) in the field of gesture recognition. Figure 2.5 shows a simplified
version of a LDCRF.
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Figure 2.5: LDCRF for a 2-class problem with 2 hidden states per class label. Observables
are displayed as shaded nodes. Connections between latent hidden states are
colored. The hidden states h(i,1)
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2.5 Pedestrian Path Prediction Systems

The field of path prediction is closely related to pedestrian behavior or intention recogni-
tion. For some works the difference is only the definition of a discrete intention in form of
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a goal location depending on the predicted pedestrian path. Therefore, the previously intro-
duced works of [Wakim et al., 2004, Kitani et al., 2012] or [Tamura et al., 2012] are suited
for path prediction as well, as internally predicted future pedestrian positions are available.
Most of these methods build upon agent models, where an observer tries to get an idea about
the agent’s intention, it’s preferences to move around certain regions or behavior for collision
avoidance with other agents or the observer itself. [Bandyopadhyay et al., 2013], for instance,
propose a method for motion planning taking into account uncertain intention estimates for
an interacting agent (pedestrian). For each of a finite set of potential intentions they construct
a motion model based on social force for later combination within a Mixed Observability

Markov Decision Process framework. The hidden intention thereby is the agent’s goal loca-
tion, which cannot directly be extracted by the observer (robot vehicle). Related to the social
force model presented by [Helbing and Molnár, 1995], [Pellegrini et al., 2009] propose a Lin-

ear Trajectory Avoidance model for short-term path prediction, that uses the expected point
of closest approach to foreshadow and minimize potential collisions of agents. [Chen et al.,
2008] form trajectories including estimates for pedestrian position, velocity and heading an-
gle to learn Motion Pattern clusters for a multi-level prediction model. Within these levels
long-, middle- and short-term predictions are carried out depending on the matching quality
with a trained Motion Pattern. In driver assistance, most recent contributions on pedestrian
intention recognition and the closely related field of pedestrian path prediction build upon an
existing system for video-based pedestrian detection, see Section 2.1 for a survey. The focus
of these approaches is to address the situation of lateral approaching pedestrians. The earlier
introduced method of [Keller and Gavrila, 2014] for example is also used for path prediction.
For their PHTM approach (Fig. 2.4), future pedestrian states can be easily extrapolated by
forwarding the next steps using the best matching trajectory from the database. In addition,
the proposed GPDM models the dense flow in order to predict future flow fields and thereby
lateral velocity, which in turn is used for path prediction. [Quintero et al., 2014] follow up
the GPDM approach in combination with 3D body language by means of joints and body
parts determined using point clouds extracted from a stereo vision sensor. A GPDM is used
for dimensionality reduction and learning pedestrian dynamics within a latent space for effi-
cient path prediction over a time horizon of 0.8 seconds. [Goldhammer et al., 2014] focuses
on pedestrian path prediction in static traffic scenes. Motion trajectories including veloc-
ity estimates using pedestrian head tracking are extracted and approximated by polynomials
for better generalization. Path prediction is carried out by training a Multilayer Perceptron
(MLP) Artificial Neural Network (ANN), which is able to predict a continuous trajectory
for a time horizon of 2.5 seconds. For path prediction in dynamic scenarios, [Schneider
and Gavrila, 2013] analyze the usability of different linear and non-linear dynamical sys-
tems involving Kalman filters (KF) and Interacting Multiple Models (IMM) to predict future
pedestrian positions by propagating pedestrian states for a small time slot of 1.9 seconds. All
these models only try to access features from pedestrian moving dynamics but do not take the
underlying context into account. Initially, [Kooij et al., 2014a] present a Dynamic Bayesian
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Network (DBN) on top of Switching Linear Dynamic System (SLDS) for path prediction,
where they integrate contextual information using latent information from pedestrian aware-
ness, the pedestrian position with respect to the curbside and the criticality of the underlying
situation. To account for inattentive pedestrians they extract features from the human head
pose inspired by the work of [Hamaoka et al., 2013]. Further, the expected point of closest
approach, presented by [Pellegrini et al., 2009], serves as a measure for criticality. At the
end an existing system for curb stone detection is used to determine, whether a pedestrian is
at the curbside or still too far away to state a risk.
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3 Monocular Pedestrian
Head Localization and
Head Pose Estimation

This chapter describes one essential part of this work for pedestrian intention recognition
and path prediction. From related literature ( [Schmidt and Färber, 2009, Oxley et al.,
1995, Hamaoka et al., 2013]) it is known, that an essential indicator for future behavior
of pedestrians in road traffic situations is given by the line of sight or head pose respectively.
The human head position and head pose can be captured by a video sensor and analyzed
using image processing algorithms. Thematically, one finds oneself in the field of head pose
estimation in very low resolution images, which constitutes a very challenging task in mod-
ern image processing and analysis [Benfold and Reid, 2009,Robertson and Reid, 2006,Flohr
et al., 2014, Orozco et al., 2009]. In this work a so-called detector-array approach will be
developed, cf. [Murphy-Chutorian and Trivedi, 2009], that initially is working on single im-
ages only. Here, a series of head pose detectors each assigned to a specific head pose class
is trained with the addition of annotated training data. The benefit of the chosen approach
is the possibility to make use of head detectors that are well suited for evaluation on low
resolution images due to their integrated features, which can work on lowest pixel level as
presented in [Fröba and Ernst, 2004] and [Viola and Jones, 2004].
The later application is based on video sequences. Therefore, the use of a tracking based ap-
proach turns out to be well suited in order to stabilize the single-frame based estimates over
time. For tracking a particle filter is deployed, which states a good choice in the research
area of interest.
The remainder of this chapter is structured as follows. Section 3.1 deals with the approach
for human head pose estimation based on single low resolution images. The application
on video sequences together with the development of a tracking method follows in Sec-
tion 3.2. Section 3.3 presents different types of datasets on which the developed approach
gets evaluated. Experiments in Section 3.4 show a detailed performance analysis as well as
comparisons with state-of-the-art approaches from literature. Finally, a conclusion is given
by the end of this chapter in Section 3.5.
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3.1 Pedestrian Head Pose Estimation in Single

Images

This work proposes an integrated head localization and head pose estimation approach for
very low resolution images. The method builds its decisions based on the confidence values
provided by head pose associated classifiers. These classifiers follow state-of-the-art object
detection approaches, each of which is trained separately under a modified one-vs.-all frame-
work to achieve a high classification rate and ensure a stable training process. Assuming a
pre-defined pedestrian hypothesis given in form of a image bounding box, the provided algo-
rithm searches in the upper region followed by a head localization and head pose estimation
block. The head pose of interest is set to be one of eight discrete pose classes distributed
over the full head pan angle of 360◦. Figure 3.1 shows an overview of the proposed system.

Head pose

Head positionHead localization
Head pose
estimation

{C1}

{C2}

{C8}

H1

H8

H2

Figure 3.1: Signal processing chain for single frame based approach. Different head pose
associated classifiers Hm, m = 1...8, evaluate all possible windows in the head
search area (red) of a pedestrian detection (blue). The out-coming confidence
values Cm are used to perform the head localization and pose estimation

The structure of this section is as follows. The Sections 3.1.1 to 3.1.3 explain suitable fea-
tures for head detection and general object classification approaches. A modified one-vs.-all
training procedure is applied in Section 3.1.4 to train the eight head pose classifiers. Each
classifier consists of a cascade of boosting classifiers and produces a classification confi-
dence, when a test sample is evaluated. Given a pedestrian detection, the head pose classi-
fiers are searching for head correspondences in a specific area at the top of the pedestrian
image area using a sliding window technique at different scales, see Section 3.1.5. This
results in eight confidence values per search location, which are normalized in a following
step in Section 3.1.6 to be comparable among each other. At the end in Section 3.1.7, the
head localization and head pose estimation is achieved by comparing the confidence values
for all evaluated windows at different scales, assuming the presence of exactly on head per
pedestrian hypothesis.
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3.1.1 Feature Extraction for Head Detection and Head Pose
Estimation

In order to perform accurate and precise classification, discriminative and informative fea-
tures have to be extracted from the image to represent the same in the training and classifi-
cation procedure. Among other image features used in literature, e.g. in [Siriteerakul et al.,
2010, Orozco et al., 2009] and [Robertson and Reid, 2006], two types of features turned out
to have a high discriminative power for the task of face recognition namely Haar-like fea-
tures presented in [Viola and Jones, 2001a, Viola and Jones, 2001b, Viola et al., 2003] and
local structure features using the modified Census Transform (MCT) introduced by [Fröba
and Ernst, 2004]. Both types of features recently were the center of many object detection
studies due to their classification performance at very low computational costs. This section
continues with a detailed description of both feature types.

Haar-like Features

As working with image intensities is computationally expensive and not efficient, [Papa-
georgiou and Poggio, 1999] discussed working with an alternative feature set instead of the
conventional image intensities. This feature set considers the difference between the sums of
gray values in adjacent rectangular areas. Due to similarities to the Haar Wavelet proposed
by [Haar, 1911], those features earned their name. Haar-like features show a very good
performance representing images for classification purposes. These features were used for
pedestrian detection by [Papageorgiou and Poggio, 1999] and for face detection by [Viola
and Jones, 2001a]. Different structures of Haar-like features can be used as seen in Fig-
ure 3.2. The feature value is the difference between the pixel intensity value sums in the
shaded areas and the clear areas. In [Viola and Jones, 2001a] two, three, and four types of
rectangle features are used for object detection. 45◦ tilted features, such as in Figure 3.2b
and Figure 3.2d, were later presented by [Lienhart and Maydt, 2002].

(a) (b) (c) (d) (e) (f)

Figure 3.2: Haar-like features: the feature value is the difference between the intensity values
sums between the black and white areas. a) edge features. b) Tilted edge features.
c) Line features. d) Tilted line features. e) Center-surround features. f) Diagonal
feature.

25



3 Monocular Pedestrian Head Localization and Head Pose Estimation

(a) (b)

Figure 3.3: a) Haar-Like Feature representing intensity variation around the eye area. b)
Haar-Like Feature representing intensity variation in the nose-eyes area.

The Haar-like features represent certain patterns of intensity variation in certain positions
of the image. For example, in face detection some of these features may represent the inten-
sity variation caused by the darker area in the eye region, or the hair line, cf. Figure 3.3.
One of the main advantages of Haar-like features is their computational efficiency. Using the
so-called integral image presented by [Crow, 1984], the sum of pixel values in a rectangle
can be calculated by referring to only four pixel values, independent of the rectangle’s posi-
tion or size. With the original input image I , the integral image IΣ(u, v) at a pixel position
(u, v) can be calculated as

IΣ(u, v) =
∑
i≤u

∑
j≤v

I(i, j) (3.1)

This computational efficiency extends to calculating multiple rectangle features. For ex-
ample, a two rectangle feature, as shown in Figure 3.4, can be calculated using only six
references in the integral image. Assuming r1 and r2 to be the sum of intensity values in the
first and second rectangle, and every corner notation in the figure represents the value of the
corner pixel in the corresponding integral image (i.e., the sum of all pixel values above and
to the left of it), the Haar-like feature value (HF) can be simply calculated as

HF = r2− r1 = D−C−E+F − (C−B−F +A) = D− 2C−E+ 2F +B−A. (3.2)

Local Structure Features based on the Modified Census Transform

Searching for an image transformation that represents image structures independently from
illumination variations, [Fröba and Ernst, 2004] propose the modified Census Transform
(MCT) to create illumination invariant local structure features for face detection tasks. Here
the MCT feature properties are presented. The features represent 3×3 local kernels describ-
ing certain structures just as oriented edges, lines or points. The structures are binary coded
so that every structural pattern is represented by a separate binary string, see Figure 3.5.
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Figure 3.4: Two rectangle Haar-like feature calculation. Here the corner notations A, B, C,
D,E and F represent the corner pixel values in the corresponding integral image.
r1 and r2 represents the sum of all pixel values within the two rectangles. The
feature value is the difference between r1 and r2, as in equation (3.2).

Figure 3.5: Examples of 3×3 local structures: binary coded 3×3 local structure leads to 29

possible structures that can represent lines, edges, points, etc.

In total, 29 different binary structures can be generated.1 For face detection at each position
of an image including a visible head, the most fitting structure has to be found. For this task,
the modified Census Transform is used. To find the most fitting structure at a certain posi-
tion within an image, [Zabih and Woodfill, 1994] used the conventional Census Transform.
However, this only describes 28 = 256 of the 511 structures. [Fröba and Ernst, 2004] present
the modified Census Transform in an effort to represent all 511 possible structures. To cal-
culate the modified Census Transform let the position (pixel) of interest be pc and N(pc) a
local spatial neighborhood around pc, that includes pc. I(p) is the intensity of pixel p, and
the mean intensity value of the neighborhood N(pc) is noted as Î(pc). ζ is a comparison
function such that

ζ(a, b) =

1, if a < b, a, b ∈ N0

0, else
. (3.3)

1To be more accurate: As information obtained by the structure with all 0 elements and the structure with all
elements equal to 1 is redundant, the total number of structures is 29-1 = 511.
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Figure 3.6: Modified Census Transform: (a) 3×3 structure with the central Pixel pc = p11.
(b) The intensity values in the neighborhood N(pc). The mean intensity value
can be calculated to Î(pc) = 2.89. (c) The resulting MCT structure by applying
equation 3.4

.

Figure 3.7: Input images and their corresponding transformed images using MCT. The cal-
culated feature indices are mapped to gray values. The illumination changes be-
tween the two input images (left side) show no impact on the MCT result (right
side).

Let
⊗

be the concatenation operation, the modified Census Transform at pc can be written
as

Γ(pc) :=
⊗

q∈N(pc)

ζ(Î(pc), I(q)) (3.4)

In other words, each pixel’s intensity in a neighborhood is compared to the mean intensity
value of that neighborhood. In the transformed neighborhood, the value of this pixel is set
to 1, if it is higher than the mean intensity value or to zero otherwise. Figure 3.6 shows the
MCT structure calculation for an exemplary 3×3 image patch. The result is an index or bit-
array representing one structure out of the 511 possible structures that this position belongs
to. [Fröba and Ernst, 2004] report the illumination invariance of the modified Census Trans-
form which is directly inherited to the extracted local structure features. Figure 3.7 shows
this effect on an exemplary face image. To transform the result indices into a more mean-
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ingful statistical form for learning algorithms, a look-up table is created for each position
(pixel) of a given image patch. These look-up tables contain 511 slots, each representing
one of the possible structures. The value in each slot represents the number of times the
associated structure occurred while evaluating the training data including a various amount
of face images. Therefore, in the face detector training procedure a weight for each slot in
the look-up table at each pixel position is assigned. Based on these weights, every pixel in a
test image will be assigned to a certain class. For the detailed training procedure please refer
to [Fröba and Ernst, 2004]. It must be mentioned that around the same time the MCT algo-
rithm was proposed, a similar approach was presented by [Jin et al., 2004] called Improved

Local Binary Pattern (ILBP) with only minor differences compared to MCT, but as MCT,
represents neighborhood structures around a pixel position.
The next section describes the integration of the above introduced features into machine
learning algorithms that are able to separate regions including human heads from regions
belonging to background.

3.1.2 Machine Learning Algorithms for Head Pose Detectors

Machine learning algorithms try to give machines the ability to make decisions based on
experiences. These algorithms can be categorized into supervised and unsupervised tech-
niques. Unsupervised algorithms try to find the way data is organized into classes, and is
trained given only unlabeled data. Supervised learning tries to build a function that clas-
sifies unknown data based on the knowledge gain from labeled training data. In this work
supervised learning is used. Learning algorithms can be biologically inspired algorithms.
Here, one of the most famous algorithms are the Neural Networks [Vapnik, 1995]. Neural
Networks try to model the decision making within the human neural system. Other learn-
ing algorithms are built on statistical basis such as Support Vector Machines [Vapnik, 1995]
and Boosting [Freund and Schapire, 1997]. These algorithms not only try to reach perfect
classification for the training data as in Neural Networks, but also try to minimize the gen-
eralization error leading to better performance for unknown data. The Boosting classifier in
particular is the main learning algorithm used in this work, as it is receiving a big amount of
attention in computer vision research and proved to be one of the most promising learning
algorithms. One reason for that is its capability to successively select the most powerful
features out of a large pool of relevant features during training. This section will start with a
generalized notation of the learning problem. Then, the following topics are presented: De-
cision Trees, a basic statistical learning algorithm, Boosting algorithms, the basic learning
algorithm used in this work, Cascade Classifiers, a bundle of classifiers leading to higher ef-
ficiency and accuracy, and Winnow Classification, a learning technique for high dimensional
training data.
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Notations for Binary Classification Problems

Before presenting the different learning algorithms used in this work, a common set of nota-
tions is presented. For binary classification problems the training set T contains m pairs of
the form

{xi, yi}, i = 1, . . . ,m, (3.5)

where xi is a real vector of dimension d,

xi :=
(
x

(1)
i , x

(2)
i , . . . , x

(d)
i

)′
∈ Rd, (3.6)

and yi ∈ {−1, 1} the corresponding class assignment, where 1 and −1 represent the positive
and negative class label, respectively. The binary classification function generated in a su-
pervised learning algorithm by the training set T is denoted by f , and for each input vector
x ∈ Rd assigns a class label y = f(x) ∈ {−1, 1}, i.e.,

f : x 7→ f(x), Rd → {−1, 1}. (3.7)

The notations presented here are occasionally repeated, in order to provide clear and fast
understanding of the algorithms being discussed.

Decision Trees

Decision trees are simple classifiers that predict the corresponding class of a given data sam-
ple. They analyze a given labeled training data set to be able, after training, to predict an
unknown data sample’s class. Decision Trees were introduced by [Breiman et al., 1984] as
the Classification and Regression Tree (CART) method. This algorithm produces a decision
tree based on a training set T, which is aiming to recursively separate the training set into
subsets of higher purity, whose elements ideally belong to only one class. [Breiman et al.,
1984] present a detailed explanation of the decision tree training procedure. Given an un-
known sample x ∈ Rd, the decision tree can make a classification decision based on the tree
leaf that the given sample reaches after a series of threshold comparisons in the nodes leading
to that leaf. The run time complexity of a decision tree with a maximum depth of M ≤ d to
classify an input sample x ∈ Rd equals to O(M), where O is the Landau notation that rep-
resents the upper limit of a function complexity. The decision trees have high computational
efficiency and can be implemented easily. Therefore, they are a common candidate to be the
basic structure in more complex classifiers such as Random Trees or Boosting.

Boosting

Boosting is a supervised machine learning algorithm based on the idea of creating a strong
classifier from a set of weak classifiers. This idea was discussed by [Kearns, 1988], where
a weak classifier is a classifier that produces results slightly better than pure guessing, and
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a strong classifier is a classifier that produces results of arbitrary accuracy. Weak classifiers
can take many forms. Most used weak classifiers are decision stumps (feature value thresh-
olding) and decision trees. In general, boosting algorithms consist of a weighted sum of
iteratively learned weak classifiers. When a new weak classifier is added, the training data
is reweighed such that misclassified samples gain weight while correctly classified samples
lose weight. This way, the next weak classifier will concentrate more on the misclassified
samples. Different Boosting algorithms vary mainly in the way, on how the training data and
weak classifiers are weighted. The most popular boosting algorithm is Adaboost, formulated
by [Freund and Schapire, 1997] and [Freund and Schapire, 1999].

Discrete Adaboost The Discrete Adaboost algorithm proposed by [Freund and Schapire,
1997] and [Freund and Schapire, 1999] has been the center of many studies. The input to the
algorithm consists of a set T of training samples (descriptive vectors) associated with their
respective labels {x1, y1}, . . . , {xm, ym}. Based on these vector-label combinations, a clas-
sification function f(x) is trained in order to return a class label for a test sample x. During
training, all training samples are equally weighted before the first iteration. In each iteration
t a weak classifier ht is trained with output domain {−1, 1}. Based on the training error
value ε, the training samples are re-weighted. With higher weights for misclassified samples,
the classifier in the next iteration will concentrate more on these misclassified samples. The
weak classifiers are also weighted based on their accuracy. The final output f(x) is simply
the sign of the weighted weak classifiers’ sum.

Real Adaboost As the weak classifiers in discrete Adaboost can only return a binary
decision, this drives the weak classifiers to make strict decisions even in ambiguous situations
and thus reduce the accuracy of the decision confidence. The Real Adaboost as described
in [Friedman et al., 2000] deals with this problem by providing a non-binary weak classifier
decision. During training, in each iteration t, a class probability estimate pt is set based on the
weighted training data. This estimate represents the probability of the sample belonging to
the positive class and is used to calculate the weak classifier function ht. The training sample
weights are updated according to the weak classifiers’ decisions as they provide a sense of
confidence. The final classifier f(x) is the sign of the weak classifiers’ sum. Here, the weak
classifiers are not weighted as they provide a confidence measure (weight) embedded in their
output.

Gentle Adaboost In practice, the number of samples available for training is limited and
many data outliers exist in the training data. In these cases, the Real Adaboost algorithm may
lead to very high outputs of weak classifiers, which will cause training problems because of
its effect on the weight updates, as well as the final hypotheses. Gentle Adaboost avoids the
problem of high-valued weak classifiers output by limiting the domain of their output to the
interval [−1, 1]. The Gentle Adaboost algorithm is introduced in [Friedman et al., 2000].
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Instead of fitting a probability estimate on the training data and from this estimate calculate
the weak classifier ht as in Real Adaboost, the weak classifier in Gentle Adaboost is directly
calculated by fitting itself with weighted least-squares to the training data. The weak classi-
fier can be seen as ht(x) = Pw(y = 1|x)− Pw(y = −1|x) as described in [Friedman et al.,
2000]. This will limit the weak classifier output to [−1, 1].
In summary, different methods of Adaboost classification can be used with different types
of weak classifiers and different types of features. They are also simple to implement and
less prone to over-fitting than most of other boosting classifiers. Classifiers based on Ad-
aboost are used in various areas such as pedestrian detection in combination with Histogram
of Oriented Gradients (HoG) features by [Dalal and Triggs, 2005] and by [Viola and Jones,
2001a] in combination with Haar-like features for face detection. Discrete Adaboost pro-
vides a less accurate confidence measure for the classification results. In Real Adaboost, this
classification confidence can be calculated more accurately, but the algorithm faces problems
dealing with real training data in practice (limited data set and outliers). Gentle Adaboost
tolerates the imperfections in the training data and, as Real Adaboost, provides an accurate
classification confidence measure.

Cascade Classifier

Using a single classifier for object classification may lead to unoptimized solutions. For
once, the classifier may achieve a high correct classification rate but usually combined with
a high error rate as well. This results from the limited amount of training samples (especially
negative ones) included in the training procedure due to learning machine limitations. Also,
using a single classifier is not an optimized solution in terms of computational efficiency and
therefore not suitable for real-time applications. In a single classifier case, all the samples
to be classified, whether simple or complicated, will require the same high computational
effort. A technique known as Cascade Classifier aims to achieve a high detection rate with
relatively small error combined with a significant improvement of the computational effi-
ciency. This section presents the Cascade Classifier structure, its functionality, training and
feature selection technique. The algorithm presented here is based on Boosting classifiers
in a similar manner to [Viola and Jones, 2001a], although, different types of base classifiers
can be used as stages in a cascaded structure.

Cascade functionality The Cascade Classifier, as used by [Viola and Jones, 2001a,
Viola and Jones, 2001b] and [Viola and Jones, 2004] in combination with Haar-like features
consists of stages represented by boosting classifiers in a cascaded arrangement. As the
possibilities of negative samples are much higher and diverse in general, the first stages of
the cascade must reject as many negative samples as possible, while keeping a high hit rate.
To achieve a fast performing classifier, the number of features evaluated in each stage should
be as small as possible. Usually, the majority of the negative samples can be rejected using a
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Figure 3.8: Cascade of Boosting Classifiers structure. The green squares and red circles rep-
resents positive and negative samples to be classified. The first stages reject most
of the negative samples. These rejected samples will not be further processed by
subsequent stages. Ideally, the initial stages will consider a smaller number of
features, therefore, will be less complicated. The number of weak classifiers in
each stage n2, n1 and n0 is related to the number of considered features and the
computational complexity of the stage. Usually in this case n2 < n1 < n0.

small number of features, this means, they will be rejected in the first stages without a large
computational effort. A small number of more complicated negative samples will advance
in the cascade to more complex stages that use a larger number of features and thus are more
computationally demanding, see Figure 3.8. In more details, each stage classifier predicts the
sample class (positive or negative). If the sample is predicted as negative it will not be further
processed by the next stages and will not consume additional computational effort. Only the
samples that pass a certain stage will be further classified by the next one. Therefore, the
number of processed samples will get smaller and smaller as they advance in the cascade
stages, and only the sample that passes all the stages will be classified as a positive.

Cascaded feature selection Using Haar-like features and local structure features based
on MCT (Sec. 3.1.1) results in a big number of features most of which are irrelevant for rec-
ognizing particular objects. In a cascade classification structure, the minimum number of
features must be chosen to achieve the required performance in each stage. To achieve that,
a feature selection technique must be used to determine the most informative and distinctive
features for each stage. In the cascade of boosting classifiers presented in [Viola and Jones,
2001a], feature selection in each stage is integrated within the boosting algorithm. [Viola
and Jones, 2001a] restrict the boosting classifiers to use only one feature per weak clas-
sifier. Therefore, measuring the error of all the weak classifiers under the current sample
weights provides a quality measure for all single features. The feature that produces the
weak classifier with the lowest error is chosen to be the next weak classifier added to the
final classification function.

Cascade Classifier Training As mentioned before, the cascade classifier consists of
stages of simpler classifiers. Here, the stage training procedure of the cascade of boosting
classifiers is presented. Then, the relation between the subsequent stages during training is
discussed.
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Stage Training: For simplicity, the boosted cascade stage training algorithm for Discrete
Adaboost is described here as used in [Viola and Jones, 2001a]. Knowing that Real Ad-
aboost or Gentle Adaboost algorithms differ from the Discrete Adaboost only by the weak
classifier formulation and the training sample weight update rule, it is clear that these boost-
ing techniques can be easily placed within the described approach. In [Viola and Jones,
2001a], the approach starts by initializing the weights for the training samples so that the
positive sample weights and the negative sample weights are equal per class and sum up
to one. From all the one-feature based possible weak classifiers and in each iteration, the
algorithm selects the weak classifier with the lowest training error. After the weak classifier
selection step, the training samples are re-weighted, so that the correctly classified ones get
lower weights while the wrongly classified ones get higher weights. Therefore, the weak
classifier (feature) selected in the next iteration will concentrate on the miss-classified sam-
ples.
Cascade Training: Cascade classifier training is a tradeoff procedure between computa-
tional efficiency and classification performance. The tradeoff is made between the number
of cascade stages, the number of features in each stage, and the stage training performance
thresholds. In practice, this optimization problem is very hard to be solved. For a cascade
classifier, if a detection rate, a false positive rate, and the number of cascade stages were de-
cided, knowing that each stage in the cascade reduces the detection rate and the false positive
rate, the stage minimum detection rate and maximum false positive rate can be calculated.
If D is the cascade classifier detection rate and F its false positive rate, ds the minimum
stage detection rate, fs the maximum false positive rate for each stage and S the number of
cascade stages then

D =
S∏
s=1

ds, F =
S∏
s=1

fs. (3.8)

It must be mentioned that in order to train a cascade classifier, two sets of data are required.
One is called the training set and is used for the separate training of each stage. The other
set is called the validation set and is used to measure the performance of each stage during
training, as well as the whole cascade performance. The use of the validation set will be
clear in the following paragraphs. Before starting the cascade classifier training, some pa-
rameters must be set. These parameters are the maximum false positive rate per stage fs,
the minimum detection rate per stage ds, the cascade minimum detection rate D, the cascade
maximum false positive rate F and the maximum number of stages S. In each stage and
after every iteration (adding a new weak classifier), the performance of the stage is measured
by classifying on the validation set. If the stage training conditions of fs and ds are reached,
the stage training is terminated. Otherwise, a new weak classifier (feature) is added to the
stage until it meets the minimum detection rate ds and maximum false positive rate fs. After
the training of each stage, the overall performance of the cascade classifier is measured over
the validation data set. If the overall minimum detection rate D and the maximum false pos-
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itive rate F conditions are met, the cascade training is terminated. Otherwise, a new stage is
added to the cascade until the maximum number of stages S is reached. Instead of assigning
a maximum false positive rate fs and minimum detection rate ds for each stage, some works
assign a fixed number of features or weak classifiers for each stage. This is done for example
in the work of [Fröba and Ernst, 2004] for face detection.
Classification Confidence: In order to get information about the classification decision cer-
tainty, a confidence measure of the classifier decisions must be acquired. Calculating the
confidence of a single classifier is relatively simple compared to the case where the decision
of a cascaded classifier is considered. As the cascade of boosting classifiers is the main type
of classifiers used in this work, the confidence measurements are going to be presented for
this classifier’s framework. None the less, dealing with a cascade of a different type of base
classifiers can be easily adapted to the confidence calculations presented here. For a single
boosting classifier, whether it is a standalone classifier or a stage in a cascade classifier, the
final hypothesis is a weighted sum of the weak classifiers’ results. A weak classifier result
represents a measure of its decision confidence. The classification confidence of a single
boosting classifier is the difference between the weighted sum of the weak classifiers and the
decision threshold. Assuming a Gentle Adaboost algorithm with a final hypothesis, that is

H(x) = sgn

(
T∑
t=1

ht(x)

)
. (3.9)

Then, the confidence c(x) of this classifier decision can be calculated as

c(x) =

(
T∑
t=1

ht(x)

)
− α, (3.10)

with a decision threshold α. For cascade classifiers, different techniques are used to calculate
the classification confidence. In the work of [Horton et al., 2007] the cascade confidence is
calculated by summing up the confidences of the separate stages one by one while stepping
through the cascade and stop when a stage returns a negative confidence. Another approach
would be to give each stage a confidence weight, incrementing while stepping towards the
last stage. These weights will be summed up for all successfully passed stages, plus the confi-
dence of the last passed stage as calculated in equation (3.10). In this work, the classification
confidence is calculated by summing up the confidence values of the separate stages until the
last stage. In case the last stage is not reached or passed successfully, the confidence value
is set to zero. Let Cc(x) be the cascade classifier decision confidence for a classified sample
x, cs(x) the s-th stage classification confidence of the sample x and S the total number of
cascade stages. Then the cascade classification confidence is calculated as

Cc(x) =


∑S

s=1 cs(x), ∀s ∈ {1, 2, . . . , S} : cs(x) > 0

0, ∃s ∈ {1, 2, . . . , S} : cs(x) ≤ 0
. (3.11)
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This approach for cascade classifier confidence calculation assures, that only samples pass-
ing all the cascade stages are considered as potential object candidates. Based on different
classification confidence values, the head localization and head pose estimation decisions are
made later on.

Winnow Classifier

Similar to other machine learning algorithms, the Winnow classifier creates a decision hy-
perplane separating different classes given labeled training data. The main advantage of this
algorithm is, that it performs well in high dimensional spaces, where many dimensions are
irrelevant. Winnow gains its properties from using a multiplicative weight update rule. The
Winnow algorithm presented here is similar to the one presented in [Littlestone, 1988] and
used by [Fröba and Ernst, 2004]. It is assumed that each sample xi ∈ Rd

≥0 belongs to a class
yi, yi ∈ {−1, 1} and W = {w1, . . . , wd} is a weighting set for the descriptor vector elements
(features). All weights in W are initially set to 1. A threshold θ is introduced such that the
learned winnow classifier decision is

f(x) =

1, if
∑d

k=1wkx
(k)
i > θ

−1, if
∑d

k=1wkx
(k)
i ≤ θ

. (3.12)

This classification model goes under an iterative weights update. In each Iteration, the
weights are changed only if the classifier result was wrong. Even then, only the weights
associated with non-zero features are updated. Assuming the weight update rates to be α and
β, where α > 1 and 0 < β < 1. In each iteration, a new training sample xi is classified and
depending on the result, the weights are updated for all k = 1, . . . , d in the following way.
Case 0: Classifier is correct: no weight update
Case 1: Classifier prediction is 1 (positive) but correct response is −1 (negative):

wk =

βwk, if x(k)
i > 0

wk, if x(k)
i = 0

(3.13)

Case 2: Classifier prediction is −1 (negative) but correct response is 1 (positive):

wk =

αwk, if x(k)
i > 0

wk, if x(k)
i = 0

(3.14)

3.1.3 Multi-class Classification

Head pose estimation as discussed here is a multi-class classification problem that aims to
map continuous head poses to a number of discrete head pose classes. Multi-class classi-
fication can be built on a direct method just like the nearest neighbor approach [Runkler,
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2012], where an unknown sample is given the class label of the nearest training sample in
the feature space, a space where each sample is represented by a point depending on the fea-
ture’s value. Further direct methods are for example decision trees, random forests or neural
networks [Vapnik, 1995]. Other algorithms are based on a number of binary classifiers such
as the one-vs.-all classifier or the one-vs.-one multi-class classifier, which in literature also
appears as all-vs.-all classifier. A one-vs.-all classifier is a classification framework built to
separateN classes, and hence consists ofN binary classifiers. Each one is trained to separate
samples of one class from all the other classes’ samples. [Rifkin and Klautau, 2004] proved
that the one-vs.-all classifier is as accurate as the more sophisticated and computational in-
tense methods of [Weston et al., 1998] and [Crammer and Singer, 2002], who consider a
direct approach by training one single classifier. The idea of the one-vs.-one classifier is to
train multiple classifiers separating one from another of N classes. In total this results in
N(N − 1)/2 trained classifiers. Given a test sample, a majority vote between all classifier
class outputs provides the final class decision. [Debnath et al., 2004] present an efficient one-
vs.-one SVM without the necessity to train all N(N − 1)/2 hyperplanes.
The method used in this work for multi-class classification (head pose estimation) is similar
to the one-vs.-all classifier as it is based on binary classifiers, but with some differences.
First, as this system tries to combine head localization and head pose estimation, the classi-
fier needs not only to decide on the head pose class but also if a current area of interest in
the image includes a person head or background. On the other hand, the head movement is
continuous and so is the pose of the head. Therefore discrete decisions for discrete poses are
hard to make and do not provide full information about the actual head pose. A modified
one-vs.-all classification framework is described in details in Section 3.1.4. The structure of
the multi-class decision making and derivation of a head pose class probability used in this
work are discussed in details in Section 3.1.7.

3.1.4 Head Pose Classifier Training Procedure

In this work the continuous full head pan angle range is mapped into a discrete set of eight
head pose classes. Therefore, discretization problems generating the training data may ap-
pear in separating border elements of neighboring classes. In other words, one is facing the
problem of a training set with fuzzy borders between the different classes, see Figure 3.9. A
conventional one-vs.-all training (Sec. 3.1.3), where a classifier for a certain class is trained
against all the other classes, may lead to an unstable training process, especially when using
outlier-sensitive boosting algorithms. To prevent this problem a modified one-vs.-all train-
ing procedure is proposed, where a special head pose classifier is trained against all the other
poses, except of its direct neighboring poses. Experiments show, that this yields more stable
classifiers and higher classification rates. In order to separate image parts including pedes-
trian heads from background, areas around the head and background images are additionally
included into the negative set. Figure 3.10 shows some examples for real-world training data.
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Figure 3.9: Distribution of the manually labeled head samples with fuzzy borders between
different head pose classes

Left, 3283 samples Backleft, 2018 samples Back, 2492 samples Backright, 2018 samples
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negatives

Figure 3.10: Examples of the training data for eight pedestrian head pose classes and negative
samples

The number of samples in each pose associated training set differs due to the distribution over
pedestrian appearances in driver assistance scenarios. For each discrete head pose class two
types of classifiers are trained namely boosting cascades integrating Haar-like features and
local structure features using the MCT respectively, see Section 3.1.1 and Section 3.1.2. This
results in eight head pose associated classifiers per feature type. The detailed setup for the
trained classifiers will be explained in later experiments in Section 3.4.

3.1.5 Selection of Head Search Domain

Within the overall system (Fig. 3.1), detected pedestrian candidates are the input for the head
localization and head pose estimation system developed here. The proposed method will
search for the pedestrian head in the upper part of a given pedestrian hypothesis by scanning
the same using the eight trained head pose classifiers mentioned in Section 3.1.4. On average,
the head represents approximately 1/8 of the total human height, [Bogin and Varela-Silva,
2010]. If a perfectly aligned pedestrian detection is assumed, the mentioned value would be
fine. In practice however, pedestrian detectors sometimes will output a pedestrian detection
box that is not perfectly aligned with the pedestrian appearance in the image. This problem
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(a) (b)

Figure 3.11: Pedestrian detection (blue), head search domain (red) and head detector search
windows (green). The ideal height for the head search domain of 1/8 of the
pedestrian’s height (a), does not hold for imperfect aligned pedestrian detection
hypothesizes (b). This has to be considered when defining the head search area.

is handled by enlarging the head search region. Resulting from previous experiments, a
head search domain is considered having the same width as the pedestrian detection box
but choosing a height which is 20% of the pedestrian box’s height. This area is scanned at
multiple scales and image positions to detect heads at different sizes and locations. For this,
an image pyramid is calculated including the scaled head search areas with scaling factors
varying from 0.7 to 1.0. An example is given in Figure 3.11.

3.1.6 Calculation and Normalization of Confidence Values

Classifying a certain region of an input image using a sliding window technique results in
eight confidence values per search position (Sec. 3.1.2). These values are used later in a
comparative manner to determine the localization and the pose of the pedestrian’s head.
Since the eight pose classifiers are trained independently, the different confidence values
are also independent, thus will have different ranges. To bring the different outcomes to a
comparable level, confidence value normalization is performed. For this, each head pose
classifier first is evaluated on its training data to compute the mean output confidence value
C̄c. To normalize the different classifiers’ confidence value ranges, the mean confidence
values C̄c, c = 1, . . . , 8, need to be equalized. This can be achieved by multiplying these
values with normalization coefficients αc such that αcC̄c = αζ C̄ζ , ∀ζ 6= c. Normalization
with respect to the median of all mean confidence values results in

αc = median
ζ=1,...,8

{C̄ζ}/C̄c, c = 1, . . . , 8. (3.15)

The outputs Cc(p) of the different classifiers at a special image position p = (u, v)′ are then
normalized by the corresponding coefficient αc, i.e.,

Cc,norm(p) = αcCc(p). (3.16)
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Figure 3.12: Distribution of confidence values for considered head pose classifiers over train-
ing data. (a) Original values with different ranges of values. (b) Normalized
values with a common range of values.

Figure 3.12 shows the initial distribution of confidence values over the training set for dif-
ferent head pose detectors and their corresponding distributions after normalization. While
the ranges of values differ significantly for different classifiers, the normalized confidence
values lie in the same range. In the following normalized confidence values are assumed
ignoring the additional label.
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3.2 Head Pose Estimation for Video Sequences

3.1.7 Head Localization and Head Pose Estimation

The search for the head within a given pedestrian hypothesis is limited to the defined head
search domain introduced in Section 3.1.5. This area will be scanned by a sliding window
at multiple scales, where each image position ph is evaluated by all different head pose
classifiers. As a result one gets eight normalized confidence values per search position. A
Bayesian decision is considered to assign the sample x the position p̂h and head pose class
θ̂ with the highest a posteriori probability, that is

(p̂h, θ̂) = arg max
ph,j∈{1,...,8}

P (ph, θj|x), (3.17)

with
P (ph, θj|x) ≈ Cj(ph)∑8

k=1 Ck(ph)
, ph ⊂ x, (3.18)

where Cj, j = 1, . . . , 8 represent normalized classifier confidence values (Sec. 3.1.6) and
θj ∈ {−180,−135, . . . , 180} the j-th head pose class’s associated head pan angle. There-
fore, the head localization and head pose estimation is performed by simply taking that
particular head position and head pose class, which scores the maximum confidence over all
head pose classifiers, positions, and scales within the head search area. Hence, the classifier
outputs are used twice, for head localization and estimation of the head pose.
The proposed single-frame based approach for combined pedestrian head localization and
head pose estimation is used as an initialization step for a following head pose tracking pre-
sented in the next section.

3.2 Head Pose Estimation for Video Sequences

Section 3.1 describes the estimation of pedestrian head poses at very low resolution in single
images. One drawback can be, that uncertainties of the head pose classifiers in one single
frame can directly have impact on the overall performance or later function decisions. Ad-
ditionally, lacks of detections in case of occlusions cannot be handled. As the underlying
data sources are video-sequences, the idea to implement a head pose tracking arises immedi-
ately in order to overcome the above mentioned problems. The basic content of this section
can be summarized as follows. The presented method extends the single frame based ap-
proach as presented in Section 3.1 by including head pose tracking over time. This leads to a
more robust, more reliable and more efficient pedestrian head pose estimation. Additionally
through the nature of the new approach it is possible to estimate continuous head pan angles
instead of determining only one of eight discrete head pose classes (cf. [Robertson and Reid,
2006, Orozco et al., 2009, Siriteerakul et al., 2010]). An overview for the tracking method
can be seen in Figure 3.13.
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Figure 3.13: Head pose tracking system overview. The upper part (blue) of the pedestrian
input image will be scanned by a set of head pose classifiers. Depending on the
resulting confidence values {Ci} the head position and head pose get initialized.
Additionally, tracking over time is realized using a particle filter, where the head
pose classifiers are used once again to update the particle weights.

Assuming a detected pedestrian, the position and the pose of its head are initialized by the
single frame based approach presented in Section 3.1. In brief, a head search area will be de-
fined to be the upper part of the detected pedestrian. This area will be scanned by eight head
pose associated classifiers resulting in a set of confidences about potential head candidates
per search location. A consideration of these confidence values results in a head position and
head pose prediction. This will be the input for the tracking module, where a particle filter is
implemented capturing the head position and head pose over time. The final head pan angle
will be a continuous estimate within the range from -180◦ to 180◦. The presented method
can be applied easily on top of an existing pedestrian detection system and used as input for
later pedestrian intention recognition (Chap. 5) or path prediction (Chap. 6).
The remaining part of this section is organized as follows. Section 3.2.1 presents the theo-
retical background for Bayesian tracking together with a general formulation of the particle
filtering approach. Section 3.2.3 focuses on the initialization of the head position and its
pose. In Section 3.2.4 the initialized person head pose will then be tracked, applying the
principles of Section 3.2.1.

3.2.1 General Formulation of Bayesian Tracking

Consider the discrete-time system model

xk = fk(xk−1,νk−1) (3.19)

zk = hk(xk,nk), (3.20)
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where xk ∈ X is the system state vector belonging to a state space X ⊆ Rd and has to be
estimated in time k = 1, 2, . . .. The vector zk ∈ Z represents the observations obtained
at time instance k with Z defining the observation space. νk and nk are mutually indepen-
dent stochastic processes following an arbitrary distribution and encoding the system noise
and the observation noise, respectively. Both mappings fk (state evolution model) and hk
(observation function) are assumed to be nonlinear, in general. Since the system and the
observations are stochastic, only the probability density function (pdf ) p(xk|z1:k) of the state
xk can be determined, given all past and current observations z1:k := {z1, ..., zk}. Hence,
in Bayesian tracking the goal of the state estimation problem is to determine the conditional
(posterior) pdf p(xk|z1:k) at each time step k. Assuming a starting state prior distribution
p(x0) is known, the posterior pdf can be recursively determined according to the prediction
and update steps.

1. Prediction (prior):

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.21)

2. Update (posterior):

p(xk|zk) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.22)

=
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

. (3.23)

p(xk|xk−1) is the state transition pdf, which is defined by the system equation (3.19), and
p(zk|xk) is the observation likelihood function defined by the measurement model in equa-
tion (3.20). Equation (3.23) represents Bayes’ rule. For some applications of Bayesian
tracking no analytic solution exists, especially, when trying to solve the integral in the de-
nominator of equation (3.23). To handle this fact, particle filters provide an opportunity to
approximate the optimal Bayesian solution, see [Arulampalam et al., 2002].

3.2.2 Introduction to Particle Filtering

A state space trajectory x0:k = {x0, x1, x2, ..., xk} ⊂ X is defined, which represents the
evolution of the state x ∈ X during the time interval from 0 to k. To circumvent the in-
tegration that is necessary for the evaluation of the denominator of the right-hand side in
equation (3.23), in particle filtering (PF), the posterior pdf p(x0:k|z1:k) is approximated by
a set of random support samples (particles) {x(i)

0:k, i = 1, ..., N} with associated weights
{w(i)

k , i = 1, ..., N}. The weights are normalized such that
∑

iw
(i)
k = 1.
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The posterior state pdf at k is approximated as

p(x0:k|z1:k) ≈
N∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k), (3.24)

with δ denoting the Dirac delta function. Each particle with the respective weight {x(i)
0:k, w

(i)
k }

can be considered as a hypothesis that the real state trajectory is x(i)
0:k with a certainty of w(i)

k .
This hypothesis is updated in two steps.

1. State update: Randomly draw N new samples {x(i)
0:k+1, i = 1, ..., N} by applying the

state evolution model (eq. (3.19)) to the previous state x
(i)
k , i = 1, ..., N

2. Observation update: Update the weights w(i)
k+1, i = 1, ..., N with respect to the likeli-

hood function of the current observation.

It can be shown that ifN →∞, equation (3.24) approaches the true posterior pdf p(x0:k|z1:k).
In both steps, the principle of Sampling Importance Re-sampling (SIR) plays a crucial role
to drive particles across time, cf. [Arulampalam et al., 2002].

Sampling Importance Re-sampling (SIR) Filter

For the task of approximating the pdf p(x), which is difficult to sample from, it is sup-
posed, that a test pdf π(x) ∝ p(x) exists, which can be evaluated for a given x. Let
x(i) ∼ q(x), i = 1, ..., N , be samples that are drawn (sampled) from another pdf q(x),
which is called importance density or proposal distribution. Then, an approximation of the
pdf p(x) is given by

p(x) ≈
N∑
i=1

w(i)δ(x− x(i)), with w(i) ∝ π(x(i))

q(x(i))
and

N∑
i=1

w(i) = 1, (3.25)

where w(i) is the normalized weight of the ith sample. Given this principle, the weights in
equation (3.24) are defined to be

w
(i)
k ∝

p(x
(i)
0:k|z1:k)

q(x
(i)
0:k|z1:k)

, (3.26)

where the proposal distribution q(x) can be arbitrarily chosen. Nevertheless, the choice of
q(x) is a relevant step. [Arulampalam et al., 2002] show, that if q(·) is chosen to factorize as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1), (3.27)

then the weights are recursively determined by

w
(i)
k ≈ w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, zk)

. (3.28)
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Algorithm 1 Sampling Importance Re-sampling (SIR) Particle Filter Algorithm

[{x(i)
k , w

(i)
k }Ni=1, x̂k] = SIR[{x(i)

k−1, w
(i)
k−1}Ni=1, zk]

for i = 1 : N do
draw x

(i)
k ∼ p(xk|x(i)

k−1)

update particle weight w(i)
k according to eq. (3.31)

end for
calculate sum over weights s =

∑N
j=1w

(j)
k

for i = 1 : N do
normalize weight, w(i)

k = w
(i)
k /s

end for
calculate next state hypothesis x̂k according to eq. (3.32)
re-sample particles, see [Arulampalam et al., 2002]

This expression can be easily evaluated for a given triple of x(i)
k−1, x(i)

k and zk since it contains
the known measurement, the state model in the numerator and the user-defined proposal
distribution q in the denominator. A frequently used proposal distribution is the transition
prior, i.e.,

q(x
(i)
k |x

(i)
k−1, zk) = p(x

(i)
k |x

(i)
k−1), (3.29)

see [Arulampalam et al., 2002]. Given this assumption, the weight update process can be
expressed by the recursion

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ). (3.30)

It has been shown by [Doucet et al., 1998], that the variance of the weights can only increase
over time. This means in general, that after a few iterations all but one weight will be close
to zero, which is called the degeneracy problem. To prevent this, particles are regularly re-
sampled, i.e., particles with small weights are eliminated, and new particles are created at or
around those having larger weights. There exist several efficient re-sampling algorithms of
computational complexity O(N ), that typically map the newly created particles to existing
ones having high weights, such as systematic re-sampling in [Arulampalam et al., 2002], that
is later used in this work. Re-sampling at every time step k, thus re-initializing the weights
to w(i)

k−1 = 1/N, i = 1, ..., N will further simplify equation (3.30) to

w
(i)
k ∝ p(zk|x(i)

k ). (3.31)

The track’s new state can then be determined by the conditional expectation value of the
current posterior p(xk|zk),

x̂k = E(xk|zk) =

∫
xkp(xk|zk)dxk ≈

∫
xk

N∑
i=1

w
(i)
k δ(xk − x

(i)
k )dxk =

N∑
i=1

w
(i)
k x

(i)
k .

(3.32)
In this work,the SIR particle filtering method is implemented as described by Algorithm 1.
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Besides SIR, [Arulampalam et al., 2002] propose two further formulations for a particle
filter namely auxiliary sampling importance re-sampling (ASIR) and the regularized parti-
cle filter (RPF), that mainly differ in the choice of the importance density. Both methods
prove to outperform standard SIR in various applications. Nevertheless, SIR is leading to
acceptable performance for the scope of this work with the advantage of having a simpler
formulation and therefore being less computational expensive. In the following sections, the
mentioned basic theory is applied to the head pose estimation problem, where one seeks to
give estimates for the observation likelihood function p(zk|x(i)

k ) based on head pose detector
confidence values.

3.2.3 Head Position and Head Pose Initialization

In order to track the pedestrian’s head position and head pose, both have to be initialized
first. This can be achieved by the single frame based approach presented in Section 3.1.
There, eight different head pose classifiers are trained, associated to eight discrete head pose
classes. These classes, each having a range of 45◦, cover the full head pan angle range
of 360◦, see Figure 3.9. Given a pedestrian hypothesis (bounding box) B, the so-called
head search area Asearch ⊂ B is defined to be the upper part of the person’s bounding box.
Asearch will be scanned at multiple scales by the trained head pose associated classifiers,
resulting in several classifier confidence values per search position. Therefore, Asearch can be
described as a finite set of triples including all image positions (u, v) at a particular scale s,
that need to be evaluated. I.e., Asearch = {(u(1), v(1), s(1))′, . . . , (u(N), v(N), s(N))′}. The final
position and pose of the pedestrian’s head is determined performing a Bayesian decision,
where the posterior probability of having a head at a particular position and pose, given
the head search area will be maximized. The posterior probability will be approximated
by the confidence outputs of the head pose classifiers, that are evaluated restricted to the
area Asearch. Classifier outputs are obtained from boosting cascades integrating Haar-like,
cf. [Viola and Jones, 2001a], or local structure features using MCT, cf. [Fröba and Ernst,
2004], for each of the head pose classes within a modified one-vs.-all framework. While
testing, the track initialization is given as mentioned previously, thus taking that particular
position and head pose, which holds the highest confidence over the whole head search area.
Defining the state space vector x := (u, v, s, θ)′ capturing the image coordinates (u, v) of the
head’s position, the scale s of the detection pyramid level and the associated discrete head
pan angle θ ∈ O = {−180◦,−135◦, . . . , 135◦}, the initial state is estimated by

x̂0 = arg max
ξ∈Asearch,o∈O

P (x = (ξ, o)′|Asearch), (3.33)

with
P (x = (ξ, o)′|Asearch) = P {(u, v, s)′ = ξ, θ = o|Asearch} ≈ Co(ξ). (3.34)
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Co(ξ) is the confidence value resulting from evaluating the head pose classifier corresponding
to the discrete head pose class o ∈ Θ at the image position and scale, which are comprised
by ξ. To ensure the comparability of the confidence values, that are resulting from different
independent classifiers, and to represent a probability measure, each original value is mapped
to the range [0, 1] by a sigmoid function f(C) = 1/(1 + e−(aC+b)). The parameters a and b
are determined by a logistic regression, cf. [Mehta and Patel, 1995], independently for each
classifier using the confidence values from a validation set. The state x̂0 is the input for the
head pose tracking part using particle filtering discussed in the next Section 3.2.4.

3.2.4 Particle Filtering for Head Pose Tracking

In order to achieve robust head pose estimation results over time, the initialized head position
and head pose given in Section 3.2.3 are tracked by a particle filter algorithm presented in
Section 3.2.2. This section describes the basic parts for the design of the particle filter used
within this work namely state evolution model and the state observation model. One problem
arises, when modeling the system and measurement noise with respect to the tracked head
pose state. A frequently used candidate for system noise modeling is the normal distribution.
This however is not suited for periodic angular signals given by the head pose. An equivalent
of the normal distribution for the circular domain is given by the von Mises distribution,
which is presented in the following.

The von Mises Distribution

The von Mises probability density function for the angle θ is given by

M(θ;µ, κ) =
eκ cos(x−µ)

2πI0(κ)
, (3.35)

where I0(k) is the modified Bessel function of order 0. The parameters µ and 1/κ are
analogous to µ and σ2 (mean and variance) in the normal distribution. I.e., µ is a measure for
location (the distribution is clustered around µ), and κ is a measure for concentration. For κ
equal to zero the von Mises distribution reduces to a circular uniform distribution, while for
larger κ, the distribution becomes very concentrated around the angle µ, i.e., approaching a
normal distribution in θ with mean µ and variance 1/κ.

State Evolution Model

As potential state propagation models one could think of complex motion models that capture
human head turnings. In practice, however, much simpler models turn out to give sufficiently
high accuracy especially for head pose tracking at very low resolution.

47



3 Monocular Pedestrian Head Localization and Head Pose Estimation

In this work, the state and generated particles are propagated by an evolution model, which is
assumed to be constant except of an additive random noise term using a Gaussian for position
and scale, and a von Mises distribution for the head pose, respectively. To be more specific,
the head movement is modeled by an additional uncertainty on the current state assuming
no significant change within two time instances. The state evolution model is defined as
follows,

xk :=


uk

vk

sk

θk

 =


uk−1

vk−1

sk−1

θk−1

+ νk−1. (3.36)

νk−1 is a zero mean joint distribution comprising a normal distribution for uncertainty prop-
agation of the state’s image position and scale and a von Mises distribution modeling the
head pose evolution process noise, i.e.,

νk−1 ∼ N


0

0

0

 ,

σu 0 0

0 σv 0

0 0 σs


⊗M (θ; 0, κθ) (3.37)

with uncertainty parameters σu, σv, σs and κθ. All process noise parameters get attuned
for the later application through multiple simulations using a validation data set. Com-
pared to Section 3.2.3, the head pose state θk is now a continuous value within the interval
[−180◦, 180◦).

State Observation Model

Tracking starts by randomly drawingN samples x(i)
k = (u

(i)
k , v

(i)
k , s

(i)
k , θ

(i)
k )′ around the initial

head position x0. The particle weights are initialized to be equal, summing up to one. The
measurement vector zk ∈ R4 will include estimates for position, head size and discrete head
pose class, depending on the head pose classifier outputs. As the head pose detectors only
give a discrete head pose class as measurement output, for the state observation model the
step from the continuous to discrete domain with regard to the actual observed discrete head
pose class Θ ∈ O = {−180◦, . . . , 135◦} has to be performed. Therefore, the observation
likelihood function (eq. (3.23)) at each particle state for time instance k is defined as

p(zk|x(i)
k ) =

∑
o∈O

p(zk|Θ = o,x
(i)
k )p(Θ = o|x(i)

k ) (3.38)

=
∑
o∈O

p(zk|Θ = o, u
(i)
k , v

(i)
k , s

(i)
k )p(Θ = o|θ(i)

k ), (3.39)

using the law of total probability. The inner term p(Θ = o|θ(i)
k ) models the probabilistic

relation between the actual head pose θ(i)
k and one of the discrete head pose class realizations
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o ∈ O and can be calculated using Bayes’ Theorem by

p(Θ = o|θ(i)
k ) =

p(θ
(i)
k |Θ = o)P (Θ = o)∑

o∈O p(θ
(i)
k |Θ = o)P (Θ = o)

. (3.40)

For a particular o, p(θ(i)
k |Θ = o) is modeled by a von Mises distribution centered at the value

of µo ∈ [−180, 180) with the concentration parameter κo, i.e.,

p(θ
(i)
k |Θ = o) ∼M(θ;µo, κo). (3.41)

p(θ
(i)
k |Θ = o) can also be interpreted as the distribution for the class dependent discretization

error.
The prior distribution p(Θ) is modeled to be uniform, thus

P (Θ = o) = 1/8, ∀o ∈ O. (3.42)

The first inner term in equation (3.39) is now the measurement likelihood with respect to a
discrete head pose class o ∈ O. This is now estimated by the detection confidence output
for the head pose classifier corresponding to the head pose class o evaluated at the particle’s
head position similar to equation (3.34), hence

p(zk|Θ = o;u
(i)
k , v

(i)
k , s

(i)
k ) ≈ Co(u(i), v(i), s(i)). (3.43)

After re-sampling and propagating with respect to the evolution model, the particle weights
are updated according to equation (3.31) and the likelihood observation function from equa-
tion (3.39), followed with the estimation of the next state applying equation (3.32).

3.3 Datasets

This section describes the datasets that are being used throughout the experiments in Sec-
tion 3.4. The presented approach gets evaluated on three kinds of datasets varying in their
application background and proposed ground truth information. Each dataset is described in
detail by means of statistics over samples per head pose class and head size occurrences.

3.3.1 The CLEAR Dataset

One possible choice for a dataset is the CLEAR dataset, which was generated for the CLEAR

workshop in 2008, cf. [Stiefelhagen et al., 2008, Voit et al., 2008]. The data consists of mul-
tiple video sequences including 15 different persons recorded with four cameras mounted
at the upper corners of a smart room. During recording, all persons were equipped with a
magnetic motion sensor to measure their ground truth head orientation (pan, tilt and roll)
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Figure 3.14: Example images recorded with camera 1 for all 15 person datasets contained
within the CLEAR dataset.

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

4796 4794 4555 4923 4789 4923 4555 4794

Table 3.1: Number of samples per head pose class for CLEAR training data.

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

2322 2460 2300 2464 2406 2464 2300 2460

Table 3.2: Number of samples per head pose class for CLEAR evaluation data.

relative to a fixed grid, which was aligned with the smart room’s coordinate system. Us-
ing the camera calibration parameters, the measured 3D head pan angle can be transformed
into each camera frame and then used for image based head pose evaluation. The 15 person
datasets are divided into a development/training and evaluation set. The training set consist
of the video sequences for the person 6 to 15 while the sequences containing person 1 to 5
are used for evaluation. Example images from all 15 CLEAR person datasets are shown in
Figure 3.14. In this work, training of head pose detectors will be performed on the complete
training set (4 cameras). Head samples are additionally mirrored about the vertical axes and
added to the corresponding opposite head pose class sets. Later experiments on cropped
head patches only (Sec. 3.4.2), run on the evaluation data using all camera images as well
including mirroring of samples. The Tables 3.1 and 3.2 show the distribution of head sam-
ples over the considered eight discrete head pose classes for the development/training and
evaluation set, respectively, using the labeled images of all four cameras. The combined
system for pedestrian head localization and head pose estimation introduced in Section 3.1
and 3.2 however will be evaluated only on the sequences recorded with camera 1. The re-
sulting sample distribution restricted to camera 1 is displayed in Table 3.3.
In later experiments, the performance of the developed algorithm for pedestrian head pose
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Front Front-Right Right Back-Right Back Back-Left Left Front-Left

299 381 267 271 248 244 347 340

Table 3.3: Number of samples per head pose class for CLEAR evaluation data using camera
1 only.
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Figure 3.15: Distribution over person head sizes (pixel) for the CLEAR evaluation dataset
(person 1 to 5) considering the images from camera 1 only.

estimation is evaluated depending on the samples’ head size, that is defined to be the maxi-
mum value over of the head width and head height in the image plane. Together with camera
calibration parameters the minimum head size with acceptable performance indicates the
maximum detection range of the developed system. A distribution over the person head
sizes in the image for the CLEAR evaluation set (person 1 to 5) restricted to camera 1 is
shown in Figure 3.15. Mainly, head sizes lie within the range from 34 to 50 pixels.

3.3.2 The CAVIAR Dataset

Another dataset including labeled persons, person heads and head pan angles is given by the
CAVIAR data, cf. [CAVIAR, 2004]. This dataset consists of several sequences of static im-
ages including moving persons in a shopping mall taken from a surveillance camera. Persons
in the images appear at very low resolution, similar to the conditions in driver assistance sce-
narios. Therefore, the dataset is well suited for evaluation in this work. The CAVIAR dataset
is used for evaluation only, i.e., there is no separation of data into training and testing subsets.
Head pose labels are available for the sequences ShopAssistant1cor, ThreePastShop1cor,
OneShopOneWait2cor and ThreePastShop2cor. Figure 3.16 displays some screenshots for
these sequences. For later evaluation, only fully visible persons having a bounding box
height of at least 40 pixels (head size ≈ 6×6 pixels) are considered. For lower resolution
meaningful results cannot be expected. Table 3.4 shows the resulting distribution of head
pose samples over the considered eight discrete head pose classes. Figure 3.17 shows the
distribution of person head sizes in the image for all evaluated samples from the CAVIAR
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Figure 3.16: Example images from the [CAVIAR, 2004] dataset.

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

7378 1416 2214 171 3075 470 2386 3239

Table 3.4: Number of samples per head pose class for CAVIAR dataset.
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Figure 3.17: Distribution over person head sizes (pixel) for the CAVIAR dataset.

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

14756 4655 4600 641 6150 641 4600 4655

Table 3.5: Number of samples per head pose class for increased CAVIAR dataset involving
a mirrored version for each sample.

dataset. Human heads are mainly appearing at resolutions of 6×6 pixels and not at reso-
lutions higher than 30×30 pixels. Similar to the CLEAR dataset, for the head patch only
evaluation (Sec. 3.4.2) samples are additionally mirrored about the vertical axis resulting in
the increased evaluation set given by Table 3.5.

3.3.3 The Bosch Inner-City Dataset

Finally, as this is the main focus of the presented work’s contribution, results on real world
data taken from a moving camera in inner-city scenarios are presented. The inner-city dataset
includes labeled pedestrian heads in video sequences containing high dynamic gray value
images. For training and validation purposes, the dataset is divided into two parts. Head
pose labels are provided with discretization steps of 45◦. Similar to the CLEAR training
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Front Front-Right Right Back-Right Back Back-Left Left Front-Left

2256 2458 3283 2018 2492 2018 3283 2458

Table 3.6: Number of samples per head pose class for the Bosch Inner-City training data.

Figure 3.18: Collection of test samples of the Bosch Inner-City dataset.

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

1796 823 3716 953 1299 676 1563 365

Table 3.7: Number of samples per head pose class for the Bosch Inner-City evaluation data.

set, all training samples are mirrored about the vertical axes and added to the corresponding
opposite head pose class sets. Table 3.6 shows the resulting distribution of head pose samples
over the considered eight discrete head pose classes on the training set, which is later used
to train multiple head pose detectors. For evaluation, samples are collected from 24 inner
city video sequences with 300 Frames each. The test data consists of 243 person tracks
including 11191 labeled pedestrian images in total. Some of the test images can be seen
in Figure 3.18. The number of samples per discrete head pose class for the evaluation data
is given in Table 3.7. Figure 3.19 shows the distribution of person head sizes in the image
for all evaluated samples from the Bosch Inner-City dataset. Pedestrian heads are mainly
appearing at resolutions of around 6×6 pixels and a maximum resolution of 60×60 pixels.

Dataset Summary The most important facts over all three evaluation datasets presented
in this section are summarized in Table 3.8.

3.4 Experiments

This section will present a performance evaluation for the introduced pedestrian head pose
estimation approach. As it is difficult to retrieve labeled data from inner-city scenarios in-
cluding pedestrian head pose measurements, this work additionally makes the use of public
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Figure 3.19: Distribution over pedestrian head sizes (pixel) for the Bosch Inner-City evalua-
tion dataset.

# Persons # Samples Min. head size Label acc. θ Scenario

CLEAR 5 2397 (cam 1) 34×34 pxls. 0.1◦ Smart room
CAVIAR 22 20349 6×6 pxls. 10 ◦ Surveillance
Bosch 243 11191 6×6 pxls. 45 ◦ Inner-city

Table 3.8: Overview of the three evaluation datasets (CLEAR/CAVIAR/Bosch) presented in
Section 3.3. Number of different persons, total number of samples, minimum
head size, head pose label accuracy and scenario type are displayed.

available datasets from different environments such as data from surveillance or smart rooms
presented in Section 3.3. It has to be pointed out, that the goal is not to outperform state-
of-the-art methods working well in these indoor scenarios, rather than getting a feeling for
the developed system’s performance. In this work, the general interest is in a fast and robust
method (depending on the later application), that is easy to apply to an overall pedestrian pro-
tection system. In the following, the two suitable public available datasets, namely CLEAR

and CAVIAR, will be evaluated together with the Bosch Inner-City dataset, taken from a ve-
hicle mounted camera.
First, the experimental setup for the chosen datasets is explained in Section 3.4.1. In a second
step, a comparison with approaches from literature is carried out (Sec. 3.4.2). Furthermore,
the evaluation for the single-frame based approach and the head pose tracking is presented
in Section 3.4.3 and Section 3.4.4.

3.4.1 Experimental Setup

The proposed method integrates classifiers based on different kinds of features, which proved
to be very powerful in the fields of pedestrian- and face-detection as well as for head pose
estimation problems. First, boosting cascades of Haar-like features are trained as proposed
in [Viola and Jones, 2001a, Lienhart and Maydt, 2002]. The second type of classifiers are
based on local structure features calculated using the modified Census Transform, cf. [Fröba
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and Ernst, 2004]. These features proved to outperform the Haar-like features concerning the
problem of face detection. Depending on the underlying evaluation data, a different system
setup under various aspects is performed. First, there is a difference on the training set that
is used to learn the head pose classifiers and secondly the tracking system parameters like,
for instance, the system and observation noise are adapted separately for each dataset.

CLEAR Setup

For evaluation on the CLEAR data, the partial datasets for person 6 till 15 are used for train-
ing of the head pose detectors. Therefore, a modified one-vs.-all framework is realized as
explained in Section 3.1.4 using the training data given in Table 3.1. Training samples are
scaled to a common size of 20×20 pixels. The mean training samples for each of the eight
head pose classes are shown in Figure 3.20.

90°
4555 samples

-45°
4794 samples

45°
4794 samples

0°
4796 samples

-90°
4555 samples

-180°
4789 samples

-135°
4923 samples

135°
4923 samples

Figure 3.20: Mean pedestrian head pose templates used to train eight head pose classifiers.

MCT-based cascades consists of 6 stages with the maximum allowed feature locations per
stage to be {20,80,140,200,400} and a final Winnow classifier, see [Fröba and Ernst, 2004].
Boosting cascades integrating Haar-like features are trained with 8 stages consisting of strong
Gentle Adaboost classifiers incorporating decision trees as weak learners (cf. Sec. 3.1.2).
The overall system is evaluated using the images contained in the person datasets 1 to 5.
As reference, only images taken from camera 1 are used instead of considering the differ-
ent views from the additional cameras (2,3,4), which would further improve the head pose
estimation result, see [Voit et al., 2008]. As the presented method receives the input of a
pre-detected pedestrian bounding box, rectangular candidate regions are generated by addi-
tionally labeling the full person bodies. The resulting bounding boxes will then be the system
input.
In a further step, the system noise model parameters (eq. (3.37)) for the particle filter intro-
duced in Section 3.2.4 have to be estimated. For the chosen design (eq. (3.36)), the process
noise parameters are mainly influenced by the change in head position, size (scale), and head
pose between to time instances. Hence, the different parameters can be estimated by building
up statistics for these changes using the ground truth head label information. This procedure
is exemplary shown in Figure 3.21 to determine the process noise parameter κθ for the head
pose state θ. Analogously, the same procedure can be applied for the remaining parameters
σu, σv and σs. Including heuristics through expert knowledge the parameters get slightly
adapted in order to achieve best performance on the training sets. The resulting parameters
are given in Table 3.9. For the observation model in equation (3.39), the step from con-
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Figure 3.21: Process noise parameter estimation for the head pose state θ on the CLEAR
dataset. The probability density function (pdf) of a normal distribution gets
fitted to the ground truth frame-wise angular changes for the pan angle θ. The
value of the estimate for the standard deviation σ = 11.6 is directly related to
the dispersion value κθ = 24.6 for the von Mises distribution.

σu σv σs κθ

4.0 2.0 0.15 24.6

Table 3.9: Process noise parameters for head pose tracking determined for CLEAR dataset

tinuous to discrete state space with respect to the head pose state θ results in modeling the
conditional probability of having a continuous head pose θ given the discrete head pose class
observation Θ (eq. (3.41)). This probability is modeled to be a von Mises distribution, where
the model parameters µo and κo, o ∈ {−180, . . . , 135} have to be estimated using the ground
truth head pose labels, see [Fisher, 1996]. Figure 3.22 shows the resulting distributions in
the circular domain.
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Figure 3.22: Estimated models for dependency of continuous head pose state estimate θ and
observed discrete head pose class Θ = o, o ∈ {−180, . . . , 135} (eq. (3.41)) on
the CLEAR dataset.
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µ−180 µ−135 µ−90 µ−45 µ0 µ45 µ90 µ135

177.8◦ -133.9◦ -88.5◦ -45.2◦ -0.5◦ 45.6◦ 90.7◦ 136.8◦

κ−180 κ−135 κ−90 κ−45 κ0 κ45 κ90 κ135

20.7 20.2 20.5 21.6 20.6 30.2 22.0 18.9

Table 3.10: Estimated model parameters for dependency of continuous head pose state esti-
mate θ and observed discrete head pose class Θ = o, o ∈ {−180, . . . , 135} on
CLEAR data.

In Table 3.10 the estimated model parameters related to all discrete head pose classes are
displayed.

CAVIAR Setup

For evaluation on the CAVIAR dataset the same head pose detectors trained on the CLEAR
data are used, so there is no additional adapted training. As the input pedestrian bounding
box for the developed method the labeled rectangular region from ground truth is used by
adding additional noise at the label position and label dimensions to simulate a realistic out-
put from a pedestrian detection system. For this, a uniform noise of up to 10% of the label
boxes’ height is added to the height and the center of the resulting bounding box.
Again, the particle filter system noise model parameters (eq. (3.37)) have to be adapted for
the CAVIAR dataset. Similar to the CLEAR data, the different parameters are estimated
by building up statistics for the observed state changes within two time instances using the
ground truth head label information. Figure 3.23 shows the procedure to determine the pro-
cess noise parameter κθ for the head pose state θ.
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Figure 3.23: Process noise parameter estimation on the CAVIAR dataset for the head pose
state θ. The probability density function (pdf) of a normal distribution gets fitted
to the ground truth frame-wise angular changes for the pan angle θ. The value
of the estimate for the standard deviation σθ = 9.7◦ is directly related to the
dispersion value κθ = 34.7 for the von Mises distribution.
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σu σv σs κθ

4.0 2.0 0.15 34.7

Table 3.11: Process noise parameters for head pose tracking determined for the CAVIAR
dataset.
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Figure 3.24: Estimated models for dependency of continuous head pose state estimate θ and
observed discrete head pose class Θ = o, o ∈ {−180, . . . , 135} (eq. (3.41)) on
the CAVIAR dataset.

Together with adaptations through expert heuristics the final parameters are displayed in
Table 3.11. For the observation model, the von Mises distribution to model the conditional
probability of having a continuous head pose state θ given the discrete head pose class ob-
servation Θ (eq. (3.41)) is estimated using the ground truth head pose labels in the same
way as it is done for the CLEAR dataset. The results are visualized in the circular domain in
Figure 3.22. The exact estimated model parameters related to all discrete head pose classes
are listed in Table 3.12. It has to be pointed out, that in case of the CAVIAR dataset, tracking
parameter optimization is performed on the data itself. This might lead to a slight imaginary
performance gain when using the developed tracking approach.

µ−180 µ−135 µ−90 µ−45 µ0 µ45 µ90 µ135

-179.6◦ -139.3◦ -83.1◦ -45.5◦ -1.1◦ 48.2◦ 82.3◦ 139.5◦

κ−180 κ−135 κ−90 κ−45 κ0 κ45 κ90 κ135

35.2 14.7 29.7 13.8 31.8 20.6 38.6 10.9

Table 3.12: Estimated model parameters for dependency of continuous head pose state esti-
mate θ and observed discrete head pose class Θ = o, o ∈ {−180, . . . , 135} on
the CAVIAR dataset.
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Bosch Setup

In comparison to the CAVIAR data head pose detectors are retrained in a modified one-
vs.-all fashion using cropped pedestrian head images from the Bosch Inner-City dataset,
see Section 3.3.3. First, all training samples are scaled to the common size of 20×20
pixels. The mean training samples for each of the eight head pose classes are shown in
Figure 3.25. In order to be more robust against false positive detections, MCT-based cas-
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Figure 3.25: Mean pedestrian head pose templates used to train eight head pose classifiers
on the Bosch Inner-City dataset.

cades consists of 10 stages with the maximum allowed feature locations per stage to be
{20,40,80,120,160,200,220,280,400} and a final Winnow classifier, see [Fröba and Ernst,
2004]. The number of stages for boosting cascades integrating Haar-like features is increased
to be 14. Again, each stage consists of strong Gentle Adaboost classifiers incorporating de-
cision trees as weak learners (cf. Sec. 3.1.2). Similar to the CAVIAR data, labeled pedestrian
bounding boxes serve as input for the developed approach. These bounding boxes are per-
turbed in center and height by an additive uniform noise of up to 10% of the boxes’ height.
For later real world application, the system noise model parameters (eq. (3.37)) for the par-
ticle filter introduced in Section 3.2.4 are updated. Therefore, the set of training sequences
is used. The built statistics for determination of the process noise parameter κθ using the
ground truth head label information is shown in Figure 3.21.
The remaining estimated parameter values for σu, σv and σs are mentioned in Table 3.13.
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Figure 3.26: Process noise parameter estimation on the Bosch Inner-City dataset for the head
pose state θ. The probability density function (pdf) of a normal distribution gets
fitted to the ground truth frame-wise angular changes for the pan angle θ. The
value of the estimate for the standard deviation σ = 17.6 is directly related to
the dispersion value κθ = 10.6 for the von Mises distribution.
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σu σv σs κθ

5.0 2.0 0.15 10.6

Table 3.13: Process noise parameters for head pose tracking determined for the Bosch Inner-
City dataset.

  0.5  1   1.5  2

22.5

−157.5

45

−135

67.5

−112.5

90−90

112.5

−67.5

135

−45

157.5

−22.5

−180

0

Figure 3.27: Estimated models for dependency of continuous head pose state estimate θ and
observed discrete head pose class Θ = o, o ∈ {−180, . . . , 135} (eq. (3.41)) on
the Bosch Inner-City dataset.

When trying to determine the parameters for the observation model on the real world data
one problem arises. For the real world data, labels are only available for a discretization
step of 45◦. Hence, estimated von Mises distribution parameters using ground truth labels in
order to model the conditional probability of having a continuous head pose state θ given the
discrete head pose class observation Θ (eq. (3.41)) can only result in peaked Dirac-Delta-
distributions located at the discretization centers (discrete head pose classes). To overcome
this problem, the affected model parameters are determined using expert knowledge and the
results from the other presented datasets (CLEAR and CAVIAR). This results in the von
Mises probability density functions displayed in Figure 3.27. The chosen parameters can be
seen in Table 3.14.

µ−180 µ−135 µ−90 µ−45 µ0 µ45 µ90 µ135

-180.0◦ -135.0◦ -90.0◦ -45.0◦ 0.0◦ 45.0◦ 90.0◦ 135.0◦

κ−180 κ−135 κ−90 κ−45 κ0 κ45 κ90 κ135

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Table 3.14: Chosen model parameters for dependency of continuous head pose state estimate
θ and observed discrete head pose class Θ = o, o ∈ {−180, . . . , 135} on the
Bosch Inner-City dataset. Parameter values are mainly set by expert heuristics
due to the granularity of head pose labels.
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3.4.2 Comparison with State-of-the-Art Methods

As a first part of experiments, the performance of the developed head pose estimation ap-
proach is compared to other state-of-the-art approaches from literature. As already men-
tioned in Section 2.3, there are several approaches relevant for the topic of head pose estima-
tion in low resolution images. These methods and the one presented in this work mainly dif-
fer in the methodology to extract human heads from an image. Nevertheless, the subsequent
step of estimating the head pose given a potential head region is quite similar throughout the
methods. For this reason, the performance of the single trained head pose classifiers in this
work is compared to similar approaches from literature based on extracted head images. In
particular, the method of [Orozco et al., 2009] and [Siriteerakul et al., 2010] will be used
for comparison here, as the basic ideas can easily be reimplemented while achieving good
results in later applications. For evaluation of Orozco’s method, mean head pose templates
are derived from the CLEAR training set (Sec. 3.3.1) based on the origin intensity images at
first. Additionally, the use of image gradients values is investigated within later experiments
for comparison. As this work deals with gray-value images only, raw gray intensity values
are considered instead of all RGB color channels. I.e., for this work, the Kullback Leibler
coefficients that need to be calculated for Orozco’s approach will not make use of color in-
formation. The mean head pose templates for intensity and image gradient are visualized in
Figure 3.28. Figure 3.29 shows the calculated descriptors (eq. (2.2)) for a set of selected head

Figure 3.28: The mean head pose templates to calculate the descriptor proposed by [Orozco
et al., 2009] computed for the CLEAR dataset. Upper row: intensity based only.
Lower row: Image gradient based

samples taken from different head pose classes. To train the classifiers including the Non-
local Intensity Difference Features (iDF, eq. (2.3)) proposed by [Siriteerakul et al., 2010]
10000 randomly selected out of 79800 pixel pairs are defined for a 20×20 image patch in
multiple training rounds to achieve maximum performance.
Another type of features that turned out to be powerful in object recognition are the well-
known Histograms of oriented Gradients (HoG) developed by [Dalal and Triggs, 2005].
Similar to [Voit and Stiefelhagen, 2009], HoG features are extracted for a 21×21 image
patch having one block, 3×3 cells including 7×7 pixels and 8 orientation bins per cell his-
togram, taking the image gradient sign of orientation into account. Figure 3.30 shows the
calculated HoG descriptor for a set of samples from the training set associated with different
head pose classes. Two types of classifiers are used to determine the predicted head pose,
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Figure 3.29: Descriptor from [Orozco et al., 2009] calculated for different samples associ-
ated with 8 discrete head pose classes. Upper row: Input images. Middle row:
original descriptor using image intensity values. Lower row: Computed De-
scriptor based on image gradients.

Figure 3.30: HoG descriptor from [Dalal and Triggs, 2005] calculated for different sam-
ples associated with 8 separated head pose classes. Upper row: Input images.
Middle row: Original HoG settings with computed orientation angles in [0, π).
Lower row: Setup used in this work with computed orientation angles in [0, 2π).

given a feature vector from the above mentioned methods, namely Support Vector Machines
(SVM) and Random Forests (RF). As an extension to multiclass problems, both, one-vs.-one
and one-vs.-all classifiers are trained, see Section 3.1.3. Training and evaluation will be per-
formed on the CLEAR dataset (Sec. 3.3.1), where for both cases, image patches containing
heads corresponding to one of the eight head pose clusters are generated at first. Addition-
ally, head patches from the CAVIAR data (Sec. 3.3.2) are cropped and divided into eight
classes resulting in a total amount of 20349 samples (40698 incl. mirroring) for evaluation.
Again, as for the later real world application one has to deal with gray-value images, three
channel color images will be converted to single channel images for both datasets.
The upper row of Figure 3.31 shows the averaged support vectors resulting from the trained
one-vs.-all SVM multiclass classifier on CLEAR using the reimplemented method of [Orozco
et al., 2009]. For all eight head pose classes, the learned appearance changes between re-
gions where one would expect hair (lighter) and parts of the face where skin is visible (darker
areas) can be observed. The lower row of Figure 3.31 displays the most distinctive features
learned using a one-vs.-all RF classifier in order to differentiate one class from all other
classes. The 50 most discriminative pixel pairs of Siriteerakul’s method, that are trained us-
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Figure 3.31: Most discriminative features learned with different classifiers. Upper row:
Mean head pose templates. Middle row: Averaged support vectors for a trained
one-vs.-all multiclass SVM using the method of [Orozco et al., 2009]. Lower
row: most distinctive features learned with a one-vs.-all multiclass Random
Forest.

Figure 3.32: iDF classifier from [Siriteerakul et al., 2010]: Overall 50 most powerful pixel
pairs learned with a one-vs.-one multiclass Random Forest.

ing a one-vs.-one multiclass RF classifier are shown in Figure 3.32. Most of the pixel pairs
compare intensity values for lighter skin parts with darker areas belonging to hair or eye
regions. A similar output is observed, when training a one-vs.-all multiclass RF classifier
incorporating intensity difference features, see Figure 3.33.

Figure 3.33: iDF classifier from [Siriteerakul et al., 2010]: 20 most powerful pixel pairs per
head pose class for a one-vs.-all multiclass Random Forest.
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Figure 3.34: Most discriminative HoG features [Dalal and Triggs, 2005] learned with differ-
ent classifiers. Upper row: Mean head pose templates. Middle row: Averaged
support vectors for a trained one-vs.-all multiclass SVM. Lower row: most dis-
criminative features learned with a one-vs.-all multiclass Random Forest.

Finally, Figure 3.34 shows learned distinctive features using different classifiers in combina-
tion with HoG features. In the upper row, the head pose class dependent averaged support
vectors for a one-vs.-all multiclass SVM are displayed. Larger gradients normally appear at
the head contours as well as at transitions from hair to skin areas. The most informative HoG
features learned with the one-vs.-all RF classifier can be seen in the lower row of Figure 3.34.
In a next step, evaluation results are presented using the following performance measures.
Overall classification rates based on the eight considered head pose classes are calculated
stating the ratio between correct classified head samples and all available samples in the
evaluation set. A good head pose classifier should therefore have a classification rate which
is significantly higher than pure guessing, i.e., higher than 12.5%. Additionally, classifica-
tion rates are presented, where a predicted head pose class is assumed to be correct, if the
corresponding ground truth head pose class is the same or one of the direct neighboring head
pose classes. The modified classification rate gets the suffix "⊕". This rate expresses the
potential confusion between neighboring classes and gives an idea about the error made by
discretization. A third performance measure is given by the mean angular error in head pose
estimation by comparing the ground truth head pan angle with the pan angle associated to the
predicted head pose class. Evaluation is performed separately on the CLEAR and CAVIAR
evaluation sets. During experiments no significant difference in performance could be ob-
tained when training a one-vs.-one or one-vs.-all classifier, respectively. Therefore, only
the best one-vs.-one classifier results are presented. For comparison, the trained boosting
cascades integrating Haar-like features and local structure features using MCT (Sec. 3.4.1)
are subject to the patch-wise evaluation as well. Table 3.15 shows the concrete numbers for
the above introduced performance measures using the different combinations of features and
classifiers for head pose estimation. Figure 3.35 gives a graphical idea about single classi-
fier performance. As expected, performance for all classifiers decreases, when evaluating the
CAVIAR data instead of CLEAR due to huge number of head samples in very low resolution
(Fig. 3.17). Additionally, head pose estimation performance on CAVIAR data suffers from
trained classifiers generalizing from the CLEAR training set, cf. Section 3.4.1.
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classification rate (%) classification rate ⊕ (%) Mean angle error (◦)
CLEAR CAVIAR CLEAR CAVIAR CLEAR CAVIAR

Orozco + SVM 53.2/49.8** 31.3/22.9** 85.9 55.6 28.8 58.8
Orozco + RF* 69.1/67.5** 28.7/28.2** 92.8 61.1 17.5 48.2
iDF + SVM 64.0 31.2 90.2 60.7 21.7 52.9
iDF + RF* 69.2 27.5 92.2 62.0 18.1 51.8
HOG + SVM* 71.1 35.0 91.0 71.6 19.3 49.4
HOG + RF* 72.3 35.4 94.4 73.1 15.1 43.3
MCT-cascade* 69.8 32.7 92.6 70.5 19.8 51.2
Haar-cascade* 68.9 28.2 91.3 68.1 21.3 53.7

Table 3.15: Classification rates and mean angular errors for different methods and datasets
(CLEAR, CAVIAR). State-of-the art approaches (Orozco SVM, iDF SVM) and
contributions of this work (*). Additionally Orozco’s descriptor was evaluated
using mean gradient image templates (**).

Figure 3.35: Comparison of different feature and classifier combinations on different datasets
(CLEAR, CAVIAR).

Comparing the original classification rates with the modified ones (⊕), a rate increase of ap-
proximately 20% for CLEAR data and more than 30% in the CAVIAR case can be noticed
meaning, that there is high confusion between neighboring classes but no significant con-
spicuous behavior for the different classifiers. One interesting fact is observed when using
Orozco’s feature. The trained RF classifier achieves nearly 16% higher classification rates
for the CLEAR data compared to a trained SVM as proposed by [Orozco et al., 2009]. De-
scriptors calculated using mean templates based on image gradients (** in Table 3.15) are
performing worse than the original proposed version based on image intensity values. An-
other surprising point is the discriminative power of the conventional HoG feature especially
on very low resolution. Using the HoG/SVM or HoG/RF for the CAVIAR data leads to a
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performance gain of more than 5% compared to all other feature and classifier combinations.
The performance of the trained MCT- and Haar boosting cascades ranges from slightly worse
to comparable with regard to all other classifiers. However, it has to be mentioned, that the
negative sets for the MCT- and Haar-detector training additionally include areas around the
heads and background images (Sec. 3.1.4), which slightly reduces the class separation effi-
ciency. The head pose estimation developed in this chapter will later be integrated into an
overall real-time application for pedestrian intention recognition and path prediction. Keep-
ing in mind, that head pose classifiers are evaluated multiple times within the pedestrian head
search area, single classifier runtime should be sufficiently low in order to retain overall sys-
tem latency. For this, Table 3.16 shows the averages classifier runtimes in milliseconds on a
Intel R© CoreTM i7-3740QM CPU @2.7 GHz for a image patch wise evaluation.

Overall Feature computation Classification

Orozco + SVM 0.06 (100.0%) 0.04 (69.9%) 0.02 (30.1%)
Orozco + RF 0.11 (100.0%) 0.03 (31.6%) 0.08 (68.4%)
iDF + SVM 0.32 (100.0%) 0.03 (9.3%) 0.29 (90.7%)
iDF + RF 0.21 (100.0%) 0.03 (8.2%) 0.18 (91.8%)
HOG + SVM 0.06 (100.0%) 0.05 (87.1%) 0.01 (12.9%)
HOG + RF 0.25 (100.0%) 0.08 (30.7%) 0.17 (69.3%)
MCT-cascade 0.15 (100.0%) 0.13 (85.5%) 0.02 (14.5%)
Haar-cascade 0.19 (100.0%) 0.02 (9.6%) 0.17 (90.4%)

Table 3.16: Averaged runtimes (ms) per sample for patch-wise head pose estimation. Overall
runtime for a 20×20 head patch and its fractional parts actually consumed for
feature computation and classification.

The Orozco SVM and HoG SVM multi-class classifiers consume comparatively low run-
time due to a lower dimension of the input feature vectors. The iDF-based classifiers are most
computational expensive due to the very high number of pixel pairs that have to be compared
for calculation of the descriptor. However, head pose estimation with the iDF feature only
achieves comparable results with other methods, see Table 3.15. With 0.15ms and 0.19ms the
mean evaluation runtimes for the proposed MCT- and Haar-cascades lie in between the above
two extrema. In addition to the performance evaluation results from Table 3.15, especially
the MCT-based classifier represent a good choice for further use within the later application.
Finally, one can conclude, that using the trained head pose detectors (MCT/Haar) developed
in this work show no drawback in head pose estimation performance compared to state of the
art approaches by means of comparable accuracy and runtime consumption but also having
the benefit to directly cope for the head localization problem (Sec. 3.1.7).
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3.4.3 Single-Frame Head Localization and Head Pose Estimation
Performance on Inner-City data

In this section, the developed approach for combined pedestrian head localization and head
pose estimation in single images (Sec. 3.1) is evaluated at first. Due to the later application,
the method has to deal with head images at very low resolution. Concerning this point, the
integrated classifiers are evaluated on test samples with different resolutions in order to get
the dependency between system performance and image resolution, which is directly related
to the distance of a pedestrian with respect to an approaching vehicle. Obviously, the ef-
fort for the later overall system is to detect the pedestrian’s intention as soon as possible.
Thus, for evaluation, pedestrian detections with a maximum height of 140 pixels (head size
≈20×20 pixels) and a minimum height of 50 pixels (head size≈7×7 pixels) are considered.
As reference the Bosch Inner-City dataset presented in Section 3.3.3 is taken into account.
Here, the two reference sizes of head appearances in the images are used, namely 20×20
pixels and 7×7 which corresponds to a distance of approximately 10m and 25m respectively.
For evaluation, all 11191 pedestrian samples from the test set are down- or upscaled to the
above mentioned reference sizes. Every sample is evaluated separately by the method pro-
posed in Section 3.1 in order to derive the corresponding head position and head pose. An
image pyramid with a scaling factor of 1.1 including 2 levels around the original scale is cal-
culated for the head search area extracted from a pedestrian candidate. Each pyramid level
is scanned with a step size of 2 pixels resulting in a list of normalized confidence values.
In a first step, the performance for head detection/localization is analyzed. Being aware of
the fact, that the presence of a head within a pedestrian hypothesis is already assumed, it
is possible to achieve very high head localization rates in general by ignoring false positive
head detections having a low confidence value. A head localization is assumed to be correct,
if cover and overlap (see [Leibe et al., 2005]) of annotated ground truth data and detection
hypothesis result in values greater than a predefined threshold. During experiments, the value
0.7 was found to be appropriate in order to guaranty an adequate accuracy for later head pose
estimation. Figure 3.36 shows, amongst others, the head localization rates for different clas-
sifiers and the two mentioned head resolutions.
All configurations achieve very good correct localization rates, reaching over 92% even when
evaluating on the lowest considered head size of 7×7 pixels. The local structure features
based on MCT seem to perform slightly better for higher resolutions than the Haar-like fea-
tures, resulting in a correct localization rate of nearly 98% for head sizes of 20×20 pixels.
For smaller resolutions the performance of the MCT-based features breaks down and is com-
parable to Haar-like features. This can be explained with the loss of pixel-wise structures
within a 7×7 pixels patch in comparison to a 20×20 pixels head image whereas the Haar
cascade mostly considers larger areas of sums over pixel intensities. Figure 3.37 shows some
samples of miss-localized heads at different resolutions. Most of these errors occur, when
the structure of the background has a high similarity to the head appearance.
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Figure 3.36: Correct head localization rates for different pedestrian heights in image pixels.
The corresponding head sizes cover a range from 20×20 pixels to 7×7 pixels.

Figure 3.37: Samples at different image resolutions, where the head localization for the
single-frame based method (Sec. 3.1) using MCT-based features fails.

The correct estimation of the head pose is a more difficult task than the localization itself. As
the upper part of a pedestrian detection is scanned with eight different head pose classifiers,
it is likely, that at least one of those results in a very high confidence at the correct head
position. For head pose estimation the head pose class related to that particular classifier
would be outputted. However this could probably be a fail decision concerning the difficul-
ties of the fuzzy multi-class problem on low resolution images (Sec. 3.1.4). To get an idea
about inter-class decision errors, results are therefore represented using confusion matrices
as proposed in [Enzweiler and Gavrila, 2010, Orozco et al., 2009] and [Siriteerakul et al.,
2010]. Here, rows correspond to the ground truth head pose class, while columns outline
the system’s predicted head pose. Higher values concentrated along the diagonals are related
to a better performance for a multi-class classification algorithm. Figure 3.38 shows the
confusion matrices for the head pose estimation system when integrating MCT- or Haar-like
boosting cascade classifiers at different resolutions. All configurations achieve satisfying
correct decision rates, even when evaluation is performed on very low resolution images
(7×7 pixel head size). The MCT-based approach reaches an overall correct decision rate
over 60% for head sizes of 20×20 pixels, where the use of Haar-like features achieves 49%.
The best accuracy up to 76% is reached by the left and right head pose MCT-classifiers. For
small head sizes at 7×7 pixels, the overall performance breaks down to a correct decision
rate of 42% for the MCT-classifier and 44% for the classifier based on Haar-like features.
The highest confusion between neighboring classes happens for the frontal MCT head pose
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(a) MCT, head size 20×20 pixels
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(b) MCT, head size 7×7 pixels
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(c) Haar, head size 20×20 pixels
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(d) Haar, head size 7×7 pixels
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Figure 3.38: Confusion Matrices for MCT- ((a), (b)) and Haar-classifiers ((c), (d)) for head
sizes of 20×20 pixels and 7×7 pixels.

classifier at 7×7pixels, a potential result from the fuzzy head pose labeling problem. It can
be noticed that the MCT-classifiers score higher correct decision rates for higher resolutions
when compared with the classifiers based on Haar-like features. The use of Haar-like fea-
tures results in a slightly better performance only on the lowest considered image resolution.
This can be explained, similar to the head localization results, by the nature of MCT-based
features that rely on the pixel level structures, which may disappear in low resolution images.
Haar-like features measure intensity differences between larger areas and are thus more ro-
bust against the low resolution problem. Figure 3.38 also shows, that most of the confusions
of one particular head pose occur with the direct neighboring head poses. Therefore, simi-
lar to Section 3.4.2, in another evaluation round, a head pose estimation is also considered
to be correct, if the predicted head pose class is identical to the true head pose or one of
its direct neighboring head pose classes (classification rate ⊕). As a result, it is possible to
get correct decision rates at a minimum of nearly 77% for 7×7 pixels head images and a
maximum of 87% for head sizes of 20×20 pixels using MCT-based features. In the case of
the actual eight-class problem, the classifiers using Haar-like features tend to confuse more
between the neighboring poses than the classifiers based on the MCT. However, when deal-
ing with modified eight-class problem, they seem to slightly outperform the MCT-classifiers,
especially on the lowest resolution. I.e., MCT-based classifiers have a better class separation
property compared to Haar-like-based classifiers.
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(a) (b)

Figure 3.39: Correct results using MCT features for pedestrian heights of 140 pixels (a) and
50 pixels (b). White stripes indicate the pedestrians’ head pose direction.

Figure 3.40: Samples of wrongly estimated head poses using MCT features at different im-
age resolutions.

Figure 3.39 displays samples of correct head pose estimation results for heads of 20×20
and 7×7 pixels size with the MCT-based approach. To get an impression of the complexity
of head pose estimation in very low resolution images samples of wrongly estimated head
orientations are shown in Figure 3.40. The approach using Haar-like features results in a
similar output. As the local structure features based on MCT slightly outperform Haar-like
features in terms of class separation ability, in the following, further experiments will be
presented using MCT-cascades only.

3.4.4 Head Pose Tracking Performance in Video-Sequences

In this section, the proposed method for head pose tracking in video-sequences (Sec. 3.2) is
evaluated. Evaluation results are presented in details for every evaluation dataset presented
in Section 3.3. Compared to the initial experiments for the single-frame based approach
in Section 3.4.3, person image candidates are directly used for evaluation instead of up- or
downscaling them to certain sizes.

Head Pose Tracking Evaluation on the CLEAR Dataset

The easiest dataset among all others presented in this work is assumed to be the CLEAR data
(Sec. 3.3.1) as it contains images where person heads appear at sizes not smaller than 34×34
pixels. After setting up the trained head pose classifiers and system parameters (Sec. 3.4.1)
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Person Dataset 1 2 3 4 5 Overall

Single-frame based approach 100.0 100.0 100.0 98.9 99.6 99.7
Tracking approach 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.17: Head localization rates (%) for the CLEAR dataset including test persons 1 to 5
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Figure 3.41: Distribution over predicted vs. ground truth head pan angles for the CLEAR
dataset. Red data points: Estimates for single-frame based approach. Blue data
points: Estimates for tracking approach.

for the CLEAR training data, evaluation for the overall system is performed on the CLEAR
evaluation data. First, it is important to localize the head correctly in order to output a
meaningful head pose estimation. For this, Table 3.17 shows the head localization rates on
the test sets. Additionally, results are compared with the single frame based approach from
Section 3.1. Both methods achieve high localization rates up to nearly 100%, which is not
surprising as the head search area is already restricted by the person bounding box in addi-
tion to higher resolution images with homogeneous background. Through particle filtering,
the method’s output of the developed method is a continuous head pan angle estimate in
comparison to only one of eight head pose classes given in Section 3.1 and [Orozco et al.,
2009,Siriteerakul et al., 2010]. Figure 3.41 displays the distribution of discrete (single-frame
based) and continuous (tracking approach) head pan angle estimates for the ground truth
head pan angles given by the CLEAR evaluation datasets. Most of the estimates for both
approaches are concentrated around the diagonal (ground truth angle equals predicted an-
gle), which is the desired behavior. Having a look at the estimates for the single-frame based
approach, one can get information about which continuous head pan angle range is mapped
to a certain discrete head pose class. Qualitatively, the single-frame based approach is show-
ing more outlier estimates compared to the tracking approach. For performance comparison
using confusion matrices, the corresponding discrete head pose class is determined given the
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Figure 3.42: Confusion matrices for the CLEAR dataset for (a) single frame based approach
(Sec. 3.1) and (b) using particle filtering (Sec. 3.2).

Person Dataset 1 2 3 4 5 Overall

Single-frame based approach 36.1 28.3 16.1 15.6 19.9 23.2
Tracking approach 29.0 20.5 16.7 11.7 14.1 18.4

Table 3.18: Mean pan angle error (deg.) for the CLEAR person datasets 1 to 5. Smallest
head size: 34×34 pixels.

continuous angle estimate from the tracking approach. Depending on the later application
within driver assistance system, this arrangement could already be sufficient. Figure 3.42
shows overall confusion matrices averaged over all person test sets for the tracking method
compared to the single-frame based approach. Further, it is possible to compare both meth-
ods by means of head pose estimation accuracy, taking the head pan angle corresponding to
the discrete output head pose class in case of the single frame based approach. A suitable
performance measure is the mean absolute head pan angle error compared to the ground
truth measurement. Table 3.18 shows the results. For both, single-frame-based and tracking
approach, overall mean angular errors lie around 20 degrees. Tracking results in little less
errors (18.4◦) compared to evaluation on single images (23.2◦). Nevertheless, the single-
frame based method with discrete head pan angle estimates still results in a high accuracy.
The highest sequence related mean angular error however is given by the single-frame based
approach with about 36◦ for person 1. The main problems in correct head pose estimation
occur, when persons are extremely moving their heads in vertical direction, i.e., having a
high head tilt. As head pose detectors are trained to only capture head pan movements, the
proposed method will obviously have problems here.
In addition, Figure 3.43 gives an overview about the distribution of angular errors when us-
ing the single-frame based and particle filtering approach, respectively. The particle filtering
approach (blue) for head pose estimation results in a head pan angle error within the range of
(-22.5◦,22.5◦) for a higher number of evaluated samples compared to the single-frame based
approach (red).
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Figure 3.43: Distribution of angular errors for the CLEAR dataset

Figure 3.44: Mean absolute angular error (thick line) and its standard deviation (shaded area)
over various head sizes for the CLEAR dataset.

For later application, it is worth to know, at which relative distances between pedestrian
an oncoming vehicle, the head pose estimation system still results in sufficiently accurate
estimates. This is directly dependent on the minimum head size the system can handle. Fig-
ure 3.44 therefore shows the mean angular errors and its standard deviation for ascending
head sizes. In general, for the CLEAR dataset persons turn around a fixed point within a
smart room. Hence, different head sizes in the images are mainly influenced by the persons
hair structure. I.e., persons having long and thick hair result in larger head image areas than
persons wearing short hair. Given this fact, the slightly decreasing accuracy in head pose
estimation for increasing head sizes from 30×30 to 45×45 pixels can be explained. The
tracking approach results in less angular errors of approximately 5 degrees on average com-
pared to single-frame based evaluation. Considering the standard deviation, tracking yields
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Figure 3.45: Exemplary head pose estimation results on the CLEAR dataset.

less dispersion in estimates and thus more stable results. Figure 3.45 shows some head pose
estimation output images for the CLEAR dataset.
In the following paragraphs, experiments on more application related datasets will be shown,
where heads appear on very low resolution.

Head Pose Tracking Evaluation on the CAVIAR Dataset

A public available dataset, which includes conditions similar those present in driver assis-
tance scenarios, is given by the CAVIAR dataset (Sec. 3.3.2), as person heads appear on
very low resolution. Evaluation is performed with the CAVIAR system setup explained in
Section 3.4.1 for the single-frame based (Sec. 3.1) and tracking approach (Sec. 3.2) sepa-
rately. For person distance- or head image size-dependent evaluation, the following critical
areas are defined. The far range, capturing persons up to a height of 50 pixels and below, the
middle range, including persons of heights between 50 and 100 pixels and the near range for
pedestrians taller than 100 pixels. First, the head localization performance is investigated.
Dependent on the introduced detection areas, head localization rates are displayed in Ta-
ble 3.19.

Range near middle far overall

Single-frame based approach 98.1 93.8 90.1 94.0
Tracking approach 100.0 98.6 94.5 97.7

Table 3.19: Correct head localization rates (%) for different ranges and overall.

For tracking, little higher localization rates are achieved throughout the detection areas. Nev-
ertheless, both single-frame based and tracking based approach achieve satisfying results.
For quantitative evaluation of head pose estimation performance, the columns of Table 3.20
show combined results in head pose estimation by means of mean pan angle error and clas-
sification rate.
In general, performance decreases drastically compared to the results on the CLEAR data
because of head appearances in very low resolution and the generalization problem which
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mean pan angle classification
error (◦) rate (%)

Single-frame based approach 45.3 37.2
Tracking approach 38.7 41.6

Table 3.20: Mean head pan angle error and correct classification rates on the CAVIAR
dataset. Smallest head size: 6×6 pixels.
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Figure 3.46: Distribution over predicted vs. ground truth head pan angles for the CAVIAR
dataset. Red data points: Estimates for single-frame based approach. Blue data
points: Continuous estimates for tracking approach.

originates from training the head pose classifiers on CLEAR data only. The benefit of the pro-
posed tracking method is observable. Higher accuracy in head pose estimation is achieved
having a lower mean angular error of approximately 39◦ compared to 45◦ for the single-
frame based approach. Figure 3.46 displays the distribution of discrete (single-frame based)
and continuous (tracking approach) head pan angle estimates for the ground truth head pan
angles provided by the CAVIAR dataset. Still, there is a concentration of estimated head pan
angles around the diagonal at least for the tracking approach. The single-frame based method
results in unstable estimates for the range of -45◦ to 45◦. To get conclusion, where most of
the pan angle errors occur and how the different pose classes get mixed up by the tracking
method, confusion matrices are used similar to the CLEAR data evaluation. Therefore, the
discrete head pose class is determined from a given continuous pan angle estimate for the
tracking approach. Again, rows correspond to the ground truth, while columns outline the
system’s predicted head pose class. Figure 3.47 shows the results. Most confusion occurs
with direct neighboring head pose classes except of Back-views (-180◦), that are sometimes
mixed up with frontal views in 9.5% of the test samples in case of tracking. Here a prior
probability distribution for the head pose based on the actual pedestrian body pose can avoid
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Figure 3.47: Head pose estimation performance for the CAVIAR dataset. Single frame ap-
proach (a) and head pose tracking method (b).
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Figure 3.48: Distribution of angular errors in head pose estimation for the CAVIAR dataset

such confusions (cf. Sec. 4.2). To get the overall correct classification rate, the diagonal
elements of each matrix are summed up and divided by the number of discrete head pose
classes. These rates are included in the right column of Table 3.20. Again, the method using
particle filtering achieves higher correct classification rates (41.6%) compared to the single
frame based method (37.2%). When considering also estimates for neighboring classes to be
correct for a given ground truth class (classification rate ⊕), the benefit of tracking is visible
even clearer. It achieves overall 10% higher classification rates than the single-frame based
method. Figure 3.48 displays the distribution of head pose estimation errors by means of
mean angular error among all evaluated samples. Again, the benefit when using the tracking
approach is clearly visible. More evaluated samples (blue) are concentrated around segments
with lower angular errors compared to the method working on single frames only (red).
For later application, it is worth to know, at which relative distances between pedestrian an
oncoming vehicle, the head pose estimation system still results in sufficiently accurate esti-
mates. This is directly dependent of the minimum head size the system can handle. A head
sample division in 5 pixels steps is performed for evaluation ranging from head sizes around
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3.4 Experiments

Figure 3.49: Mean absolute angular error (thick lines) and its standard deviation (shaded
area) over ascending head sizes for the CAVIAR dataset.

Figure 3.50: Exemplary head pose estimation results on the CAVIAR dataset.

5×5 pixels up to head sizes larger than 25×25 pixels. Figure 3.49 shows the mean absolute
angular errors and its standard deviation for ascending head sizes. Head pose estimation per-
formance decreases when evaluating smaller head samples, which is the expected behavior.
Mean absolute angular errors up to 70◦ are observed for the tracking approach for head sizes
around 5×5 pixels. Nevertheless, the averaged angular errors and its deviation significantly
lies below the ones for the single frame based approach. Figure 3.50 shows some head pose
estimation output images for the CAVIAR dataset.
The next section will focus on the evaluation of inner-city data from driver assistance sce-
narios.

Head Pose Tracking Evaluation on the Bosch Inner-City Dataset

As it is hard to get labeled data with accurate ground truth head pan angle measurements for
inner-city scenarios, head pose estimation performance evaluation is restricted. Capturing
and annotating at least eight discrete head pose classes results in the potential use of confu-
sion matrices only. In later applications one is most interested in recognition of the two cases.
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3 Monocular Pedestrian Head Localization and Head Pose Estimation

Figure 3.51: Pedestrian head pose estimation results in inner-city scenarios. Color gradient
goes from green (frontal pose, i.e., less critical situation) to red (back poses, i.e.,
dangerous situation).
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Figure 3.52: Distribution over predicted vs. ground truth head pan angles for the Bosch
Inner-City dataset. Red data points: Discrete estimates for single-frame based
approach. Blue data points: Continuous estimates for tracking approach

Is a pedestrian facing the approaching vehicle (the camera) and thus showing nearly a frontal
head pose, or is he/she looking to another direction, i.e., having head poses from right over
back to left. Hence, the use of eight head pose classes is sufficient here. Nevertheless, results
are presented by means of calculated averaged angular errors keeping in mind the inaccurate
ground truth head pan angle annotations. In Figure 3.51 some output images for head pose
estimation are shown. Figure 3.52 displays the distribution of discrete (single-frame based)
and continuous (tracking approach) head pan angle estimates for the ground truth head pan
angles provided by the Bosch Inner-City dataset. As ground truth labels and single-frame
based estimates are discrete (one of eight head pose classes), data points are displayed at dif-
ferent sizes reflecting the number of head pose estimates related to a certain head pose class
given the ground truth class. There is a concentration of estimated head pan angles around
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Figure 3.53: Confusion matrices for the Bosch Inner-City dataset. Single frame based ap-
proach (a) and head pose tracking (b).

head localization classification classification
rate (%) rate (%) rate ⊕(%)

single-frame based approach 86.4 46.4 82.1
tracking approach 92.6 48.0 85.5

Table 3.21: Head localization rates and correct classification rate for the Bosch Inner-City
dataset (left and middle column). Right column: Correct classification rate in-
cluding direct neighboring pose predictions. Smallest head size: 6×6 pixels.

the diagonal at least for both, tracking and single-frame based approach. The correspond-
ing quantitative head pose estimation results comparing the single-frame based- (Sec. 3.1)
and tracking approach (Sec. 3.2) are given by the confusion matrices in Figure 3.53 and the
performance measures in Table 3.21. Tracking improves head localization rates (92.6%
compared to 86.4%) and outperforms the single frame based approach achieving an overall
correct classification rate of 48.0% compared to 46.4%. One has to keep in mind, that more
correct localized head samples are considered for classification rate calculation in the track-
ing case. Having a look at the values for classification rate⊕ for both methods, the confusion
with direct neighboring head pose classes compared to all other classes is little higher for the
tracking method than for the single-frame based approach meaning a higher class stability.
Figure 3.54 displays the distribution of head pose estimation errors among all evaluated sam-
ples. Again, the benefit when using the tracking approach is clearly visible. More evaluated
samples (blue) are concentrated around segments with lower angular errors compared to the
method working on single frames only (red). The maximum possible angular error of -180◦

is only occurring for the single-frame based method. Similar to the CAVIAR data, for head
size dependent evaluation, a head sample division in 10 pixels steps is performed ranging
from head sizes around 5×5 pixels up to head sizes larger than 55×55 pixels. Figure 3.55
shows the mean absolute angular errors and its standard deviation for ascending head sizes.
Head pose estimation performance decreases when evaluating smaller head samples, which
is the expected behavior. Mean absolute angular errors up to 76◦ and 67◦ are observed for
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3 Monocular Pedestrian Head Localization and Head Pose Estimation

single frame based- and the tracking approach respectively, for head sizes around 5×5 pixels.
For higher resolutions, errors lie at 30◦ and below for both approaches however, the tracking
approach produces more stable estimates by means of a lower standard deviation for the an-
gular error distribution. It has to be mentioned, that an angular error below 22.5◦ should be
treated with caution as the labels are only given with a precision up to 45◦. Given the camera
constant f to be 1200 and assuming a average human head height of H=25cm, cf. [Young,
1993] the distance x of a pedestrian head with respect to the camera can be calculated using
the head height h within the image as x = fH/h. A 15×15 pixel head appearance in the
image then corresponds to a pedestrian distance of 20m. According to anatomy, the human
eye field of view approximately is of 120◦. Hence, an average angular error of less than 40◦

at a head size of 15×15 (Fig. 3.55) pixels is sufficient to realize a system for risk assessment
where one needs to know at an early stage, if a pedestrian is recognizing an approaching
vehicle or not.

3.5 Conclusion

In this chapter, a method was presented to estimate the head pose of pedestrians in video se-
quences. Given a pedestrian hypothesis as the outcome of a video-based pedestrian detection
system, the method first initializes the position and the pose of the pedestrian head (Sec. 3.1)
and further tracks the head pose over time using particle filtering (Sec. 3.2). In the experi-
ments (Sec. 3.4) a detailed performance analysis on various datasets (CLEAR, CAVIAR and
Bosch Inner-City) showed a good compromise between accuracy and runtime compared to
state of the art approaches while having the advantage of a combined head localization and
head pose estimation compared to the requirement of having a segmented head region result-
ing from a pre-processing step. It was discussed that an average angular error of less than 40◦

at small head sizes of 15×15 pixels shows sufficient performance in head pose estimation
for a later application in risk assessment.
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Figure 3.54: Distribution of angular errors for the Bosch Inner-City dataset.
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Figure 3.55: Mean absolute angular errors (thick lines) and its standard deviation (shaded
area) over ascending head sizes for the Bosch Inner-City dataset.

The presented method can be used as an "on-top" component for a given overall pedestrian
detection system, where pedestrians are detected and reliably tracked over time.
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4 Robust 3D Head pose estimation
using stereo vision

The overall developed system in this work is based on the input data from a stereo-video
system for pedestrian detection and tracking (cf. Sec. 2.2). The image areas for detected
pedestrian candidates are scanned with the method described in Chapter 3 in order to detect
pedestrian heads and extract their corresponding head poses. The head detection or localiza-
tion already achieves satisfying results. Nevertheless, there is still potential for improvement,
especially at very low image resolutions. Here, the depth information, which can be gained
from a stereo-vision sensor, shows high potential to excellently contribute for a more robust
localization of pedestrian heads.
Within a following function for automatic emergency braking on pedestrians, all relevant
object attributes such as relative position, velocity, etc. are specified with respect to a fixed
world coordinate system, which has its origin at the middle of the vehicle’s rear axle. This
has the advantage that further independent sensor measurements and features can be taken
into account for fusion in order to achieve a higher function robustification. At this point,
estimating the pedestrian head pose relative to that coordinate system states a huge benefit.
Another important source of information resulting from a stereo-video sensor are given by
the object candidate’s derived velocity estimates. These can have direct influence on the fol-
lowing head pose estimation method in order to improve the same. The viewing and moving
direction of a pedestrian, that is moving with a certain speed, will most probably coincide.
This chapter combines further improvements for the existing head pose estimation system
presented in Chapter 3 using the potential benefits of a stereo-video sensor mentioned be-
fore. First, the transformation of estimated head poses with respect to 2D image coordinates
into a 3D vehicle located coordinate system is explained in Section 4.1. Section 4.2 deals
with the robustification for head pose estimation by incorporating the pedestrian’s moving
direction. A main component of this chapter is the improved head localization using stereo
depth information presented in Section 4.3 followed by experiments in Section 4.5. Finally,
this chapter concludes with Section 4.6.
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4 Robust 3D Head pose estimation using stereo vision

4.1 Stereo Depth Information for 3D Head Pose

Estimation

In the previous chapter a method for 2D head pose estimation on low resolution images was
presented. In particular, a pedestrian’s head pan angle with respect to the person’s head
2D image appearance was determined using the output of a head pose detector array. For
later application in risk assessment however, it is of a great value to transform the estimated
2D head pan angles into a global 3D coordinate system (e.g. defined by DIN70000 [DIN
ISO 8855:2013-11, 2013]) to better cooperate with other system components. One way to
achieve a 3D head pan angle representation is to use basic principles of projective geometry
and stereo vision. As the final system will be based on stereo vision, this choice is intuitive.
The presented algorithm builds upon pedestrian candidates detected by a stereo video system.
Thus, accurate pedestrian 3D distance measurements can be obtained. In this work, the 3D
head pose estimates are given with respect to a vehicle coordinate system with origin located
at the left camera’s center of the stereo vision system. The z-axis is pointing in longitudinal
direction, the x-axis in right lateral direction and the y-axis vertically downwards as shown
in Figure 4.1.

lov

vl θ2D
θ3D

z

xy

Figure 4.1: 3D head pan angle estimation with respect to vehicle located coordinate system.
By calculating the line of view lov using stereo disparity estimates, the 3D head
pan angle θ3D can be obtained from the 2D head pose estimate θ2D.

Using this setup, estimated 3D measurements can be transformed easily to any other 3D
coordinate system (e.g. DIN70000) using simple mathematical rotations and translations. In
the canonical stereo configuration, the following relation between a 3D point (x, y, z) and the
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corresponding point in the image (u, v) holds, when considering homogeneous coordinates.

z


u

v

d

1

 =


f 0 u0 0

0 f v0 0

0 0 0 fB

0 0 1 0



x

y

z

1

 , (4.1)

with principal point (u0, v0), camera constant f , stereo base width B and estimated disparity
d. Hence, a 3D point can be calculated from image coordinates and disparity by

x = (u− u0)
B

d
, y = (v − v0)

B

d
, z = f

B

d
. (4.2)

First, a 3D line of view (lov) pointing from the 3D head center H3D
c to the left camera will

be calculated given the median disparity over the pedestrian’s head location in the image
and the 2D head center H2D

c using equation (4.2). The observed pedestrian’s 2D head pan
angle is then the difference angle between the vector pointing from the person’s head center
to the camera center (lov) and the projected person’s 3D view-line vl. For a given 3D vector
v = (vx, vy, vz)

′ the corresponding pan angle θ can be calculated as

θv = ∠(v) :=
180◦

π
arctan2(vy, vx). (4.3)

The pan angle θv,w between two 3D vectors v, w restricted to the interval [−180◦, 180◦) is
determined by

θv,w = ∠(v;w) := θv − θw,

θv,w =

θv,w − 360◦, if θv,w ≥ 180◦

θv,w + 360◦, if θv,w < −180◦
(4.4)

with θv and θw calculated using equation (4.3). Now, the difference angle θlov,x between the
camera’s line of view (lov) and the x-axis (1, 0, 0)′ is calculated using equation (4.4), i.e.,

θlov,x = ∠(lov; (1, 0, 0)′) (4.5)

Finally, the 3D head pan angle θ3D is derived from the sum of θlov,x and the 2D head pan
angle estimate θ2D, that is

θ3D = θ2D + θlov,x, (4.6)

see Figure 4.1. In the following, the particle filter head pose estimates are given with respect
to the defined fixed 3D coordinate system in Figuer 4.1. Internally, estimated 2D head pose
classes are transformed to 3D for the particle weight update steps, see equation (3.40).
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4.2 Combining Head Pose Estimation with Human

Body Motion

[Benfold and Reid, 2009, Robertson and Reid, 2006] and [Chen et al., 2011] show, that
incorporating the human moving direction or body pose as a prior for head pose estima-
tion significantly improves the overall system performance. As pedestrian object hypotheses
taken from a stereo-video system serve as input for the developed pedestrian head pose es-
timation approach, one directly obtains estimates for object movement direction and speed
with respect to a fixed vehicle located world coordinated system. With the transformations
presented in Section 4.1, the pedestrian motion estimates can directly be integrated into the
state propagation model of the particle filter for a controlled head pose state prediction. In
Chapter 3 a Bayes filter is used in order to achieve a smooth and stable head pose estimation
over time. Now, the additional variable vk is introduced representing the pedestrian’s abso-
lute velocity at time instance k. Then, a reformulation for the prediction and update steps of
the filtering problem is given by

1. Prediction (prior):

p(xk|z1:k−1,v1:k) =

∫
p(xk|xk−1,vk)p(xk−1|z1:k−1,v1:k−1)dxk−1 and (4.7)

2. Update (posterior):

p(xk|z1:k,v1:k) ∝ p(zk|xk)p(xk|z1:t−1,v1:k). (4.8)

Again, the state space vector xk includes the filtered estimates for image position and scale of
the pedestrian’s head as well as the head pose, which is now given with respect to the vehicle
coordinate system, i.e., xk = (uk, vk, sk, θ

3D
k )′. In the following course of this work, head

pose estimates always refer to the 3D vehicle coordinate system and the additional identifier
is omitted. The first and second term under the integral in equation (4.7) again represent
the dynamical model and the posterior probability for the previous time instance. The first
term on the right hand side in equation (4.8) corresponds to the measurement model. Under
the assumption of conditional independence, the dynamical model in equation (4.7) can be
noted down as

p(xk|xk−1,vk) = p(x̃k|x̃k−1, θk−1,vk)p(θk|x̃k−1, θk−1,vk) (4.9)

= p(x̃k|x̃k−1)p(θk|θk−1,vk), (4.10)

where x̃k := (uk, vk, sk)
′ includes the filtered head’s image position and scale. Therefore,

particle states are propagated for every time instance depending on the previous state estimate
and the actual pedestrian’s movement direction. The first term of the updated evolution
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model can be described similar to equation (3.36) that is

p(x̃k|x̃k−1) ∼ N

x̃k−1,

σu 0 0

0 σv 0

0 0 σs


 . (4.11)

For the second term in equation (4.10) a formulation incorporating the von Mises distribution
similar to [Chen et al., 2011] is chosen, i.e.,

p(θk|θk−1,vk) = αθM(θk; θk−1, κθ) + (1− αθ)M(θk;∠(vk), κvk), (4.12)

with the concentration parameters κθ and κvk and the weighting factor αθ ∈ [0, 1]. The
function ∠(·) thereby outputs the angle of the person’s velocity vector (moving direction)
with respect to the vehicle coordinate system. The first term in equation (4.12) models
the property, that the person’s head pose will not change significantly with respect to the
estimated head pose for the previous time instance. The second term models the anatomical
limitation that pedestrians are normally looking in the direction of their movement. While αθ
and κθ get assigned constant values all over time, which are estimated based on a validation
dataset, the parameter κvk is dependent from the actual absolute value of the velocity signal,
i.e.,

κvk =

κv(‖vk‖ − ξ)2, if ‖vk‖ > ξ

0, otherwise
, (4.13)

with the constant sharpening parameter κv, see [Chen et al., 2011]. From equation (4.13) it
follows, that only velocity measurements having an absolute value greater than ξ will have
impact on the prediction step. The measurement model remains unchanged compared to Sec-
tion 3.2.4 meaning that single particle weights are essentially determined by the confidence
value outputs of head pose classifiers.

4.3 Head Localization using Stereo Depth Information

The presented system for pedestrian head pose estimation will later be embedded into an
overall pedestrian protection system in order to predict future intentions of detected and
tracked pedestrians. This system builds upon a stereo camera system for robust object local-
ization and tracking in 3D. As there is already a stereo depth map available, in this section
the possibilities to further increase the robustness for pedestrian head localization using the
advantages of stereo vision is presented. For head pose estimation problems the use of hu-
man head depth profiles was investigated using a stereo camera system, cf. [Seemann et al.,
2004], or Microsoft Kinnect, cf. [Bär et al., 2012, Fanelli et al., 2011, Martin et al., 2014].
Unfortunately, this requires head images on very high resolutions and is therefore not ap-
plicable for the task of pedestrian head pose estimation, presented here. However, for head
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localization it is shown, how stereo vision can help in increasing the performance of the pre-
sented system. Considering previous experiments from Chapter 3, main problems in correct
head localization occur, when there is a highly structured background, e.g. persons walking
in front of buildings, trees etc. A reliable segmentation for the head search area into fore-
and background regions could possibly avoid these miss-localizations.

4.3.1 Head Extraction based on u- and v-Disparity

For object detection tasks using a stereo camera system the use of line histogram repre-
sentations of the calculated disparity map is proposed, see [Labayrade et al., 2002]. First,
to reduce the dimensionality of data and second to easily extract raised obstacles. For the
scenario of this work, this approach is applied restricted to the head search area in order to
segment the pedestrian head from the background.

The u- and v-Disparity Images

It is assumed, that a disparity mapD has been computed from a stereo image pair. The image
V that is generated by accumulating disparity values within a histogram for each given image
row v of the disparity map D is called v-disparity image. For a given image row v of V, the
horizontal coordinate up of a point p := (up, vp) in V corresponds to the disparity dp and
its gray value ip to the number of points with the same disparity dp on the row v, that is

ip =
∑
q∈D

δvq,vpδdq,dp ,p ∈ V (4.14)

where δi,j denotes the Kronecker delta. Once D has been computed, V is built by accu-
mulating the pixels of same disparity in D along the v-axis. The same operations can be
performed for accumulation of disparity values over the u-axis resulting in the so-called u-

disparity image U . Here, the vertical coordinate vp of a point p := (up, vp) in U corresponds
to the disparity and its gray value ip to the number of points with the same disparity dp on
the column u, that is

ip =
∑
q∈D

δuq,upδdq,dp ,p ∈ U (4.15)

An example of calculated u- and v-disparity images is given in Figure 4.2.

Head Extraction using Dominant Disparities

In the following, the calculated u- and v-disparity images build the basis for a further head
segmentation in u- and v-direction. In a preprocessing step, the head search area is defined
for a given pedestrian candidate identical to Section 3.1.5. The stereo-based head localiza-
tion can be divided into three major parts each of which is described in abstract algorithms.
First, a search for row- and column-wise foreground dominant disparities is performed using
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u−disparity

disparity map v−disparity

Figure 4.2: Calculated u- and v-disparity image for a given disparity map. Warmer colors
correspond to larger disparities / smaller distances.

Algorithm 2 Dominant foreground disparities
1: Input: u- and v-disparity images (U ,V ) calculated by eq. (4.14) and (4.15)
2: Output: dominant foreground disparities in u- and v-direction ∆u, ∆v

3: Define nmin: minimum number of histogram bin count for valid disparity
4:
5: Initialize ∆u and ∆v

6: for v ← 1 : rows(V ) do
7: for d← cols(V ) : −1 : 1 do
8: if nmin ≤ V (v, d) then
9: ∆v(v)← d,break

10: end if
11: end for
12: end for
13: for u← 1 : cols(U) do
14: for d← rows(U) : −1 : 1 do
15: if nmin ≤ U(d, u) then
16: ∆u(u)← d,break
17: end if
18: end for
19: end for
20: apply averaging filter of window size 3 for gap removal
21: ∆v ← ∆v ◦ h3

22: ∆u ← ∆u ◦ h3

the v- and u-disparity images. For a given image row v or column u the dominant fore-
ground disparity is defined as the largest disparity, that has sufficient support in terms of
histogram entries in the u- or v- disparity image. Algorithm 2 shows a detailed scheme for
both row- and column-wise dominant foreground disparity calculation. In the second step,
the v-segmentation for the pedestrian head is determined. This is achieved by a row-wise
search for concatenated regions in terms of similar dominant foreground disparities posed in
algorithm 3. The result is a range of image rows [vmin, vmax], which contains the pedestrian’s
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4 Robust 3D Head pose estimation using stereo vision

Algorithm 3 v-segmentation of pedestrian head
1: Input: dominant foreground disparities in v-direction ∆v

2: Output: head v-segmentation [vmin, vmax]
3: Define hmin: minimum head height for given search region
4: Define ε∆: maximum disparity deviation of inner head regions
5:
6: foundHeadv ← false
7: vmin ← dim(∆v), vmax ← dim(∆v)
8: for v ← dim(∆v) : −1 : 2 do
9: dv ← ∆v(v)

10: if |dv −∆v(v − 1)| ≤ ε∆ then
11: vmin ← v − 1
12: if 1 = vmin then
13: foundHeadv ← true
14: end if
15: else
16: dispGap← false
17: for v ← v − 1 : −1 : 2 do
18: if |dv −∆v(v)| ≤ ε∆ then
19: vmin ← v, dispGap← true,break
20: end if
21: end for
22: if ¬dispGap &(vend − vmin) ≥ hmin then
23: foundHeadv ← true,break
24: end if
25: end if
26: end for

head. Finally, a similar approach is applied for a column-wise search of head correspon-
dences/clusters based on dominant foreground disparities calculated from the u-disparity
image in Algorithm 4. At the end, the row- and column-wise segmentations form the lo-
cation of the pedestrian head, see Algorithm 5. Due to the design of the head search area,
the potential vertical search range is restricted to a certain limit meaning that valid disparity
measurements corresponding to the pedestrian can already be expected from the bottom line
of the v-disparity image. Therefore, the approach for vertical head segmentation is less com-
plex than the search for head correspondences in the horizontal u-range. Here, the presence
of structures from background like other pedestrian heads, street lamps and road signs for
example requires the usage of a more intelligent clustering algorithm. An illustration for the
introduced algorithms is given by Figure 4.3.
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4.3 Head Localization using Stereo Depth Information

Algorithm 4 u-segmentation of pedestrian head
1: Input: dominant foreground disparities in u-direction ∆u

2: Output: u-segmentation U (set of u-clusters)
3: Define dmin: minimum considered disparity for head search
4: Define wmin: minimum head width for given search region
5: Define ε∆: maximum disparity deviation of inner head regions
6:
7: umin ← 0, umax ← 0,U← ∅, foundCluster← false
8: for u← 1 : dim(∆u) do
9: du ← ∆u(u);

10: if ¬foundCluster then
11: if du ≥ dmin then
12: foundCluster← true, umin ← u, umax ← u;
13: end if
14: else
15: if (|∆u(umax)− du| ≤ ε∆)&(du ≥ dmin) then
16: umax ← u;
17: if (umax = dim(∆u))&(umax − umin + 1) ≥ wmin then
18: U← addCluster({umin, umax, du}),break
19: end if
20: else
21: if (umax − umin + 1) ≥ wmin then
22: U← addCluster({umin, umax, du})
23: end if
24: foundCluster← false;
25: end if
26: end if
27: end for
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Figure 4.3: Stereo-based pedestrian head localization. Based on the u- and v-disparity im-
ages dominant foreground disparities are determined initially. Subsequently, con-
catenated areas or clusters are extracted, that have a common range of disparity
values. The foreground clusters limit the head region in u- and v-direction and
hereby described a rectangular region, which is then used as input for further
pedestrian head pose estimation.
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4 Robust 3D Head pose estimation using stereo vision

Algorithm 5 Determination of pedestrian head position

1: Input: v-segmentation [vmin, vmin] and u-segmentation U
2: Output: head image location H2D

stereo = [u, v, w, h]
3: Define C ∈ U: u-cluster element
4: Define Asearch: defined head search area
5:
6: foundHeadu ← false
7: if |U| = 1 then
8: foundHeadu ← true, [umin, umax]← C ∈ U
9: else if |U| > 1 then

10: [d̂, Ĉ]← arg maxd{d : d ∈ C}C∈U
11: [umin, umax]← Ĉ
12: foundHeadu ← true
13: end if
14: if foundHeadv&foundHeadu then
15: H2D

stereo ← [umin, vmin, umax − umin, vmax − vmin]
16: else
17: H2D

stereo ← Asearch

18: end if

Depending on input data, the stereo-based head localization eventually results in a restricted
area containing the pedestrian head, an area exactly surrounding the head or the overall
defined head search area in cases, where a refined positioning is not possible.

4.3.2 Measurement Model Update

After extracting a potential head candidate, the additional knowledge is used for the particle
filter measurement model update given in equation (3.39).

p(zk|x(i)
k ) = ploc(zk|x(i)

k )
∑
o∈O

p(zk|Θ = o, u
(i)
k , v

(i)
k , s

(i)
k )p(Θ = o|θ(i)

k ), (4.16)

with
ploc(zk|x(i)

k ) = exp(−d(zk,x
(i)
k )) = exp(−d(H2D

stereo,x
(i)
k ) (4.17)

and d(·, ·) defining the Mahalanobis distance. The distance measure d represents the devia-
tion of the stereo-based extracted head position from the actual considered particle’s center
and scale, that is
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where u2D
stereo,c, v

2D
stereo,c, u

(i)
k,c and v(i)

k,c define the center image coordinates of the stereo-based
and the actual particle’s associated head region, respectively.
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The covariance matrix Σ consists of the following components

Σ =

w
(i)/c1 0 0

0 h(i)/c2 0

0 0 σ̃s

 . (4.19)

Σ therefore depends on the particle associated head region’s width w(i), height h(i) and a
maximum allowed standard deviation in scale σ̃s. The parameter values for c1, c2 and σ̃s
have to be determined for later experiments. In other words, ploc(zk|x(i)

k ) gives a likelihood,
how well the stereo-based extracted head location H2D

stereo fits to the particle positions. Hence,
particles are guided through areas with dominant foreground disparity measurements. It
should be noted that ploc only defines a likelihood and not a probability measure having
a range of values within the interval [0,1]. Therefore, empirically robust model fusion ap-
proaches like the sum-rule (additive combination) as proposed by [Kittler et al., 1998] cannot
directly be used for the adapted measurement model. However, dedicated experiments for
stereo-based head localization show stable estimates also for the product-rule as it is applied
for the updated measurement model in equation (4.16).

4.4 Evaluation Datasets

The presented algorithms within the previous sections are evaluated on real world datasets.
First, an internal dataset is introduced. For a another challenging dataset, a recently published
dataset from Daimler by [Schneider and Gavrila, 2013] is chosen.

4.4.1 The Bosch Inner-City Stereo Dataset

For the purpose of stereo-based head localization and 3D head pose estimation, an internal
inner-city dataset at Bosch was collected including labeled stereo image pairs. In total, the
data consists of 23 sequences with 57 labeled pedestrian tracks. 9 of the sequences were
recorded on test track with a small amount of background structures in order to have ideal
scenarios for a proof of concept evaluation. For each labeled track, there is also a sequence
of pedestrian detections available resulting from generic stereo-based object detection and
tracking with a following pedestrian classification using a HoG SVM [Dalal and Triggs,
2005]. The stereo camera system has a base width of 12cm and the camera constant for the
left virtual camera frame is around 1200. Labels are provided up to a measured pedestrian
distance of 50m. An overview of the resulting samples for the Bosch stereo evaluation dataset
can be found in Table 4.1.
Additionally, the pedestrian heads are annotated and the head pose is labeled again to be
one of eight discrete head pose classes. The resulting sample distribution over all head pose
classes is given in Table 4.2.

93



4 Robust 3D Head pose estimation using stereo vision

Number of sequences 23
Number of different persons 57
Minimum head size (px) 7×7
Total number of samples 5874 (labels and detections)

Table 4.1: Overview of relevant samples to be used for evaluation from the Bosch Inner-City
Stereo dataset.

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

1153 523 564 347 1168 212 1343 564

Table 4.2: Total number of samples per head pose class for the Bosch Inner-City Stereo
dataset.

4.4.2 The Daimler Inner-City Stereo Dataset

A real world inner-city dataset including sequences with pedestrians in critical situations was
recently published by [Schneider and Gavrila, 2013]. This data contains pedestrian labels in
addition to distance measurements using a stereo video sensor. The sequences include pedes-
trians in crossing, stopping, starting or bending in situations, which are later used as well in
the chapters 5 and 6 for a combined pedestrian intention recognition and path prediction. In
most of the sequences the ego vehicle is approaching a pedestrian. Hence, pedestrians ap-
pear at different resolutions, which holds the same for the appearances of human heads. The
original dataset is divided into a training and test set, consisting of 35 and 32, respectively.
For evaluation in this chapter, all sequences are put together into one overall set. Table 4.3
shows the number of sequences for each addressed scenario.

bending in starting stopping crossing total

23 9 17 18 67

Table 4.3: Number of sequences per scenario for the Daimler Inner-City Stereo dataset pre-
sented by [Schneider and Gavrila, 2013].

The underlying stereo camera system has a base width B of 22cm and a virtual camera con-
stant f=1240. Note, that the stereo setup has a direct impact on the range for the proposed
method in later experiments as the distance error εx behaves proportionally with the recipro-
cal of the mentioned two factors, namely εx ∝ 1

fB
. To evaluate the developed stereo-based

head localization, pedestrian heads are labeled additionally for each frame, where a labeled
pedestrian ground truth 3D position already is available. Together with the pedestrian labels,
the dataset provides the measurement outputs resulting from a HoG-SVM pedestrian detec-
tor, see [Dalal and Triggs, 2005]. Table 4.4 gives an overview for all samples in the resulting
evaluation set.
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total number of samples number of different persons minimum head size (px)

9044(labels)/7844(detections) 4 6×6

Table 4.4: Overview of relevant samples to be used for evaluation from the Daimler Inner-
City Stereo dataset presented by [Schneider and Gavrila, 2013].

Front Front-Right Right Back-Right Back Back-Left Left Front-Left

544 4 153 7 2575 1285 3161 1315

Table 4.5: Total number of samples per head pose class for the Daimler Inner-City Stereo
dataset presented by [Schneider and Gavrila, 2013].

For head pose estimation evaluation, only samples including pedestrians with a maximum
distance of approximately 30m are considered. This results in the following distribution
of head samples per head pose class displayed in Table 4.5. Due to the addressed scenar-
ios within the Daimler dataset, the head pan angle range from 45◦ to 135◦ (front-right- to
back-right views) is underrepresented.

4.5 Experiments

This section will present a performance evaluation for stereo-based head localization and 3D
head pose tracking. Again, the amount of suitable datasets is quite low, which lead to the
recording of a new dataset and additional labeling of existing data from related applications,
see 4.4. First, the experimental setup for the chosen datasets is explained in 4.5.1. Then,
the results for stereo-based head localization and 3D head pose tracking are presented in
Section 4.5.2 and 4.5.3, respectively.

4.5.1 Experimental Setup

The presented methods for stereo-based head localization (Sec. 4.3) and 3D head pose esti-
mation (Sec. 4.1 and Sec. 4.2), make the use of disparity maps for given stereo image pairs,
which have to be calculated at first. The public available algorithm of [Geiger et al., 2010]
therefore is able to provide accurate and dense disparity maps. For the updated particle state
propagation model in Section. 4.2 additional model parameters have to determined. Here,
heuristic assumptions are made resulting in the values given in Table 4.6. Pedestrian velocity

αθ κθ κv ξ

0.7 6 2 0.5m/s

Table 4.6: System parameters for head pose tracking with integrated human body motion
(Sec. 4.2) determined for all evaluation datasets.
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estimates are derived by implementing a simple Kalman filter with a linear constant velocity
model, see [Bar-Shalom et al., 2002, Keller et al., 2011a]. Here, the filtered pedestrian state
contains estimates for longitudinal and lateral velocity components, i.e., Xt = (xt, yt, v

x
t , v

y
t )

for each time instance t. The measurement vector z = (x, y) includes information about the
actual pedestrian’s relative longitudinal and lateral position, which are indirectly estimated
by the stereo-video sensor using the pedestrian location in the image and an assigned median
disparity calculated over the upper part of the corresponding image bounding box (eq. (4.2)).

Parameters for Stereo Head Localization

The proposed algorithms (2-5), realizing a stereo-based head localization, introduce a few
parameters, that have to be determined in advance. Some parameters, like dmin, are directly
set due to the stereo camera system setup and range limitation up to 50m. The remaining
parameters values are set heuristically but turn out to guaranty an acceptable performance in
later experiments. Table 4.7 displays the resulting parameters, their description and values.

Parameter Description Bosch/Daimler

dmin minimum considered disparity for head search 2.75/5.0
nmin number of histogram entries for valid head initialization 3/6
ε∆ maximum disparity deviation of inner head regions 1.75
hmin minimum head height for given search region Asearch 0.5× hAsearch

wmin minimum head width for given search region Asearch hmin

Table 4.7: Chosen parameters values for stereo-based head localization depending on Bosch
and Daimler dataset.

The parameters for the updated measurement model in Section 4.3.2 are optimized during
experiments and given in Table 4.8.

c1 c2 σ̃s

6 6 0.2

Table 4.8: Parameters for updated measurement model (Sec. 4.3.2) after integration of stereo
head localization.

4.5.2 Results on Stereo Head Localization

First, the standalone stereo-based head localization is considered. Due to the stereo match-
ing/aggregation window size, in general, high-frequency components like corners and edges
in the image plane are smeared out in disparity space. This results in detected head regions
not exactly fitting the head size in the image. However, for later comparison with the orig-
inal 2D head pose estimation approach (Sec. 3.2.4) and the combined system presented in
this chapter (Sec. 4.3.2), the conditions for associating a ground truth head annotation (wrt.
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Figure 4.4: Stereo head localization rates over pedestrian distance (m) for the Bosch and
Daimler dataset. Evaluation performed for pedestrian labels and system detec-
tions, separately.

5m 10m 15m 20m 25m 30m 35m 40m 45m 50m

Daimler (labels) 0.82 0.91 0.92 0.88 0.90 0.89 0.81 0.81 0.78 0.64
Daimler (dets.) 0.80 0.89 0.89 0.86 0.79 0.78 0.65 0.64 0.59 0.58
Bosch (labels) 0.83 0.90 0.88 0.87 0.84 0.81 0.74 0.58 0.56 0.53
Bosch (dets.) 0.81 0.88 0.81 0.81 0.80 0.79 0.64 0.57 0.51 0.48

Table 4.9: Stereo head localization rates over pedestrian distance (m) for Bosch and Daimler
dataset. Evaluation performed for pedestrian labels and system detections, sepa-
rately.

image) with the stereo-based extracted head location have to be maintained. I.e., both cover
and overlap have to lie above 0.7 as proposed in Section 3.4.3. This fact will directly have
an impact on stereo-based head localization performance and has to be considered in later
results. Localization rates are determined using the labeled head images from the Bosch and
Daimler inner-city datasets. Figure 4.4 shows the calculated localization rates when using
the ideal system input given by the origin pedestrian labels and for realistic system inputs us-
ing the pedestrian detection bounding boxes. The exact localization rate values can be found
in Table 4.9. The general observation can be derived, that performance reduces when using
a real detector input compared with the usage of ground truth annotations. The performance
when using detections goes down more drastically for the Daimler dataset compared to the
Bosch dataset. This can be explained by the usage of real HoG detections without further
tracking in the Daimler case, whereas bounding boxes for the Bosch system are derived from
tracked objects based on stereo-vision with a following classification which leads to more
robust and smooth system inputs. At higher ranges up to 50m the head localization gives
better results on the Daimler data compared with the Bosch dataset. The main reason for that
is the higher base width for the used stereo video sensor. In the Bosch case, at 50m most
of the measured raised obstacles share the same disparity with other background contents
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false loc. full Asearch surrounding areas

Daimler (labels) 5% 4% 91%
Daimler (detections) 9% 17% 74%
Bosch (labels) 10% 14% 76%
Bosch (detections) 19% 24% 57%

Table 4.10: Percentage for three potential cases of an incorrect stereo-based head localiza-
tion. Evaluation is performed on labels and pedestrian detections for the Bosch
and Daimler dataset.

and therefore cannot be separated anymore. For the Daimler setup this is still possible to a
limited extend.
According to Section 4.3, there are three possibilities for a head localization to be considered
as incorrect, namely an area which has no sufficiently high overlap with the real head posi-
tion (false location), an area, that completely surrounds the head or the full head search area.
The percentage for all three cases among all false head localizations is given in Table 4.10.
The real incorrect localized pedestrian heads only represent 5-19% of all miss-localized sam-
ples. The rest is either the complete head search area or a larger region including the head.
The latter case does not state a critical issue for further processing, as particles get higher
weights within this region therefore also at the real heads position. Hence, in this case there
is no benefit loss compared to the head localization system only based on head pose detec-
tor confidences (Chap. 3). The percentage for a head localization resulting in the full head
search area is higher for the Bosch data compared to the Daimler dataset. Most of these
errors again appear at higher distances due to the base width limitation for the Bosch stereo
camera system. In Figure 4.5 and Figure 4.6 samples for correct and incorrect localized
pedestrian heads, respectively, are visualized. The method mostly fails, if there are other
dominant objects in the foreground or at the same pedestrian’s distance, like street lamps,
bushes etc. Further failure root causes are pedestrians at higher distances, where background
regions cannot be differentiated from the pedestrian appearance on disparity level, or general
problems for stereo matching algorithms on periodic structures available on garage doors for
example.
As a next step, the combined system is evaluated with a head localization that is mostly de-
pendent on the confidence outputs of several head pose detectors, i.e., Section 3.2.3 and 3.2.4,

Figure 4.5: Collection of pedestrian samples with correct stereo-based head localization
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Figure 4.6: Collection of pedestrian samples with failing stereo-based head localization
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Figure 4.7: Head localization results over pedestrian distance on Daimler dataset. Blue
curve: stereo-based only, see Section 4.3.1). Red curve: original 2D head pose
detector-based version from Section 3.2.4. Green curve: combined version using
updated measurement model from Section 4.3.2.

but now supported by stereo depth information as well, see Section. 4.3. Evaluation is per-
formed on pedestrian label bounding boxes in order to derive the direct impact on benefit
when adding the stereo feature. Figure 4.7 shows the resulting head localization rates over
pedestrian distance for the single (Sec. 3.2) and combined system (Sec. 4.3.2) using the
sequences from the Daimler dataset. When incorporating the stereo information into the
combined system, a head localization rate increment of approximately 10% can be obtained
nearly throughout the considered distance range. Performance reduces drastically at 45 to
50m (head size ≈ 6×6 pixel) for both methods resulting in head localization rates smaller
than 50%, which is not surprising as the stereo-only approach suffers from the quadrati-
cally increasing disparity error. Stereo-only head localization performs better at higher dis-
tances than the 2D head pose detector-based approach. Here, incorporating stereo informa-
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4 Robust 3D Head pose estimation using stereo vision

tion shows the highest benefit, while the head pose classifiers suffer from highly structured
background. For evaluations in the following section, the combined system incorporating
stereo information will be used.

4.5.3 Results on 3D Head Pose Tracking

For performance evaluation of the final developed system including all improvements dis-
cussed in the sections 4.1 to 4.3 confusion matrices are chosen in addition to the calculation
of classification rates with respect to the eight discrete head pose classes. First, confusion
matrices are presented in Figure 4.8 comparing the original method introduced in Section 3.2
with the system modifications developed in this chapter. Evaluation first is performed on the
Daimler dataset.
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Figure 4.8: Confusion matrices for Daimler dataset, when using (a) the original 2D head
pose tracking module (Sec. 3.2.4) and (b) the combined version incorporating
the human body movement direction (Sec. 4.2).

The integration of the pedestrian’s velocity components (Fig. 4.8b) results in less confu-
sion with more distant head pose classes than the initial implemented approach (Fig. 4.8a).
Especially, the confusion of frontal poses with back views and vice versa can be reduced
significantly from 23.8% to 2.7% and 18.9% to 9.3%, respectively. The 100% correct clas-
sification rate for back-right poses slightly distorts the overall performance as there are only
a view samples available, see Table 4.5. With an overall correct classification rate of 54.8%
the particle filtering system incorporating the pedestrian movement direction clearly out-
performs the initially developed system with random head pose propagation, which only
achieves 44.7%.
Evaluation on the internally recorded dataset shows similar observations when fusing head
pose estimation results with human body movement direction as pictured in Figure 4.9.
Overall classification rate gets increased from 41.5% (Fig. 4.9a) to 51.0% (Fig. 4.9b) in case
of combining head pose estimation with pedestrian movement direction. For both cases, nor-
mal tracking and combined version, left and right side views of a head can be classified with
highest performance (52.2%/56.2%, 50.0%/59.9%), a result, which already was observed
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Figure 4.9: Confusion matrices for Bosch dataset, when using (a) the origin head pose track-
ing module (Sec. 3.2.4) and (b) the combined version incorporating the human
body movement direction (Sec. 4.2).
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Figure 4.10: Head pose classification rates over pedestrian distance. Different curves show
the results on different datasets (Bosch, Daimler), when using the origin head
pose tracking module (Sec. 3.2.4) and the combined version incorporating the
human body movement direction (Sec. 4.2).

within earlier experiments in Chapter 3. Again, the problem confusing head frontal and back
views is greatly reduced with the combined system from 22.6% to 2.8% and 14.1% to 2.3%,
respectively. In general, performance little decreases compared to the Daimler dataset. This
can be explained by the presence of more dynamic and complex inner-city scenarios included
within the internal Bosch dataset. Furthermore, the classification performance dependency
on the pedestrian distance, which is directly related to the head size, is given in Figure 4.10.
For distances higher than 30m, head pose classification performance breaks down. Hence,
only the interval from 5 to 30m is considered, which is enough for later use in intention
recognition and path prediction. Evaluation is performed using the images from the Bosch
and Daimler datasets. Classification rates are calculated for the original 2D approach includ-
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4 Robust 3D Head pose estimation using stereo vision

ing a random particle head pose state propagation (Sec. 3.2.4) and the method developed in
this chapter integrating the pedestrian’s movement direction into the dynamical model for the
particle filter, see Section 4.2. In general, the system performs slightly worse on the Bosch
real-world dataset. This can be explained by more complex scenarios included in the dataset
compared to the simpler sequence setup for the Daimler dataset. Using the pedestrian move-
ment direction derived from velocity estimates for particle state propagation significantly
improves head pose classification rates about nearly 10% over the considered distance range
for both Bosch and Daimler sequences.

4.6 Conclusion

The main focus of this chapter was the improvement and robustification of the earlier in-
troduced head pose estimation system by making the use of stereo depth information. Im-
provement was achieved in two ways. First, velocity estimates from an accurate stereo-based
object detection and tracking approach were used as prior knowledge for head pose tracking
(Sec. 4.2). As a second measure, the stereo depth map was directly used for head extraction
in order to support the intensity-based head localization in situations with highly structured
background (Sec. 4.3). Experiments in Section 4.5 show an improvement in both head pose
estimation and head localization of up to 10%.
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5 Pedestrian Intention Recognition

This chapter presents a novel approach for a reliable pedestrian intention recognition in ad-
vanced video-based driver assistance systems using a Latent-Dynamic Conditional Random
Field model (LDCRF). The model integrates pedestrian dynamics and situational awareness
using the observations from a stereo-video system for pedestrian detection and human head
pose estimation. Figure 5.1 presents a coarse system overview.

50

Figure 5.1: System Overview. Pedestrians are detected and tracked by a stereo generic ob-
stacle detection approach and verified by a gray-value based classifier. For each
pedestrian candidate the head orientation will be estimated. The previously ex-
tracted information is input for the intention recognition module.

The proposed latent-dynamic discriminative model applied on extracted time-series of fea-
tures is then able to learn inner connections within a specific type of scenario and external
correlations between different types of scenarios. Estimates for pedestrian intentions are
provided in a probabilistic way based on pre-defined scenarios in daily traffic. The presented
method is evaluated on a public available dataset addressing scenarios of lateral approach-
ing pedestrians that might cross the road, turn into the road or stop at the curbside. Com-
pared to recent literature, a wider range of scenarios is addressed also including pedestrians
that initially are walking along the sidewalks but then bend in towards the road. Here, the
importance in the knowledge of persons’ head orientations will be demonstrated. During
experiments, it can be shown, that the proposed approach leads to better stability and class
separation compared to state-of-the-art pedestrian intention recognition approaches. The
computational costs are comparatively low such that the approach can be easily integrated
into an overall real-time system as an indicator for pedestrian path prediction helping to es-
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timate potential future pedestrian states (cf. Chap. 6) within a later automatic emergency
braking function. Similarly, the system output can be used for controlling the switching
states of the Switching Linear Dynamical System (SLDS) presented in [Kooij et al., 2014a].
The remainder of this chapter is organized as follows. Section 5.1 presents the basic princi-
ples of Latent-Dynamic Conditional Random Fields together with the extraction of powerful
features for pedestrian intention recognition. A public available dataset for later evaluation is
introduced in Section 5.2. Furthermore, experimental results for the presented approach are
presented for specified scenarios including crossing, stopping, bending and straight walking
pedestrians in Section 5.3. This chapter ends up with a conclusion in Section 5.4.

5.1 Latent-Dynamic Conditional Random Fields for

Pedestrian Intention Recognition

[Morency et al., 2007] first introduced LDCRF models as an extension of conventional
Conditional Random Fields (CRF, [Lafferty et al., 2001]) by adding a layer of hidden la-
tent states. These hidden state variables can model the intrinsic sub-structure of a specific
class label and capture extrinsic dynamics between different classes. Furthermore, LDCRF
models proved to outperform typical CRF models, the well-known Hidden Markov Models
(HMM, [Rabiner, 1989]) and conventional machine learning algorithms like Support Vector
Machines (SVMs) in the field of gesture recognition, cf. [Morency et al., 2007]. Figure 5.2
shows one potential configuration of a LDCRF model.
For this work, the task of action-/intention recognition is to find a sequence of labels η =

{η1, η2, . . . , ηT} that best predicts the pedestrian intention for the sequence of observations
X = {x1,x2, . . . ,xT} collected within a total range of T time steps. LDCRF models orig-
inate from Conditional Random Field theory published by [Lafferty et al., 2001], which
is one of famous activity recognition models that can capture extrinsic dynamics between
class labels. As Figure 5.2 shows, a LDCRF model is an undirected graph consisting of
sequential variable pairs of state variables xt and class labels ηt plus an additional layer of
non-observable, mostly probable hidden states h = {h1, h2, . . . , hT}, for every time step.
Using a larger set of observations as training data, the LDCRF is able to learn an intention
recognition model and given a new observation sequenceX = {xt}t=1,...,T to infer the inten-
tion labels η = {ηt}t=1,...,T . Each ht is member of a finite set Hηt = {h(ηt,j)

t }Hj=1 of possible
hidden states for the intention label ηt ∈ Y = {1, 2, . . . , L}, where L is the number of inten-
tion labels. For different labels, the model is restricted to have disjoint sets of hidden states
Hηt , which later reduces complexity of the model. H :=

⋃
ηt
Hηt is defined to be the union

of all Hηt sets, that is all possible hidden states are contained in H. Following [Morency
et al., 2007], the LDCRF defines a latent conditional model as

P (η|X;θ) =
∑
h∈H

P (η|h, X;θ)P (h|X;θ), (5.1)
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Figure 5.2: LDCRF for a 2-class problem with 2 hidden states per class label. Observables
are displayed as shaded nodes. Black solid connections are modeled by the state
functions sl. Colored connections between hidden states are modeled by the
transition functions tm. The hidden states h(i,1)

t and h
(i,2)
t model the intrinsic

structure for class label η(i)
t , i ∈ {1, 2}, while the connections between h(1,k)

t and
h

(2,k)
t , k ∈ {1, 2} model the extrinsic relations between the class labels η(1)

t and
η

(2)
t .

with the model parameters θ. By definition, for sequences having any ht /∈ Hηt it holds
P (η|h, X;θ) = 0 and the model in equation (5.1) can be simplified to

P (η|X;θ) =
∑

h:ht∈Hηt ,∀t=1,...,T

P (h|X;θ). (5.2)

Similar to the usual CRF formulation presented in [Lafferty et al., 2001], P (h|X;θ) can be
defined as

P (h|X;θ) :=
1

Z(X,θ)
exp

(∑
k

θk · Fk(h, X)

)
︸ ︷︷ ︸

=:Ψ(h,X;θ)

, (5.3)

with the partition function

Z(X;θ) =
∑

h:ht∈H

exp

(∑
k

θk · Fk(h, X)

)
. (5.4)

The functionals Fk(h, X) can be written as sums of feature functions, namely state functions
sl(ht, X, t) and transition functions tm(ht, ht−1, X, t). For the potential function Ψ it then
follows

Ψ(h, X;θ) =
T∑
t=1

{∑
l

λlsl(ht, X, t) +
∑
m

µmtm(ht, ht−1, X, t)

}
, (5.5)
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with
θ = {θk}k = {λl}l ∪ {µm}m. (5.6)

State functions sl depend on a single hidden variable and observations in the model while
transition functions tm depend on pairs of hidden variables. In the original LDCRF model
configuration, the number of state functions, sl, will be equal to the dimension of the feature
vector d times the number of possible hidden states. With the L different intention labels for
the model and assumingH hidden states per label, the total number of state functions, sl, and
total number of associated weights λl will be d×L×H . In this work, a time window w ≥ 0

can be defined additionally, connecting the observations from w previous time instances with
the hidden states of the actual frame. The number of potential state functions then increases
to (1 + w) × d × L × H . For each hidden state pair (h′, h′′), the transition function tm is
defined as

tm(ht−1, ht, X, t) =

1, if ht−1 = h′ and ht = h′′

0, otherwise
. (5.7)

The weights µm associated with the transition functions model both the intrinsic and ex-
trinsic dynamics. Weights associated with a transition function for hidden states that are in
the same subset Hηt will model the substructure patterns, while weights associated with the
transition functions for hidden states from different subsets will model the external dynamic
between intention labels. Each hidden state from the previous time instance can be connected
by a transition function with all possible hidden states for the current frame. Therefore, the
number of transition functions tm in the model is |H|×|H|. In comparison to LDCRFs, Hid-
den Markov Models (HMM) as presented in [Rabiner, 1989] are also able to model intrinsic
structures with hidden states. However, for each class label η a separate model has to be
trained. This results in unrelated model probabilities when evaluating a sequence with each
trained HMM to determine the actual class label. Here, a benefit of using LDCRF models
is, that they combine the single class marginals and output a meaningful probability for each
η

(l)
t , i.e.,

∑
l P (η

(l)
t ) = 1.

5.1.1 Learning the Model Parameters

The training set consists of N labeled sequences (Xi,ηi), i = 1 . . . N . Following [Lafferty
et al., 2001] and [Morency et al., 2007], the objective function

L(θ) =
N∑
i=1

logP (ηi|Xi;θ)− 1

2σ2
‖θ‖2 (5.8)

is defined to learn the optimal parameter set θ∗. Equation (5.8) combines the conditional log-
likelihood of the training data with the log of a Gaussian prior with variance σ2, i.e., P (θ) ∼
exp( 1

2σ2 ‖θ‖2). The optimal parameter values under the criterion θ∗ = arg maxθ L(θ) can
be found by gradient ascent using iterative solvers like BFGS [Broyden, 1970,Fletcher, 1970,
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Goldfarb, 1970, Shanno, 1970]. Therefore, the gradient of logP (η|X,θ) for one particular
training sequence (X,η) with respect to the parameters λl associated with a state function sl
has to be calculated at first. Given Equations (5.2) and (5.3), it holds

∂

∂λl
(logP (η|X;λ)) =

∂

∂λl

log
∑

h:∀ht∈Hηt

exp (Ψ(h, X,λ))− logZ(X;λ)


=

1∑
h:∀ht∈Hηt

exp(Ψ)

∑
h:∀ht∈Hηt

{
exp(Ψ)

∂Ψ

∂λl

}
−

∂
∂λl
Z(X;λ)

Z(X;λ)

=
∑

h:∀ht∈Hηt

 exp(Ψ)∑
h:∀ht∈Hηt

exp(Ψ)

T∑
t=1

sl(ht, X, t)

−
∂
∂λl
Z(X;λ)

Z(X;λ)

=
∑
t,h′


∑

h:ht=h′∧∀ht∈Hηt
P (h|X;λ)∑

h:∀ht∈Hηt
P (h|X;λ)

sl(h
′, X, t)

−
∂
∂λl
Z(X;λ)

Z(X;λ)

=
∑
t,h′

P (ht = h′|η, X;λ)sl(h
′, X, t)−

∂
∂λl
Z(X;λ)

Z(X;λ)

=
∑
t,h′

P (ht = h′|η, X;λ)sl(h
′, X, t)

−
∑
η′,t,h′

P (ht = h′,η′|X;λ)sl(h
′, X, t). (5.9)

According to [Morency et al., 2007], the single derivation steps of the gradient in equation
(5.9) show, that the summations for P (hj = h′|η, X;λ) are simply constrained versions of
the partition function Z over the conditional random field for h. Hence, it can be shown, that
the gradient is computable with O(T ) using belief propagation [Pearl, 1988], for a sequence
of length T . The objective function’s gradient with respect to the parameters µm associated
with a transition function tm can be derived the same way, that is

∂

∂µm
(logP (η|X;µ)) =

∑
t,h′,h′′

P (ht = h′′, ht−1 = h′|η, X;µ)tm(h′, h′′, X, t)

−
∑

η′,t,h′,h′′

P (ht = h′, ht−1 = h′′|X;µ)tm(h′, h′′, X, t). (5.10)

The marginal probabilities on edges, P (hj = h′, hk = h′′|η, X,µ), necessary for this gra-
dient can also be computed efficiently using belief propagation. For gradient ascent a more
efficient version in speed and robustness of the BFGS technique is used, cf. [Liu and No-
cedal, 1989].

107



5 Pedestrian Intention Recognition

5.1.2 Inference

To test a previously unseen sequence X , the most probable label sequence η∗ will be esti-
mated that maximizes the trained model using the optimal parameter values θ∗:

η∗ = arg max
η

P (η|X,θ∗), (5.11)

Applying equation (5.2) once again results in

η∗ = arg max
η

∑
h:ht∈Hηt ,∀t=1,...,T

P (h|X,θ∗). (5.12)

To predict the label η∗t of frame t, the marginal probabilities P (ht = h′|X,θ∗) are calculated
for all possible hidden states h′ ∈ H. Single marginal probabilities are summed according to
the disjoint sets of hidden statesHηt . Finally, the label associated with the optimal set is cho-
sen. Similar to the training process, the marginal probabilities can efficiently be computed
using belief propagation.

5.1.3 Feature Computation

In this section the set of features is presented, that are used for pedestrian intention recogni-
tion. [Hamaoka et al., 2013], [Oxley et al., 1995] and [Schmidt and Färber, 2009] describe
dominant features to recognize persons’ intention during road crossing events. The mea-
surement outputs from the presented system for stereo-based object detection and tracking
combined with a pedestrian head pose estimation provides most of these features. The de-
fined features are extracted for each frame and concatenated into a time-series of T frames
as an input for the LDCRF model introduced in earlier sections. The individual used features
are explained in the following.

Pedestrian Dynamics

Detected pedestrians will be tracked in lateral and longitudinal direction using a Kalman
filter, cf. [Bar-Shalom et al., 2002]. A simple constant velocity model (CV) for pedestrians
is assumed. See [Schneider and Gavrila, 2013, Keller et al., 2011a] for details. As mea-
surements the center foot point of the pedestrian image bounding box plus an additional
median disparity value calculated over the upper pedestrian body are extracted. Using this
information, the measured pedestrian lateral and longitudinal position in 3D is calculated
with the help of camera calibration parameters, see eq. (4.1). In addition, vehicle dynamics
are incorporated into the dynamical model for ego-motion compensation, cf. [Schneider and
Gavrila, 2013]. As a result, for each frame, one obtains the filtered pedestrian’s positions on
the ground (xt, zt) relative to the ego-vehicle and absolute velocities (ẋt, żt) in lateral and
longitudinal direction.
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Pedestrian Head Pose

To capture the pedestrians’ awareness of an oncoming vehicle the human head pose gives
a dominant cue, see [Hamaoka et al., 2013, Oxley et al., 1995] and [Schmidt and Färber,
2009]. The presented method for pedestrian intention recognition builds upon the system
presented in the previous chapters 3 to 4, that tries to estimate pedestrian head poses in
monocular gray value images supported by stereo depth information. The basic idea is to
train multiple classifiers for different head pose classes related to a specified pan angle range.
Furthermore, the single head pose estimation results are filtered for usage in video sequences
by implementing a particle filter (Sec. 3.2). To more robustly guide the particles around
future head regions, depth information within a detected pedestrian bounding box as well
as estimated human movement directions are incorporated, see Chapter 4. Hence, for an
existing pedestrian track the head pan angle θHt from the continuous range [−180, 180) will
be extracted for each frame.

Formation of a Time-series

For a video sequence the above mentioned features will be integrated into a time-series of
observations. The time-series X over T frames then includes the following data

X = {x1, . . . ,xT} = {(x1, z1, ẋ1, ż1, θ
H
1 )′, . . . , (xT , zT , ẋT , żT , θ

H
T )′}. (5.13)

5.2 Evaluation Dataset

[Schneider and Gavrila, 2013] presented a new dataset containing labeled stereo-video im-
ages. The image data includes different situations of persons approaching the curb. Ground
truth is provided by means of labeled pedestrian bounding boxes, distance measurements es-
timated from calculated disparity maps and ego-motion data from on-board inertial sensors.
Additionally, the authors provide the output from a HOG/linSVM pedestrian detector ( [Dalal
and Triggs, 2005]) evaluated on regions of interest supplied by a stereo-video based obstacle
detection component. For pedestrian action recognition the so-called "time-to-event" (TTE)
in frames is labeled, identifying, when a person is crossing, starting to cross, bending in or
stopping at the curb. In total, 35 training and 32 test scenarios are recorded.

The goal of this work is to address a large number of possible situations pedestrians can
interact in daily traffic, to get an overall scene understanding at the end. Therefore, the
additional scenario of a walking pedestrian on the sidewalk is also addressed, which is named
as "straight". "straight"-samples are extracted out of "bending-in"-scenarios with an adequate
time distance to the turning event. Later, the fact states a very high value to be able to
differentiate, if a person will continue his/her way on the sidewalk or suddenly bend into
the road. When taking all data together into an overall set, one obtains the distribution over
addressed scenarios displayed in Table 5.1. The contained samples for "starting"-scenarios
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bending in starting stopping crossing straight total

23 9 17 18 20 87

Table 5.1: Number of sequences per scenario for Daimler dataset [Schneider and Gavrila,
2013] including straight scenarios.

Figure 5.3: Crossing (left) and stopping scenario (right) from Daimler dataset [Schneider and
Gavrila, 2013].

Figure 5.4: Bending in (left) and straight walking scenario (right) from Daimler
dataset [Schneider and Gavrila, 2013].

will not be part for further evaluation. Figure 5.3 and 5.4 show some of the evaluated images
for each addressed scenario.

5.3 Experiments

5.3.1 Experimental Setup

All sequences are reprocessed in order to calculate the features mentioned in Section 5.1.3.
Similar to [Keller and Gavrila, 2014], a uniform noise of up to 10% of the original label
bounding box height is added to the height and center to simulate real-world behavior given
by a pedestrian tracker. To capture the pedestrians awareness of the underlying scene, contin-
uous head pose angels are calculated using the algorithms of Chapter 3 and Chapter 4. Here,
for each of 8 discrete head pose classes boosting cascades including MCT-Features [Fröba
and Ernst, 2004] are trained on a large set of manually labeled pedestrian head images with
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approximately 2500 samples per class, see the BOSCH data setup in Section 3.4.1. For a
comparison, pedestrian dynamics are captured using a similar approach to PHTM [Keller
and Gavrila, 2014], where motion histogram features are extracted from dense optical flow.
In this work, a public available version of the TV-L1 flow [Zach et al., 2007, Sanchez et al.,
2012] is used. Vehicle ego-motion compensation is achieved by applying an efficient and
highly accurate algorithm for visual odometry, cf. [Geiger et al., 2011]. In [Keller and
Gavrila, 2014] only flow vectors inside a pedestrian depth mask contribute to the histogram
calculation. This mask is derived by considering only disparity measurements within a given
pedestrian patch that have a small deviation from the patch-wise calculated median disparity.
The required disparity maps over whole frames are calculated using the method of [Geiger
et al., 2010].
Without loss of generality, the system is restricted to lateral approaching pedestrians from
the right side. There is one sample in the training set and testing set respectively, where
a pedestrian is crossing from the left side. For evaluation, both samples are converted
into right-to-left-crossings by inverting the extracted features for lateral position, lateral
velocity and head pose. Facing the problem of a very low number of samples the use of
leave-one-out cross-validation (LOO) is proposed. Here, in multiple rounds, models are
learned on a complete set including original training- and test data, leaving one particu-
lar sample out for testing. Two types of one-vs.-one classifiers are trained to differentiate
between "stopping"- and "crossing"- (SC) or "bending-in"- and "straight"- (BS) scenarios.
The corresponding class label sets Y consist of the events YSC = {"crossing", "stopping"}
and YBS = {"bending in", "straight"}, respectively. The idea for LDCRF is now to re-
place one abstract class label by a specified number of latent variables in order to model
the extrinsic and intrinsic class dependencies. Additionally, the number of feature func-
tions and model parameters can be controlled by setting a time window for temporal feature
dependencies to be learned. If, for instance, the number of hidden states for the trained
LDCRF model is chosen to be 3, the following subsets H = {Hi}i=1,2 for a crossing
vs. stopping classifier can be defined as H1 = {"crossing1", "crossing2", "crossing3"} and
H2 = {"stopping1", "stopping2", "stopping3"}. During experiments, LDCRF models are
trained with various time window sizes w from 0 to 5 and number of hidden states H per
class label from 1 to 10 (cf. Sec. 5.1) plus additional parameters to be set for weight ini-
tialization, system regularization and the gradient ascent method. Only the best performing
models are analyzed in the following. The original LDCRF training algorithm is adapted
to not take data for future frames into account when using a positive window size parame-
ter. This will avoid a system delay during evaluation. Observations taken from a stopping
scenario related to TTE values larger than eight frames are members of the crossing class.
Indeed, modifying this threshold has strong impact on the course of the performance plots
displayed later. The value of eight frames is motivated by the time period assumed for a
pedestrian to change intention and action, in this case 8∗1/16fps = 0.5s. The same assump-
tion is made for bending-in scenarios shortly before the turning event.
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For evaluation, a sliding window is shifted over a whole pedestrian trajectory to collect
frame-based system responses. The goal is to analyze the system’s capability to early predict
critical situations with a high reliability. Therefore, the system’s output is shown, which is
the event probability for a pedestrian to stop at the curbside or turning in. In addition av-
eraged classification rates for both scenarios are presented. Interesting and relevant is the
system behavior within a short time range around the actual event for both types of scenar-
ios. As proposed by [Keller and Gavrila, 2014] and [Kooij et al., 2014a], the focus is set on
the TTE interval [-5,20], where positive TTE values reflect the time period before event oc-
currence. Plotted are the mean and standard deviation for event probabilities over all tested
sequences. For a system realizing pedestrian action/intention-recognition to be used for col-
lision warning or even avoidance, the desired event-probabilities should have the following
properties. In an early stage, e.g. 20 to 15 frames prior to the event, the event probabilities
should have considerable low values. Towards the occurring event, the probabilities should
increase rapidly showing a strong gradient. This behavior will lead to systems less sensitive
to false activations. This fact is later considered during interpretation of results.

5.3.2 Results on Pedestrian Intention Recognition

Event Probabilities

Evaluation is done on single features only and on their combined versions. Figure 5.5 and
Figure 5.6 show the evaluation results for the best trained SC-models and BS-models respec-
tively. Compared to the single-feature-based models, the combined SC-model (Pos+Vel+H-
p) is able to reliably recognize crossing situations that is the stopping probability is approx-
imately zero within the considered time period for most of the test sequences. For stopping
scenarios the probability increases continuously towards the stopping event (TTE=0). While
at an early stage (TTE=20) for most of the stopping sequences the system still tends to pre-
dict a crossing scenario (average stopping probability smaller than 0.025 with a standard de-
viation near to 0), this behavior rapidly changes for getting closer the actual stopping event
(TTE∈[0,5]). The combined BS-model shows similar behavior. The velocity components
do not seem to have the high impact on an accurate intention recognition for BS-scenarios
compared to CS-scenarios. This can be explained by the fact that absolute velocity values
do not change that significant for a bending in rather than for a stopping scenario, where the
values tend to zero. Another interesting observation is related to the power of the head pose
feature. While for the CS-model, the head pose cannot contribute significantly to a perfor-
mance gain, for the BS-model the opposite is the case. Here, the model only trained on the
head pose feature outperforms the one trained on velocity inputs. Having a deeper look at the
sequences, this fact can be explained by the presence of a dominant pedestrian head turning
towards the oncoming vehicle in most of the bending in situations. This also reflects pedes-
trian behavior in real-world scenarios. According to Figure 5.7, for the stopping scenarios,
the head turn towards the approaching vehicle and focusing of the same mainly occurs less
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Figure 5.5: Stopping probabilities over TTE (frames) for the SC LDCRF model. Road-
crossing scenarios (upper graph) and stopping scenarios (lower graph). Visu-
alized are mean and standard deviation (shaded area) over all tested sequences.

than five frames (<0.3s!) before or even significantly after the actual event, which is contra-
dictory to normal behavior demonstrated by the works of [Hamaoka et al., 2013] and [Oxley
et al., 1995]. Hence, the expected performance gain of the head pose feature with respect
to intention recognition in stopping situations cannot be proven exclusively when evaluating
on the Daimler dataset. The motion histogram features introduced by [Keller and Gavrila,
2014] are used in two ways. First, by applying a PHTM-like version (Fig. 2.4) and second
by integrating the original features into a LDCRF model, see Figure 5.8.
Compared to the best trained LDCRF model in this work, the PHTM approach (green) results
in more unstable intention estimates over the whole dataset especially for crossing situations.
Nevertheless, the motion histogram features show high potential for a robust intention recog-
nition in combination with a LDCRF model (red).
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5 Pedestrian Intention Recognition

Figure 5.6: Bending-in probabilities over TTE (frames) for the BS LDCRF model. Straight-
walking scenarios (upper graph) and bending-in scenarios (lower graph).
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Figure 5.7: First occurrence of frontal head pose over TTE in stopping situations given by the
Daimler dataset, [Schneider and Gavrila, 2013]. For some scenarios the expected
pedestrian head turn towards the approaching vehicle occurs only after the actual
stopping action.

For another reference, standard machine learning approaches were trained – here, SVMs and
Random Forests (RF) – to test their suitability compared to LDCRF. For this, single observa-
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Figure 5.8: Stopping probabilities over TTE (frames) for the best LDCRF (blue), a LD-
CRF model learned on pedestrian position and motion histograms (red) and the
PHTM-like approach [Keller and Gavrila, 2014] (green).

tions are integrated over a time window of 20 frames. Results for the stopping vs. crossing
classifiers are given in Figure 5.9. Compared to LDCRF, SVM (green) and RF models (red)
result in unstable estimates for the underlying scenarios. At an earlier stage there is still
a comparably high confusion between stopping- and crossing-scenarios for both SVM and
RF models, whereas the LDCRF results in more stable estimates. A similar behavior is ob-
served for bending-in and straight walking scenarios in Figure 5.10. When considering the
probability estimates resulting from the SVM-based classifier, it is hardly possible to differ-
entiate a bending-in- from a straight walking scenario due to weakly increasing probability
estimates towards bending-in events. For the Random Forest classifier probability estimates
result in very high ranges (high standard deviation) for bending-in situations leading to po-
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5 Pedestrian Intention Recognition

Figure 5.9: Stopping probabilities over TTE (frames) for the best SC LDCRF model
compared to other machine learning approaches (SVM/green and Random
Forest/red). Crossing scenarios (upper graph) and stopping scenarios (lower
graph).

tential confusions till shortly before event occurrence (TTE>5). In comparison, the LDCRF
based classifier again results in smoother and more stable estimates. The benefit of using
a LDCRF based classifier for intention recognition points out more clearly when analyzing
classification rates in the following.
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Figure 5.10: Bending-in probabilities over TTE (frames) for the best BS LDCRF model
(blue) compared to other machine learning approaches (SVM/green and Ran-
dom Forest/red). Straight walking scenarios (upper graph) and bending-in sce-
narios (lower graph).

Classification Rates

For further comparison, classification rates are provided for different feature combinations
and classifiers. For this, the stopping- or bending-in-probability values are decisive with re-
gard to the prediction of the correct intention. Similar to Receiver Operating Characteristic

curves (ROC), used for general detection algorithms, optimal thresholds for the stopping-
and bending in probabilities are determined, that lead to optimal performance in terms of
a maximized classification rate. The classification rate for a two-class problem can be ex-
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Figure 5.11: LDCRF classification rates in stopping scenarios for different feature combina-
tions.

pressed as

classRate =
TP + TN

P + N
, (5.14)

with TP (true positive) and TN (true negative) the number of correct decisions and P and
N the number of positive and negative samples, respectively. Later application of the de-
veloped intention recognition approach is a system for autonomous braking. Within this
system, the predicted intention will serve as an additional indicator, that a person tends to
cross the street or not. In case of a successful predicted stopping intention, the function will
avoid the trigger of an emergency braking and therefore has an additional measure to reduce
a potential false activation while maintaining a certain degree of value, i.e., safe more pedes-
trian lives. Concerning the system design, the false prediction of a crossing intention in case
of a real stopping pedestrian is the most crucial mistake the system can do. In the context
of this work, this would be related to a false negative (FN) stopping intention recognition.
Therefore, for determining the optimum thresholds for the stopping probability and deriving
a classification rate that particular value is taken that minimizes the false negative rate and
hence the miss-classification rate (1-classification rate). The optimum criteria to determine
the optimal threshold for the stopping- probability is the minimum sum of single averaged
miss-classification rates over the considered time interval TTE ∈ [-10,20]. The correspond-
ing classification rate then results from equation (5.14). Figure 5.11 shows the classification
rates in stopping situations for the trained LDCRF models using different feature combina-
tions. A general observation is that classification rates increase towards the event occurrence
(TTE=0), which is the desired behavior. Except of the LDCRF with the head pose as a
stand-alone feature (magenta curve) all combined versions achieve 100% classification rate
few frames before the stopping event. The benefit of integrating the human head pose can
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Figure 5.12: Classification rates in stopping scenarios for LDCRF model compared to
PHTM-like approach from [Keller and Gavrila, 2014].

clearly be seen, when comparing the classification rates for velocity only (green curve) and
combined version (red curve) all over the considered time interval. For instance, at 10 frames
prior to the event (TTE=10), combining velocity with head pose achieves 6% higher clas-
sification rates than the velocity-only based LDCRF model. Best performance is given by
combining relative position, velocity and head pose (blue curve). Here, almost 95% correct
intention estimation can be achieved 8 frames before pedestrians are actually stopping.
Figure 5.12 shows a comparison of classification rates with the PHTM-like approach of [Keller
and Gavrila, 2014]. The trained LDCRF model (blue curve) outperforms the PHTM-like
approach (green curve) in terms of the ability to earlier increasing classification rates and
hence earlier successful prediction of a stopping intention. For eight frames before the stop-
ping event, the trajectory matching approach achieves only 77% accuracy in predicting the
correct intention, whereas the LDCRF model already achieves 95%. As also observed pre-
viously in analyzing the event probabilities, the motion features presented in [Keller and
Gavrila, 2014] are well performing for the task of intention recognition in stopping situa-
tions. A LDCRF model trained on these features (red curve) outperforms the conventional
approach and achieves higher classification rates towards the stopping event. Hence, the
probabilistic binary search tree used for the PHTM approach seems to be the limiting factor.
A comparison of classification rates for the trained LDCRF model with conventional ma-
chine learning approaches, SVM and Random Forest, is displayed in Figure 5.13.
Both, SVM and RF behave similar towards the stopping event, however do not reach the
performance of the LDCRF model. For instance at TTE=5 both, SVM and RF, only score
77% accuracy while the LDCRF model already achieves 95% in correctly predicting the
stopping intention. Even after event occurrence for it is not possible to reach a stable 100%
classification rate for both conventional machine learning approaches.
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Figure 5.13: Classification rates in stopping scenarios for LDCRF model compared with
other machine learning approaches (SVM and Random Forest).

In the bending-in vs. straight case, considerations for finding the optimal threshold for the
estimated bending-in probability are slightly different. To increase the benefit for an existing
system it is important to have a high classification rate for bending-in intentions while on
the other hand achieving a very low miss-classification rate in situations where pedestrians
are just walking along the sidewalk. In other words, the situation of a predicted bending-in
intention in case of a real straight walking pedestrian would be the crucial case for a potential
false activation. For the trained bending-in vs. straight classifier this situation is related to
a false positive (FP) predicted bending-in intention. Hence, to determine optimal thresholds
for the bending-in vs. straight classifier, the FP-rate is minimized for evaluation. With the re-
sulting operating point, classification rates are calculated correspondingly given by equation
(5.14). Figure 5.14 shows the resulting classification rates for the trained LDCRF models
using different feature combinations in bending-in situations. Assuming that a bending-in
scenario based on velocity as stand-alone feature can only be detected when the event is
actually occurring, integrating the human head pose for intention recognition should help
significantly. Sequence analysis shows that a dominant head turn occurs within 5 frames
before event occurrence. Analyzing the head pose feature only (magenta curve), this head
turn is recognized by the LDCRF model and directly assigned to the corresponding bending
in intention yielding a strong increase in classification rates 5 frames before the pedestrian
turns in. Combining head pose and velocity components (red curve) further improves results
especially in situations, where the pedestrian is oncoming and thus not showing the dominant
backward head turn. Best performance again is achieved with integration of all derived fea-
tures including also the pedestrians relative position with respect to the approaching vehicle
(blue curve). Due to the challenging scenario of a bending-in pedestrian, a 100% accuracy
can only be achieved after the turning action for all trained LDCRF models.
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Figure 5.14: LDCRF classification rates in bending-in scenarios for different feature combi-
nations.
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Figure 5.15: Classification rates in bending scenarios for LDCRF model compared with
other machine learning approaches (SVM and Random Forest).

A comparison for classification rates with SVMs and Random Forests is given in Figure 5.15.
Similar to the stopping vs. crossing models, the LDCRF model outperforms conventional
machine learning approaches by means of general higher and more stable classification rates
over the considered TTE interval. While the SVM and RF classifier are only able to reli-
able detect the bending-in action shortly after event occurrence (classification rate >90% at
TTE≤-2 for RF), the LDCRF model predicts the correct intention shortly before the pedes-
trian is turning in.

121



5 Pedestrian Intention Recognition

5.4 Conclusion

In this chapter a method to estimate the intention of lateral approaching pedestrians in the
domain of intelligent vehicles was presented. Multiple features capturing the pedestrian dy-
namics and the awareness of the nearby traffic situation were used to learn a LDCRF model.
The proposed model has the advantage to automatically learn intrinsic structure and feature
dependencies as well as temporal dynamics between different actions. Evaluation of the
model in Section 5.3 showed more stable intention estimates for different scenarios com-
pared to other machine learning approaches and a state of the art approach of [Keller and
Gavrila, 2014] in terms of smoother evolution of the event probabilities and higher classi-
fication rates. The model provides evidence for potential risky situations and therefore can
serve for better pedestrian path prediction, cf. Chapter 6, or be directly integrated into a sys-
tem implementing a pedestrian warning or automatic emergency braking function to reduce
false alarms.
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This chapter focuses on the integration of the pedestrian intention recognition approach pre-
sented in Chapter 5 for an improved path prediction to be used in an AEB function. The
use of a controlled Interacting Multiple Model filter is investigated in combination with the
presented Latent-Dynamic Conditional Random Field model for the task of intention recog-
nition and path prediction in different scenarios. Again, situations with pedestrians walking
along or towards the road curbside on their way to cross, stop or just keep on going in
the same direction will be addressed. Pedestrians are detected be the previously introduced
stereo-video based object detection and tracking system with additional human head pose
estimation. Using extracted features, a potential intention for a tracked pedestrian can be
derived, cf. Chap. 5. Now, for each time instance the goal is to predict the pedestrian’s future
states which is crucial to know in order to react properly in the later AEB function. The path
prediction uses an iterative approach, where prediction results for a specified time window
are controlled by updated pedestrian intention estimates. Figure. 6.1 displays the adapted
system overview.

50

Figure 6.1: System overview. Pedestrians are detected and tracked by a stereo-video based
generic obstacle detection and tracking approach and verified by an image
intensity-value based classifier. For each pedestrian candidate the head orien-
tation will be estimated from the image data. The previous extracted information
serves as input for an iterative intention recognition and path prediction.

Estimated pedestrian intentions will serve as control input for a more reliable and robust path
prediction. Similar to [Kooij et al., 2014a], a dynamic system for prediction is effected by
latent information, i.e., the LDCRF output has a direct impact on the model probabilities
controlling the behavior of the IMM filter. The benefit in choosing the LDCRF model is the
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fact that it can work with time series of arbitrary lengths, where additional confidence can be
retrieved over temporal integration. Additionally, the IMM filter can handle multiple motion
models and hence is not restricted to a simpler linear motion model.
This chapter is structured as follows. Section 6.1 presents the theory about the presented
approach for path prediction. Starting with the introduction of the general IMM filter the
method for a controlled state prediction by incorporating intention estimates is explained. A
detailed analysis of system performance is later performed within the experiments in Sec-
tion 6.2. Section 6.3 finally concludes this chapter.

6.1 A Controlled Interacting Multiple Model Filter for

Pedestrian Path Prediction

In the addressed subject area, it is reasonable to assume that a pedestrian dynamical model
can change over time. For example, a pedestrian is able to de-/accelerate or turn within a very
short time period. These varying system characteristics are hard to describe with only one
single model. Hence, improvements in object tracking can be achieved taking into account
the potential dynamical change in motion behavior. With regard to this work, a discrete set of
n models is considered, which is denoted by M = {m(1), . . . ,m(n)}. Each model m(j) will
have some prior probability µ(j)

0 = P (m
(j)
0 ). Additionally, the probabilities of switching

from model i to model j in the next time step are assumed to be known and denoted by
pij = P (m

(j)
t |m

(i)
t−1). This defines a transition probability matrix of a first order Markov

chain characterizing the mode transitions, and hence systems of this type are commonly
referred as Markovian switching systems. The next section presents a detailed description of
the IMM filter, which can cope with such systems and is used throughout this work.

6.1.1 Interacting Multiple Model Filter

For general tracking tasks with an underlying Markovian switching system, where a tracked
object can be subject to multiple motion patterns, the IMM-filter, presented in [Bar-Shalom
et al., 2002, Blackman and Popoli, 1999, Li and Jilkov, 2005], turned out to be a computa-
tionally efficient and in many cases well performing suboptimal estimation algorithm. The
IMM filter can be described by three major steps per time step, namely interaction (mixing),
filtering and combination. First, for each time instance the initial filter state condition for
each of the considered models is obtained by mixing the state estimates of all model filters
from the previous time step under the assumption, that the actual considered model is the
best matching one. In the second step regular Kalman filtering steps are applied for each
underlying model in order to obtain updated filter states after incorporating actual system
measurements. Finally, the combination of all updated filter states in form of weighted sum
yields the final state estimate and covariance for the current time step. Here, the weights
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related to the model probabilities are calculated in the earlier filtering step and depend on the
fitness of actual observations with respect to the model assumptions. A detailed notation of
the IMM algorithm for one cycle is given as follows.

Interaction

In a first step, the mixing probabilities µ(i|j)
t for each model m(i) and m(j) are calculated as

µ
(i|j)
t =

1

c̄j
pijµ

(i)
t−1, (6.1)

with a normalization factor

c̄j =
n∑
i=1

pijµ
(i)
t−1, j = 1, . . . n. (6.2)

µ
(i)
t−1 is the probability of model m(i) in the time step t − 1. Now the mixed inputs for each

model filter j = 1, . . . , n can be computed as

x̂
(0j)
t−1 =

n∑
i=1

µ
(i|j)
t x̂

(i)
t−1, (6.3)

P
(0j)
t−1 =

n∑
i=1

µ
(i|j)
t ×

{
P

(i)
t−1 + (x̂

(i)
t−1 − x̂

(0j)
t−1)× (x̂

(i)
t−1 − x̂

(0j)
t−1)′

}
, (6.4)

where x̂(i)
t−1 and P

(i)
t−1 are the updated mean and covariance for model m(i) at time step t− 1.

Filtering

After interaction, the actual filtering for each model m(j) is done as[
ˆ̃x

(j)
t , P̃

(j)
t

]
= EKFp(x̂

(0j)
t−1 ,P

(0j)
t−1 ,A

(j)
t−1,Q

(j)
t−1), (6.5)[

x̂
(j)
t ,P

(j)
t

]
= EKFu(ˆ̃x

(j)
t , P̃

(j)
t , zt,h

(j)
t ,H

(j)
t ,R

(j)
t ), (6.6)

where Eq. (6.5) and (6.6) denote the prediction and update steps of the standard extended
Kalman filter for non-linear systems with EKFp(·) and EKFu(·), correspondingly, cf. [Bar-
Shalom et al., 2002]. The matrices A(j), Q(j) and R(j) define transition matrix, process
noise and measurement noise for each model m(j). The vector zt includes the actual system
measurements at the t-th time step, while h(j) and H(j) denote model m(j)’s in general
non-linear measurement model and its corresponding derivative. In addition to mean and
covariance, the measurement likelihood for each filter is determined by

Λ
(j)
t = N (r

(j)
t ; 0,S

(j)
t ), (6.7)

125



6 Pedestrian Path Prediction

where r
(j)
t = zt − h

(j)
t (ˆ̃x

(j)
t ) is the measurement residual and S

(j)
t = H

(j)
t P̃

(j)
t (H

(j)
t )′ + R

(j)
t

it’s covariance for model m(j) in the Kalman Filter update step. Depending on the fact, how
well the measurements fit into the model assumptions, the probabilities of each model m(j)

at time step t are calculated as

µ
(j)
t =

1

c
Λ

(j)
t c̄j, (6.8)

with the normalization factor

c =
n∑
i=1

Λ
(i)
t c̄i. (6.9)

Combination

In the final stage of the IMM filter the combined estimate for the state mean and covariance
are derived from the single model estimates as

x̂t =
n∑
j=1

µ
(j)
t x̂

(j)
t , (6.10)

Pt =
n∑
j=1

µ
(j)
t ×

{
P

(j)
t + (x̂

(j)
t − x̂t)× (x̂

(j)
t − x̂t)

′
}
. (6.11)

6.1.2 Dynamical Models

In this work three different dynamic models m(i), i = 1, . . . 3, are integrated into an IMM
filter, motivated by the scenarios involving a crossing, stopping or turning pedestrian. These
models are well known as constant velocity (CV), constant position (CP) and coordinated
turn (CT), see [Bar-Shalom et al., 2002, Schneider and Gavrila, 2013]. For each model the
pedestrian state xt at the actual time step t is defined to include lateral and longitudinal
relative positions (xt, zt), lateral and longitudinal absolute velocities (ẋt, żt) and a turn rate
ωt, i.e., xt = (xt, zt, ẋt, żt, ωt)

′. The different dynamical models will be explained in detail
in the following.

Constant Velocity Model (CV)

The state vector for the CV model takes the following form xt = (xt, zt, ẋt, żt, ωt = 0)′.
Using Newton mechanics, the dynamical model for a constant velocity assumption can be
written as

xt+1 =


1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


︸ ︷︷ ︸

FCV

xt + qCV, (6.12)
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with the Gaussian process noise parameters for velocity components and turn rate qCV
t ∼

N (0, I5×5(0, 0, σ2
ẋ, σ

2
ż , 0)′).

Constant Position (CP)

For the CP model, the state vector has the following form xt = (xt, zt, ẋt = 0, żt = 0, ωt =

0)′. The discrete form for the dynamic model of a stationary pedestrian can be written as

xt+1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


︸ ︷︷ ︸

FCP

xt + qCP, (6.13)

with the Gaussian process noise parameters qCP
t ∼ N (0, I5×5(σ2

x, σ
2
z , 0, 0, 0)′).

Coordinated Turn Model (CT)

The discretization for the coordinated turn model can be written as

xt+1 =


1 0 sin(ωt∆t)

ωt

cos(ωt∆t)−1
ωt

0

0 1 1−cos(ωt∆t)
ωt

sin(ωt∆t)
ωt

0

0 0 cos(ωt∆t) − sin(ωt∆t) 0

0 0 sin(ωt∆t) cos(ωt∆t) 0

0 0 0 0 1


︸ ︷︷ ︸

FCT
t

xt + qCT, (6.14)

where qCT
t ∼ N (0, I5×5(0, 0, σ2

ẋ, σ
2
ż , σ

2
ω)′) encapsulates the process noise for the turn rate pa-

rameter. This model is, despite the matrix form, non-linear with respect to the turn rate state
parameter ω. Therefore before usage within the IMM filter the Jacobian ∂FCT

t /∂xt at each
time step t has to be computed for linearization, cf. [Bar-Shalom et al., 2002] and [Blackman
and Popoli, 1999]. With a := ωt∆t the Jacobian can be written as

∂FCT
t

∂x

∣∣∣∣
xt

=



1 0 sin(a)
ωt

∆t cos(a)−1
ωt

∆t [ cos(a)
ωt

∆t− sin(a)

ω2
t

]ẋt − [ sin(a)
ωt

∆t+ cos(a)−1

ω2
t

]żt

0 1 1−cos(a)
ωt

∆t sin(a)
ωt

∆t [ sin(a)
ωt

∆t− 1−cos(a)

ω2
t

]ẋt + [ cos(a)
ωt

∆t− sin(a)

ω2
t

]żt

0 0 cos(a) − sin(a) −∆t sin(a)ẋt −∆t cos(a)żt

0 0 sin(a) cos(a) ∆t cos(a)ẋt −∆t sin(a)żt

0 0 0 0 1


(6.15)
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6.1.3 Measurement Model

Measurements result from a pedestrian detector applied on image sequences recorded with
a stereo camera system. A measurement vector zt = (ut, dt) is derived from the center
foot-point pft = (ut, vt) and the median disparity dt of a pedestrian bounding box in the
image. Following [Schneider and Gavrila, 2013] for a 3D point in camera coordinates on the
ground-plane (xc, 0, zc), the measurement model h = (h1, h2)′ can be written as

z =

(
u

d

)
=

(
h1(xc, zc)

h2(xc, zc)

)
=

(
u0 + fxc/zc

fB/zc

)
, (6.16)

with principal point u0, camera constant f and stereo baseline B. To use the nonlinear
measurement model h within the IMM filter framework the Jacobian Ht = ∂ht/∂x has to
be provided as well, that is

∂ht
∂x

∣∣∣∣
xt

=

f/zt −fxt/z
2
t 01×3

0 −fB/z2
t 01×3

03×1 03×1 03×3

 (6.17)

6.1.4 Incorporating Pedestrian Intention Recognition using
Latent-Dynamic Conditional Random Fields

To control the model transitions in the presented IMM filter results from the intention recog-
nition system using Latent-Dynamic Conditional Random Fields from Chapter 5 are incor-
porated. The task of intention recognition is to assign intention labels η = {η1, η2, . . . , ηT}
that best explain a sequence of observations X = {x1,x2, . . . ,xT} for a range of T time
steps. The LDCRF model is defined as

P (η|X;θ) =
∑

h:∀ht∈Hηt

1

Z(X,θ)
exp

(∑
k

θk · Fk(h, X)

)
, (6.18)

with the partition function

Z(X,θ) =
∑
h

exp

(∑
k

θk · Fk(h, X)

)
(6.19)

and functionals Fk(h, X) being a linear combination of feature functions modeling the in-
ternal structure of a particular class label and the external dependencies between different
classes. Using a larger set of observations from labeled sequences as training data, the LD-
CRF is able to learn the optimal parameters θ∗ for an intention recognition model and given
a new observation sequence X to infer the intention labels η. Here, the trained models from
Chapter 5 to recognize stopping, crossing, bending in and straight moving intentions are
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used. For each time step t the probabilities P̄ (Ki)
t , i = 1, . . . , 3 related to each dynamical

model integrated within the IMM filter from Section 6.1.2 are derived from intention proba-
bility estimates by summing up the LDCRF’s marginal probabilities according to the set of
hidden statesH

η
(k)
t

related to class label η(k)
t , that is

P̄
(Ki)
t :=

1

|Ki|
∑
k∈Ki

P (η
(k)
t |X1:t,θ

∗). (6.20)

The set of intention label indices Ki includes the relation between intention and correspond-
ing motion model. I.e., a "bending in"-intention relates to the CT model, the stopping inten-
tion to the CP model and the straight or crossing intention to the CV model, respectively.

6.1.5 Pedestrian Path Prediction

Given the results from the pedestrian IMM tracking and the LDCRF, path prediction will be
performed as follows. In general, future pedestrian states can be easily derived by applying
the prediction functions given the process models from the IMM filter. Depending on future
pedestrian behavior, one of the different models within the filter can be better suited for
a more accurate path prediction than others. Unfortunately, the IMM filter is not able to
manage that in the absence of additional state measurements. To overcome this problem in
order to obtain a more precise prediction, estimates for pedestrian intention from the LDCRF
model will be incorporated. For this, the IMM interaction, prediction, and combination steps
are applied over a fixed time horizon of T future time steps. In between the temporary single
model probabilities µ̄(i), i = 1, . . . , 3 will be updated with the probabilities resulting from
intention recognition, that is

µ̄
(i)
t,0 := µ

(i)
t , (6.21)

µ̄
(i)
t,τ := µ̄

(i)
t,τ−1P̄

(Ki)
τ−1

(
3∑
j=1

µ̄
(j)
t,τ−1P̄

(Kj)
τ−1

)−1

, (6.22)

for τ = 1, . . . , T with µ(i)
t from equation (6.8) and P̄ (Ki)

τ from equation (6.20). One has to
mention that, during prediction, the iteratively updated estimates on position and velocity are
directly looped back for a more precise intention recognition, while the head pose estimate
remains constant on the latest obtained measurement. This holds under the assumption that
the essential pedestrian head movement occurs within a sufficiently long time interval (>1
Second) before one of the addressed actions actually occurs.

129



6 Pedestrian Path Prediction

6.1.6 Features for Pedestrian Intention Recognition

The trained LDCRF models presented in Chapter 5 require feature inputs extracted from
pedestrian dynamics as well as the pedestrian’s situational awareness in terms of the human
head pose. Similar to the procedure there, these features are extracted using the measure-
ments from an on-board stereo-video based pedestrian tracking and head pose estimation
system for each frame and concatenated into a time-series of T frames. The pedestrian’s
relative position (xt, zt) and absolute velocity components (ẋt, żt) at time instance t will be
directly taken from the related system state of the IMM filter presented in Section 6.1.1.
For human head pose estimation, the system presented in the chapters 3 and 4 provides
frame-wise stable continuous angle measurements θHt ∈ [−180, 180) resulting from a track-
ing module integrating multiple head pose classifiers related to a specified pan angle range.
Therefore, for intention recognition, the time-series X of features over T frames is then
given by

X = {(xt, zt, ẋt, żt, θHt )′}t=1,...,T . (6.23)

6.2 Experiments

This section presents results for pedestrian path prediction. Similar to the experiments in
Chapter 5, evaluation will be performed on the public available dataset presented by [Schnei-
der and Gavrila, 2013], see Section 5.2. First the setup of the system parameters is explained.
Then, evaluation over time-to-event is performed in comparison to a state of the art method
presented by [Keller and Gavrila, 2014]. In addition, also the scenarios for straight walking
and bending pedestrians are addressed.

6.2.1 Experimental Setup

All sequences are reprocessed to extract the features mentioned in Section 6.1.6. Similar
to [Keller and Gavrila, 2014] and the previous chapter, a uniform noise of up to 10% of the
original height of the labeled bounding boxes is added to their height and center to simu-
late real-world performance. To capture the pedestrians awareness of the underlying scene,
continuous head pose angels are calculated using the algorithms of Chapter 3 and 4 with the
identical training setup as presented in Section 5.3. As mentioned before, the best performing
LDCRF models from Chapter 5 are integrated for intention recognition. These consist of the
two models for stopping against crossing (SC) and bending-in against straight (BS) scenar-
ios, respectively. In the presented controlled IMM filter for path prediction, the single model
probabilities for the CV model µ̄(CV)

t,τ are calculated by averaging the intention probabilities
for crossing and straight from the SC- and the BS-LDCRF models, respectively, whereas the
model probabilities for CP (µ̄(CP)

t,τ ) and CT (µ̄(CT)
t,τ ) are directly updated by the intention prob-

abilities for stopping and bending in. Following [Schneider and Gavrila, 2013], the relevant
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measurement noise process noise
CV CP CT

σu σd σẋ σż σx σz σẋ σż σω
6.15 0.32 0.9 0.9 0.1 0.1 0.4 0.4 0.9

Table 6.1: Optimized IMM model parameters presented in [Schneider and Gavrila, 2013].

IMM model parameters from Table 6.1 are used. There, the measurement noise parameters
for σu and σd are derived statistically by calculating the displacement error of a pedestrian
bounding box with respect to the corresponding ground truth label in image and disparity
space. Process noise parameters are optimized for each filter model with a parameter search
in discrete space. In this work, the same principle is applied on the training data subset for
optimizing the CP model parameters. For this, the objective function

arg min
σx/z

1

T (T + 1)

T∑
t=1

T∑
τ=0

MSE(xt(τ)) (6.24)

is minimized, where MSE(·) calculates the mean-squared error for an estimated or predicted
position compared to ground truth. For τ=0, xt(τ) is the estimated filter state while for a
positive τ = 1, . . . , T , xt(τ) is the τ -th predicted state at time instance t. Additionally, the
CP model parameters are optimized using only trajectory snippets around the stopping event
(TTE ∈ [10,-50]). In addition, the model transition probabilities are determined as described
by [Blackman and Popoli, 1999]. The diagonal elements pii of the transition matrix stating
the probability, that the tracked object stays in model mi, i = 1, . . . n, are related to the
mean sojourn times τi and the cycle time Tc, that is

pii = 1− Tc
τi

(6.25)

[Schneider and Gavrila, 2013] present mean sojourn times based on different pedestrian
movement patterns for the used dataset as given in Table 6.2.
Transition probabilities pij between different models can be estimated by

pij =
nij
ni

(1− pii), (6.26)

Motion type mean sojourn time τi (s)

straight walking 6.66
maneuver (starting/stopping) 1.67

turning 2.50

Table 6.2: Mean estimated sojourn times for Daimler dataset presented in [Schneider and
Gavrila, 2013].
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where nij denotes the number of transitions from model mi to mj and ni the number of
all transitions from model mi. In general the values {pij}i,j have to be determined on a
larger validation set. However in this work, the transition probabilities between different
models are estimated under heuristic assumptions but prove to achieve sufficiently accurate
results in later experiments. Here, the fact is considered, that the transition from stopping to
walking is more probable than from stopping to bending. This results in the overall transition
probability matrix

{pij}i,j=1,...,3 =

0.99 0.005 0.005

0.03 0.96 0.01

0.01 0.01 0.98

 . (6.27)

For comparison, pedestrian path prediction is evaluated using an approach similar to PHTM
[Keller and Gavrila, 2014], where motion histogram features are extracted from dense optical
flow within a pedestrian depth mask. To calculate the optical flow fields a public available
version of the TV-L1 flow [Zach et al., 2007] is used. Stereo disparity maps are computed
with the method of [Geiger et al., 2010]. The efficient and highly accurate algorithm for
visual odometry from [Geiger et al., 2011] serves for vehicle ego-motion compensation. The
system’s output behavior is evaluated within a short time range around the occurring event of
a crossing, stopping or turning in pedestrian. As proposed in literature [Keller and Gavrila,
2014, Kooij et al., 2014a], focus for evaluation is set on the TTE interval [-10,20], which re-
lates to 20 frames prior to the event and 10 frames after event occurrence. Following [Kooij
et al., 2014a] and depending on later application within an AEB function, for path predic-
tion evaluation the Euclidean distance between lateral predicted expected position x̂t+T and
lateral ground truth position Gt+T is calculated, that is

errt,T := |x̂t+T −Gt+T | (6.28)

defines one performance metric. In addition the predictive log-likelihood

predllt,T := log [pt,T (Gt+T )] , (6.29)

with
pt,T (xt+T ) := p(xt+T |z1:t) (6.30)

and
xt+T ∼ p(xt+T |z1:t), (6.31)

is investigated, which provides information about the uncertainty of state prediction. The
prediction time window T is set to 16 frames which corresponds to forecasting the pedes-
trian’s position 1 second ahead.
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crossing stopping
TTE∈[-10, 20] TTE=0 TTE∈[-10, 20] TTE=0

IMM Mean 0.20 0.25 0.33 0.31
± Std 0.23 0.22 0.22 0.20

PHTM-like [Keller and Gavrila, 2014] Mean 0.25 0.21 0.34 0.31
± Std 0.29 0.21 0.29 0.27

IMM-LDCRF Mean 0.19 0.23 0.29 0.14
± Std 0.22 0.21 0.21 0.18

IMM-IntGT Mean 0.18 0.23 0.14 0.07
± Std 0.22 0.21 0.13 0.09

Table 6.3: Mean lateral prediction error (m) for crossing and stopping scenarios using a pre-
diction horizon of 16 frames

6.2.2 Results on Pedestrian Path Prediction

Crossing vs. Stopping

First, situations with a stopping or crossing pedestrian are analyzed. Figure 6.2 shows the
prediction errors in lateral position for these two kind of scenarios. Plotted are the mean
error and its standard deviation over all scenario-related sequences. For detailed numbers,
the lateral prediction errors averaged over the considered time interval and at the time of
event occurrence (TTE=0) are displayed in Table 6.3. The proposed LDCRF-controlled
IMM filter (IMM-LDCRF, eq. (6.22)) is compared with the conventional IMM filter predic-
tion (IMM, eq. (6.5)) and the forecasted positions using a controlled IMM filter, where the
ground truth intention serves as an input (IMM-IntGT). The latter approach represents an
optimum version of a controlled IMM filter. Additionally, a reimplementation of the PHTM
method [Keller et al., 2011c,Keller and Gavrila, 2014] serves as a baseline algorithm. As one
would expect, for crossing pedestrians (Figure 6.2a), no significant benefit can be observed
compared to other approaches, when applying the presented controlled IMM filter. This is
due to the fact, that the pedestrian motion state remains homogeneous and therefore is not
rapidly changing such that the conventional IMM filter still is able to provide accurate pre-
dictions for future pedestrian positions. The PTHM-like approach performs slightly worse
on average. There are two peaks in the plots, where path prediction results in higher errors
for all methods. In these two scenarios the pedestrian is appearing out of occlusion and hence
causing inaccuracies during filter initialization and the following path prediction. However,
for all different approaches the mean lateral path prediction error lies within a small range
around 20cm. Shortly after event occurrence (TTE<0), conventional IMM filter predictions
and its controlled versions coincide with the optimal predictions resulting from a ground
truth control input.
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(a)

(b)

Figure 6.2: Lateral prediction error (m) when predicting 16 frames ahead around event oc-
currence for (a) crossing and (b) stopping pedestrians. Visualized are the mean
error and its standard deviation (shaded area) over all crossing and stopping sce-
narios from the evaluation dataset. Comparison between a standard IMM filter
prediction (blue), the presented LDCRF-controlled IMM filter prediction (red),
a controlled IMM filter, when using the underlying GT intention for prediction
(green) and a PTHM-like approach [Keller and Gavrila, 2014] (yellow).

In comparison, for a stopping pedestrian the motion state changes abruptly from a homoge-
nous movement to stationary which results in an increased prediction error towards the occur-
ring stopping event (Figure 6.2b). In this case, the presented LDCRF-controlled IMM filter
(red curve) profits from the intention recognition and therefore is able to forecast the future
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pedestrian lateral position more accurately compared to the conventional IMM filter (blue
curve) and the PTHM-like method (yellow curve) in reducing the average path prediction
error by 0.17m to a value of 0.14m at TTE=0. Shortly after the stopping event (TTE<-2), the
presented model completely fits the error curve of a controlled IMM filter with ideal ground
truth intention inputs (green curve). A few frames prior to the stopping event (TTE∈[0, 5])
the LDCRF-controlled IMM filter is able to adapt faster to the rapid change in the pedestrian
motion state. The PTHM-like approach does not result in a significant performance gain
compared to the conventional IMM filter prediction.
The next step evaluates the fact how well the actual pedestrian ground truth position is rep-
resented by the estimated predicted state probability distribution. For this, the earlier in-
troduced predictive log-likelihood is used, see equation (6.29). Ideally, the predicted state
probability density function is represented by a Dirac-Delta Distribution with expectation
value equal to the ground truth position. In this case the predictive log-likelihood outputs
positive values. For a ground truth position, not fitting into the given predicted state proba-
bility estimate the predictive log-likelihood will take strong negative values. Table 6.4 shows
a comparison for the averaged predictive log-likelihood values on a time interval shortly be-
fore event occurrence (TTE ∈ [0, 15]) in stopping and crossing situations for different IMM
filter configurations.

crossing stopping

IMM -0.75 -1.29
IMM-LDCRF -0.69 -0.57
IMM-IntGT -0.67 0.01

Table 6.4: Averaged predictive log-likelihood for TTE ∈ [0, 15] of the pedestrian ground
truth position in crossing and stopping scenarios using a prediction horizon of 16
frames (≈ 1s).

Whereas for crossing situations values for all filters lie within a similar range (predll ≈ 0.7),
the benefit of incorporating the pedestrian intention within a controlled IMM filter is clearly
visible. The conventional IMM filter is only able to adapt slowly to the change in motion
state after a sufficiently high amount of observations that contribute to the static model as-
sumption. This results in an averaged predictive log-likelihood of -1.29. In comparison, for
the controlled IMM filter a stopping intention is earlier detected leading to more accurate
estimates and a higher averaged predictive log-likelihood of -0.57, approaching the optimal
value of 0.01 when using ideal ground truth intentions for a controlled IMM filter prediction.

Bending in vs. Straight

Due to the nature of the PHTM algorithm presented by [Keller and Gavrila, 2014] crossing
scenarios cannot be easily differentiated from a bending in or straight walking scenario as
trajectories are transferred into each other using translation and rotation operations. There-
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bending in
TTE∈ [-10, 20] TTE=0

IMM Mean 0.26 0.47
± Std 0.18 0.24

IMM-LDCRF Mean 0.22 0.44
± Std 0.17 0.25

IMM-IntGT Mean 0.21 0.40
± Std 0.18 0.23

Table 6.5: Mean lateral prediction error (m) for bending scenarios using a prediction horizon
of 16 frames

fore, the PHTM approach will not be considered in the following. Figure 6.3 shows the
prediction errors in lateral position for bending-in scenarios, where pedestrians initially are
walking straight along the road. Table 6.5 again shows detailed numbers for lateral predic-
tion errors averaged over the considered time interval and at the time of event occurrence
(TTE=0). In scenarios, where a pedestrian is turning into the road, the controlled IMM
filter only performs slightly better before event occurrence compared to the standard IMM
filter. A significant higher accuracy can only be observed shortly after the turning event
(TTE≤0). Even the IMM-IntGT filter predictions result in lateral prediction errors up to
0.40m right before the pedestrian turns into the road (TTE≥0). This can be explained by the

Figure 6.3: Lateral prediction error (m) when predicting 16 frames ahead around event occur-
rence for bending-in pedestrians. Visualized are the mean error and its standard
deviation (shaded area) over all bending in scenarios from the evaluation dataset.
Comparison between standard IMM filter prediction (blue), presented LDCRF-
controlled IMM filter prediction (red) and a controlled IMM filter, when using
the underlying GT intention for prediction (green).
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predll

IMM -0.67
IMM-LDCRF -0.60
IMM-IntGT -0.59

Table 6.6: Averaged predictive log-likelihood for TTE ∈ [0, 15] of the pedestrian ground
truth position in bending-in scenarios using a prediction horizon of 16 frames (≈
1s).

fact, that no direct turn rate control is implemented which could guide the predicted path in
the correct direction with a small amount of uncertainty. In contrast, for the stopping case,
the pedestrian velocity components are directly set to zero, when applying the CP model.
The effect is also observed when analyzing the calculated predictive log-likelihood values
averaged over the time window TTE ∈ [0,15] in Table 6.6. Although the controlled IMM
performs slightly better than the conventional IMM filter, absolute values for the predictive
log-likelihood are comparatively high. Even when incorporating the ground truth intention,
no performance gain is observed resulting from a missing direct turn rate control in cases
where the CT model is chosen as most appropriate.

6.3 Conclusion

In this chapter a method was presented that deals with the combined intention recognition
and path prediction of lateral approaching pedestrians in the domain of intelligent vehicles.
The core algorithm consisted of a IMM filter for pedestrian tracking and path prediction
controlled by the intention estimates from a LDCRF model learned for different scenar-
ios. Multiple features capturing the pedestrian dynamics and the awareness of the nearby
traffic situation served for both intention recognition and path prediction. For a prediction
horizon of 1 second, evaluation showed a reduction of the average path prediction error for
stopping scenarios (up to 0.17m) compared to a conventional IMM filter and a PHTM-like
approach. In contrast to the PHTM approach the proposed method can handle a wider range
of scenarios including straight walking and bending in pedestrians. However, for situations,
where pedestrians are turning into the road, there is still a high potential for improvement in
stronger guiding the predicted path along the turning direction. The model provides evidence
for potential risky situations and therefore can serve for better pedestrian path prediction or
be directly integrated into a system implementing a pedestrian forward collision warning or
automatic emergency braking function in order to reduce system false alarms.
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This last chapter concludes the presented work on pedestrian intention recognition and path
prediction for video-based driver assistance systems realizing a forward collision warning
or automatic emergency braking in critical situations involving an approaching vehicle and
pedestrians. Through the earlier chapters single components and contributions have been
presented starting with the video-based head pose estimation for pedestrians and ending up
with an improved path prediction with integrated estimates for pedestrian intention.
This work essentially consisted of three major parts. The first part was developed in Chap-
ter 3 and dealt with the integrated problem of pedestrian head localization and full pan angle
head pose estimation under the harsh conditions of low resolution gray-value images includ-
ing complex and highly dynamic scenarios taken from a moving camera. The presented
system built upon an existing system for video-based pedestrian detection and tracking. A
detector-array based approach was proposed, where two state-of-the-art face detection tech-
niques built the basic block. Head pose classifiers were trained in a modified one-vs.-all
framework, that guaranteed a good localization rate over the continuous head pose pan angle
and prevented instabilities during the training process. For initialization, a sliding window at
different scales was used to collect classification confidence values all over the head search
area. Based on the normalized confidence values, the head could be localized and the head
pose be estimated in a probabilistic framework. The single-frame based approach was ex-
tended for pedestrian head pose estimation in video sequences using tacking based on par-
ticle filtering in order to provide more accurate and stable results (sec. 3.2). Furthermore,
this yields an output that is not restricted to one of eight discrete head poses but provides
continuous head pan angle estimates. The developed system was evaluated on large and
diverse datasets including publicly available datasets, namely CLEAR and CAVIAR, and
internally recorded real world inner-city data. Results were presented in form of confusion
matrices and showed over 90% correct head localization and 50% correct head pose esti-
mation using eight discrete head pose classes even when dealing with very low resolution
images including heads down to a size of 6×6 pixels. The probabilistic form of the head
pose estimation results provided a suitable type of information for further integration within
the overall system. In Chapter 4 additional improvement for pedestrian head pose estimation
was achieved by incorporating stereo video depth information in different ways. First, the
estimated image-based 2D head pan angle was transformed to 3D for direct usage within
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the overall system referring to a vehicle located coordinate system (sec. 4.1). Secondly, the
usage of head depth profiles for a more robust head localization especially in situations with
a heavily structured background (sec. 4.3), and finally, the usage of pedestrian velocity es-
timates extracted from a stereo-based generic obstacle detection and tracking approach as
prior knowledge for a more robust head pose estimation (sec. 4.2).
In the second major building block of this thesis, a method was presented to estimate the
intention of lateral approaching pedestrians in the domain of intelligent vehicles in Chap-
ter 5. Multiple features capturing the pedestrian dynamics and the awareness of the nearby
traffic situation were used to learn a highly performant Latent-dynamic Conditional Random
Field model. The proposed model has the advantage to automatically learn intrinsic structure
and feature dependencies as well as temporal dynamics between different intention classes.
Evaluation of the trained models showed stable intention estimates for different scenarios
compared to other machine learning approaches and state-of-the-art methods. The model
provides evidence for potential risky situations and therefore can serve for better pedestrian
path prediction or be directly integrated into a system implementing a pedestrian forward
collision warning or emergency braking function in order to reduce system false alarms.
As the last major contribution, a method for combined intention recognition and path pre-
diction of lateral approaching pedestrians was investigated in Chapter 6. The core algorithm
consisted of an Interacting Multiple Model filter for pedestrian tracking and path prediction
controlled by the intention estimates from a LDCRF model learned for different scenarios.
For a prediction horizon of 1 second, evaluation showed a reduction of average path pre-
diction error for stopping scenarios (up to 0.17m) compared to a conventional IMM filter
and a PHTM-like approach of [Keller and Gavrila, 2014]. In contrast to recent literature,
cf. [Keller and Gavrila, 2014, Kooij et al., 2014a], a wider range of scenarios was addressed
including pedestrians that initially are walking along the sidewalks but then suddenly bend
in towards the road in addition to lateral crossing or stopping pedestrians.

Future Work

With the current implementation, head pose estimation relies on an accurate and highly avail-
able pedestrian detection and tracking system, which can only be guaranteed to a limited ex-
tend. Thus, future steps should integrate the head pose estimation process into the pedestrian
detection system, first to support or reject given pedestrian hypotheses, similar to part-based
detectors, and second to improve person tracking through better path prediction.
In order to further improve intention recognition, additional shape and texture features from
intensity and depth and optical flow (inner pedestrian movement) could be integrated into the
LDCRF model especially when dealing with short tracks, where pedestrians are appearing
out of occlusion. Following the works of [Bonnin et al., 2014, Kooij et al., 2014a] further
contextual features like distance to curb stone, detected zebra crossings or the presence of
other traffic participants will extend the existing method to cope with a wider range of sit-
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uations. Also group behavior could be analyzed and integrated to improve single intention
estimates.
For path prediction in turning situations, the main problem is the control of the dynamical
models especially the coordinated turn model with adapted turn rate. In comparison to a stop-
ping person, where the model parameters are clear, i.e., the person velocity estimate has to
be set to zero, a bending in person can behave with more variability. Especially, approaching
or moving away pedestrians would show opposite turn rates. Here, an additional considera-
tion of the underlying situation will help to adapt the model parameters accordingly for path
prediction. Using multiple turn rate models with different parameters could additionally help
to handle the variability of movement patterns. The single model parameters could then be
adapted by anatomical restrictions and additional user studies.
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