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0Deutsche Zusammenfassung

Die wachsende Menge an geographischen Daten und deren ständiger Wandel machen
automatische Verfahren in der Kartogra�e zunehmend wichtiger. Dies betri�t insbe-
sondere die zeitaufwendige und anspruchsvolle Aufgabe, Beschriftungen in Karten zu
platzieren. Da schlecht platzierte Beschriftungen eine Karte schnell unleserlich ma-
chen, reichen einfache Verfahren nicht aus. Vielmehr verlangt die zufriedenstellende
Beschriftung von Karten nach der Lösung von komplexen Optimierungsproblemen.

Die genaue Platzierung einer Beschriftung hängt stark vom Typ des Kartenmerkmals
ab, das beschriftet werden soll. Für Punktmerkmale (z.B. Städte auf Karten mit kleinem
Maßstab) werden Beschriftungen typischerweise dicht an das Merkmal platziert, wäh-
rend für Linienmerkmale (z.B. Flüsse oder Straßen) der Name entweder entlang oder
innerhalb des Merkmals platziert wird. Unabhängig von der angewendeten Technik
sollen Beschriftungen sich nicht überdecken, aber die Merkmale deutlich identi�zieren.

Die Problematik der Positionierung von Beschriftungen ist nicht auf Karten be-
schränkt, sondern tritt in vielen anderen Bereichen auf, in denen Abbildungen be-
schriftet werden. So ist die automatische Beschriftung von Infogra�ken sowie von
wissenschaftlichen Zeichnungen (z.B. medizinische Zeichnungen der menschlichen
Anatomie) nicht ausreichend gelöst. Stattdessen werden Beschriftungen für Abbildun-
gen in professionellen Werken häu�g noch in aufwendiger Handarbeit platziert.

Ziel der Arbeit ist der Entwurf von neuen mathematischen Modellen und Algorith-
men für die Beschriftung von Landkarten und Abbildungen. Hierzu folge ich dem
Paradigma des Algorithm Engineering, das neben der Modellierung und des Algorith-
menentwurfs die Implementierung und experimentelle Evaluation der entwickelten
Algorithmen in den Vordergrund der Arbeit stellt. Bereits bestehende mathematische
Modelle werden verbessert und auf noch nicht betrachtete Problemvarianten erweitert.
Untersuchungen zur Komplexität helfen die betrachteten Probleme einzuordnen (z.B.
durch Beweis der NP-Schwere eines Problems) und entsprechende Lösungsansätze zu
verfolgen (z.B. Approximationsalgorithmen bei NP-Schwere). Die entwickelten Model-
le sind außerdem möglichst realitätsnah gewählt, sodass sie in der Praxis Anwendung
�nden können. Beim Entwurf der Algorithmen liegt der Schwerpunkt auf beweisbaren
Laufzeit- und Gütegarantien. Die Anwendbarkeit der Modelle und Algorithmen wird
mithilfe von Experimenten und Benutzerstudien nachgewiesen. Im Folgenden werden
die erzielten Ergebnisse zusammenfassend beschrieben.

Statische Straßenbeschri�ung. Während die Punktbeschriftung im Bereich der
Algorithmik ausführlich untersucht wurde, gibt es für die automatische Beschriftung
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von Linienmerkmalen kaum Vorarbeiten. Bisherige Arbeiten schränken entweder
die Art des betrachteten Straßennetzwerks stark ein (z.B. gitterförmige Netze) oder
präsentieren ausschließlich einfache Heuristiken.

In dieser Arbeit wird ein Modell für allgemeine Straßennetze vorgestellt: Aus geo-
metrischer Sicht ist eine Straßenkarte eine Repräsentation eines Straßengraphen G als
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Links: Extrahierter Straßengraph G.
Rechts: Berechnete Beschriftungen.

Arrangement von Kurven vorgegebener
Breite in der Ebene. Eine Straße ist hierbei
ein zusammenhängender Teilgraph von G
(typischerweise ein Pfad) und jede Kante ge-
hört zu genau einer Straße. Straßen schnei-
den sich in Kreuzungen, repräsentiert durch
die Knoten von G. Die Straßennamen sol-
len so innerhalb der Kurven platziert wer-
den, dass sie eindeutig die Straßenabschnit-
te zwischen den Kreuzungen benennen. In

vielen Beschriftungsproblemen wird die Anzahl der Beschriftungen maximiert. Dage-
gen liegt der Fokus dieser Arbeit darauf, so viele Straßenabschnitte wie möglich zu
benennen. Durch diese angepasste Zielfunktion wird erreicht, dass nicht unnötig viele
Beschriftungen die Karte verdecken. In der Arbeit wird bewiesen, dass dieses Problem
im Allgemeinen NP-Schwer ist. Für den Spezialfall, dass G ein Baum ist, wird jedoch
ein Algorithmus vorgestellt, der dieses Problem in polynomieller Zeit löst.

Obwohl Straßennetze im Allgemeinen keine Baumstruktur besitzen, kann dieser
Algorithmus als Grundlage für eine empirisch gut funktionierende und schnelle Heu-
ristik verwendet werden. Hierfür wird zuerst untersucht, wie der Straßengraph G
aus einem gegeben Straßennetzwerk extrahiert und vereinfacht werden kann. Des
Weiteren wird anhand von Experimenten auf der Grundlage von Echtweltdaten ge-
zeigt, dass die vorgestellte Heuristik in angemessener Zeit Ergebnisse liefert, die nahe
an die entsprechende mathematisch optimale Lösung herankommen. Hierbei wird
die optimale Lösung mithilfe einer geeigneten Formalisierung des Problems als ganz-
zahliges Programm berechnet. Trotz der NP-Schwere, können in vielen Fällen solche
Programme mithilfe spezialisierter Software hinreichend schnell gelöst werden, um
Vergleichswerte für eine Evaluation zu erhalten. Für eine Anwendung in der Praxis ist
das Lösen ganzzahliger Programme jedoch zu langsam.

Dynamische Beschri�ung von Karten. Durch die zunehmende Verbreitung von
interaktiven Kartenanwendungen im Internet und auf mobilen Endgeräten erö�nen
sich neue Anforderungen für die Beschriftung von Karten. Durch Grundoperationen
wie Rotieren, Zoomen und Verschieben der Karte muss die Platzierung der Beschriftun-
gen an die Änderungen der Karte angepasst werden. In diesem dynamischen Szenario
reicht es nicht aus, die Anzahl der Beschriftungen zu maximieren, sondern es müssen
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weitere Anforderungen, sogenannte Konsistenzkriterien, erfüllt werden. So dürfen
Beschriftungen nicht springen oder durch häu�ges sichtbar bzw. unsichtbar werden
“�ackern”.

In der Arbeit wird ein allgemeines Modell für die Beschriftung von dynamischen
Karten eingeführt, das die drei genannten Operationen miteinander vereint. Hierfür

Museum
Gas Station

Wildlife Park

Rotation Zoom

Translation

Restaurant

Dynamische Karte. Der Anwender sieht nur
einen Ausschnitt der Karte, als würde er diese
mithilfe einer Kamera betrachten.

wird angenommen, dass der Anwender
nur einen Ausschnitt der Karte sieht –
als würde er die Karte mithilfe einer Ka-
mera betrachten. Da bereits der stati-
sche Fall für das Beschriftungsproblem
NP-schwer ist, ist es nicht verwunder-
lich, dass in dieser Arbeit auch die NP-
Schwere für den betrachteten dynami-
schen Fall gezeigt werden kann.

Schränkt man allerdings die Anzahl
gleichzeitig angezeigter Beschriftungen ein, so kann, wie in der Arbeit gezeigt wird, das
Problem mithilfe dynamischer Programmierung in polynomieller Zeit gelöst werden.
Diese Einschränkung ist insbesondere für die Anwendung auf Navigationsgeräten
interessant, die zumeist nur einen kleinen Bildschirm besitzen und den Anwender
nicht mit zu vielen angezeigten Zusatzinformationen überfordern sollen. Dieser Al-
gorithmus weist jedoch eine schlechte asymptotische Laufzeit auf und das Problem
kann beweisbar kaum schneller optimal gelöst werden. Deshalb werden in einem
weiteren Teil der Arbeit Approximationsalgorithmen sowie Heuristiken vorgestellt
und experimentell evaluiert. Ähnlich zu den bereits genannten Problemstellungen,
werden die Algorithmen mithilfe von ganzzahliger Programmierung bezüglich ihrer
Qualität evaluiert und ihre Praxistauglichkeit gezeigt.

U-Bahn-Fahrplan von Wien mit be-
rechneten Beschriftungen.

Beschri�ung von Linienplänen. Linien-
pläne sind schematische Karten für Transport-
netze wie zum Beispiel für U-Bahn- oder Stra-
ßenbahnnetze. Im Gegensatz zu Straßenkar-
ten liegt allerdings der Fokus auf der klaren
Darstellung der Netzwerktopographie und we-
niger auf der akkurat geographischen Wider-
gabe des Netzwerkes. Dementsprechend um-
fasst das Zeichnen von Liniennetzen zwei an-
spruchsvolle Schritte, nämlich das Zeichnen
des Netzes selbst sowie das Platzieren von
überlappungsfreien Stationsnamen.

Ausgehend von einem bereits gezeichneten
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Netzplan, wird in dieser Arbeit das automatische Platzieren von Stationsnamen be-
trachtet. Im Gegensatz zu anderen Beschriftungsproblemen dürfen Beschriftungen
nicht ausgespart werden, sondern jede Station muss beschriftet werden. In der Arbeit
wird ein Modell eingeführt, das sich durch seine hohe Flexibilität und Unterstützung
verschiedener Zeichenstile auszeichnet. In diesem Modell ist es allerdings bereits
NP-schwer eine einzelne Bahnlinie zu beschriften. Für weitere praxisnahe Einschrän-
kungen wird jedoch ein Algorithmus vorgestellt, der das Problem für eine einzelne
Bahnlinie unter Berücksichtigung einer Kostenfunktion in polynomieller Zeit opti-
mal löst. Basierend auf diesem Algorithmus wird ein Arbeitsablauf zur Beschriftung
mehrerer Bahnlinien präsentiert. Zwar können für diesen keine mathematischen Gü-
tegarantien gegeben werden, allerdings belegt eine experimentelle Evaluation, dass
die erzielten Ergebnisse nahezu die mathematisch optimale Lösung erreichen. Opti-
male Lösungen wurden hierfür wieder mithilfe von ganzzahliger Programmierung
berechnet.

Randbeschri�ung. Wissenschaftliche Zeichnungen (z.B. medizinische Zeichnun-
gen der menschlichen Anatomie) weisen häu�g eine hohe Informationsdichte auf. Um

Querschnitt des menschlichen Gehirns. Die Be-

schriftung wurde automatisch erstellt. Aus: Paul-

sen, Waschke, Sobotta Atlas Anatomie des Men-

schen, 23.Au�age 2010 ©Elsevier GmbH, Urban

& Fischer, München; Kapitel 12, Abbildung 116.

die Abbildung möglichst wenig zu über-
decken, werden deshalb (im Gegen-
satz zu Landkarten) die Beschriftungen
nicht direkt am zu beschriftenden Bild-
merkmal, sondern außerhalb des Bildes
platziert. Eine dünne Führungslinie zwi-
schen Bildmerkmal und Beschriftung
garantiert, dass der Betrachter eine Be-
schriftung ihrem Bildmerkmal korrekt
zuordnen kann. Die konkrete Platzie-
rung der Beschriftung hängt hierbei
von verschiedenen Kriterien ab (z.B.
relative Lage der Beschriftung, Kreu-
zungsfreiheit bzw. Länge der Führungs-
linien, usw.). Dieses Beschriftungspro-
blem wurde aus algorithmischer Sicht

bereits ausgiebig untersucht. So wurden eine Vielzahl mathematischer Modelle einge-
führt, die sich vor allem in der Art der Führungslinien unterscheiden. Neben gerad-
linigen Verbindungen, werden u.a. auch Führungslinien in L-Form, S-Form und mit
diagonalen Streckensegmenten betrachtet.

Im Rahmen dieser Arbeit wurde eine Benutzerstudie durchgeführt, die klar darauf
hinweist, welche Arten von Führungslinien in der Praxis aufgrund ihrer Lesbarkeit zu
bevorzugen sind. Hierzu wird für die einzelnen Arten der Führungslinien die Schnellig-
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keit und Genauigkeit, mit denen die Teilnehmer Punktmerkmale und Beschriftungen
zuordnen, untersucht. Die Ergebnisse zeigen, dass L-förmige und geradlinige Führungs-
linien bezüglich der Lesbarkeit zu bevorzugen sind. Des Weiteren wird basierend auf
Interviews und der Auswertung von Fragebögen die Ästhetik der Führungslinienarten
diskutiert. Diesbezüglich schneiden L-förmige und Führungslinien mit diagonalen
Streckensegmenten am besten ab.

Darau�olgend wird die externe Beschriftung von rechtecksförmigen Abbildungen
mithilfe von L-förmigen Führungslinien untersucht. Unter Zuhilfename dynamischer
Programmierung werden Algorithmen für den Fall vorgestellt, dass sich die Beschrif-
tungen an zwei oder mehr Seiten des Bildrandes be�nden. Für den zweiseitigen Fall
wird außerdem angenommen, dass die Beschriftungen an angrenzenden Rändern der
Abbildung liegen. Vorangegangene Arbeiten betrachteten ausschließlich gegenüber-
liegende Ränder. Mithilfe der vorgestellten Algorithmen kann in polynomieller Zeit
entschieden werden, ob eine Abbildung so beschriftet werden kann, dass sich die
Führungslinien nicht kreuzen.

Abschließend steht die automatische Beschriftung von medizinischen Zeichnungen
mithilfe von geradlinigen Führungslinien im Fokus meiner Untersuchungen. Basierend
auf Interviews mit Domänenexperten und der semi-automatischen Analyse von medi-
zinischen Abbildungen werden wichtige Kriterien zur Platzierung von Beschriftungen
vorgestellt. Diese dienen als Grundlage für ein formales, aber �exibles und allgemei-
nes Beschriftungsmodell. Für diese wird ein dynamisches Programm präsentiert, das
bezüglich einer gegebenen Bewertungsfunktion eine optimale Beschriftung berechnet.
Mithilfe von Algorithm Engineering wird das polynomielle, aber asymptotisch langsa-
me dynamische Programm praxistauglich gemacht. Eine experimentelle Evaluation
zeigt, dass mit dem vorgestellten Verfahren in angemessener Zeit Beschriftungen
hoher Qualität erstellt werden können.
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1 Introduction

“A picture is worth a thousand words”
A widely used saying that stands for itself expressing a simple but truthful observa-

tion. It is present in all areas of everyday life and �nds its application in commercial
advertisements, in art, or in the daily news, just to mention a few. When it comes
to passing on knowledge as it is done for example in geographic maps, textbooks,
information graphics or scienti�c papers, a single picture may not be fully su�cient,
rather it explains a small detail embedded in a larger context of other �gures, texts and
nomenclatures. In these applications it is crucial to guarantee that the information that
is intended to be conveyed by the picture is correctly perceived by the reader without
any misinterpretations. This becomes even more important when pictures are utilized
to built up a common language by re�ecting reality and conveying proper names of
the depicted objects and facts. This common language is only justi�ed, if anyone using
it has the same understanding of what the words in the language mean and to which
they exactly refer to. Hence, a picture not explaining a nomenclature correctly may
lead to unwanted misunderstandings. In the best case these misunderstandings can be
resolved, but in the worst case this may destroy the basis of any common discourse.
This inevitably raises the question how a picture or a �gure in general can be created
such that it passes on knowledge without introducing ambiguities creating misleading
interpretations.

One answer to this question is as simple as it is obvious: The �gure is annotated
with information in form of texts and symbols explaining its structure and single parts.
These additional elements, which we call labels, describe the �gure in its details and
give back references to the �gure’s context and the depicted content. The quality of
the �gure essentially depends on the placement of such labels and whether the �gure
accurately conveys the intended information. A good label placement relies on the
ability to identify the elements of a �gure clearly, while keeping the �gure readable.

As an example take geographic maps. They have been used for thousands of
years to describe spatial information. Among many others, geographic maps are
used for navigation, the description of ownership structures, object tracking and
geospatial analysis in general. All of them have in common that they require an
accurate and precise map. It would be inconceivable and completely in-practicable
for these applications to use mere text, but the advantages of geographic maps are
obvious.

First of all, a geographic map provides an intuitive way to represent spatial data in
a human-readable format and may consist of multiple types of overlaid information.
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Chapter 1 Introduction

Figure 1.1: Cross section of the human head. The label placement was computed by an
algorithm developed in the scope of this thesis. Source of the picture in the background:
Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen, 23. Au�age 2010 ©Elsevier GmbH,
Urban & Fischer, München; Chapter 8, Figure 72.

Classically, it contains the course of streets and rivers as well as the shapes of urban
areas, forest and lakes. These are only some examples, but depending on its application
other spatial information can be augmented in the map. Furthermore, a geographic
map typically enables the reader to easily estimate the spatial proximity as well as
the relative position of objects in real world: "According to the map the house lies
to the north of the lake and is closer to the lake than to the next forest". But also
exact measures such as distances can be expressed in an accurate map. Despite
its high informational content, the reader of the map can perceive the presented
information selectively. He or she can overlook unimportant information while focusing
on parts that actually matter for him or her – which would not be possible with
mere text. However, a map without any text would be hardly useful either. Since a
geographic map is a mapping from the real world to a schematized drawing of that
world, references between both must be identi�ed to enable the reader to actually
use the map. These references are typically names identifying for example single
streets, rivers, cities, lakes, woodland, regions, countries, etc. In cartography it is
common to place those labels closely to their features that they name. This seemingly
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simple technique implements an easy-to-perceive association between labels and their
respective features, if done accurately. It has become known in research as internal
label placement. However, a readable and appealing labeling of a map cannot be taken
for granted. Morrison [Mor80] estimates the time needed for labeling a map to be over
50% of the total time when creating a map by hand.

As another example take the human anatomy and its treatment in science and
education. In modern medicine each single part of the human body, no matter how
small, is named by applying a uni�ed nomenclature. Needless to say that the de�nition
of that nomenclature merely based on text would be hardly comprehensible. It is
therefore not surprising that atlases of humaCn anatomy play a major role in the
education of medical students and teaching the medical nomenclature. These books
typically contain a myriad of �ligree and detailed drawings of the human body in
di�erent cutaway views naming the single parts. For example the third volume of
the popular human anatomy atlas Sobotta [PW13] contains about 1200 �gures on
over 384 pages. Figure 1.1 is one of these showing a cross section of the human head.
Put di�erently, these atlases are a large collection of maps on the human anatomy,
which give the reader a better understanding of the structure and nomenclature of
the human body. In contrast to geographic maps these drawings are typically less
schematized, rather they re�ect the general structure of the body accurately. Further,
such drawings may contain easily up to 40 or more features to be named possibly
lying closely to each other. Hence, simply placing the terms de�ning the body parts
closely to their features may yield a strongly occluded �gure such that the labeling
impairs the overall usefulness and appearance of the �gure. Further requirements such
as grouping the terms semantically may exacerbate the problem, if such a placement
is possible at all. Instead the labels are placed around the �gure without overlapping
it and are associated by thin connecting lines to their features. This allows placing
labels independently from the features’ positions. This labeling technique has become
known in research as external label placement.

Both examples—for internal and external labeling—show that label placement for
�gures and maps easily becomes an intricate challenge that consumes a great part of
the �gure’s creation time. Large and dense sets of features to be labeled combined
with little space yield the complex nature of the problem: Labels must clearly name
their features, while keeping the remaining �gure readable. Especially in cartography
the label placement is complex and time consuming, which is also re�ected by its
computational complexity. Selecting a maximum set of disjoint labels is NP-hard,
when allowing four or more possible label positions for each feature [MS91, FW91].
Even simple related sub-problems as the selection of a maximum number of disjoint
rectangles (possibly modeling labels) is NP-hard [FPT81].

At the latest with upcoming dynamic maps as they are used for example by web-
services, labels cannot be placed by hand anymore. Firstly, the data underlies a steady
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change, which also requires a steady relabeling. Secondly, dynamic maps typically
provide operations such as rotation, zooming and translation. Thus, in these scenarios
labels are not only placed once anymore, but for each displayed frame the selection
and positioning of the labels must be done. This introduces new requirements to the
label placement. For example through the sequence of displayed frames the motion of
the labels should be consistent without creating distracting e�ects as �ickering and
jumping [BDY06]. It is therefore not surprising that label placement remains NP-hard
in the dynamic case; e.g., see [BDY06, Bee+10]. Altogether, label placement in maps
is a complex computational problem for both static and dynamic maps, and requires
automatic tool-support to be handled adequately.

In other scenarios the expense is not caused by a large amount of labels, but by the
number of �gures to be labeled. For example labeling a single medical drawing of
human anatomy is manageable in reasonable time. In interviews that were conducted
in the scope of this thesis a designer stated that he needs up to two hours to create the
layout of a double page of an atlas of human anatomy including the label placement.
However, for one volume of such a book hundreds of medical drawings must be labeled
applying the same design rules to obtain readable labelings with uni�ed appearances.
Doing the label placement by hand for a complete atlas therefore requires a lot of
experience and time. Automatic tools may help the designer to reduce the time that
he or she spends on labeling a �gure – time that the designer can use to focus on
other layout problems that need his or her expertise. Similarly to cartography, when
considering interactive systems with dynamic components, handmade solutions for
external labeling are not applicable anymore, rather automatic approaches become
imperative.

Consequently, much research has been invested to automate the label placement in
cartography as well as in �gures in general. In 1972 Yoeli undertook the �rst algorithmic
considerations on label placement in cartography. This was the beginning of a long line
of scienti�c publications on automatic label placement and its numerous facets. The
ACM Computational Geometry Task Force report [C399] particularly identi�es label
placement as an important research problem. For a detailed overview of the research
on internal and external label placement refer to Chapter 3 and Chapter 10, respectively.
This thesis builds up on the preceding research and introduces new mathematical
models and algorithms for automatic internal and external label placement. The
following section gives an overview of the contribution of this thesis.

1.1 Outline and Contribution

This thesis is divided into two parts discussing internal and external label placement
separately. To tackle the problems algorithmically, we apply the paradigm of algo-
rithm engineering, which equally focuses on the problem modeling, the algorithm

4



Outline and Contribution Section 1.1

design as well as the experimental evaluation of the algorithms applied on realistic
settings. Investigations assessing the computational complexity help to categorize
the problems (e.g., by proving NP-hardness) and to pursue approaches adequately
(e.g., approximation algorithms). Mathematical guarantees on quality and running
time are at the forefront of the algorithms’ design. The applicability and practicability
of the developed models and algorithms are veri�ed by experimental evaluations on
real-world data as well as by user-studies.

For a short introduction to the basic concepts and techniques (e.g., NP-hardness,
computational geometry, dynamic programming etc.) used throughout this thesis
refer to Chapter 2.

Part I – Internal Label Placement

For internal label placement we focus on the application of geographic maps and
present algorithms for static and dynamic maps. In Chapter 3 we �rst review existing
models and give an overview of preceding research. Following Imhof [Imh75], we
distinguish the label placement for point features (e.g., cities in small scale maps), line
features (e.g., roads) and area features (e.g., lakes and woodland). We �rst present
theoretical results (Chapter 4) as well as practical results (Chapter 5) for line features
considering the application of road networks, then we switch to point features in
dynamic maps again presenting theoretical (Chapter 6) and practical results (Chapter 7)
separately. Finally, we consider point feature labeling for the special case of static
metro maps that require that each station is labeled. We again split our results into a
theoretical part (Chapter 8) and an experimental evaluation (Chapter 9).
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Left: Extracted road graph G.
Right: Computed labeling.

Label Placement in Static Road Maps

(Chapter 4 & Chapter 5). While label
placement for point features in static maps
has been extensively investigated, label
placement for line features such as roads
has been rarely considered. Preceding
research on road labeling either strictly
restricts the type of the road network
(e.g., grid-shaped networks) or exclusively
presents simple heuristics. In Chapter 4 we
present a versatile labeling model for general road networks: Geometrically a road map
is a representation of a road graph G based on an arrangement of curves with certain
width. Each road is a connected subgraph of G (typically a simple path) and each edge
belongs to exactly one road. Roads may intersect each other in junctions, the vertices
of G . We call an edge connecting two junctions a road section. While in many labeling
problems the number of placed labels is maximized, in this model we maximize the
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number of labeled road sections. By means of this adapted objective function, we
achieve that no more road labels than necessary occlude the map. We prove that this
optimization problem is NP-hard in general, but can be solved in polynomial time if G
is a tree.

Although road networks do not form trees in general, we can use this algorithm
as basis for a sophisticated heuristic, which we introduce in Chapter 5. To that end,
we �rst present, how the road graph G can be extracted from a given road network.
Based on experiments on real-world data we show that the heuristic yields near-
optimal results in appropriate time. Hereby we obtain the optimal solution by means
of mathematical programming.

Museum
Gas Station

Wildlife Park

Rotation Zoom

Translation

Restaurant

Dynamic map. The user sees only a section of
the map, as if the user views the map through a
camera.

Temporal Map Labeling (Chap-

ters 6 & Chapter 7). With the up-
coming of the digital age, maps be-
came dynamic allowing various op-
erations to change the map’s per-
spective and its informational con-
tent. Typically, these digital maps

o�er the three basic operations pan-
ning, zooming and rotation to the user.
These new dynamics also impact the
placement of labels. While in the

static scenario the number of placed labels is maximized, in the dynamic scenario
this is not applicable anymore, but further requirements such as so called consistency
criteria must be satis�ed. Accordingly, labels may neither jump nor �icker by rapidly
switching them on and o� [BDY06]. In Chapter 6 we present a general model for
labeling dynamic maps, which uni�es the three mentioned operations. To that end, we
assume that the user only sees a small part of the map – as if he or she looks through a
camera shooting the map. We �rst investigate the model from a theoretical perspective.
Since the labeling problem is already NP-hard in the static case, it is not surprising
that the dynamic case is also NP-hard. We prove that it is even W[1]-hard, which
implies that we cannot expect to �nd a �xed-parameter tractable algorithm. However,
introducing some further geometric assumptions, the problem admits constant-factor
approximations. Further, we consider the restricted case that at most k labels are
allowed to be displayed at the same time, which is especially relevant for small screen
devices such as navigation systems. In these use-cases the user should not be dis-
tracted by too many displayed labels. We show that this problem variant is solvable in
polynomial time.

In Chapter 7 we switch from the theoretical considerations to a practical evaluation.
To that end, we introduce some simple, but fast heuristics. Based on an experimental
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evaluation on real-world data, we show that these heuristics achieve near optimal
solutions in appropriate time. Similarly for the road labeling problem, we have obtained
the optimal solutions by mathematical programming.

Metro-map of Vienna. The labeling was
computed by our algorithm. The layout of
the map was created by the approach of
Nöllenburg et al. [NW11].

Label Placement in Metro Maps (Chap-

ter 8 & Chapter 9). Metro maps are
schematic maps that illustrate metro net-
works of cities. In contrast to road maps,
the focus lies on the visualization of the
network topology rather than on the geo-
graphic rendering of the network. Hence,
drawing metro maps comprises two al-
gorithmically complex problems, namely
drawing the network itself as well as the
placement of the labels.

In contrast to other labeling problems,
labels may not be omitted, but each station
must be labeled. In Chapter 8 we introduce
a model that stands out by its �exibility and
support of di�erent drawing styles. How-
ever, in that model it is already NP-hard
to label a single metro-line. By relaxing the problem through the introduction of
some reasonable assumptions, we can present an algorithm that solves the problem in
polynomial time. Based on this algorithm we present a sophisticated work�ow for
labeling a whole metro map in Chapter 9. For this work�ow we cannot give optimal-
ity guarantees, but we show that this approach yields near optimal solutions using
mathematical programming.

Part II – External Label Placement

In the second part of this thesis we discuss various algorithms for external label
placement. We take medical drawings in atlases of human anatomy as running example.
The presented approaches for external label placement are not limited to that particular
application, but can be used for other types of �gures as well. In Chapter 10 we �rst
review existing models and give an overview of previous research. In Chapter 11 we
present the �rst user-study on the readability of di�erent types of leaders, i.e., the
lines connecting point features with their labels. In Chapter 12 and Chapter 13 we
present algorithms for L-shaped leaders and straight-line leaders, respectively.
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diagonal

Label

S-shaped

L-shapedstraight-line

Label

LabelLabel

Di�erent types of leaders.

User-Study on the Readability of Lead-

ers (Chapter 11). Automatic external label
placement has been extensively investigated
both from a practical and theoretical perspec-
tive. Heuristics and exact algorithms optimiz-
ing certain objectives (e.g., minimizing the to-
tal leader length) have been proposed. While
the presented heuristics mostly use straight-
line leaders, the exact algorithms di�er in the
choice of the leader type. Typically, L-shaped
and S-shaped leaders as well as leaders with

diagonal segments are considered. However, these leader types have not been exam-
ined concerning their readability, yet.

In Chapter 11 we present the �rst formal user-study on the readability of the four
most important leader types. We particularly investigate the question which of them
performs best, i.e., whether and how fast a viewer can assign a feature to its label and
vice versa. The results give clear indications which leader types to prefer concerning
their performance, namely L-shaped and straight-line leaders. We further discuss the
aesthetics of the leader types based on questionnaires and interviews conducted with
the participants of the study. Concerning this matter, L-shaped leaders and leaders
with diagonal segments are preferable.

Kinderhaus
Kunterbunt

Evangelischer
Kindergarten

Evangelische
Kindertagesstätte

Kindertagesstätte
St. Stephan

Evangelischer
Kindergarten

Kindergarten
Marienhaus

Evangelischer
Kindergarten

Tagegruppe
Sterntaler

Katholische
Kindertagesstätte

Städtischer
Kindergarten

Städtischer
Kindergarten

Kindergarten
Marienstraße

A labeling with L-shaped leaders.

Multi-Sided Boundary Labeling (Chap-

ter 12). In Chapter 12 we follow the for-
malization of external labeling introduced by
Bekos et al. [Bek+07]. We assume that the
shape of the �gure is described by a rectan-
gle R and the labels’ boxes have uniform size
and are already placed alongside R. Due to
the uniform size of the labels, we can assume
that the texts are placed inside the boxes after
connecting the point features and boxes via
leaders. Thus, the problem becomes a geomet-

ric matching problem connecting point features with label boxes via leaders such that
the leaders do not intersect. This problem has become known as boundary labeling.
We present polynomial-time algorithms for L-shaped leaders for the case that the
labels either lie on two or more sides of R. In the two-sided case, we assume that the
labels lie on adjacent sides. Considering L-shaped leaders, polynomial-time algorithms
were only known for the case that the labels lie on two opposite sides. More precisely,
for n labels lying on two adjacent sides we present an algorithm that checks in O(n2)
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time and O(n) space whether a crossing free assignment between point features and
labels exists. Further, we present an algorithm solving the three- and four-sided case
in O(n4) and O(n9) running time, respectively.

Cross section of the human brain la-
beled by our algorithm. Source: Paulsen,
Waschke, Sobotta Atlas Anatomie des
Menschen, 23. Au�age 2010 ©Elsevier
GmbH, Urban & Fischer, München.

An Algorithmic Framework for Label

Placement in Figures (Chapter 13). For
external label placement there are, among
others, two major applications: label place-
ment for interactive visualization systems
and label placement for �gures in profes-
sional books. For the former one fast ap-
proaches are required that compute labelings
in real-time. Hence, fast and simple heuris-
tics are applied accepting a loss in quality.
In contrast, for the latter use-case quality is
decisive, but running time plays a secondary
role, which makes approaches with quality
guarantees desirable. However, algorithms
with provable quality guarantees have only been developed for strongly simpli�ed
boundary labeling models. It is typically assumed that the shape of the �gure is a
rectangle and that the labels are placed along the sides of that rectangle having uniform
shapes. While these models are interesting from a theoretical perspective, they are
hardly applicable, when the �gure’s shape is not a rectangle or the labels are not
uniform.

In Chapter 13 we present a formal model for external labeling that is much less
restrictive on the �gure’s shape and allows non-uniform labels. We have developed
this model based on interviews with domain experts and a semi-automatic analysis
of medical drawings extracted from a professional atlas on human anatomy. Using
dynamic programming and straight-line leaders, we introduce an algorithm that
optimally places labels along a pre-de�ned boundary with respect to a given cost
function. This approach stands out by its generality and �exibility. It is based on few
assumptions that are inherent in such labelings. Further hard constraints not to be
violated as well as soft constraints to be rated by the cost function can be patched
in easily. Hence, the design rules for the labelings are not a �xed component of the
algorithm, but can be easily adapted by the user. This yields a �exible algorithm with
quality guarantees that can be used for creating high-quality labelings. However,
the strength of the approach comes at the cost of a high asymptotic running time
(O(n8), where n denotes the complexity of the input). We therefore introduce further
speedup techniques that make the approach practicable. In an experimental evaluation
on real-world data we show that the approach produces high-quality labelings in
reasonable time.
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2 General Concepts and Techniques

The purpose of this chapter is the introduction of general concepts and techniques as
well as a common language used throughout this thesis. Yet, the subsequent chapters
are written in a self-contained style such that they are comprehensible without this
chapter for a reader with experiences in computational geometry, computational com-
plexity, and algorithm design. We start with some basic concepts on computational
geometry and graphs (Section 2.1). Afterwards we give a short introduction to compu-
tational complexity (Section 2.2). In the remaining sections we discuss several general
techniques used in algorithm design including approximation algorithms (Section 2.3),
linear programming (Section 2.4), and dynamic programming (Section 2.5).

2.1 Basic Concepts

In this section we introduce basic concepts on (computational) geometry and graphs;
more detailed introductions to these topics are found in [Ber+08, Cor+09].

Geometry. Throughout this thesis we apply Euclidean geometry. Among others,
we make use of the following basic concepts; see also Figure 2.1 for an illustration.

A point p in the plane is an ordered pair (x ,y) ∈ R2 consisting of an x-coordinate
and ay-coordinate. We also write x(p) for x andy(p) fory. Further, we interpret a point
as a 2-dimensional vector supporting the common vector operations such as addition,
multiplication, Euclidean distance ‖·‖, etc. For two points p and q the line segment

l = pq is de�ned as the point set {p + t · (q−p) | t ∈ [0, 1]}; we say that l starts at p and
ends at q. A half-line emanating from p through q is the set {p + t · (q −p) | t ∈ [0,∞)}.
Furthermore, a line through p and q is the set {p + t · (q − p) | t ∈ R}.

A disk C with center c and radius r is the set {p ∈ R2 | ‖c − p‖ ≤ r } of all points
that have at most distance r from c . The boundary ∂C of C is the set of points with
exactly distance r to c ; we call ∂C a circle. A circular arc is a connected segment of ∂C .

A polygonal chain C is a sequence (l1 = p1q1, . . . , ln = pnqn) of line segments in the
plane such that qi = pi+1 for all i with 1 ≤ i < n. We say thatC is closed if p1 = qn and
open otherwise. Further, C is simple if only consecutive segments intersect, namely
only at their endpoints. A polygon P is a plane region that is bounded by a closed
polygonal chainC . The segments ofC form the boundary of P and are called the edges
of P . The endpoints of the segments are called the vertices of P . Further, P is simple

if C is simple. The interior of a simple polygon P is the region that is bounded by P ,
while the exterior is the unbounded region outside of P .
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Figure 2.1: Illustration of geometric concepts used throughout this thesis.

A quadrilateral is a simple polygon with four edges and a rectangle is a quadrilateral
with four right internal angles. An axis-parallel rectangle has two edges parallel to
the x-axis and two edges parallel to the y-axis. Such a rectangle is uniquely de�ned by
two non-adjacent vertices; we say that such two vertices span the rectangle.

A region S ⊆ R2 is called convex, if for any two points p,q ∈ S the line segment pq
is also contained in S . A polygon P is called convex if its interior is a convex region.
The convex hull CH (S) of a set S ⊆ R2 is the smallest convex region containing S . If S
is a �nite point set, it is a well-known fact that CH (S) is a convex polygon.

A triangulation T of a �nite point set P ⊂ R2 is a maximal set of non-crossing line
segments between points in P , i.e., adding any further line segment pq with p,q ∈ P
to T results in a crossing between pq and a line segment already contained in T . We
observe that the line segments subdivide the plane into a set of faces. More precisely,
one outer face that is the complement ofCH (P) and a set of inner faces that are triangles
and are contained in CH (P). Typically, we identify these triangles with T and say that
these triangles belong to T . In this thesis we make use of Delaunay triangulations. A
triangulation T of a point set P is called Delaunay triangulation if there is no point in
P inside the circumcircle of any triangle of T . A Delaunay triangulation T is called
conforming with respect to a polygon Q if T is contained in Q such that the vertices
of T lie on the boundary of Q and the vertices of Q are also vertices of T .

A curve C in the plane R2 is the image of a continuous map φ : [0, 1] → R2. The
curveC is closed if φ(0) = φ(1) and otherwise open. Note that line segments, polygonal
chains and circular arcs are also curves. A Jordan curve is a non-self-intersecting curve,
i.e., φ is an injective map. Bézier curves provide a simple de�nition of smooth curves
in the plane. In this thesis we use cubic Bézier curves, which are de�ned by four control
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points p1, p2, p3 and p4 as follows.

φ(t) = (1 − t)3p1 + 3(1 − t)2tp2 + 3(1 − t)t2p3 + t
3p4

The curve starts at p1 and ends at p4, while p2 and p3 in�uence the direction of the
curve.

Graphs. In the following, we de�ne basic graph notation by introducing important
concepts in graph theory. A graph G consists of a set V of vertices and a set E of edges
that relate the vertices of G to each other. More precisely, if G is undirected the set
E ⊆ {{u,v} | u,v ∈ V } consists of 2-element subsets of V , and if G is directed the set
E ⊆ V ×V consists of pairs of vertices. Hence, in the latter case the direction of an edge
matters, while in the former case it does not. For an edge {u,v} ∈ E ((u,v) ∈ E in the
directed case) we say that u and v are adjacent/neighbors. Further, {u,v} is incident
to u and v . A graph G ′ = (V ′,E ′) is a subgraph of a graph G = (V ,E), if V ′ ⊆ V
and E ′ ⊆ E.

For an undirected graph G = (V ,E), a sequence P = (s = v1, . . . ,vn = t) of
vertices in V forms a path if the vertices of P are pairwise distinct and there are edges
e1, . . . , en−1 ∈ E with ei = {vi ,vi+1} for all i with 1 ≤ i < n; in the directed case we
require ei = (vi ,vi+1). We say that P starts at s and ends at t forming an s-t path. An
undirected graph G = (V ,E) is connected if for each pair u,v ∈ V there is a u-v path
in G. A directed graph G is (weakly) connected if replacing all of its directed edges
with undirected edges yields a connected undirected graph. A connected component of
a graph G is a maximal connected subgraph of G.

Similar to paths, a sequence C = (v1, . . . ,vn) of vertices in V form a cycle in G
if v1 = vn and there are edges e1, . . . , en−1 ∈ E with ei = {vi ,vi+1} for all i with
1 ≤ i < n; in the directed case we require ei = (vi ,vi+1). The cycle C is simple if all
vertices of C are distinct (apart from v1 and vn). A graph that does not contain any
cycle is acyclic. A graph G is a tree if it is connected and acyclic.

A drawing Γ of a graph G = (V ,E) maps each vertex v ∈ V to a point in the plane
and each edge {u,v} ∈ E to a Jordan curve that starts at u and ends at v , i.e., to a
non-self-intersecting continuous curve in the plane connecting u with v . A drawing Γ
of G is plane if the Jordan curves of the edges do not cross. A planar graph G = (V ,E)
admits a plane drawing. Note that such a plane drawing of G subdivides the plane
into a set of faces.

2.2 Computational Complexity

The theory of computational complexity is about classifying computational problems
by their di�culty. One important question is whether a problem can be solved in
polynomial time or not. Here, we say that an algorithm A solves a computational
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problem Π, if for each instance I of Π the algorithm A terminates and yields the
correct solution for I . Further, Π can be solved e�ciently or in polynomial time, if there
exists a polynomial-time algorithm A that solves Π, i.e., the running time of A lies in
O(nc ) for a constant c and n denoting the input size. In the following, we introduce
concepts that help us to investigate the question whether a computational problem can
be solved e�ciently. For a more detailed introduction to computational complexity
see [GJ79, Cor+09].

Computational complexity theory distinguishes, among others, two types of compu-
tational problems, namely decision problems and optimization problems. In many cases,
studying optimization problems is more interesting from a practical and applied point
of view, but decision problems may help us to assess the computational complexity of
optimization problems. In the following, we explain this more speci�cally.

A decision problem Π is a formalized question that allows exactly two answers,
namely yes or no. If for a problem instance I ∈ Π the answer on the question is yes,
we say that I is a yes-instance and otherwise a no-instance of Π.

Take the computation of an independent set of rectangles among a set of given
rectangles as an example. A set I of rectangles is called an independent set if the
rectangles in I are pairwise disjoint. For a set R of rectangles we then want to �nd an
independent subset of R. The decision problem is formalized as follows.

Problem 2.1 (IndependentRectanglesDecision).
Given: Set R of rectangles in the plane and parameter K ∈ N.
Question: Is there an independent set I ⊆ R with |I | ≥ K?

We also can ask for the best among all feasible solutions. In that case we obtain
the corresponding optimization problem. In our example the optimization problem is
formalized as follows.

Problem 2.2 (IndependentRectangles).
Given: Set R of rectangles in the plane.

Find: Maximum independent set I ⊆ R, i.e., there is no independent set I ′ ⊆ R
with |I | < |I ′ |.

From the perspective of computational complexity a decision problem is not harder
than its corresponding optimization problem in the following sense: Given an algo-
rithm solving the optimization problem, we can easily utilize it to solve the decision
problem. For example assume that we are given a polynomial-time algorithm A
solving IndependentRectangles. For a given instance (R,K) of IndependentRect-
anglesDecision we compute the maximum independent set I ⊆ R usingA. If |I | ≥ K ,
we return that the instance is a yes-instance and otherwise a no-instance. Using such
a reduction in general proves that if an optimization problem is solvable in polyno-
mial time, then also its decision problem. Conversely, if we can show that a decision
problem cannot be solved in polynomial time, then its corresponding optimization
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problem can also not be solved e�ciently, which yields an interesting negative result
on the complexity of the optimization problem. This directly leads us to the following
two complexity classes.

The Classes P and NP. The class P contains all decision problems that can be solved
in polynomial time, i.e., for each problem in P there is a deterministic Turing machine
that solves the problem in polynomial time.

In contrast, the class NP contains any decision problem for which there is a non-
deterministic Turing machine that solves the problem in polynomial time. One can
imagine the behavior of such a machine as follows. First, in a non-deterministic phase,
the machine computes a solution for the given problem in polynomial time. Then, in a
deterministic phase, it checks in polynomial time whether the solution is correct. In
our example of independent rectangles such a machine �rst guesses an independent
set I of rectangles in R. Since such a set has polynomial size with respect to R, the
machine can do this in polynomial time. Then, in the second phase, it checks whether
the rectangles are pairwise disjoint and |I | ≥ K , which it can do in polynomial time
by counting the rectangles in I and by doing pairwise intersection tests.

Obviously, it holds P⊆NP, but it is not known whether NP⊆P, which is one of the
big open questions in computer science. The importance of this question relies on its
far-reaching consequences. The concept of NP-hardness provides valuable insights
into these consequences. We now explain this concept in detail. A polynomial-time

reduction of a decision problem Π1 to a decision problem Π2 is a polynomial-time
algorithm that transforms each instance I1 of Π1 into an instance I2 of Π2 such that I1
is a yes-instance if and only if I2 is a yes-instance. If such a reduction exists, we write
Π1 ≤P Π2. Thus, if we can solve the problem Π2 in polynomial time, then we also can
solve Π1 in polynomial time by reducing Π1 on Π2.

We say that a decision problem Π is NP-hard if any problem Π′ in NP can be reduced
to Π in polynomial time, i.e., Π′ ≤P Π. Further, if Π also lies in NP, the problem is
called NP-complete. Since a decision problem ΠD is not harder than its optimization
problem ΠO , we say that ΠO is NP-hard if ΠD is NP-hard.

Unless P=NP, there is no polynomial-time algorithm for any NP-hard problem.
Conversely, if P=NP, all problems in NP are solvable in polynomial time. Hence,
proving that a problem is NP-hard provides an interesting and important classi�cation
of the problem. For example the problem IndependentRectangles is NP-hard, even
if the rectangles are axis-aligned unit squares [FPT81]. In this thesis we prove NP-
hardness for several labeling problems. To that end, we prove for each of these
problems that there is a polynomial-time reduction from a proven NP-hard problem
to the according decision variant of the labeling problem.
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The Class FPT. Another complexity class is FPT. Before we formally de�ne this
class, we start with a simple example. A vertex cover of a graph G = (V ,E) is a set
S ⊆ V such that each edge in E is incident to at least one vertex v ∈ S .

Problem 2.3 (VertexCover).
Given: A graph G = (V ,E).
Find: Minimum vertex cover S of G, i.e., there exists no vertex cover S ′ of G

with |S ′ | < |S |.

Although VertexCover is an NP-hard problem [GJ79], we can solve VertexCover
such that the running time is exponential only in the size k of the constructed vertex
cover, but polynomial in the input size of G: By enumerating all subsets S ′ ⊆ V of
size k , we can easily �nd a vertex cover of size k , if it exists. The running time of this
algorithm is O(2k · (|V | + |E |)). Thus, if k is small, the running time is acceptable even
for large input instances.

We generalize these observations as follows. For a parameter k a problem Π is
�xed-parameter tractable if any instance I ∈ Π with size n can be solved in time
O(f (k) · p(n)), where f is some computable function depending on k and p is a
polynomial depending on n. The class of all �xed-parameter tractable problems is
called FPT. Hence, investigating whether a NP-hard problem Π is �xed-parameter
tractable can be a worthwhile approach to tackle its NP-hardness. Further, the class
FPT is the base of the so called W-hierarchy, which is a family of complexity classes
W[i] based on parameterized reductions; it holds FPT=W[0] and W[i]⊆W[j] for all i < j .
It is unknown whether FPT=W[1], but an answer on this question would also solve
the P,NP question. Similarly to the NP-class, the concept of W[i]-hardness has been
introduced to describe the hardest problems of the class W[i]. In particular, a W[1]-
hard problem is not in FPT unless NP=P. For a detailed introduction to W-hierarchy
see for example [FG06].

2.3 Approximation Algorithms

To �nd solutions for NP-hard problems e�ciently, one often relaxes the demand
of �nding optimal solutions. Indeed, in many cases one can mathematically prove
approximation guarantees for polynomial-time algorithms. For example, we can
approximate the optimal solution of VertexCover by a factor of 2. Starting with an
empty set S , consider each edge e of the given graph iteratively. If e is incident to some
vertex of S then skip it and otherwise add the incident vertices of e to S . Obviously, at
least one of both vertices must belong to any optimal solution. Hence, the set S is at
most twice as large as an optimal vertex cover.

This is formalized as follows. Let Π be an optimization problem, and let OPT(I )
denote the value of an optimal solution of a given problem instance I ∈ Π. Without
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loss of generality, let Π be a minimization problem; for maximization problems we
can de�ne the concepts analogously. An algorithm A is called a k-approximation

algorithm for Π if A(I )/OPT(I ) ≤ k for any I ∈ Π, where A(I ) denotes the value of
the solution computed byA on I . If not stated otherwise, we assume that the running
time of A is polynomial in the input size. A polynomial-time approximation scheme

(PTAS) for a minimization problem Π is a (1 + ε)-approximation algorithm A for Π
and any ε > 0. It is required that the running time ofA is polynomial in the input size
for every �xed ε . The algorithm A further is a fully polynomial-time approximation

scheme (FPTAS) if its running time is also polynomial in 1/ϵ .

2.4 Linear Programming

Linear programming is a general technique to formalize optimization problems that
consist of a linear objective function subject to linear constraints; see [Cor+09] for a
detailed introduction. More precisely, for n variables x1, . . . ,xn ∈ R+0 we are given a
linear function

f (x1, . . . ,xn) = c1x1 + · · · + cnxn
and a set of k linear constraints

a11x1 + · · · + a1nxn ≤ b1

a21x1 + · · · + a2nxn ≤ b2

. . .

ak1x1 + · · · + aknxn ≤ b2,

where ci ,ai j ,bj ∈ R are constants for 1 ≤ i ≤ n and 1 ≤ j ≤ k . We then aim at �nding
an assignment for the variables x1, . . . ,xn such that the constraints are satis�ed and
f (x1, . . . ,xn) is maximized (or alternatively minimized).

The production of goods is a classical example for the application of linear pro-
gramming. Assume that a bakery wants to produce two types B1 and B2 of breads. To
produce a box of bread B1, one needs 10 units of ingredient I1, 30 units of ingredient I2,
and 20 units of ingredient I3. Similarly, to produce a box of bread B2 one needs 40 units
of ingredient I1, 10 units of ingredient I2 and 20 units of ingredient I3. The warehouse
stores 600 units of I1, 550 units of I2 and 300 units of I3. Further, the bakery sells a box
of bread B1 for 30$ and a box of bread B2 for 60$. The bakery wants to maximize its
pro�t.

We express the problem as the following linear programming formulation. We
introduce the variables x1 ≥ 0 and x2 ≥ 0, which we interpret such that x1 is the
number of produced boxes of bread B1 and x2 is the number of produced boxes of
bread B2. We then aim at maximizing the pro�t

f (x1,x2) = 30x1 + 60x2
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subject to the constraints

10x1 + 40x2 ≤ 600
30x1 + 10x2 ≤ 550

20x1 + 20x2 ≤ 300.

The constraints enforce that we do not exceed the available amount of ingredients I1,
I2 and I3, respectively.

In 1947 George Danzig developed the so called simplex method to solve such formu-
lations. Although in theory it has exponential running time in the worst case, it turns
out to be a fast procedure in practice. In contrast, for the ellipsoid method introduced
by Khachiyan in 1979 and the interior point method introduced by Karmarkar in 1984,
it can be proven that they solve a linear programming formulation in polynomial time.
For a more detailed overview on the development of linear programming approaches
see for example [Cor+09].

An important special case of linear programming is the restriction of the variables
to integers,1 i.e., x1, . . . ,xn ∈ N; we then call the technique integer linear programming.
When only a subset of the variables must be assigned integers, the problem is called
mixed integer linear programming. Integer linear programming formulations provide
a general tool to formalize a broad spectrum of optimization problems. Solving an
integer linear programming formulation is NP-hard in general [GJ79], but it turns
out that in practice we can often apply specialized solvers to �nd optimal solutions
for reasonably sized instances in acceptable time. This approach helps us to obtain
optimal solutions for NP-hard problems, which we then can compare against solutions
produced by typically faster heuristics.

2.5 Dynamic Programming

One of the most famous approaches in computer science is certainly the divide and

conquer principle. An instance of a given computational problem is recursively divided
into smaller components until the remaining components are small enough to be solved
trivially. Ascending in the recursion tree, the obtained solutions are then assembled
to �nally obtain a solution for the input instance. Algorithms for sorting numbers,
e.g., merge sort, are typical examples using this principle; for a detailed introduction
see for example Cormen et al. [Cor+09]. If the recursion tree is exponential in the
input size, however, this approach becomes unfeasible. For some of the computational
problems, dynamic programming provides a way out by appropriately storing and
reusing already computed results.

1For our example, this implies that only complete boxes of bread are produced.
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Figure 2.2: A graph that has an exponential number of s-t paths. Each s-t path either contains
ui or vi for all 1 ≤ i ≤ k . Hence, there are 2k possibilities to assemble an s-t path.

Take the computation of the shortest path in a directed acyclic graph as an example,
see also [Cor+09]. For a graph G = (V ,E) with cost function c : E → R, let P be an s-t
path for two vertices s, t ∈ V . We de�ne its cost c(P) = ∑

e ∈P c(e), where we assume
that P contains the edges of the path (instead of its vertices as originally de�ned). The
path P is a shortest s-t path in G if there is no other s-t path P ′ with c(P ′) < c(P).

Problem 2.4 (ShortestPath).
Given: Directed, acyclic graph G = (V ,E) with cost function c : E → R and

two vertices s, t ∈ V .

Find: Shortest s-t path P in G.

Let P be a shortest s-t path and let P ′ be a subpath of P connecting the two vertices
u and v . One can easily prove that P ′ is again a shortest path connecting u and v . Put
di�erently, any subpath of a shortest path is again a shortest path.

A shortest path between two vertices s and t can be computed using the divide and
conquer principle as follows. Assume that a shortest path Ps,t between s and t exists
and let u1, . . . ,uk be the vertices inV with (ui , t) ∈ E (1 ≤ i ≤ k). Further, let Ps,ui be a
shortest path from s to ui for 1 ≤ i ≤ k . Obviously, we have c(Ps,ui )+ c(ui , t) = c(Ps,t )
for some i with 1 ≤ i ≤ k . Given the paths Ps,u1 , . . . , Ps,uk , we can construct Ps,t by
computing i = argmin1≤i≤kc(Ps,ui ) + c(ui , t) and setting Ps,t = Ps,ui + (ui , t), where
Ps,ui + (ui , t) denotes the concatenation of Ps,ui with the edge (ui , t). Applying the
approach recursively, we can compute Ps,u1 , . . . , Ps,uk in the same manner. The leaves
of the recursion tree correspond with single edges inG , which can be handled trivially.
Thus, we can compute a shortest path between s and t using the divide and conquer
principle. However, the according recursion tree becomes easily exponential in the
input size; see Figure 2.2 for an example. The problem is that we compute the same
shortest paths multiple times instead of reusing already computed information.

Dynamic programming provides a better solution. Instead of recomputing shortest
paths again and again, we store the cost of an already computed shortest path in
a table. More precisely, we create a one-dimensional table T that contains for each
vertex v ∈ V the cost of a shortest path from s to v; if v is not reachable from s , we
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de�ne T [v] = ∞. We can recursively express T [v] by

T [v] =
{

min(u,v)∈E T [u] + c(u,v) v has incoming edges.
∞ otherwise.

The table entry T [t] then contains the cost for the shortest path from s to t ; if such
a path does not exist, we have T [t] = ∞. A simple analysis yields that we need
O(|V | + |E |) time for computing all table entries: there are O(|V |) table entries and we
consider each edge only once. By storing the costs of already considered paths, we
consequently reduce the exponential running time to a running time that is linear in
the number of the graph’s vertices and edges.

Typically, we are not only interested in the value of the solution, but also in the
solution itself. To construct the solution fromT , we can apply a standard backtracking
approach. In our example, we store for each vertex v its predecessor S[v] ∈ V with

(S[v],v) = argmin(u,v)∈ET [u] + c(u,v).

If such a predecessor does not exist, we set S[v] = ⊥. If T [t] < ∞, we can construct a
shortest s-t path by following the predecessors of t to s . Since we can do this in O(|V |)
time, we obtain O(|V | + |E |) running time in total for computing a shortest s-t path
in G . We will use this approach in Chapter 8 as a sub-routine, which we call MinPath.

So that dynamic programming works, it is crucial that the considered sub-instances
of the problem can be described by a constant number of parameters. This allows us to
create dynamic programming tables that have a constant number of dimensions, which
signi�cantly in�uences the asymptotic running time. Since we typically compute each
table entry, the dimensions often contribute to the exponent of the running time. In
our example, a problem instance is uniquely de�ned by two vertices s and t ; any
shortest path between s and t has the same cost. Since we �x s and only vary the
destination vertex, it su�ces to consider a table with one dimension. In this thesis we
often consider dynamic programming in the context of geometric problems. Thus, the
problem instances are typically described by geometric properties. By the previous
reasoning it is therefore important to describe the problem instances by as few as
possible geometric properties. For example, in Chapter 13 we describe a problem
instance by a simple polygon. However, we do not describe the polygon by its vertices,
but by at most four control points, which allows us to apply a dynamic programming
approach having polynomial running time.

Altogether, dynamic programming is a generic and powerful approach that allows
the systematic and e�cient exploration of the solution space of many optimization
problems. This is achieved by decomposing problem instances into smaller, indepen-
dent sub-instances that can be described by a constant number of parameters. The
running time of a dynamic programming approach essentially relies on this number.
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3
Introduction to

Internal Label Placement

Internal label placement is a frequently used labeling technique in cartography to
augment maps with additional information allowing that the actual content of the
map is occluded by the placed labels. Eduard Imhof, a well-known cartographer and
former president of the International Cartographic Association (ICA), condensed the
importance of label placement as follows.

“Poor, sloppy, amateurish type placement is irresponsible; it spoils even the

best image and impedes reading”, Eduard Imhof (1895–1986), [Imh75]

In [Imh75], which is a translation of his original work [Imh62], Imhof summarizes
his experiences as cartographer and gives a detailed overview of reasonable criteria
for label placement. For that purpose, he distinguishes the placement of labels for
point features, (e.g., points of interests, cities on small scale maps, etc.), line features
(e.g., rivers, roads, tracks, etc.) and area features (e.g, lakes, buildings, forests, etc.);
see Figure 3.1(a). He requires that for point features the label is placed closely to its
feature, for line features the label is placed along its feature, and for area features the
label is placed inside its feature. Among others, he introduces three general principles:
(1) "The names should, in spite of their incorporation into the dense graphics of the

map, be easily read, easily discriminated, and easily and quickly located."
(2) "The name and the object to which it belongs should be easily recognized."
(3) "Names should disturb other map contents as little as possible. Avoid covering,

overlapping, and concealment."
In our developed models, we particularly pay attention to Criterion (3), requiring

that labels may not overlap, because this immediately destroys their legibility. This
also ensures Criterion (1) in certain extents. Criterion (2) is enforced by the considered
models, which typically place labels closely to their features. In the following, we give
an introduction to label placement for both static and dynamic map labeling.

3.1 Static Map Labeling

Starting with the algorithmic considerations by Yoeli [Yoe72], plenty of research e�orts
have been made to automate the process of label placement in cartography. First,
research focused on traditional static maps that do not change once they are drawn.
Labeling point features received most attention, while the other two feature types
were considered less. Next, we present the feature types separately.
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Figure 3.1: Illustrations for static map labeling. (a) The di�erent map features proposed by
Imhof [Imh75]. (b) The �xed-position model with priorities proposed by Yoeli [Yoe72]. (c) The
slider model proposed by van Kreveld et al. [KSW99].

Point Feature Labeling. Yoeli [Yoe72] introduced the �rst formal model for label-
ing point features. Representing a label as an axis-aligned rectangle, he requires that
a label may only hold one of eight possible positions, each having a unique priority;
see Figure 3.1(b). More precisely, the label must be placed such that either one of its
corners or one of its edges’ midpoints coincides with its point feature. This model
has become known as the �xed-position model for point feature labeling. Similar
to Hirsch [Hir82], van Kreveld et al. [KSW99] relax this requirement and allow the
boundary of the label to slide along the point feature, i.e., the label must be placed
such that its point features lies on its boundary; see Figure 3.1(c). They further show
that sliding labels allow more point features to be labeled in practice. These models
have become known as slider models for point feature labeling.

Since none of these models guarantees that all labels can be placed without any
overlap, typical optimization criteria are maximizing the number of placed labels
without overlaps (label number maximization), maximizing the size of the labels
without overlaps (label size maximization) and minimizing the number of labels that
overlap. In the two latter cases all point features must be labeled.

Allowing only one position for each label in the �xed-position model, the label num-
ber maximization problem directly corresponds to �nding a maximum independent
set for a given set S of rectangles, i.e., �nding a maximum number of rectangles in S
such that they are pairwise disjoint. Fowler et al. [FPT81] prove that this problem is
NP-hard, even if the rectangles are uniform squares. Marx [Mar05] shows that it is
even W[1]-hard for uniform squares. The problem remains NP-hard if four or more
positions [MS91, FW91] are allowed or if the point feature is allowed to slide along
all four sides of the label in the slider model [KSW99]. Hence, theoretical research
turned towards approximation algorithms. Hochbaum and Maass [HM85] propose
the �rst polynomial-time approximation scheme (PTAS) for selecting a maximum
number of disjoint unit-squares introducing the so-called shifting technique. Agarwal
et al. [AKS98] apply the same technique to enhance the result to unit-height rect-
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angles also obtaining a better asymptotic running time. Concerning running time,
this PTAS is further improved by Chan [Cha04]. Van Kreveld et al. [KSW99] apply
the shifting technique to obtain a PTAS for the same setting using the slider model.
For the weighted case both the �xed position model [Erl+10] as well as the slider
model [Poo+04] admit a PTAS. Furthermore, for arbitrary rectangles and the �xed
position model the best known polynomial-time approximation algorithm has ratio
O(1/log logn) [CC09]. For the weighted case Adamaszek and Wiese [AW13] give an
approximation scheme with quasi-polynomial running time, i.e., its running time is in
2O ((logn)ϵ ) for some �xed ϵ > 0.

The label size maximization problem received less attention. Formann and Wag-
ner [FW91] prove that the label size maximization problem is NP-hard for four posi-
tions. It does not even admit a polynomial-time (2−ϵ)-approximation for ϵ > 0 (unless
NP=P), but they present an e�cient 2-approximation algorithm for that case. Wagner
and Wol� [WW97] introduce another 2-approximation algorithm that yields better
results in practice. Qin and Zhu [QZ02] give a 2-approximation algorithm for the slider
model and Jiang et al. [Jia+05] present a constant-factor approximation algorithm for
circular labels.

Inspired by air-tra�c control, de Berg and Gerrits [BG12] consider the problem
that neither labels may be left out nor their sizes may be changed, but applying the
common �xed-position and slider models, they aim at maximizing the number of
labels that do not overlap. Considering labels as unit-squares, they present e�cient
constant factor approximation algorithms and prove the existence of a PTAS.

Besides these approximation algorithms, further approaches are used to tackle
the problem of label placement. Among others, integer linear programming ap-
proaches [Zor86] as well as rule-based systems mimicking the placement by car-
tographers [FA84] are suggested. Further, label placement by means of simulating an-
nealing [CMS94, CMS95] as well as force-directed label placement procedures [EKW03]
have been subject to research. We have mentioned the earliest representatives of these
techniques, but there is much more research that builds up on those results. For a
more detailed overview see [KB08].

Line Feature Labeling. Imhof [Imh75] requires in his cartographic criteria that
names of line features are placed alongside the line features, but "complicated and
extreme type curvatures should be avoided". Following these criteria, Edmondson et
al. [Edm+96] present a framework that particularly places straight labels along single
line features. Further, Wol� et al. [Wol+00] also consider the case that labels may bend.
Imhof [Imh75] mostly expands on single line features such as rivers leaving out the
placement of labels in road maps.

For road maps it is common practice to draw road sections as curves of certain
widths. Labels are embedded inside the shape of the curves following their curvature.

25



Chapter 3 Introduction to Internal Label Placement

Based on interviews with cartographers, Chirié [Chi00] presents criteria for label
placement in road maps. These criteria include that
(C1) labels are placed inside and parallel to the road shapes,
(C2) every road section between two junctions should be clearly identi�ed, and
(C3) no two road labels may intersect.

Chirié [Chi00] and Strijk [Str01, Ch. 9] present simple, local heuristics that place
non-overlapping labels based on a discrete set of candidate positions. Seibert and
Unger [SU02] utilize the geometric properties of grid-based road networks and prove
that it is NP-complete to decide whether at least one label can be placed for each road.
For the same grid-based setting Neyer and Wagner [NW00] evaluate a practically
e�cient algorithm that is not applicable for general road networks.

Area Feature Labeling. Since we do not consider area features in this thesis, we
only give a short overview on this feature type. Van Roessel [Roe89] presents a simple
heuristic for computing a set of maximal rectangles completely contained in a given
polygon. One of these rectangles is then used for the label placement. Pinto and
Freeman [PF96] present a feedback approach that, based on an initial label placement,
improves the result according to cartographic criteria. Edmondson et al. [Edm+96]
incorporate a heuristic for placing labels in area features into a generic framework.
Rylov and Reimer [RR16] describe an algorithm for placing labels outside the area
features. Further, van Goethem et al. [GKS16] present algorithms for labeling island
groups, which is closely related to area feature labeling. Summarizing, only little
attention has been payed to automatic label placement for area features.

3.2 Dynamic Map Labeling
1

In contrast to traditional static maps, dynamic digital maps support continuous move-
ment of the map viewport based on panning, rotation, or zooming; see Figure 3.2
for a schematic illustration of interactive maps. Creating smooth visualizations un-
der such map dynamics induces challenging geometric problems, e.g., continuous
generalization [SB04] or dynamic map labeling.

In 2003, Petzold et al. [PGP03] presented a framework for automatically placing labels
on dynamic maps. They split the label placement procedure into two phases, namely
a (possibly time-consuming) pre-processing phase and a query phase which computes
the labeling of custom-scale maps. However, this approach does not guarantee that
labels do not jump or �icker while transforming the map.

In 2006, Been et al. [BDY06] introduced the �rst formal model for dynamic maps
and dynamic labels, formulating a general optimization problem. They describe the

1This part is based on and partly taken from joint work with Lukas Barth, Martin Nöllenburg and
Darren Strash[Bar+16].
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(a) Zooming. (b) Panning. (c) Rotation.

Figure 3.2: Illustration of interactive maps providing zooming, panning, and rotation as user
interaction.

change of a map by the operations zooming, panning, and rotation. In order to avoid
�ickering and jumping labels while transforming the map with zooming and panning,
they require four desiderata for consistent dynamic map labeling. These comprise
monotonicity, i.e., labels should not vanish when zooming in or appear when zooming
out (or any of the two when panning), invariant point placement, i.e., label positions
and size remain invariant during movement, and history independence, i.e., placement
and selection of labels should be a function of the current map state only. Monotonicity
is modeled as selecting for each label at most one scale interval, the so-called active

range, during which the label is displayed. They introduce the active range optimization

problem (ARO) maximizing the sum of active ranges over all labels such that no two
labels overlap and all desiderata are ful�lled. They prove that ARO is NP-hard for
star-shaped labels and present a greedy algorithm that computes an optimal solution
for a simpli�ed variant in polynomial time.

That model is the starting point for several subsequent papers considering the
operations zooming, panning and rotation, mostly independently. Been et al. [Bee+10]
take a closer look at di�erent variants of ARO for zooming. They show NP-hardness
and give approximation algorithms. In the same manner further variants are investi-
gated by Liao et al. [LLP14]. Gemsa et al. [GNR11] present a fully polynomial-time
approximation scheme (FPTAS) for a special case of ARO, where the given map is
one-dimensional and only zooming is allowed. However, they combine the selection
problem with a placement problem in a slider model. Zhang et al. [Zha+15] also con-
sider the model of Been et al. [BDY06] for zooming, however, instead of maximizing
the total sum of active ranges, they maximize the minimum active range among all
labels. They discuss similar variants as Liao et al. [LLP14] and Been et al. [Bee+10],
and also prove NP-hardness and give approximation algorithms.

Gemsa et al. [GNR16a, GNR16b] extend the ARO model to rotation operations.
They �rst show that the ARO problem is NP-hard in the considered setting and
introduce an e�cient polynomial-time-approximation scheme (FPTAS) for unit-height
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rectangles [GNR16a]. In subsequent work, they experimentally evaluate heuristics,
algorithms with approximation guarantees and optimal approaches based on integer
linear programming [GNR16b]. A similar setting for rotating maps is considered by
Yokosuka and Imai [YI13]. However, instead of ARO, they aim at �nding the maximum
font size for which all labels can always be displayed without overlapping. Similarly
to the ARO model, Funke et al. [FKS16] as well as Bahrdt et al. [Bah+17] modeled the
dynamic map labeling problem as a set of prioritized balls in Rd whose radii grow
linearly over time. They are then interested in the computation of an elimination order
of the balls to avoid overlaps.

Apart from the results based on the consistency model of Been et al. [BDY06], other
approaches and models are considered, too. Maass et al. [MD06] describe a view
management system for interactive three-dimensional maps of cities also considering
label placement. Mote [Mot07] presents a fast label placement strategy without a
pre-processing phase. Luboschik [LSC08] describes a fast particle-based strategy that
locally optimizes the label placement. None of these approaches takes consistency
criteria for dynamic map labeling into account.

A di�erent generalization of static point labeling is dynamic point labeling. Instead
of transforming the map, the point set changes over time by adding or removing points
as well as by moving points continuously. Inspired by air-tra�c control, De Berg and
Gerrits [BG13] consider moving points on a static map that must be labeled. They
present a sophisticated heuristic for �nding a reasonable trade-o� between label speed
and label overlap. Finally, Buchin and Gerrits [BG14] show that dynamic point labeling
is strongly PSPACE-complete.

Embedded labels for road maps are also considered for interactive and dynamic
maps. Maass and Döllner [MD07] provide a heuristic for labeling interactive 3D road
maps taking obstacles into account. Vaaraniemi et al. [VTW12] present a study on
a force-based labeling algorithm for dynamic maps considering both point and line
features. Schwartges et al. [SWH14] investigate embedded labels in interactive maps
allowing panning, zooming and rotation of the map. They evaluate a simple heuristic
for maximizing the number of placed labels. In [Sch+15] Schwartges et al. take another
approach using billboards (labels with short leaders) for naming roads in interactive
3D maps to avoid label distortion.
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4
Label Placement in Road Maps:

Model and Theory

Abstract. A road map can be interpreted as a graph embedded in the plane, in which
each vertex corresponds to a road junction and each edge to a particular road section.
In this chapter, we consider the cartographic problem to place non-overlapping road
labels along the edges so that as many road sections as possible are identi�ed by their
name, i.e., covered by a label. We show that this is NP-hard in general, but the problem
can be solved in O(n3) time if the road map is an embedded tree with n vertices. In
the subsequent chapter we then show how to make both the model and the algorithm
practicable.

This chapter is based on and partly taken from joint work with Andreas Gemsa and
Martin Nöllenburg [GNN14, GNN15, NN16].

4.1 Introduction

Road maps play an important role in daily life providing an easy-to-use tool for
navigation. Their usefulness crucially relies on the placement of the roads’ labels,
which are typically contained in the interior of the depicted roads; see Figure 4.1
for an example. In order to create legible and appealing road maps automatically,
Chirié [Chi00] elaborated general quality criteria for label placement based on in-
terviews with cartographers; see also Chapter 3. For the reader’s convenience we
rephrase them below:
(C1) labels are placed inside and parallel to the road shapes,
(C2) every road section between two junctions should be clearly identi�ed, and
(C3) no two road labels may intersect.

These criteria indicate that, in contrast to label placement for point features, maxi-
mizing the number of labels is not the appropriate objective for label placement of
roads, since not every label that is placed necessarily contributes more information
to the map. For example, consider the placed labels of the road Osloer Straße in Fig-
ure 4.1(b). We can easily remove some of those labels without losing any information,
because a user can still identify the same road sections; see Figure 4.1(a). In online
map services, however, one can often �nd such redundant labels; see Figure 4.2 for
two examples. Some roads may have unnecessarily many labels, which may in turn
cause others to remain completely unlabeled. Hence, the user cannot identify such
roads on the map, a real disadvantage if headed for that road.
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Figure 4.1: Road maps of Berlin.
(a) Only few labels are placed to
name the road sections. (b) A la-
beling produced by the OSM ren-
dering engine Mapnik. It con-
tains redundant labels naming
the same road section multiple
times. The six labels of road
Osloer Straße are enclosed by red
ellipses.

On the other hand, in contrast to grid-shaped road networks [SU02], placing a single
label per road does not clearly identify all its road sections in general road networks
either. Consider the example in Figure 4.3. In Figure 4.3(a), it is not obvious whether
the depicted bridge in the center belongs to Knuth St. or to Turing St.

Contribution and Outline. Due to these observations, we do not aim at maximiz-
ing the number of labels, or the number of labeled roads, but the number of labeled
road sections. For the purpose of this chapter, a road section forms a connected piece
of the road network that logically belongs together, e.g., a part of a road between
two junctions or a part that stands out by its color or width. Our model, however, is
independent of the actual de�nition of road sections; any partition of the road network
into disjoint road sections can be handled.

In contrast to the approaches of Chirié [Chi00] and Strijk et al. [Str01, Ch. 9], we
consider label placement in road maps globally, applying a continuous sliding model.
More precisely, as the underlying model, we introduce a new and versatile planar
graph model based on criteria (C1)–(C3); see Section 4.2. Geometrically, a road map is
the representation of a road graph G as an arrangement of fat curves in the plane R2.
Each road is a connected subgraph ofG (typically a simple path) and each edge belongs
to exactly one road. Roads may intersect each other in junctions, the vertices of G , and
we denote an edge in G as a road section. In road labeling, the task is to place the road
names inside the fat curves so that the road sections are identi�ed unambiguously, see
Figure 4.3. We say that a road section is labeled if a label (partly) covers it.

In this chapter, we take an algorithmic, mathematical perspective on the optimization
problem of maximizing the number of labeled road sections. In Section 4.3 we show
that the problem of maximizing the number of labeled road sections is NP-hard for
general road graphs, even if every road is a path. For the special case that the road
graph is a tree, we present a polynomial-time algorithm in Section 4.4. This special
case is not only of theoretical interest, but our algorithm in fact provides a very useful
subroutine in exact or heuristic algorithms for labeling general road graphs, as we
demonstrate in Chapter 5.
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20m
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? ?

(a) Google Maps: Hermann-Vollmerstraße, Karlsruhe (Germany)

100m

?

?

?

??

(b) Bing Maps: Kirchbühl, Karlsruhe (Germany)

Figure 4.2: Two maps of the map services Google Maps and Bing Maps. Left: Screenshot of a
road map. Right: The redrawn road map to emphasize the label positions. Labels of the same
color belong to the same road. (a) Labels are placed tightly packed in a row. While some roads
have more labels then necessary, other roads are not labeled. (b) Road map consists of several
unlabeled road sections.

4.2 Model

As argued, a road map is a collection of fat curves in the plane, each representing a
particular piece of a named road. If two (or more) such curves intersect, they form
junctions. A road label is again a fat curve (the bounding shape of the road name) that
is contained in and parallel to the fat curve representing its road. We observe that
labels of di�erent roads can intersect only within junctions and that the actual width
of the curves is irrelevant, except for de�ning the shape and size of the junctions. We
use these observations to de�ne the following abstract road graph model. In Chapter 5
we explain how to extract an abstract road graph from a given road network such that
it can be used in practice.

A road mapM is a planar road graph G = (V ,E) together with a planar embedding
E(G), which can be thought of as the geometric representation of the road axes as
thin curves; see Figure 4.3(c). We denote the number of vertices of G by n, and the
number of edges by m. Observe that since G is planar m = O(n). Each edge e ∈ E is
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Figure 4.3: (a)–(b): Two ways to label the same road network. Junctions are marked gray.
Figure (b) labels all road sections. (c) Illustration of the road graph and relevant terms.

either a road section, which is not part of a junction, or a junction edge, which is part
of a junction. Each vertex v ∈ V is either a junction vertex incident only to junction
edges, or a regular vertex incident to one road section and at most one junction edge,
which implies that each regular vertex has degree at most two. A junction vertex v
and its incident edges are denoted as a junction. The edge set E decomposes into a
set R of edge-disjoint roads, where each road R ∈ R induces a connected subgraph
of G. Without loss of generality we assume no two road sections in G are incident to
the same vertex. Thus, a road decomposes into road sections, separated by junction
vertices and their incident junction edges. In realistic road networks the number of
roads connected passing through a junction is small and does not depend on the size
of the road network. We therefore assume that each vertex in G has constant degree.
We assume that each road R ∈ R has a name whose length we denote by λ(R).

For simplicity, we identify the embedding E(G) with the points in the plane covered
by E(G), i.e. E(G) ⊆ R2. We also use E(v), E(e), and E(R) to denote the embeddings
of a vertex v , an edge e , and a road R.

We model a label as a simple open curve ` : [0, 1] → E(G) in E(G). Unless mentioned
otherwise, we consider a curve ` always to be simple and open, i.e., ` has no self-
intersections and its end points do not coincide. In order to ease the description, we
identify a curve ` in E(G)with its image, i.e., ` denotes the set {`(t) ∈ E(G) | t ∈ [0, 1]}.
The start point of ` is denoted as the head h(`) and the endpoint as the tail t(`). The
length of ` is denoted by length(`). The curve ` (partly) covers a road section r if
` ∩ E(r ) , ∅. In that case we say that ` labels the road section r . For a set L of curves
ω(L) is the number of road sections that are labeled by the curves in L. For a single
curve ` we use ω(`) instead of ω({`}). For two curves `1 and `2 it is not necessarily
true that ω({`1, `2}) = ω(`1) + ω(`2), because they may label the same road section
twice.

A label ` for a road R is a curve ` ⊆ E(R) of length λ(R) whose endpoints must lie
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on road sections and not on junction edges or junction vertices. Requiring that labels
end on road sections avoids ambiguous placement of labels in junctions where it is
unclear how the road passes through it. A labeling L for a road map with road set R is
a set of mutually non-overlapping labels, where we say that two labels ` and `′ overlap
if they intersect in a point that is not their respective head or tail.

Following the cartographic quality criteria (C1)–(C3), our goal is to �nd a labeling L
that maximizes the number of labeled road sections, i.e., for any labeling L ′ we have
ω(L ′) ≤ ω(L). We call this problem MaxLabeledRoads.

Note that assuming the road graph G to be planar is not a restriction in practice.
Consider for example a road section r that overpasses another road section r ′, i.e., r is
a bridge over r ′, or r ′ is a tunnel underneath r . In order to avoid overlaps between
labels placed on r and r ′, we either can model the intersection of r and r ′ as a regular
crossing of two roads or we split r ′ in smaller road sections that do not cross r . In
both cases the corresponding road graph becomes planar. In the latter case we may
obtain more independent roads created by chopping r ′ into smaller pieces.

4.3 Computational Complexity

We �rst study the computational complexity of road labeling and prove NP-hardness
of MaxLabeledRoads in the following sense.

Theorem 4.1. For a given road mapM and an integer K it is NP-hard to decide if in

total at least K road sections can be labeled.

Proof. We perform a reduction from the NP-complete planar monotone 3-Sat prob-
lem [Lic82]. An instance of planar monotone 3-Sat is a Boolean formula φ with
n variables and m clauses (disjunctions of at most three literals) that satis�es the
following additional requirements: (i) φ is monotone, i.e., every clause contains either
only positive literals or only negative literals and (ii) the induced variable-clause graph
Hφ of φ is planar and can be embedded in the plane with all variable vertices on a
horizontal line, all positive clause vertices on one side of the line, all negative clauses
on the other side of the line, and the edges drawn as rectilinear curves connecting
clauses and contained variables on their respective side of the line. We construct a road
mapMφ that mimics the shape of the above embedding of Hφ by de�ning variable
and clause gadgets, which simulate the assignment of truth values to variables and
the evaluation of the clauses. We refer to Figure 4.4 for a sketch of the construction.
Chain Gadget. The basic building block is the chain gadget, which consists of an

alternating sequence of equally long horizontal and vertical roads with identical label
lengths that intersect their respective neighbors in the sequence and form junctions
with them as indicated in Figure 4.4(c). Assume that the chain consists of k ≥ 3 roads.
Then each road except the �rst and last one decomposes into three road sections split
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Figure 4.4: Illustration of NP-hardness proof. (a) 3-Sat formula φ = (x4 ∨ x1 ∨ x5) ∧ (x2 ∨
x4 ∨ x3) ∧ (x̄2 ∨ x̄1 ∨ x̄3) ∧ (x̄3 ∨ x̄5 ∨ x̄4) represented as road graphMφ . Truth assignment
is x1 = true, x2 = true, x3 = false, x4 = false and x5 = false. (b) Clause gadget in two states.
(c) The chain is the basic building block for the proof. (d) Schematized fork gadget.

by two junctions, a longer central section and two short end sections; the �rst and
last road consist of only two road sections, a short one and a long one, separated by
one junction. (These two roads will later be connected to other gadgets; indicated
by dotted squares in Figure 4.4(c).) The label length and distance between junctions
is chosen so that for each road either the central and one end section is labeled, or
no section at all is labeled. For the �rst and last road, both sections are labeled if the
junction is covered and otherwise only the long section can be labeled. We have k
roads and k − 1 junctions. Each label must block a junction, if it labels two sections.
So the best possible con�guration blocks all junctions and labels 2(k − 1) + 1 = 2k − 1
road sections.

The chain gadget has exactly two states, in which 2k − 1 road sections are labeled.
Either the label of the �rst road does not block a junction and labels a single section
and all subsequent roads have their label cover the junction with the preceding road
in the sequence, or the label of the last road does not block a junction and all other
roads have their label cover the junction with the successive road in the sequence. In
any other con�guration there is at least one road without any labeled section and thus
at most 2k − 2 sections are labeled. We use the two optimal states of the gadget to
represent and transmit the values true and false from one end to the other.

Fork Gadget. The fork gadget allows us to split the value represented in one chain
into two chains, which is needed to transmit the truth value of a variable into multiple
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Figure 4.5: Illustration of the fork gadget. (a) Structure of the fork gadget. (c) Con�guration
transmitting the value false. (b) Con�guration transmitting the value true.

clauses. To that end it connects to an end road of three chain gadgets by sharing
junctions.

The core of the fork consists of six roads r1, . . . , r6, whereas r1, r2, and r3 are vertical
line segments and r4, r5 and r6 are horizontal line segments; see Figure 4.5. We arrange
those roads such that r1 and r2 have each one junction with r4 and one junction with r5.
Further, r3 has one junction with r4, one with r5 and one with r6. The label length of
those roads is chosen so that it is exactly the length of the roads. Hence, a placed label
labels all road sections of the roads.

Further, there are three roads д1, д2, д3 such that д1 has one junction with r1, д2 has
one junction with r2 and д3 has one junction with r6. In all three cases we place the
junction so that it splits the road in a short road section that is shorter than the road’s
label length and a long road section that has exactly the road’s label length. We call д1,
д2 and д3 gates, because later these roads will be connected to the end roads of chains
by junctions. To that end those connecting junctions will be placed on the long road
sections of the gates; see violet dotted areas in Figure 4.5.

The fork gadget has exactly two states, in which 16 road sections are labeled. In the
�rst state the labels of r1, r2 and r3 are placed; see Figure 4.5(b). Hence, the labels of
д1 and д2 label only the long road sections of д1 and д2, but not the short ones. The
label of д3 labels both the long and short road section of д3. In the second state the
labels of r4, r5, r6 are placed; see Figure 4.5(c). Hence, the labels of д1 and д2 label the
long and short road sections of д1 and д2, while only the long road section of д3 is
labeled. In any other con�guration fewer road sections are labeled. We use the two
optimal states of the gadget to represent and transmit the values true and false from
one gate to the other two gates. More speci�cally the gates д1 and д2 are connected
with chains that lead to the same literal, while д3 is connected with a chain that leads
to the complementary literal.

Variable Gadget. We de�ne the variable gadgets simply by connecting chain and fork
gadgets into a connected component of intersecting roads. This construction already
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has the functionality of a variable gadget: it represents (in a labeling identifying the
maximum number of road sections) the same truth value in all of its branches, synchro-
nized by the fork gadgets, see the blue chains and yellow forks in Figure 4.4(a). More
precisely, we place a sequence of chains linked by fork gadgets along the horizontal
line on which the variable vertices are placed in the drawing Hφ . Each fork creates
a branch of the variable gadget either above or below the line. We create as many
branches above (below) the line as the variable has occurrences in positive (negative)
clauses in φ. The �rst and last chain on the line also serve as branches. The synchro-
nization of the di�erent branches via the forks is such that either all top branches have
their road labels pushed away from the line and all bottom branches pulled towards
the line or vice versa. In the �rst case, we say that the variable is in the state false

and in the latter case that it is in the state true. The example in Figure 4.4 has two
variables set to true and three variables set to false.

Clause Gadget. Finally, we need to create the clause gadget, which links three
branches of di�erent variables. The core of the gadget is a single road that consists
of three subpaths meeting in one junction. Each subpath of that road shares another
junction with one of the three incoming variable branches. Beyond each of these three
junctions the �nal road sections are just long enough so that a label can be placed
on the section. However, the section between the central junction of the clause road
and the junctions with the literal roads is shorter than the label length. The road of
the clause gadget has six sections in total and we argue that the six sections can only
be labeled if at least one incoming literal evaluates to true. Otherwise at most �ve
sections can be labeled. By construction, each road in the chain of a false literal has its
label pushed towards the clause, i.e., it blocks the junction with the clause road. As
long as at least one of these three junctions is not blocked, all sections can be labeled;
see Figure 4.4(b). But if all three junctions are blocked, then only two of the three
inner sections of the clause road can be labeled and the third one remains unlabeled.
Reduction. Obviously, the size of the instanceMφ is polynomial in n andm. If we

have a satisfying variable assignment for φ, we can construct the corresponding road
labeling and the number of labeled road sections is six per clause and a �xed constant
number K ′ of sections in the variable gadgets, i.e., at least K = K ′ + 6m. On the
other hand, if we have a road labeling with at least K labeled sections, each variable
gadget is in one of its two maximum con�gurations and each clause road has at least
one label that covers a junction with a literal road, meaning that the corresponding
truth value assignment of the variables is indeed a satisfying one. This concludes the
reduction. �

Since MaxLabeledRoads is an optimization problem, we only present the NP-
hardness proof. Still, one can argue that the corresponding decision problem is NP-
complete by guessing which junctions are covered by which label and then using linear
programming for computing the label positions. We omit the technical details. Further,
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Figure 4.6: Illustration of alternative clause gadget, which only uses paths as roads. (a)
Structure of the clause gadget. (b) Optimal labeling for the case that at least one literal is true.
(c) Optimal labeling for the case that all literals are false.

most roads in the reduction are paths, except for the central road in each clause gadget,
which is a degree-3 star. In fact, we can strengthen Theorem 4.1 by using a more
complex clause gadget instead that uses only paths as described as follows.

Alternative Clause Gadget. In this section we describe a clause gadget that can
be used as an alternative to the one presented in the previous section. Since it consists
only of roads that are paths, this gadget strengthens Theorem 4.1.

Theorem 4.2. For a given road mapM and an integer K it is NP-hard to decide if in

total at least K road sections can be labeled, even if all roads are paths.

The clause gadget consists of ten roads, r , дa , дb , дc ,ai , bi and ci with i ∈ {1, 2} that
all are paths; see Figure 4.6. Going along r from one end to the other, the junctions with
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the roads ai , bi and ci (1 ≤ i ≤ 2) occur in three densely packed blocks. The blocks are
described by the sequence of roads intersecting r . The �rst block is Ba = (a1, c2,b1,a2),
the second block is Bb = (a2,b1, c1,b2) and the third block is Bc = (b2, c1, c2,a1). The
label length of r is chosen so that at most three labels can be placed on r , but each
road section is shorter than a label of r . Choosing the length of the road sections
appropriately, we further ensure that we can place a label that crosses all junctions of
one of the blocks without crossing the junctions of another block.

We now describe junctions of the roads дa , дb , дc ,ai , bi and ci with i ∈ {1, 2}. The
road a1 �rst intersects дa and then r twice. Let s1

a1 , s
2
a1 , s

3
a1 and s4

a1 denote these road
sections in that particular order. The length of s1

a1 is chosen so that a single label
can be placed on s1

a1 , while the others are shorter than the label length of a1. More
speci�cally, we de�ne a1’s label length such that a label covers the sections in either
{s1
a1}, {s

1
a1 , s

2
a1}, {s

1
a1 , s

2
a1 , s

3
a1}, {s

2
a1 , s

3
a1 , s

4
a1} or {s3

a1 , s
4
a1}. We de�ne the intersections

and the label length for a2, analogously. Further, дa intersects a1 and a2 in one junction,
i.e., the edge of дa connecting both junction vertices is a junction edge. The label
length of дa is chosen so that a label can cross дa ’s only junction. The length of дa ’s
road sections is at least as long as дa ’s label length. We call дa a gate, because later
this road will be connected to the end road of a chain by a junction; see violet square
in Figure 4.6(a). For b1, b2, c1, c2 we introduce analogous junctions and road sections,
however, b1 and b2 intersect дb instead of дa , and c1 and c2 intersect дc instead of дa .

In order to label both road sections of a gate, either two labels can be placed on the
road sections separately, or one label that goes through the junction. In the former
case the gate is open and in latter case it is closed; see Figure 4.6(b). We observe that it
only makes sense to close a gate, if at least one road section of the gate does not allow
to place a label that is only contained in that road section. This case will occur if and
only if the connected chain transmits the value false to the clause.

Assume that at least one gate is open, i.e., one literal of the clause is true; see
Figure 4.6(b). Without loss of generality let дa be open. We place a label `r on r such
that it crosses the junctions of block Ba and labels 5 sections. Since дa is open, we can
place a label `1 that labels s1

a1 and s2
a1 . Analogously, we can place a label `2 labeling s1

a2
and s2

a2 . Placing further labels as indicated in Figure 4.6(b), we label �ve road sections
of r and all road sections of any other road except for s4

c2 , s4
b1

. Hence, 33 road sections
are labeled.

We observe that we can place the labels of b1, b2, c1, c2 such that they do not cross
the junctions of дb and дc , respectively. Hence, it does not matter whether дb and дc
are closed or open, i.e., it does not matter whether the corresponding literals are true

or false.
We now argue that this is an optimal labeling. If s4

c2 or s4
b1

were labeled, the label `r
must be placed such that the junctions of r with c2 and b1 are not crossed, respectively.
This decreases the number of labeled road sections as least as much labeling s4

c2 and
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Figure 4.7: Basic de�nitions of horizontal and vertical labels.

s4
b1

increases the number of labeled road sections. In order to label at least one of the
unlabeled road sections of r , we need to place a label that crosses Bb or Bc . Obviously,
this yields a smaller number of labeled road sections than 31.

Finally, assume that all gates are closed; see Figure 4.6(c). Consider, the same labeling
as before. However, this time we cannot label s2

a1 and s2
a2 anymore. Hence, this labeling

has only 29 labeled road sections. Obviously, it cannot be improved by changing the
placement of the remaining labels or adding labels.

4.4 An E�icient Algorithm for Tree-Shaped Road Maps

In this section we assume that the underlying road graph of the road map is a tree
T = (V ,E). In Section 4.4.1 we present a polynomial-time algorithm to optimally solve
MaxLabeledRoads for trees; Section 4.4.2 shows how to improve its running time
and space consumption. Our approach uses the basic idea that removing the vertices,
whose embeddings lie in a curve c ⊆ E(T ), splits the tree into independent parts. In
particular this is true for labels. We assume that T is rooted at an arbitrary leaf ρ and
that its edges are directed away from ρ; see Figure 4.7. For two points p,q ∈ E(T )
we de�ne d(p,q) as the length of the shortest curve in E(T ) that connects p and q.
For two vertices u and v of T we also write d(u,v) instead of d(E(u), E(v)). For a
point p ∈ E(T ) we abbreviate the distance d(p, ρ) to the root ρ by dp . For a curve ` in
E(T ), we call p ∈ ` the lowest point of ` if dp ≤ dq , for any q ∈ `. As T is a tree, p is
unique. We distinguish two types of curves in E(T ). A curve ` is vertical if h(`) or t(`)
is the lowest point of `; otherwise we call ` horizontal; see Figure 4.7. Without loss
of generality we assume that the lowest point of each vertical curve ` is its tail t(`).
Since labels are modeled as curves, they are also either vertical or horizontal. For a
vertex u ∈ V let Tu denote the subtree rooted at u.
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u

T ′u

added vertex

e

e′

`

chain

(b) Canonical labeling.

Figure 4.8: Illustration of
canonical labelings. (a) Each
label is moved away from the
root as far as possible while
its head and tail must remain
on their respective road sec-
tions. (b) The canonical la-
beling obtained of (a). The
tree is subdivided by addi-
tional vertices (pink squares)
at the tails and heads of the
labels.

4.4.1 Basic Approach

We �rst determine a �nite set of candidate positions for the heads and tails of labels,
and transform T into a tree T ′ = (V ′,E ′) by subdividing some of T ’s edges so that
it contains a vertex for every candidate position. To that end we construct for each
regular vertex v ∈ V a chain of tightly packed vertical labels that starts at E(v), is
directed towards ρ, and ends when either the road ends, or adding the next label does
not increase the number of labeled road sections. More speci�cally, we place a �rst
vertical label `1 such that h(`1) = E(v). For i = 2, 3, . . . we add a new vertical label
`i with h(`i ) = t(`i−1), as long as h(`i ) and t(`i ) do not lie on the same road section
and none of `i ’s endpoints lie on a junction edge. We use the tails of all those labels
to subdivide the tree T . Doing this for all regular vertices of T we obtain the tree T ′,
which we call the subdivision tree of T . The vertices in V ′ \ V are neither junction
vertices nor regular vertices. Since each chain consists of O(n) labels the cardinality
of V ′ is O(n2). We call an optimal labeling L of T a canonical labeling if for each label
` ∈ L ′ there exists a vertex v in T ′ with E(v) = h(`) or E(v) = t(`). The next lemma
proves that it is su�cient to consider canonical labelings.

Lemma 4.1. For any road graph T that is a tree, there exists a canonical labeling L.

Proof. Let L be an optimal labeling of T . We push the labels of L as far as possible
towards the leaves of T without changing the labeled road sections; see Figure 4.8.
More speci�cally, starting with the labels closest to the leaves, we move each label away
from the root as far as possible while its head and tail must remain on their respective
road sections. For a vertical label this direction is unique, while for horizontal labels
we can choose any of the two. Then, for each label its head or tail either coincides
with a leaf of T , with some internal regular vertex, or with the head of another label.
Consequently, each vertical label belongs to a chain of tightly packed vertical labels
starting at a regular vertex v ∈ V . Further, the head or tail of each horizontal label
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coincides with the end of a chain of tightly packed vertical labels or a regular vertex
of T , which proves the claim. �

We now explain how to construct such a canonical labeling. To that end we �rst
introduce some notations. For a vertex u ∈ V ′ let L(u) denote a labeling that labels
a maximum number of road sections in T only using valid labels in E(T ′u ), where
T ′u denotes the subtree of T ′ rooted at u. Note that those labels also may cover the
incoming road section of u, e.g., label ` in Figure 4.8(b) covers the edge e ′.

Further, the children of a vertex u ∈ V ′ are denoted by the set N (u); we explicitly
exclude the parent of u from N (u). Further, consider an arbitrary curve ` in E(T )
and let `′ = ` \ {t(`),h(`)}. We observe that removing all vertices of T ′ contained in
`′ together with their incident outgoing edges creates several independent subtrees.
We call the roots of these subtrees (except the one containing ρ) children of ` (see
Figure 4.7). If no vertex ofT ′ lies in `′, the curve is contained in a single edge (u,v) ∈ E ′.
In that case v is the only child of `. We denote the set of all children of ` as N (`).

For each vertex u inT ′ we introduce a setC(u) of candidates, which model potential
labels with lowest point E(u). If u is a regular vertex of T or u ∈ V ′ \V , the set C(u)
contains all vertical labels ` with lowest point E(u). If u is a junction vertex, C(u)
contains all horizontal labels that start or end at a vertex ofT ′ and whose lowest point
is E(u). In both cases we assume that C(u) also contains the degenerated curve ⊥u =
E(u), which is the dummy label of u. We set N (⊥u ) = N (u) and ω(⊥u ) = 0.

For a curve ` we de�ne L(`) = ⋃
v ∈N (`) L(v) ∪ {`}. Thus, L(`) is a labeling

comprising ` and the labels of its children’s optimal labelings. We call a label ` ∈ C(u)
with ` = argmax{ω(L(`)) | ` ∈ C(u)} an optimal candidate of u. Next, we prove that
it is su�cient to consider optimal candidates to construct a canonical labeling.

Lemma 4.2. Given a vertexu of T ′ and an optimal labelingL(u) and let ` be an optimal

candidate of u, then it is true that ω(L(u)) = ω(L(`)).

Proof. First note that ω(L(u)) ≥ ω(L(`)) because both labelings L(u) and L(`) only
contain labels that are embedded in E(T ′u ). By Lemma 4.1 we can assume without loss
of generality that L(u) is a canonical labeling. Let ` be the label of L(u) with E(u) as
the lowest point of ` (if it exists).

If ` exists, then the vertices in N (`) are roots of independent subtrees, which directly
yieldsω(L(u)) = ω(L(`)). By construction ofC(u)we further know that ` is contained
in C(u). Hence, ` is an optimal candidate of u, which implies ω(`) = ω(`).

If ` does not exist, then we have

ω(L(u)) = ω(
⋃

v ∈N (u)
L(v)) (1)= ω(

⋃
v ∈N (⊥u )

L(v) ∪ {⊥u }) = ω(L(⊥u )).

Equality (1) follows from N (⊥u ) = N (u) and the de�nition that ⊥u does not label
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Algorithm 1: Computing an optimal labeling of T .
Input: Road graph T , where T is a tree with root ρ.
Output: Optimal labeling L(ρ) of T .

1 T ′← compute subdivision tree of T
2 for each leaf v of T ′ do L(v) ← ∅
3 for each vertex u of T ′ considered in a bottom-up traversal of T ′ do
4 L(u) ← L(OptCandidate(u))
5 return L(ρ)

any road section. Since ⊥u is contained in C(u), the dummy label ⊥u is the optimal
candidate `. �

Algorithm 1 �rst constructs the subdivision treeT ′ = (V ′,E ′) fromT . Then starting
with the leaves of T ′ and going to the root ρ of T ′, it computes an optimal can-
didate ` =OptCandidate(u) for each vertex u ∈ V ′ in a bottom-up fashion. By
Lemma 4.2 the labeling L(`) is an optimal labeling of T ′u . In particular L(ρ) is the
optimal labeling of T .

Due to the size of the subdivision tree T ′ we consider O(n2) vertices. Implementing
OptCandidate(u), which computes an optimal candidate ` foru, naively, createsC(u)
explicitly. We observe that if u is a junction vertex, C(u) may contain O(n2) labels;
O(n2) pairs of road sections of di�erent subtrees of u can be connected by horizontal
labels. Each label can be constructed in O(n) time using a breadth-�rst search. Thus,
for each vertex u the procedure OptCandidate needs in a naive implementation
O(n3) time, which yields O(n5) running time in total. Further, we need O(n2) storage
to store T ′. Note that we do not need to store L(u) for each vertex u of T ′, but by
Lemma 4.2 we can reconstruct it using L(`), where ` is the optimal candidate of u. To
that end we store for each vertex of T ′ its optimal candidate ` and w(L(`)).

Theorem 4.3. For a road map with a tree as underlying road graph, MaxLabeledRoads

can be solved in O(n5) time using O(n2) space.

In case that all roads are paths, Algorithm 1 runs in O(n4) time, because for each
u ∈ V ′ the setC(u) contains O(n) labels. Further, besides the primary objective to label
a maximum number of road sections, Chirié [Chi00] also suggested several additional
secondary objectives, e.g., labels should overlap as few junctions as possible. Our
approach allows us to easily incorporate secondary objectives by changing the weight
function ω appropriately.
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Figure 4.9: Superpos-
ing curves. (a) E.g., c1
and c2 superpose each
other, while c1 and c5
do not. The tree is an-
notated with distance
marks. (b) Two curves
superpose each other
if their distance inter-
vals intersect.
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4.4.2 Improvements on Running Time

In this part we describe how the running time of Algorithm 1 can be improved to
O(n3) time by speeding up OptCandidate(u) to O(n) time.

For an edge e = (u,v) ∈ E ∪ E ′ we call a vertical curve ` ⊆ E(T ) an e-rooted
curve, if t(`) = E(u), h(`) is located on a road section, and length(E(e) ∩ `) =
min{length(`), length(E(e))}, i.e., ` emanates from E(u) passing through e; for exam-
ple the red label in Figure 4.8(b) is an e-rooted curve. An e-rooted curve ` is maximal if
there is no other e-rooted curve `′with length(`) = length(`′) andω(L(`′)) > ω(L(`)).
We observe that in any canonical labeling each vertical label ` is a (u,v)-rooted curve
with (u,v) ∈ E ′, and each horizontal label ` can be composed of a (u,v1)-rooted
curve `1 and a (u,v2)-rooted curve `2 with (u,v1), (u,v2) ∈ E ′ and E(u) is the lowest
point of `; see Figure 4.10(a) and Figure 4.10(b), respectively. Further, for a vertical
curve c in E(T ) its distance interval I (c) is [dt (c), dh(c)]. Since T is a tree, for every
point p of c we have dp ∈ I (c). Two vertical curves c and c ′ superpose each other
if I (c) ∩ I (c ′) , ∅; see Figure 4.9.

Next, we introduce a data structure that encodes for each edge (u,v) ofT all maximal
(u,v)-rooted curves as O(n) superposition-free curves in E(Tu ). In particular, each of
those curves lies on a single road section such that all (u,v)-rooted curves ending on
that curve are maximal and label the same number of road sections.

De�nition 4.1 (Linearization). Let e = (u,v) be an edge of T . A tuple (L,ω) is called a
linearization of e , if L is a set of superposition-free curves and ω : L→ R such that

(1) for each curve c ∈ L there is a road section e ′ in Tu with c ⊆ E(e ′),
(2) for each e-rooted curve ` there is a curve c ∈ L with length(`) + du ∈ I (c),
(3) for each point p of each curve c ∈ L there is a maximal e-rooted curve ` with h(`) = p

and ω(c) = ω(L(`)).

Assume that we apply Algorithm 1 onT ′ and that we currently consider the vertexu
ofT ′. Hence, we can assume that for each vertex v , u ofT ′u its optimal candidate and

43



Chapter 4 Label Placement in Road Maps: Model and Theory

ρ

c

u

x

w

`

e′

e

ρ

u

w

{P
≥ λ(R) < λ(R)

e
`

(a) Case 1: Regular vertex.

v1v2

u

ρ

e1e2

`1`2

(b) Case 2: Junction vertex.

Figure 4.10: Application
of linearizations. (a) The
vertex u is a regular vertex.
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tex u is a junction vertex.
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bels can cover u.

ω(L(v)) is given. We �rst explain how to speed up OptCandidate using linearizations.
Afterwards, we present the construction of linearizations.

Application of Linearizations. Here we assume that the linearizations are given
for the edges of T . Concerning the type of u we describe how to compute its optimal
candidate.

Case 1, u is regular. If u is a leaf, the setC(u) contains only ⊥u . Hence, assume that u
has one outgoing edge e = (u,v) ∈ E ′, which belongs to a road R. Let P be the longest
path of vertices in T ′u that starts at u and does not contain any junction vertex. Note
that the path must be unique. Further, by construction ofT ′ the last vertexw of P must
be a regular vertex in V , but not in V ′ \V . We consider two cases; see Figure 4.10(a).

If d(u,w) ≥ λ(R), the optimal candidate is either ⊥u or the e-rooted curve ` of
length λ(R) that ends on E(P). By assumption and due to ω(L(⊥u )) = ω(L(v)), we
decide in O(1) time whether ω(L(⊥u )) ≥ ω(L(`)), obtaining the optimal candidate.

If d(u,w) < λ(R), the optimal candidate is either ⊥u or goes through a junction.
Since w is regular, it has only one outgoing edge e ′ = (w,x). Further, by the choice
of P the edge e ′ is a junction edge in T ; therefore the linearization (L,ω) of e ′ is given.
In linear time we search for the curve c ∈ L such that there is an e-rooted curve `
of length λ(R) with its head on c . To that end we consider for each curve c ∈ L its
distance interval I (c) and check whether there is t ∈ I (c) with t − du = λ(R). Note
that using a binary search tree for �nding c speeds this procedure up to O(logn) time,
however, this does not asymptotically improve the total running time. The e-rooted
curve ` then can be easily constructed in O(n) time by walking from c to u in E(T ).

If such a curve c exist, by de�nition of a linearization the optimal candidate is either
⊥u or `, which we can decide in O(1) time by checking ω(L(⊥u )) ≥ ω(L(`)). Note
that we have ω(L(⊥u )) = ω(L(v)) and ω(L(`)) = ω(c). If c does not exist, again by
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Figure 4.11: Constructing the optimal candidate of u based on the linearizations (L1,ω1)
and (L2,ω2). The tree is annotated with distance marks.

de�nition of a linearization there is no vertical label ` ∈ C(u) and ⊥u is the optimal
candidate.

Case 2, u is a junction vertex. The setC(u) contains horizontal labels. Let ` be such a
label and let e1 = (u,v1) and e2 = (u,v2) be two junction edges in E covered by `; see
Figure 4.10(b). Then there is an e1-rooted curve `1 and an e2-rooted curve `2 whose com-
position is `. Further, we have ω(L(`)) = ω(L(`1) ∪ L(`2))+

∑
v ∈N (u)\{v1,v2 } ω(L(v)).

We use this as follows.
Let e1 and e2 be two outgoing edges of u that belong to the same road R, and let
(L1,ω1) and (L2,ω2) be the linearizations of e1 and e2, respectively. We de�ne for e1
and e2 and their linearizations the operation opt-cand(L1,L2) that �nds an optimal
candidate of u restricted to labels covering e1 and e2.

For i = 1, 2 let di = max{du | u is vertex of Tvi } and let fu (t) = du −(t − du ) =
2 du −t be the function that “mirrors” the point t ∈ R2 at du . Applying fu (t) on the
boundaries of the distance intervals of the curves in L1, we �rst mirror these intervals
such that they are contained in the interval [2 du −d1, du ]; see Figure 4.11. Thus, the
curves in L1 ∪ L2 are mutually superposition-free such that their distance intervals lie
in J = [2 du −d1,d2].
We call an interval [x ,y] ⊆ J a window, if it has length λ(R), du ∈ [x ,y] and there
are curves c1 ∈ L1 and c2 ∈ L2 with x ∈ I (c1) and y ∈ I (c2); see Figure 4.11. By the
de�nition of a linearization there is a maximal e1-rooted curve `1 ending on c1 and
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Figure 4.12: 1st step of
constructing a lineariza-
tion: For each edge ei
its linearization (L,ω) is
extended to a lineariza-
tion (Li ,ωi ) of Ti .

a maximal e2-rooted curve `2 ending on c2 such that length(`1) + length(`2) = λ(R).
Consequently, the composition of `1 and `2 forms a horizontal label ` with ω(L(`)) =
ω(L(`1) ∪ L(`2)) +

∑
v ∈N (u)\{v1,v2 } L(v); we call ω(L(`)) the value of the window.

Using a simple sweep from left to right we compute for the distance interval I (c) of
each curve c ∈ L1 ∪ L2 a window [x ,y] that starts or ends in I (c) (if such a window
exists). The result of opt-cand(L1,L2) is then the label ` of the window with maximum
value. For each pair e1 and e2 of outgoing edges we apply opt-cand(L1,L2) computing
a label `. By construction either the label ` with maximum ω(`) or ⊥u is the optimal
candidate for u, which we can check in O(1) time. Later on we prove that we consider
only linearizations of linear size. Since each vertex of T ′ has constant degree, we
obtain the next lemma.

Lemma 4.3. For each u ∈ V ′ the optimal candidate can be found in O(n) time.

Construction of Linearizations. We now show how to recursively construct a lin-
earization for an edge e = (u,v) ofT . To that end we assume that we are given the sub-
division treeT ′ ofT and the linearizations for the outgoing edges e1 = (v,w1), . . . , ek =
(v,wk ) of v that belong to the same road R as e . Further, we can assume that we have
computed the weight ω(L(w)) for all vertices w in T ′u excluding u. In case that two
vertices of those vertices share the same position in E(T ′u ) we remove that one with
less weight. Let Ti be the tree induced by the edges e , ei and the edges of the subtree
rooted at wi . As a �rst step we compute for each linearization (L,ω) of each edge ei a
linearization (Li ,ωi ) for e restricted to tree Ti , i.e., conceptually, we assume that Tu
only consists of Ti ’s edges.
If e is a junction edge we set Li ← L and weight each curve c ∈ Li as follows.

ωi (c) ← ω(c) +
∑

w ∈N (v)\{wi }
ω(L(w))

Otherwise, if e is a road section, let v1, . . . ,vl be the vertices of the subdivision
tree T ′ that lie on e , i.e., E(vj ) ∈ E(e) for all 1 ≤ j ≤ l ; see Figure 4.12. We assume

46



An E�icient Algorithm for Tree-Shaped Road Maps Section 4.4

3
1
2

4 5

5
6

5
6 7 8 94

3

7

6

3

1
2

4

55
6

5

6

7

8

9

4 3

7 6

u

ρ

p

d(p, u)=5
c1

c2
c3

c4

c5

c6 c7

c8
c9

I(c1)I(c3)

I(c2)I(c4)

du du+10du+5

I(c5)

I(c6)

I(c7) I(c8) I(c9)

5

46

442

3 4

1

31
2

4 5

5
6

5
6 7 8 94

3

7

6

3

1
2

4

55
6

5

6

7

8

9

4 3

7 6

u

ρ

p

d(p, u)=5
c1

c2
c3

c6 c7

c8 c′9

I(c3) I(c2)

du du+10du+5

I(c6) I(c7) I(c8) I(c′9)

46 443 4 4
I(c1)

5

I(c′′9 )

⊕

(Li, ωi)

(Lj , ωj) (L, ω)

Ti Tj

c′′
9

Figure 4.13: 2nd step of constructing a linearization: Merging the linearizations of the trees
Ti and Tj .

that d(v1) < . . . < d(vl ), which in particular yields v1 = u and vl = v . Let c1 be the
curve E((v1,v2)) and for 2 ≤ j < l let c j be the curve E((vj ,vj+1)) \ E(vj ). Hence, we
have

⋃l
j=1 c j = E(e) and c j ∩ c j′ = ∅ for 1 ≤ j < j ′ < l . We set

Li ← L ∪
l−1⋃
j=1
{c j }

We weight each curve c ∈ Li as follows. If c is contained in L, we set

ωi (c) ← ω(c) + 1

Otherwise, c is a sub-curve of E(e) and there exists a j with c = c j . We set

ωi (c) ← ω(L(vj+1) ∪ {`c }),

where `c ⊆ E(e) is an e-rooted curve that starts at E(u) and ends on c . The next lemma
shows that this transformation yields a linearization as desired.

Lemma 4.4. For each outgoing edge ei with linearization (L,ω) the tuple (Li ,ωi ) is a
linearization of e restricted to the tree Ti .

Proof. We use the same notation as used above.
First of all, the set Li contains only curves that do not superpose each other: Since

L contains only curves that do not superpose each other, the only curves that could
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superpose another curve in Li are contained in Li \ L. Since Li \ L is empty for a
junction edge, we can assume that e is a road section. By construction those curves in
Li \ L partition E(e) without intersecting each other. Further, by assumption no two
road sections share a common vertex and since all curves of L are contained in E(Tv ),
the curves in Li \ L cannot superpose any curve in L.

We now prove that Li satis�es the three conditions of a linearization. First assume
that e is a road section.
Condition (1). Since L is a linearization, each curve of L must be a sub-curve of a

road section. Further, the curves Li \ L are sub-curves of the road section e .
Condition (2). First consider an e-rooted curve ` that either ends on ei or on an edge

of Twi . Recall that h(`) must lie on a road section. Then there is an ei -rooted curve `′
with `′ ⊆ ` and h(`) = h(`′). Hence, there is a curve c ∈ L with length(`′) + dv ∈ I (c).
Since `′ is a sub-curve of `, we also have length(`) + du ∈ I (c). Now, consider an e-
rooted curve ` that ends on e , then obviously by construction there is a curve c ∈ Li \L
with length(`) + du ∈ I (c).

Condition (3). First consider an arbitrary curve c ∈ Li \ L and let ` be any e-rooted
curve that ends on c . Further, let v1, . . . ,vl be the vertices of the subdivision tree T ′
that lie on e as de�ned above. By construction there is an edge (vj ,vj+1) with 1 ≤ j < l
and c ⊆ E(vj ,vj+1). It holds

ω(L(`)) = ω(L(vj+1) ∪ {`}) = ωi (c)

Obviously, ` must be maximal, because there is no other point in E(Ti ) having the
same distance to ρ as h(`) has.

Finally, consider a curve c ∈ L and let ` be any e-rooted curve that ends on c .
As L is a linearization of ei , for each point p on c there must be an ei -rooted curve `′
with h(`′) ∈ c . We choose `′ such that h(`′) = h(`). Since `′ is a maximal ei -rooted
curve, the curve ` must be a maximal e-rooted curve. Further, ` labels one road section
more than `′. Hence, we obtain

ω(L(`)) = ω(L(`′)) + 1 = ω(c) + 1 = ωi (c)

Now consider the case that e is a junction edge. Condition (1) and Condition (2)

follow by the same arguments as stated above with the simpli�cation that Li = L.
Condition (3). Let c be a curve in Li and let ` be any e-rooted curve that ends on c .

Further, let `′ be the ei -rooted sub-curve of ` that starts at E(v) and ends at h(`); by
de�nition of L such a curve exists. It holds

ω(L(`)) = ω(L(`′)) +
∑

w ∈N (v)\{wi }
ω(L(w)) = ω(c) +

∑
w ∈N (v)\{wi }

ω(L(w)) = ωi (c)

Since `′ is a maximal ei -rooted curve, it directly follows that ` is a maximal e-rooted
curve with respect to Ti . �
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Figure 4.14: Illustration of merging two linearizations (Li ,ωi ) and (Lj ,ω j ) into one lineariza-
tion (L1,ωi ). The trees are annotated with distance marks.

In the next step we de�ne an operation ⊕ by means of which two linearizations
(Li ,ωi ) and (Lj ,ω j ) can be combined to one linearization (Li ,ωi ) ⊕ (Lj ,ω j ) of e that
is restricted to the subtree Ti, j induced by the edges of Ti and Tj . Consequently,⊕k

i=1(Li ,ωi ) is the linearization of e without any restrictions.
We de�ne (L,ω) = (Li ,ωi ) ⊕ (Lj ,ω j ) as follows; for illustration see also Figure 4.14.

Let c1, . . . , c` be the curves of Li ∪ Lj such that for any two curves cs , ct with s < t
the left endpoint of I (cs ) lies to the left of the left endpoint of I (ct ); ties are broken
arbitrarily. We successively add the curves to L in the given order enforcing that the
curves in L remain superposition-free. Let c be the next curve to be added to L.

Without loss of generality, let c ∈ Li . The opposite case can be handled analogously.
In case that there is no curve superposing c , we add c to L and set ω(c) = ωi (c). If c
superposes a curve in L, due the order of insertion, there can only be one curve c ′ in L
that superposes c . First we remove c ′ from L. Let IM be the interval describing the set
I (c)∩ I (c ′), and let IL and IR be the intervals describing the set I (c)∪ I (c ′) \ (I (c)∩ I (c ′))
such that IL lies to the left of IM and IR lies to the right of IM .

We now de�ne three curves cL , cM and cR with I (cL) = IL , I (cM ) = IM and I (cR) = IR
such that each of these three curves is a sub-curve of either c or c ′. To that end let c[I ]
denote the sub-curve of c whose distance interval is I . We de�ne the curve cR with
weight ω(cR) as

(cR ,ω(cR)) =
{
(c[IR],ωi (c)), if IR ⊆ I (c)
(c ′[IR],ω(c ′)), if IR ⊆ I (c ′)

The curve cL and its weight ω(cL) is de�ned analogously.
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The curve cM and its weight ω(cM ) is

(cM ,ω(cM )) =
{
(c[IM ],ωi (c)), if ωi (c) ≥ ω(c ′)
(c ′[IM ],ω(c ′)), if ωi (c) < ω(c ′)

The next lemma proves that (Li ,ωi ) ⊕ (Lj ,ω j ) is a restricted linearization.

Lemma 4.5. Let (Li ,ωi ) and (Lj ,ω j ) be two linearizations of e = (u,v) that are restricted
to the treesTi andTj , respectively. Then (L,ω) = (Li ,ωi ) ⊕ (Lj ,ω j ) is a linearization of e
restricted to Ti, j . The operation needs O(|Li | + |Lj |) time.

Proof. First of all, the set L contains only curves that are pairwise free from any
superpositions. This directly follows from the construction that curves c and c ′

superposing each other are replaced by three superposition-free curves cL , cM and
cR . Due to I (cL) ∪ I (cM ) ∪ I (cR) = I (c) ∪ I (c ′) the �rst and second condition of a
linearization is satis�ed.

We �nally prove that Condition (3) of a linearization is satis�ed by doing an induction
over the curves inserted to L. Let Lk be L after the k-th insertion step. Since L0 is
empty, the condition obviously holds for L0. So assume that we insert c to Lk obtaining
the set Lk+1. Without loss of generality assume that c ∈ Li . If c does not superpose
any curve in Lk , the condition directly follows from the de�nition of c . So assume
that c ′ ∈ Lk superposes c . Since c ∈ Li , the curve c ′ is contained in E(Tj ). We remove
c ′ from Lk and insert the curves cR , cM and cL as de�ned above. We prove that all
three curves satisfy Condition (3).

Consider in the following the subtree Ti, j of Tu restricted to the edges of Ti and Tj .
We set cR = c[IR] and set ω(cR) = ωi (c), if IR ⊆ I (c). In that case there is no e-
rooted curve ` ⊆ E(Tj ) with length(`) + du ∈ IR , i.e., either there is no curve ` in
E(Tj ) with t(`) = E(u) and length(`) + du ∈ IR , or any curve in E(Tj ) with t(`) =
E(u) and length(`) + du ∈ IR ends on a junction edge. Consequently, any e-rooted
curve ` with length(`) + du ∈ IR and in particular any maximal e-rooted curve `
with length(`) + du ∈ IR lies in E(Ti ). Thus, the curve cR satis�es Condition (3). For
the case IR ⊆ I (c ′) and the curve cL we can argue analogously.

So consider the curve cM . Without loss of generality we assume that ωi (c) ≥
ω(c ′). The opposite case can be handled analogously. For any maximal e-rooted
curve ` in E(Tj ) with length(`) + du ∈ IM it must be true that ω(L(`)) ≤ ω(cM ).
Further, since cM ⊆ c and c satis�es Condition (3) with respect to Ti , cM satis�es the
Condition (3) with respect to Ti, j . �

Lemma 4.4 and Lemma 4.5 yield that
⊕k

i=1(Li ,ωi ) is the linearization of e without
any restrictions. Computing it needs O(∑k

i=1 |Li |) time.
Note that when computing optimal candidates (see Application of linearizations)

we are only interested in e-rooted curves ` that have length at most λ(R), where R is
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the road of e . Hence, when constructing (Li ,ωi ) for an edge ei in the �rst step, we
discard any curve c of Li that does not allow an e-rooted curve that both ends on c
and has length at most λ(R); the curve c is not necessary for our purposes. Hence, we
conceptually restrictTi to the edges that are reachable from u by one label length. It is
not hard to see that T ′ restricted to E(Ti ) contains only O(n) vertices, because each
vertex of V ′ \V is induced by a chain of tightly packed vertical labels, whereas each
label has length λ(R). Hence, T ′ restricted to E(Ti ) contains for each such chain at
most one vertex of V ′ \V . Further, the endpoints of the curves in Li are induced by
the vertices of T ′. Hence, by discarding the unnecessary curves of Li the set Li has
size O(n). Altogether, by Lemma 4.5 and due to the constant degree of each vertex we
can construct

⊕k
i=1(Li ,ωi ) in O(∑k

i=1 n) = O(n) time.
When constructing L(u) for u as described in Algorithm 1, we �rst build the lin-

earization Le of each of u’s outgoing edges. By Lemma 4.3 we can �nd in O(n) time
the optimal candidate of u. Then, due to the previous reasoning, the linearization of
an edge of T and the optimal candidate of a vertex u can be constructed in O(n) time.
Altogether we obtain the following result.

Proposition 4.1. For a road mapM with a tree T as underlying road graph, MaxLa-

beledRoads can be solved in O(n3) time.

4.4.3 Improvements on Storage Consumption

SinceT ′ containsO(n2) vertices, the algorithm needsO(n2) space. This can be improved
to O(n) space. To that end T ′ is constructed on the �y while executing Algorithm 1.
Parts ofT ′ that become unnecessary are discarded. We prove that it is su�cient to store
O(n) vertices of T ′ at any time such that the optimal labeling can still be constructed.

When constructing the optimal labeling of T , we build for each edge (u,v) of T its
linearization based on the linearization of the outgoing edges of v . Afterwards we
discard the linearizations of those outgoing edges. Since each vertex has constant
degree, considering the vertices ofT ′ in an appropriate order, it is su�cient to maintain
a constant number of linearizations at any time.

Hence, because each linearization has size O(n), we need O(n) space for storing
the required linearizations in total. However, we store for each vertex u of T ′ the
weight ω(L(u)) and its optimal candidate. AsT ′ has sizeO(n2) the space consumption
is O(n2). In the following, we improve that bound to O(n) space.
We call a vertex v ∈ V ′ reachable from a vertex u ∈ V ′, if there is a curve ` ⊆ E(T ′u )
that starts at E(u) and that is contained in the embedding of a road R with λ(R) ≥
length(`) such that E(v) ∈ ` or v ∈ N (`), where length(`) denotes the length of `; see
Figure 4.15(a). The set Ru contains all vertices of T ′u that are reachable from u. The
next lemma shows that Ru has linear size.

Lemma 4.6. For any vertex u of T ′ the set Ru has size O(n).
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Figure 4.15: Improve-
ments on storage con-
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tion of the reachable
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not reachable fromu are
marked gray. (b) Illus-
tration for reconstruct-
ing the computed label-
ing.

Proof. Recall how T ′ is constructed: For each vertex v ∈ V we construct a chain C
of tightly packed vertical valid labels, which starts at E(v), is directed towards ρ,
and ends when either the road ends, or adding the next label does not increase the
number of labeled road sections. Each label of such a chainC induces one vertex ofT ′.
Hence, C induces a set VC of vertices in T ′. We show that for each chain C the set
VC ∩Ru contains at most two vertices. As we construct n chains in order to build T ′
the claim follows.

For the sake of contradiction assume that there is a chain C and a vertex u in
T ′ such that VC ∩ Ru contains more than two vertices. Without loss of generality
we assume that VC ∩ Ru contains three vertices, which we denote by v1, v2 and v3.
We further assume that dv1 < dv2 < dv3 . By construction all labels in C lie in the
embedding of the same road RC , and d(v1,v2) ≥ λ(RC ) and d(v2,v3) ≥ λ(RC ). By
de�nition of C there is a vertical curve ` ∈ E(T ′u ) that starts at E(u) and contains v1,
v2 and v3. Let e be the outgoing edge of u in T ′ whose embedding is covered by ` and
consider the sub-curve `′ ⊆ ` with length λ(RC ) that starts at u. By de�nition of Ru ,
we know for each vi with 1 ≤ i ≤ 3 that either its embedding is contained in `′ or
vi ∈ N (`′). From the de�nition of N (`′) and the fact that all three vertices lie on `,
it directly follows that only v3 may be contained in N (`′). Hence, E(v1), E(v2) ∈ `′.
Further, because v2 < N (`′), we have E(v2) , h(`′), which implies d(v1,v2) < λ(R)
and contradicts d(v1,v2) ≥ λ(R). �

Assume that we apply Algorithm 1 considering the vertex u. When constructing
u’s optimal candidate, by Lemma 4.6 it is su�cient to consider the vertices of T ′u that
lie in Ru . On that account we discard all vertices ofT ′u that lie inV ′ \V , but not in Ru .
Further, we compute the vertices ofV ′ \V that subdivide the incoming edge (t ,u) ∈ E
on demand, i.e., we compute them, when constructing the optimal candidate of t .
Hence, we have linear space consumption.
However, when discarding vertices of T ′, we lose the possibility of reconstructing the
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labeling. We therefore annotate each vertex u ∈ V of the original tree T with further
information. To that end consider a canonical labeling L of T . Let ` be a horizontal
label of L and let e be the edge of T on which `’s head is located; see Figure 4.15(b).
Either, no other label of L ends on e , or another label `′ ends on e that belongs to a
chain σ` of tightly packed vertical labels. Analogously, we can de�ne the chain τ` with
respect to edge e ′ on which `′s tail is located. On that account we store for a junction
vertex u ∈ V not only its optimal candidate ` ∈ C(u), but also the two chains σ` and τ` ,
if they exist. Note that such a chain of tightly packed vertical labels is uniquely de�ned
by its start and endpoint, which implies thatO(1) space is su�cient to store both chains.
Using a breadth-�rst search we can easily reconstruct those chains in linear time. For
a regular vertex u ∈ V we analogously store σ` of its optimal candidate ` ∈ C(u), if
it exists. Since ` is vertical, we do not need to consider its tail. For the special case
that ` = ⊥u , we de�ne that σ` is the chain of tightly packed vertical labels that ends on
the only outgoing edge e of u. Summarizing, the additional information together with
the optimal candidates stored at the vertices u ∈ V of the original tree are su�cient to
reconstruct the labeling of T . Together with Proposition 4.1 we obtain the following
result.

Theorem 4.4. For a road mapM with a tree T as underlying road graph, MaxLabel-

edRoads can be solved in O(n3) time using O(n) space.

4.5 Conclusions

In this chapter, we investigated the problem of maximizing the number of labeled road
sections in a labeling of a road map; we showed that it is NP-hard in general, but can
be solved in O(n3) time and linear space for the special case of trees.

The underlying road graphs of real-world road maps are rarely trees. However, in
the next chapter, we show that road maps can be decomposed into a large number of
subgraphs by placing trivially optimal road labels and removing the corresponding
edges from the graph. It turns out that a vast majority of the resulting subgraphs
are actually trees, which we can label optimally by our proposed algorithm. As a
consequence, this means that a large fraction of all road sections in our real-world
road graphs can be labeled optimally by combining this simple preprocessing strategy
with the tree labeling algorithm. We further investigate heuristic and exact approaches
for labeling the remaining non-tree subgraphs (e.g., by �nding suitable spanning trees
and forests).
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5
Label Placement in Road Maps:

An Algorithmic Framework

Abstract. In the previous chapter, we presented a general model for label placement
in road maps. However, without any adaptions this model is of theoretical nature and
cannot be directly applied in practice. In this chapter, we explain how to decompose
the road network into logically coherent road sections, e.g., parts of roads between two
junctions. Based on this decomposition, we present and implement a new and versatile
framework for placing labels in road maps. In particular, we show that our tree-based
algorithm of the previous chapter can in fact be used successfully as the core of an
e�cient and practical road labeling algorithm. In an experimental evaluation with
road maps of eleven major cities we show that our proposed labeling algorithm is
both fast in practice and that it reaches near-optimal solution quality, where optimal
solutions are obtained by mixed-integer linear programming. In comparison to the
standard OpenStreetMap rendering engine Mapnik, our algorithm labels 31% more
road sections on average.

This chapter is based on and partly taken from joint work with Martin Nöllen-
burg [NN16].

5.1 Introduction

At any given scale, road networks are typically drawn on maps as follows. Each road
or road lane is represented as a thick, polygonal curve, i.e., a polygonal curve with
non-zero width; see the background of Figure 5.1(a). If two (or more) such curves
intersect, they form junctions. If two or more lanes of the same road closely run
in parallel, they merge to one even thicker curve such that individual lanes become
indistinguishable. We then want to place road labels inside these thick curves. More
precisely, a road label can again be represented as a thick curve (the bounding shape
of the road name) that is contained in and parallel to the thick curve representing its
road; see Figure 5.1(c).

In contrast, the abstract road graph model of Chapter 4 used a simpli�ed repre-
sentation, which represents the road network and its labels as thin curves instead.
More precisely, a road network is modeled as a planar embedded abstract road graph

whose edges correspond to the skeleton of the actual thick curves. In this model a
label is again a thin curve of certain length that is contained in the skeleton. Following
the cartographic quality criteria (C1)–(C3) from Chapter 4, we place labels, i.e., �nd
sub-curves of the skeleton, such that (1) each label starts and ends on road sections,
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(a) OSM. (b) Graph G.
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Figure 5.1: The presented work�ow. (a) The road network given by polylines (blue segments).
(b) Phase 1: A graph G is created whose embedding is the simpli�ed road network; blue
segments: road sections, red segments: junction edges. (c) Phase 2: Creating the labeling
using G. (d) A labeling produced by the OSM rendering engine Mapnik. The six labels of the
road Osloer Straße are enclosed by red ellipses.

but not on junctions, (2) no two labels overlap, and (3) a maximum number of road
sections are labeled. From a labeling of the abstract road graph it is straight-forward to
transform each label back into its text representation by placing the individual letters
of each label along the thick curves; see Figure 5.2(a).

While this abstract road graph model allows theoretical insights (see Chapter 4), we
cannot directly apply it to real-world road networks. Due to the following issues, we
need to invest some e�ort in a preprocessing phase to guarantee that the resulting
labels in the text representation do not overlap, look nicely, and are embedded in the
roads’ shapes.

Issue 1. If lanes run closely in parallel, their drawings in the road network
merge to one thick curve and individual lanes become indistinguish-
able. Hence, in our abstract model, such lanes should be aggregated to
a single road section that represents the skeleton of the merged curve,
and labels should be contained in it; see Figure 5.1(b)–(c).

Issue 2. Real-world road networks are not planar, but edges may cross, namely
at tunnels and bridges; see Figure 5.2(c). To avoid overlaps between la-
bels placed on such road sections, we can either model the intersection
as a regular junction of two roads or split one into two shorter road
sections that do not cross the other road section. In both cases the
road graph becomes planar. For our prototype we use the �rst variant
(also used by Mapnik), because more road sections can be labeled.

Issue 3. In real-world road networks some road sections are possibly so long
that the label should be repeated after appropriate distances.

Issue 4. Labels have a certain font size so that when transforming an abstract
label curve into its text representation, labels of di�erent roads may
overlap due to their road sections being too close; see Figure 5.2(d).
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Figure 5.2: Illustration of model and arising issues. (a) Sketch of a road network and its
abstract road graph. (b) Labels are possibly curvy and have sharp bends making the text hardly
legible. (c) Issue 2: Two ways to represent bridges and tunnels in the abstract road graph. (d)
Issue 4: The text representation of labels may overlap, although the curve representation in
the abstract road graph does not.

Contribution and Outline. In this chapter, we introduce a new, versatile algorith-
mic framework for placing non-overlapping labels in road networks that maximizes
the number of labeled road sections. We keep the algorithmic components easily
exchangeable. In Section 5.2 we discuss and expand the model introduced in Chap-
ter 4. Afterwards, we present a work�ow for labeling road networks consisting of two
phases; see Figure 5.1. We now sketch both phases.

Phase 1 (Section 5.3). We translate the given road network into a semantic represen-
tation (an abstract road graph) that identi�es pieces of the road network that belong
semantically together. To that end, we simplify the road network, e.g., by merging
lanes closely running in parallel. By design this simpli�cation maintains the overall
geometry of the road network and only merges structures in the data that should not
be labeled independently. This phase resolves Issue 1–Issue 4. It is not part of the
labeling optimization process.

Phase 2 (Section 5.4). Based on the abstract road graph, we create an actual labeling
using one of three algorithms: a naive base-line algorithm, a heuristic extending our
tree-based algorithm of Chapter 4 and a mixed-integer linear programming (MILP)
formulation. To tweak those approaches, we may optionally decompose the graph
into smaller pieces with the property that optimal labelings of the components yield
an optimal labeling of the entire graph.

As proof of concept, we implemented the core of the framework only taking the
most important cartographic criteria into account. However, with some engineering it
can be easily enhanced to more complex models, e.g., enforcing minimum distances
between labels, abbreviating road names, or using alternative de�nitions of road
sections. In Section 5.5, we present a detailed evaluation of our framework on eleven
sample city maps. Due to its availability and popularity in practice, we compare
our results against the standard OpenStreetMap (OSM) render engine Mapnik as a
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representative of local heuristics; it uses a strategy similar to [Chi00, Str01]. We
show that our tree-based algorithm is fast and yields near-optimal labelings that
improve upon Mapnik. We provide interactive maps illustrating our labelings online:
http://i11www.iti.kit.edu/roadlabeling/.

5.2 Adaptions on the Abstract Road Graph Model.

We have introduced the abstract road graph in Chapter 4, but in this chapter we take
a slightly di�erent view on the model. We therefore repeat the de�nition of the model
here and adapt the applied notation, see also Figure 5.1(b) and Figure 5.2(a). A road
network (in an abstract sense) is a planar geometric graph G = (V ,E), where each
vertex v ∈ V has a position in the plane and each edge {u,v} ∈ E is represented by a
polyline whose end points are u and v . Each edge further has a road name. A maximal
connected subgraph of G consisting of edges with the same name forms a road R. The
length of the name of R is denoted by λ(R). Each edge e ∈ E is either a road section,
i.e., the part of a road in between two junctions, or a junction edge, which models
road junctions. Formally, a junction is a maximal connected subgraph of G that only
consists of junction edges. We require that no two road sections in G are incident
to the same vertex and that vertices incident to road sections have at most degree 2.
Thus, the road graph G decomposes into road sections, separated by junctions.

We say a point p lies on G, if there is an edge e ∈ E whose polyline contains p.
Hence, a polyline ` (in particular a single line segment) lies on G if each point of `
lies on G. Further, ` covers e , if there is a point of ` that lies on e . If each point of e is
covered by `, e is completely covered. The geodesic distance of two points on G is the
length of the shortest polyline on G connecting both points.

A label of a road R is a simple open polyline ` onG that has length length(`) = λ(R),
ends on road sections of G, and whose segments only lie on edges of R. The start
point of ` is denoted as the head h(`) and the endpoint as the tail t(`). Obviously, the
edges that are covered by ` form a path P` = (e1, e2, · · · , ek−1, ek ) of edges such that
e1, and ek are (partly) covered and e2, . . . , ek−1 are completely covered by `. If ei is a
road section (and not a junction edge), we say that ei is labeled by `.

We extend the above abstract road graph model and restrict ourselves to well-shaped

labels, i.e., labels that are not too curvy or do not contain broken type setting due to
sharp bends; see Figure 5.2(b). Similar to Schwartges et al. [SWH14], we apply a local
criterion to decide whether a label is well-shaped. To that end, we de�ne a label ` to
be well-shaped if for each covered edge e ∈ P` there is a well-shaped piece of e that
completely contains the part of ` on e . Further, we require that for each pair of incident
edges of P` the bend angle is at most αmax, where αmax is a pre-de�ned constant. We
rede�ne a labeling L to be a set of mutually non-overlapping, well-shaped labels. Our

58

http://i11www.iti.kit.edu/roadlabeling/


Phase 1 – Construction of Abstract Road Graphs Section 5.3

theoretic results of Chapter 4 remain valid for this restriction. In particular, only few
minor technical adaptions are required for the tree labeling algorithm.

In order to identify well-shaped pieces of a polyline P with edges e1, . . . , ek , we ex-
tend the approach presented by Schwartges et al. [SWH14]. They de�ne the curviness
w(P) of P by summing up the bend angles αi of all incident edge pairs ei , ei+1, i.e.,
w(P) = ∑k−1

i=1 |αi | to determine the best label positions for any given label. We want
to locally classify road pieces as well-shaped instead and adapt their idea as follows.
Let S be a maximal sub-polyline of P with the property that any sub-polyline of S
with length at most lmax has curviness at most αmax. Each such sub-polyline S forms a
well-shaped piece of P and they can all be computed in O(k) time. This local criterion
for well-shapedness is based on the curviness of a �xed-width window sliding along
the polyline; it is independent of the label length (similarly to what Mapnik does).
In our experiments we set lmax to twice the length of the letter W and αmax = 22.5◦,
analogously to the parameters that Mapnik uses.

A labeling L for a road network is a set of mutually non-overlapping, well-shaped
labels, where two labels ` and `′ overlap if they intersect in a point that is not their
respective head or tail. Following the criteria (C1)–(C3) (see Chapter 4), the problem
MaxLabeledRoads is to �nd a labeling L that labels a maximum number of road
sections, i.e., no other labeling labels more road sections. In Chapter 4 we showed that
MaxLabeledRoads is NP-hard in general, but can be solved in O(|V |3) time if G is
a tree.

5.3 Phase 1 – Construction of Abstract Road Graphs

The �rst phase of our framework consists of transforming the input road network data
into an abstract road graph while resolving the four issues mentioned in Section 5.1.
Typically, road networks are given as a set of polylines that describe the roads and road
lanes. Individual polylines do not necessarily form semantic components such as road
sections. So as a �rst step, we break all polylines down into individual line segments
(whose union forms the road network). Let L be the set of all these line segments. We
further require that each line segment l ∈ L is annotated with its road name rn(l), the
stroke width st(l) and the color co(l) that are used to draw l , and �nally the font size

fs(l) that shall be used to display the name. We say that two line segments l , l ′ ∈ L are
equally represented if st(l) = st(l ′) and co(l) = co(l ′). We assume that fs(l) < st(l) for
any l ; otherwise we set st(l) := fs(l).

The work�ow consists of the following �ve steps; see Figure 5.3. (1) Identification.
Identify single road components, i.e., sets of line segments in the road network data
that have the same name, are equally represented, and form a connected component.
(2) Simplification. Simplify each road component such that lanes running closely in
parallel are aggregated. (3) Planarization. Replace bridges and tunnels by arti�cial
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Figure 5.3: Illustration of the steps applied in Phase 1. Segments of the same color have the
same road name. For more details see the description of Phase 1.

junctions. (4) Transformation. Transform the segment representation into an
abstract road graph. (5) Resolving Overlaps. Identify mutual overlaps of road
sections and block them for label placement.

Below we describe each step in more detail. We de�ne the hull of a line segment l ∈ L
to be the region of points whose Euclidean distance to l is at most st(l); see Figure 5.3(a).
The hull of a polyline is then the union of its segments’ hulls. We approximate hulls
by simple polygons.

Step 1 – Identification. For each road name n, each color c and each font size
f we de�ne the intersection graph of the hulls of the line segments Ln,c,f = {l ∈ L |
rn(l) = n, co(l) = c and fs(l) = f }. In this intersection graph each hull is a vertex and
two vertices are connected if and only if the corresponding hulls intersect. In each
(non-empty) intersection graph we identify all connected components, which we call
road components; e.g., in Figure 5.3(a) the blue segments form a road component. Thus,
based on L we obtain a set C of road components. By de�nition, each component
C ∈ C has a unique name rn(C), stroke width st(C), color co(C) and font size fs(C).

Step 2 – Simplification. For each road component C ∈ C we geometrically form
the union of the corresponding hulls. Thus, the result is a simple polygon P (possibly
with holes); see Figure 5.3(b), top. This polygon describes the contour of the road
component as drawn on the map. We discard all polygons whose area is smaller than
some threshold as they are too small to be labeled; we use the area of the letter W as
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threshold. For each remaining polygon P we construct the skeleton of P as a linear
representation of the corresponding road component such that labels centered on
the skeleton are guaranteed to be contained in P . This skeleton is computed based
on the conforming Delaunay triangulation of the interior of P following Bader and
Weibel [BW97]. For triangles that have one or three internal edges, i.e., edges that do
not belong to the boundary of P , we connect the triangle centroid to the midpoints
of the internal edges. For triangles with two internal edges, we simply connect the
midpoints of these two edges, see Figure 5.3(b), bottom. From those line segments, we
form a set of maximal polylines by appending all those line segments that meet at the
midpoint of a triangle edge (but not at a triangle centroid). Since these polylines may
consist of many vertices and meander locally, we simplify them using the Douglas-
Peucker algorithm, but only if the simpli�ed shortcuts keep a distance of at least
fs(C)/2 to the boundary of P , see Figure 5.3(c). Finally, we delete any segment l whose
text box Bl is not completely contained in P . Here the text box Bl of l is de�ned as
a rectangle centered at l with two sides parallel to l . These parallel sides have the
same length as l , the two orthogonal sides have length fs(C), see Figure 5.3(b), bottom.
Segments with the text box not contained in P may occur at the protrusions of the
component where circular arcs are approximated by polylines, see Figure 5.3(c), top
left. The remaining set of polylines forms the skeleton of P .

Thus, for each road componentC we obtain a skeleton such that all text boxes of the
skeleton edges are contained in P . This resolves Issue 1. We annotate each skeleton
edge with the name, stroke width, color and font size of C .

Step 3 – Planarization. So far polylines of di�erent road components may intersect
at other points than their end points, e.g., polylines representing bridges and tunnels
may cross other polylines. As motivated in Section 5.1, we subdivide these polylines
to resolve intersections; see Figure 5.3(d). More precisely, if two line segments pq and
rs of two polylines intersect at a point t , we replace them by the four segments pt , tq,
rt and ts . We do the intersection tests with a certain tolerance to identify T -crossings
safely. However, this may yield short stubs that protrude junctions slightly; we remove
these stubs. Thus, this step resolves Issue 2 and yields a set of annotated polylines
only intersecting in vertices.

Step 4 – Transformation. Next we create the abstract road graph from the
polylines of the previous step. As a result of Step 3, we know that any two polylines
intersect only in vertices. We �rst take the union of all polylines, identify vertices
that are common to two or more polylines and mark these vertices as junction seeds.
This induces already a planar graph G = (V ,E) with polyline edges whose vertices V
are either junction seeds or have degree 1. It remains to partition the edges of G into
road sections and junction edges. Initially, we mark all edges as road sections. We
distinguish two types of junction seeds in G.

If a junction seed v has degree at least 3, only two of its incident edges e and e ′
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Figure 5.4: Illustration of the algorithms. Edges of the same color belong to the same road.

belong to the same road R and all other incident edges belong to di�erent roads (and
have a di�erent road type than R) then we do not create any junction edges at v , see
Figure 5.3(e), small box. Since R is the only road that may use the junction at v and it
is visually clear that all other roads end at v , we can safely treat v as an internal vertex
of a road section of R. So we disconnect all incident edges of v except e and e ′ from v
and let each of them end at its own slightly displaced copy of v . The edges e and e ′

are merged at v and the new edge remains a road section. This resolves the situation
as desired.

For all other junction seeds we create junction edges as follows. Let v be a junction
seed and let Ev be the set of edges incident to v . We intersect the hulls of all edges in
Ev and project their intersection points onto the corresponding edges, see Figure 5.3(f).
For each edge e ∈ Ev we determine the projection point pe that is farthest away from
v (in geodesic distance). If the distance between pe and v exceeds a given threshold δ ,
we shift pe to the point on e that has distance δ from v . Now we subdivide e at pe and
mark the edge {v,pe } as a junction edge; the other edge at pe (if non-empty) remains
a road section. The threshold δ ensures that roads running closely in parallel are not
completely marked as junction edges. Figure 5.3(g) shows the resulting abstract road
graph.

To resolve Issue 3 we subdivide road sections whose length exceeds a certain
threshold (in our experiment 350 pixels) by inserting a very short junction edge.

Step 5 – Resolving Overlaps. By Step 2 the hulls of edges that belong to the same
road component do not overlap. However, if two sections of di�erent roads run closely
in parallel, their hulls (and hence their labels) may overlap; Figure 5.3(h). We identify
overlaps of the hulls of non-incident edges in G and block the corresponding parts of
the edge whose road is less important for placing labels; ties are broken arbitrarily.
More complex approaches using road displacement could be applied, however, we
have chosen a simple solution. By design hulls of incident edges may only overlap if
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both are junction edges; those overlaps are handled by the labeling algorithms; see
Section 5.4. This resolves Issue 4.

5.4 Phase 2 – Label Placement in Road Graphs

In this section we present the four di�erent methods for solving MaxLabeledRoads
that we subsequently evaluate in our experiments in Section 5.5. Furthermore, we
describe a technique for decomposing road graphs into several smaller, independent
components that may speed up computations.

5.4.1 Labeling Methods

BaseLine. An obvious base-line heuristic to obtain lower bounds is to simply place a
well-shaped label on each individual road section that is long enough to admit such a
label without extending into any junctions. We use this approach to show that it is
bene�cial to position labels across junctions.
Mapnik. Mapnik (http://mapnik.org) is a standard open source rendering engine
for OpenStreetMap that includes a road labeling algorithm. The algorithm iteratively
labels so-called ways, which are polylines describing line features in OpenStreetMap.
Along each way it places labels with a certain spacing and locally ensures that labels
do not intersect already placed labels of other ways. It does not use any semantic
structure from the road network (e.g., road sections), but relies on how the contributors
of OpenStreetMap modeled single ways. We may run the rendering algorithm and
extract all placed labels from its output.
Tree. The tree-based heuristic makes use of our proposed algorithm that optimally
solves MaxLabeledRoads if G is a tree; see Chapter 4. We use that algorithm as a
black box. If G is a tree, our heuristic optimally labels G. Otherwise it computes a
spanning tree T on G using Kruskal’s algorithm and computes an optimal labeling
for T ; see Figure 5.4(a). We construct T such that all road sections of G are contained
in T . Since a road section is only incident to junction edges, this is always possible.
In Section 5.5 we show that large parts of realistic road networks can actually be
decomposed into paths and trees without losing optimality.
Milp. In order to provide upper bounds for the evaluation of our labeling algorithms,
we implement a mixed-integer linear programming (MILP) model that solves Max-
LabeledRoads optimally on arbitrary abstract road graphs. The basic idea is to
discretize all possible label positions and to restrict the space of feasible solutions to
non-overlapping sets of labels.

We now describe the MILP formulation in detail. To simplify the presentation, we
drop the rather technical concept of well-shaped labels, but note that it can be easily
incorporated into the MILP. In the following, let the edges ofG be (arbitrarily) directed.
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We �rst discretize the problem as follows. Two labels ` and `′ are equivalent if they
cover the same edges in the same order, i.e., P` = P`′ , and only their end points di�er;
see Figure 5.4(b). For each such equivalence class we create one label `; we denote
its equivalence class by K` . Further, let L denote the set of such created labels. The
main idea of the MILP is to select a subset of L and to determine the exact positions
of the labels’ end points on their terminals such that they do not overlap and label a
maximum number of road sections.

Now, consider a label ` ∈ L and the path P` = (e1, e2, · · · , ek−1, ek ) that is covered
by `; see Figure 5.4(b). In the following, we call e1 and ek the terminals of ` and the
others internal edges of `. Assume that the head of the label ` lies on e1 and the tail
on ek , then ` can slide along P` changing the covered road sections until the head or
tail of ` hits an end point of e1 or ek , respectively. At each position, ` coincides with
an equivalent label `′. Obviously, those labels exactly form K` . Further, there exist
two positions on e1 such that the head of ` has either minimum geodesic distance
a or maximum geodesic distance b to the source of e1, respectively. We de�ne the
interval H` = [a,b]. Analogously, we de�ne the interval T` for the tail of ` and the
edge ek .

For each label ` ∈ L we introduce the variables x` ∈ {0, 1}, h` ∈ H` and t` ∈ T` , and
for each road section e ∈ E the variable ye ∈ {0, 1}. We interpret x` = 1 such that `
is selected for the labeling. The variables h` and t` are interpreted as the geodesic
distances of the head and tail to the source of the head’s and tail’s terminal, respectively;
see Figure 5.4(c). We interpret ye = 1 as road section e being labeled and maximize
the sum

∑
e ∈E ye subject to the following constraints.

For each ` ∈ L we require

cov(e1, `) + length(e2) + . . . + length(ek−1) + cov(ek , `) = length(`), (5.1)

where P` = (e1, . . . , ek ), length(`) denotes the given length of ` and cov(e, `) is a linear
expression describing what length of e is covered by `. This expression depends on
which end point of e is covered, whether the head or tail of ` lies on e , and on the
position variables h` and t` , respectively; we omit the technical de�nition. Further,
for each pair `′, ` ∈ L we require

x` + x`′ ≤ 1 if an edge of ` is an internal edge of `′ (5.2)
h` − h`′ ≤ M(2 − x` − x`′) if the heads of ` and `′ lie on a common

terminal e and ` covers the source of e . (5.3)

For each road section e ∈ E and all labels `1, . . . , `k ∈ L labeling e we require

ye ≤ x`1 + · · · + x`k (5.4)

Constraint (5.1) ensures that each label has the desired length length(`). Constraint (5.2)
ensures that a label does not overlap another label internally, i.e., it (partly) covers an
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Figure 5.5: Illustration of the algorithms. Edges of the same color belong to the same road.

edge that is completely covered by another label. Constraint (5.3) ensures that labels
ending on the same road section do not overlap on that edge, but ` ends on e before `′
starts; see Figure 5.4(c). Similar constraints are introduced for the other combinations
on how heads and tails of ` and `′ can lie on a common edge, and on whether source
or target of e is covered. For an appropriate large M the constraint is trivially satis�ed
if ` or `′ is not selected for the labeling. Finally, Constraint (5.4) ensures that road
section e is only counted as labeled, if there is at least one selected label covering e .

Since L models all possible label positions and the constraints restrict the space of
feasible solutions to non-overlapping sets of labels, it is clear that any optimal solution
of the above MILP corresponds to an optimal solution of MaxLabeledRoads.

Theorem 5.1. Milp solves MaxLabeledRoads optimally.

Finding an optimal solution for a MILP formulation is NP-hard in general and
remains NP-hard for the stated formulation, because MaxLabeledRoads is NP-hard.
However, it turns out that in practice we can apply specialized solvers to �nd optimal
solutions for reasonably sized instances in acceptable times, see Section 5.5.

5.4.2 Decomposition of Road Networks.

We may speed up both our heuristic Tree and the exact approach Milp by decompos-
ing the road graph into smaller, independent components to be labeled separately, i.e.,
components whose individual optimal solutions compose to a con�ict-free optimal
solution of the initial road graph. Such a decomposition allows us to compute solu-
tions in parallel with either of the above methods and it further decreases the total
combinatorial complexity. The decomposition rules guarantee that the labelings of
the components can always be merged without creating any label overlaps. We name
this technique D&C.

Step 1 – Decomposition. For many road sections, e.g., long sections, of real-world
road networks labels can be easily placed preserving the optimal labeling. We iterate
through the edges of G and cut or remove some of them if one of the following rules
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applies. As a result the graph decomposes into independent connected components;
see Figure 5.5(a)–(d). Let e be the currently considered edge and let R be the road of e .

Rule 1. If e is a junction edge and it cannot be completely covered by a well-
shaped label, i.e., e is not well-shaped, then remove e .

Rule 2. If e is a road section that ends at a junction that is not connected to any
other road section of R, then detach e from that junction.

Rule 3. If e is a road section, a well-shaped label ` �ts on e , and e is at least
twice as long as `, then cut e at its midpoint.

Rule 4. If e is a road section, a well-shaped label ` �ts on e , and e is connected to a
junction that is only connected to road sections ofR that may completely
contain a well-shaped label, then detach e from that junction.

On each edge we apply at most one rule. If we apply Rule 3 or Rule 4 on an edge e ,
we call e a long-edge. Afterwards, we determine all connected components of the
remaining graph G ′, which are then independently labeled.

Step 2 – Label Placement. For the constructed components we compute solutions
in parallel with either of the above methods.

Step 3 – Composition. Finally, we compose the labelings of the second step to one
labeling. Due to the decomposition, no two labels of di�erent components can overlap.
If a long-edge e is not labeled, we place a label on it, which is possible by de�nition.
We adapt the algorithms of Step 2 such that they do not count labeled road sections
that were created by Rule 3, but we count the corresponding long-edge in this step.

Correctness. We now prove the correctness of the approach. To that end we �rst
formalize the presented rules. We assume that the edges of G are (arbitrarily) directed.

Rule 1. If e is a junction edge and it cannot be completely covered by a well-
shaped label, i.e., e is not well-shaped, then remove e .

Rule 2. Let Re (v) be the set of road sections that belong to the same road as e ,
and that are reachable from v inG when only traversing junction edges.
If e = (s, t) is a road section and Re (u) = {e} for an u ∈ {s, t}, then
remove the junction edge that is incident to u.

Rule 3. If e = (s, t) is a road section, a well-shaped label ` �ts on e , and e is
twice as long as `, then replace e by the road sections e1 = (s,u1) and
e1 = (u2, t), where u1 and u2 are two new vertices at the midpoint p
of e , e1 is a sub-polyline of e from s to ui and e2 is a sub-polyline of e
from u2 to t . We mark e1 and e2 as stubs and call e a long-edge.

Rule 4. If e = (s, t) is a road section, a well-shaped label ` �ts on e and for at
least one end node u ∈ {s, t} the road sections in Re (u) \ {e} are all
stubs, then remove the junction edge incident to u. We mark e as stub
and call e a long-edge.

The next theorem shows that D&C combined with any optimal algorithm yields an
optimal labeling.
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Theorem 5.2. Let G be an abstract road graph and let L be the resulting labeling after

applying D&C combined with an algorithm that yields optimal labelings. An optimal

labeling L ′ of G and L label the same number of road sections.

Proof. Let G = (V ,E) be an abstract road graph and let L ′ be an optimal labeling of G ,
i.e., no more road sections can be labeled. We show that we can transform L ′ into a
labeling L that is found by D&C, and, furthermore, L and L ′ label the same number
of road sections. If not mentioned otherwise, we assume a label to be well-shaped.

Rule 1. Assume that we apply Rule 1 on G by deleting a junction edge e that cannot
be completely covered by a well-shaped label. By de�nition no label may end on a
junction edge, but it must end on a road section. Thus, in any labeling the edge e
cannot be covered by any label. We therefore can delete the edge preserving the
optimal labeling, i.e., an optimal labeling of G and G ′ = (V ,E \ {e}) label the same
number of road sections.

Rule 2. Assume that we apply Rule 2 on the edge e . Since e is the only edge in Re (u),
the edge is the end of a road, i.e., all other edges incident to u cannot belong to the
same road of e . Since e is a junction edge, no label may end on a junction edge, and
labels may only cover edges of the same road, no label can cover e in any labeling. We
therefore can delete the edge preserving the optimal labeling.

Rule 3. Assume that we apply Rule 3 on the road section e = (s, t) splitting e into the
edges e1 = (s,u1) and e2 = (u2, t). Since e may contain a well-shaped label, the road
section e must be labeled in L ′.

If e is only labeled by labels that are completely contained in e , i.e., they do not cover
other edges of G, we will �nd one of those labels in the composition step of D&C.

Hence, assume that there is a label `1 ∈ L ′ that covers e and s . Since e is twice
as long as the label length of e , this label cannot cover the location of u1(u2). The
same applies for a label `2 ∈ L that covers e and t . Since e is labeled by `1 (`2) we can
remove all other labels that only label e without changing the maximum number of
labeled road sections. Hence, the point at u1 is not covered by any label, which means
we can split e at this point preserving the optimal labeling.

Rule 4. Assume that we apply Rule 4 on the road section e = (s, t) with u = s; same
arguments hold for u = t . Hence, the road sections in Re (u) \ {e} are all stubs, i.e.,
well-shaped labels can placed on any of these road sections. Let j be the junction edge
that is connected to s . Assume that there is a label ` that labels e and an edge e ′ of
Re (u) \ {e} such that u is covered by `.

If e and e ′ are also labeled by other labels, we can remove ` without changing the
number of labeled road sections and remove j. So assume that e is not labeled by
another label. In that case we remove ` and place a label that completely lies on e
without covering any other edges; by de�nition of the rule this is possible. If e ′ is also
not labeled by any other label, we also place a label on e ′, which is possible, because e ′
is a stub. Hence, we can remove j preserving the optimal labeling. �
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5.5 Evaluation

We evaluate our framework and in particular the performance of our new tree-based
labeling heuristic by conducting a set of experiments on the road networks of 11 North
American and European cities; see Table 5.1. While the former ones are characterized
by grid-shaped road networks, the latter ones rarely posses such regular geometric
structures. Since the road networks in rural areas are much sparser than those of
cities, we refrained from considering these networks and focused on the more complex
city road networks. We extracted the abstract road graphs from the data provided by
OpenStreetMap1. We applied the spherical Mercator projection ESPG:3857, which is
also known as Web Mercator and used by several popular map-services. We considered
the three scale factors 4.773, 2.387 and 1.193, which approximately correspond to the
map scales 1:16000, 1:8000, 1:40002. Further, they correspond to the zoom levels 15, 16
and 17, respectively, which are widely used by map services as OpenStreetMap. Those
zoom levels show road networks in a size that already allows labeling single road
sections, while the map is not yet so large that it becomes trivial to label the roads. We
applied the standard drawing style for OpenStreetMap, which in particular includes
the stroke width and color of roads as well as the font size of the labels. Further, this
speci�es for each zoom level the considered road categories; the higher the zoom level
the more categories are taken into account.

Our implementation is written in C++ and compiled with GCC 4.8.4 using optimiza-
tion level -O3. MILPs were solved by Gurobi3 6.0. The experiments were performed
on a 4-core Intel Core i7-2600K CPU clocked at 3.4 GHz, with 32 GiB RAM. The
D&C-approach labels single components in parallel. For computing the Delaunay
triangulation we used the library Fade2d4.

For each city and each zoom level we applied the algorithms BaseLine, Tree,
D&C+Tree, Milp and D&C+Milp. We adapted the algorithm such that short road
sections (shorter than the width of the letter W) are not counted, because they are
rarely visible. Further, we let Mapnik (Version 3.0.9) render the same input. For each
label we identi�ed for each of its letters the closest road section r with the same name
and counted it as labeled. Since Mapnik does not optimize the labeling by the same
criteria as we do, we compensate this by also counting neighboring road sections as
labeled if the junction in between them is not incident to any other road section. This
accounts for those long road sections that we split arti�cially to resolve Issue 3.

The raw data of our experiments is made available on

i11www.iti.kit.edu/roadlabeling

1http://www.openstreetmap.org
2http://wiki.openstreetmap.org/wiki/Zoom_levels
3http://www.gurobi.com
4http://www.geom.at
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Evaluation Section 5.5

Table 5.1: Statistics for Baltimore (BA), Berlin (BE), Boston (BO), Los Angeles (LA), London
(LO), Montreal (MO), Paris (PA), Rome (RO), Seattle (SE), Vienna (VI) and Washington (WA) for
zoom level 15, 16 and 17. OSM : Number of input segments in thousands. Segments: Percentage
of segments after Phase 1, Step 3 in relation to input segments. Graph: Number of road sections
after Phase 1 in thousands. Time: Running time for Phase 1.

European Cities North American Cities
BE LO PA RO VI BA BO LA MO SE WA

Zo
om

15

OSM 143.9 437.6 225.1 87.7 85.1 196.1 174.5 257.1 134.6 315.3 82.2
Segm. 62 80 65 66 63 52 54 74 78 70 39
Graph 28.5 78.5 35.3 10.3 14.8 24.7 20.1 61.3 31.9 63.1 8.7
Time 16 62 28 10 10 22 19 42 20 40 8

Zo
om

16

OSM 225.0 563.4 292.5 117.0 119.9 332.1 225.0 327.0 161.4 433.1 103.9
Segm. 55 73 62 62 54 40 50 67 72 59 37
Graph 37.9 105.4 49.9 15.4 18.9 33.8 27.8 80.6 40.2 77.1 11.4
Time 21 65 32 12 11 28 21 44 21 42 9

Zo
om

17

OSM 225.0 563.4 292.5 117.0 119.9 332.1 225.0 327.0 161.4 433.1 103.9
Segm. 64 80 69 70 60 46 56 73 83 64 43
Graph 47.1 127.0 59.1 19.4 22.3 39.5 32.3 90.4 47.4 87.9 13.0
Time 24 67 33 13 11 29 22 46 22 43 10

On this page we also provide interactive maps of the cities Berlin, London, Los Angeles
and Washington, which present the computed labelings.

Phase 1. With a maximum of 67 seconds (London, zoom 17) and 27 seconds averaged
over all instances, Phase 1 can be applied on large instances in reasonable time.
During Phase 1 the number of segments is reduced to between 40% and 83% of the
original instance (measured after Step 3, before creating junction edges); see Table 5.1.
This clearly indicates that the procedure aggregates many lanes, since by design the
approach does not change the overall geometry, but the simpli�cation maintains the
shape of the original network. This is also con�rmed by the labelings; see Figure 5.1(b)–
(c) and interactive maps.

Phase 2, Running Time. We �rst consider the average running times over all zoom
levels; see Figure 5.6(a). We did not measure the running times of Mapnik, because its
labeling procedure is strongly interwoven with the remaining rendering procedure,
which prevents a fair comparison. As to be expected Milp is the slowest method (max.
126 sec., Los Angeles, ZL 15), while BaseLine is the fastest procedure (max. 0.17 sec.).
Combining Milp with D&C results in an average speedup of 2.29 over all instances
and a maximum speedup of 3.44; see Table 5.2.

The algorithm Tree needs less than 4.7 seconds and its median is about 1.3 seconds.
Hence, despite its worst-case cubic asymptotic running time, it is fast in practice.
Similar to Milp, it is further enhanced by combining it with D&C for a speedup of
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Table 5.2: Speedup: Ratio of running times of two algorithms. Quality: Ratio of the number of
labeled road sections computed by two algorithms.

European Cities North American Cities
Ratio BE LO PA RO VI BA BO LA MO SE WA Avg.

Sp
ee

du
p Milp

D&C+Milp 3.44 3.07 2.51 1.71 3.12 1.44 2.33 1.3 1.79 3.1 1.32 2.29

Tree
D&C+Tree 1.77 1.8 1.73 1.62 1.71 1.57 1.71 1.37 1.75 1.68 1.35 1.64

D&C+Milp
D&C+Tree 2.82 2.32 3.33 2.54 2.74 6.84 3.06 21.59 6.36 5.32 10.59 6.14

Q
ua

lit
y

D&C+Tree
Tree 1.01 1.0 1.0 1.0 1.01 1.01 1.0 1.01 1.02 1.01 1.02 1.01

D&C+Tree
Milp 1.0 1.0 0.99 0.99 0.99 0.96 0.99 0.96 0.97 0.97 0.91 0.97

Mapnik
Milp 0.74 0.85 0.83 0.91 0.76 0.71 0.8 0.62 0.61 0.8 0.68 0.75

BaseLine
Milp 0.58 0.49 0.4 0.38 0.48 0.39 0.42 0.39 0.46 0.37 0.24 0.42

D&C+Tree
Mapnik 1.36 1.19 1.2 1.09 1.29 1.37 1.25 1.55 1.58 1.21 1.33 1.31

1.64 with respect to Tree, and an average speedup of 6.14 with respect to D&C+Milp;
see Table 5.2. In the latter case it even has a maximum speedup of about 21.6. Since
decomposing and composing the labelings is done sequentially, the theoretically
possible speed up using D&C is not achieved.

If we break down the running times into single zoom levels, we observe similar
results; see e.g., Figure 5.7. Since with increasing zoom level the instance size grows,
for most of the algorithms also the running time increases. Only for North American
cities and Milp we observe that the running time for instances of smaller zoom levels
are higher than for larger zoom levels.
Phase 2, Quality. First we analyze the average percentage of labeled road sections

over the three zoom levels; see Figure 5.6(b). As an upper bound, Milp, which prov-
ably solves MaxLabeledRoads optimally, yields results from 46.2% (Rome) to 80.3%
(Montreal). Considering zoom levels independently, we obtain a minimum of 27.5%
(Rome, ZL 15) and a maximum of 91.7% (Montreal, ZL 17). We think that the wide
span is attributed to the di�erent structures of road networks and road names, e.g.,
Rome has a lot of short alleys and long road names. Hence, many road components
are too short or convoluted to contain a single label. Abbreviating road names could
help to overcome this problem.

The algorithm D&C+Tree yields marginally better results than Tree, but only
1% on average, see Table 5.2. Comparing D&C+Tree with Milp we observe that
D&C+Tree yields near-optimal results with respect to our road-section based model.
On average it reaches 97% of the optimal solution; see Table 5.2. While the quality
ratio is only 91% for Washington, more than half of the instances are labeled with a
quality ratio of ≥ 99%. For European cities the percentage of road sections that belong
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Figure 5.6: (a) Running times in seconds of the algorithms (logarithmic scale). (b) Percentage
of labeled road sections over all zoom levels broken into the di�erent algorithms.
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Figure 5.7: Running times of the algorithms broken down in zoom levels and algorithms. The
width of the bars (thin, mediate, wide) corresponds with zoom levels (15, 16, 17).

to components that are optimally solved by Tree (long edges, paths, and trees) is
notably higher than those for North American cities; see Figure 5.8. Nonetheless, we
obtain similar percentages of labeled road sections for North American Cities. Hence,
the heuristic computing a spanning tree of non-tree components is both fast and
yields near-optimal results. The additional implementation e�ort of Tree is further
justi�ed by the observation that the naive way to place labels only on single road
sections lags far behind; only 42% on average, 58% as maximum and 24% as minimum
compared to the optimal solution. Mapnik achieves on average 75% of the optimal
solution and a maximum of 91%. For more than the half of the instances Mapnik
achieves at most 76% of the optimal solution. So in direct comparison, D&C+Tree
consistently outperforms Mapnik. Moreover, D&C+Tree has a better utilization of
labels and achieves an average ratio of 1.61 labeled road sections per label, compared
to Mapnik with a ratio of 1.37; see Figure 5.9.

With increasing zoom level the number of labeled road sections is increased, which
is to be expected, since more road sections become long-edges; see Figure 5.10 for four
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Figure 5.8: Decomposition of road networks by D&C. Percentage of long-edges, road sections
in paths, trees and other components in which the road networks is decomposed.
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Figure 5.9: (a) Number of placed labels in thousands. (b) Ratio of labeled road sections and
placed labels: (#Labeled Road Sections)/(#Labels).

cities (similar results apply for the others) and Figure 5.8. For each zoom level, we
observe similar results as described before: Tree and D&C+Tree achieve near-optimal
solutions and Mapnik labels considerably fewer road sections. However, for smaller
zoom levels the gap between Milp and Mapnik shrinks.

From a visual perspective, labels lie on the skeleton of the road network, which
is achieved by design; see Figure 5.1(c) and the interactive maps. Instead of unnec-
essary repetition of labels, labels are only placed if they actually convey additional
information. In particular, visual components are labeled, but not single lanes that are
indistinguishable due to the zoom level.

72



Conclusions Section 5.6

Key Berlin London Los Angeles Washington
0

10
20
30
40
50
60
70
80
90

100

Al
go

rit
hm

15

16

17

Zo
om

:

D&
C+

M
IL

P

Tr
ee

D&
C+

Tr
ee

M
ap

ni
k

Ba
se

Li
ne

D&
C+

M
IL

P

Tr
ee

D&
C+

Tr
ee

M
ap

ni
k

Ba
se

Li
ne

D&
C+

M
IL

P

Tr
ee

D&
C+

Tr
ee

M
ap

ni
k

Ba
se

Li
ne

D&
C+

M
IL

P

Tr
ee

D&
C+

Tr
ee

M
ap

ni
k

Ba
se

Li
ne

Percentage of Labeled Road Sections

Figure 5.10: Percentage of labeled road sections broken down in zoom levels and algorithms.
The width of the bars (thin, medium, wide) corresponds to the zoom level (15, 16, 17).

5.6 Conclusions

We introduced a framework for labeling road maps based on an abstract road graph
model that is combinatorial rather than geometric. We showed in our experimental
evaluation that our proposed heuristic for decomposing the road graph into tree-
shaped subgraphs and labeling those trees provably optimally is e�cient and e�ective.
It has running times in the range of seconds to one minute even for large road networks
such as London with more than 100,000 road sections. Moreover, it achieves near-
optimal quality ratios (on average 97%) compared to upper bounds computed by the
exact method Milp. Our algorithm clearly outperforms the labeling algorithm of the
standard OSM rendering engine Mapnik, with an average improvement in the number
of labeled road sections by 31%. Interestingly, Milp is able to compute mathematically
optimal solutions within a few minutes for all our test instances, even though it is
slower by a factor of about 6 compared to the tree-based algorithm. For practical
purposes there is a trade-o� between a �nal, but rather small improvement in quality
at the cost of a signi�cant and by the very nature of Milp unpredictable increase
in running time. We only implemented essential cartographic criteria to evaluate
the algorithmic core of our framework; further criteria (e.g., abbreviated names) and
alternative de�nitions of road sections can be easily incorporated. The framework
can further be pipelined with labeling algorithms for other map features, e.g., after
placing labels for point features, one may block all parts of the road network covered
by a point label and label the remaining road network such that no labels overlap.
While this allows the labeling of di�erent types of features sequentially, constructing
a labeling of all features in one single step remains an open problem.
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6
Temporal Map Labeling:

Model and Theory

Abstract. In this chapter, we consider map labeling for the case that a map undergoes
a sequence of operations such as rotation, zoom and translation over a speci�ed time
span. We unify and generalize several previous models for dynamic map labeling
into one versatile and �exible model. In contrast to previous research, we completely
abstract from the particular operations and express the labeling problem as a set of
time intervals representing the labels’ presences, activities and con�icts. One of the
model’s strength is manifested in its simplicity and broad range of applications. In
particular, it supports label selection both for map features with �xed position as well
as for moving entities (e.g., for tracking vehicles in logistics or air tra�c control).

We study the active range maximization problem in this model. We prove that the
problem is NP-complete and W[1]-hard, and present constant-factor approximation
algorithms. In the restricted, yet practically relevant case that no more than k labels can
be active at any time, we give polynomial-time algorithms as well as constant-factor
approximation algorithms. In the subsequent chapter we experimentally evaluate our
approach.

This chapter is based on and partly taken from joint work with Lukas Barth, Andreas
Gemsa, Martin Nöllenburg and Darren Strash [GNN13b, GNN13a, Bar+16].

6.1 Introduction

Dynamic digital maps are becoming more and more ubiquitous, especially with the
rising numbers of location-based services and smartphone users worldwide. Consumer
applications that include personalized and interactive map views range from classic
navigation systems to map-based search engines and social networking services.
Likewise, interactive digital maps are a core component of professional geographic
information systems. All these map services have in common that the content of the
map view is changing over time based on interaction with the system (i.e., zooming,
panning, rotating, content �ltering, etc.) or the physical movement of the user or a set
of tracked entities.

In the past decade, dynamic map labeling has also captured the interest of re-
searchers, leading to the study of labeling problems in maps that support certain
subsets of operations like zooming, panning, and rotation. The main di�culty in
dynamic maps is that the selection and placement of labels must be temporally co-
herent (or consistent) during all map animations resulting from interactions, rather

75
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than being optimized individually for each map view as in static map labeling. A map
with temporally coherent labeling avoids visually distracting e�ects like jumping or
�ickering labels [BDY06]. Consistent dynamic map labeling problems are typically
NP-hard and approximation results as well as heuristics are known [BDY06, Bee+10,
GNR16a, GNR16b, LLP14]. However, most existing algorithmic results in dynamic map
labeling take a global view on the map, which optimizes over the whole interaction
space, regardless of which portion of that space is actually explored by the user. For a
detailed introduction to dynamic map labeling and related research see Chapter 3.

Contribution and Outline. In this chapter, we take a more local view on dynamic
map labeling. Our aim is to develop algorithms that optimize the labeling for a speci�c
map animation given o�ine as an input. Any feature or label that is not relevant for
that particular animation—for example, because it never enters the map view—can
be ignored by our algorithms. This approach not only allows us to compute better
labelings by removing unnecessary dependencies and non-local e�ects, but it also
reduces the problem size, since fewer features and labels must be taken into account.

In Section 6.2, we �rst formulate an abstract, generic model for o�ine, temporal la-
beling problems, in which labels and potential con�icts between labels are represented
as intervals over time. To represent a label’s presence, we use a presence interval,
which corresponds to the time that a label is present (but not necessarily displayed) in
the map view. That is, whenever a label enters the map view, a corresponding presence
interval starts, and whenever a label leaves the view, its current presence interval ends.
Next, a con�ict interval (or simply con�ict) between two present labels starts and ends
at the points in time at which the two labels start and stop intersecting. A temporal
labeling is then simply represented as a set of subintervals—the labels’ activity intervals,
during which the labels are displayed, where no two con�icting labels are displayed
simultaneously. Depending on the objective and additional consistency constraints of
the labeling model, di�erent sets of subintervals may be chosen by the algorithm.

This is a very versatile model, which includes, for instance, map labeling for car
navigation systems, in which the map view changes position, angle, and scale according
to the car’s position, heading, and speed following a particular route; see Figure 6.1.
To give another, seemingly di�erent example, it also includes the problem of labeling
a set of moving entities in a map view (e.g., for tracking vehicles in logistics or planes
in air tra�c control). Also non-map related applications such as labeling 3D scenes as
they occur in medical information systems is covered by our model. Put di�erently,
the model comprises any application in which start and end times of label presences
and con�icts can be determined in advance. Further, the con�icts are not restricted to
label-label con�icts but may also include label-object con�icts. See Chapter 7 for a
more detailed discussion of applications.

Based on this model we introduce the two optimization problems GeneralMax-
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Figure 6.1: Trajectory-based labeling. (a) Viewport moves and aligns along a given trajectory
(fat orange line). Labels align to the viewport. (b) The user’s view on the scene.

Total and k-RestrictedMaxTotal. While in the former one we simply maximize
the number of visible labels integrated over time, in the latter one we further require
that at most k labels are active at any time for some constant k . We note that limiting
the number of simultaneously active labels is of practical interest as to avoid overly
dense labelings, in particular for dynamic maps on small-screen devices such as in car
navigation systems. We further re�ne our model by the three activity models AM1,
AM2 and AM3, which introduce special requirements to enforce temporal consistency
avoiding �ickering when switching labels on and o�.

In Section 6.3, we investigate the problem GeneralMaxTotal. We �rst prove
that GeneralMaxTotal is NP-complete; in fact it is even W[1]-hard and thus it
is unlikely that a �xed-parameter tractable algorithm exists. For the special case
of unit-square labels, we give an e�cient approximation algorithm with di�erent
approximation ratios depending on the actual label activity model. In Section 6.4 we
present polynomial-time algorithms for k-RestrictedMaxTotal in AM1 and AM2.
For AM3 we show that the problem is NP-hard for k ≥ 2. Further, for k-Restric-
tedMaxTotal we present e�cient constant-factor approximation algorithms for all
three activity models assuming that all labels are unit-squares. In Chapter 7, we
experimentally evaluate the presented model.
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Figure 6.2: Model. (a) Overall view of the scene. Depending on the rotation, translation, and
zoom, the camera shoots a restricted part of the scene. The objects to be labeled are represented
by black dots. (b) The corresponding viewport of the camera. The labels are placed near their
objects.

6.2 Model

We now formally describe the temporal labeling model that we use in the remainder
of this chapter. It particularly uni�es and generalizes the models presented by Been et
al. [BDY06], and de Berg and Gerrits [BG13].

6.2.1 Basic Model

We are given a set O = {o1, . . . ,on} of objects in a scene over a given time span
T = [0, 1]. Further, for each object o we are given a label `, e.g., text describing o. We
denote the set of labels by L = {`1, . . . , `n}, where `i is the label of oi . To quantify the
importance of a label, we de�ne for each label ` ∈ L a positive weight w` ∈ R+.

We have a restricted view on the scene through a camera, i.e., the objects are
projected onto an in�nite plane P such that we can only see a restricted sectionV of P ,
where V models the viewport of the camera; see Figure 6.2 for an example. During
the time interval T , the objects are moving and the camera changes its perspective by
changing its position, direction and zoom. We denote the plane P and the viewport
V at time t by P(t) and V (t), respectively. Depending on the position of the object
oi ∈ O , each label `i has a certain shape and position on P(t) at time t ; we denote the
geometric shape of ` at time t by `(t). Following typical map labeling models we may
assume that `(t) is a (closed) rectangle enclosing the text; one may also assume other
shapes. In the following, we introduce some further notations to describe the setting
precisely.

According to the perspective and position of the camera, not every label `(t) is

78



Model Section 6.2

T

`1

`2

`3

ConflictPresent Active

(a) Valid activity.

`
`′` `′

`′
`

ConflictPresent Active

NN

(b) End of con�ict.

` `′

`′
`

ConflictPresent Active

`
`′

N N

(c) Start of con�ict.

Figure 6.3: Label activity. The intervals illustrate presence, con�ict and activity intervals.
(a) A set of valid activity intervals. (b)–(c) The maps rotate clockwise, while the labels keep
aligned horizontally. White labels are active, while gray labels are inactive. The witness label
`′ justi�es (b) the start (c) the end of `’s activity interval.

contained in the viewport at time t . We say that a label ` is present at time t if `(t) is
(partly) contained in V (t); that is, `(t) ∩V (t) , ∅. We assume that the time intervals,
during which a label ` is present, are given by a set Ψ` of disjoint, closed sub-intervals
of T ; see Figure 6.3. For such an interval [a,b] ∈ Ψ` we also write [a,b]` indicating
that it belongs to `. We denote the union of all those sets Ψ` by Ψ and assume that Ψ
is a multi-set, as it may contain the same interval [a,b] multiple times, where each
occurrence of [a,b] belongs to a di�erent label.

Two labels ` and `′ are in con�ict at time t ∈ T , if the geometric shapes of both
labels intersect, i.e., `(t) ∩ `′(t) , ∅. We describe the occurrences of con�icts between
two labels `, `′ ∈ L by a set of closed intervals, C`,`′ = {[a,b] ⊆ T | [a,b] is maximal
and ` and `′ are in con�ict at all t ∈ [a,b]}. For such an interval [a,b] ∈ C`,`′ we also
write [a,b]`,`′ indicating that it is a con�ict interval between ` and `′. We denote the
set of all con�ict intervals over all pairs of labels by the multi-set C .

To avoid overlaps between labels, we display a label ` only at certain times when
no other displayed label overlaps `; the label ` is said to be active at those times.
We describe the activity of `, by a set Φ` of disjoint intervals1. For such an interval
[a,b] ∈ Φ` we also write [a,b]` to indicate that the activity interval belongs to `. The
union of all activity intervals over all labels is denoted by the multi-set Φ.

We say that two activity (presence) intervals [a,b]` and [c,d]`′ of two labels ` and `′
are in con�ict if there is a time t in the intersection of the open intervals (a,b) ∩ (c,d)
such that the labels ` and `′ are in con�ict at t .

An instance of temporal labeling is then de�ned by the set L of labels, the set Ψ
of presence intervals and the set C of con�ict intervals. We thus completely abstract
away the geometry of the problem, while all essential information of the temporal

1Technically, one needs to distinguish between open and closed intervals, i.e., for closed rectangular
labels, the presence and con�ict intervals are closed but the activity intervals are open. However, including
or excluding the interval boundaries makes no di�erence in our algorithms and hence we decided to
simply use the notation [a,b] for all respective intervals unless stated otherwise.

79



Chapter 6 Temporal Map Labeling: Model and Theory

labeling instance is captured combinatorially in Ψ and C . In this chapter, we primarily
focus on con�ict-free label selection, and therefore assume that Ψ and C are given as
input. In Chapter 7 we describe how to construct Ψ and C for the speci�c application
of navigation systems.

Similarly to Been et al. [BDY06] for a temporal labeling we require the following
temporal consistency criteria:
(C1) A label should not be set active and inactive repeatedly to avoid �ickering.
(C2) The position and size of a label should be changed continuously, it should not

jump.
(C3) Labels should not overlap.

We formalize these consistency criteria and say the activity set Φ is valid (see
Figure 6.3(a)) if
(R1) for each activity interval I` ∈ Φ there is a presence interval I ′

`
∈ Ψ with I` ⊆ I ′

`
,

(R2) for each presence interval I` ∈ Ψ there is at most one activity interval I ′
`
∈ Φ

with I ′
`
⊆ I` , and

(R3) no two activity intervals of Φ are in con�ict.
Requirement (R1) enforces that a label is only displayed if it is present in the viewport.
Requirement (R2) prevents a label from �ickering during a presence interval (C1),
while (R3) enforces that no two displayed labels overlap (C3). In fact, (R2) is only a
minimum requirement for avoiding �ickering labels, which we later extend to stronger
variants. By assuming that labels’ positions are �xed relative to their anchors, labels
may not jump (C2) as long as labeled objects are either �xed or move continuously.
From now on we assume that an activity set is valid, unless we state otherwise.

6.2.2 Optimization Problems

Based on the introduced model we investigate two optimization problems for temporal
labeling that aim to maximize the overall active time of labels. The �rst problem allows
for any number of labels to be active at the same time, and the second allows at most k
labels to be active at the same time, which reduces the amount of presented information.
We de�ne the weight of an activity interval [a,b]` ∈ Φ to be w([a,b]`) = (b − a) ·w` .

Problem 6.1 (GeneralMaxTotal).
Given: Instance (L,Ψ,C).
Find: Activity set Φ maximizing

∑
[a,b]` ∈Φw([a,b]`).

Figure 7.8(a) in Chapter 7 shows an example of a single frame of a temporal labeling
that is optimal with respect to GeneralMaxTotal. While such a labeling is acceptable
for general applications such as spatial data exploration, for small-screen devices,
such as car navigation systems, the same labeling may overwhelm or distract the
user with too much additional information. In fact, psychological studies have shown
that untrained users are strongly limited in receiving, processing, and remembering
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Figure 6.4: The activity models AM1, AM2 and AM3.

information (e.g., see [Mil56]). For applications that do not receive a user’s full attention
it is therefore desirable to restrict the number of simultaneously displayed labels, which
we formalize as an alternative optimization problem as follows.

Problem 6.2 (k-RestrictedMaxTotal).
Given: Instance (L,Ψ,C), k ∈ N.
Find: Activity set Φ maximizing

∑
[a,b]` ∈Φw([a,b]`),

s.t. at any time t at most k labels are active.

6.2.3 Activity Models

So far labels may become active or inactive within the viewport without any external
in�uence, see, e.g., the second activity interval of `3 in Figure 6.3(a). Hence, the activity
behavior of labels, even in an optimal solution Φ, is not necessarily explainable to a
user by simple and direct observations such as “the label becomes inactive at time t ,
because at that moment an overlap starts with another active label”. The absence of
those simple logical explanations may lead to unnecessary irritations of the user. To
account for that we introduce the concept of justi�ed activity intervals.

Consider a label ` with activity interval [a,b]` ∈ Φ. We say that the start of [a,b]`
is justi�ed if ` enters the viewport at time a or if there is a witness label `′ such that a
con�ict of ` and `′ ends at a and `′ is active at a; see Figure 6.3(b).

Analogously, we say that the end of [a,b]` is justi�ed if ` leaves the viewport at
time b or if there is a witness label `′ such that a con�ict of ` and `′ begins at b and `′
is active at b; see Figure 6.3(c). If both the start and end of [a,b]` are justi�ed, then
[a,b]` is justi�ed.

We distinguish the three activity models AM1, AM2, and AM3 that consider justi�ed
activity intervals; see Figure 6.4. While for AM1, a label may only become active and
inactive when it enters and leaves the viewport, for AM2 it may also become inactive
before leaving the viewport if a witness label justi�es this event. AM3 further allows a
label to become active after entering the viewport if a witness label justi�es that event.

AM1. An activity Φ satis�es AM1 if any activity interval [a,b]` ∈ Φ is justi�ed and
there is a presence interval [c,d]` ∈ Ψ of the same label ` with [a,b]` = [c,d]` .
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AM2. An activity Φ satis�es AM2 if any activity interval [a,b]` ∈ Φ is justi�ed and
there is a presence interval [c,d]` ∈ Ψ of the same label ` with a = c .

AM3. An activity Φ satis�es AM3 if any activity interval [a,b]` ∈ Φ is justi�ed.
We have described only the core of the model. Depending on the application it can

be easily extended to more complex variants, e.g., requiring minimum activity times.

6.3 Solving GeneralMaxTotal

In this section we discuss GeneralMaxTotal. First, we present results on its compu-
tational complexity and then we present a simple approximation algorithm for the
case that the labels are unit squares.

6.3.1 Computational Complexity

We �rst prove that the according decision problem of GeneralMaxTotal is NP-
complete with respect to the three activity models. The membership in NP follows
from the fact that the start and the end of an active interval must coincide with the
start or end of a presence interval or a con�ict interval. Thus, there is a �nite number
of candidates for the endpoints of the active intervals so that a solution L can be
guessed. Verifying that L is valid in one of the three models and that its value exceeds
a given threshold can obviously be checked in polynomial time.

For the NP-hardness we apply a straight-forward reduction from the NP-complete
maximum independent set of rectangles problem [FPT81]. We simply interpret the set
of rectangles as a set of labels with unit weight, choose a short vertical trajectory T
and a viewport R that contains all labels at any point of T . Since the con�icts do no
change over time, the reduction can be used for all three activity models. By means of
the same reduction and Marx’ result [Mar05] that �nding an independent set for a
given set of axis-parallel unit squares is W[1]-hard we derive the next theorem.

Theorem 6.1. GeneralMaxTotal is NP-hard and W[1]-hard for all activity models

AM1–AM3. In particular, the respective decision problem is NP-complete for all activity

models AM1–AM3.

As a consequence, GeneralMaxTotal is not �xed-parameter tractable unless
W[1]=FPT. Note that this also means that for k-RestrictedMaxTotal we cannot expect
to �nd an algorithm that runs in O(p(n) ·C(k)) time, where p(n) is a polynomial that
depends only on the number n of presence and con�ict intervals, and the computable
function C(k) depends only on the parameter k .
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6.3.2 Approximation of GeneralMaxTotal

We now describe a simple greedy algorithm for GeneralMaxTotal in all three activity
models assuming that all labels are unit squares anchored at their lower-left corner.
Further, we assume that the weight of each presence interval [a,b]` is its length
w([a,b]`) = b − a.

Starting with an empty solution Φ, our algorithm GreedyMaxTotal removes the
longest interval I from Ψ and adds it to Φ, i.e., the label of I is set active during I . Then,
depending on the activity model, it updates all presence intervals that have a con�ict
with I in Ψ and continues until the set Ψ is empty.

For AM1 the update process simply removes all presence intervals from Ψ that
are in con�ict with the newly selected interval I . For AM2 and AM3 let Ij ∈ Ψ and
let I 1

j , . . . , I
k
j be the longest disjoint sub-intervals of Ij that are not in con�ict with

the selected interval I . We assume that I 1
j , . . . , I

k
j are sorted by their left endpoint.

The update operation for AM2 replaces every interval Ij ∈ Ψ that is in con�ict with I
with I 1

j . In AM3 we replace Ij by I 1
j , if I 1

j is not fully contained in I . Otherwise, Ij
is replaced by Ikj . Note that this discards some candidate intervals, but the chosen
replacement of Ij is enough to prove the approximation factor. Note that after each
update all intervals in Ψ are valid choices according to the speci�c model. Hence, we
can conclude that the result Φ of GreedyMaxTotal is also valid in that model.

In the following, we analyze the approximation quality of GreedyMaxTotal. To
that end we �rst introduce a purely geometric packing lemma. Similar packing lemmas
have been introduced before, but to the best of our knowledge for none of them it
is su�cient that only one prescribed corner of the packed objects lies within the
container.

Lemma 6.1. Let C be a circle of radius

√
2 in the plane and let Q be a set of non-

intersecting closed and axis-parallel unit squares with their bottom-left corner in C .
Then Q cannot contain more than eight squares.

Proof. First, we show that Q cannot contain more than nine squares and extend the
result to the claim of the lemma. We begin by proving the following claim.
(S) At most three squares of Q can be stabbed by a vertical line. In order to prove

(S) let Q ′ ⊆ Q be a set of squares that is stabbed by an arbitrary vertical line l and
let qt be the topmost square stabbed by l and let qb be the bottommost square stabbed
by l . Since both the bottom-left corner of qt and qb are in C , their vertical distance is
at most 2

√
2. Consequently, there can be at most one other square in Q ′ that lies in

between qt and qb , which shows the claim (S).
Now let l1 be the left vertical tangent ofC and let l2 be its right vertical tangent; see

Figure 6.5. We de�ne Ql ⊆ Q to be the set of squares whose bottom-left corner has
distance of at most 1 to l1. Hence, there is a vertical line that stabs all squares in Ql . By
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sl sr l2l1
sm

1 1

1 1

C Figure 6.5: Illustration for the proof of Lemma 6.1.

(S) it follows that |Ql | ≤ 3. We can analogously de�ne the set Qr ⊆ Q whose bottom-
left corner has distance of at most one to the vertical line l2. By the same argument it
follows that |Qr | ≤ 3. Further, the bottom-left corners of the squaresQm = Q \{Ql ,Qr }
are contained in a vertical strip of width 2

√
2 − 2 < 1. Hence, there is a vertical line

that stabs all squares of Qm and |Qm | ≤ 3 follows. We conclude that the set Q contains
at most nine squares; in fact, |Q | ≤ 8 as we show next.

For the sake of contradiction we assume that |Q | = 9, i.e., |Ql | = |Qm | = |Qr | = 3.
We denote the topmost square in Ql by tl and the bottommost square by bl , and de�ne
tr and br forQr analogously. Further, let sm be the vertical line through the center ofC ,
let sl be the vertical line that lies one unit to the left of sm and let sr be the vertical line
that lies one unit to the right of sm . Note that the length of the segment of sl and sr that
is contained in C has length 2. Since the bottom-left corners of tl and bl have vertical
distance strictly greater than 2, both squares lie to the right of sl . Hence, tl and bl
intersect sm . Analogously, the bottom-left corners of tr and br lie to the left of sr , and,
hence intersect sr . The line sm is intersected by two squares of Ql . By (S) there can be
at most one additional square of Qm that intersects sm . Thus, there are two squares in
Qm whose anchors lie to the right of sm . But then they both intersect sr which itself is
already intersected by at least the squares tr and br . This is a contradiction to (S), and
concludes the proof. �

Figure 6.6 shows that the bound is tight. Based on Lemma 6.1 we now show that
for any label with anchor p there is no point of time t ∈ [0, 1] for which there can be
more than eight active labels whose anchors are within distance

√
2 of p. We call a

set X ⊆ Ψ con�ict-free if it contains no pair of presence intervals that are in con�ict.
Further, we say that X is in con�ict with I ∈ Ψ if every element of X is in con�ict with
I , and we say that X contains t ∈ [0, 1] if every element of X contains t .

Lemma 6.2. For every t ∈ [0, 1] and every I ∈ Ψ any maximum cardinality con�ict-free

set XI (t) ⊆ Ψ that is in con�ict with I and contains t satis�es |XI (t)| ≤ 8.

Proof. Assume that there is a time t and an interval I such that there is a set XI (t) that
contains more than eight intervals. Let ` be the label that corresponds to I . For an
interval I ′ ∈ XI (t) to be in con�ict with I the anchors of the two corresponding labels
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Figure 6.6: Example con�guration of eight axis-
aligned, non-intersecting, unit-squares with their
bottom-left corner inside a circle C with radius

√
2. C

have a distance of at most
√

2. Hence, there are |XI (t)| labels corresponding to the
intervals inXI (t)with anchors of distance at most

√
2 to the anchor of `. By Lemma 6.1

we know that two of these labels overlap. This implies that there is a con�ict between
the corresponding intervals contained in XI (t), which is a contradiction. �

With this lemma we can �nally obtain the approximation guarantees for Greedy-
MaxTotal for all activity models.

Theorem 6.2. Assuming that all labels are unit squares andw([a,b]) = b − a, Greedy-
MaxTotal is a 1/24-, 1/16-, 1/8-approximation for AM1–AM3, respectively, and needs

O(n logn) time for AM1 and O(n2) time for AM2 and AM3.

Proof. To show the approximation ratios, we consider an arbitrary step of Greedy-
MaxTotal in which the presence interval I = [a,b]` is selected from Ψ. Let C I

`
be the

set of presence intervals in Ψ that are in con�ict with I .
Consider the model AM1. Since I is the longest interval in Ψ when it is chosen, the

intervals in C I
`

are completely contained in J = [a −w(I ),b +w(I )]. As C I
`

contains all
presence intervals that are in con�ict with I , it is su�cient to consider J to bound the
e�ect of selecting I . Obviously, the interval J is three times as long as I . By Lemma 6.2
we know that for any XI (t) it holds that |XI (t)| ≤ 8 for all t ∈ J . Hence, in an optimal
solution there can be at most eight active labels at each point t ∈ J that are discarded
when [a,b]` is selected. Thus, the cost of selecting [a,b]` is at most 3 · 8 ·w(I ).

For AM2 we apply the same arguments, but restrict the interval J to J = [a,b+w(I )],
which is only twice as long as I . To see that consider for an interval [c,d]`′ ∈ C I

`
the pre�x [c,a] if it exists. If [c,a] does not exist (because a < c), removing [c,d]`′
from Ψ changes Ψ only in the range of J . If [c,a] exists, then again Ψ is only changed
in the range of I , because by de�nition [c,d]`′ is shortened to an interval that at least
contains [c,a] and is still contained in Ψ. Thus, the cost of selecting I is at most
2 · 8w(I ).

Analogously, for AM3 we can argue that it is su�cient to consider the interval J =
[a,b]. By de�nition of the update operation of GreedyMaxTotal at least the pre�x or
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su�x subinterval of each [c,d]`′ ∈ C I
`

remains in Ψ that extends beyond I (if such an
interval exists). Thus, selecting I in�uences only the interval J and its cost is at most
8w(I ). The approximation bounds of 1/24, 1/16, and 1/8 follow immediately.

We use a heap to achieve the time complexity O(n logn) of GreedyMaxTotal for
AM1 since each interval is inserted and removed exactly once. For AM2 and AM3 we
use a linear sweep to identify the longest interval contained in Ψ. In each step we
need O(n) time to update all intervals in Ψ, and we need a total of O(n) steps. Thus,
GreedyMaxTotal needs O(n2) time in total for AM2 and AM3. �

6.4 Solving k-RestrictedMaxTotal

In this section we prove that unlike GeneralMaxTotal the problem k-Restricted-
MaxTotal can actually be solved in polynomial time for AM1 and AM2. We give a
detailed description of our algorithm for AM1, and then show how it can be extended
to AM2. Note that solving k-RestrictedMaxTotal is related to �nding a maximum
cardinality k-colorable subset of n intervals in interval graphs. This can be done in
polynomial time in both n and k [CL95]. However, we have to consider additional
constraints due to con�icts between labels, which makes our problem more di�cult.
First, we discuss how to solve the case for k = 1, then give an algorithm that solves
k-RestrictedMaxTotal for k = 2, and extend this result recursively to any constant
k > 2. For AM3 we prove that k-RestrictedMaxTotal is NP-hard for k ≥ 2. Since
the running times of the presented algorithms for AM1 and AM2 are, even for small k,
prohibitively expensive in practice, we �nally propose an approximation algorithm
for k-RestrictedMaxTotal in all three activity models.

6.4.1 An Algorithm for 2-RestrictedMaxTotal in AM1

We start with some de�nitions before giving the actual algorithm. We assume that the
intervals of Ψ = {I1, . . . , In} are sorted in non-decreasing order by their left endpoints;
ties are broken arbitrarily. First note that for the case that at most one label can be
active at any given point in time (k = 1), con�icts between labels do not matter. Thus, it
is su�cient to �nd an independent subset of Ψ of maximum weight. This is equivalent
to �nding a maximum weight independent set on interval graphs, which can be done
in O(n) time using dynamic programming given n sorted intervals [HTC92]. We
denote this algorithm by A1. Let L1[Ij ] be the set of intervals that lie completely to
the left of the left endpoint of Ij . Algorithm A1 basically computes a table T1 indexed
by the intervals in Ψ, where an entry T1[Ij ] stores the value of a maximum weight
independent set Q of L1[Ij ] and a pointer to the rightmost interval in Q .

We call a pair of presence intervals (Ii , Ij ), i < j , a separating pair if Ii and Ij overlap
and are not in con�ict with each other. Further, a separating pair ®v = (Ip , Iq) is smaller

than another separating pair ®w = (Ii , Ij ) if and only if p < i or p = i and q < j.
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Ii

Ij

Ip

Iq

Figure 6.7: Illustration of presence intervals. Intervals that are in con�ict are connected by a
dotted line. Both (Ii , Ij ) and (Ip , Iq) are separating pairs. The intervals of L2[i, j] (R2[p,q]) are
marked by a left (right) arrow.

This induces a total order and we denote the ordered set of all separating pairs by
S2={ ®v1, . . . , ®vz }. The weight of a separating pair ®v is de�ned as w(®v) = ∑

I ∈ ®v w(I ).
We observe that a separating pair ®v = (Ii , Ij ) contained in a solution of 2-Re-

strictedMaxTotal splits the set of presence intervals into two independent subsets.
Speci�cally, a left (right) subset L2[®v] (R2[®v]) that contains only intervals which lie
completely to the left (right) of the intersection of Ii and Ij and are neither in con�ict
with Ii nor Ij ; see Figure 6.7.

We are now ready to describe our dynamic programming algorithm A2. For ease
of notation we add two dummy separating pairs to S2. One pair ®v0 with presence
intervals strictly to the left of 0 and one pair ®vz+1 with presence intervals strictly to the
right of 1. Since all original presence intervals are completely contained in [0, 1] every
optimal solution contains both dummy separating pairs. Our algorithm computes a
one-dimensional table T2, where for each separating pair ®v there is an entry T2[®v]
that stores the value of the optimal solution for L2[®v]. We compute T2 from left to
right starting with the dummy separating pair ®v0 and initialize T2[®v0] = 0. Then, we
recursively de�ne T2[®vj ] for every ®vj ∈ S2 as

T2[®vj ] = max
i<j
{T2[®vi ] +w(®vi ) +A1(®vi , ®vj ) | ®vi ∈ S2, ®vi ⊆ L2[®vj ], ®vj ⊆ R2[®vi ]}

Additionally, we store a backtracking pointer to the predecessor pair that yields the
maximum value. In other words, for computing T2[®vj ] we consider all possible direct
predecessors ®vi ∈ S2 with i < j, ®vi ∩ ®vj = ∅, and no con�ict with ®vj . Each such ®vi
induces a candidate solution whose value is composed of T2[®vi ], w(®vi ), and the value
of an optimal solution of algorithmA1 for the intervals between ®vi and ®vj with ®vi and
®vj active.

Since by construction L2[®vz+1] = Ψ ∪ ®v0, the optimal solution to 2-Restricted-
MaxTotal is stored in T2[®vz+1] once ®v0 is removed. To compute a single entry T2[®vj ]
our algorithm needs to consider all possible separating pairs preceding ®vj , and for
each of them obtain the optimal solution from algorithm A1 under some additional
constraints. For the call A1(®vi , ®vj ) in the recursive equation above, we distinguish
two cases. If the rightmost endpoint of ®vi is to the left of the leftmost endpoint of ®vj
then we run algorithm A1 on the set of intervals L2[®vj ] ∩ R2[®vi ] and obtain the value
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A1(®vi , ®vj ). Otherwise, there is an overlap between an interval Ia of ®vi and an interval
Ib of ®vj . Since for k = 2 no other interval can cross this overlap, we actually make two
calls toA1, once on the set R2[®vi ] ∩L2[(Ia , Ib )] and once on the set R2[(Ia , Ib )] ∩L2[®vj ].
We add both values to obtain A1(®vi , ®vj ). Since we run algorithm A1 for each of O(z)
separating pairs, the time complexity to compute a single entry of T2 is O(nz). To
compute the whole table the algorithm repeats this step O(z) times, which yields a
total time complexity of O(nz2). Note that the number of separating pairs z is in O(n2).

We prove the correctness of the algorithm by contradiction. Assume that there
exists an instance for which our algorithm does not compute an optimal solution
and let OPT be an optimal solution. This means, that there is a smallest separating
pair ®vj for which the entry in T2[®vj ] is less than the value of OPT for L2[®vj ]. Note
that ®vj cannot be the dummy separating pair ®v0 since T2[®v0] is trivially correct. Let
®vi be the rightmost separating pair in OPT that precedes ®vj and is disjoint from it
(possibly ®vi = ®v0). Since there is no other disjoint separating pair between ®vi and ®vj
in OPT, all intervals in OPT between ®vi and ®vj form a subset of R2[®vi ] ∩ L2[®vj ] that
is a valid con�guration for k = 1. We can obtain an optimal solution for k = 1 of
the intervals in R2[®vi ] ∩ L2[®vj ] by computing A1(®vi , ®vj ) as described above. Since, by
assumption, T2[®vi ] is optimal, A1 is correct [HTC92], and our algorithm explicitly
considers all possible preceding separating pairs including ®vi , the entry T2[®vj ] are at
least as good as OPT for L2[®vj ]. This is a contradiction and the correctness of A2
follows.

Theorem 6.3. Algorithm A2 solves 2-RestrictedMaxTotal in AM1 in O(nz2) time

and O(z) space, where z is the number of separating pairs in the input instance.

6.4.2 An Algorithm for k-RestrictedMaxTotal in AM1

In the following, we extend the dynamic programming algorithm A2 to a general
algorithm Ak for the case k > 2. To this end, we extend the de�nition of separating
pairs to separating k-tuples. A separating k-tuple ®v is a set of k presence intervals that
are not in con�ict with each other and that have a non-empty intersectionY ®v =

⋂
I ∈ ®v I .

We say a separating k-tuple ®v is smaller than a separating k-tuple ®w if Y ®v begins
to the left of Y ®w . Ties are broken arbitrarily. This lets us de�ne the ordered set
Sk = { ®v1, . . . , ®vz } of all separating k-tuples of a given set of presence intervals. We
say a set C of presence intervals is k-compatible if no more than k intervals in C
intersect at any point and there are no con�icts in C . Two separating k-tuples ®v and
®w are k-compatible if they are disjoint and ®v ∪ ®w is k-compatible. The de�nitions of
the sets R2[®v] and L2[®v] extend naturally to the sets Rk [®v] and Lk [®v] of all intervals
completely to the right (left) of Y ®v and not in con�ict with any interval in ®v . Now,
we recursively de�ne the algorithm Ak that solves k-RestrictedMaxTotal given a
pair of active k-compatible boundary k-tuples. Note that in the recursive de�nition

88



Solving k-RestrictedMaxTotal Section 6.4

these boundary tuples may remain k-dimensional even in Ak ′ for k ′ < k . For Ak we
de�ne as boundary tuples two k-compatible dummy separating k-tuples ®v0 and ®vz+1
with all presence intervals strictly to the left of 0 and to the right of 1, respectively.
The algorithm �lls a one-dimensional table Tk . Similarly to the case k = 2, each entry
Tk [®v] stores the value of the optimal solution for Lk [®v], i.e., the overall solution can
again be obtained from Tk [®vz+1]. We initialize Tk [®v0] = 0. Then, the remaining entries
of Tk can be obtained by computing

Tk [®vj ] = max
i<j
{Tk [®vi ] +w(®vi ) +Ak−1( ®̃vi , ®̃vj ) | ®vi ∈ Sk , ®vi ⊆ Lk [®vj ] ∪ ®v0,

®vj ⊆ Rk [®vi ] ∪ ®vz+1,

®v0 ∪ ®vz+1 ∪ ®vi ∪ ®vj is k-compatible},

which uses the algorithm Ak−1 recursively on a suitable subset of presence intervals
between the boundary tuples ®̃vi and ®̃vj . Here ®̃vi is de�ned as the union of the tuple ®vi
and all intervals in ®v0 ∪ ®vz+1 that intersect the right endpoint of Y ®vi ; analogously ®̃vj is
de�ned as the union of the tuple ®vj and all intervals in ®v0 ∪ ®vz+1 that intersect the left
endpoint of Y ®vi . This makes sure that in each subinstance all active intervals that are
relevant for that particular subinstance are known. Note that by the k-compatibility
condition ®̃vi and ®̃vj contain at most k elements each. In fact, Ak−1( ®̃vi , ®̃vj ) uses ®̃vi and
®̃vj as boundary k-tuples (and thus does not create dummy boundary tuples) and the set
Rk [®vi ] ∩ Lk [®vj ] as the set of presence intervals from which separating (k − 1)-tuples
can be formed.

Theorem 6.4. Algorithm Ak solves k-RestrictedMaxTotal in AM1 in O(nk2+k−1)
time and O(nk ) space.

Proof. We show the correctness of Ak by induction on k . Theorem 6.3 shows that
the statement is true for k = 2. Let k > 2. Since Ak only considers solutions where
adjacent separating k-tuples are k-compatible with each other and the boundary k-
tuples, we cannot produce an invalid solution, i.e., a solution with con�icts or more
than k active intervals at any point. We prove the correctness by contradiction. So
assume that there is an instance Ψ for whichAk does not compute an optimal solution
and let OPT be an optimal solution. There must be a smallest separating k-tuple
®vj , j > 0, for which Tk [®vj ] is less than the value of OPT for Lk [®vj ]. Let ®vi , i < j be
the rightmost disjoint separating k-tuple in OPT that precedes ®vj such that the set
®v0 ∪ ®vi ∪ ®vj ∪ ®vz+1 is k-compatible. By our assumption Tk [®vi ] has the same value as
OPT on Lk [®vi ]. For the set of intervals Lk [®vj ] ∩ Rk [®vi ] there are at most k − 1 active
intervals at any point (otherwise ®vi is not rightmost). This means that when we run
algorithm Ak−1 on that instance with the boundary tuples ®̃vi and ®̃vj , i.e., ®vi and ®vj
enriched by all relevant intervals in ®v0 ∪ ®vz+1, we obtain by induction a solution that is
at least as good as the restriction of OPT to that instance. Since ®vi is a valid predecessor
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k-tuple for ®vj the algorithmAk considers it. So Tk [®vj ] ≥ Tk [®vi ]+w(®vi )+Ak−1( ®̃vi , ®̃vj ),
which is at least as good as OPT restricted to Lk [®vj ]. This is a contradiction and proves
the correctness.

For proving the time and space complexity let zi be the number of separating i-
tuples in an instance for 1 < i ≤ k . Each zi is in O(ni ). We again use induction
on k . ForA2 Theorem 6.3 yields O(n5) time and O(n2) space, which match the bounds
to be shown. So let k > 2. The table Tk has O(zk ) ⊆ O(nk ) entries and each of the
recursive computations ofAk−1 needO(nk−1) space by the induction hypothesis. Thus
the overall space is dominated by Tk and the bound follows. Checking whether a
separating k-tuple ®vi ∈ Sk is a feasible predecessor for a particular ®vj can easily be
done in O(k2) time, which is dominated by the time to compute Ak−1( ®̃vi , ®̃vj ). So for
the running time we observe that each entry in Tk makes O(zk ) calls to Ak−1 and
hence the overall running time is indeed O(n2k · n(k−1)2+(k−1)−1) = O(nk2+k−1). �

6.4.3 Extending the Algorithm for k-RestrictedMaxTotal to AM2

With some modi�cations and at the expense of another polynomial factor in the
running time we can extend algorithm Ak of the previous section to the activity
model AM2, which shows that k-RestrictedMaxTotal in AM2 can still be solved in
polynomial time. In the following, we give a sketch of the modi�cations. The important
di�erence between AM1 and AM2 is that presence intervals can be truncated at their
right side if there is an active con�icting witness label causing the truncation. We
need two modi�cations to model this behavior. First, we create for each original

presence interval Ii = [ai ,bi ] in Ψ at most n pre�x intervals I ji = [ai , ci j ], where ci j
is the start of the �rst con�ict between Ii and Ij ∈ Ψ. Each interval I ji inherits
the con�icts of Ii that intersect I ji . We obtain a modi�ed set of presence intervals
Ψ′ = Ψ ∪ {I ji | Ii , Ij ∈ Ψ and Ii , Ij in con�ict} of size O(n2). We create mutual con�icts
among all intervals that are pre�xes of the same original interval. This will enforce
that at most one of them is active. We still have to take care that a truncated interval I ji
can only be active if Ij (or a pre�x of Ij ) is active at ci j as a witness.

In order to achieve this we instantiate the algorithm Ak ′ for every k ′ ≤ k not
only with its two boundary k-tuples ®̃v0 and ®̃vz+1 but also with a setW of at most k
witness intervals that are k-compatible and must be made active at some stage of the
algorithm. In a valid solution we have W ⊆ Lk ′[®v] ∪ ®v for the leftmost separating
k ′-tuple ®v , since otherwise more than k ′ intervals are active in Y ®v . However, the
truncated intervals in ®v themselves de�ne a family of O(nk ′) possible witness sets
W (®v) to be respected to the right of ®v . So when we compute the table entry for a
separating k ′-tuple ®vj and consider a particular predecessor k ′-tuple ®vi we must in
fact iterate over all possible witness setsW (®vi ) as well. We need to make sure that ®vj
is W (®vi )-compatible, i.e., ®vj ∪W (®vi ) is k-compatible and W (®vi ) ⊆ Lk ′[®vj ] ∪ ®vj . For
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the recursive call to Ak ′−1( ®̃vi , ®̃vj ) the initial witness setW ′ consists ofW (®vi ) \ ®vj , i.e.,
those witness intervals ofW (®vi ) that are not part of ®vj .

The increase in running time is caused by dealing with O(n2) intervals in Ψ′ and
by the fact that instead of one call to Ak−1( ®̃vi , ®̃vj ) in the computation of table Tk we
make O(nk ) calls, one for each possible witness set of ®vi . By an inductive argument
one can show that the running time is in O(n3k2+2k ).

Theorem 6.5. k-RestrictedMaxTotal in AM2 can be solved in polynomial time.

6.4.4 Complexity of k-RestrictedMaxTotal in AM3

In this section we discuss the complexity of k-RestrictedMaxTotal with respect
to AM3. For k = 1 the problem is equivalent with �nding a maximum weighted
independent set on interval graphs, which can be done in linear time [HTC92].

We show that the according decision problem, which is de�ned as follows, is NP-
complete for k ≥ 2 and the combinatorial variant of the problem. The complexity of
the geometric variant is an open problem.

Problem 6.3 (k-RestrictedMaxTotalDecision).
Given: Instance I = (L,Ψ,C), k ∈ N andW ∈ R+.
Question: Is there an activity Φ for I such that

∑
[a,b]` ∈Φw([a,b]`) ≥W

and at most k labels are active at the same time?

In the following, we require that the activity Φ also satis�es AM3. It is easy to see
that the decision problem is NP-complete. For each label ` ∈ L we guess intervals that
are contained in the presence intervals of ` and whose beginnings and ends coincide
with the beginnings and ends of presence and con�ict intervals in Ψ ∪C . We further
check, whether the intervals are valid activity intervals with respect to AM3, their
weights sum up at least toW and whether at most k labels are active at the same time.
Obviously, we can check this in polynomial time in the size of the input.

In the remainder of this section we show that the decision problem is also NP-hard
for k ≥ 2, which implies that the according optimization problem is NP-hard as well.
We do a reduction from the NP-complete problem 3-Partition. For the convenience
of the reader, we repeat the de�nition given by Garey and Johnson[GJ79].

Problem 6.4 (3-Partition).
Given: Set X of 3m elements, a bound B ∈ Z+, and a size s(x) ∈ Z+ for

each element x ∈ X such that
B
4 ≤ s(x) ≤ B

2 and

∑
x ∈X s(x) =mB.

Question: Can X be partitioned intom disjoint sets X1,X2, . . . ,Xm such that∑
x ∈Xi s(x) = B for all i with 1 ≤ i ≤ m?

Note that each Xi must contain exactly three elements. We �rst present a con-
struction that transforms a given instance I of 3-Partition into an instance I ′
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Figure 6.8: Illustration of the construction used for the reduction from 3-Partition to k-Re-
strictedMaxTotal. Times for which a label ` ∈ Lλ ∪ Lµ is in con�ict with `K are marked red.
For each label λx ∈ Lλ the times when it can possibly be active are marked orange.

of k-RestrictedMaxTotal. Afterwards we show that I is an yes-instance of 3-
Partition if and only if I ′ is an yes-instance of k-RestrictedMaxTotal with respect
to AM3.

The construction is illustrated in Figure 6.8. Let smax = maxx ∈X s(x). We �rst
construct every triplet τ ⊆ X such that the elements in τ are pairwise di�erent and∑

x ∈τ s(x) = B. Let T = {τ1, . . . ,τh} denote the set of those triplets. For each triplet
τi ∈ T we �x an arbitrary order of its elements, and denote its j-th element by τ ji (with
1 ≤ j ≤ 3). We de�ne

x1 = τ
1
1 , x2 = τ

2
1 , x3 = τ

3
1 , x4 = τ

1
2 , x5 = τ

2
2 , . . . ,x3h = τ

3
h .

For each element x ∈ X we create one label λx with presence interval

I = [0, 3h(smax + 1) + 1].

Let Lλ denote the set of those labels and let l1 denote the length of those intervals. The
interval I can be partitioned into 3h intervals S of length smax and 3h + 1 intervalsU
of unit length such that the intervals in S andU alternate, starting with an interval
of U; see Figure 6.8. We call an interval in S a slot. We denote the slots by S1 =
[a1,b1], . . . , S3h = [a3h ,b3h] in increasing order, i.e., ai < aj for i < j. We say that the
slots S3i−2, S3i−1 and S3i belong to the triplet τi (1 ≤ i ≤ h).

Thus, for each xi we have a slot Si with 1 ≤ i ≤ 3h. In our construction we will
enforce that a label λx ∈ Lλ can only be active during a slot Si (1 ≤ i ≤ 3h) if xi = x .
More precisely, we de�ne

Sx,i =

{
[ai ,ai + s(x)], xi = x

∅, otherwise,
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Thus, Sx,i ⊆ Si . We will enforce that λx can only be active during Sx,i . To that end we
introduce a single label `K with presence interval

K = [−M, l1 +M],

where we choose M > 3l1. We denote the length of K by l2 and note that l2 ≥ 2M .
For each x ∈ X we introduce con�icts between λx and `K such that λx and `K are

not in con�ict at time t if and only if there is an i with 1 ≤ i ≤ 3h and t ∈ Sx,i . Put
di�erently, λx and `K are in con�ict during the time expressed by

I \
3h⋃
i=1

Sx,i

Assume that `K is active during the complete interval [0, l1], then any label λx with
x ∈ X can only be active during

⋃3h
i=1 Sx,i . Since the slots are disjoint, since Sxi ⊆ Si ,

and since each label can only be active once per presence interval, each label λx
can only be active during at most one slot Si , but not outside of a slot. Further, the
element x must be contained in the according triplet τj with j = d i3e.

Moreover, we introduce h −m labels with presence interval I . We denote the set of
these labels by Lµ . We de�ne that any label µ ∈ Lµ and `K are in con�ict during the
time expressed by

I \
h⋃
j=1
[a3j−2,b3j ]

Thus, µ is not in con�ict with λk during any interval Ti = [a3i−2,b3i ] (with 1 ≤ i ≤ h),
which spans the slots S3i−2, S3i−1, S3i of the triplet τi . We note that the length of Ti is
l3 = 3smax + 2. We further de�ne that the labels in Lλ ∪ Lµ are pairwise in con�ict
during the complete interval I , which implies that at most two labels can be active
at any time, namely `K and at most one label of Lλ ∪ Lµ . Finally, for any constructed
label ` we set w` = 1 and de�ne

W = l2 +
∑
x ∈X

s(x) + (h −m) · l3

Hence, we have w([a,b]`) = (b − a) for any presence/activity interval of `.
Altogether, we obtain the instance I ′ = (L = Lλ ∪ {`K} ∪ Lµ ,Ψ,C,W ), which can

obviously be constructed in polynomial time with respect to the given 3-Partition
instance I.
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Lemma 6.3. Let I be an instance of 3-Partition and let I ′ be an instance of k-Restric-
tedMaxTotalDecision (k ≥ 2) with respect to AM3 constructed from I as described.

The instance I is a yes-instance if and only if I ′ is a yes-instance.

Proof. First assume that I is a yes-instance of 3-Partition. Let T ′ ⊆ T be the set of
the m triplets such that each element x ∈ X is contained in exactly one triplet of T ′
and each triplet ofT ′ sums up to B. We now construct an activity Φ for I ′ with weight
WΦ ≥W . To that end we �rst set `K active for the interval K . Thus,WΦ ≥ l2.

Further, for each triplet τ ∈ T ′ and each element x ∈ τ we add the slot Sx,i to Φ,
where 1 ≤ i ≤ 3h, x = xi and Sx,i belongs to τ . By construction λx is not in a
con�ict with `K during Sx,i , but directly before and after that interval. Since K is
completely contained in Φ, the label `K is also active directly before and after that
interval, which altogether satis�es AM3. Further, only two labels are active at the
same time. This follows directly from the fact that the slots are disjoint and we set for
each slot at most two labels active, namely λx and `K. Since each added interval Sx,i
has length s(x) and each x belongs to exactly one triplet τ ∈ T ′, the activity Φ now
has weightWΦ = l2 +

∑
x ∈X s(x).

There are h −m triplets τi1 , . . . ,τih−m inT \T ′. For each such triplet τi j we know by
construction that no label λx ∈ Lλ is active duringTi j . Hence, we set the label µ j active
during the interval Ti j . Since µ j is in con�ict with `K directly before and after Ti j , the
model AM3 is satis�ed. Further, since Ti1 , . . . ,Tih−m are pairwise disjoint, at most two
labels are active at the same time. In total we obtain a valid activity Φ with weight

WΦ = l2 +
∑
x ∈X

s(x) + (h −m) · l3 =W .

Now assume that I ′ is a yes-instance of k-RestrictedMaxTotal (k ≥ 2) with
respect to AM3, i.e., we are given an activity Φ for I ′ withWΦ ≥W . We show how to
construct a valid solution for I. Recall that since the labels in Lλ ∪ Lµ are pairwise in
con�ict for the complete interval I , at most two labels can be active at the same time,
namely `K and one label of Lλ ∪ Lµ .

We now argue that `K is active for the complete interval [0, l1]. If this was not
the case, then the pre�x [−M, 0] or the su�x [l1, l1 +M] of K cannot belong to the
activity of `K. Further, for the interval [0, l1] we obtain less than 2

3M weight in total,
because at most two labels can be active at the same time and l1 <

M
3 . Thus, we

obtain WΦ < M + 2
3M < 2M . On the other hand, because of l2 ≥ 2M and WΦ ≥ W ,

we haveWΦ ≥ 2M , which is a contradiction. On that account, the label `K is active
during the complete interval [0, l1]. It is even active for the complete interval K to
sustain the requirements of AM3. As reasoned previously, the activity interval of any
label ` ∈ Lλ must be thus contained in one of the slots S1, . . . , S3h ; otherwise there
would be an unresolved con�ict between ` and `K. Similarly, the activity interval of
any label ` ∈ Lµ must be contained in one of the intervals T1, . . . ,Th .
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By the construction of the con�icts, a label λx ∈ Lλ can be active for at most s(x)
time and a label µi ∈ Lµ can be active for at most l3 time. Due toWΦ ≥W , each label
λx ∈ Lx is therefore active for exactly s(x) time and, consequently, there is a slot Sx,i
with 1 ≤ i ≤ 3h that is the activity interval of λx . Similarly each label µ ∈ Lµ is active
for exactly l3 time and, consequently, there is an interval Ti with 1 ≤ i ≤ h that is the
activity interval of µ.

More precisely, there are m triplets τi1 , . . . ,τim such that the activity intervals of
the labels in Lλ are contained in

⋃m
j=1Ti j . To see that, consider any label µ ∈ Lµ .

By the previous reasoning there is a triplet τi with 1 ≤ i ≤ h such that the activity
intervalTi of µ contains S3i−2, S3i−1, S3i . This implies that no label λx ∈ Lλ with x ∈ τi
can be active during Ti . Since no two labels µ, µ ′ ∈ Lµ can be active during the same
intervalTi and |Lµ | = h−m, them intervalsTi1 , . . . ,Tim remain containing the activity
intervals of the labels in Lλ .

Those triplets τi1 , . . . ,τim form the desired solution for I: Since each label λx ∈ Lλ
is active for exactly one interval, each element x ∈ X is contained in exactly one
triplet τi j with 1 ≤ j ≤ m. Further, we have

∑
x ∈τij s(x) = B, which concludes the

proof. �

The lemma directly implies that the problem k-RestrictedMaxTotal is NP-hard
for k ≥ 2 and AM3. We summarize the results of this section in the following theorem.

Theorem 6.6. For k = 1 the problem k-RestrictedMaxTotal can be solved in linear

time in AM3, while it is NP-hard for k ≥ 2.

6.4.5 Approximation of k-RestrictedMaxTotal

Since the running times of our algorithms for k-RestrictedMaxTotal are, even for
small k , prohibitively expensive in practice, we propose an approximation algorithm
for k-RestrictedMaxTotal based on GreedyMaxTotal for all activity models.

Our algorithm GreedyRestrictedMaxTotal is a simple extension of GreedyMax-
Total. Recall that GreedyMaxTotal greedily removes the longest interval I from
Ψ and adds it to the set Φ that contains the active intervals of the solution. Then, it
updates all intervals contained in Ψ that are in con�ict with I . This process is repeated
until Ψ is empty. For approximating k-RestrictedMaxTotal we need to ensure that
there is no point in time t that is contained in more than k intervals in Φ. We call
intervals which we cannot add to Φ without violating this property invalid.

Our modi�cation of GreedyMaxTotal is as follows. After adding an interval I to Φ
and handling con�icts as before, we remove intervals from Ψ that became invalid. We
say that we ensure that I is valid. Note that we cannot shorten those intervals because
then we could not ensure that adding an interval from Ψ to Φ is valid according to our
model.
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In order to prove approximation ratios we �rst introduce the following lemma that
describes the structure of a solution of k-RestrictedMaxTotal.

Lemma 6.4. Let S be a set of intervals such that there is no number that is contained in

more than k intervals from S . Then, there is a partition of S into k setsM1, . . . ,Mk , such

that no two intersecting intervals are in the same setMi .

Proof. Let I1, . . . , Im be all intervals of S sorted by their left endpoints in non-decreasing
order. In the following, we describe how to construct the partition.

We start with empty sets M1, . . . ,Mk . First, add I1 to M1. Assume that the �rst i − 1
intervals have been added to the sets M1, . . . ,Mk . We describe how to add Ii . If there
is an empty set Mj then, we simply add Ii to Mj . Otherwise, let Ii1 , . . . , Iik be the
rightmost intervals in the sets M1, . . . ,Mk , respectively. We denote the set containing
those intervals by R. Let I = ⋂

I ∈R I . If I is not empty then, due to the order of
the intervals, the interval Ii cannot begin to the left of I. It also cannot begin in I
because otherwise there would be a number that is contained in k + 1 intervals in S .
Let Mx , 1 ≤ x ≤ k be the set that contains the interval I ∈ R with leftmost right
endpoint among the intervals in R. Since Ii lies completely to the right of I it must
also lie completely to the right of I . Thus we can assign Ii to the set Mx without
introducing intersections. If I is empty, then there must be an interval I ∈ R with
right endpoint to the left of another I ′ ∈ R. Let Mx , 1 ≤ x ≤ k be the set that contains
the interval I . Due to the order of the intervals the interval Ii lies completely to
the right of I and hence we assign Ii to Mx without introducing intersections. This
concludes the proof. �

With this lemma we now can prove the following theorem that makes a statement
about the approximation ratio of GreedyRestrictedMaxTotal

Theorem 6.7. Assuming that all labels are unit squares andw([a,b]) = b − a, Greedy-
RestrictedMaxTotal is a 1/min{3 + 3k, 27}, 1/min{3 + 2k, 19}, 1/min{3 + k, 11}-
approximation for AM1–AM3, respectively, and needs O(n2) time.

Proof. We begin by proving its correctness and then we show its time complexity.
Consider the step in which we add an interval I = [a,b] to Φ, and let J = [a −

w(I ),b +w(I )]. Let L be a �xed, but arbitrary optimal solution. If I ∈ L, there is no
lost weight compared to the optimal solution when choosing I .

Thus, assume that I < L. Let C(I ) ⊆ L be the set of intervals that are in con�ict
with I . Identically to the proof of Theorem 6.2 we can argue thatw(C(I )) = ∑

I ∈C w(I ) ≤
(4 − X ) · 8 ·w(I ) considering activity model AMX with X ∈ {1, 2, 3}.

We now show that at most 3w(I )weight of the optimal solution is lost when ensuring
that I is valid.

By Lemma 6.4 we can partition L into k sets M1, . . . ,Mk such that no two in-
tersecting intervals are in the same set Mi . If I is in L, then we do not lose any
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weight compared to the optimal solution. Hence, assume that I is not in L. Take
any Mi , 1 ≤ i ≤ k , remove all intervals of L \ Φ that intersect I . We denote the set of
removed intervals by R. In the following, we bound the cost of removing the intervals
in R. If there are intervals in R that are longer than I , then we have already accounted
for them in previous steps. This relies on the fact that we consider the intervals sorted
by their length in non-ascending order, and, hence if those longer intervals are not
in Φ, we must have removed them in an earlier step. Thus, we only need to bound
the length of intervals in R which have length at most w(I ). Those intervals must lie
in J , and due to the de�nition of Mi they must be disjoint. Hence, the cost is bounded
by 3w(I ).

Altogether choosing I causes that at most 3w(I ) + (4 − X ) · 8 ·w(I ) weight is lost
compared to the optimal solution considering activity model AMX with X ∈ {1, 2, 3}.
Finally, this yields an approximation factor of 1/27, 1/19, 1/11 for AM1-3, respectively.

For k < 8 we can improve w(C(I )) ≤ (4 −X ) · 8 ·w(I ) to w(C(I )) ≤ (4 −X ) · k ·w(I )
considering activity model AMX with X ∈ {1, 2, 3} because we know that I cannot be
in con�ict with more than k intervals of the optimal solution. Thus, we can bound
the loss of choosing I by 3w(I ) + (4 − X ) · k · w(I ). In total this yields the claimed
approximation ratios for the three activity models.

Finally, we argue the correctness of the claimed running time of O(n2). Since the
worst-case running time of GreedyMaxTotal is O(n2) we only need to argue that
we can delete those intervals from Φ, which are not valid anymore, in O(n) time
per step. To do this we simply sort the intervals in Ψ in non-decreasing order by
their left-endpoint. We also maintain Φ in the same way. Then, we can check for
non-valid intervals with a simple linear sweep over Ψ and Φ. Hence, each iteration of
the algorithm requires O(n) time, which yields a total running time of O(n2). �

6.5 Conclusions

In this chapter, we introduced a temporal model for dynamic map labeling that satis�es
the consistency criteria demanded by Been et al. [BDY06], even in a stronger sense,
where each activity change of a label must be explainable to the user by some witness
label. Our model transforms the geometric information speci�ed by the motion of the
camera as well as the labels into the two combinatorial problems GeneralMaxTotal
and k-RestrictedMaxTotal that are expressed in terms of presence and con�ict
intervals. Thus, our algorithms apply to any dynamic labeling problem that can be
transformed into such an interval-based problem.

We showed that GeneralMaxTotal is NP-complete and W[1]-hard and presented
constant-factor approximation algorithms for our three di�erent activity models. The
problemk-RestrictedMaxTotal, where at mostk labels can be visible at any time, can
be solved in polynomial timeO(nf (k )) in activity models AM1 and AM2 for any �xed k ,
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where f is a polynomial function. Due to the W[1]-hardness of GeneralMaxTotal
we cannot expect to �nd better results for the running times, apart from improving
upon the function f . Further, we proved NP-hardness for k-RestrictedMaxTotal
in AM3 for k ≥ 2. We also presented an O(n2)-time approximation algorithm for
k-RestrictedMaxTotal in all three activity models.

The analysis of the approximation algorithms for both k-RestrictedMaxTotal
and GeneralMaxTotal signi�cantly relies on the assumption that labels are unit
squares. Thus, the question arises whether constant-factor approximations exist when
this assumption is dropped or softened, e.g., to labels of unit-height. To answer this
question we think that deeper insights into the structure of con�icts are necessary,
e.g., does the geometric information based on viewport, its motion and labels imply a
useful structure on the induced label con�ict graph?
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7
Temporal Map Labeling:

An Algorithmic Framework

Abstract. Through extensive experiments on OpenStreetMap data, we evaluate the
model for temporal map labeling presented in the previous chapter. We use algorithms
of varying complexity in a case study for navigation systems. Our experiments show
that even simple (and thus, fast) algorithms achieve near-optimal solutions in our
model with respect to an intuitive objective function. In order to obtain optimal
solutions, we use integer linear programming formulations for GeneralMaxTotal
and k-RestrictedMaxTotal.

This chapter is based on and partly taken from joint work with Andreas Gemsa, Lukas
Barth, Martin Nöllenburg and Darren Strash [GNN13a, GNN13b, Bar+16].

7.1 Introduction

In this chapter, we build upon our previous work introduced in Chapter 6, present more
sophisticated heuristic algorithms, and provide an extensive experimental evaluation
of our proposed temporal labeling models and algorithms in a case study for navigation
systems. Our experiments illustrate the usefulness of our models for this application,
and further show the strength of each algorithm under each model. Ultimately, our
experiments show that simple but fast algorithms achieve near-optimal solutions for
the optimization problems—which is very encouraging, given the hardness results of
the previous chapter.

In Section 7.2, we �rst introduce a simple but powerful work�ow consisting of
two phases. In the �rst phase, the input problem is transformed into a temporal
labeling instance of our model. Then in the second phase we solve GeneralMaxTotal
and k-RestrictedMaxTotal on that instance. We present algorithms solving the
problems heuristically as well as exact integer linear programming formulations. In
Section 7.3, we experimentally evaluate our approach considering the application of
navigation systems. Utilizing the integer linear programming formulations, we obtain
optimal solutions for a set of test instances. We use them to show that our heuristics
yield near-optimal solutions, while they are fast and simple enough to be deployed in
practice.

In the remainder of the chapter, we use the notation and model of Chapter 6. In
particular, we assume that we are given a set O = {o1, . . . ,on} of objects in a scene
over a given time span T = [0, 1]. Further, using the metaphor of a camera, the objects
are projected onto an in�nite plane P such that we can only see a restricted section V
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Figure 7.1: Trajectory-based labeling. (a) Viewport moves and aligns along a given trajectory
(fat orange line). Labels align to the viewport. (b) The user’s view on the scene.

of P , where V models the viewport of the camera. For a detailed introduction to the
model see Chapter 6.

7.2 Workflow

In this section we describe a simple but �exible work�ow for temporal labeling prob-
lems. This work�ow consists of two phases. In the �rst phase a concrete geometric la-
beling problem is transformed into an abstract temporal labeling instance I = (L,Ψ,C),
where L = {`1, . . . , `n} is the set of labels (`i is the label of object oi ), Ψ is the set of
presence intervals and C is the set of con�ict intervals.

This step critically depends on the concrete geometric model of the given temporal
labeling problem. Here, we consider the application of a car navigation system; other
labeling problems, such as labeling moving entities, can be handled similarly. In the
second phase, either GeneralMaxTotal or k-RestrictedMaxTotal is solved for the
output instance I from the �rst phase. We now describe these two phases in greater
detail.

7.2.1 Phase 1 – Transformation into Intervals

This phase depends on the speci�c labeling problem given. It transforms the input
for a particular geometric setting into a temporal labeling instance that can then be
handled independently from the geometry.

Example: Navigation Systems. For our experiments we consider the use case of
car navigation systems. In this use case the viewport of the map moves along a selected
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(a) Smoothing corners.

Zoom

Time

LVL 3

LVL 1

LVL 2

(b) Interpolating zoom.

Figure 7.2: Trajectory. (a) The corners of the selected route (black polyline) are smoothed
by circular arcs obtaining a continuous and di�erentiable trajectory (orange curve). (b) The
black rectilinear curve shows the zoom levels assigned to the underlying roads over time. The
orange dashed line illustrates the interpolated actual zooming of the viewport.

route to the journey’s destination such that the camera is perpendicular to the map;
that is, the user of the navigation system observes the map in aerial perspective such
that at any time the viewport has a certain position, rotation, and scale; see Figure 7.1.

We model the viewport as an arbitrarily oriented rectangle R that de�nes the
currently visible part of the map on the screen. The viewport follows a trajectory that
we model as a continuous di�erentiable function τ : T → R2.

In our setting, we obtain τ from a polyline describing the selected route by smoothing

the polyline’s corners by circular arcs; see Figure 7.2(a). Thus, τ is described by a
sequence of line segments and circular arcs.

The viewport is described by a function V : T → R2 × [0, 2π ] × [0, 1]. The interpre-
tation of V (t) = (c(t),α(t), z(t)) is that at time t the center of R is located at c(t), R is
rotated clockwise by the angle α(t) relatively to a north base line of the map, and R is
scaled by the factor z(t). We call z(t) the zoom of V at time t . Since R moves along τ
we de�ne c(t) = τ (t). To avoid distracting changes of the map, we assume that the
viewport does not both rotate and zoom at the same time. More precisely, we are given
a �nite setZ of zoom levels at which the viewport is allowed to rotate. Hence, when
the camera zooms, the trajectory must form a straight line for that particular period
of time.

The objects in O describe points of interests and are �xed on the map. We model
a label ` of an object o ∈ O as a rectangle on the plane P that is anchored at the
projection of o onto P with the midpoint of its bottom side. It does not change its size
on the screen over time. To ensure good readability, the labels are always aligned with
the viewport axes as the viewport changes its orientation (i.e., they rotate around their
anchors by the same angle α(t)); see Figure 7.1.

For each label we compute the time events when it enters or leaves the viewport,
and when it starts and stops overlapping another label. Since rotation and zooming are
temporally separated, those operations can be considered independently. Computing
the time events for rotations requires an intricate geometric analysis, which is described
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Figure 7.3: The presence and con�ict intervals
are split into disjoint atomic segments by their
events E.

in [Nie12]. For changing from one zoom level to another, we do not allow instantaneous
changing of zoom levels, but instead we linearly interpolate the scale of the map
between both zoom levels, as in Figure 7.2(b). (In our experiments we further enforce
a minimum duration between two changes of zoom levels to avoid oscillation e�ects;
see Section 7.3.) Under these conditions, time events for zooming can be computed by
detecting collisions among linearly moving objects.

The computed time events directly translate into presence and con�ict intervals of
the labels. Hence, we obtain the temporal labeling instance I = (L,Ψ,C).

Other Scenarios. Our model is not restricted to labels of point features, but it also
can be applied to labels of other features such as line and area features. For example,
one could pre-compute a label placement for roads and combine the road labels with
labels for point features by computing all temporal con�ict events. Thus, we again
obtain a temporal labeling instance I = (L,Ψ,C) describing the setting. By pre-selecting
active intervals for certain labels, we can further enforce that they are de�nitely active
at the selected times. In the same manner we can ensure that labels do not overlap
certain important map features. Finally, we do not require the labeled objects to be
�xed, but they may also move. As long as the start and end times of label presence- and
con�ict intervals can be determined in advance, they can be represented in our model.
Depending on the setting, this may involve non-trivial geometrical computations, but
once the transformation is done, the di�erent scenarios are treated equally.

7.2.2 Phase 2 – Resolving Conflicts

In the second phase, we compute the activity intervals for all labels. We present
optimal approaches as well as e�cient heuristics for solving GeneralMaxTotal and
k-RestrictedMaxTotal on I = (L,Ψ,C). Recall from Chapter 6 that we say that an
activity set Φ is valid if
(R1) for each activity interval I` ∈ Φ there is a presence interval I ′

`
∈ Ψ with I` ⊆ I ′

`
,

(R2) for each presence interval I` ∈ Ψ there is at most one activity interval I ′
`
∈ Φ

with I ′
`
⊆ I` , and

(R3) no two activity intervals of Φ are in con�ict.

Integer Linear Programming. In order to provide upper bounds for the evaluation
of our labeling algorithms, we have developed integer linear programming (ILP)
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formulations for the model of Chapter 6 that solves GeneralMaxTotal and k-Re-
strictedMaxTotal optimally. Finding an optimal solution for an ILP model is NP-hard
in general. However, it turns out that in practice we can apply specialized solvers to
�nd optimal solutions for reasonably sized instances in acceptable time; see Section 7.3
for details. Hence, this ILP-based method provides a simple and generic way to produce
optimal solutions. We call this approach Ilp.

We present the formulation for the most involved model AM3 in GeneralMax-
Total and then argue how to adapt it to the simpler models AM1 and AM2. Finally,
we explain how to adapt the formulation for k-RestrictedMaxTotal. We assume
that all presence and con�ict intervals are sub-intervals of [0, 1].

We de�ne E to be the totally ordered set of the endpoints of all presence and all
con�ict intervals and include 0 and 1; see Figure 7.3. We call each interval [c,d] between
two consecutive elements c and d in E an atomic segment and denote the i-th atomic
segment of E by E(i). Further, let X (`, i) be the set of labels that are in con�ict with `
during E(i − 1), but not during E(i), i.e., the con�icts end with E(i − 1). Analogously,
let Y (`, i) be the set of labels that are in con�ict with ` during E(i + 1), but not during
E(i), i.e., the con�icts begin with E(i + 1). For each label ` we introduce three binary
variables bi ,xi , ei ∈ {0, 1} and the following constraints.

b`i = x `i = e`i = 0 ∀1 ≤ i ≤ |E | s.t. ∀[c,d] ∈ Ψ` : E(i) ∩ [c,d] = ∅ (7.1)∑
j ∈J

b`j ≤ 1 and
∑
j ∈J

e`j ≤ 1 ∀[c,d] ∈ Ψ` where J = {j | E(j) ⊆ [c,d]} (7.2)

x `i + x
`′
i ≤ 1 ∀1 ≤ i ≤ |E | ∀[c,d]`,`′ ∈ C : E(i) ⊆ [c,d] (7.3)

x `i−1 + b
`
i = x `i + e

`
i−1 ∀1 ≤ i ≤ |E | (set x0 = e0 = 0) (7.4)

b`j ≤
∑

`′∈X (`, j)
x `
′
j−1 + x

`′
j ∀[c,d]` ∈ Ψ ∀E(j) ⊂ [c,d]` with c < E(j) (7.5)

e`j ≤
∑

`′∈Y (`, j)
x `
′
j + x

`′
j+1 ∀[c,d]` ∈ Ψ ∀E(j) ⊂ [c,d]` with d < E(j) (7.6)

Subject to these constraints we maximize
∑

`∈L
∑ |E |−1

i=1 x `i · w(E(i)). The intended
meaning of the variables is that x `i = 1 if ` is active during E(i) and otherwise x `i = 0.
Variable b`i = 1 if and only if E(i) is the �rst atomic segment of an active interval of `,
and analogously e`i = 1 if and only if E(i) is the last atomic segment of an active interval
of `. Constraints (7.1)–(7.3) immediately ensure Requirements (R1)–(R3), respectively.
Constraint (7.4) means that if ` is active during E(i − 1) (x `i−1 = 1), then it must either
stay active during E(i) (x `i = 1) or the active interval ends with E(i − 1) (e`i−1 = 1), and
if ` is active during E(i) (x `i = 1) then it must be active during E(i − 1) (x `i−1 = 1) or
the active interval begins with E(i) (b`i = 1). Constraint (7.5) enforces that for ` to
become active with E(j) at least one witness label of X (`, j) is active during E(j − 1) or
E(j). Analogously, Constraint (7.6) enforces that for ` to become inactive with E(j) at
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illustrates possible atomic
segments, when assuming
that there is a third label
that induces the segmenta-
tion at time t .

least one witness label of Y (`, j) is active during E(j) or E(j + 1). Note that without
the explicit Constraint (7.5) and Constraint (7.6) two con�icting labels could switch
activity at any point during the con�ict interval rather than only at the endpoints.
For an example see Figure 7.4. The drawing shows an optimal solution that is valid
for the ILP formulation if the Constraint (7.5) and Constraint (7.6) are omitted. In
particular `1 becomes inactive at time t , although t is not the right boundary of the
corresponding presence interval and there is no con�ict of `1 that begins at t such that
the corresponding opponent is active from t on. Analogous observations can be made
for `2. Consequently, this solution does not satisfy AM3.

Theorem 7.1. Given an instance I = (L,Ψ,C), the ILP (7.1)–(7.6) computes an optimal

solution Φ of GeneralMaxTotal in AM3. It uses O(N · (|Ψ| + |C |)) variables and
constraints.

Proof. Every solution of the ILP corresponds to an activity Φ by de�ning for every
label ` the set Φ` as the set of all maximal intervals in

⋃
i :x `

i =1 E(i). Conversely, every
valid activity Φ in AM3 can be expressed in terms of the variables of the ILP. To show
that we �rst observe that for every valid activity interval [a,b]` in AM3 the endpoints
a and b are necessarily endpoints of a con�ict interval or a presence interval of `. Thus
[a,b]` can be expressed as the union of consecutive atomic segments represented by
the variables x `i .

It is clear that the objective function computes the weight of a solution Φ correctly.
Thus it remains to show that the Constraints (7.1)–(7.6) indeed model AM3, i.e., every
solution of the ILP satis�es AM3 and every activity in AM3 is a solution of the ILP.
It follows immediately from the de�nition of Constraints (7.1)–(7.3) that they model
the Requirements (R1)–(R3), assuming that the start- and endpoint of every activity
interval is indeed marked by setting b`i = 1 and e`j = 1 for its �rst and last atomic
segments E(i) and E(j). But this is achieved by Constraint (7.4) as discussed above.
Now in AM3 a label can only become active (inactive) at the start (end) of its presence
interval or at the end (start) of a con�ict interval if the con�icting label is active as a
witness. We show that Constraint (7.5) yields that the start of an activity interval is
correct according to AM3. The argument for the end of an activity interval follows
analogously from Constraint (7.6). Let E(i) be the �rst atomic segment in an activity
interval of the label `. Then by Constraint (7.4) we have b`i = 1 and x `i = 1. If E(i)
is the �rst segment of a presence interval then this is a valid start according to AM3.
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Note that Constraint (7.5) is not present in that case and thus does not restrict b`i .
Otherwise let E(i) be not the �rst segment of a presence interval. Then for this segment
the ILP contains Constraint (7.5). If no con�ict interval of ` ends with E(i − 1) then
Constraint (7.5) sets b`i = 0 anyways, so this is not possible. If some con�ict intervals
of ` end with E(i−1) but none of them are active in E(i−1) or E(i) then Constraint (7.5)
also yields b`i = 0. So the only two possibilities for b`i = 1 are that either E(i) is the
�rst segment of a presence interval or E(i) is the �rst segment after a con�ict interval
of ` and a witness label active at the beginning of E(i). Thus, every solution of the ILP
satis�es AM3.

Conversely, let Φ be valid according to AM3. Since Φ satis�es Requirements (R1)–
(R3), the corresponding assignment of binary values to the variables x `i , b`i , and e`i
satisfy Constraints (7.1)–(7.4). It remains to show that the Constraints (7.5) and (7.6)
hold. Let [a,b]` ∈ Φ be a particular activity interval and let E(i) be the atomic segment
starting at a. If a is the start of a presence interval of ` then there is no Constraint (7.5)
for ` and the segment E(i) and thus it is possible to have b`i = 1. Otherwise, a is the end
of a con�ict interval of ` with another label `′ that is an active witness in the atomic
segment E(i − 1) or E(i). This means that x `′i−1 = 1 or x `′i = 1 and thus Constraint (7.5)
is satis�ed for b`i = 1. Analogous reasoning for the endpoints of all activity intervals
and Constraint (7.6) yield that Φ can indeed be represented as a solution to the ILP.

Since the number of atomic segments is O(|Ψ| + |C |) and there are N labels the
bound on the size of the ILP follows. �

We can adapt the above ILP to AM1 and AM2 as follows. For AM2 we replace the
right hand side of Constraint (7.5) by 0, and for AM1 we also replace the right hand
side of Constraint (7.6) by 0. This excludes exactly the start- and endpoints of the
activity intervals that are forbidden in AM1 or AM2. It is easy to see that these ILP
formulations can be modi�ed further to solve k-RestrictedMaxTotal by adding the
constraint

∑
`∈L x

`
i ≤ k for each atomic segment E(i).

Corollary 7.1. Given an instance I = (L,Ψ,C), GeneralMaxTotal and k-Restricted-
MaxTotal can be solved in AM1, AM2, and AM3 by an ILP that uses O(N · (|Ψ| + |C |))
variables and constraints.

Approaches Based on Conflict Graphs. We reduce GeneralMaxTotal to an
independent set problem on a weighted con�ict graph G = (V ,E) such that the
maximum weight independent set inG induces the optimal solution of I . Since AM3 is
the most general model we �rst describe the reduction for this variant and then sketch
adaptations for AM1 and AM2.

Let [a,b]` ∈ Ψ be a presence interval of the label ` ∈ L. If ` becomes active within
[a,b]` , then this happens either at time a or at the end of one of the con�ict intervals of
[a,b]` . Let s1, . . . , sh denote those times. Analogously, if ` becomes inactive in [a,b]` ,
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then this happens either at time b or at the beginning of one of the con�ict intervals
of [a,b]` . Let t1, . . . , th denote those times.

Hence, if ` is active for an interval [s, t]` ⊆ [a,b]` , then there are si and tj with
si ≤ tj such that [s, t]` = [si , tj ]` . We call [si , tj ]` a candidate.

We construct the graph GAM3 = (V ,E) as follows. For any presence interval [a,b]`
of any label ` we introduce a vertex for any candidate [si , tj ]` of [a,b]` ; we identify the
vertices with their candidates and assign to each vertex the weight of the candidate.
For two candidates u and v of the same presence interval we introduce the edge {u,v}.
Thus, the candidates of the same presence interval form a clique C in G, which we
call a cluster. For two candidates of di�erent presence intervals [a,b]` and [c,d]`′ we
introduce an edge if and only if [a,b]` and [c,d]`′ are in con�ict during the intersection
of both candidates; we say that the corresponding candidates are in con�ict.

Conceptually, to constructGAM2, we remove each candidate fromGAM3 that does not
start at the beginning of its presence interval. Further removing each candidate that
does not end at the end of its presence interval gives use graph GAM1. Note, however,
that in our implementation we constructed GAM1 and GAM2 directly without GAM3.

Then an independent set I of GAM3 is precisely a set of candidates that are not in
con�ict. We interpret I as an activity set of the given instance. We call I saturated,
if there are no two candidates v ∈ I and v ′ ∈ V \ I such that I ′ = I ∪ {v ′} \ {v}
is an independent set, v ′ and v belong to the same cluster and w(I) < w(I ′), where
w(I) = ∑

u ∈Iw(u). Note that any maximum weight independent set of G is also
saturated.

Lemma 7.1. Let I be a saturated independent set of GAMX , then I is a valid activity

set of the instance I with respect to AMX where X ∈ {1, 2, 3}.

Proof. We prove the lemma only for AM3; similar arguments apply for the other two
models. Consider the labeling that we obtain by setting the labels’ activities according
to I. By construction of the candidates, each activity interval in I is contained in a
corresponding presence interval (R1). By construction of the clusters each label is set
active at most once for each presence interval (R2). Further, no two labels overlap,
because candidates in con�ict mutually exclude each other in any independent set
of GAM3 (R3).

We now prove that I satis�es AM3 by contradiction. We consider two cases. In
the �rst case there is a label ` that is active during a presence interval [a,b]` such
that ` becomes active at time s with a < s and there is no witness label `′ such
that a common con�ict ends at s . By construction there is an interval [s, t]` in I for
some t . Since a < s there is a further candidate [s ′, t]` with s ′ < s . Further, we can
choose s ′ such that [s ′, t]` is not in con�ict with any candidate of I \ {[s, t]`}. Hence,
I ′ = I ∪ {[s ′, t]`} \ {[s, t]`} is an independent set of GAM3 such that w(I ′) > w(I).
Consequently, I is not a saturated independent set, which contradicts the assumption.
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In the second case there is a label ` that is active during a presence interval [a,b]`
such that ` becomes inactive at time t < b and there is no witness label `′ such that a
common con�ict begins at t . We can use analogous arguments as in the �rst case to
show that this implied that I is not saturated. �

We use di�erent general heuristics for computing independent sets on GAMX for
X ∈ {1, 2, 3}. However, those independent sets are not necessarily saturated so that
they do not necessarily satisfy the according activity model. Thus, in a post-processing
step, we check whether the activity I satis�es AMX . If this is not the case, then there
is a cluster with two vertices v ∈ I and v ′ < I such that I ′ = I ∪ {v ′} \ {v} is an
independent set, and w(I) < w(I ′). We exchange v with v ′ and repeat the procedure
until I is saturated. We use the following heuristics for computing an independent
set I on GAMX .

Greedy. We �rst consider GeneralMaxTotal. Starting with an empty solution I,
the algorithm removes the candidate c with largest weight from GAMX and adds it
to I. Then, it removes all candidates from GAMX that are in con�ict with c . We repeat
this procedure until all candidates are removed from the graph. Since we always take
the candidate with largest weight, we can directly conclude that I is saturated.

In order to solve k-RestrictedMaxTotal for AM1, we create the graph GAM1 and
apply the procedure as described above. However, this time we remove not only all
candidates that are in con�ict with the candidate c , but also any candidate that cannot
be added to I without violating the requirement that at most k labels are active at
the same time. The resulting activity set I is then valid with respect to AM1. For
AM2 and AM3 we cannot apply the same procedure on GAM2 and GAM3, respectively,
without potentially violating the requirement of label witnesses; see also Figure 7.5. In
our evaluation we therefore use the solutions of AM1 instead, which trivially satisfy
AM2 and AM3.

For both GeneralMaxTotal and k-RestrictedMaxTotal the algorithm Greedy is
a generalization of the approximation algorithms presented in Chapter 6. The proved
approximation guarantees, however, do not apply on Greedy, because we do not make
any assumption on the labels’ shapes and weights.

PhasedLocalSearch. As a further method to �nd high-quality solutions for the
problem GeneralMaxTotal, we investigated local search algorithms for �nding a
large-weight independent set in the con�ict graph GAMX . As far as we are aware,
the Phased Local Search algorithm (PLS) by Pullan [Pul06], originally developed for
the maximum (unweighted) clique problem, is the only local search algorithm that
has been shown to �nd maximum or near-maximum independent sets on weighted
versions of standard benchmark graphs [Pul09]. Other local search algorithms [JH15]
may give higher quality solutions for the unweighted case, but they apply operations
that serve only to expand the cardinality of the independent set, which may decrease
its weight during the process.
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Figure 7.5: Activity of labels for k-RestrictedMaxTotal in AM2 and AM3 for k = 1. (a) The
optimal solution. (b) A solution wrongly produced on GAM2, GAM3, respectively. For example,
Greedy �rst adds the presence interval of `3 to the solution I. Then it adds the pre�x of `2’s
presence interval P that ends at the beginning of the con�ict with `1. It cannot add the whole
presence of `2, because otherwise more than one label is active at the same time. For the same
reason it cannot add any part of `1’s presence interval to the solution I. Hence, the end of P is
not justi�ed (only `1 could justify that end). Hence, I is not valid.

An iteration of PLS consists of repeated improvements, which add a vertex to a
current independent set I until it is maximal, followed by a plateau search, which
swaps a vertex in I for one that has one neighbor in I. When no improvement or
swap can be made, I is perturbed to include a random vertex. To ensure su�cient
diversity of solutions, vertices which are in I at the end of an iteration are penalized,
making them less likely to be considered in future iterations. Vertices recover from
penalties by a penalty decrease mechanism, where penalties are reduced according to
a dynamically updated penalty delay parameter. See [Pul06] for further details.

PLS proceeds in three phases, each of which performs iterations using one of three
speci�ed vertex selection criteria for choosing an improvement/swap among available
candidates, uniformly at random: (1) a random selection phase, which selects from all
available candidates; (2) a penalty selection phase, which selects from candidates with
the lowest penalty; and (3) a greedy selection phase, which selects from candidates
with the lowest degree. The standard PLS algorithm performs 50 iterations of greedy
selection, followed by 100 iterations of penalty selection, and 50 iterations of greedy
selection, until a stopping criteria is met.

Approach Based on Interval Graphs. The set of presence intervals Ψ induces an
interval graph H . In this graph the presence intervals form the vertex set and two
vertices are connected by an edge if and only if the corresponding intervals intersect.
We identify the vertices with the intervals. In particular each vertex has the weight of
its presence interval. The next approach makes use of H to compute the activity set Φ.

IntGraph. We �rst consider GeneralMaxTotal and repeatedly apply the following
procedure onH until all vertices are removed fromH . We compute a maximum-weight
independent set I on H , which can be done in linear time for interval graphs [HTC92].
We remove those vertices from H and add the intervals to the solution Φ. In case of
AM1, we remove also any neighbor of those vertices from H . For AM2, we do not
remove those neighbors, but rather shorten the according presence intervals to the
longest pre�xes that are not in con�ict with any presence interval of I. For AM3, we
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shorten any presence interval of the neighbors to the longest pre�x, in�x or su�x that
is not in con�ict with any presence interval of I. Vertices with empty intervals are
removed. By design, the activity set Φ is valid according the applied activity model.

When solving k-RestrictedMaxTotal we abort the procedure after the k-th itera-
tion. Since each iteration computes a set of pairwise disjoint intervals, in the computed
activity set Φ at most k labels are active at any time.

7.3 Experiments

In this section we present the experimental evaluation of the di�erent models and
algorithms for temporal map labeling considering the application of navigation systems.
To that end we computed a set of 204 trajectories on the city map of Berlin, which
are between 1km and 49km long, with an average length of 20km. We measure the
complexity of the instances by their input size |Ψ| + |Φ|, which varies between 5 and
10756 and has an average of 1870. We focused on a city map, because the density of
the recorded points of interest (POIs) in cities is signi�cantly higher (and thus more
challenging) than in the countryside. We obtained the POIs from OpenStreetMap1

(OSM) data. In order to assess on the usefulness of our approach we modeled the
choice of parameters as realistically as possible. However, the setting is an example
and can also be speci�ed di�erently.

7.3.1 Data and Experimental Setup

The trajectories for our experiments were generated from random shortest path queries
on the OSM road network of Berlin. Each trajectory is composed of a set of circular
arcs and line segments as described in Section 7.2.1. The viewport of the camera is 800
pixels wide and 600 pixels high. Its speed and zoom when moving along the trajectory
is determined by the speci�ed speed limit of the underlying road. For each speed limit
we introduce a zoom level such that it takes at least 60 seconds for a point to leave
at the bottom side of the viewport after entering the viewport on the top side. This
improves the legibility of labels moving through the viewport. The change between
two zoom levels is done by continuously applying linear interpolation changing the
zooming in reasonable time. We took all POIs which are tagged in OSM as fuel stations,
parking lots, ATMs, restaurants, cafés, hotels, motels and tourist information as well as
labels for countries, cities and villages — a set we deemed suitable for car navigation
systems. We used the font Helvetica in point size 14. We further enforce that any active
range of a label lasts at least one seconds to avoid �ickering labels. More sophisticated
approaches comprising minimum visible area of labels and minimum time between

1OpenStreetMap.org
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two active phases could be incorporated easily. In this evaluation, however, we focus
on the core of our model. Particularly, we weighted the labels equally.

All algorithms were implemented in C++ and compiled with GCC 4.8.3. ILPs were
solved by Gurobi 6.0. All experiments were performed on an AMD Opteron 6172
processor clocked at 2.1 GHz, with 256 GB of RAM. Gurobi was allowed to use up to
four cores in parallel, while all other experiments were run on a single core. Since we
focus on Phase 2, we used an easy-to-implement approach for Phase 1 by sampling the
trajectory with high resolution. Much faster, but more laborious approaches can be
applied in practice as described in Section 7.2.1.

7.3.2 Evaluation

For each trajectory we ran the di�erent algorithms of Section 7.2.2 for GeneralMax-
Total and k-RestrictedMaxTotal (with k = 5 and k = 10) in the activity models
AM1, AM2, and AM3. Any run exceeding the time limit of 600 seconds was aborted.
Similarly when the graph GAMX exceeded 107 edges or vertices the run was also
aborted to avoid memory over�ow. While for IntGraph all runs were processed, the
other approaches did not complete all runs. Both Greedy and PhasedLocalSearch
completed about 92% of the runs for GeneralMaxTotal, AM3; for the remaining 8%,
the graph exceeded the aforementioned size limits. For any other model variant, all
runs were completed. Further, Ilp sometimes exceeded its time limit for k-Restricted-
MaxTotal, AM2 and AM3: for AM2, Ilp completed about 99% and for AM3 about 66%
of the runs. For any other model variant, Ilp completed all its runs.

On each instance, we ran PhasedLocalSearch 10 times and report the average
solution size. Each run was made with a di�erent random seed and a time limit of 0.1
seconds. We chose 0.1 seconds, since we observed that PhasedLocalSearch plateaus
on nearly all instances after this time. Even with a 100-fold increase to a time limit
of 10 seconds, we did not see signi�cant improvement over the solution quality given
after 0.1 seconds (see Figure 7.10 in Section 7.5).

In the following, we conduct comparisons between the activity models, the op-
timization problems GeneralMaxTotal and k-RestrictedMaxTotal as well as
comparisons between the applied algorithms.

Activity Models. We compare the activity models AM1, AM2, and AM3 with each
other by opposing the optimal solutions obtained by Ilp. Figure 7.6 shows the ratio
between the solution for AM2 (AM3) and the solution for AM1 for GeneralMaxTotal.
By de�nition, a solution for AM1 is a lower bound for AM2, which again is a lower
bound for AM3. The activity is increased by a factor of 1.06 (1.12) on average for AM2
(AM3). Further, for GeneralMaxTotal the ratio increases with increasing complexity
of the instances. Hence, for GeneralMaxTotal the activity models AM2 and AM3

110



Experiments Section 7.3

1 52 103 154 204 Trajectories
1.00

1.05

1.10

1.15

1.20

1.25

1.30

Avg. AM2

Median AM2

Avg. AM3

Median AM3

5 308 1144 2660 10756 Complexity

Figure 7.6: GeneralMaxTotal, Comparison of Activity Models. Each data point represents
an instance solved by Ilp. X-Axis: Instances are sorted by their complexity (|Ψ| + |C |) in
increasing order. Y-Axis: Ratio between the optimal solution of AM2 (blue disks) or AM3 (red
squares) and the optimal solution for AM1.

increase the amount of displayed information moderately. For general applications
such as map exploration this improvement is potentially helpful for the user.

In contrast, for 5-RestrictedMaxTotal the activity is only increased by a factor
of 1.02 (1.04) on average for AM2 (AM3); see Figure 7.11 in Section 7.5. For 10-Re-
strictedMaxTotal we obtain a factor of 1.03 (1.06) on average for AM2 (AM3). For
both optimization problems this ratio decreases with the increasing complexity of
the instances. Hence, for k-RestrictedMaxTotal the activity models AM2 and AM3
increase the displayed amount of information only slightly, while producing more
potentially distracting visual e�ects by changing the labels’ activities during their
visibility in the viewport. Keeping in mind that k-RestrictedMaxTotal is targeted for
small screen devices such as smartphones and navigation systems, the measured gain
of additional information does not necessarily justify the additional visual distractions.
Hence, AM2 and AM3 are less relevant in the context of k-RestrictedMaxTotal.

Algorithms for GeneralMaxTotal. Next, we compare the presented algorithms
with respect to GeneralMaxTotal and AM1. Figure 7.7(a) shows the activity obtained
by single runs in relation to the optimal solution obtained by Ilp. In case that Ilp
exceeded the time limit, we used the upper bound that has been found so far by Ilp as
reference. If such an upper-bound has not been found by Ilp, the run is omitted in the
plot. Figure 7.7(b) shows the running times, again with aborted runs omitted.

Concerning quality PhasedLocalSearch outperforms the two other algorithms.
No run achieved less than 95% of the optimal solution, while for Greedy 23% and for
IntGraph 45% of the runs achieved less than 95% of the optimal solution. On average
PhasedLocalSearch achieved 99% of the optimal solution, while Greedy achieved 97%
and PhasedLocalSearch achieved 96% of the optimal solution. Concerning running
time PhasedLocalSearch (0.03 sec. in avg.) is slightly slower, then Greedy (0.001
sec.) and IntGraph (0.003 sec.). The running times of Ilp with an average of 51
seconds stayed far behind.
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(b) Running Time

Figure 7.7: GeneralMax-
Total, AM1.
Each data point represents
an instance solved by Int-
Graph (red square), Greedy
(blue disk) or PhasedLocal-
Search (PLS) (yellow dia-
mond). X-Axis: Instances
are sorted according their
complexity in increasing or-
der. Y-Axis: (a) Achieved
percentage of the optimal
ILP solution. (b) Running
time in seconds (log. scale).

For AM2 and AM3 PhasedLocalSearch is no longer the leader2 and IntGraph
outperforms the other algorithms; see Figure 7.12 in Section 7.5. For AM2 both
the average and median (about 89%) stay behind the average and median of Greedy
(about 93%) and IntGraph (about 95%). For AM3 this gap is even more pronounced (85%
vs. 90% and 94%, respectively). Further, the quality of PhasedLocalSearch is strongly
dispersed (minimum 67%). For both activity models AM2 and AM3 Greedy and
IntGraph yield similar results concerning quality. However, concerning running time
IntGraph clearly beats the other approaches and, unlike the other two approaches,
completed every run.

Optimization Models. We now compare GeneralMaxTotal with k-Restricted-
MaxTotal. For each trajectory and each integer n < |L| we determined the proportion
of the trajectory for which at leastn labels are active. For GeneralMaxTotal and AM1
we obtained the following results; similar results hold for AM2 and AM3. On average
for over 50% of the trajectory’s length more than 3 labels are active at the same time.
However, for over 25% (12.5%) of the trajectory’s length more than 8 (12) labels are
active at the same time, which already may overwhelm untrained observers [Mil56].
Further, for 67% (42%) of the instances there are times when more than 20 (40) labels are
active. In some extreme cases over 60 labels are active at the same time. Figure 7.8(a)

2The time for PhasedLocalSearch to perform a single iteration depends upon the degree of vertices
in the current independent set. Graphs for AM2 and AM3 have much higher vertex degrees than for
AM1, which explains why PhasedLocalSearch performs so poorly on these instances.
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Figure 7.8: Frame of a dynamic map labeling. While in (a) 54 labels are displayed at the same
time, in (b) 10 labels are displayed in order to limit the informational content.

shows a frame of a dynamic map labeling with 54 active labels. We emphasize that
the labeling heavily occludes the map such that its remaining content becomes hardly
legible. For the application of navigation systems it therefore lends itself to limit the
number of simultaneously active labels, which strongly motivates the usefulness of
k-RestrictedMaxTotal. Figure 7.8(b) shows the same frame with a labeling produced
by Ilp for 10-RestrictedMaxTotal.

Algorithms for k-RestrictedMaxTotal. Finally, we discuss the performance of
the algorithms for k-RestrictedMaxTotal with k = 5. Similar results hold for
the case k = 10; see Figure 7.14 in Section 7.5. Recall that PhasedLocalSearch
does not support this optimization problem. Figure 7.9 shows the quality ratios and
running times for 5-RestrictedMaxTotal in AM1; see also Figure 7.13 in Section 7.5.
IntGraph outperforms Greedy both concerning quality and running time. It achieves
more than 99% of the optimal solution on average. Further, any run achieves at
least 95% of the optimal solution. In contrast, Greedy achieves 96% of the optimal
solution on average. Further, 27% of the runs reach less than 95% of the optimal
solution, but at least 89%. Further, while IntGraph does not exceed a running time
of 0.01 seconds, Greedy needs up to 0.1 seconds. On average, IntGraph took 0.002
seconds and Greedy took 0.01 seconds. The running times of Ilp with an average
of 54 seconds stayed far behind.

7.3.3 Discussion

In the above evaluation we considered both the temporal labeling models and several
labeling algorithms. From the comparison of the three activity models we conclude
that AM1, the most restricted model that does not modify a label’s activity during its
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Figure 7.9: 5-Restricted-
MaxTotal, AM1. Each data
point represents an instance
solved by IntGraph (red
square) or Greedy (blue
disk). X-Axis: Instances are
sorted by their complexity
(|Ψ| + |C |) in increasing or-
der. Y-Axis: (a) Achieved
percentage of the optimal
ILP solution. (b) Running
time in seconds (log. scale).

presence interval and thus fully avoids �ickering, is not much worse in terms of the
total activity. Further, the quality di�erence depends on the considered optimization
problem: In GeneralMaxTotal the average improvement of AM2 is 6% and of AM3
it is 12%. For k-RestrictedMaxTotal and k = 10 the average improvement of AM2
and AM3 is only 3% and 6%, respectively. Whether the gain in displayed content of
AM2 and AM3 outweighs the additional �ickering e�ects would need to be examined
in a formal user study. The evaluation of the models further showed that without
placing any restrictions on the number of simultaneously active labels in General-
MaxTotal, we frequently observe instances with high numbers of labels, which is
not acceptable in certain applications. This justi�es the separate consideration of
k-RestrictedMaxTotal.

The comparison of the algorithms showed that di�erent algorithms are preferable
in di�erent situations. For GeneralMaxTotal and AM1 PhasedLocalSearch out-
performed the other algorithms in terms of solution quality. If considering AM2 or
AM3 instead or k-RestrictedMaxTotal, we can recommend IntGraph as the best
algorithm in both performance measures. Greedy also performs generally well and
can be used as an easy-to-implement approach. Ilp provides a simple way to compute
optimal solutions and was mainly used to evaluate the other algorithms in terms of
solution quality. It could be used directly as a solution approach, but its running time is
not reliable and external libraries are needed; thus, we think that the other approaches
are preferable in practice.
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7.4 Conclusions

In a detailed experimental evaluation, we discussed the advantages of di�erent model
variants and showed that simple and fast algorithms yield near-optimal solutions for
the application of navigation systems.

To apply our approach to maps exceeding the size of city maps, we suggest de-
composing the con�ict graph into smaller components. It seems likely that, when
taking countrysides into account, the con�ict graph either already consists of several
independent components or it contains small cuts that allow for an appropriate decom-
position. Further, since our approach essentially relies on algorithms for computing
large weighted independent sets in graphs, this is another research direction that
promises improvements to our approach.

We focused on the core of our model in order to discuss its application in general.
However, with some engineering it can easily be extended to other scenarios or
enhanced by further features such as a minimum visible area of labels, di�erent types
of map features or labels avoiding obstacles.
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7.5 Additional Plots
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Figure 7.10: GeneralMax-
Total, Quality. Each data
point represents an instance
solved by PhasedLocal-
Search. The local search
phase was aborted after 0.1
(red) and 10 (yellow) sec-
onds. X-Axis: Instances are
sorted by their complexity
(|Ψ| + |C |) in increasing
order. Y-Axis: Achieved
percentage of the optimal
ILP solution.
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Figure 7.11: Comparison of
Activity Models. Each data
point represents an instance
solved by Ilp. X-Axis: In-
stances are sorted by their
complexity (|Ψ| + |C |) in in-
creasing order. Y-Axis: Ratio
between the optimal solution
of AM2 (AM3) and the opti-
mal solution for AM1.

1 52 103 154 204 Trajectories
1.00

1.05

1.10

1.15

1.20

1.25

1.30

Avg. AM2

Median AM2

Avg. AM3

Median AM3

5 308 1144 2660 10756 Complexity

(a) GeneralMaxTotal

1 51 101 151 203 Trajectories
1.00

1.05

1.10

1.15

1.20

Median AM2

Avg. AM2

Median AM3

Avg. AM3

5 301 1137 2558 10619 Complexity

(b) 10-RestrictedMaxTotal

1 51 102 152 204 Trajectories
1.00

1.05

1.10

1.15

1.20

Median AM2

Avg. AM2

Median AM3

Avg. AM3

5 301 1141 2577 10756 Complexity

(c) 5-RestrictedMaxTotal

117



Chapter 7 Temporal Map Labeling: An Algorithmic Framework

1
52

103
154

204
Trajectories

86 88 90 92 94 96 98
100

M
edian IntGraph

Avg. IntGraph
Avg. Greedy
M

edian Greedy
Avg. PLS
M

edian PLS

5
308

1144
2660

10756
Com

plexity

(
a

)Q
uality,A

M
1

1
52

103
154

204
Trajectories

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
edian Greedy

Avg. Greedy
M

edian IntGraph
Avg. IntGraph
Avg. PLS
M

edian PLS
M

edian ILP
Avg. ILP

5
308

1144
2660

10756
Com

plexity

(
b

)Running
Tim

e,A
M

1

1
52

103
154

204
Trajectories

75 80 85 90 95

100

M
edian PLS

Avg. PLS
M

edian Greedy
Avg. Greedy
Avg. IntGraph
M

edian IntGraph

5
308

1144
2660

10756
Com

plexity

(
c
)Q

uality,A
M

2
1

52
103

154
204

Trajectories
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3

M
edian IntGraph

Avg. IntGraph
M

edian Greedy
Avg. Greedy
Avg. PLS
M

edian PLS
M

edian ILP
Avg. ILP

5
308

1144
2660

10756
Com

plexity

(
d

)Running
Tim

e,A
M

2

1
52

103
154

204
Trajectories

65 70 75 80 85 90 95
100

M
edian PLS

Avg. PLS
M

edian Greedy
Avg. Greedy
Avg. IntGraph
M

edian IntGraph

5
308

1144
2660

10756
Com

plexity

(
e

)Q
uality,A

M
3

1
52

103
154

204
Trajectories

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
edian IntGraph

Avg. IntGraph
M

edian Greedy
Avg. PLS
M

edian PLS
Avg. Greedy
M

edian ILP
Avg. ILP

5
308

1144
2660

10756
Com

plexity

(
f
)Running

Tim
e,A

M
3

F
i
g

u
r
e

7
.
1

2
:GeneralM

axTotal,Quality.Datapointsrepresentinstancessolved
by

IntGraph
(red

square)orGreedy
(bluedisk).Y-Axis:

(a),(c),(e):Achieved
percentage

ofthe
optim

alILP
solution.(b),(d),(f):Running

tim
e

in
seconds(log.scale).

118



Additional Plots Section 7.5

1
52

10
3

15
4

20
4

Tr
aj

ec
to

rie
s

88909294969810
0

M
ed

ia
n 

Gr
ee

dy

Av
g.

 G
re

ed
y

Av
g.

 In
tG

ra
ph

M
ed

ia
n 

In
tG

ra
ph

5
30

8
11

44
26

60
10

75
6

Co
m

pl
ex

ity

(
a

)
Q

ua
lit

y,
A

M
1

1
52

10
3

15
4

20
4

Tr
aj

ec
to

rie
s

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
ed

ia
n 

In
tG

ra
ph

Av
g.

 In
tG

ra
ph

M
ed

ia
n 

Gr
ee

dy
Av

g.
 G

re
ed

y
M

ed
ia

n 
IL

P
Av

g.
 IL

P

5
30

8
11

44
26

60
10

75
6

Co
m

pl
ex

ity

(
b

)
Ru

nn
in

g
Ti

m
e,

A
M

1

1
52

10
3

15
4

20
4

Tr
aj

ec
to

rie
s

88909294969810
0

M
ed

ia
n 

Gr
ee

dy

Av
g.

 G
re

ed
y

Av
g.

 In
tG

ra
ph

M
ed

ia
n 

In
tG

ra
ph

5
30

8
11

44
26

60
10

75
6

Co
m

pl
ex

ity

(
c
)

Q
ua

lit
y,

A
M

2
1

52
10

3
15

4
20

4
Tr

aj
ec

to
rie

s
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3

M
ed

ia
n 

In
tG

ra
ph

Av
g.

 In
tG

ra
ph

M
ed

ia
n 

Gr
ee

dy
Av

g.
 G

re
ed

y
M

ed
ia

n 
IL

P
Av

g.
 IL

P

5
30

8
11

44
26

60
10

75
6

Co
m

pl
ex

ity

(
d

)
Ru

nn
in

g
Ti

m
e,

A
M

2

1
50

99
14

8
19

7
Tr

aj
ec

to
rie

s

85909510
0

M
ed

ia
n 

Gr
ee

dy

Av
g.

 G
re

ed
y

Av
g.

 In
tG

ra
ph

M
ed

ia
n 

In
tG

ra
ph

5
30

0
11

18
24

70
10

75
6

Co
m

pl
ex

ity

(
e

)
Q

ua
lit

y,
A

M
3

1
52

10
3

15
4

20
4

Tr
aj

ec
to

rie
s

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
ed

ia
n 

In
tG

ra
ph

Av
g.

 In
tG

ra
ph

M
ed

ia
n 

Gr
ee

dy
Av

g.
 G

re
ed

y
M

ed
ia

n 
IL

P
Av

g.
 IL

P

5
30

8
11

44
26

60
10

75
6

Co
m

pl
ex

ity

(
f
)

Ru
nn

in
g

Ti
m

e,
A

M
3

F
i
g

u
r
e

7
.
1

3
:

5-
Re

st
ri

ct
ed

M
ax

To
ta

l,
Q

ua
lit

y.
D

at
a

po
in

ts
re

pr
es

en
ti

ns
ta

nc
es

so
lv

ed
by

In
tG

ra
ph

(re
d

sq
ua

re
)o

rG
re

ed
y

(b
lu

e
di

sk
).

Y-
A

xi
s:

(a
),(

c)
,(e

):
Ac

hi
ev

ed
pe

rc
en

ta
ge

of
th

e
op

tim
al

IL
P

so
lu

tio
n.

(b
),(

d)
,(f

):
Ru

nn
in

g
tim

e
in

se
co

nd
s(

lo
g.

sc
al

e)
.

119



Chapter 7 Temporal Map Labeling: An Algorithmic Framework

1
52

103
154

204
Trajectories

88 90 92 94 96 98

100

Avg. Greedy

M
edian Greedy

Avg. IntGraph

M
edian IntGraph

5
308

1144
2660

10756
Com

plexity

(
a

)Q
uality,A

M
1

1
52

103
154

204
Trajectories

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
edian IntGraph

Avg. IntGraph
M

edian Greedy
Avg. Greedy
M

edian ILP
Avg. ILP

5
308

1144
2660

10756
Com

plexity

(
b

)Running
Tim

e,A
M

1

1
52

103
154

204
Trajectories

75 80 85 90 95

100

M
edian Greedy

Avg. Greedy

Avg. IntGraph

M
edian IntGraph

5
308

1144
2660

10756
Com

plexity

(
c
)Q

uality,A
M

2
1

52
103

154
204

Trajectories
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3

M
edian IntGraph

Avg. IntGraph
M

edian Greedy
Avg. Greedy
M

edian ILP
Avg. ILP

5
308

1144
2660

10756
Com

plexity

(
d

)Running
Tim

e,A
M

2

1
51

101
151

200
Trajectories

75 80 85 90 95

100

M
edian Greedy

Avg. Greedy

M
edian IntGraph

Avg. IntGraph

5
301

1137
2558

10756
Com

plexity

(
e

)Q
uality,A

M
3

1
52

103
154

204
Trajectories

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
edian IntGraph

Avg. IntGraph
M

edian Greedy
Avg. Greedy
M

edian ILP
Avg. ILP

5
308

1144
2660

10756
Com

plexity

(
f
)Running

Tim
e,A

M
3

F
i
g

u
r
e

7
.
1

4
:10-RestrictedM

axTotal,Q
uality.D

ata
pointsrepresentinstancessolved

by
IntGraph

(red
square)orGreedy

(blue
disk).

Y-A
xis:(a),(c),(e):Achieved

percentage
ofthe

optim
alILP

solution.(b),(d),(f):Running
tim

e
in

seconds(log.scale).

120



8
Label Placement in Metro Maps:

Model and Theory

Abstract. Drawing network maps automatically comprises two challenging steps,
namely laying out the map and placing non-overlapping labels. In this chapter, we
tackle the problem of labeling an already existing network map considering the appli-
cation of metro maps. We present a �exible and versatile labeling model that subsumes
di�erent labeling styles. We show that labeling a single line of the network is NP-hard,
even if we make very restricting assumptions about the labeling style that is used
with this model. For a restricted variant of that model, we then introduce an e�cient
algorithm that optimally labels a single line with respect to a given cost function. In
the subsequent chapter we utilize that algorithm for a generic labeling framework,
which we also experimentally evaluate.

This chapter is based on and partly taken from joint work with Jan-Henrik Haunert
[HN15].

8.1 Introduction

Label placement and geographic network visualization are classical problems in car-
tography, which independently have received the attention of computer scientists. As
discussed in Chapter 3, label placement usually deals with annotating map features
of interest with text labels such that the associations between the features and the
labels are clear and the map is kept legible. Geographic network visualization, on
the other hand, often aims at a geometrically distorted representation of reality that
allows information about connectivity, travel times, and required navigation actions to
be retrieved easily. Computing a good network visualization is thus related to �nding
a layout of a graph with certain favorable properties [Wol13].

In many applications of network visualization both problems, creating the graph
layout and labeling important features, must be solved to the same extent to achieve a
usable network map. Take metro maps as an example. To avoid visual clutter in such
maps, an octilinear graph layout is often chosen, in which the orientation of each edge
is a multiple of 45◦ [NW11, Sto+11, WC11]; see Figure 8.1(a). Alternatively, one may
choose a curvilinear graph layout, that is, to display the metro lines as curves [Fin+13,
Goe+13]; see Figure 8.1(b).

The usefulness of such graph layouts crucially relies on the placement of the stops’
names along the metro lines. To guarantee that the user can apply the metro map
for its main purpose of navigation, all stops must be labeled and none of the placed
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(a) Octilinear graph layout. (b) Curved graph layout.

Figure 8.1: Two layouts metro maps of Vienna. Labelings were computed by our algo-
rithm. (a) Octilinear graph layout created by the approach of Nöllenburg and Wol� [NW11].
(b) Curved graph layout created by the approach of Fink et al. [Fin+13].

labels may impair the overall network layout. In this chapter, we investigate the
computational problem of placing such labels for the case that the graph layout is
already given. We use metro maps as a running example, but our results can also be
applied to other kinds of networks maps.

Computing a graph layout for a metro map and labeling the stops have been con-
sidered as two di�erent problems that can be solved in succession [WC11], but also
integrated solutions have been suggested [NW11, Sto+11]. Nevertheless, in practice,
metro maps are often drawn manually by cartographers or designers, as the existing
algorithms do not achieve results of su�cient quality in adequate time. For example,
Nöllenburg and Wol� [NW11] report that their method needed 10 hours and 31 min-
utes to compute a labeled metro map of Sydney that they present in their article, while
an unlabeled map for the same instance was obtained after 23 minutes—both results
were obtained without proof of optimality, but with similar optimality gaps. On the
other hand Wang and Chi [WC11] present an algorithm that creates the graph layout
and labeling within one second, but they cannot guarantee that labels do not overlap
each other or the metro lines.

An integrated approach that simultaneously computes a graph layout and labels
all stops allows to take all quality criteria of the �nal visualization into account. On
the other hand, treating both problems separately probably reduces computation time.
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Moreover, we consider the labeling of a metro map as an interesting problem on its
own, since, in some situations, the layout of the network is given as part of the input
and must not be changed. In a semi-automatic work�ow, for example, a cartographer
may want to draw or alter a graph layout manually before using an automatic method
to place labels, to test multiple di�erent labeling styles with the drawing. Hence, a
labeling algorithm is needed that is rather �exible in dealing with di�erent labeling
styles for metro maps.

Contribution and Outline. In this chapter, we are given the layout of a metro map
consisting of several metro lines on which stops (also called stations) are located. For
each stop we are further given its name, which should be placed close to its position.
We �rst introduce a versatile and general model for labeling metro maps; see Section 8.2.
Like many labeling algorithms for point sets [AKS98, CMS95, FW91], our algorithm
uses a discrete set of candidate labels for each point. Often, each label is represented
by a rectangle wrapping the text. Since we also want to use curved labels, however,
we represent a label by a simple polygon that approximates a fat curve, that is, a curve
of certain width re�ecting the text height. We then prove that even in that simple
model labeling a single metro line is NP-hard considering di�erent labeling styles;
see Section 8.3. Hence, we restrict the set of candidates satisfying certain properties,
which allows us to solve the problem on one metro lineC inO(n2) time, where n is the
number of stops of C; see Section 8.4. In contrast to Bekos et al. [BKS08], who place
rectangular labels for stops on a single line segment, we consider arbitrarily shaped
labels for stops on general curves. Our algorithm optimizes the labeling with respect
to a cost function based on Imhof’s [Imh75] classical criteria of cartographic quality;
see Section 8.5. The algorithm is not only of theoretical interest, but it provides a
very useful subroutine in heuristic algorithms for labeling general metro maps as we
demonstrate in Chapter 9.

Note that “stops” on “metro lines” can refer more generally to points of interest on
the lines of any kind of a network map. We address labeling styles for octilinear graph
layouts and curvilinear graph layouts that use Bézier curves. The more general model
behind our method, however, subsumes but is not limited to these particular styles.

8.2 Labeling Model

We assume that the metro lines are given by directed, non-self-intersecting curves in the
plane described by polylines, which for example have been derived by approximating
Bézier curves. We denote that set of metro lines byM. Further, the stops of each metro
lineC ∈ M are given by an ordered set SC of points onC going from the beginning to
the end of C . For two stops s, s ′ ∈ SC we write s < s ′ if s lies before s ′. We denote the
union of the stops among all metro lines by S and call the pair (M,S) a metro map.
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For each stop s ∈ S we are further given a name that should be placed close to it.
In contrast to previous work, we do not follow traditional map labeling abstracting
from the given text by bounding boxes. Instead we model a label ` of a stop s ∈ S as a
simple polygon. For example, a label could have been derived by approximating a fat
curve prescribing the name of the stop; see Figure 8.2. For each stop s we are given a
set Ks of labels, which we also call candidates of s . The set

⋃
s ∈S Ks is denoted by K .

Since “names should disturb other map content as little as possible”[Imh75], we
strictly forbid overlaps between labels and lines as well as label-label overlaps. Further,
each stop must be labeled. Hence, a set L ⊆ K is called a labeling if (1) no two labels
of L intersect each other, (2) no label ` ∈ L intersects any metro line C ∈ M, and
(3) for each stop s ∈ S there is exactly one label ` ∈ L ∩ Ks .

Problem 8.1 (MetroMapLabeling).
Given: Metro map (M,S), candidates K and cost functionw : 2K → R+.

Find: Optimal labeling L of (M,S,K,w), i.e.,w(L) ≤ w(L ′) for any
labeling L ′ ⊆ K , if a labeling exists.

The model allows us to create arbitrarily shaped label candidates for a metro map.
In our evaluation we have considered two di�erent labeling styles. The �rst style,
OctilinStyle, creates for each stop a set of octilinear rectangles as label candidates;
see Figure 8.3. We use that style for octilinear maps. The second style, CurvedStyle,
creates for each stop a set of fat Bézier curves as label candidates, which are then
approximated by simple polygons; see Figure 8.2. We use that style for curvilinear
metro maps, in order to adapt the curvilinear style of the metro map. The basic idea is
that a label perpendicularly emanates from a stop with respect to its metro line and
then becomes horizontal to sustain legibility. In the following section, we motivate
our choice of candidates based on cartographic criteria and give detailed technical
descriptions for both labeling styles.
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8.2.1 Two Examples of Labeling Styles

We extracted the rules for generating label candidates from Imhof’s “general principles
and requirements” for map labeling [Imh75]. For schematic network maps, the need
for “legibility” implies that we must not destroy the underlying design principle with
clutter. To this end, we generate candidate labels that adhere to the schematics of
the network. That is, we use straight horizontal and diagonal labels with octilinear
layouts and curved labels with curvilinear layouts.

We now describe more precisely, how we de�ned the labeling styles CurvedStyle
and OctilinStyle, which are used for curvilinear layouts and octilinear layouts,
respectively.

Curvilinear Metro Maps. For CurvedStyle, assume that the given metro map
is curvilinear. In order to achieve a “clear graphic association” between a label and
the corresponding point p, we construct the simple polygon prescribing a candidate
label based on a curve ` (possibly a straight-line segment) that emanates from p. The
candidate label itself is a continuous section of ` that does not directly start in p but at
a certain con�gurable distance from it. We de�ne the end of the candidate label on `
based on the text length and assign a non-zero width to the curve section to represent
the text height. In the case that p lies on a single curved lineC , we require that ` andC
are perpendicular in p to enhance the angular resolution of the �nal drawing. By
bending ` towards the horizontal direction, we avoid steep labels. We approximate `
by a simple polygon consisting of a constant number of line segments.

We now describe the construction of a single candidate more speci�cally. For each
stop s of each metro line C we create a constant number of curved labels adapting
the curvilinear style of the metro map. The basic idea is that a label perpendicularly
emanates from s with respect to C and then becomes horizontal to sustain legibility;
see Figure 8.2. Let ®n = (nx ,ny ) be the normalized normal vector of C at s . Further,
let d ∈ {−1, 1} and c1, c2 ∈ R+ be pre-de�ned constants. For τ = (c1, c2,d) we de�ne
the fat cubic Bézier curve bτ by the following four control points; see Figure 8.2.
p1 = s, p2 = s + 0.5 · ®v1, p3 = s + ®v1 + 0.5 · ®v2, p4 = s + ®v1 + ®v2, where ®v1 = c1 · ®n,
®v2 = sgn(®n) · (d · c2, 0), and sgn(®n) = 1 if nx > 0 and sgn(®n) = −1 otherwise. We de�ne
the thickness of bτ to be the pre-de�ned height of a label. Let `τ be the sub-curve
of bτ that starts at p1 and has the length of the name of s and let `′τ be the curve when
mirroring `τ at s . Further, let lm be the length of the longest name of a stop in S and
let Ld = {`τ , `′τ | τ ∈ {(lm , lm ,d), ( lm2 , lm ,d), (

lm
4 , lm ,d)}}. If ®n has an orientation less

than or equal to 60◦, we set Ks = L1 and otherwise Ks = L1 ∪ L−1. Hence, if ®n is
almost vertical and C is therefore almost horizontal at s , we also add the labels L−1
pointing into the opposite x-direction than ®n. In our experiments we did not let the
labels start at s , but with a certain o�set to s , in order to avoid intersections with C .

OctilinearMetroMaps. For OctilinStyle assume that the metro map is octilinear.
We model the labels as horizontal and diagonal rectangles. Let l be the line segment
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of C on which s lies and let R be an axis-aligned rectangle that is the bounding box of
the name of s . Further, let c be a circle around s with a pre-de�ned radius. We place
the labels such that they touch the boundary of c , but they do not intersect the interior
of c . Hence, the labels have a pre-de�ned o�set to s .

If l is horizontal, we place �ve copies `1, . . . , `5 of R above l as follows; see Fig-
ure 8.3(a). We place `1, `2 and `3 such that the left-bottom corner of `1, the midpoint
of `2’s bottom edge and the right-bottom corner of `3 coincides with the topmost point
of c . We rotate `4 by 45◦ counterclockwise and place it at c such that the midpoint
of its left side touches c , i.e., that midpoint lies on a diagonal through s . Finally, `5
is obtained by mirroring `4 at the vertical line through s . Mirroring `1, . . . , `5 at the
horizontal line through s , we obtain the rectangles `′1, . . . , `′5, respectively. We then
set Ks = {`i , `′i | 1 ≤ i ≤ 5}.

If l is diagonal, we create the candidates in the same manner as in the case that l is
horizontal; see Figure 8.3(b). However, we only create the candidates `2 and `′2 and the
candidates that are horizontally aligned.

If l is vertical, we place three copies `1, . . . , `3 of R to the right of l as follows; see
Figure 8.3(c). We rotate `1 by 45◦ counterclockwise and `2 by 45◦ clockwise. We
place `1, `2, `3 at c such that the midpoints of their left edges touch c . Mirroring `1,
`2, `3 at the vertical line through s , de�nes the rectangles `′1, `′2 and `′3. We set Ks =

{`i , `′i | 1 ≤ i ≤ 3}.
In case that s is a crossing of two metro lines, we create the candidates di�erently.

If s is the crossing of two diagonals, we create the candidates as shown in Figure 8.3(d).
If s is the crossing of a horizontal and a vertical segment, we create the labels as shown
in Figure 8.3(e). If s is the crossing of a diagonal and horizontal segment, we create the
labels as shown in Figure 8.3(f). We analogously create the labels, if s is the crossing
of a vertical and a diagonal segment.
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Remark: If a stop lies on multiple metro lines, then we can apply similar construc-
tions, where the labels are placed on the angle bisectors of the crossing lines.

8.3 Computational Complexity

We �rst study the computational complexity of MetroMapLabeling assuming that
the labels are either based on OctilinStyle or CurvedStyle. In particular we show
that the problem is NP-hard, if the metro map consists of only one line. The proof
uses a reduction from the NP-complete problem monotone planar 3SAT [Lic82]. Based
on the given style, we create for the set C of 3SAT clauses a metro map (M,S) such
that (M,S) has a labeling if and only if C is satis�able. The proof can be easily adapted
to other labeling styles. Note that the complexity of labeling points using a �nite set of
axis-aligned rectangular label candidates is a well-studied NP-complete problem, e.g.,
see [FPT81, FW91]. However, since we do not necessarily use axis-aligned rectangles
as labels and since for the considered labeling styles the labels are placed along metro
lines, it is not obvious how to reduce a point-feature labeling instance on an instance
of MetroMapLabeling. To show the NP-hardness, we prove that it is NP-complete to
decide whether a metro map (M,S) has a labeling based on the given labeling style.

Theorem 8.1. MetroMapLabeling is NP-hard, if the labels are based on OctilinStyle

or CurvedStyle, even if the map has only one metro line.

Proof. For the illustrations we use OctilinStyle, but the same constructions can
be done based on CurvedStyle; see end of proof. We �rst show that the problem
deciding whether (M,S) has a labeling lies in NP. We �rst create for each stop s ∈ S
its candidates Ks based on the given labeling style. We then guess for each stop s ∈ S
the label `s that belongs to the desired labeling L. We can decide in polynomial time
whether {`s | s ∈ S} is a labeling of (M,S) performing basically intersection tests.

We now perform a reduction from the NP-complete Planar Monotone 3-Sat
problem [Lic82]. Let φ be a Boolean formula in conjunctive normal form such that
it consists of n variables and m clauses and, furthermore, each clause contains at
most three literals. The formula φ induces the graph Gφ as follows. Gφ contains for
each variable a vertex and it contains for each clause a vertex. Two vertices u and
v are connected by an edge {u,v} ∈ E if and only if u represents a variable x and
v represents a clause c , such that x is contained in c . We call a clause of φ positive

(negative) if it contains only positive (negative) literals.
The formula φ is an instance of Planar Monotone 3-Sat if
1. φ is monotone, i.e., each clause is either positive or negative, and
2. the graph Gφ is planar and has a rectilinear plane embedding such that

a) the vertices representing variables are placed on a horizontal line h,
b) the vertices representing negative clauses are placed below h,
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Figure 8.4: Illustration of NP-completeness proof. (a) 3-SAT formula φ with clauses c1 =
x4 ∨ x1 ∨ x5, c2 = x2 ∨ x4 ∨ x3, c3 = x̄2 ∨ x̄1 ∨ x̄3 and c4 = x̄3 ∨ x̄5 ∨ x̄4 represented as a metro
map. Truth assignment is x1 = true, x2 = true, x3 = false, x4 = false and x5 = false. The gray
graph G represents the adjacencies of the used gadgets. The solid lines represent a spanning
tree of G that can be used to merge the polygons to one simple polygon. Exemplarily the
polygons P and Q are merged into one polygon R. The single components are illustrated in
Figure 8.5.

c) the vertices representing positive clauses are placed above h,
d) the edges are drawn on their respective side of h.

Planar Monotone 3-Sat then asks whether φ is satis�able.
Using only stops lying on single horizontal and vertical segments, we construct a

metro map (M,S) that mimics the embedding ofGφ . In particularM will only consist
of one metro line C that connects all stops such that the stops and their candidates
simulate the variables and clauses of φ. We will prove that (M,S) has a labeling if and
only if φ is satis�able. We refer to Figure 8.4 for a sketch of the construction. We �rst
de�ne gadgets simulating variables, clauses and connecting structures. Each gadget
consists of a set of stops that lie on the boundary of a simple polygon P . Later on we
use this polygon P to prescribe the shape of the metro line C .

Chain. The chain gadget represents and transmits truth values from variables to
clauses mimicking the embeddings of the edges in Gφ . A chain consists of an even
number of stops s1, . . . , sk that lie on vertical and horizontal segments; see Figure 8.5(a).
Hence, with respect to the given labeling style each stop si has a prede�ned set of
candidates Ksi . For each stop si there are two specially marked candidates `1i and `2i
that lie on opposite sides of si ’s segment; for an example see the �lled blue labels in
Figure 8.5(a). We say that those labels are selectable, because we de�ne the gadget such
that those labels are the only labels that can be selected for a labeling. To that end, we
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Figure 8.5: Illustration of
the gadgets. Selectable la-
bels are �lled, while all
other labels are not �lled.
Ports are marked with a
dashed square. (a) Chain
gadget of length 4. (b) Fork
gadget. (c) Clause gadget.
(d) Variable gadget with
three negative and three
positive ports.
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lay out the metro line such that it does not intersect any selectable label, but all labels
that are not selectable. The stops are placed such that the following conditions are
satis�ed.
(1) The label `2i intersects the label `1i+1 for 1 ≤ i < k .
(2) Except the intersections mentioned in (1), there is no intersection between se-

lectable labels of di�erent stops.
(3) The segments of the stops are connected by polylines s.t. the result is a simple

polygon P intersecting all labels except the selectable labels.
The labels `11 and `2k do not intersect any selectable labels; we call them the ports of
the chain. Later on, we use the ports to connect other gadgets with the chain, i.e.,
we arrange the gadgets such that two of their ports intersect, but no other selectable
label. Further, we assign a polarization to each selectable label. The labels `11, . . . , `1k
are negative and the labels `21, . . . , `2k are positive.
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Consider a labeling L of a chain assuming that P is interpreted as a metro line; we
can cut P at some point in order to obtain an open curve. By construction of P only
selectable labels are contained inL. In particular we observe that if the negative port `11
is not contained in L, then the positive labels `21, . . . , `2k belong to L. Analogously, if
the positive port `2k is not contained in L, then the negative labels `11, . . . , `1k belong
to L. We use this behavior to represent and transmit truth values through the chain.

Fork. The fork gadget splits an incoming chain into two outgoing chains and
transmits the truth value represented by the incoming chain into the two outgoing
chains. A fork consists of three stops s1, s2 and s3 such that s1 and s2 are placed
on vertical segments and s3 is placed on a horizontal segment; see Figure 8.5(b).
Analogously to the chain, each stop si with (1 ≤ i ≤ 3) has two selectable labels `1i
and `2i . We arrange the stops such that the following conditions are satis�ed.

1. The labels `12 and `13 intersect `21 . Apart from those two intersections no selectable
label intersects any other selectable label.

2. The segments of the stops are connected by polylines s.t. the result is a simple
polygon P intersecting all labels except the selectable labels.

The label `11 is the incoming port and the labels `22 and `23 are the outgoing ports of the
fork. We distinguish two types of forks by assigning di�erent polarizations to the
selectable labels. In the negative (positive) fork, the labels `11 , `12 and `13 are positive

(negative) and the labels are `21 , `22 and `23 are negative (positive). Hence, the incoming
port is positive (negative) and the outgoings ports are negative (positive).

Consider a labeling L of a fork assuming that P is interpreted as a metro line. By
construction of P only selectable labels belong to L. Further, if the incoming port `11
does not belong to L, then the outgoing ports `21 and `21 belong to L. Finally, if one
outgoing port does not belong to L, then the incoming port belongs to L.
Clause. The clause gadget represents a clause c of the given instance. It forms a

chain of length 2 with the addition that it has three ports instead of two ports; see
Figure 8.5(c). To that end one of both stops has three selectable labels; one intersecting
a selectable label of the other stop, and two lying on the opposite side of the stop’s
segment without intersecting any selectable label of the other stop. The gadget is
placed at the position where the vertex of c is located in the drawing of Gφ ; see
Figure 8.4. We observe that a labeling L of a clause gadget always contains at least
one port. Further, we do not assign any polarization to its selectable labels.
Variable. The variable gadget represents a single variable x . It forms a composition

of chains and forks that are connected by their ports; see Figure 8.5(d). More precisely,
let s be the number of clauses in which the negative literal x̄ occurs and let t be the
number of clauses in which the positive literal x occurs. Along the horizontal line h
on which the vertex of x is placed in the drawing ofGφ , we place a horizontal chain H .
Further, we place a sequence of negative forks F 1, . . . , F s−1 to the left of H and a
sequence of positive forks F1, . . . , Ft−1 to the right of H . The negative incoming port
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of F1 is connected to the positive port of H by a chain. Two consecutive forks Fi
and Fi+1 are connected by a chain H ′ such that H ′ connects a positive outgoing port
of Fi with the negative incoming port of Fi+1. Analogously, the positive incoming
port of F 1 is connected to the negative port of H by a chain. Two consecutive forks F i
and F i+1 are connected by a chain H ′ such that H ′ connects a negative outgoing port
of F i with the positive incoming port of F i+1.

We observe that the gadget has s + t free ports. Further, we can arrange the forks
such that the free ports of F1, . . . , Ft−1 lie above h and the free ports of F 1, . . . , F s−1
lie below h.

Consider a labeling L of a variable. By construction of the forks and chains, if one
positive free port is not contained in L, then all negative free ports must be contained
in L. Analogously, if one negative free port is not contained in L, then all positive
free ports must be contained in L.

Using additional chains we connect the positive free ports with the positive clauses
and the negative ports with the negative clauses correspondingly; see Figure 8.4. More
precisely, assume that the variable x is contained in the positive clause c; negative
clauses can be handled analogously. With respect to the drawing of Gφ , a positive free
port of x ’s gadget is connected with the negative port of a chain whose positive port
is connected with a free port of c’s gadget. Note that we can easily choose the simple
polygons enclosing the gadgets such that they do not intersect by de�ning them such
that they surround the gadgets tightly.

OneMetro Line. We construct the polygons enclosing the single gadgets such that
they do not intersect each other. We now sketch how the polygons can be merged to
a single simple polygon P . Cutting this polygon at some point we obtain a polyline
prescribing the desired metro line.

We construct a graph H = (V ,E) as follows. The polygons of the gadgets are the
vertices of the graph and an edge (P ,Q) is contained inE if and only if the corresponding
gadgets of the polygons P and Q are connected by their ports; see Figure 8.4. Since Gφ
is planar and the gadgets mimic the embedding of Gφ , it is not hard to see that H
is also planar. We construct a spanning tree T of H . If an edge (P ,Q) of H is also
contained in T , we merge P and Q obtaining a new simple polygon R; see for an
example Figure 8.4. To that end we cut P and Q in polylines and connect the four end
points by two new polylines such that the result is a simple polygon. We in particular
ensure that the new polygon does not intersect any other polygon and that R intersects
the same labels as P and Q together. In T we correspondingly contract the edge. Note
that by contracting edges, T remains a tree. We repeat that procedure until T consists
of a single vertex, i.e., only one simple polygon is left.

Soundness. It is not hard to see that our construction is polynomial in the size of
the given 3SAT formula φ.

Assume that φ is satis�able. We show how to construct a labeling L of the con-
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(a) Chain. (b) Fork. (c) Clause.

Figure 8.6: Illustration of the gadgets based on CurvedStyle. Selectable labels are �lled,
while all other labels are not �lled. (a) Chain gadget of length 4. (b) Fork gadget. (c) Clause
gadget.

structed metro map. For each variable x that is true (false) in the given truth assignment,
we put all negative (positive) labels of the corresponding variable gadget and its con-
nected chains into L. By construction those labels do not intersect. It remains to
select labels for the clause gadgets. Consider a positive clause c; negative clauses
can be handled analogously. Since φ is satis�able, c contains a variable x that is true
in the given truth assignment of φ. The set L contains only negative labels of the
chain connecting the gadget of x with the gadget of c , but no positive labels of that
chain. Hence, we can add the port of c’s gadget that is connected to that chain without
creating intersections. For the second stop of the clause we put that selectable label
into L that is not a port. We can apply this procedure to all positive and negative
clauses without creating intersections, which yields the labeling L of the constructed
metro map.

Finally, assume that we are given a labeling L of the constructed metro map. Con-
sider the clause gadget of a positive clause c; negative clauses can be handled anal-
ogously. By construction L contains at least one port ` of that gadget. This port is
connected to a chain, which is then connected to a gadget of a variable x . We set that
variable x true. We apply this procedure to all clauses; for negative clauses we set
the corresponding variable to false. Since ` is contained in L, only negative labels
of that chain can be contained in L, but no positive labels. Hence, the positive ports
of the variable gadget of x are also not contained in L. By the previous reasoning
this implies that all negative ports of the gadget are contained in L. Consequently, by
applying a similar procedure to negative clauses, it cannot happen that x is set to false.
Altogether, this implies a valid truth assignment of φ.

Remarks: Figure 8.6 illustrates the construction of the gadgets for CurvedStyle.
Note that only the fork gadget, the clause gadget and the chain gadget rely on the
concrete labeling style. Further, using CurvedStyle, a stop s lying on a vertical
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s1

s2
s3 s4 s5

s6

consecutive

switchover
switchover

C

(a) Notation.

s′′s

`

`′′

C

s′

`′

(b) TP satis�ed.

s′′s

`

`′′= `v

`′=`u

s′
C

(c) TP not satis�ed.

Figure 8.7: (a) Consecutive stops and switchovers. (b) The candidates satisfy the transitivity
property (TP). (c) The candidates do not satisfy the transitivity property.

segment lv has exactly two di�erent distinguish labels; one that lies to the left of lv
and one that lies to the right of lv . �

8.4 Labeling Algorithm for a Single Metro Line

We now study the case that the given instance I = (M,S,K,w) consists only of one
metro lineC . Based on cartographic criteria we introduce three additional assumptions
on I , which allows us to e�ciently solve MetroMapLabeling.

For each stop s ∈ S , we assume that each candidate ` ∈ Ks is assigned to one
side of C; either ` is a left candidate assigned to the left side of C , or ` is a right

candidate assigned to the right side of C . For appropriately de�ned candidate sets
those assignments correspond with the geometric positions of the candidates, i.e., left
(right) candidates lie on the left (right) hand side of C .

Assumption 8.1 (Separated Labels). Candidates that are assigned to di�erent sides

of C do not intersect.

This assumption is normally not a real restriction, because for appropriately de�ned
candidate sets and realistic metro lines, the line C separates both types of candidates
geometrically. We further require what we call the transitivity property.

Assumption 8.2 (Transitivity Property). For any three stops s, s ′, s ′′ ∈ S with s < s ′ <
s ′′ and any three candidates ` ∈ Ks , `

′ ∈ Ks ′ and `
′′ ∈ Ks ′′ assigned to the same side

of C , it holds that if neither ` and `′ intersect nor `′ and `′′ intersect then also ` and `′′

do not intersect; see also Figure 8.7(b)–(c).

In Chapter 9 we establish Assumption 8.1 and Assumption 8.2 by removing candi-
dates greedily. We particularly show that for real-world metro maps and the considered
candidate sets we remove only few labels, which indicates that those assumptions
have only a little in�uence on the labelings.

Two stops s, s ′ ∈ S with s < s ′ are consecutive if there is no other stop s ′′ ∈ S
with s < s ′′ < s ′; see Figure 8.7(a). For two consecutive stops s1, s2 ∈ S we say that
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each two candidates `1 ∈ Ks1 and `2 ∈ Ks2 are consecutive and denote the set that
contains each pair of consecutive labels in L ⊆ K by PL ⊆ L × L. Further, two
consecutive labels `1, `2 ∈ KC form a switchover (`1, `2) if they are assigned to opposite
sides of C , where (`1, `2) denotes an ordered set indicating the order of the stops of `1
and `2. Two switchovers of C are consecutive in L ⊆ K if there is no switchover in L
in between of both. We de�ne the set of all switchovers in K byW and the set of
consecutive switchovers in L ⊆ K by ΓL ⊆ W ×W.

Based on cartographic criteria extracted from Imhof’s “general principles and re-
quirements” for map labeling [Imh75], we require a cost function w : 2K → R+ of the
following form; see also Section 8.5 for a detailed motivation of w .

Assumption 8.3 (Linear Cost Function). For any L ⊆ K we require

w(L) =
∑̀
∈L

w1(`) +
∑

(`1, `2)∈PL

w2(`1, `2) +
∑

(σ1,σ2)∈ΓL

w3(σ1,σ2),

where w1 : L → R rates a single label, w2 : PL → R rates two consecutive labels and

w3 : ΓL → R rates two consecutive switchovers.

In particular, we de�ne w such that it penalizes the following structures to sustain
readability. (1) Steep or highly curved labels. (2) Consecutive labels that lie on di�erent
sides of C , or that are shaped di�erently. (3) Consecutive switchovers that are placed
close to each other.

If I = ({C},S,K,w) satis�es Assumption 8.1–8.3, we call MetroMapLabeling
also SoftMetroLineLabeling. We now introduce an algorithm that solves this
problem in O(n2k4) time, where n = |S| and k = max{|Ks | | s ∈ S}. Note that k is
typically constant. We assume w.l.o.g. that K contains only candidates that do not
intersect C .

Labels on One Side. We �rst assume that all candidate labels in K are assigned
either to the left or to the right side ofC ; without loss of generality to the left side ofC .
For two stops s, s ′ ∈ S we denote the instance restricted to the stops {s, s ′} ∪ {s ′′ ∈
S | s < s ′′ < s ′} by I [s, s ′]. We denote the �rst stop of C by s and the last stop by s .
The transitivity property directly yields the next lemma.

Lemma 8.1. Let s , s ′ and s ′′ be stops with s < s ′ < s ′′, L be a labeling of I [s, s ′],
` ∈ L ∩ Ks and `

′ ∈ L ∩ Ks ′ . Any `
′′ ∈ Ks ′′ intersecting ` also intersects `

′
.

Proof. Recall for the proof that we assume that I satis�es Assumptions 8.1–8.3.
Assume for the sake of contradiction that there is a candidate `′′ ∈ Ks ′′ such that `′′

intersects ` but not `′; see Figure 8.7(c). Since L is a labeling, the labels ` and `′ do
not intersect. Hence, neither ` and `′ nor `′ and `′′ intersect. Since all three labels
are assigned to the same side of C , the transitivity property holds, which directly
contradicts that ` and `′ do not intersect. �

134



Labeling Algorithm for a Single Metro Line Section 8.4

Figure 8.8: Illustrations
for labeling a single metro
line. (a) A one-sided in-
stance and (b) the acyclic
directed graphG based on
its labels. (c) A two-sided
instance with a labeling.
The switchovers σ ′ and σ
separate the labeling into
a two-sided and a one-
sided instance.
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Hence, the lemma states that `′ separates L from the candidates of the stops suc-
ceeding s ′. We use this observation as follows. Based on K we de�ne a directed
acyclic graph G = (V ,E); see Figure 8.8(a)–(b). This graph contains a vertex u for each
candidate ` ∈ K and the two vertices x and y. We call x the source and y the target

of G. Let `u denote the candidate that belongs to the vertex u ∈ V \ {x ,y}. For each
pair u,v ∈ V \ {x ,y} the graph contains the edge (u,v) if and only if the stop of `u
lies directly before the stop of `v and, furthermore, `u and `v do not intersect. Further,
for each vertex u of any candidate of s the graph contains the edge (x ,u), and for each
vertex u of any candidate of s the graph contains the edge (u,y). For an edge (u,v) ∈ E
we de�ne its cost we as follows. For u , x and v , y we set we = w1(`v ) +w2(`u , `v ).
For x = u we set we = w1(`v ) and for v = y we set we = 0.

An x-y path P ⊆ E in G is a path in G that starts at x and ends at y. Its costs
are w(P) = ∑

e ∈P we . The x-y path with minimum costs among all x-y paths is the
shortest x-y path.

Lemma 8.2. For any x-y path P in G there is a labeling L of I withw(P) = w(L) and
for any labeling L of I there is an x-y path P in G withw(P) = w(L).

Proof. Recall for the proof that we assume that I satis�es Assumptions 8.1–8.3.
Let P = (VP ,EP ) be an x-y path in G and let L = {`v ∈ K | v ∈ VP }, where VP

denotes the vertices of P and EP the edges of P . We show that L is a labeling of C
with w(L) = w(P). Obviously, for each stop s ∈ S the set L contains exactly one
candidate ` ∈ Ks . By construction for each edge (u,v) ∈ EP the labels `u and `v do
not intersect. Hence, by Lemma 8.1 the label `v cannot intersect any label ` ∈ L of
any stop that occurs before the stop of `u . Hence, the set L is a labeling. Let `1, . . . , `n
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be the labels in L in the order of their stops. It holds

w(P) =
∑
e ∈EP

we = w1(`1) +
n∑
i=2
(w1(`i ) +w2(`i−1, `i )) = w(L) (8.1)

Now, let L be an arbitrary labeling of C . We show that there is an x-y path P
with w(P) = w(L). Let s and s ′ be two consecutive stops with s < s ′ and let `
and `′ be the corresponding labels in L. Since ` and `′ do not intersect, the corre-
sponding vertices u and u ′ of ` and `′ are adjacent in G . Hence, the labels in L induce
a path P in G. Let `1, . . . , `n be the labels in L in the order of their stops. Using
Equation (8.1) we obtain w(P) = w(L). �

The lemma in particular proves that a shortest x-y path P in G corresponds with an
optimal labeling of I . Due to [Cor+09, Chapter 24], P can be constructed inO(|V |+ |E |)
time using a dynamic programming approach, which we call MinPath; see also
Chapter 2. In particular MinPath considers each edge only once. There are O(n · k)
vertices in G and each vertex has at most k incoming edges, which implies that there
are O(n · k2) edges. Since MinPath considers each edge only once, we compute the
edges of G on demand, which saves storage.

Theorem 8.2. If I is one-sided, SoftMetroLineLabeling can be optimally solved

in O(nk2) time and O(nk) space.

Labels on Both Sides. If candidates lie on both sides of the metro line, we solve
the problem utilizing the algorithm for the one-sided case.

Consider a labeling L of I and let σ , σ ′ be two switchovers in L such that σ lies
before σ ′ and no other switchover lies in between both; see Figure 8.8(c). Roughly
spoken, σ and σ ′ induce a two-sided instance that lies before σ and a one-sided instance
that lies in between both switchovers σ and σ ′.

Lemma 8.3. Let s , s ′1, s
′
2 and s

′′
be stops with s < s ′1 < s ′2 < s ′′; s ′1 and s

′
2 are consecutive.

Let L be a labeling of I [s, s ′2], ` ∈ L ∩ Ks , `
′
1 ∈ L ∩ Ks ′1 , `

′
2 ∈ L ∩ Ks ′2 s.t. (`

′
1, `
′
2) is a

switchover. Any `′′ ∈ Ks ′′ intersecting ` intersects `
′
1 or `

′
2.

Proof. Recall for the proof that we assume that I satis�es Assumptions 8.1–8.3.
Assume for the sake of contradiction that there is a label `′′ ∈ Ks ′′ such that `′′

intersects ` without intersecting `′1 and `′2. Since ` and `′′ intersect each other, due
to Assumption 8.1 both are assigned to the same side of C; w.l.o.g., let ` and `′′ be
assigned to the left hand side of C . Further, w.l.o.g., let `′1 be a left candidate and `′2 a
right candidate; analogous arguments hold for the opposite case. Since L is a labeling,
the labels ` and `′1 do not intersect. Hence, neither ` and `′1 nor `′1 and `′′ intersect.
Since `, `′1 and `′′ are assigned to the same side of C , the transitivity property must
hold. However, this contradicts that ` and `′′ intersect. �
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Hence, the lemma yields that for the one-sided instance in between σ and σ ′ we
can choose any labeling; as long as this labeling does not intersect any label of σ or σ ′,
it composes with σ , σ ′ and the labeling of the two-sided instance to one labeling for
the instance up to σ ′. We use that observation as follows.

Let σ = (`1, `2) and σ ′ = (`′1, `′2) be two switchovers inW. Let s1 and s2 be the stops
of `1 and `2, and let s ′1 and s ′2 be the stops of `′1 and `′2, respectively; see Figure 8.8(c).
We assume that σ < σ ′, i.e., s1 < s ′1. Let I (σ ,σ ′] be the instance restricted to the
stops {s ∈ S | s2 < s < s ′1}∪ {s ′1, s ′2}, where (σ ,σ ′] indicates that the stops of σ ′ belong
to that instance, while the stops of σ do not.

The switchovers σ and σ ′ are compatible if `2 and `′1 are assigned to the same side
of C , and there is a labeling for I [s1, s

′
2] such that it contains `1, `2, `′1 and `′2 and,

furthermore, σ and σ ′ are the only switchovers in that labeling. Let L be an optimal
labeling among those labelings. We denote the labelingL\{`1, `2} of I (σ ,σ ′] byAσ ,σ ′ .
Utilizing Theorem 8.2, we obtain Aσ ,σ ′ in O(n · k2) time.

For any labeling L of an instance J let hL ∈ L be the label of the �rst stop in J
and let tL ∈ L be the label of the last stop in J ; hL is the head and tL is the tail

of L. For technical reasons we extend S by the dummy stops d1, d2, d3 and d4 such
that d1 < d2 < s < d3 < d4 for any stop s ∈ S. For d1 and d2 we introduce the dummy

switchover ⊥ and for d3 and d4 the dummy switchover >. We de�ne that ⊥ and >
are compatible to all switchovers inW and that ⊥ and > are compatible, if there is a
one-sided labeling for I . Conceptually, each dummy switchover consists of two labels
that are assigned to both sides of C . Further, neither ⊥ nor > has any in�uence on the
cost of a labeling. Hence, w.l.o.g. we assume that they are contained in any labeling.

Similar to the one-sided case we de�ne a directed acyclic graph G ′ = (V ′,E ′).
This graph contains a vertex u for each switchoverW ∪ {⊥,>}. Let σu denote the
switchover that belongs to the vertex u ∈ V . In particular let x denote the vertex of ⊥
and y denote the vertex of >. For each pair u,v ∈ V the graph contains the edge (u,v)
if and only if σu and σv are compatible and σu < σv . The cost we of an edge e = (u,v)
in G ′ is we = w(Aσu,σv ) +w3(σu ,σv ) +w2(`u2 ,hAσu ,σv

), where σu = (`u1 , `u2 ). In the
special case that σu and σv share a stop, we set we = w3(σu ,σv ) +w2(`v1 , `v2 ) +w1(`v2 ),
where σv = (`v1 , `v2 ).

Let P be an x-y path inG ′ and let e1 = (x = v0,v1), e2 = (v1,v2), . . . , el = (vl−1,vl =
y) be the edges of P . For a vertex vi of P with 0 ≤ i ≤ l we write σi instead of σvi . We
denote the set

⋃l
i=1Aσi−1,σi by LP .

Lemma 8.4. a) The graph G ′ has an x-y path if and only if I has a labeling.
b) Let P be a shortest x-y path in G ′, then LP is an optimal labeling of I .

Proof. Recall for the proof that we assume that I satis�es Assumption 8.1–8.3.
By construction ofG ′, it directly follows thatG ′ has an x-y path P if and only if I has

a labeling L. We �rst show that LP is a labeling of I with w(LP ) = w(P). Afterwards
we prove that for any labeling L of I it holds w(L) ≥ w(LP ).
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Let e1 = (v0,v1), e2 = (v1,v2), . . . , el = (vl−1,vl ) be the edges of P with v0 = x and
vl = y. For a vertexvi with 0 ≤ i ≤ l we write σi instead of σvi . We show by induction
overm ∈ N with 1 ≤ m ≤ l that

Lm :=
m⋃
i=1
Aσi−1,σi

is a labeling of I (σ0,σm]withw(Lm) =
∑m

i=1wei . Altogether this implies thatLP = Ll
is a labeling with w(LP ) = w(P).

For m = 1 we have L1 = Aσ0,σ1 . By the construction of G ′ the set Aσ0,σ1 is a
labeling. Since σ0 = (`0, `1) is a dummy switchover we have w3(σ0,σ1) = 0 and
w2(`2,hAσ0,σ1

) = 0. Hence, it holds w(Aσ0,σ1) = we1 .
Now, consider the setLm form > 1. We �rst argue that Lm is a labeling of I (σ0,σm].

By induction the set Lm−1 ⊆ Lm is a labeling of I (σ0,σm−1]. Further, by construction
the set Lm \ Lm−1 = Aσm−1,σm is a labeling of the instance I (σm−1,σm]. Since σm−1
and σm are compatible, no label of Lm \ Lm−1 intersects any label of σm−1. Then by
Lemma 8.3 no two labels in Lm intersect each other.

We now show that w(Lm) =
∑m

i=1wei . By induction we have w(Lm−1) =
∑m−1

i=1 wei .
Since Lm = Lm−1 ∪ Aσm−1,σm it holds

w(Lm) = w(Lm−1 ∪ Aσm−1,σm ). (8.2)

We distinguish two cases. First assume that σm−1 and σm do not have any stop in
common. Let σm−1 = (`m−1

1 , `m−1
2 ), then we derive from Equation (8.2)

w(Lm) =w(Lm−1 ∪ Aσm−1,σm )
=w(Lm−1) +w(Aσm−1,σm ) +w3(σm−1,σm) +w2(`m−1

2 ,hAσm−1,σm
)

(I )
=w(Lm−1) +wem

(I I )
=

m∑
i=1

wei .

Equality (I) holds due to the de�nition of wem and Equality (II) is by induction true.
Now assume that σm−1 and σm have a stop in common. Let σm = (`m1 , `m2 ), then we
derive from Equation (8.2)

w(Lm) =w(Lm−1 ∪ Aσm−1,σm )
=w(Lm−1) +w3(σm−1,σm) +w2(`m1 , `m2 ) +w1(`m2 )

(I I I )
= w(Lm−1) +wem

(IV )
=

m∑
i=1

wei .

Equality (III) holds due to the de�nition of wem and Equality (IV) is by induction true.
Altogether we obtain that Ll is a labeling with w(Ll ) = w(P).
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Finally we show, that there is no other labeling L with w(L) < w(LP ). Assume for
the sake of contradiction that there is such a labeling L. Let ⊥ = σ0,σ1, . . . ,σl = >
be the switchovers in L, such that σi < σi+1 for each 0 ≤ i < l . We observe that two
consecutive switchovers σi and σi+1 are compatible. Hence, for any i with 1 ≤ i ≤ l
there is an edge ei = (u,v) in G ′ with σu = σi−1 and σv = σi+1. Consequently, the
edges e1, . . . , el form an x-y path Q . By the �rst two claims of this lemma, there is a
labeling LQ of I with w(Q) = w(LQ ). Since P is a shortest x-y path it holds

w(L) < w(LP ) = w(P) ≤ w(Q) = w(LQ )

We now show that w(LQ ) ≤ w(L) deriving a contradiction. To that end recall that

LQ =

l⋃
i=1
Aσi−1,σi .

For 1 ≤ i ≤ l the set Aσi−1,σi is an optimal labeling of the instance I (σi−1,σi ] such
that Aσi−1,σi ∪ σi−1 is a labeling and σi is the only switchover contained in Aσi−1,σi .
Let Li ⊆ L and LQ

i ⊆ LQ be the labelings restricted to I (σi−1,σi ]. In particular we
have LQ

i = Aσi−1,σi and σi is the only switchover in Li . If we had w(LQ ) > w(L),
there must be two consecutive switchovers σi−1 and σi such that w(Li ) < w(LQ

i ).
However, this contradicts the optimality of Aσi−1,σi . Consequently, it holds w(LQ ) ≤
w(L) yielding the claimed contradiction. �

By Lemma 8.4 a shortest x-y path P in G ′ corresponds with an optimal labeling L
of C , if this exists. Using MinPath we construct P in O(|V ′ | + |E ′ |) time. SinceW
containsO(nk2) switchovers, the graphG ′ containsO(nk2) vertices andO(n2k4) edges.
As MinPath considers each edge only once, we compute the edges of G ′ on demand,
which needs O(nk2) storage. We compute the costs of the incoming edges of a ver-
tex v ∈ V ′ utilizing the one-sided case. Proceeding naively, we need O(nk2) time per
edge, which yields O(n3k6) time in total.

Reusing already computed information, we improve that result as follows. Let
(u1,v), . . . , (uk ,v) denote the incoming edges of v such that σu1 ≤ · · · ≤ σuk , i.e., the
stop of σui ’s �rst label does not lie after the stop of σuj ’s �rst label with i < j . Further,
let σv = (`1v , `2v ) and let Gi be the graph for the one-sided instance I [si , s] considering
only candidates that lie on the same side as `1v , where si is the stop of the second label
of σui and s is the stop of `1v . Let Pi be the shortest xi -yi path in Gi , where xi and yi
denote the source and target of Gi , respectively. We observe that excluding the source
and target, the graph Gi is a subgraph of G1 for all 1 ≤ i ≤ k . Further, since a subpath
of a shortest path is also a shortest path among all paths having the same end vertices,
we can assume without loss of optimality that when excluding xi and yi from Pi , the
path Pi is a sub path of P1 for all 1 ≤ i ≤ k . We therefore only need to compute G1
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and P1 and can use subpaths of P1 in order to gain the costs of all incoming edges of v .
Hence, we basically apply for each vertex v ∈ V the algorithm for the one-sided case
once using O(nk2) time per vertex. We then can compute the costs in O(1) time per
edge, which yields the next result.

Theorem 8.3. SoftMetroLineLabeling can be optimally solved in O(n2k4) time

and O(nk2) space.

8.5 Cost Function

In this section we motivate the cost function introduced in Section 8.4. For a given
metro map ({C},S) that consists of a single metro lineC , and generated candidatesK ,
we rate each labeling L ⊆ K using the following cost function:

w(L) =
∑̀
∈L

w1(`) +
∑

(`1, `2)∈PL

w2(`1, `2) +
∑

(σ1,σ2)∈ΓL

w3(σ1,σ2),

where w1 : L → R rates a single label, w2 : PL → R rates two consecutive labels and
w3 : ΓL → R rates two consecutive switchovers; see Assumption 8.3. The de�nition
of this function relies on the following considerations, which are based on Imhof’s
“general principles and requirements” for map labeling [Imh75].

To respect that some (e.g., steep and highly curved) labels are more di�cult to read
than others, we introduce a cost w1(`) for each candidate label `.

Imhof further notes that “names should assist directly in revealing spatial situation”
and exempli�es this principle with maps that show text only while still conveying
the most relevant geographic information. To transfer this idea to metro maps, we
favor solutions where the labels for each two consecutive stops on a metro line have
similar properties. That is, the two labels should be placed on the same side of the line
and their slopes and curvatures should be similar. In a map satisfying this criterion, a
user need not �nd the point-text correspondence on a one-to-one basis. Instead, the
user can identify metro lines and sequences of stops based on label groups, which, for
example, makes it easier to count the stops till a destination. (Of course, this is also
an improvement in terms of legibility.) In our model, we consider the similarity of
consecutive labels by introducing a cost w2(`1, `2) for each pair (`1, `2) of candidates
that belong to consecutive stops on C . We penalize consecutive candidates that lie
on opposite sides of the metro line, because those disturb the overall label placement.
We add this cost to the objective value of a solution if both candidates are selected.
Since we minimize the total costs of the solution, the cost for a pair of candidates
should be low if they are similar. Further, if C has labels that do not lie on the same
side of C , the implied switchovers should occur in regular distances and not cluttered.
Hence, for each pair σ1 and σ2 of two consecutive switchovers in a solution, we add
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a cost w3(σ1,σ2) to the objective value of the solution that depends on the distance
between σ1 and σ2; the smaller the distance, the greater the cost of w3(σ1,σ2).

We now give examples, how w1, w2 and w3 can be speci�cally de�ned for Curved-
Style and OctilinStyle. In Chapter 9 we use these concrete choices of w1, w2 and
w3 for our evaluation. The de�nitions depend on the applied labeling style.

Curved Labels. Using CurvedStyle for the labels we de�ne the cost functions as
follows. For a label ` ∈ K let p1

`
= (x1

`
,y1

`
) be the start point of ` and let p2

`
= (x2

`
,y2

`
)

be the end point of `; recall that we derived the labels from Bézier curves. Let ®v` be
the vector connecting p1

`
with p2

`
and let α ∈ [0, 2π ] denote the angle of ®v` . We de�ne

δ` =


α` 0 ≤ α ≤ π

2
π − α` π

2 < α ≤ π
α` − π π < α ≤ 3

2π

2π − α` 3
2π < α < 2π

Hence, the angle δ` is a measure for how horizontal the vector ®v` is, whereby the
smaller the value of δ` , the more horizontal is ®v` .

We de�ned the cost functionw1 rating a single label ` ∈ K to bew1 = 10 ·δ` . Hence,
we penalize steep labels. We de�ned w2 rating two consecutive labels `1 and `2 as
follows. If `1 and `2 point into di�erent x-direction, w2 is 150. Else, if `1 and `2 are
switchovers, the cost w2 is 0. In all other cases, w2 is the di�erence between the angle
α`1 and α`2 . Hence, in the latter case we penalize labels that are di�erently aligned.
Finally, w3 rating two switchovers σ1 and σ2 of the same line is de�ned as w3 =

200
dσ1,σ2

,
where dσ1,σ2 is the number of stops in between σ1 and σ2. In particular w3 e�ects that
a labeling with equally sized sequences of labels lying on the same side of their metro
line are rated better than a labeling where the sequences are sized irregularly.

Octilinear Labels. Using OctilinStyle for the labels we de�ne the cost functions
as follows. Recall that we use OctilinStyle for octilinear metro maps. For a label ` let
l` be the segment on which its stop is placed. If l` is horizontal, but ` is not diagonal,
we set w1 = 200. If l` is vertical or diagonal, but ` is not horizontal, we set w1 = 100.
In all other cases we set w1 = 0. The functions w2 and w3 are de�ned in the same way
as for CurvedStyle.

8.6 Conclusions

In this chapter, we investigated the problem of labeling metro maps, namely labeling
each of its stations with respect to a given objective function. To that end, we followed
a candidate-based approach. We showed that selecting an appropriate candidate for
each stop is NP-hard in general, even if we only consider a single metro line. Therefore,
we relaxed the constraints slightly by introducing some further assumptions on the
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candidates as well as on the objective function. This allows us to optimally label
a single metro line in O(n2k4) time. The assumption on the objective function still
ensures the possibility to rate single labels, consecutive labels as well as consecutive
switchovers, which is crucial to model cartographic criteria appropriately. We further
gave a concrete de�nition of the cost function that is based on cartographic criteria
introduced by Imhof [Imh75].

Since metro maps rarely consist of single lines, in the next chapter we present a
work�ow that utilizes the presented algorithm to label a complete metro map. We
particularly show that the assumptions we made have no signi�cant impact on the
overall labeling.
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9
Label Placement in Metro Maps:

An Algorithmic Framework

Abstract. Based on the algorithm for labeling single metro lines introduced in
the previous chapter, we present a general and sophisticated work�ow for labeling
multiple metro lines. Further, we experimentally evaluate our approach on real-world
metro maps and show that it achieves near-optimal solutions in appropriate time. To
obtain optimal solutions for comparison, we make use of integer linear programming
formulations.

This chapter is based on and partly taken from joint work with Jan-Henrik Haunert
[HN15].

9.1 Introduction

Metro maps of medium and large cities typically consist of multiple convoluted metro
lines: they are connected by transfer stations, run closely in parallel and cross each
other. Thus, metro maps often form complex network structures. To draw them in
practice, we can utilize the algorithm of the previous chapter that labels a single metro
line. Based on that algorithm, we introduce an e�cient work�ow for labeling metro
maps consisting of multiple metro lines; see Section 9.2. Our method is similar to the
heuristic presented by Kakoulis and Tollis [KT98], in the sense that it discards some
label candidates to establish a set of preconditions that allow for an e�cient exact
solution. However, our model of quality is more general than the one of Kakoulis and
Tollis, because it not only takes the quality of individual labels but also the quality of
pairs of labels for consecutive metro stations into account. In Section 9.3, we present
alternative approaches that help us to evaluate our approach. This comprises a simple
greedy algorithm as well as integer linear programming formulations. In Section 9.4,
we present experiments conducted on realistic metro maps. We show that our approach
creates high quality labelings in short time. In the remainder of this chapter, we use
the notation and de�nitions introduced in Chapter 8.

9.2 Multiple Metro Lines

In this section we consider the problem that we are given a metro map (M,S) consist-
ing of multiple metro lines. We present an algorithm that creates a labeling for (M,S)
in two phases. Each phase is divided into two steps; see Figure 9.1 for a schematic
illustration. In the �rst phase the algorithm creates the set K of label candidates and
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4th
Step

3rd
Step

2nd
Step

1st
Step

Figure 9.1: Schematic illustration of the presented work�ow. 1st Step: generation of candi-
dates. 2nd Step: scaling and creation of initial labeling (red labels). 3rd Step: pre-selection of
candidates. 4th Step: Solving the metro lines independently.

ensures that there exists at least one labeling for the metro map. In the second phase
it then computes a labeling L for (M,S,K). To that end it makes use of the labeling
algorithm for a single metro line; see Section 8.4. In order to rate L, we extend the
cost function w for a single metro line on multiple metro lines, i.e., for any L ⊆ K we
require

w(L) =
∑
C ∈M

w(C) with w(C) =
∑
`∈LC

w1(`) +
∑

(`1, `2)∈PLC

w2(`1, `2) +
∑

(σ1,σ2)∈ΓLC

w3(σ1,σ2),

where LC = L ∩ KC is the labeling restricted to metro line C ∈ M, w1 : LC → R

rates a single label, w2 : PLC → R rates two consecutive labels and w3 : ΓLC → R

rates two consecutive switchovers of C . In particular w satis�es Assumption 8.3 for a
single metro line.

Altogether, the work�ow yields a heuristic that relies on the conjecture that us-
ing optimal algorithms in single steps is su�cient to obtain good labelings. In our
evaluation we call that approach DpAlg.

9.2.1 First Phase – Candidate Generation

First, we create the label candidates K . We then enforce that there is a labeling L for
the given instance I = (M,S,K).

1st Step – Candidate Creation. Depending on the labeling style, we generate
a discrete set of candidate labels for every stop. Hence, we are now given the in-
stance (M,S,K,w). In particular we assume that each candidate ` ∈ K is assigned to
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one side of its metro line C , namely to the left or right side of C , and, furthermore, w
is a cost function satisfying Assumption 8.3 for each metro line C .

2nd Step – Scaling. Since each stop of a metro map must be labeled, we �rst apply
a transformation on the given candidates to ensure that there is at least one labeling
of the metro map. To that end we �rst determine for each stop s ∈ S of each metro
line C ∈ M two candidates of Ks that are assigned to opposite sides of C . More
speci�cally, among all candidates in Ks that are assigned to the right hand side of C
and that do not intersect any metro line ofM, we take that candidate `R ∈ Ks with
minimum costs, i.e., w1(`) is minimal. If such a candidate does not exist, because each
label ofKs intersects at least one metro line, we take a pre-de�ned label `R ∈ Ks that is
assigned to the right hand side ofC . In the same manner we choose a candidate `L ∈ Ks
that is assigned to the left hand side ofC . Let Ds = {`R, `L}, we now enforce that there
is a labeling L of I such that for each stop s ∈ S it contains a label of Ds .

We check whether the set
⋃

s ∈S Ds admits a labeling L for I . Later, we describe
more speci�cally how to do this. If L exists, we continue with the third step of the
algorithm using I and L as input. Otherwise, we scale all candidates of K smaller by
a constant factor and repeat the described procedure. Sampling a pre-de�ned scaling
range [xmin,xmax], we �nd in that manner a scaling factor x ∈ [xmin,xmax] for the
candidates that admits a labeling L of I . We choose x as large as possible. If we could
not �nd x , e.g, because we have chosen [xmin,xmax] or the sampling not appropriately,
we abort the algorithm, stating that the algorithm could not �nd a labeling.

Next, we describe how to check whether there is a labeling for
⋃

s ∈S Ds . Since
for each s ∈ S the set Ds contains two candidates, we can make use of a 2SAT
formulation to model the labeling problem. For each stop s ∈ S and each candidate
` ∈ Ds , we introduce the Boolean variable x` . Those Boolean variables induce the set
L = {` ∈ ⋃s ∈S Ds | x` is true}. The following formulas are satis�able if and only if L
is a labeling ofM.

¬x` ∀s ∈ S ∀` ∈ Ds s.t. ∃C ∈ M that intersects `

¬x` ∨ ¬x`′ ∀`, `′ ∈
⋃

s ∈S
Ds s.t. ` and `′ intersect.

x` ∨ x`′,¬x` ∨ ¬x`′ ∀s ∈ S ∀`, `′ ∈ Ds

The �rst formula ensures that there is no label of the solution that intersects any metro
line. The second one avoids overlaps between labels, while the two last formulas
enforce that for each stop s ∈ S there is exactly one label of Ds that is contained in
the solution.

According to [APT79] in linear time with respect to the number of variables and
formulas, the satis�ability can be checked. We introduceO(n) variables and instantiate
the second formula O(n2) times, because each pair of candidates may overlap. The
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remaining formulas are instantiated in O(n2) time. Hence, the total running time is in
O(n2 · t), where t denotes the number of scaling steps.

9.2.2 Second Phase – Candidate Selection

We assume that we are given the scaled instance I = (M,S,K) and the labeling L
for I of the previous phase. We apply a pre-selection on the candidates by discarding
candidates such that no two stops’ candidates of di�erent metro lines intersect and
each metro line satis�es Assumption 8.1 and Assumption 8.2. We never remove a label
in L from the candidate set, however, to ensure that there is always a feasible solution.
Finally, considering the metro lines independently, we select for each stop a candidate
to be its label using the dynamic program described in Section 8.4.

3th Step – Candidate Pre-Selection. We �rst ensure that I satis�es Assump-
tion 8.1 and Assumption 8.2. If two candidates ` and `′ of the same metro line C
intersect and if they are assigned to opposite sides of C , we delete one of both labels
as follows. If ` ∈ L, we delete `′, and if `′ ∈ L we delete `. Otherwise, if none
of both is contained in L, we delete that label with higher costs; ties are broken
arbitrarily. Afterwards, Assumption 8.1 is satis�ed. Further, for each metro line C
of I we iterate through the stops of C from its beginning to its end. Doing so, we
delete candidates from K violating Assumption 8.2 as described as follows. Let s be
the currently considered stop. For each candidate ` ∈ Ks we check for each stop s ′

with s ′ < s whether there is a label `′ ∈ Ks ′ that intersects `. If `′ exists, we check
whether each candidate `′′ ∈ Ks ′′ of any stop s ′′ with s ′ < s ′′ < s intersects ` or `′. If
this is not the case, we delete ` if ` is not contained in L, and otherwise we delete `′.
Note that not both can be contained inL. By construction each metro line of instance I
then satis�es Assumption 8.2, where L ⊆ K .

Finally, we ensure that the metro lines inM become independent in the sense that
no candidates of stops belonging to di�erent metro lines intersect and no candidate
intersects any metro line. Hence, after this step, the metro lines can independently be
labeled such that the resulting labelings compose to a labeling of I .

We �rst rank the candidates of K as follows. For each metro line C ∈ M we
construct a labeling LC using the dynamic program for the two sided case as presented
in Section 8.4. Due to the previous step, those labelings exist. Note that for two metro
lines C,C ′ ∈ M there may be labels ` ∈ LC and `′ ∈ LC ′ that intersect each other.
For each candidate ` ∈ K we set val` = 1 if ` ∈ LC for a metro line C ∈ M, and
val` = 0 otherwise. A candidate ` ∈ K has a smaller rank than a candidate `′ ∈ K ,
if val` > val`′ or val` = val`′ and w1(`) ≤ w1(`′); ties are broken arbitrarily.

We greedily remove candidates from K until all metro lines are independent as
follows. We create a con�ict graph G = (V ,E) such that the vertices of G are the
candidates and the edges model intersections between candidates, i.e., two vertices
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are adjacent if and only if the corresponding labels intersect. Then, we delete all
vertices whose corresponding labels intersect any metro line. Afterwards, starting
with I = ∅, we construct an independent set I on G as follows. First, we add all
vertices ofG toI, whose labels are contained inL, and delete them and their neighbors
from G. Since the labels in L do not intersect, I is an independent set of the original
con�ict graph. In the increasing order of their ranks, we remove each vertex v and
its neighbors from G. Each time we add v to I; obviously sustaining that I is an
independent set in G. We then update for each stop s ∈ S its candidate set Ks
to Ks ← {` ∈ Ks | vertex of ` is contained in I}. Since all labels of L are contained
in I, there is a labeling for (M,S,K,w) based on the new candidate set K .

4th Step – Final Candidate Selection. Let I = (M,S,K,w) be the instance after
applying the third step. By the previous step the metro lines are in the sense inde-
pendent that candidates of stops belonging to di�erent metro lines do not intersect.
Further, they all satisfy Assumption 8.1 and Assumption 8.2. Hence, we use the dy-
namic programming approach of Section 8.4 in order to label them independently. The
composition of those labelings is then a labeling L of I .

9.3 Alternative Approaches

We now present the three approaches IlpAlg, ScaleAlg, GreedyAlg, which are
adaptions of our work�ow. We use these to experimentally evaluate our approach
against alternatives. While GreedyAlg is a simple and fast greedy algorithm, IlpAlg
and ScaleAlg are based on integer linear programming formulations.

9.3.1 Integer Linear Programming Formulation

To assess the impact of the second phase of our approach, we present an integer linear
programming formulation that optimally solves MetroMapLabeling with respect to
the required cost function. Let (M,S,K,w) be an instance of that problem, which we
obtain after the �rst phase of our approach. We �rst note that we apply the speci�c cost
function presented in Section 8.5. The cost function w3, which rates two consecutive
switchovers σ = (`1, `2) and σ ′ = (`′1, `′2) of a labeling L, does not rely on the actual
switchovers, but only on their positions on the corresponding metro line. Hence, we
may assume that w3 expects the stops of `1 and `′1. This assumption helps us reduce
the number of variables.

For each ` ∈ K we de�ne a binary variable x` ∈ {0, 1}. If x` = 1, we interpret it
such that ` is selected for the labeling. We introduce the following constraints.
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x` = 0 ∀` ∈ K that intersect a metro line. (9.1)
x` + x`′ ≤ 1 ∀`, `′ ∈ K that intersect. (9.2)∑
`∈Ks

x` = 1 ∀s ∈ S (9.3)

Moreover, for each metro line C ∈ M we de�ne the following variables. To that
end, let P ∈ KC ×KC be the set of all consecutive labels and let s1, . . . , sn be the stops
of C in that particular order.

y`,`′ ∈ {0, 1}, ∀(`, `′) ∈ P .
zi ∈ {0, 1}, 1 ≤ i < n

hi, j ∈ {0, 1}, 1 ≤ i < n and i < j < n

If y`,`′ = 1, we interpret it such that both ` and `′ are selected for the labeling. If
zi = 1, we interpret it such that the selected labels of the stops si and si+1 form a
switchover. If hi, j = 1, we interpret it such that the selected labels at si , si+1, sj and sj+1
form two consecutive switchovers. Further, for each metro line C we introduce the
following constraints. In these constraints L(K) denotes the set of labels that lie to
the left of C , and R(K) denotes the set of labels that lie to the right of C .

x` + x`′ − 1 ≤ y`,`′ ∀(`, `′) ∈ P (9.4)∑
`∈L(Ksi )

x` +
∑

`∈R(Ksi+1 )
x` − 1 ≤ zi 1 ≤ i < n (9.5)∑

`∈R(Ksi )
x` +

∑
`∈L(Ksi+1 )

x` − 1 ≤ zi 1 ≤ i < n (9.6)

zi + zj − 1 −
∑

i<k<j

zk ≤ hi, j 1 ≤ i < j < n (9.7)

We further de�ne for each metro line C the following linear term.

w(C) :=
∑
`∈KC

x` ·w1(`) +
∑
(`,`′)∈P

y`,`′ ·w2(`, `′) +
∑

1≤i<n
i<j<n

hi, j ·w3(si , sj ) (9.8)

Subject to the presented Constraints (9.1)–(9.7) we then minimize

∑
C ∈M

w(C). (9.9)
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Consider a variable assignment that minimizes (9.9) and satis�es Constraints (9.1)–(9.7).
We show that

L = {` ∈ K | x` = 1}
is an optimal labeling of the given instance with respect to the given cost function.
First of all, L is a valid labeling. Constraint (9.1) ensures that no label in L intersects
any metro line. By Constraint (9.2) the labels in L are pairwise disjoint. Finally, by
Constraint (9.3) for each stop there is exactly one label contained in L. In particular,
for a metro line C ∈ M, the set LC = L ∩KC is a valid labeling of C .

We now show that w(LC ) = w(C) for any metro line C ∈ M. Since we minimize
(9.9), this implies the optimality of L. Obviously, for a label ` ∈ KC the cost w1(`) is
taken into account in w(C) if and only if ` belongs to L.

By Constraint (9.4) for two consecutive labels ` and `′ ofC we have y`,`′ = 1 if both
are contained in L. Further, by the minimality of (9.9), if at least one of both labels
does not belong to L, it holds y`,`′ = 0. Hence, w2(`, `′) is taken into account in w(C)
if and only if both ` and `′ belong to L.

By Constraint (9.5) and Constraint (9.6) it holds zi, j = 1 if the labels `i ∈ L and
`i+1 ∈ L of the consecutive stops si and si+1 form a switchover in L. Hence, by
Constraint (9.7) it further holds hi, j = 1 if the labels of si and si+1 as well as sj and sj+1
form switchovers σi and σj in L, and, furthermore, there is no other switchover in
between σi and σj , i.e., both switchovers are consecutive. On the other hand, by the
minimality of w(C) in all other cases it holds hi, j = 0. Hence, w3(si , sj ) is taken into
account in w(C) if and only if σi and σj are consecutive switchovers in L. Altogether
we obtain the following theorem.

Theorem 9.1. Given an optimal variable assignment for the presented ILP formulation,

the set L = {` ∈ K | x` = 1} is an optimal labeling of (M,S,K) with respect tow .

The approach IlpAlg simply replaces the second phase of DpAlg by that integer
linear programming formulation. Hence, it solves the second phase optimally. The
approach ScaleAlg samples a prede�ned scaling range [xmin,xmax], which is also
used by DpAlg. For each scale x it scales the candidates correspondingly. Using the
ILP formulation it then checks whether the candidates admit a labeling. Hence, we
approximately obtain the greatest scaling factor that admits a labeling.

9.3.2 Greedy-Algorithm

The algorithm GreedyAlg replaces the dynamic programming approach in our work-
�ow as follows. Starting with the solution L enforced by the 1st step, the greedy
algorithm iterates once through the stops of C . For each stop s of C it selects the can-
didate ` ∈ Ks that minimizes w1(`) +w2(`p , `) +w2(`, `s ) among all valid candidates
in Ks , where `p ∈ L is the candidate selected for the previous stop sp and `s ∈ L is
the candidate for the successive stop. It replaces the candidate of s in L with `.
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Instance Style
s

smax

Reference

Sydney1 Octilinear 0.69 [NW11, Figure 9a]
Sydney2 Octilinear 0.57 [NW11, Figure 9b]
Sydney3 Octilinear 0.57 [WC11, Figure 10.]
Sydney4 Curved 0.67 [Fin+13, Figure 1a]

Vienna1 Octilinear 0.59 [NW11, Figure13a]
Vienna2 Octilinear 0.81 [NW11, Figure 13b]
Vienna3 Curved 0.54 [Fin+13, Figure 8c]

Table 9.1: Overview of considered instances. Style: Style of map and applied labels. s
smax

: Ratio
of applied scale factors. The scale smax is a lower bound for the largest possible scaling factor
(obtained by ScaleAlg), and s is the scale computed by the �rst phase of our work�ow.

9.4 Evaluation

To evaluate our approach presented in Section 9.2, we did a case study on the metro sys-
tems of Sydney (173 stops) and Vienna (84 stops), which have been used as benchmarks
before [Fin+13, NW11, WC11]. For Sydney we took the curved layout from [Fin+13,
Figure 1a] and the octilinear layouts from [NW11, Figure 9a,b][WC11, Figure 10.],
while for Vienna we took the curved layout from [Fin+13, Figure 8c] and the ocitlinear
layouts from [NW11, Figure 13a,b]. See also Table 9.1 for an overview of the instances.
Since the metro lines of Sydney are not only paths, we disassembled those metro lines
into single paths. We did this by hand and tried to extract as long paths as possible.
Hence, the instances of Sydney decompose into 12 lines and the instances of Vienna
into 5 lines. We took the positions of the stops as presented in the corresponding
papers. In the curved layout of Sydney we removed the stops Tempe and Martin Place

(in Figure 9.2(a) marked as red dots), because both stops are tightly enclosed by metro
lines such that only the placement of very small labels is possible. This is not so much
a problem of our approach, but of the given layout. In a semi-automatic approach the
designer would then need to change the layout. For the curvilinear layouts we used
labels of CurvedStyle and for the octilinear layouts we used labels of OctilinStyle.
For the layouts of Sydney2, Sydney3 and Vienna2 the authors present labelings; see
Figure 9.3, Figure 9.4 and Figure 9.5. For any other layout they do not present labelings.

The experiments were performed on a single core of an Intel(R) Core(TM) i7-3520M
CPU processor. The machine is clocked at 2.9 GHz, and has 4096 MB RAM. Our
implementation is written in Java. For each instance and each algorithm we conducted
100 runs and took the average running times. Each time before we started the 100
runs, we performed 50 runs without measuring the running time in order to warm up

the virtual machine (Java(TM) SE Runtime Environment, build 1.8.0_60-b27, Oracle).
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Table 9.2: Running times in seconds of the work�ow broken down into its two phases and
their single steps (if applicable). Algo.: The applied algorithm. Times less than 0.01 seconds
are marked with ?.

Algo. Phase 1: Creation Phase 2: Selection

Instance Layout 1st 2nd

∑
1st 2nd

∑
Total

Sydney1 Octi.

DpAlg 0.03 0.18 0.21 0.09 0.1 0.18 0.39

GreedyAlg 0.02 0.18 0.2 ? ? ? 0.2

ScaleAlg 0.02 – 0.02 – – 69.09 69.11

IlpAlg 0.02 0.17 0.19 – – 25.43 25.62

Sydney2 Octi.

DpAlg 0.03 0.28 0.31 0.07 0.09 0.15 0.46

GreedyAlg 0.02 0.28 0.3 ? ? ? 0.3

ScaleAlg 0.02 – 0.02 – – 17.29 17.31

IlpAlg 0.02 0.28 0.29 – – 15.17 15.46

Sydney3 Octi.

DpAlg 0.03 0.17 0.2 0.07 0.09 0.16 0.36

GreedyAlg 0.02 0.16 0.17 ? ? ? 0.17

ScaleAlg 0.02 – 0.02 – – 33.61 33.63

IlpAlg 0.02 0.15 0.17 – – 21.56 21.73

Sydney4 Curved

DpAlg 0.03 0.33 0.36 0.1 0.1 0.2 0.56

GreedyAlg 0.03 0.33 0.35 ? ? ? 0.35

ScaleAlg 0.03 – 0.05 – – 243.58 243.63

IlpAlg 0.02 0.34 0.36 – – 98.81 99.17

Vienna1 Octi.

DpAlg 0.01 0.06 0.07 0.01 ? 0.02 0.09

GreedyAlg 0.01 0.06 0.07 ? ? ? 0.07

ScaleAlg 0.01 – 0.01 – – 3.31 3.32

IlpAlg 0.01 0.06 0.08 – – 0.55 0.63

Vienna2 Octi.

DpAlg 0.01 0.09 0.1 ? ? ? 0.11

GreedyAlg 0.01 0.1 0.11 ? ? ? 0.11

ScaleAlg 0.01 – 0.01 – – 4.65 4.66

IlpAlg 0.01 0.08 0.09 – – 0.36 0.45

Vienna3 Curved

DpAlg 0.02 0.15 0.17 0.02 0.04 0.06 0.23

GreedyAlg 0.02 0.14 0.16 ? ? ? 0.16

ScaleAlg 0.02 – 0.02 – – 7.27 7.29

IlpAlg 0.01 0.13 0.15 – – 0.49 0.64
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(a) Sydney4: DpAlg, CurvedStyle
Layout from [Fin+13, Figure 1a.].

(b) Sydney4: GreedyAlg, CurvedStyle
Layout from [Fin+13, Figure 1a].

Figure 9.2: Labelings for the metro map of Sydney using DpAlg and GreedyAlg.

We did this in order to measure the actual running times of our algorithms and not
to measure the time that the virtual machine of Java spends for loading classes and
optimizing byte code.

Table 9.2, Table 9.3 and Table 9.4 present our quantitative results for the considered
instances. For Sydney4 labelings are found in Figure 9.2 and for Sydney2, Sydney3 and
Vienna2 labelings created by DpAlg are found in Figure 9.3, Figure 9.4, Figure 9.5,
respectively. The labelings of all instances are found in Section 9.6.

We �rst note that with respect to the total number of created candidates only few
labels are removed for enforcing Assumption 8.1 and Assumption 8.2; see Table 9.3 and
Table 9.4, A12. This indicates that requiring those assumptions is not a real restriction
on a realistic set of candidates, even though they seem to be arti�cial.

Running Time. Even for large networks as Sydney, our algorithm DpAlg needs less
than 0.6 seconds; see Table 9.2. This shows that our approach is applicable for scenarios
in which the map designer wants to adapt the layout and its labeling interactively.
In particular, in those scenarios not every of the four steps must be repeated each
time, which improves computing time. For example, after once applying the scaling
step (1st phase, 2nd step – the most time consuming step), the instance does not need
to be rescaled again, but the relation between label size and map size is determined.
Further, DpAlg is only moderately slower than GreedyAlg; 0.21 seconds in maximum,
see Table 9.2, Sydney4. On the other hand, the approaches IlpAlg and ScaleAlg
are not alternatives, because their running times are much worse; over 1 minute in
maximum; see Table 9.2, Sydney4.
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(a) Original labeling by [NW11] (b) Sydney2: DpAlg, OctilinStyle
Layout from [NW11, Figure 9b.].

Figure 9.3: Labelings for the metro map of Sydney.

�ality. We observe that in all labelings created by DpAlg there are only few
switchovers, namely 4–8; see Table 9.3 and Table 9.4, column SO. Hence, there are
long sequences of consecutive labels that lie on the same side of their metro line; see
corresponding �gures and Table 9.3 and Table 9.4, column Sequence. Together with the
ILP based approach IlpAlg, it yields the solution with the longest sequences in average.
In particular the switchovers are placed such that those sequences are regularly sized.
The labels of a single sequence are mostly directed into the same x-direction and in
particular they are similarly shaped so that those sequences of labels form regular
patterns as desired. The alignment of the labels is chosen so that they blend in with
the alignment of their adjacent labels. In comparison with the solution of IlpAlg,
the costs of DpAlg never exceed a factor of 1.52; see Table 9.3 and Table 9.4, column
w (LDpAlg)

w (L) . For the instances Sydney4 and Vienna3 it even obtains a solution with the
same costs. For the other instances, DpAlg basically spends its additional costs on the
choice of the single labels (w1(LDpAlg)

w1(L) ) and the distance of switchovers (w3(LDpAlg)
w3(L) ).

In contrast, GreedyAlg yields signi�cantly more switchovers; in maximum 20
switchovers more than DpAlg, see Sydney4 . Consequently, there are many distracting
switches of labels from one side to the other of the metro line; e.g. see Figure 9.2.
Although the sequences of consecutive labels lying on the same side may be longer
in maximum compared to DpAlg, they are much shorter in average; see Table 9.3
and Table 9.4, column Sequence. Further, several adjacent labels point in opposite
x-directions, which results in distracting e�ects; see corresponding �gures. Altogether,
the labelings that are obtained by GreedyAlg do not look regular, but cluttered. DpAlg
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(a) (b)

Figure 9.4: Labelings for Sydney. (a) Original Labeling presented by Wang and Chi [WC11]
(b) Sydney3: DpAlg.
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Figure 9.5: Labelings for Vienna. (a) Original Labeling presented by Nöllenburg and
Wol� [NW11] (b) Vienna2: DpAlg.

solves those problems since it considers the metro line globally yielding an optimal
labeling for a single line. This observation is also re�ected in Table 9.3 and Table 9.4,
column w (LDpAlg)

w (L) , which shows that the costs computed by GreedyAlg are signi�cantly
larger than the costs computed by DpAlg. In particular costs for positioning the
switchovers are much worse; Sydney2: w3(LGreedyAlg)/w3(L) = 19.52, w3(LDpAlg)/w3(L) =
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(a) (b)

Figure 9.6: Comparison of two labelings for the same line. (a) Labeling is created by the tool
presented by Wang and Chi[WC11]. (b) Labeling is created by DpAlg.

3.25 and Vienna2: w3(LGreedyAlg)/w3(L) = 14.23, w3(LDpAlg)/w3(L) = 4.01. Hence, the better
quality of DpAlg prevails the slightly better running time of GreedyAlg.

Concerning the computed scale factor in the �rst phase of DpAlg, the labels are
smaller than those produced by ScaleAlg by a factor of 0.54–0.81; see Table 9.1. While
this seems to be a drawback on the �rst sight, the smaller size provides necessary space
that is used to obtain a labeling of higher quality with respect to the number and the
placement of switchovers. Hence, the solutions of ScaleAlg have more switchovers
(except for Vienna2) and shorter sequences of labels lying on the same side in average
than DpAlg; see Table 9.3 and Table 9.4, column SO and Sequence.

We observe that both Nöllenburg and Wol�’s and our labelings of Sydney look quite
similar, whereas our labeling has less switchovers; see Figure 9.3. The same applies
for the labelings of the layout of Vienna; see Figure 9.5. Recall that their approach
needed more than 10 hours to compute a labeled metro map of Sydney. Since they
need only up to 23 minutes to compute the layout without labeling, it lends itself to
�rst apply their approach to gain a layout and then to apply our approach to construct
a corresponding labeling.

Wang and Chi present in their paper [WC11] an approach that is divided into two
phases. In the �rst phase they compute the layout of the metro map and then in the
second phase they create a labeling for that layout. For both steps they formulate
energy functions expressing their desired objectives, which then are locally optimized.
Figure 9.4(a) shows the metro map of Sydney created by their approach. In comparison,
Figure 9.4(b) shows the same layout with a labeling created by our approach. Both
labelings look quite similar. While our approach needed 0.26s (see Table 9.2, Sydney3),
their approach needed less than 0.1s on their machine. However, their approach
does not guarantee that the labels are occlusion-free, but labels may overlap with
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metro lines and other labels. This may result in illegible drawings of metro maps.
For example Figure 9.6 shows two labelings of a metro line of Sydney that has been
laid out by the tool of Wang and Chi. Figure 9.6(a) shows a labeling that has been
created by their tool, while Figure 9.6(b) shows a labeling that has been created by
our approach. The labeling of Wang and Chi has several serious defects that makes
the map hardly readable. The marked regions A, B and C show labels that overlap
each other. Hence, some of the labels are obscured partly, while some of the labels are
completely covered by other labels. For example in region B the label St. Peters and
the label Erskinville overlap the label Macdonaldtown such that it is hardly viewable.
Further, region C contains two diagonal rows of stops aligned parallel. While the
upper row is visible, the lower row is almost completely covered by labels. Further, the
labels of the upper row obscure the labels of the lower row. In contrast our approach
yields an occlusion-free labeling, such that each label and each stop is easily legible.
We therefore think that our approach is a reasonable alternative for the labeling step
of Wang and Chi’s approach. In particular, we think that the better quality of our
approach prevails the better running time of Wang and Chi’s approach.

In conclusion our work�ow is a reasonable alternative and improvement for the
approaches presented both by Nöllenburg and Wol�, and by Wang and Chi. In the
former case, our approach is signi�cantly faster, while in contrast to the latter case we
can guarantee occlusion-free labelings.

9.5 Conclusions

In this chapter, we presented a sophisticated work�ow for labeling a complete metro
map. At the core of the work�ow we used an e�cient algorithm that labels a single
metro line optimally with respect to a given objective function. For comparison
we developed alternative approaches comprising both integer linear programming
formulations as well as simple greedy algorithms. In a detailed evaluation, we showed
that our approach yields near optimal labelings. By comparison with a simple greedy
algorithm, we further justi�ed the use of the dynamic programming approach; the
greedy algorithm produces labelings of signi�cantly lower quality. Altogether, we
presented a �exible work�ow for labeling metro maps that can be used in automatic
as well as semi-automatic settings.

158



Labelings Section 9.6

9.6 Labelings

(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.7: Labelings for instance Sydney1.
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(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.8: Labelings for instance Sydney2.
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(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.9: Labelings for instance Sydney3.
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(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.10: Labelings for instance Sydney4.
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(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.11: Labelings for instance Vienna1.
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(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.12: Labelings for instance Vienna2.
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(a) DpAlg (b) GreedyAlg

(c) ScaleAlg (d) IlpAlg

Figure 9.13: Labelings for instance Vienna3.
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Part II

External Label Placement





10
Introduction to

External Label Placement

In some applications internal label placement is not su�cient because either features
are distributed in dense clusters and there are too many labels to be placed or any
extensive occlusion of the �gure’s details should be avoided. While in the �rst case one
may exclude less important labels, in the second case even a small number of labels
may spoil the readability of the �gure. In either case, graphic designers often choose
to place external labels outside of the �gure and connect features with their labels
by thin curves, so-called leaders. This kind of labeling is commonly found in highly
detailed scienti�c �gures as they are used, for instance, in atlases of human anatomy,
see Figure 10.1(a) for a historical example, as well as for annotations in infographics
in media, see Figure 10.1(b) for a map in television.

The automated placement of external labels has been studied extensively both from
a practical and formal, i.e., algorithmic, perspective, often using a slightly di�erent
terminology and a variety of models, constraints, and objectives. In the remainder of
this chapter, we introduce a unifying terminology and give a structured overview of
the related work.

This chapter is based on and partly taken from joint work with Lukas Barth, Andreas
Gemsa and Martin Nöllenburg [Bar+15].

10.1 Models of External Labeling

In external point labeling, the input is typically a �gure contained in some bounding
polygon, together with a �nite set of points within the polygon; we call these points
sites. Each site s is assigned to a text that describes the site. Using a standard simpli�ca-
tion in map labeling, not the text itself is considered, but its shape is approximated by
its axis-aligned bounding box `. We call ` the label of the site s . The general external
labeling problem is then to �nd a non-overlapping placement of all labels of the given
sites outside of the bounding polygon and a set of non-crossing leaders connecting
each site to its label while satisfying certain additional constraints and optimizing
some quality function.

Following Tufte’s minimum-ink principle [Tuf01], the most common objective in
external labeling is to minimize the total leader length, which means minimizing the
total overlay of leaders with the given �gure. While the theoretical results typically ask
explicitly for the labeling with minimum total leader length, many practical algorithms
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Figure 10.1: (a) Illustration of the human ventricle using external labeling with type-s leaders.
Source: Atlas of applied (topographical) human anatomy for students and practitioners Authors:
Karl Heinrich von Bardeleben (1849-1919), Ernst Haeckel (1834-1919) Publication: London, Rebman

Limited; New York, Rebman Company, 1906. (b) Weather forecast map using boundary labeling
with type-do leaders. Image courtesy of Deutsche Welle TV.

are based on heuristic approaches that only implicitly aim for short leaders, but do
not necessarily achieve the global minimum length.

A particularly well-studied special case of external labeling is the boundary labeling

problem, which assumes that the bounding polygon is actually a rectangle R and all
labels must be placed touching the boundary of R, or even touching a particular side
of R. More precisely, the boundary labeling problem asks for the placement of the
labels such that
(1) each label ` lies outside R and touches the boundary of R,
(2) no two labels overlap,
(3) for each site s and its label ` there is a leader λ in R, i.e., a simple curve in R, that

starts at s and ends on the boundary of `, and
(4) no two leaders intersect.
The end point of a leader λ that touches a label ` is called the port of `. Typically,
four main parameters in which the models di�er are distinguished. The label position

speci�es on which sides of R the labels are placed. The label size may be uniform
or individually de�ned for each label. The port type speci�es whether �xed ports or
sliding ports are used, i.e., whether the position of a port on its label is pre-de�ned or
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Figure 10.2: Illustration of leader types. Type-opo leaders use a track routing area S .

�exible. Finally, the leader type restricts the shape of the leaders. In the following, we
list the four leader types that are most commonly found in the literature.

Let λ be a leader connecting a site s with its label `, and let r be the side of R
that is touched by `. An s-leader consists of a single straight (s) line segment; see
Figure 10.2(a). A po-leader consists of two line segments: the �rst, starting at s , is
parallel (p) to r and the second segment is orthogonal (o) to r ; see Figure 10.2(b). A
do-leader consists of two line segments: the �rst, starting at s , is diagonal (d) at some
�xed angle ±α (typically α = 45◦) relative to r and the second segment is orthogonal
(o) to r ; see Figure 10.2(c). An opo-leader consists of three line segments: the �rst,
starting at s , is orthogonal (o) to r , the second is parallel (p) to r , and the third segment
is orthogonal (o) to r ; see Figure 10.2(d). In case that opo-leaders are considered,
each leader has its two bends in a strip S next to r whose width is large enough to
accommodate all leaders with a minimum pairwise distance of the p-segments. The
strip S is called the track-routing area of R. We call a labeling based on s/po/do/opo-
leaders an s/po/do/opo-labeling. We note that for s-, po- and do-leaders �xing the
position of the site and the port uniquely de�nes the according leader. For opo-leaders
only the x-position of the leader’s vertical segment is not �xed and depends on the
routing in S .

In the following chapters, we adapt this general model for our purposes. As the
leader type is the most distinctive feature of the di�erent boundary labeling models in
the literature, we examine how this parameter in�uences the readability in Chapter 11.
To that end, we present the �rst formal user-study on the readability of leaders. In
Chapter 12, we consider boundary labeling with po-leaders for the case that labels
are placed along two or more sides of R. In Chapter 13, we generalize the model
of boundary labeling for s-leaders assuming that R is not a rectangle, but a simple
polygon describing the contour of the �gure; we call this problem contour labeling.
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10.2 Related Work

In the following, we give an overview of research on external label placement in maps
and �gures. Due to the vast amount of practical and theoretical results, we split the
discussion into two parts accordingly.

Practical Results. We �rst review research on applied external label placement
in chronological order; a more detailed overview of external labeling is given by
Oeltze-Jafra and Preim [OP14].

In 1997 Preim et al. [PRS97] employed a prototype for viewing 3-dimensional
anatomical models in combination with zooming and external label placement using
s-leaders. While the overall structure of the system is discussed in detail, the authors
give only little information about the actual placement of the labels and the applied
quality criteria. Based on a manual analysis of hand-drawn illustrations (e.g., anatomic
atlases), Hartmann et al. [HAS04] as well as Ali et al. [AHS05] list criteria for external
labeling concerning readability, ambiguity and aesthetics. Using these criteria, they
present force-based heuristics for labeling �gures. While Hartmann et al. investigate
s-leaders only, Ali et al. also discuss orthogonal leaders with bends as well as di�erent
layout styles. Hartmann et al. [Har+05] further re�ne and summarize the extracted
criteria by introducing varying functional and aesthetic metrics for external labeling;
both for s-leaders and orthogonal leaders with bends. In the same year, Bruckner and
Gröller [BG05] introduced the system VolumeShop for the interactive exploration of
volume illustrations. Based on the guidelines of Ali et al. [AHS05], they present a
simple labeling algorithm for s-leaders that iteratively exchanges label positions until
a certain quality bound is achieved, or a maximum number of iterations is exceeded.
Furthermore, Götzelmann et al. [Göt+05] present and experimentally evaluate an
approach to annotate 3D models with internal and external labels using s-leaders. For
the layout of external labels they again make use of the approach presented by Ali et
al. [AHS05].

In 2006 Götzelmann et al. [GHS06] introduced an alternative approach, which
sequentially evaluates and places external labels by priority. Fuchs et al. [Fuc+06]
investigate external labeling algorithms for mobile applications, which require fast
algorithms that also exploit small spaces for label placement.

Vollik et al. [Vol+07] evaluate a local optimization approach based on energy func-
tions expressing the labeling problem and its quality criteria. They use simulated
annealing to �nd a locally optimal solution. Stein and Décoret [SD08] also formalize
external labeling as a mathematical optimization problem based on a set of constraints,
which they solve by a greedy algorithm without any optimality guarantees.

For the application of surgery planning, Mühler and Preim [MP09] present a frame-
work to automatically annotate 2D slices and 3D reconstructions of segmented struc-
tures. To that end, they use external label placement with s-leaders. Čmolík and
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Bittner [ČB10] again take a more mathematical approach and formalize the problem
by means of fuzzy logic combined with greedy optimization. Mogalle et al. [Mog+12]
use external labels with s-leaders for annotating CT images. They also apply a greedy
algorithm on a mathematical formalization of the labeling problem.

Tatzgern et al. [TKS13] consider external labeling for explosion diagrams in aug-
mented reality. Based on the algorithm by Hartmann et al. [HAS04] they �rst create an
initial layout. Then they resolve overlapping labels and leader intersections by re�ning
label positions, and also balance the distance between labels. In 2014 Tatzgern et
al. [Tat+14] again considered external label placement in augmented reality. However,
this time they propose an approach to place external labels in the 3D object space
instead of the 2D image space. Madsen et al. [Mad+16] empirically evaluate this setting
by conducting a user study showing that, among others, label placement in 3D object
space has positive impact on the image’s readability. Their study used s-leaders only,
since the leader type was not a variable of interest.

Apart from those 16 papers, there is related research about excentric labeling
(e.g., [Fek99, BRL09]), and other labelings that use the concept of leaders to asso-
ciate labels, but without explicitly di�erentiating between the space for labels and the
space for sites (e.g., [AF03, MD06, Pet+09b, Pet+09a]).

The main interest of practical external labeling research is the design and actual
implementation of fast external label placement algorithms for a variety of applications.
User studies are conducted to evaluate particular models and labeling algorithms.
Further, much work is invested into elaborated labeling models that take multiple
quality criteria into account. A common quality criterion, though, shared by almost all
of the above papers is the minimization of leader lengths in the sense that labels should
be placed close to their sites. In order to deal with these complex models and various
practical constraints, heuristics are applied instead of exact algorithms; mathematically
proven quality guarantees are not the focus of the investigations. Interestingly, there
is a clear bias towards s-leaders in the literature. Almost all of the above papers (14
out of 16) exclusively consider s-leaders, the two remaining ones additionally consider
orthogonal leaders with bends. Naturally, the question arises, whether the alternative
leader types po, do and opo, which are regularly used by graphic designers, are useful
in practice and how they compete against s-leaders.

Theoretical Results. Next, we review existing theoretical results on boundary
labeling. We again present the related work in chronological order.1 Boundary labeling
was introduced as an algorithmic problem by Bekos et al. [Bek+04, Bek+07] at Graph
Drawing 2004. The authors present e�cient algorithms for models based on po-, opo-,

1To sustain the chronological order, we cite the earliest peer-reviewed publication available. For the
sake of completeness, we also cite later publications on the same work that are more detailed. Thus, in
some cases we cite both the conference and journal version of the same work.
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and s-leaders. As objective functions they consider minimizing the number of bends
and the total leader length. While for opo-leaders the labels may lie on one, two, or
four sides of R, the labels for po-leaders may lie only on one or on two opposite sides
of R. Further, Bekos et al. [Bek+06a] consider opo-labelings such that labels appear
in multiple columns besides R. Apart from that, Bekos et al. [Bek+06b, Bek+10b]
investigate opo-labelings where the sites may �oat within prede�ned polygons in R.

Boundary labeling using do-leaders was introduced by Benkert et al. [Ben+07,
Ben+09] in 2007. They investigate algorithms minimizing a general badness function
on do- and po-leaders and, furthermore, give more e�cient algorithms for the case
that the total leader length is minimized. Bekos et al. [Bek+08, Bek+10a] present
further optimization algorithms for do-leaders and similarly shaped leaders. In 2010
Nöllenburg et al. [NPS10] consideredpo-labelings for a setting that supports interactive
zooming and panning and allows stacking of free-�oating labels. In 2011 Gemsa et
al. [GHN11, GHN15] studied the labeling of panorama images using vertical s-leaders.
Leaders based on Beziér curves and s-leaders are further considered in the context
of labeling focus regions by Fink et al. [Fin+12]. Moreover, Huang et al. [HPL14]
investigate opo-labelings with �exible label positions. Recently, Fink and Suri [FS16]
presented dynamic programming approaches for boundary labeling for uniform labels
considering the four major leader types.

Boundary labeling is combined in a mixed model with internal labels, i.e., labels that
are placed next to the sites [LN10, Bek+11, LNS15]. Many-to-one boundary labeling is a
further variant, where each label may connect to multiple sites [LKY07, LKY08, Lin10,
Bek+13]. Finally, boundary labeling is considered in the context of text annotations
[LWY09, KLW14].

In contrast to the more applied research of the previous section, the above con-
tributions on external label placement mainly focus on simpler abstract models and
objectives, for which they mathematically prove quality guarantees. These results can
be seen as proofs of concepts that reduce the label placement problem to its mathe-
matical core; yet several of the papers report experimental results and case studies
from prototypical implementations. Their abstract view of the problem also prepares
the ground for new labeling layouts. Not only s-leaders are studied, but a variety of
di�erent leader types and their properties are investigated. In total, we listed three
papers studying do-leaders, nine studying opo-leaders, eight studying po-leaders, and
four papers studying s-leaders; see Table 10.1 for a summary. Most of the contributions
(15 out of 19) include algorithms optimizing the total leader length.
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Table 10.1: Summary of related work broken down into the considered leader types. The
considered leader types are marked by ×. If a natural extension of a leader type has been
investigated, then it is marked by ?. TLL: Among others, the authors consider total leader
length minimization as objective.

Year Reference Leader Type TLL

s po do opo other

2004 Bekos et al. [Bek+04, Bek+07] × × × ×
2006 Bekos et al. [Bek+06a] ×

Bekos et al. [Bek+06b, Bek+10b] × ×
2007 Benkert et al. [Ben+07, Ben+09] × × ×

Lin et al. [LKY07, LKY08] ? ? ×
2008 Bekos et al. [Bek+08, Bek+10a] × × ×
2009 Lin et al. [LWY09] × × ×
2010 Lin [Lin10] ? ×

Lö�er, Nöllenburg [LN10] ×
Nöllenburg et al. [NPS10] × ×

2011 Bekos et al. [Bek+11] ×
Gemsa et al. [GHN11, GHN15] × ×

2012 Fink et al. [Fin+12] × × ×
2013 Bekos et al. [Bek+13, Bek+15] ? ×

Kindermann et al. [Kin+13b, Kin+16] × ×
2014 Huang et al. [HPL14] × ×

Kindermann et al. [KLW14] × × × ×
2015 Lö�er et al. [LNS15] × ×
2016 Fink, Suri [FS16] × × × × ×∑

5 9 4 10 4 15
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11
On the Readability of Leaders in

Boundary Labeling

Abstract. While external labeling has been extensively investigated from a per-
spective of automatization, the research on its readability has been neglected. In this
chapter, we present the �rst formal user study on the readability of leader types in
external labeling. We consider the four most extensively studied leader types with
respect to their performance, i.e., whether and how fast a viewer can assign a feature
to its label and vice versa. We give a detailed analysis of the results regarding the
readability of the four models and discuss their aesthetic qualities based on the users’
preference judgments and interviews.

This chapter is based on and partly taken from joint work with Lukas Barth, Andreas
Gemsa and Martin Nöllenburg [Bar+15].

11.1 Introduction

Algorithms for external labeling have been extensively investigated both from a
practical and a theoretical perspective, as detailed in the previous chapter. Yet, research
on the readability of the di�erent labeling models, in particular of the di�erent leader
types, has been neglected in literature so far. There exist several user studies on
the readability and aesthetics of graph drawings. For example, Ware et al. [War+02]
studied how people perceive links in node-links diagrams. However, to the best of our
knowledge, there are no user studies1 on the readability of any of the fundamental
boundary labeling models introduced in Chapter 10. In this chapter, we present the
�rst user study on readability aspects of di�erent leader types in boundary labeling.
When reading a boundary labeling the viewer typically wants to �nd for a given site its
corresponding label, or vice versa. Hence, a well readable labeling must facilitate this
basic two-way task such that it can be performed fast and correctly. We call this the
assignment task. In this chapter, we investigate the assignment task for the four most
established models, namely models using s-, po-, opo- and do-leaders, respectively. See
Chapter 10 for a detailed discussion on preceding research on these leader types. To
keep the number of parameters small, we refrained from considering other types of
leaders. We conducted a controlled user study with 31 subjects. Further, we interviewed
eight participants about their personal assessment of the leader types. We obtained
the following main results.

1One exception is the user study by Madsen et al. [Mad+16], but they evaluated the e�ects of label
placement in object vs. image space and update frequency in augmented reality visualizations.
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• Type-opo leaders lag behind the other leader types in all considered aspects.
• In the assignment task, do-, po- and s-leaders have similar error rates, but po-

leaders have signi�cantly faster response times than do- and s-leaders.
• The participants prefer the leader types in the order do, po, s and opo.

In the remainder of this chapter, we use the notation for boundary labeling introduced
in Chapter 10; in particular we denote the bounding rectangle of the �gure by R.

11.2 Research �estions

As argued before, a well readable boundary labeling must allow the viewer to quickly
and correctly assign a label to its site and vice versa. More speci�cally, the leader λ
connecting the label with its site must be easily traceable by a human. We hypothesize
that both the response time and the error rate of the assignment task signi�cantly
depend on other leaders running close to and parallel to λ in the following sense. The
more parallel segments closely surround λ, the more the response time and the error rate

of the assignment task increase.

However, we did not directly investigate this hypothesis, but we derived from it two
more concrete hypotheses that are based on the four leader types. These were then
investigated in the user study. To that end, we additionally observe, that in medical
�gures the density of the sites varies. Both may occur, �gures containing a dense set of
sites, where the sites are placed closely to each other, and �gures containing a sparse

set of sites, where the sites are dispersed. We now motivate the hypothesis as follows.
By de�nition of the models, the number of parallel leader segments in do-, po-

and opo-labelings is linear in the number of labels per leader, because each pair of
leaders has at least one pair of parallel segments. For opo-labelings each pair of leaders
even has up to three pairs of parallel segments. Additionally, the spacing of the �rst
orthogonal segments of opo-leaders is determined by the y-coordinates of the sites
rather than by the (more regularly spaced)y-coordinates of the label ports as in po- and
do-labelings. In contrast, in an s-labeling the leaders typically have di�erent slopes,
so that (almost) no parallel line segments occur. In fact, it is known that the human
eye can distinguish angular di�erences as small as 10′′ ≈ 0.003◦ [War12]. Hence,
leaders of do-, po- and opo-labelings, in particular for a dense set of sites, are closely
surrounded by parallel segments, while s-leaders for such a set have very di�erent
slopes. We therefore propose the next hypothesis.

(H1) For instances containing a dense set of sites,

(a) the assignment task on s-labelings has a signi�cantly smaller response time

and error rate than on do-, po-, and opo-labelings.
(b) the assignment task ondo- andpo-labelings has a signi�cantly smaller response

time and error rate than on opo-labelings.
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Considering a sparse set of sites, do- and po-labelings still have many parallel line
segments, but this time they are more dispersed. This is normally not true for opo-
leaders because the actual routing of these leaders occurs in a thin routing area at the
boundary of R. Hence, we propose the next hypothesis.

(H2) For instances containing a sparse set of sites, the assignment task on opo-labelings
has a signi�cantly greater response time and error rate than on do-, po-, and
s-labelings.

In summary, we expect that opo-labelings perform worse than the other three, that
do- and po-labelings perform similar, and that s-labelings perform best.

11.3 Design of the Experiment

In this section we present the design of our user study. We �rst describe the tasks that
were performed by the participants. Afterwards, we describe in detail which stimuli
were presented to the participants, and conclude the section by describing how the
stimuli were presented to the participants.

11.3.1 Tasks

In order to test our hypotheses we presented instances of boundary labeling to the
participants and asked them to perform the following two tasks.

1. Label-Site-Assignment (TS): In an instance containing a highlighted label select
the corresponding site.

2. Site-Label-Assignment (TL): In an instance containing a highlighted site select
the corresponding label.

Both tasks are fundamental to reading labeled illustrations and require the subjects to
visually follow the selected leader from site to port and from port to site, respectively.

11.3.2 Stimuli

The stimuli are automatically generated boundary labelings, each using the same
drawing style. In order to avoid confounding e�ects between background image
and leaders we use a plain light blue background so that the only graphical features
a�ecting the experiment are the sites and their leaders. Sites, leaders and label texts
are drawn in the same style and in black color. Highlighted points are drawn as
slightly larger yellow-�lled squares with black boundary rather than small black disks.
Highlighted labels are shown as white text on a dark gray background. This is to
minimize the time spent for localizing the relevant features rather than following the
leader. Figure 11.1 exemplarily shows four stimuli.
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(a) s-leaders (b) po-leaders

(c) do-leaders (d) opo-leaders

Figure 11.1: Examples of stimuli for both tasks and all four leader types. To avoid learning
e�ects of the participants the order of the animal names are chosen randomly. While in stimuli
(a) and (c) sites are highlighted, in stimuli (b) and (d) labels are highlighted.

Choice of Stimuli. For all instances we de�ned R to be a rectangle of 500 × 750
pixels. In addition to the four leader types as the main factor of interest, we identi�ed
three secondary factors that may have an impact on the resulting labelings. This yields
four parameters to classify an instance.

The �rst parameter is the number N = {15, 30} of sites that are contained in the
instance. We have chosen 15 sites to obtain small instances and 30 sites to obtain large
instances, which are typical numbers, e.g., for medical drawings.

The second parameter is the distributionD = {DU,D3,D10} that is used for randomly
placing the sites inR. We de�ne DU to be a uniform distribution. This distribution yields
instances whose sites are dispersed in R without having a certain spatial structure.
However, considering, e.g., medical drawings, the instances often consist of spatial
clusters. We model such a single cluster by a normal distribution. More precisely,
we de�ne D3 and D10 to be normal distributions with mean µ = (250, 375) at the
center of R, and variance σ 2 = 3000 and σ 2 = 10000 in both dimensions, respectively.
Hence, D3 yields instances consisting of a dense cluster of sites, while D10 yields
instances consisting of a sparse cluster of sites. In order to avoid cluttered sets of sites
and degenerated instances, where sites lie too close to the boundary of R, we rejected
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instances where any two sites have less than 10 pixels distance or where a site has
less than 30 pixels distance to the boundary of R.

The third parameter is the applied leader type T = {do,opo,po, s} as de�ned in
Chapter 10. Finally, the fourth parameter R = {0.3, 0.6, 0.9} can be seen as a di�culty
level and speci�es which leader of the instance should be selected for the tasks TS
and TL. This is accomplished by scoring each leader with respect to how much ink
is close to it in the drawing. More speci�cally, ranking a leader λi is done as follows:
For every other leader λj , points are linearly sampled on λj with one pixel distance
from each other. For each such point, the minimum distance d to λi is computed.
Then, every sample point contributes 1

d2 to the ink score of λi . The parameter r ∈ R
then selects the leader λ whose ink score is the r -quantile among the ink scores of all
leaders in the instance. Thus the parameter R lets us control the relative di�culty
of the chosen leader. Later on in our analysis we do not break down the results into
the introduced di�culty levels. Their purpose is to create stimuli of varying di�culty.
We do, however, con�rm in Section 11.4.3 that those levels indeed create instances of
varying di�culty.

Thus, the parameter space N × D × T × R lets us cover a large variety of di�erent
sample instances that are representative of real-world instances. Figure 11.4 and Fig-
ure 11.5 in Section 11.7 exemplarily show stimuli for di�erent choices of the presented
parameters.

Generation of Stimuli. For each of the 2 ·3 ·4 ·3 = 72 possible choices of parameters
(n,d, t , r ) ∈ N ×D ×T ×R we have generated two stimuli I1 and I2, one for each task.
To that end, we used the property that a leader of any of the four types is uniquely
determined by the position of its port and site. Using integer linear programming
(ILP) as an exact optimization method, we computed a length-minimal labeling of the
chosen leader type such that the labels are placed to the right side of R using one of 150
equally spaced ports each; a formal description of the ILP is found at the end of this
section. The ILP ensures that the subset of chosen ports does not create overlapping
labels and that no two leaders cross. The sample of 150 available ports simulates labels
that may be placed anywhere on the right side of R. The sample is dense enough so
that a further re�nement has no relevant e�ect on the visual appearance of the stimuli
and sparse enough as to allow fast solution times of the ILP models. In each instance
the text of each label is randomly chosen from a pre-de�ned set of German animal
names. For opo-labelings, the required track routing area and the routing of the leaders
is such that the p-segments of any two leaders have horizontal distance of at least 10
pixels from each other.

It will occur in the instances that leaders lie closely together, e.g., see Figure 11.1(d).
However, we do not enforce minimum spacing between leaders because neither any
of the studied models nor any of the discussed algorithms enforce minimum spacing
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explicitly. In fact, a �xed minimum leader spacing may even lead to infeasible instances
for certain leader types. Rather, one can see the observed closeness of leaders as a
predisposition of the respective leader type.

We now describe the ILP for generating labelings formally. To that end assume that
we are given a certain leader type t ∈ T , the set S of sites and the set P of ports. For
each pair (s,p) ∈ S ×P we generate the candidate cs,p = (`, λ), where ` is a label placed
at p (i.e., the midpoint of `’s left side is located at p), and, furthermore, λ is a leader of
type t connecting s with p. We say two candidates c = (`, λ) and c ′ = (`′, λ′) intersect,
if ` and `′ or λ and λ′ intersect. We introduce for each candidate cs,p a binary variable
xs,p ∈ {0, 1}. We interpret xs,p such that the label ` of s is placed at p if and only if
xs,p = 1. We introduce the following constraints.∑

p∈P
xs,p = 1 for all s ∈ S (11.1)

xs,p + xt,q ≤ 1 for all s, t ∈ S and p,q ∈ P
such that cs,p and ct,q intersect (11.2)

Subject to those constraints, we minimize the objective∑
s ∈S,p∈P

xs,p · length(cs,p ), (11.3)

where length(cs,p ) is the length of the leader of the candidate cs,p . Constraint (11.1)
ensures that for each site exactly one port p is selected, where the label is placed.
Constraint (11.2) enforces that the placed labels as well as their leaders do not intersect
in any way. Finally, the objective minimizes the total length of the leaders.

Note that in case of opo-leaders we create the candidates such that the vertical
segments of the leaders all lie on the right side of R. For the pairwise intersection tests,
overlaps of vertical segments are not taken into account. In a post-processing step
the vertical segments are horizontally arranged in the track routing area as described
above.

Finding an optimal solution for an ILP formulation is NP-hard in general. However, it
turns out that in practice we can apply specialized solvers to �nd optimal solutions for
reasonably sized instances in acceptable time. Hence, this ILP-based method provides
a simple and generic way to produce our stimuli, without the need for implementing
specialized algorithms for each type.

11.3.3 Procedure

The study was run as a within-subject experiment. Four experimental sessions were
held in the computer lab of our institute at KIT at controlled lighting with 12 identical
machines and screens using a digital questionnaire in German language. After agreeing
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(a) s-leaders (b) po-leaders

(c) do-leaders (d) opo-leaders

Figure 11.2: Instances presented as examples next to the personal preference questions.

to a consent form, each participant �rst completed a tutorial explaining to him or her
the tasks TS and TL on four instances, each containing one of the four labeling types.
Participants were instructed to answer the questions as quickly and as accurately
as possible. Afterwards, the actual study started presenting the 144 stimuli to the
participant one at a time. Each stimulus was revealed to the participant, after he or she
clicked a button in the center of the screen using the mouse. Hence, at the beginning
of each task the mouse pointer was always located at the same position. Then he or
she performed the task by selecting a label or site using the mouse.

The stimuli were divided into 12 blocks consisting of 12 stimuli each. Each block
either contained stimuli only for TS or only for TL. For each participant the stimuli
were in random order, but in alternating blocks, i.e., after completing a block for TS, a
block for TL was presented, and vice versa. Between two successive blocks a pause
screen stated the task for the next block and participants were asked to take a break
of at least 15 seconds before continuing.
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Especially for professional printings, e.g. for atlases of human anatomy, not only
the �gure’s readability, but also its aesthetics is seen to be of great importance. Further,
assigning a label to its site (or vice versa), the viewer should be able to assess whether he
or she has done this correctly. We therefore asked all participants about their personal
assessment of the aesthetics and readability of the leader types after completing
the 144 performance trials. We presented the same four selected instances of the
four leader types to each participant. To that end, we selected an instance for each
leader type t ∈ T based on the 144 instances generated for the tasks TS and TL. We
scored each instance by the sum of its leaders’ ink scores. Among all instances with
leader type t ∈ T and 15 sites, we selected the median instance I with respect to the
instance scores of that subset. Hence, for each type of leader we obtain a moderate
instance with respect to our di�culty measure; see Figure 11.2. Each participant was
asked to rate the di�erent leader types using German school grades on a scale from 1
(excellent) to 6 (insu�cient), where grades 5 and 6 are both fail-grades, by answering
the following questions.
Q1. How do you rate the appearance of the leaders?
Q2. For a highlighted site, how easy is it for you to �nd the corresponding label?
Q3. For a highlighted label, how easy is it for you to �nd the corresponding site?

We further conducted short interviews with eight participants after the experiment,
in which they justi�ed their grading.

11.4 Results

In total 31 students of computer science in the age between 20 and 30 years completed
the experiment, six of them were female and 25 were male. We also asked whether
they have substantial knowledge about labeling �gures and maps, which was a�rmed
by only two participants. Hence most participants of our study were in fact non-expert
users without much background knowledge that would bias their judgments.

11.4.1 Performance Analysis

For each of the 144 trials we recorded both the response time and the correctness
of the answer,2 which allows for analyzing two separate quantitative performance
measures. Response times were measured from the time a stimulus was revealed
until the participant clicked to give the answer. Response times are normalized per
participant by his/her median response time to compensate for di�erent reaction times
among participants. We split the data into four groups by leader type, and refer to the
groups by S, PO, DO and OPO, respectively.

2Data available at http://i11www.iti.kit.edu/projects/bl-userstudy
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Table 11.1: Mean normalized response times for overall processed tasks and for correctly
processed tasks as well as mean success rates. The times and rates are broken down into dense,
sparse and uniform sets of sites, into large and small instances, as well as the tasks TS and TL.

Overall processed tasks Correctly processed tasks

S PO DO OPO S PO DO OPO
Dense 1.266 1.161 1.564 2.122 1.262 1.142 1.552 2.020
Sparse 1.063 0.981 1.143 1.813 1.065 0.980 1.132 1.667
Uniform 0.836 0.885 0.852 1.287 0.837 0.894 0.855 1.231

Large 1.262 1.167 1.425 2.201 1.262 1.158 1.405 2.083
Small 0.848 0.852 0.949 1.281 0.850 0.854 0.948 1.239

TS 1.074 1.083 1.276 1.748 1.072 1.086 1.266 1.602
TL 1.037 0.936 1.098 1.743 1.032 0.922 1,081 1.648

We applied repeated-measures Friedman tests with post-hoc Dunn-Bonferroni
pairwise comparisons in SPSS3 between the four groups to �nd signi�cant di�erences
in the performance data at a signi�cance level of p = 0.05. We chose a non-parametric
test since our data is not normally distributed. We report the detailed test results in
Table 11.5 in Section 11.7 and summarize the main �ndings in the following paragraphs.

Response Times. The �rst three plots of Figure 11.3(a) show the normalized re-
sponse times broken down into the three considered distributions D3, D10 and DU,
which yield dense, sparse and uniform sets of sites; the corresponding mean times are
found in Table 11.1. Further plots for both normalized and absolute response times
are found in Figure 11.6, Figure 11.7 and Figure 11.8 in Section 11.7. We obtained
the following results. Among all leader types, opo-leaders have the highest response
time. In particular for dense and sparse sets of sites the mean response time is up to a
factor 1.8 worse than for the others. For uniform sets we obtain a factor of up to 1.5.
Further, for any distribution the measured di�erences with respect to opo-leaders are
signi�cant.

Comparing the response times of the remaining leader types, we obtain the order
po < s < do with respect to increasing mean response time. For uniform sets we
did not measure any pairwise signi�cant di�erence between do, po and s leaders.
However, for dense and sparse sets we obtained the signi�cant di�erences as shown
in Figure 11.3(a). We emphasize that for po- and s-leaders signi�cant di�erences are
measured for sparse, but not for dense sets of sites. In contrast do- and s-leaders
have signi�cant di�erences for dense sets, but not for sparse sets. Further, po- and

3http://www-01.ibm.com/software/analytics/spss/

185

http://www-01.ibm.com/software/analytics/spss/


Chapter 11 On the Readability of Leaders in Boundary Labeling
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(a) Normalized response times (logarithmic scale). Smaller values are better than higher
values.

Dense

DOPOS OPO DOPOS OPO

Sparse Uniform Large

DOPOS OPO DOPOS OPO
0.6

0.7

0.8

0.9

1.0

DOPOS OPO

Small

(b) Success rates. Higher values are better than smaller values.

Figure 11.3: Performance results broken down to dense, sparse and uniform sets as well as to
large instances (30 sites). Mean values are indicated by ’x’. Arcs at the bottom show signi�cant
di�erences that were found (p = 0.05).

do-leaders have signi�cant di�erences in both dense and sparse sets. Altogether, this
justi�es the ranking po < s < do w.r.t. increasing mean response time.

Comparing the instances in terms of the two tasks TS and TL, the mean response
time of TL is slightly faster than that of TS. A possible explanation is that clicking
a site requires more precise mouse movements than clicking a label. Filtering out
incorrectly processed tasks does not change the mean response time much and similar
results are obtained; see Table 11.1.

The two last plots of Figure 11.3(a) show the mean response times of large instances
(any instance with 30 sites and dense, sparse or uniform distribution) and of small

instances (any instance with 15 sites and dense, sparse or uniform distribution), re-
spectively. While for large instances the mean response times are similar to those of
dense sets, the mean response times of small instances are similar to those of uniform
sets. In both cases, the response times for opo-leaders are signi�cantly higher than for
any other leader type. Hence, likely to sparse and uniform instances, opo-leaders lags
behind the other leader types.
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Table 11.2: Mean success rates broken
down into the di�erent leader types.

S PO DO OPO
0.952 0.973 0.930 0.860
0.978 0.987 0.957 0.855
0.987 0.973 0.981 0.952
0.945 0.973 0.943 0.814
0.988 0.982 0.970 0.964
0.982 0.991 0.959 0.886
0.962 0.964 0.953 0.892

Accuracy. We computed for each leader type and each participant the proportion
of instances of that type that the participant solved correctly; see Figure 11.3(b) and
Table 11.2. For dense and sparse sets of sites we observe that OPO has success rates
around 86%, while the other groups have success rates greater than 93%. In particular
the di�erences between success rates of opo-leaders and the remaining types are up
to 11% and 13% for dense and sparse sets, respectively. Any of these di�erences is
signi�cant, while between S, PO and DO no signi�cant accuracy di�erences were
measured. For uniform sets of sites, on the other hand, no signi�cant di�erences were
measured and any group has a success rate greater than 95%. Hence, it appears that
uniform sets of sites produce easily readable labelings with any leader type – unlike
dense and sparse instances.

Considering large and small instances separately, the group OPO has an inferior
success rate (81%), while the other groups remain almost unchanged (> 93%), which
yields for PO and OPO a di�erence of 16%. For small instances no signi�cant di�er-
ences were measured. Comparing the instances by tasks TS and TL, the success rates
are very similar, but for TS it is slightly better than that for TL except for OPO.

11.4.2 Preference Data

Table 11.3 shows the average grades given by the participants with respect to the three
questions Q1–Q3. Concerning the general aesthetic appeal (question Q1) leaders of
type do received the best grades (1.8), followed by po-leaders (grade 2.3). The partici-
pants did not particularly like the appearance of s-leaders (grade 3.3) and generally
disliked opo-leaders (grade 4.6). Table 11.4 lists the detailed percentages of participants
who graded a particular leader type better, equally, or worse than another type.

In addition to the general impression from the average grades it is worth mentioning
that between the two most preferred leader types do and po 48.4% preferred do over
po and 38.7% gave the same grades to both leader types. Compared to the s-leaders,
a great majority (> 80%) strictly prefers both do- and po-leaders. In the interviews
seven out of eight participants stated that opo-leaders are “confusing, because leaders
closely pass by each other”. They disliked the long parallel segments of opo-leaders.
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s po do opo

Q1 3.3 2.3 1.8 4.6
Q2 2.4 2.1 2.0 4.6
Q3 2.4 2.3 1.7 4.3

Table 11.3: Average grades given by the participants
with respect to questions Q1–Q3. Smaller values are
better than higher values.

Further, some participants remarked that opo-leaders “consist of too many bends”. For
six participants s-leaders were “chaotic and unstructured”, unlike do- and po-leaders.
Five participants said that they liked the �at bend of do-leaders more than the sharp
bend of po-leaders. One participant stated that “po-leaders seem to be more abstract

than do-leaders”. Further, it was said that “the ratio of the segments’ lengths is less
balanced for po- than do-leaders.”

For question Q2 (task TL, site-to-label) do- and po-leaders were ranked best (see
Table 11.3), followed by s-leaders and more than two grades behind by opo-leaders,
whereas for question Q3 (task TS, label-to-site) do-leaders are further ahead of po- and
s-leaders, both of which received similar grades, and are again about two grades ahead
of opo-leaders. For questions Q2 and Q3 the most striking observation is that type-s
leaders received much better results (almost a full grade point better) than for Q1. This
is in strong contrast to the other three leader types, which received grades in roughly
the same range for all three questions. This indicates that the participants perceived
straight leaders as being well readable during the experiment, but still not producing
very appealing labelings.

In the interviews participants stated that “opo-leaders are hard to read because of
leaders lying close to each other.” They negatively observed that opo-leaders “may
not be clearly distinguished”, but assessed the “simple shape of s-leaders to be easily
legible.” Further, they positively noted that “the distances between do-leaders seem
to be greater than for other types” and that “po-leaders are easier to follow than
other types”.

It is remarkable that according to their subjective impressions, participants rated
do-leaders best, while they ranked third in our performance test. We conjecture that
the participants overestimate the performance of do-leaders, because they like their
aesthetics. For s-leaders the reverse is true. In contrast, the self-assessment on po- and
opo-leaders corresponds more closely to the results of our performance test.

In summary, do-leaders obtained the best subjective ratings. The regularly shaped
po- and do-leaders both scored better than the irregular and less shape-restricted
s-leaders. For any of the three questions opo-leaders were rated a lot worse than the
others, which is, according to the interviews, mostly due to the frequent occurrence
of many nearby leaders running closely together. This is an inherent e�ect of their
de�nition, since opo-leaders do not get vertically separated until the track-routing
area, whereas all other leader types separate immediately at the sites.
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Table 11.4: Statistics for questions Q1–Q3. The percentage of participants that graded a leader
type better (<), equally (=) or worse (>) than another. Majorities are highlighted in bold.

do<opo do=opo do>opo do<po do=po do>po do<s do=s do>s

Q1 100 0 0 48.4 38.7 12.9 90.3 3.2 6.5
Q2 93.5 3.2 3.2 32.3 41.9 25.8 48.4 19.4 32.3
Q3 93.5 6.5 0 54.8 35.5 9.7 48.4 35.5 16.1

po<opo po=opo po>opo po<s po=s po>s s<opo s=opo s>opo

Q1 100 0 0 80.6 3.2 16.1 80.6 6.5 12.9
Q2 96.8 3.2 0 35.5 25.8 38.7 83.9 9.7 6.5
Q3 93.5 3.2 3.2 41.9 16.1 41.9 93.5 3.2 3.2

11.4.3 On the Choice of the Di�iculty Levels

In this section, we shortly discuss the choice of the ink-score-based di�culty levels
R = {0.3, 0.6, 0.9} that we used for selecting the highlighted labels and sites for the
experimental tasks. We want to examine whether they are a reasonable indicator for
assessing the di�culty of the stimuli. In the remainder of this subsection we identify
the di�culty levels 0.3, 0.6, 0.9 with easy, medium and hard, respectively.

For the analysis we grouped the stimuli so that they only di�er in their di�culty
level, i.e., all stimuli in the same group have the same number of sites, the same
distribution, the same leader type, and they belong to the same task, namely either
task TS or TL. This yields 2 · 3 · 4 · 2 = 48 groups, and we obtain 31 · 48 = 1488 samples
taking the 31 participants into account.
Response Time. For each sample and each di�culty level r ∈ R we denote the

response time of the corresponding participant by tr . Thus, for each sample we
obtain the three pairs (t0.3, 0.3), (t0.6, 0.6), (t0.9, 0.9). Sorting those three pairs by their
response time in increasing order, we obtain a ranking of the observed di�culty levels
in terms of the required response times.

For about 36.4% of the samples this ranking coincides with the desired ordering
easy, medium, hard. In comparison, assuming a uniform distribution on the orderings,
we could only expect 16.6% of the samples having that particular ordering. Further, for
over 78.8% of the ranked samples easy comes before hard. Under a uniform distribution
we could expect only 50%.

Accuracy. For each sample and each di�culty level r ∈ R let sr ∈ {0, 1} indicate
whether the participant has correctly solved the according task. More precisely, if
sr = 1 then the participant has solved the task correctly; otherwise sr = 0. Over
93.2% of the samples preserved the ordering s0.3 ≥ s0.6 ≥ s0.9, which indicates that an
instance with higher di�culty level is at least as di�cult as an instance with lower
di�culty level. Breaking down the samples into the four leader types, between 87.6%
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(opo-leaders) and 96.5% (po-leaders) of the samples preserve that ordering. Hence, for
all leader types we obtain high accordance with the di�culty levels.

These �ndings suggest that there is indeed a correlation between the considered
ink-score-based di�culty levels and the actual di�culty of the instances in terms of
response times and accuracy. We conclude that the introduced di�culty levels provide
an adequate method to create stimuli of varying di�culty.

11.5 Discussion

In Section 11.2 we hypothesized that labelings with many parallel leaders lying close
to each other have a signi�cant negative e�ect on response times and accuracy. Our
results from Section 11.4.1 indeed support hypotheses (H1b) and (H2), which said
that the assignment task has a signi�cantly smaller response time and error rate
for do- and po-labelings than for opo-labelings in dense (H1b) and also sparse sets
of sites (H2). Hypothesis (H2) was claimed to also hold for s-labelings versus opo-
labelings, which is con�rmed by the experiment as well. While greater response
times may still be acceptable in some cases, the signi�cantly lower accuracy clearly
restricts the usability of opo-leaders. Only for small numbers of sites and uniform
distributions opo-leaders have comparable success rates to the other leader types.
This judgment is strengthened further by the preference ratings. On average the
participants graded opo-leaders between 4 (su�cient) and 5 (poor) in all concerns. The
main reason given in the interviews was that opo-labelings are confusing due to many
leaders closely passing by each other.

However, our results falsi�ed hypothesis (H1a), which claimed that for dense in-
stances type-s leaders perform signi�cantly better than the other three leader types.
Rather we gained unexpected insights into the readability of boundary labeling. While
we had expected that due to their simple shape and easily distinguishable slopes
s-leaders will perform better than all other types of leaders, we could not measure
signi�cant di�erences between po-leaders and s-leaders. Interestingly, on average,
the participants graded po-leaders better than s-leaders in all examined concerns,
in particular with respect to their aesthetics (Q1). This is emphasized by the inter-
view statements given by the participants that po-labelings appear structured while
s-labelings were perceived as chaotic. Comparing do- and s-leaders we measured some
evidence for (H1a), namely that the assignment task has signi�cantly smaller response
times for s- than for do-leaders. However, the success rates did not di�er signi�cantly.

We summarize our main �ndings regarding the four leader types as follows:
(1) do-leaders perform best in the preference rankings, but concerning the assignment

tasks they perform slightly worse than po- and s-leaders.
(2) opo-leaders perform worst, both in the assignment tasks and the preference rank-
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ings. They are applicable only for small instances or for uniformly distributed
sites.

(3) po-leaders perform best in the assignment tasks, and received good grades in the
preference rankings.

(4) s-leaders perform well in the assignment tasks, but not in the preference rankings.
The participants disliked their unstructured appearance.

11.6 Conclusions

As a consequence of our experiment we can generally recommendpo-leaders as the best
compromise between measured task performance and subjective preference ratings.
For aesthetic reasons, it may also be advisable to use do-leaders instead as they have
only slightly lower readability scores but are considered the most appealing leader
type.

To obtain reliable results and exclude confounding factors as much as possible,
we have considered a rather clean and simple boundary labeling model omitting
any background image and complex image contour. This design decision ensures
that we have actually measured the readability of the leader types without risking
the in�uence of unintentional side-e�ects, e.g., side-e�ects created by the choice of
the speci�c background image. These fundamental results can be used as point of
departure for more sophisticated user studies on the readability of more complex
boundary labeling models speci�cally, and external labeling models in general. For
example, in a subsequent user study, one could systematically investigate the in�uence
of background images and more general image contours for the placement of labels.

Moreover, an interesting question is why type-s leaders (which showed good task
performance) are most frequently used in practice in actual visualization systems or
by professional graphic designers, e.g., in anatomical drawings, although they were
not perceived as aesthetically pleasing in our experiment. Conversely, type-po leaders
are much less frequently used in practice despite their better aesthetic ratings and
better or equal task performance. In fact, straight-line connections between two points
actually yield the shortest possible leaders, do not require an additional bend point
and thus might appear as the most natural solution. One explanation for our diverging
results may be that the experiment judged all leader types on an empty, rectangular
background, where the leaders receive the entire visual attention of a viewer. In
reality, the labeled �gure itself is the main visual element and the leaders should be as
unobtrusive as possible and not interfere with the �gure. Do s-leaders produce less
interference? Does their perceived “chaotic appearance” decrease in the presence of
an actual image? It would be necessary to conduct further experiments to assess the
in�uence and interplay of image and leaders on more complex readability tasks. Yet,
our results show that if there is a good contrast between background and leader as
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in our experiment, the additional bend of po-leaders has no negative e�ect on task
performance and the more structured leader shape is positively perceived.

Another interesting follow-up question is whether the chosen objective function
to minimize the total leader length (or ink) produces actually the most aesthetic and
most readable labelings. Despite being the predominant objective function in the
(algorithmic) literature on boundary labeling, simply minimizing the total leader
length most certainly does not capture all relevant quality criteria, in particular if
the context of the labeled image is taken into account. Yet, it would be surprising if
allowing slightly longer leaders had a strong e�ect on the relative performance of the
four leader types in our experimental setup.

Finally, interactive visualization models o�er ample space for research on the read-
ability of di�erent labeling styles. With the increasing importance of digital devices,
interactive applications play more and more a major role in information visualization.
In particular, this creates the possibility to interactively emphasize the correspondence
between image features and their labels by highlighting them on demand, e.g., when
hovering over a label, the corresponding site and leader are highlighted. It is to be
expected that this signi�cantly increases the accuracy of the user, but it may take
more time to select a site or label. However, a detailed user study on interaction tech-
niques for external labeling remains future work. Nonetheless, in traditional media
(e.g., books, magazines, television) non-interactive images remain important, and the
appropriate choice of the leader type is essential.
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11.7 Additional Plots and Tables

Dense Sparse Uniform
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Figure 11.4: Example stimuli with 15 sites (small), one for each site distribution and for each
leader type. Due to formatting the rectangles enclosing the sites may not have same sizes. In
the digital questionnaire they had the same size.
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Dense Sparse Uniform

PO

S

DO

OPO

Figure 11.5: Example stimuli with 30 sites (large), one for each site distribution and for each
leader type. Due to formatting the rectangles enclosing the sites may not have same sizes. In
the digital questionnaire they had the same size.
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Table 11.5: Results of the Dunn-Borferroni test on (a) the response times and (b) the success
rates of the respective pairs of groups. The values estimate the likelihood that both respective
sample groups are from the same population. A value < 0.05 is treated as statistically signi�cant
di�erence (marked green). OPT: all processed tasks. CPT: correctly processed tasks only.
TS/TL: Restricted to instances of task TS/TL. Dense/Sparse/Uniform: Restricted to instances of
distribution dense/sparse/uniform. Large/Small: Restricted to instances containing 30 and 15
sites, respectively.

PO-S S-DO PO-DO DO-OPO S-OPO PO-OPO
OPT:TS 1.0 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

OPT:TL 0.010 0.382 < 10−3 < 10−3 < 10−3 < 10−3

OPT:Dense 0.415 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

OPT:Sparse 0.001 1.0 < 10−3 < 10−3 < 10−3 < 10−3

OPT:Uniform 0.263 1.0 0.129 < 10−3 < 10−3 < 10−3

OPT:Large 0.335 0.098 < 10−3 < 10−3 < 10−3 < 10−3

OPT:Small 1.0 0.001 < 10−3 < 10−3 < 10−3 < 10−3

CPT:TS 1.0 0.001 0.001 < 10−3 < 10−3 < 10−3

CPT:TL 0.281 0.174 < 10−3 < 10−3 < 10−3 < 10−3

CPT:Dense 1.0 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

CPT:Sparse 0.002 1.0 0.003 < 10−3 < 10−3 < 10−3

CPT:Uniform 0.125 1.0 0.135 < 10−3 < 10−3 < 10−3

CPT:Large 1.0 0.221 0.013 < 10−3 < 10−3 < 10−3

CPT:Small 1.0 0.001 < 10−3 < 10−3 < 10−3 < 10−3

(a) Response times.

PO-S S-DO PO-DO DO-OPO S-OPO PO-OPO
TS 1.0 1.0 0.460 < 10−3 < 10−3 < 10−3

TL 1.0 1.0 1.0 0.001 < 10−3 < 10−3

Dense 1.0 1.0 0.330 0.019 0.001 < 10−3

Sparse 1.0 1.0 1.0 0.001 < 10−3 < 10−3

Uniform 1.0 1.0 1.0 0.262 0.125 1.0
Large 1.0 1.0 0.922 < 10−3 < 10−3 < 10−3

Small 1.0 0.764 1.0 1.0 0.055 0.262

(b) Success rates.
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(a) Response times over all tasks (OPT).
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(b) Response times over all correctly processed tasks (CPT).
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(c) Response times over all correctly processed tasks (CPT).

Figure 11.6: Normalized response times (on log-scale) broken down to di�erent parameters.
Mean values are indicated by a bold ’x’. The corresponding signi�cances are found in Table 11.5.
Smaller values are better than higher values.
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(a) Response times in seconds over all tasks (OPT) broken into large and small instances as
well as instances for task TS and TL.
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(b) Response times in seconds over all tasks (OPT) broken into dense, sparse and uniform
instances as well as all instances.

Figure 11.7: Absolute response times (in seconds) broken down to di�erent parameters. Mean
values are indicated by a bold ’x’. The corresponding signi�cances are found in Table 11.5.
Smaller values are better than higher values.
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(a) Response times in seconds over all correctly processed tasks (CPT) broken into large, small
instances as well as instances for task TS and TL.
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Figure 11.8: Absolute response times (in seconds) broken down to di�erent parameters. Mean
values are indicated by a bold ’x’. The corresponding signi�cances are found in Table 11.5.
Smaller values are better than higher values.
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12 Multi-Sided Boundary Labeling

Abstract. In this chapter, we consider the boundary labeling problem from a the-
oretical perspective following the model of Bekos et al. [Bek+07]. We assume that
we are given a set of n sites inside an axis-parallel rectangle R and a set of n pairwise
disjoint rectangular labels that are attached to R from the outside. More precisely, we
study the multi-sided boundary labeling problem, with labels lying on at least two sides
of the enclosing rectangle. The task is to connect the sites to the labels by po-leaders.
We present a polynomial-time algorithm that computes a crossing-free leader layout if
one exists. So far, such an algorithm has only been known for the cases in which labels
lie on one side or on two opposite sides of R (here a crossing-free solution always
exists). The case where labels may lie on adjacent sides is more di�cult.

This chapter is based on and partly taken from joint work with Philipp Kindermann,
Ignaz Rutter, Marcus Schaefer, André Schulz and Alexander Wol�1 [Kin+16, Kin15,
Kin+13b, Kin+13a].

12.1 Introduction

Following Bekos et al. [Bek+07], we describe the BoundaryLabeling problem con-
sidered in this chapter as follows. We are given an axis-parallel rectangle R =
[0,W ] × [0,H ], describing the boundary of the image, a set S ⊂ R of n sites p1, . . . ,pn ,
within the rectangle R, and a set L ofm ≤ n axis-parallel rectangles `1, . . . , `m of equal
size, which model the labels. The labels lie in the complement of R and touch the
boundary of R. No two labels overlap. We denote an instance of the problem by the
triplet (R, S,L). A solution of a problem instance is a set ofm curves c1, . . . , cm in the
interior of R, representing the leaders, that connect sites to labels such that the leaders
a) induce a matching between the labels and (a subset of) the sites,
b) touch the associated labels on the boundary of R.
Following previous work, we do not de�ne labels as the text associated with the
sites, but as the empty rectangles into which that text will be placed (during a post-
processing step). This approach is justi�ed by our assumption that all label rectangles
have the same size.

1The chapter is based on a close scienti�c cooperation with other researchers and contains the parts
of [Kin+16] to which the author of this thesis has substantially contributed to. The content of this chapter
has also been published in the dissertation by Philipp Kindermann[Kin15].
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Kinderhaus
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Kindergarten

Evangelische
Kindertagesstätte

Kindertagesstätte
St. Stephan

Evangelischer
Kindergarten

Kindergarten
Marienhaus

Evangelischer
Kindergarten

Tagegruppe
Sterntaler

Katholische
Kindertagesstätte
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Städtischer
Kindergarten

Kindergarten
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Figure 12.1: Labeling of kin-
dergartens in Karlsruhe, Ger-
many. The picture shows po-
leaders with labels on adjacent
sides of the map. For better
readability, we have simpli�ed
the label texts.

A solution is planar if the leaders do not intersect. We call an instance solvable if a
planar solution exists. Note that we do not prescribe which site connects to which
label. The endpoint of a curve at a label is called a port. We distinguish two versions
of the Boundary Labeling problem: either the position of the ports on the boundary
of R is �xed and part of the input, or the ports slide, i.e., their exact location is not
prescribed.

We restrict our solutions to po-leaders; see Figure 12.1. Bekos et al. [Bek+10b,
Figure 16] observed that not every instance admits a planar solution with po-leaders
in which all sites are labeled (even ifm = n).

Previous and Related Work. While in Chapter 10 we have reviewed the preceding
research generally, we now take an algorithmic perspective on closely related work.
For po-labeling, Bekos et al. [Bek+07] gave a simple quadratic-time algorithm for the
one-sided case that, in a �rst pass, produces a labeling of minimum total leader length
by matching sites and ports from bottom to top. In a second pass, their algorithm
removes all intersections without increasing the total leader length. This result was
improved by Benkert et al. [Ben+09] who gave an O(n logn)-time algorithm for the
same objective function and an O(n3)-time algorithm for a very general class of
objective functions, including, for example, bend minimization. They extend the
latter result to the two-sided case (with labels on opposite sides of R), resulting in
an O(n8)-time algorithm. For the special case of leader-length minimization, Bekos
et al. [Bek+07] gave a simple dynamic program running in O(n2) time. All these
algorithms work both for �xed and sliding ports.

At its core, the boundary labeling problem asks for a non-intersecting perfect (or
maximum) matching on a bipartite graph. Note that an instance may have a planar
solution, although all of its leader-length minimal matchings have crossings. In fact, the
ratio between a length-minimal solution and a length-minimal crossing-free matching
can be arbitrarily bad; see Figure 12.2. When connecting points and sites with straight-

200



Introduction Section 12.1

Figure 12.2: Length-minimal solutions may have crossings.
By increasing ∆ we can make the ratio between the length-
minimal matching and the length-minimal crossing-free
matching arbitrarily small. ∆

�

line segments, the minimum Euclidean matching is necessarily crossing-free. For this
case an O(n2+ε )-time O(n1+ε )-space algorithm exists [AES99].

Boundary labeling can also be seen as a graph-drawing problem where the class of
graphs to be drawn is restricted to matchings. The restriction concerning the positions
of the graph vertices (that is, sites and ports) has been studied for less restricted
graph classes under the name point-set embeddability (PSE), usually following the
straight-line drawing convention for edges [Gri+91]. For polygonal edges, Bastert and
Fekete [BF96] proved that PSE with minimum number of bends or minimum total edge
length is NP-hard, even when the graph is a matching. For minimizing the total edge
length and the same graph class, Liebling et al. [Lie+95] introduced heuristics and
Chan et al. [Cha+13] presented approximation algorithms. Chan et al. also considered
paths and general planar graphs. PSE has also been combined with the ortho-geodesic
drawing convention [Kat+09], which generalizes po-labeling by allowing edges to
have more than one bend. The case where the mapping between ports and sites is
given has been studied in VLSI layout [RCS86].

For �xed ports, boundary labeling can be modeled as �nding an independent set
in outerstring graphs. A graph G = (V ,E) is an outerstring graph, if G forms an
intersection graph on curves that lie in a bounded region in such a way that each
curve has one end point on the boundary of that region. We obtain G as follows.
For each possible site-port pair we create its unique leader λ; the vertices of G are
these leaders. Two vertices are adjacent in G if and only if the according leaders
intersect. Note that the construction is independent from the shape of the leaders.
Obviously, an independent set in G implies a planar boundary labeling. Recently,
Keil et al. [Kei+17]2 presented a dynamic programming approach that computes an
independent set in O(k3) time and O(k2) space, where k denotes the total number
of line segments describing the bounding region and the curves. Since we construct
O(n2) leaders, a boundary labeling with �xed ports can be computed in O(n6) running
time andO(n4) space; the labels may lie on any side of the boundary, and the boundary
can be an arbitrary simple polygon.

Contribution and Outline. In the �rst part of the chapter, we investigate the
problem Two-Sided Boundary Labeling with Adjacent Sides where all labels

2The prelimary publications [Kin+16, Kin+13b, Kin+13a] of this chapter have been published before.
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lie on two adjacent sides of R, without loss of generality, on the top and right side.
Note that point data often comes in a coordinate system; then it is natural to have
labels on adjacent sides (for example, opposite the coordinate axes). We argue that
this problem is more di�cult than the case where labels lie on opposite sides, which
has been studied before: with labels on opposite sides, (a) there is always a solution
where all sites are labeled (if m = n) and (b) a feasible solution can be obtained by
considering two instances of the one-sided case.

We present an algorithm that, given an instance with n labels with �xed ports
and n sites, decides whether a planar solution exists where all sites are labeled and, if
yes, computes a layout of the leaders; see Section 12.3. Our algorithm uses dynamic
programming to “guess” a partition of the sites into the two sets that are connected to
the leaders on the top side and on the right side. The algorithm runs in O(n2) time
and uses O(n) space. In [Kin+16] we further present several extensions of our main
result3, which include the label-number maximization problem, sliding ports as well
as total leader length minimization.

In the second part of the chapter, we investigate the problems Three-Sided Bound-
ary Labeling and Four-Sided Boundary Labeling where the labels may lie on
three or even all four sides of R, respectively. To that end we generalize the concept
of partitioning the sites labeled by leaders of di�erent sides. In this way we obtain
subinstances that we can solve using the algorithm for the two-sided case. We obtain
an algorithm solving the four-sided case inO(n9) time andO(n) space and an algorithm
solving the three-sided case in O(n4) time and O(n) space.

While for the two-sided and three-sided case our algorithm is clearly faster than
the algorithm based on the dynamic programming approach by Keil et al. [Kei+17],
for the four sided case our algorithm outperforms that algorithm concerning space
consumption.

Notation. We call the labels that lie on the right (left/top/bottom) side of R right

(left/top/bottom) labels. The type of a label refers to the side of R on which it is located.
The type of a leader (or a site) is simply the type of its label. We assume that no two
sites lie on the same horizontal or vertical line, and no site lies on a horizontal or
vertical line through a port or an edge of a label.

For a solution L of a boundary labeling problem, we de�ne several measures that
will be used to compare di�erent solutions. We denote the total length of all leaders
in L by length(L). Moreover, we denote by |L|x the total length of all horizontal
segments of leaders that connect a left or right label to a site. Similarly, we denote
by |L|y the total length of the vertical segments of leaders that connect top or bottom
labels to sites. Note that generally, |L|x + |L|y , length(L).

3Since the author’s contribution to these extensions is not signi�cant, they are not presented in this
thesis, but the reader may refer to [Kin+16] for details.
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Figure 12.3: An xy-separating curve of a planar solution.

C

R

We denote the (uniquely de�ned) leader connecting a site p to a port t of a label `
by λ(p, t). We denote the bend of the leader λ(p, t) by bend(p, t). In the case of �xed
ports, we identify ports with labels and simply write λ(p, `) and bend(p, `), respectively.

12.2 Structure of Two-Sided Planar Solutions

In this section, we tackle the two-sided boundary labeling problem with adjacent sides
by presenting a series of structural results of increasing strength. We assume that the
labels are located on the top and right sides of R. For simplicity, we assume that we
have �xed ports. By identifying the ports with their labels, we use L to denote the set
of ports of all labels. For sliding ports, we can simply �x all ports to the bottom-left
corner of their corresponding labels. First we show that a planar two-sided solution
admits a transformation sustaining planarity such that the result of the transformation
can be split into two one-sided solutions by constructing an xy-monotone, rectilinear
curve from the top-right to the bottom-left corner of R; see Figure 12.3. Afterwards,
we provide a necessary and su�cient criterion to decide whether there exists a planar
solution for a given separation. This will form the basis of our dynamic programming
algorithm, which we present in Section 12.3.

Lemma 12.1. Consider a solution L for (R, S,L) and let S ′ ⊆ S be sites of the same

type. Let L′ ⊆ L be the set of labels of the sites in S ′. Let K ⊆ R be a rectangle that

contains all bends of the leaders of S ′. If the leaders of S \ S ′ do not intersect K , then we

can rematch S ′ and L′ such that the resulting solution L ′ has the following properties:
(i) all intersections in K are removed, (ii) there are no new intersections of leaders outside

of K , (iii) |L ′ |x = |L|x , |L ′ |y = |L|y , and (iv) length(L ′) ≤ length(L).

Proof. Without loss of generality, we assume that S ′ contains top sites; the other
cases are symmetric. We �rst prove that, no matter how we change the assignment
between S ′ and L′, new intersection points can arise only in K . This enables us to
construct the required solution.

Claim 12.1. Let `, `′ ∈ L′ and p,p ′ ∈ S such that ` labels p and `′ labels p ′. Changing
the matching by rerouting p to `′ and p ′ to ` does not introduce new intersections outside

of K .

Let K ′ ⊆ K be the rectangle spanned by bend(p, `) and bend(p ′, `′). When rerouting,
we replace λ(p, `) ∪ λ(p ′, `′) restricted to the boundary of K ′ by its complement with
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p′
p

` `′

K ′

K

p′
p

` `′

K ′

K

Figure 12.4: Illustration of the proof
of Lemma 12.1. Rerouting λ(p, `)
and λ(p ′, `′) to λ(p, `′) and λ(p ′, `)
changes leaders only on the bound-
ary of K ′

respect to the boundary of K ′; see Figure 12.4 for an example. Thus, any changes
concerning the leaders occur only in K ′. The statement of the claim follows.

Since any rerouting can be seen as a sequence of pairwise reroutings, the above
claim shows that we can rematch L′ and S ′ arbitrarily without running the risk of
creating new con�icts outside of K . To resolve the con�icts inside K , we use the length-
minimization algorithm for one-sided boundary labeling by Benkert et al. [Ben+09],
with the sites and ports outside K projected onto the boundary of K . Thus, we obtain
a solution L ′ satisfying properties (i)–(iv). �

De�nition 12.1. We call an xy-monotone, rectilinear curve connecting the top-right to

the bottom-left corner of R an xy-separating curve. We say that a planar solution to

Two-Sided Boundary Labeling with Adjacent Sides is xy-separated if and only if

there exists an xy-separating curve C such that

a) the sites that are connected to the top side and all their leaders lie on or above C
b) the sites that are connected to the right side and all their leaders lie below C .

It is not hard to see that a planar solution is not xy-separated if there exists a site p
that is labeled to the right side and a siteq that is labeled to the top side with x(p) < x(q)
and y(p) > y(q). There are exactly four patterns in a possible planar solution that
satisfy this condition; see Figure 12.5. In Lemma 12.2, we show that these patterns are
the only ones that can violate xy-separability.

Lemma 12.2. A planar solution is xy-separated if and only if it does not contain any of

the patterns P1–P4 in Figure 12.5.

Proof. Obviously, the planar solution is not xy-separated if one of these patterns occurs.
Let us assume that none of these patterns exists. We construct an xy-monotone curveC
from the top-right corner of R to its bottom-left corner. We move to the left whenever
possible, and down only when we reach the x-coordinate of a site p that is connected to
the top, or when we reach the x-coordinate of a port of a top label, labeling a site p. If
we have to move down, we move down as far as necessary to avoid the corresponding
leader, namely down to they-coordinate of p. Finally, when we reach the left boundary
of R, we move down to the bottom-left corner of R. If C is free of crossings, then we
have found an xy-separating curve. (For an example, see curve C in Figure 12.3.)

Assume for a contradiction, that a crossing arises during the construction, and
consider the topmost such crossing. Note that, by the construction of C , crossings
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Figure 12.5: A planar so-
lution that contains any of
the above four patterns P1–
P4 is not xy-separated.
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can only occur with leaders that connect a site p to a right port r . We distinguish two
cases, based on whether the crossing occurs on a horizontal or a vertical segment of
the curve C .

IfC is crossed on a vertical segment, then this segment belongs to a leader connecting
a site q to a top port t , and we have reached the x-coordinate of either the port or
the site. Had we, however, reached the x-coordinate of the port, this would imply a
crossing between λ(p, r ) and λ(q, t). Thus, we have reached the x-coordinate of q. This
means that p lies to the left of and above q, and we have found one of the patterns P1
and P2; see Figure 12.5.

If C is crossed on a horizontal segment, then p must lie above r . Otherwise, there
would be another crossing of C with the same leader, which is above the current
one. This would contradict the choice of the topmost crossing. Consider the previous
segment ofC , which is responsible for reaching they-coordinate of the current segment.
This vertical segment belongs to a leader connecting a site q to a top port t . Since
leaders do not cross, q is to the right of p, and the crossing on C implies that q is
below p. We have found one of the patterns P3 and P4; see Figure 12.5. �

Observe that patterns P1 and P2 can be transformed into patterns P3 and P4, respec-
tively, by mirroring the instance diagonally. Next, we prove constructively that, by
rerouting pairs of leaders, any planar solution can be transformed into an xy-separated
planar solution.

Proposition 12.1. If there exists a planar solution L to Two-Sided Boundary La-

beling with Adjacent Sides, then there exists an xy-separated planar solution L ′
with length(L ′) ≤ length(L), |L ′ |x ≤ |L|x , and |L ′ |y ≤ |L|y .

Proof. Let L be a planar solution of minimum total leader length. We show that L is
xy-separated. Assume, for the sake of contradiction, that L is not xy-separated. Then,
by Lemma 12.2, L contains one of the patterns P1–P4. Without loss of generality, we
can assume that the pattern is of type P3 or P4. Otherwise, we mirror the instance
diagonally.

Consider all patterns (p,q) in L of type P3 or P4 such that p is a right site (with
port r ) and q is a top site (with port t ). Among all such patterns, consider the ones
where p is rightmost and among these pick one where q is bottommost. Let A be
the rectangle spanned by p and t ; see Figure 12.6. Let A′ be the rectangle spanned
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(a) Pattern P3.
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(b) Pattern P4.

Figure 12.6: Types (top =↑ / right =→)
of the sites inside rectangles A, A′, B,
and B′.

by bend(q, t) and p. Let B be the rectangle spanned by q and r . Let B′ be the rectangle
spanned by q and bend(p, r ). Then we claim the following:

(i) Sites in the interiors of A and A′ are connected to the top.
(ii) Sites in the interiors of B and B′ are connected to the right.

Property (i) is due to the choice of p as the rightmost site involved in such a pattern.
Similarly, property (ii) is due to the choice of q as the bottommost site that forms a
pattern with p. This settles our claim.

Our goal is to change the labeling by rerouting p to t and q to r , which decreases
the total leader length, but may introduce crossings. We then use Lemma 12.1 to
remove the crossings without increasing the total leader length. Let L ′′ be the labeling
obtained from L by rerouting p to t and q to r . We have |L ′′ |y ≤ |L|y − (y(p) − y(q))
and |L ′′ |x = |L|x − (x(q) −x(p)). Moreover, length(L ′′) ≤ length(L) − 2(y(p) −y(q)),
as at least twice the vertical distance between p and q is saved; see Figure 12.6. Since
the original labeling was planar, crossings may only arise on the horizontal segment
of λ(p, t) and on the vertical segment of λ(q, r ).

By properties (i) and (ii), all leaders that cross the new leader λ(p, t) have their
bends inside A′, and all leaders that cross the new leader λ(q, r ) have their bends
inside B′. Thus, we can apply Lemma 12.1 to the rectangles A′ and B′ to resolve all
new crossings. The resulting solution L ′ is planar and has length less than length(L).
This is a contradiction to the choice of L. �

Since every solvable instance of Two-Sided Boundary Labeling with Adjacent
Sides admits an xy-separated planar solution, it su�ces to search for such a solution.
Moreover, an xy-separated planar solution that minimizes the total leader length is
a solution of minimum length. In Lemma 12.3 we provide a necessary and su�cient
criterion to decide whether, for a given xy-monotone curveC , there is a planar solution
that is separated by C . We denote the region of R above C by RT and the region of R
below C by RR. We do not include C in either RT or RR, so these regions are open at C .

For any point a ∈ R, we de�ne the rectangle Ra , spanned by the top-right corner
of R and a. We de�ne Ra such that it is closed but does not contain its top-left corner.
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Figure 12.7: The strip condition. (a) The horizontal strip condition ofb is satis�ed by a. (b) The
horizontal segments of C partition the strips S0,S1, . . . ,Sk . (c) Constructing a planar labeling
from a sequence of valid rectangles.

In particular, we consider the port of a top label as contained in Ra , only if it is not the
upper left corner.

A rectangle Ra is valid if the number of sites of S above C that belong to Ra is at
least as large as the number of ports on the top side of Ra . The central idea is that
the labels on the top side of a valid rectangle Ra can be connected to the sites in Ra
by leaders that are completely contained inside that rectangle. We are now ready to
present the strip condition.

Condition 12.1. The horizontal strip condition of the point b ∈ C is satis�ed if there

exists a point a ∈ RT with y(a) = y(b) and x(a) ≤ x(b) such that Ra is valid.

Without loss of generality we may assume that the curve C is rectilinear. The
condition is named after the horizontal segments through points in C .

We now prove that, for a given xy-monotone curve C connecting the top-right
corner to the bottom-left corner of R, there exists a planar solution in RT for the top
labels if and only if all points of C satisfy the strip condition.

Lemma 12.3. Let C be an xy-monotone curve from the top-right corner of R to the

bottom-left corner of R. Let S ′ ⊆ S be the sites that are in RT. There is a planar solution
that uses all top labels of R to label sites in S ′ in such a way that all leaders are in RT if

and only if each point of C satis�es the strip condition.

Proof. For the proof we call a region S ⊆ R balanced if it contains the same number of
sites as it contains ports. To show that the conditions are necessary, let L be a planar
solution for which all top leaders are above C . Consider a point b ∈ C . If y(p) ≥ y(b)
for all sites p ∈ S , rectangle Ra with a = (0,y(b)) is clearly valid, and thus the strip
condition for b is satis�ed. Hence, assume that there is a site p ∈ S with y(p) < y(b)
that is labeled by a top label; see Figure 12.7(a). Then, the vertical segment of this
leader crosses the horizontal line h through b. Let a denote the rightmost such crossing
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of a leader of a site in S ′ with h. We claim that Ra is valid. To see this, observe that all
sites of S ′ top-right of a are contained in Ra . Since no leader may cross the vertical
segment de�ning a, the number of sites in Ra ∩ RT is balanced, i.e., Ra is valid.

Conversely, we show that if the conditions are satis�ed, then a corresponding planar
solution exists. For each horizontal segment of C consider the horizontal line through
the segment. We denote the part of these lines within R by h1, . . . ,hl , respectively,
and let h0 be the top side of R. The line segments h1, . . . ,hl partition RT into l strips,
which we denote by S1, . . . ,Sl from top to bottom, such that strip Si is bounded by hi
from below for i = 1, . . . , l ; see Figure 12.7(b). Additionally, we de�ne S0 to be the
empty strip that coincides with h0. Let Sk be the last strip that contains sites of S ′.
For i = 0, . . . ,k − 1, let a′i denote the rightmost point of hi ∩ RT such that Ra′i is valid.
Such a point exists since the leftmost point of hi ∩C satis�es the strip condition. We
de�ne ai to be the point on hi ∩RT, whose x-coordinate is minj≤i {x(a′j )}. Note that Rai
is a valid rectangle, as, by de�nition, it completely contains some valid rectangle Ra′j
with x(a′j ) = x(ai ). Also by de�nition the sequence formed by the points ai has
decreasing x-coordinates, i.e., the Rai grow to the left; see Figure 12.7(c).

We prove inductively that, for each i = 0, . . . ,k , there is a planar labeling Li that
matches the labels on the top side of Rai to points contained in Rai , in such a way that
there exists an xy-monotone curve Ci from the top-left to the bottom-right corner
of Rai that separates the labeled sites from the unlabeled sites without intersecting
any leaders. Then Lk is the required labeling.

For i = 0, L0 = ∅ is a planar solution. Consider a strip Si with 0 < i ≤ k ;
see Figure 12.7(c). By the induction hypothesis, we have a curve Ci−1 and a planar
labeling Li−1, which matches the labels on the top side of Rai−1 to the sites in Rai−1

above Ci−1. To extend it to a planar solution Li , we additionally need to match the
remaining labels on the top side of Rai and construct a corresponding curve Ci . Let Si
denote the set of unlabeled sites in Rai . By the validity of Rai , this number is at least as
large as the number of unused ports at the top side of Rai . We arbitrarily match these
ports to the topmost sites of Si that are not labeled in Li−1. We denote the resulting
labeling by L ′i . We observe that no leader of L ′i crosses the curve Ci−1, and hence
such leaders cannot cross leaders in Li−1. Let h be the topmost horizontal line such
that all labeled sites of L ′i lie above h. Further, let K be the rectangle that is spanned
by the top-left corner of Rai−1 and the intersection of h with the left side of Rai . Since
the ports of L ′i lie on the top side of K , any leader’s bend of L ′i lies in K . We apply
Lemma 12.1 on L ′i to obtain a planar labeling L ′′i , which has no crossings with Li−1.
Hence, the set Li = L ′′i ∪ Li−1 is the required labeling.

It remains to construct the curve Ci . For this, we start at the top-left corner of Rai
and move down vertically, until we have passed all labeled sites. We then move right
until we either hit Ci−1 or the right side of R. In the former case, we follow Ci−1
until we arrive at the right side of R. Finally, we move down until we arrive at the
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bottom-right corner of Rai . Note that all labeled sites are above Ci , unlabeled sites are
below Ci , and no leader is crossed by Ci . This is true since we �rst move below the
new leaders and then follow the previous curve Ci−1. �

A symmetric strip condition (with vertical strips) can be obtained for the right
region RR of a partitioned instance. The characterization is completely symmetric.

In the following, we observe two properties of the strip condition. The �rst ob-
servation states that the horizontal strip condition at (x ,y) is independent of the
exact shape of the curve between the top-right corner r of R and (x ,y), as long as the
number of sites above the curve remains the same. This is crucial for using dynamic
programming to test the existence of a suitable curve. The second observation states
that the horizontal strip condition can only be violated when the curve passes the
x-coordinate of a top site. This enables us to discretize the problem.

Observation 12.1. The horizontal strip condition for a point a ∈ C depends only on the

number of sites in Ra above C , in the following sense: Let C and C ′ be two xy-monotone

curves from r to a with u sites in Ra above C and C ′, respectively. Then, a satis�es the

strip condition for C if and only if it satis�es the strip condition for C ′.

Observation 12.2. Let a,b ∈ C,x(a) ≤ x(b) such that there is no top site ` with x(a) <
x(`) ≤ x(b). Then, a satis�es the horizontal strip condition for C if and only if b satis�es

the horizontal strip condition for C .

Symmetric statements hold for the vertical strip condition. In the following, we
say that a point (x ,y) on a curve C satis�es the strip condition if it satis�es both the
horizontal and the vertical strip condition.

12.3 Algorithm for the Two-Sided Case

How can we �nd an xy-monotone curve C that satis�es the strip conditions? For that
purpose we only consider xy-monotone curves contained in some graphG that is dual
to the rectangular grid induced by the sites and ports of the given instance. Note that
this is not a restriction since all leaders are contained in the grid induced by the sites
and ports. Thus, every xy-monotone curve that does not intersect the leaders can be
transformed into an equivalent xy-monotone curve that lies on G.

When traversing an edge e ofG , we pass the x- or y-coordinate of exactly one entity
of our instance; either a site (site event) or a port (port event). When passing a site,
the position of the site relative to e (above/below e or right/left of e) decides whether
the site is connected to the top or to the right side. Clearly, there is an exponential
number of possible xy-monotone traversals through the grid. In the following, we
describe a dynamic program that �nds an xy-separating curve in O(n3) time.

209



Chapter 12 Multi-Sided Boundary Labeling

LetmR andmT be the numbers of ports on the right and top side of R, respectively.
Also, let N = n+mT+2 and M = n+mR+2, then the gridG has size N ×M . We de�ne
the grid points as G(s, t), 0 ≤ s ≤ N , 0 ≤ t ≤ M with G(0, 0) being the bottom-left
and r := G(N ,M) being the top-right corner of R. Finally, let Gx (s) := x(G(s, 0))
and Gy (t) := y(G(0, t)).

For each grid point (s, t) that is neither on the topmost row nor on the rightmost
column, we de�ne four boxes B↑(s, t),B↓(s, t),B←(s, t) and B→(s, t) as follows; see
Figure 12.8 for an illustration.

1. B↑(s, t) = {(x ,y) ∈ R | Gx (s) ≤ x ≤ Gx (s + 1) ∧ y ≥ Gy (t)}
2. B↓(s, t) = {(x ,y) ∈ R | Gx (s) ≤ x ≤ Gx (s + 1) ∧ y ≤ Gy (t)}
3. B←(s, t) = {(x ,y) ∈ R | Gy (t) ≤ y ≤ Gy (t + 1) ∧ x ≤ Gx (s)}
4. B→(s, t) = {(x ,y) ∈ R | Gy (t) ≤ y ≤ Gy (t + 1) ∧ x ≥ Gx (s)}

We de�ne a table T [(s, t),u,b] that assigns to each grid position (s, t) and number of
points u and b a Boolean value. We de�ne T [(s, t),u,b] to be true if and only if there
exists an xy-monotone curve C satisfying the following conditions.

(i) Curve C starts at r and ends at G(s, t).
(ii) Inside the rectangle spanned by r and G(s, t), there are u sites of S aboveC and b

sites of S below C .
(iii) For each grid point on C , the strip condition holds.

These conditions together with Proposition 12.1 and Lemma 12.3 imply that the
instance admits a planar solution if and only if T [(0, 0),u,b] = true for some u and b.

We de�ne a Boolean function X [(s, t),u,b] that is true if and only if the strip condi-
tion at (s, t) is satis�ed for some xy-monotone curve C (and thus by Observation 12.1
for all such curves) from r to G(s, t) with u sites above and b sites below C . The
following lemma gives a recurrence for T , which is essentially a disjunction of two
values, each of which is determined by distinguishing three cases.

Lemma 12.4. For s = N and t = M , it holds thatT [(s, t), 0, 0] = true. For s ∈ [0,N −1]
and t ∈ [0,M − 1], it holds that

T [(s + 1, t),u,b] ∧ X [(s, t),u,b] L ∩ B↑(s, t) , ∅
T [(s + 1, t),u − 1,b] if S ∩ B↑(s, t) , ∅
T [(s + 1, t),u,b − 1] S ∩ B↓(s, t) , ∅


T [(s, t),u,b] = ∨

T [(s, t + 1),u,b] ∧ X [(s, t),u,b] L ∩ B→(s, t) , ∅
T [(s, t + 1),u,b − 1] if S ∩ B→(s, t) , ∅
T [(s, t + 1),u − 1,b] S ∩ B←(s, t) , ∅

.
Proof. We show equivalence of the two terms. Let C be an xy-monotone curve from r
to (s, t). Let e be the last segment of C and let C ′ = C − e . Since C is xy-monotone, C ′
ends either at the grid point (s + 1, t) or at (s, t + 1). Without loss of generality, we
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Figure 12.8: The four boxes B↑(s, t),
B↓(s, t), B←(s, t) and B→(s, t) de�ned
by grid point (s, t).

t

s s+ 1

t+ 1

B↑(s, t)

B↓(s, t)

B→(s, t)B←(s, t)

r = (N,M)

(0, 0)

assume that C ′ ends at (s + 1, t). We show that T [(s, t),u,b] = true if and only if the
�rst term of the right hand side is true. Analogous arguments apply for C ′ ending
at (s, t + 1) and the second term. Note that, by construction, property (i) is satis�ed
for C and C ′.

We distinguish cases based on whether the traversal along the segment e from (s +
1, t) to (s, t) is a port event or a site event.

Case 1: Traversal of e is a port event. Since e passes a port, all sites that lie in the
rectangle spanned by r andG(s, t) also lie in the rectangle spanned by r andG(s + 1, t).
Thus, the numbers u and b of such sites above and belowC is the same as the numbers
of sites above and below C ′, respectively. Hence, property (ii) holds for C if and only
if it holds for C ′.

BecauseC ′ is a subset ofC , the strip condition holds for every point ofC if and only
if it holds for every point of C ′ and for (s, t). Thus, property (iii) is satis�ed for C if
and only if it is satis�ed for C ′ and X [(s, t),u,b] = true.

Case 2: Traversal of e passes a site p. For property (iii), observe that, since the
traversal of e is a site event, the strip conditions for (s, t) and (s + 1, t) are equivalent
by Observation 12.2.

For property (ii), note that, except for p, the sites that lie in the rectangle spanned
by r and G(s, t) also lie in the rectangle spanned by r and G(s + 1, t). If p lies above e ,
there are u sites above and b sites below C if and only if there are u − 1 sites above
and b sites below C ′, respectively. Symmetrically, if p lies below e , there are u sites
above and b sites belowC if and only if there are u sites above and b − 1 sites belowC ′,
respectively. In either case, C satis�es condition (ii) if and only if C ′ does. �

Clearly, the recurrence from Lemma 12.4 can be used to compute T in polynomial
time via dynamic programming. Note that it su�ces to store u, as the number of sites
below the curveC can directly be derived from u and all sites that are contained in the
rectangle spanned by r andG(s, t). Thus, in the following we work withT [(s, t),u]. The
running time crucially relies on the number of strip conditions that need to be checked.
We show that after a O(n2) preprocessing phase, such queries can be answered in O(1)
time.
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To implement the test of the strip conditions, we use a table BT, which stores
in BT[s, t] how large a de�cit of sites to the right can be compensated by sites above
and to the left ofG(s, t). That is, BT[s, t] is the maximum value k such that there exists
a rectangle KBT[s,t ] with lower right corner G(s, t) whose top side is bounded by the
top side of R, and that contains k more sites in its interior, than it has ports on its top
side. Once we have computed this matrix, it is possible to query the strip condition in
the dynamic program that computes T in O(1) time as follows: Assume we have an
entry T [(s, t),u], and we wish to check its strip condition. Consider a curve C from r
to G(s, t) such that u sites are above C . The strip condition is satis�ed if and only
if u + BT[s, t] is at least as large as the number of top ports to the right of G(s, t). This
is true if the rectangle spanned by the lower left corner of KBT[s,t ] and r contains at
least u + BT[s, t] sites, which is an upper bound on the number of ports on the top side
of that rectangle.

We now show how to compute BT in O(n2) time. We compute each row separately,
starting from the left side. We initialize BT[0, t] = 0 for t = 0, . . . ,M , since in the �nal
column, no de�cit can be compensated. The matrix B can be �lled by a horizontal
sweep. The entry BT[s, t] can be derived from the already computed entry BT[s − 1, t].
If the step from s − 1 to s is a site event, the amount of the de�cit we can compensate
increases by 1. If it is a port event the amount of the de�cit we can compensate
decreases by 1. Moreover, the compensation potential never goes below 0. We obtain

BT[s, t] =
{
BT[s − 1, t] + 1 if step is site event,
max{BT[s − 1, t] − 1, 0} if step is port event.

The table can be clearly �lled out in O(n2) time. A similar matrix BR can be computed
for the vertical strips. Altogether, this yields an algorithm for Two-Sided Bound-
ary Labeling with Adjacent Sides that runs in O(n3) time and uses O(n3) space.
However, the entries of each row and column of T depend only on the previous
row and column, which allows us to reduce the storage requirement to O(n2). Using
Hirschberg’s algorithm [Hir75], we can still backtrack the dynamic program and �nd
a solution corresponding to an entry in the last cell in the same running time. We
have the following theorem.

Theorem 12.1. Two-Sided Boundary Labeling with Adjacent Sides can be solved

in O(n3) time using O(n2) space.

Our next goal is to improve the performance of our algorithm by reducing the
number of dimensions of the table T by 1. As a �rst step, we show that for any search
position c = (s, t), the set of all u with T [c,u] = true is an interval.

Lemma 12.5. Let T [c,u] = T [c,u ′] = true with u < u ′. Then T [c,u ′′] = true
for u ≤ u ′′ ≤ u ′.
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Figure 12.9: Proof sketch of Lemma 12.5.
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Proof. Let C be a curve corresponding to the entry T [c,u]. That is C connects r to c
such that any point on C satis�es the strip condition. Similarly, let C ′ be a curve
corresponding to T [c,u ′]; see Figure 12.9.

Since u and u ′ di�er, there is a rightmost site p, such that p is belowC and aboveC ′.
Let v and v ′ be the grid points of C and C ′ that are immediately to the left of p. Note
that v is above v ′ since C is above p and C ′ is below it. Consider the curve C ′′ that
starts at r and follows C until v , then moves down vertically to v ′, and from there
follows C ′ to p. Obviously C ′′ is an xy-monotone curve, and it has above it the same
sites as C ′, except for p, which is below it. Thus there are u ′′ = u ′ − 1 sites above C ′′
in the rectangle spanned by p and r . If all points ofC ′′ satisfy the strip condition, then
this implies T [c,u ′′] = true.

We show that indeed the strip condition is satis�ed for any point on C ′′. Let C1 be
the subcurve of C ′′ that connects r to v , let C2 be the segment vv ′ and let C3 be the
subcurve of C ′′ that connects v ′ to c. Since C1 is also a subcurve of C and it starts at
r , it directly follows that any point of C1 satis�es the strip condition. For the points
on C2 we can argue as follows. Since C2 lies below C and any point of C satis�es the
horizontal strip condition, any point of C2 must satisfy the horizontal strip condition.
Analogously, because C2 lies above C ′ and any point of C ′ satis�es the vertical strip
condition, each point of C2 must satisfy the vertical strip condition. Finally, since C3
is a subcurve of C ′, any point of C ′ satis�es the strip condition and any point of C1
and C2 satis�es the strip condition, it directly follows that any point of C3 satis�es the
strip condition. �

Using Lemma 12.5, we can reduce the dimension of the table T by 1. It su�ces to
store at each entry T [c] the boundaries of the u-interval. This reduces the amount of
storage to O(n2) without increasing the running time. Using Hirschberg’s algorithm,
the storage for T even decreases to O(n). Tables BT and BR still have size O(n2),
however.

Our next goal is to reduce the running time to O(n2). An entry in BT[s, t] tells us
which de�cits can be compensated. This can also be interpreted as a lower bound on
the number of sites a curve from r to G(s, t) must have above it, in order to satisfy
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s

t0

BT[s− 1, t] = 0

Figure 12.10: The gap t0 is de�ned such that we have BT[s −
1, t] = 0 for any t ≥ t0, and BT[s − 1, t] > 0 for any t < t0.

the horizontal strip condition. Namely, let τs,t denote the number of ports on the top
side of the rectangle spanned by G(s, t) and r . Then u ≥ τs,t − BT[s, t] is equivalent to
satisfying the horizontal strip condition for the strip directly above G(s, t). Similarly,
the corresponding entry BR[s, t] gives a lower bound on the number of sites below such
a curve, which in turn, together with the number of sites contained in the rectangle
spanned by G(s, t) and r implies an upper bound on the number of sites above the
curve. Thus, BT, BR, and the information on how many sites, top ports and right ports
are in the rectangle spanned by G(s, t) and r together imply a lower and an upper
bound, and thus an interval of u-values, for which the horizontal and vertical strip
conditions at G(s, t) is satis�ed. Hence the program can simply intersect this interval
with the union of the intervals obtained from T [(s, t) − ∆c], where ∆c has exactly
one non-zero entry, which is 1. Consequently, the amount of work per entry of T is
still O(1). Note that by Lemma 12.5 the result of this computation is again an interval.

Now we turn to the space consumption. Hirschberg’s algorithm [Hir75] immediately
reduces the space consumption of T to O(n). We would like to apply the same trick
to BT and to BR. Recall that BT is computed from left to right and BR from bottom
to top. Unfortunately, this is opposite to the order we use for computing T , where
we proceed from top-right to bottom-left. We can �x this problem by running the
dynamic programs for computing BT and BR backwards, by precomputing the entries
of BT and BR on the top and right side, and then running the updates backwards. This
allows us to use Hirschberg’s algorithm, and the algorithms can run in a synchronized
manner such that at any point in time the required data is available, using only O(n)
space.

A new issue, however, appears. The update BT[s, t] = max{BT[s − 1, t] − 1, 0} is
not easily reversible. When running the dynamic program backwards, it is not clear
whether BT[s, t] = 0 implies BT[s−1, t] = 0 or BT[s−1, t] = 1 at a port step. To remedy
this issue, �x a column s of the table corresponding to a port event and consider the
circumstances under which BT[s − 1, t] − 1 = −1, i.e., BT[s − 1, t] = 0. This implies that,
for any rectangle K with lower right corner G(s − 1, t) whose top side is contained in
the top side of R, there are at most as many sites in K as there are ports in the top side
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of K . Assume that this is the case for some �xed value t0, i.e., BT[s − 1, t0]. Since the
possible rectangles for an entry BT[s − 1, t] with t ≥ t0 contain at most as many sites
as the ones for BT[s − 1, t0], this implies BT[s − 1, t0] = BT[s − 1, t] = 0 for all t ≥ t0. If
on the other hand, t0 is such that BT[s − 1, t0] > 0, then the rectangles corresponding
to BT[s − 1, t] for t < t0 contain at least as many sites as the ones for BT[s − 1, t0], and
we have BT[s − 1, t] ≥ BT[s − 1, t0] for t < t0. Thus, there is a single gap t0 such that,
for any t ≥ t0, we have BT[s − 1, t] = 0 and, for any t < t0, we have BT[s − 1, t] > 0;
see Figure 12.10. Storing this gap for each column s that is a port event allows us to
e�ciently reverse the dynamic program. Note that storing one value per column only
incurs O(n) space overhead. Of course, the same approach works for the dynamic
program computing BR. Overall, we have shown the following theorem.

Theorem 12.2. Two-Sided Boundary Labeling with Adjacent Sides can be solved

in O(n2) time using O(n) space.

12.4 The Three- and Four-Sided Cases

In this section, we also allow labels on the bottom and the left side of R. In order
to solve an instance of the three- and four-sided case, we adapt the techniques we
developed for the two-sided case. We assume that the ports are �xed and the number
of labels and sites is equal. In Section 12.4.1 we �rst analyze the structure of planar
solutions obtaining a result similar to Proposition 12.1. In Sections 12.4.2 and 12.4.3,
we present algorithms for the three- and four-sided cases.

12.4.1 Structure of Three- and Four-Sided Planar Solutions

Similar to our approach to two-sided boundary labeling, we pursue the idea that
if there exists a planar solution, then we can also �nd a planar solution such that
there are four xy-monotone curves connecting the four corners of R to a common
point o, and such that these curves separate the leaders of the di�erent label types
from each other; see Figure 12.11. To that end, we �rst show that leaders of left and
right labels can be separated vertically and leaders of top and bottom labels can be
separated horizontally. Afterwards, we apply the result of Lemma 12.2 in order to
resolve the remaining overlaps, e.g., between top and right leaders. We �rst introduce
some notions.

De�nition 12.2. A planar solution for the four-sided boundary labeling problem is

(i) x-separated if there exists a vertical line ` such that the sites that are labeled to the

left side are to the left of ` and the sites that are labeled to the right side are to the

right of `, and

(ii) y-separated if there exists a horizontal line ` such that the sites that are labeled to

the top side are above ` and the sites that are labeled to the bottom side are below `.
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o

C1

C2

C3

C4
Figure 12.11: The curves C1, C2, C3 and C4 meet-
ing at the point o partition the rectangle into four
regions.

A left leader λ and a right leader λ′ overlap if x(bend(λ)) > x(bend(λ′)). Analogously,
a bottom leader λ and a top leader λ′ overlap if y(bend(λ)) > y(bend(λ′)). Hence, a
planar solution L is both x-separated and y-separated if and only if no left and right
leaders overlap, and no bottom and top leaders overlap. We are now ready to prove
that we can always �nd a planar solution that is both x-separated and y-separated, if
a solution exists.

Lemma 12.6. If there exists a planar solution for the four-sided boundary labeling

problem, then there exists a planar solution L that is both x-separated and y-separated.

Proof. Among all planar solutions let L be one that minimizes |L|x + |L|y . We prove
that then L is x- and y-separated by showing that otherwise we could reroute some
leaders and obtain a planar solution L ′ with |L ′ |x + |L ′ |y < |L|x + |L|y .

Assume that L is not x-separated. Symmetric arguments hold for the case that L is
not y-separated. Then there exist sites pR and pL with x(pR) < x(pL), such that pR is
labeled by a right port r , and pL is labeled by a left port `; see Figure 12.12(a). Without
loss of generality, assume that the horizontal segment of λR = λ(pR, r ) is above the
horizontal segment of λL = λ(pL, `), otherwise we mirror the instance vertically.

We choose pL and pR as a closest pair in the sense that the horizontal segments
of their leaders have minimum vertical distance among all such pairs. Let A be the
rectangle spanned by bend(λL) and bend(λR). By the minimality of pL and pR, that
rectangle can only be intersected by top and bottom leader, but not by left or right
leaders. If no such leader intersects A, we reroute pR to the port of λL and pL to the
port of λR, which decreases |L|x without increasing |L|y ; see Figure 12.12(a). It does
not introduce any crossings.

In the following, we assume that some leaders intersectA. Without loss of generality
we assume that there is a top leader λT that intersects A; otherwise we rotate the
instance by 180◦. We denote its site bypT. LetS be the rectangle spanned by the ports `
and r ; see Figure 12.12(a). Depending on the leaders intersecting S, we distinguish
two cases. Note that in particular λT intersects S.
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(a) A is empty.
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(b) Case 1.

Figure 12.12: Di�erent constellations of leaders intersecting the rectangle A. (a) The rectan-
gle A is empty. (b) The rectangle A is intersected by a top leader. A is not explicitly illustrated,
but spanned by bend(λR) and bend(λL).

Case 1: For any top leader λ intersecting S and for any bottom leader λ′ inter-
secting S such that λ and λ′ overlap, the site of λ lies to the left of the site of λ′;
see Figure 12.12(b). Let qR denote the bottommost site that is connected by a right
leader, and that lies in the rectangle spanned by bend(λT) and pR. Since pR lies in that
rectangle, the site qR exists. We denote the leader of qR by λ′R. Further, let qT be the
topmost site that is connected by a top leader and that lies in the rectangle spanned
by bend(λ′R) and the bottom-right corner of R. Since pT lies in that rectangle, the site qT
exists. We denote its leader by λ′T.

We now de�ne two rectangles that we use to reroute leaders such that |L|x + |L|y
is decreased and arising crossings can be resolved. The rectangle K1 is spanned
by bend(λ′R) and qT, and the rectangle K2 is spanned by bend(λ′T) and qR.

Claim 12.2.

(1) K1 is only intersected by right leaders whose bends are contained in K1,
(2) K2 is only intersected by top leaders whose bends are contained in K2, and
(3) K1 and K2 are internally disjoint.

Assuming that the claim holds, we can reroute the sites as follows; we illustrate
this rerouting by dash-dotted lines in Figure 12.12(b). The site qT is rerouted to the
port of λ′R creating crossings only on the right side of K1. The site qR is rerouted to
the port of λ′T creating crossings only on the top side of K2. Each rerouting decreases
either |L|x or |Ly | increasing the other one. Further, only crossings between leaders
of the same type are created. We apply Lemma 12.1 to resolve the con�icts without
increasing |L|x or |Ly |. In the remainder of this case we show that the stated claim
holds.
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Figure 12.13: Di�erent constellations of top leaders intersecting the rectangle A. A is not
explicitly illustrated, but spanned by bend(λR) and bend(λL).

First, we show that K1 is only intersected by right leaders whose bends lie in K1.
It is not intersected by any bottom leader, because such a leader would overlap λ′T,
and its site would lie to the left of qT—a contradiction to the assumption of this case.
It is not intersected by any left leader, because such a leader would intersect λ′T. It
is not intersected by any top leader, because such a leader would either intersect λ′R
or contradict the choice of λ′T. Hence, K1 can only be intersected by right leaders.
Further, all those leaders have their bend in K1, because the bottom-right corner is
a site connected by a top leader. That leader would be intersected if a right leader
intersecting K1 had its bend outside of K1.

Next, we show that K2 is only intersected by top leaders whose bends lie in K2.
It is not intersected by any right leader, because such a leader would contradict the
choice of λ′R or intersect λT. It is not intersected by any bottom leader, because such a
leader would overlap λ′T, and its site would lie to the left of qT—a contradiction to the
assumption of this case. It is not intersected by any left leader, because such a leader
would intersect λ′T. Hence, K2 can only be intersected by top leaders. Further, all those
leaders have their bend in K2, because the top-right corner is a site connected by a
right leader.

Finally, the rectangles K1 and K2 are internally disjoint, because K1 lies to the right
of the vertical line through qR, while K2 lies to the left of that line.

Case 2: There exist a top leader λT intersecting S and a bottom leader λB intersect-
ing S such that they overlap and the site of λT lies to the right of the site of λB; see
Figure 12.13(a). Among all such pairs we choose λT and λB such that their horizontal
segments have minimal vertical distance. We denote the site of λT by pT and the
site of λB by pB. Due to the choice of λT and λB, the open rectangle that is spanned
by pB and pT is intersected by no leader. The open rectangle spanned by bend(λT)
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and bend(λB) is denoted by B. Depending on the sites that are contained in B, we
distinguish four cases.

Case 2.1: The rectangle B contains no sites that are connected by left of right
leaders; see Figure 12.13(a). Let K1 be the rectangle spanned by bend(λT) and pB, and
letK2 be the rectangle spanned by bend(λB) and pT. WhileK1 is only intersected by top
leaders, K2 is only intersected by bottom leaders. Further, both rectangles are disjoint.
We reroute pB to the port of λT and pT to the port of λB. Obviously, this decreases |L|y
without increasing |L|x . By applying Lemma 12.1, we resolve the arising con�icts.

Case 2.2: The rectangle B contains sites that are connected by left leaders as well as
sites that are connected by right leaders; see Figure 12.13(b). Let qR be the bottommost
site in B that is connected to the right. We denote the leader of qR by λ′R. Let qB be the
leftmost site with y(qB) ≥ y(pB) and x(qB) ≤ x(pB) that is connected to the bottom.
Since pB also satis�es these requirements, the site qB exists. We denote the leader
of qB by λ′B. Let qL be the topmost site in B that is connected to the left. We denote
the leader of qL by λ′L. Finally, let qT be the rightmost site with y(qT) ≤ y(pT) and
x(qT) ≥ x(pT) that is connected to the top. Since pT also satis�es these requirements,
the site qT exists. We denote the leader of qT by λ′T.

We now de�ne four rectangles that we use to reroute leaders such that |L|x + |L|y
is decreased and arising crossings can be resolved. The rectangle K1 is spanned
by bend(λ′R) and qB, the rectangle K2 is spanned by bend(λ′B) and qL, the rectangle K3
is spanned by bend(λ′L) and qT, and the rectangle K4 is spanned by bend(λ′T) and
qR. Note that the rectangles K3 and K4 are rotationally symmetric to K1 and K2,
respectively.

Claim 12.3.

(1) K1 is only intersected by right leaders whose bends are contained in K1,
(2) K2 is only intersected by bottom leaders whose bends are contained in K2,
(3) K3 is only intersected by left leaders whose bends are contained in K3,
(4) K4 is only intersected by top leaders whose bends are contained in K4, and
(5) K1, K2, K3 and K4 are pairwise internally disjoint.

Assuming that the claim holds, we can reroute the sites in a circular fashion as
follows; we illustrate the rerouting as dash-dotted lines in Figure 12.13(b). The site qB
is rerouted to the port of λ′R creating crossings only on the right side of K1. The site qL
is rerouted to the port of λ′B creating crossings only on the bottom side of K2. The
site qT is rerouted to the port of λ′L creating crossing only on the left side of K3. Finally,
the site qR is rerouted to the port of λ′T creating crossings only on the top side of K4.
Each rerouting decreases either |L|x or |Ly | without increasing the other one. Further,
only crossings between leaders of the same type are created. We apply Lemma 12.1 to
resolve the con�icts. In the remainder of this case we show that the stated claim holds.

First, we show that K1 is only intersected by right leaders whose bends lie in K1.
This rectangle is not intersected by any bottom leader, because qB is the leftmost
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site with y(qB) ≥ y(pB) and x(qB) ≤ x(pB) that is connected to the bottom. It is not
intersected by any top leader, because such a leader would intersect λ′R whose site lies
below qB. Finally, it is not intersected by any left leader, because such a leader would
intersect λ′T whose site lies to the right of qB. Hence, only right leaders intersect K1.
In particular, all those leaders have their bend in K1, because the bottom-right corner
of K1 is the site of a bottom leader. That leader would be intersected if a right leader
intersecting K1 had its bend outside of K1. Since K3 is rotationally symmetric to K1,
we can use symmetric arguments to prove that K3 is only intersected by left leaders
whose bends are contained in K3

Next, we show that K2 is only intersected by bottom leaders whose bends lie in K2.
This rectangle is not intersected by any left leader, because such a leader would
contradict the choice of qL. It is also not intersected by any top leader, because such
a leader would intersect λ′R or contradict the choice of λT and λB. Finally, it cannot
be intersected by any right leader, because such a leader would intersect λ′B. Hence,
K2 is only intersected by bottom leaders. Further, all those leaders have their bend
in K2, because the bottom-left corner of K2 is a site connected to a left leader. That
leader would be intersected if a bottom leader intersecting K2 had its bend outside
of K2. Since K4 is rotationally symmetric to K2, we can use symmetric arguments to
prove that K4 is only intersected by top leaders whose bends are contained in K4.

Finally, we show that the rectangles K1, K2, K3 and K4 are pairwise internally
disjoint. For a site p let v(p) denote the vertical line through p and let h(p) denote the
horizontal line through p. By construction we have that h(qB) lies above h(qT), K1 lies
above h(qB), and K3 lies below h(qT). Hence, the rectangles K1 and K3 are internally
disjoint. Analogously, we have that v(qL) lies to the right of v(qR), K2 lies to the right
of v(qL), and K4 lies to the left of v(qR). Hence, the rectangles K2 and K4 are internally
disjoint. Further, the sites qL and qR lie in between h(qB) and h(qT), because both lie
in B. Consequently, K1 and K3 do not intersect K2 and K4, respectively.
Case 2.3: The rectangle B contains only sites connected by right leaders. We apply

the same procedure as in the previous case. However, we do not need to consider left
leaders. Hence, K3 is removed and K2 is the rectangle that is spanned by bend(λ′B)
and pT. By the choice of B, the rectangle K2 is only intersected by right leaders whose
bend is contained in K2. Further, the remaining rectangles K1, K2 and K4 are pairwise
internally disjoint. The reroutings are again done in a circular fashion decreasing
|L|x + |L|y . Finally, we apply Lemma 12.1 to resolve crossings.
Case 2.4: The rectangle B contains only sites connected by left leaders. This case can

be handled analogously to the previous case by mirroring the instance vertically. �

This lemma shows that, when searching for a planar solution of the labeling problem,
we can restrict ourselves to solutions that are x-separated and y-separated. Let L
denote such a solution, and let `v and `h be the lines separating the sites labeled
by left and right labels, and the ones labeled by top and bottom labels, respectively.
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Let o ∈ R denote the intersection of `v and `h , called center point. Let r1, . . . , r4 denote
the corners of R, named in counterclockwise ordering, and such that r1 is the top-right
corner. Consider the rectangles that are spanned by o and ri for i = 1, . . . , 4. Each of
them contains only two types of leaders. For example, the top-right rectangle contains
only top and right leaders. An x- and y-separated planar solution is partitioned if, for
each rectangle spanned by o and one of the corners ri of R, there exists an xy-monotone
curve Ci from ri to o that separates the two di�erent types of leaders contained in
that rectangle; see Figure 12.11. Our next step is to show that a planar solution can be
transformed into a partitioned solution without increasing |L|x and |L|y .

Proposition 12.2. If there exists a planar solution L for Four-Sided Boundary Label-

ing, then there exists a partitioned solution L ′.

Proof. By Lemma 12.6, we can assume that L is x- and y-separated. Let o be the center
point as de�ned above and let `v be the vertical line through o. We show how to ensure
that the area K of R right of `v admits an xy-monotone curve from the top-right corner
of R to o that separates the top leaders from the right leaders inside K . The remaining
cases are symmetric.

Essentially, we proceed as in the proof of Proposition 12.1 to remove obstructions
of types (P1)–(P4); see Figure 12.5. We note that in the rerouting, we only shorten
vertical segments of top leaders and right segments of right leaders; hence the solution
remains x- and y-separated. Moreover, in each step we decrease both |L|x and |L|y .
Hence, after �nitely many steps all patterns between top and right leaders have been
removed without creating new patterns with other types of leaders.

After all patterns have been removed, an xy-monotone curve connecting the top-
right corner of R to o, separating the top labels from the right labels, can be found as
in the proof of Lemma 12.2. �

12.4.2 Algorithm for the Three-Sided Case

In the three-sided case, we assume that the ports of the given instance I are located on
three sides of R; without loss of generality, on the left, top and right side of R. Basically,
we solve a three-sided instance by splitting the instance into two two-sided L-shaped
instances that can be solved independently; see Figure 12.14(a).

Let G be the dual of the grid that is induced by the sites and ports of the given
instance. The idea is that each grid point s of G induces two two-sided L-shaped
instances with some useful properties. We will show that there is a planar solution
for I if and only if there is a grid point s of G such that its induced two-sided instances
both have planar solutions. Thus, considering all O(n2) grid points of G the problem
reduces to solve those L-shaped instances of the two-sided case. By means of a simple
adaption of the dynamic program presented in Section 12.3 we solve these instances
in O(n2) time achieving O(n4) running time in total.
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In the following, we call horizontal and vertical lines through grid points of G
horizontal and vertical grid lines, respectively. We now de�ne the two two-sided
L-shaped instances Is and I ′s of a grid point s of G formally. To that end, let R1 be
the rectangle that is spanned by the top-right corner of R and s , and let R2(p) be the
rectangle that is spanned by a point p on the horizontal grid line h through s and
the bottom-right corner of R; see Figure 12.14(a). The instance Is (p) contains all sites
and ports in R1 ∪ R2(p) and I ′s (p) contains all sites and ports in R \ (R1 ∪ R2(p)). We
say that Is (p) and I ′s (p) are balanced if all right ports lie in R1 ∪ R2(p), all left ports lie
in R \ (R1∪R2(p)) and R1∪R2(p) contains the same number of sites as it contains ports.
Since the number of ports and sites in I is equal, this directly implies that R\(R1∪R2(p))
contains the same number of sites as it contains ports. In particular, the choice of
balanced instances Is (p) and I ′s (p) for a grid point s of G is unique with respect to
the contained sites and ports; only the location of p might di�er. We can therefore
write Is and I ′s for balanced instances and R1 and R2 for their de�ning rectangles. For
any solution of Is and any solution of I ′s , we require that all leaders are completely
contained in R1 ∪ R2 and in R \ (R1 ∪ R2), respectively. The next lemma states that a
three-sided instance I has a planar solution if and only if it can be partitioned into two
two-sided L-shaped instances that have planar solutions. To that end let hs denote the
horizontal grid line through s . Figure 12.14 illustrates the lemma.

Lemma 12.7. There is a planar solution L for a three-sided instance I if and only if

there is a grid point s of G with balanced instances Is and I
′
s over rectangles (R1,R2), an

xy-monotone curve C from the top-right corner to the bottom-left corner of R and an

xy-monotone curve C ′ from the top-left corner to the bottom-right corner of R such that

1. each point on C satis�es the strip condition with respect to the ports and sites in Is ,
2. C contains the top-left corner of R2 and the intersection of hs with the left segment

of R,
3. each point onC ′ satis�es the strip condition with respect to the ports and sites in I ′s ,
4. C ′ contains the top-left corner of R2 and the intersection ofhs with the right segment

of R.

Proof. First, assume that s , Is , I ′s , (R1,R2),C andC ′ exist as required; see Figure 12.14(b).
The curve C partitions R1 ∪ R2 into two regions; we denote the region above C by A1
and the region below C by A2. By Lemma 12.3, there is a planar solution L1 for the
sites and ports in A1 such that all leaders of L1 lie in A1. Since C contains the top-left
corner of R2 and does not cross hs until it reaches the intersection point of hs with the
left segment of R, we know that all leaders of L1 are contained in R1∪R2. Analogously,
there is a planar solution L2 for the sites and ports in A2 such that all leaders of L2 lie
in A2. Consequently, we can combine L1 and L2 into a planar solution Ls for the sites
and ports in Is . Using symmetric arguments, we obtain a planar solution L ′s for I ′s .
As Is and I ′s are de�ned over complementary areas, the solutions Ls and L ′s can be
combined into a planar solution of I .
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Figure 12.14: (a) The three-sided instance partitioned into two two-sided L-shaped instances Is
and I ′s . The instances are induced by the grid point s of G and are balanced. (b) Illustration of
the proof for Lemma 12.7. Assuming that the grid point s ofG , the balanced instances Is and I ′s ,
and the curvesC andC ′ are given, a planar solution for the whole instance can be constructed.

Assume that there is a planar solutionL for a three-sided instance I ; see Figure 12.15.
First, note that we can imagine an instance of Three-Sided Boundary Labeling as
a degenerated instance of Four-Sided Boundary Labeling with no bottom ports.
Thus, Proposition 12.2 also holds for the three-sided case, when assuming that the
four xy-monotone curves partitioning the solution meet on the bottom segment of R.
Hence, without loss of generality, we assume that L is also partitioned by four xy-
monotone curves C1, C2, C3 and C4. In particular, let C1 denote the curve that starts at
the top-right corner of R and let C2 denote the curve that starts at the top-left corner
of R; see Figure 12.15(a). The curvesC3 andC4 are completely contained in the bottom
side of R and can therefore be omitted. We �rst show how to construct the grid point s
and the instances Is and I ′s such that they are balanced. Afterwards, we explain how
to obtain C and C ′ from C1 and C2, respectively. Finally, we prove that each point on
C and C ′ satis�es the strip condition with respect to Is and I ′s , respectively.

Let λT be the top leader inL with the longest vertical segment of all top leaders inL.
In case the site of λT lies to the right of bend(λT), let v be the rightmost vertical grid
line that lies to the left of λT, and otherwise if the site of λT lies to the left of bend(λT),
let v be the leftmost vertical grid line that lies to the right of λT. Furthermore, let h be
the topmost horizontal grid line that lies below bend(λT); see Figure 12.15(a). Due to
the choice of h and v all top leaders lie above h and none of them intersects h or v .
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Figure 12.15: Illustration of the proof for Lemma 12.7. It is assumed that the partitioned
planar solution L for the three-sided instance is given. (a) By Proposition 12.2 we can assume
that L is partitioned by the curves C1 and C2. The extremal top leader λT induces the site s
and the extremal right leader λR induces the line v ′. (b) Based onC1,C2, h and v ′, the curvesC
and C ′ can be constructed such that they do not cross any leader of L.

Furthermore, no right or left leader of L intersects v above h. The desired grid point s
is then the intersection point of h and v .

Now, let λR be the right leader in L with longest horizontal segment among all
right leaders in L and let v ′ be the rightmost vertical grid line that lies to the left
of bend(λR). Note that v ′ cannot be intersected by a left or a right leader, because
both leader types are x-separated. We de�ne R1 to be the rectangle that is spanned
by the top-right corner of R and s . Also, we de�ne R2 to be the rectangle spanned by
the bottom-right corner of R and the intersection point of v ′ and h. The instance Is
is de�ned by R1 ∪ R2 and the instance I ′s by R \ (R1 ∪ R2). We show that Is and I ′s are
balanced. To that end, we prove that a leader of L is either completely contained
in R1 ∪ R2 or in R \ (R1 ∪ R2), that R1 ∪ R2 contains only right and top leaders, and
that R \ (R1 ∪ R2) contains only left and top leaders.

Due to the choice of v ′, all right leaders lie to the right of v ′. Moreover, all right
leaders whose site or port lies above h, must lie to the right of v , because by de�nition
of v no right leader intersects v above h (otherwise it would intersect λT ), and because
otherwise C1 could not be an xy-monotone curve separating right and top leaders.
Thus, all right leaders lie in R1 ∪ R2. For left leaders we can argue similarly. Since left
and right leaders ofL are x-separated, all left leaders lie to the left ofv ′. All left leaders
whose site or port lies above h, must lie to the left of v , because by de�nition of v no
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Figure 12.16: There are no balanced instances Is and I ′s for
the grid point s . However, by Lemma 12.7 there must be
another grid point t with balanced instances It and I ′t if the
instance has a planar solution.

t

s

left leader intersectsv aboveh, and because otherwiseC2 could not be an xy-monotone
curve separating left from top leaders. Thus, all left leaders lie in R \ (R1 ∪ R2). Finally,
consider the top leaders inL. By de�nition ofh andv , none of the top leaders intersects
h or v . In particular all top leaders lie above h and cannot intersect R2. Consequently,
each top leader is either contained in R1 or in R\(R1∪R2). This concludes the argument
that Is and I ′s are balanced.

We are left with the construction of the curves C and C ′; see Figure 12.15(b). The
curveC is derived fromC1 as follows. Starting at the top-right corner of R, the curveC
coincides with C1 until C1 intersects h or v ′ above h. If C intersects v ′ above h, it
follows v ′ downwards until it hits h. Then, in both cases, it follows h until h intersects
the left segment of R. Finally,C follows the left segment of R to the bottom-left corner
of R. The curve C ′ is constructed symmetrically.

By construction, C contains the top-left corner of R2 and the intersection point of h
with the left segment of R. Symmetrically, C ′ contains the top-left corner of R2 and
the intersection point of h with the right segment of R. We �nally show that each
point on C satis�es the strip condition with respect to the sites and ports in Is . Using
symmetric arguments we can prove the analogous statement for C ′ and I ′s .

By the previous reasoning, we know that each leader of L either lies completely
inside or completely outside of R1∪R2. Each leader that lies in R1∪R2 is either a top or a
right leader and does not intersectC . Otherwise, if such a leader intersectedC , it would
also intersect C1 or the segment x of v ′ that is contained in C . In particular, x cannot
be intersected by any leader because it lies to the left of all right leaders and below C1.
Thus, the leaders in R1∪R2 form a planar solution for Is without intersectingC . Hence,
the claim directly follows from Lemma 12.3. �

Our approach now works as follows. For each grid point s of G we compute the
instances Is and I ′s such that they are balanced. Then, by Lemma 12.7, we can apply
our algorithm presented in Section 12.3 in order to solve Is and I ′s independently. To
that end, we slightly adapt the dynamic program such that it only considers curves
satisfying the properties required by Lemma 12.7. If both instances can be solved, we
combine these solutions into one solution and return that solution as the �nal result.
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Otherwise, we continue with the next grid point of G. If all grid points of G have
been explored without �nding a planar solution, the algorithm decides that there is no
planar solution.

Note that it may happen that, for a grid point s , there are no balanced instances Is
and I ′s ; for an example see Figure 12.16. However, in that case, if I has a solution, we
also know by Lemma 12.7 that there is another grid point t such that for t we �nd
balanced instances. Hence, we can refrain from considering s .

Creating the two instances Is and I ′s for a grid point s takes linear time, if we assume
that the sites are sorted by their x-coordinates. By Theorem 12.2 we then need O(n2)
time and O(n) space to solve Is and I ′s . Consequently, we need O(n2) time and O(n)
space to process a single grid point s . Since we considerO(n2) grid points, the following
theorem follows.

Theorem 12.3. Three-Sided Boundary Labeling can be solved in O(n4) time us-

ing O(n) space.

12.4.3 Algorithm for the Four-Sided Case

In this section, we consider the case that the ports lie on all four sides of R. The
main idea is to seek a partitioned solution, which exists by Proposition 12.2. For a
given partitioned solution L, we call a leader extremal if all other leaders of the same
type in L have shorter orthogonal segments; recall that the orthogonal segment of a
po-leader is the segment connecting the bend to the port. The algorithm consists of
two steps. First, we explore all choices of (non-overlapping) extremal leaders λL and λR
for the left and the right side of R, respectively, plus a horizontal line h that separates
the top leaders and the bottom leaders. This information splits the instance into two
independent three-sided instances; see Figure 12.17(a). There are, however, two crucial
di�erences from a usual three-sided instance. First, one side of the instance is not a
straight-line segment but an x-monotone orthogonal curve C that is de�ned by λL, λR
and h. Second, the extremal positions of λL and λR imply a separation of the points
that are labeled from the left and the right side. Let I 3

1 be the three-sided instance
above C and let I 3

2 be the three-sided instance below C . The algorithm solves I 3
1 and I 3

2
independently from each other. If for at least one of the two instances there is no
solution, the algorithm continues with the next choice of λL, λR and h. Otherwise, it
combines the planar solutions of I 3

1 and I 3
2 into one planar solution and returns this

solution. In case that all choices of λL, λR and h have been explored without �nding a
solution, the algorithm returns that there is no planar solution.

We next describe how to solve the three-sided instance I 3
1 . A symmetric approach

can be applied to I 3
2 . The algorithm explores all choices of the extremal leader λT

for the top side of R. This extremal leader partitions the instance into two two-sided
subinstances I 2

1 and I 2
2 as follows. LetAT,R be the rectangle that is spanned by bend(λT)
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Figure 12.17: (a) The right leader λL, the left leader λR and the horizontal line h split the
instance into two three-sided instances I 3

1 and I 3
2 . (a) Sketch of the areas AT,L, AT,R, AR,T, AR,B,

AL,T and AL,B. (c) The leaders λL, λR and λT split the three-sided instance into two two-sided
instances.

and the top-right corner of R; see Figure 12.17(b). Analogously, letAT,L be the rectangle
that is spanned by bend(λT) and the top-left corner of R. Analogously, for λR area AR,T
is the rectangle that is spanned by bend(λR) and the top-right corner of R, and AR,B
to be the rectangle spanned by bend(λR) and the bottom-right corner of R. For the
leader λL we de�ne AL,B to be the rectangle spanned by bend(λL) and the bottom-left
corner of R, and AL,T to be the rectangle spanned by bend(λL) and the top-left corner
of R. We assume that the port p of λT is only contained in that area A ∈ {AT,R,AT,L}
that also contains the site of λT. We make analogous assumptions for λL and λR.

The instance I 2
1 consists of all ports and sites in A1 = (AR,T ∪ AT,R) \ (AT,L ∪

AR,B), and I 2
2 consists of all ports and sites in A2 = (AL,T ∪ AT,L) \ (AT,R ∪ AL,B); see

Figure 12.17(c). We solve I 2
1 and I 2

2 independently from each other using the dynamic
program introduced in Section 12.3 for each instance. However, we enforce that it
only considers xy-monotone curves that exclude top leaders crossing the horizontal
line through bend(λT), left leaders crossing the vertical line through bend(λL) and
right leaders crossing the vertical line through bend(λR). If for at least one of the
two instances there is no solution, the algorithm continues to explore the next choice
of λT. Otherwise, it combines the solutions of I 2

1 and I 2
2 into one solution and returns

the result as the solution of I 3
1 . In case that all choices of λT have been explored

without �nding a solution, the algorithm returns that there is no solution for the given
three-sided instance. The following lemma shows that the algorithm is correct.

Lemma 12.8. Given an instance I of Four-Sided Boundary Labeling, the following

two statements are true.

1. If there is no planar solution for I , the algorithm states this.

2. If there is a planar solution for I , the algorithm returns such a solution.

227



Chapter 12 Multi-Sided Boundary Labeling

Proof. In case the algorithm returns a solution, it has been constructed from planar
solutions of disjoint instances of Two-Sided Boundary Labeling with Adjacent
Sides. As the union of these two-sided instances contains all sites and ports of I , the
algorithm returns a planar solution of I , which shows the �rst statement.

Conversely, assume that I has a planar solution L. By Proposition 12.2, we may
assume that L is partitioned. In particular, let λT, λL, λB and λR be the extremal leaders
in L of the top, left, bottom and right side of R, respectively, and let h be a horizontal
line that separates the top leaders from the bottom leaders.

Obviously, λL, λR and h split the instance into two three-sided instances I 3
1 and I 3

2 .
As the algorithm systematically explores all choices of extremal right leaders, extremal
left leaders and horizontal lines partitioning the set of sites, it must �nd λL, λR and
a horizontal line h′ that separates the same sets of sites as h. Thus, I 3

1 and I 3
2 are

considered by the algorithm.
Let I 3

1 be the instance above the curve de�ned by λL, λR and h′, and let I 3
2 be the

instance below that curve. We now show that the algorithm �nds a planar solution
for I 3

1 . Symmetric arguments hold for I 3
2 . As the algorithm explores all choices of

extremal top leaders in I 3
1 , it also considers λT to be the extremal top leader. This leader

partitions the area of I 3
1 into the two disjoint areas A1 = (AR,T ∪AT,R) \ (AT,L ∪AR,B)

and A2 = (AL,T ∪AT,L) \ (AT,R ∪AL,B); see Figure 12.17(a). It directly follows from the
extremal choice of λR, λT and λL that there is no leader in L that intersects both A1
to A2. In particular, no left leader intersects A1 and no right leader intersects A2.
Thus, A1 and A2 split L into independent planar solutions L1 and L2 of two two-
sided instances I 2

1 and I 2
2 induced by A1 and A2, respectively. Note that the algorithm

considers the same two-sided instances independently from each other. As I 2
1 has a

solution, namely L1, we know that the dynamic program �nds a solution L2
1 for I 2

1 . In
particular, all leaders of L2

1 lie in A1.
Applying symmetric arguments for I 2

2 , the algorithm yields a planar solution L2
2

that stays in A2. Consequently, combining L2
1 and L2

2 into one solution yields a planar
solution L3

1 for I 3
1 . Analogously, we obtain a planar solution L3

2 for I 3
2 . Obviously, due

to the separation by λL, λR and h′, the union of L3
1 and L3

2 is also planar, which is the
overall solution returned by the algorithm. This proves the second statement of the
lemma. �

Let us analyze the running time of the algorithm. Obviously, there areO(n5) possible
combinations of left and right extremal leaders and a horizontal line separating the
top and bottom-labeled sites. For each combination, we independently solve two
three-sided instances. For such a three-sided instance, we consider O(n2) choices for
the extremal leader λT and independently solve two independent two-sided instances
with Theorem 12.2 in O(n2) time. This implies that solving one three-sided instances
takes O(n4) time. Thus, the overall running time is O(n9). The following theorem
summarizes this result.
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Theorem 12.4. Four-Sided Boundary Labeling can be solved inO(n9) time usingO(n)
space.

12.5 Conclusions

In this chapter, we have studied the problem of testing whether an instance of Two-
Sided Boundary Labeling with Adjacent Sides admits a planar solution. We have
given the �rst e�cient algorithm for this problem, running in O(n2) time.

Our algorithm can also be used to solve a variety of di�erent extensions of the
problem, which we present in [Kin+16]. In that paper we show how to generalize to
sliding ports instead of �xed ports without increasing the running time and how to
maximize the number of labeled sites such that the solution is planar in O(n3 logn)
time. We further give an extension to the algorithm that minimizes the total leader
length in O(n8 logn) time.

With some additional work, our approach can also be used to solve Three-Sided
and Four-Sided Boundary Labeling in polynomial time. We have introduced an
algorithm solving the three-sided case in O(n4) time and the four-sided case in O(n9)
time. Also, except for the total leader length minimization, all extensions that are
presented in [Kin+16] carry over.
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13
An Algorithmic Framework for

Label Placement in Figures

Abstract. In this chapter, we introduce a �exible and general approach for external
label placement assuming a contour of the �gure prescribing the possible positions
of labels. While most research on external label placement aims for fast labeling
procedures for interactive systems, we focus on highest-quality illustrations. Based
on interviews with domain experts and a semi-automatic analysis of 202 handmade
anatomical drawings, we identify a set of 18 layout quality criteria, naturally not all
of equal importance. We design a new geometric label placement algorithm that is
based only on the most important criteria. Yet, other criteria can �exibly be included
in the algorithm, either as hard constraints not to be violated or as soft constraints
whose violation is penalized by a general cost function. We formally prove that our
approach yields labelings that satisfy all hard constraints and have minimum overall
cost. Introducing several speedup techniques, we further demonstrate how to deploy
our approach in practice. In an experimental evaluation on real-world anatomical
drawings we show that the resulting labelings are of high quality and can be produced
in adequate time.

This chapter is based on and partly taken from joint work with Martin Nöllenburg
and Ignaz Rutter. [NNR17].

13.1 Introduction

Atlases of human anatomy play a major role in the education of medical students
and the teaching of medical terminology. Such books contain a broad spectrum of
�ligree and detailed drawings of the human anatomy from di�erent cutaway views.
For example, the third volume of the popular human anatomy atlas Sobotta [PW13]
contains about 1200 �gures on 384 pages. Figure 13.1 is one of these drawings showing
a temporal bone (lat. os temporale). The usefulness of the �gures essentially relies on
the naming of the illustrated components. In order not to spoil the readability of the
�gure by occluding it with text, external labeling is applied.

In this chapter, we present a �exible and versatile approach for external label
placement in �gures. We use medical drawings as running example, but occlusion-free
label placements are also indispensable for the readability of other highly detailed
�gures as they occur for example in scienti�c publications, mechanical engineering
and maintenance manuals.
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Figure 13.1: Medical drawing, source: Paulsen, Waschke, Sobotta Atlas Anatomie des Men-
schen, 23.Au�age 2010 ©Elsevier GmbH, Urban & Fischer, München. Labeled by our approach
(variant TSCH).

Besides readability, also the aesthetics of the �gures including their labelings play a
central role in professional books. Each �gure and its labels are subject to book-speci�c
design rules. Our approach stands out by its ability to support an easy integration of
these speci�c design rules. It particularly relies on only a few key assumptions that
most �gures with external label placement have in common. Other constraints and
rules can easily be patched in according to demand.

To validate our approach, we were in contact with both a layout artist and two
editors of the human anatomy atlas Sobotta. Both the layout artist and the two editors
stated that label placement is a mechanical, but extensively time-consuming task
that is mainly done by hand. The tool support basically comprises simple operations
such as placing text boxes and drawing line segments. Based on medical drawings
annotated by the authors of the atlas for human anatomy, the layout artist creates
the layout of each double page of the book. Using the annotated information, this
includes arranging explanatory texts, �gures, and labels around the �gures. The
interviewed layout artist stated that he needs about two hours to create the layout
of a double page. Hereby, he spends a large portion of his time on label placement.
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Hence, with around 1200 �gures in a single volume better tool support would clearly
help in improving the process of creating such books. Further, with the upcoming
applications on mobile devices, �gures are deployed in di�erently scaled settings,
which requires di�erent external labelings for the same �gure. Then, at the latest,
automatic approaches become inevitable.

Contribution and Outline. Our approach bridges the gap between practical and
theoretical results on external labeling; see Chapter 10 for a detailed discussion on
related work. Like many of the theoretical results, it uses a clearly and mathematically
de�ned model to guarantee pre-de�ned design rules. However, in contrast to preceding
research, our approach is signi�cantly more �exible. After introducing some terminol-
ogy (Section 13.2), we present a list of drawing criteria for external label placement that
we have extracted from interviews with domain experts as well as a semi-automatic
analysis of 202 �gures printed in the Sobotta [PW13] atlas (Section 13.3).

Based on a reasonable subset of the most important criteria, we introduce a �exible
formal model for contour labeling, which is a generalization of boundary labeling
(Section 13.4). Afterwards, we describe a basic dynamic programming approach
that solves the mathematical problem optimally (Section 13.5). Our approach allows
to include further drawing criteria both as hard and soft constraints, where hard
constraints must not be violated at all and the compliance of soft constraints is rated
by a cost function. Previous works rarely use hard constraints or cannot easily include
new hard constraints. Moreover, in contrast to previous work, our approach also
takes consecutively placed labels into account. At �rst glance this seems to be a small
improvement, but in fact it is important to obtain an appealing labeling where, for
example, labels have regular distances or the angles of consecutive labels should be
similar. Further, our approach supports labels of di�erent size. Indeed, for each point
feature, the user can pre-de�ne a set of di�erent label shapes, which do not need to be
rectangles. This may be used to model di�erent ways of text formatting supporting
single and multi-line labels. Further, the user may specify for each label an individual
set of candidate positions that is used for the label placement procedure. Moreover,
the user may mark areas that are not allowed to be overlapped by labels including
their leaders. This is important to avoid undesired overlaps with the �gure or to
integrate the �gure along with its labeling into a double page with explanatory text.
The approach also allows to pre-de�ne groups of labels that are placed consecutively,
which is required when naming features that are semantically related.

Our approach is not limited to the described features, but other criteria can be
incorporated easily. The strength of our approach comes at the cost of a high asymp-
totic running time of O(n8), where n describes the complexity of the input instance.
Recently, Keil et al. [Kei+17] presented a similar general dynamic programming ap-
proach for computing an independent set in outerstring graphs, which can be utilized
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Figure 13.2: Terminology. The radial ordering is given by the numbers.

to solve contour labeling in O(n6) time for a general cost function rating individual
labels (see Chapter 12 for more details). However, it cannot take joint costs of two
consecutive labels into account. Similarly, Fink et al. [Fin+12] only consider single
labels in their cost functions. In contrast to Fink and Suri [FS16], our approach is
signi�cantly faster (O(n8) instead of O(n15)) and it supports non-uniform labels and
more general shapes for the �gure’s contour. With some engineering (Section 13.6), we
can solve realistically sized instances in adequate time obtaining high layout quality
as is shown in our evaluation (Section 13.7) on a large benchmark set of real-world
instances.

13.2 Terminology

For the purpose of this chapter, we slightly extend and adapt the terminology intro-
duced in Chapter 10. In particular, for the convenience of the reader, we repeat already
de�ned terms that we speci�cally use throughout this chapter.

An illustration with external labeling consists of a �gure as well as a set of labels
outside of the �gure naming single point features of the �gure. Hereby a label consists
of a text box that lies outside the �gure and a line segment connecting the text box
with its point feature; see Figure 13.2. We call the line segment the leader and the
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point feature the site of the label. More precisely, the text box is a rectangle containing
a (possibly multiline) text. Typically, the rectangle is not displayed, but it is used for
the further description. We assume that the leader of a label ends on the boundary of
the text box; we call that point the port of the label. A leader is directed from its site
to its port. A label whose leader goes to the left is called a left label and a label whose
leader goes to the right is called a right label. Analogously, a label is a top label (bottom
label) if its leader goes upwards (downwards). The baseline of a bottom-right label
is the horizontal half line that emanates from the bottom-right corner of the label’s
text box to the right. For a top-right label the baseline is the horizontal half line that
emanates from the top-right corner of the label’s text box to the right. The baselines
for bottom-left and top-left labels is de�ned symmetrically. We de�ne the slope of
a leader as the clockwise angle (starting at 12 o’clock) between the leader and the
vertical segment going through the connected site. A leader of a labeling intersects the
contour of the �gure at its exit point; in case that a leader intersects a �gure multiple
times, we regard the intersection point closest to the port. Traversing the �gure’s
boundary in clockwise order starting from the boundary’s topmost point de�nes an
ordering on the exit points of the leaders and accordingly on the labels; we call this
the radial ordering of the labeling. Two labels are consecutive if one directly follows
the other in the radial ordering. The labeling contour is the polygon that connects the
ports of the labels in the given radial ordering.

13.3 Drawing Criteria

Based on interviews with domain experts (one layout artist and two editors of [PW13])
and a semi-automatic analysis of handmade medical drawings with external labeling,
we extracted the following set of important layout quality criteria; see also Section 13.7
for more details.
Drawing criteria for sites.

S1 Shape. Sites are represented by small points in the drawing.
S2 Position. The position of a site is prescribed by domain experts and can be assumed

to be �xed and given.
S3 Type. Either a site has its own label, or multiple sites have the same label. In

the latter case the leaders are bundled forking at a certain point; see Label 5 in
Figure 13.2.

For simplicity, we assume that we only have sites of the �rst type, but with some
engineering our algorithms can also be adapted to the second case. Now consider an
external labeling of a medical drawing. We have extracted the following criteria.
General drawing criteria.

G1 Externality. The text boxes of the labels are placed outside the drawing in the
available areas.
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Figure 13.3: Drawing criteria. (a) Criterion G3 (b) Criterion G5 (c) Criterion T5, which is
violated by the red middle label. (d) Criterion T4, which is violated by Label 4 and Label 5.

G2 Planarity. To sustain readability labels may not overlap or intersect each other.
G3 Simple shape. The labeling contour should be simple avoiding turning points; see

Figure 13.3(a).
G4 Left/right side. The radial order of a labeling can be partitioned into a sequence of

left labels and a sequence of right labels. Consequently, the labeling contour can
be partitioned into a left labeling contour and a right labeling contour.

G5 Similarity. The labeling contour mimics the contour of the �gure such that small
“indentations” of the �gure are not taken into account; see Figure 13.3(b).

G6 Grouping. Labels may be required by the designer to appear consecutively in the
radial ordering of the labeling.

Drawing criteria for text boxes.

T1 Spacing. The vertical distances between text boxes are preferably uniform. Dis-
tances less than the height of one text line should be avoided, but may be admissible
if not preventable.
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T2 Appearance. For all labels the same font is applied. Di�erences in the importance
of labels may be expressed by di�erent emphasis (bold, italic).

T3 Single/Multi line. If possible, a text box should consist of a single-line text. Only
due to the available space, text boxes may consist of multiple lines.

T4 Ports. For left (right) labels the port lies on the right (left) edge of the text box in
the vertical center of the �rst text line.

T5 Staircase. Let `1 and `2 be two consecutive labels. Neither `1 nor `2 intersects the
baseline of the other; see Figure 13.3(c).

Drawing criteria for leaders.

L1 Length. The part of a leader covering the �gure should be (preferably) short.
L2 Distinctiveness. Leaders running close together should not be parallel to avoid

reader confusion.
L3 Distance. Leaders preferably comply with a minimum distance to sites of other

leaders.
L4 Monotonicity. The slope of the leaders increases with respect to the radial ordering

of the leaders; see Figure13.3(d).
Typically a labeling does not fully satisfy all these criteria, but criteria may contradict

each other requiring appropriate comprises. For example requiring monotonicity (L4)
may enlarge the total leader length, which con�icts with criterion L1. Our approach
is characterized by the fact that these compromises are not already made during the
design of the labeling algorithm, but they lie in the hand of the layout artist applying
the algorithm. Speci�cally, our approach only needs criteria S2, G1, G2, G4 and T5 as
hard constraints not to be violated. Further, we assume that we are given a simple shape
(G3) enclosing the �gure and prescribing possible positions of ports. All other criteria
are optional, but can be easily patched in as either hard or soft constraints as needed,
which allows interactive and semi-automatic approaches. Hereby the compliance of
soft constraints is rated by means of a general cost function that can be de�ned when
applying the algorithm. In our interviews the domain experts strongly emphasized
the importance of G2 and G3. They further pointed out that labels should not be
placed behind other labels, which we express by T5. We further analyzed 202 medical
drawings of [PW13] in a semi-automatic way. All of these examples satisfy S1, G1,
G2, G4, and T4. Further, 18 �gures contain at least one set of labels that are explicitly
grouped by a large curly brace (G6). Only a dwindling small percentage (0.4%) of
all labels violate the staircase property (T5) and about 6.2% violate monotonicity
(L4). Since the other criteria are soft, we did not quantitatively check these in the
semi-automatic analysis; yet, they are well founded in the conducted interviews.
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13.4 Formal Model

We now describe a formal model for external label placement. As input we are given a
simple polygon F that describes the contour of the �gure and contains n sites to be
labeled. We denote the set of the sites by S and assume that the sites are in general
position, i.e., no three sites are colinear1. For each site s ∈ S we describe its label2 ` by
a rectangle r and an oriented line segment λ that starts at s and ends on the boundary
of r . We call λ the leader of `, r the text box of `, and the end point of λ on r the port

of `. The other end point is the site of `; see Figure 13.2. In the following, we only
consider labels whose text boxes satisfy T4.

A set L of labels over S is called an external labeling of (F , S), if (1) |L| = |S |, (2) for
each site s ∈ S there is exactly one label in L that belongs to s , and (3) every text box
of a label in L lies outside of F . If no two labels in L intersect each other, L is planar.
A labeling L is called a staircase labeling if it satis�es criterion T5.

Let L be a planar labeling. Let `1, . . . , `n be the labels of L in the radial ordering.
For simplicity we de�ne `n+1 := `1. The cost c of a labeling L is de�ned as c(L) =∑n

i=1 c1(`i ) + c2(`i , `i+1), where c1 is a function assigning a cost to a single label `i
and c2 is a function assigning a cost to two consecutive labels `i and `i+1. We note that
in contrast to previous research the cost function also supports rating two consecutive
labels, which is crucial to set labels in relation with each other. Given the cost function c ,
the problem ExternalLabeling then asks for a planar labeling L of (F , S) that has
minimum cost with respect to c , i.e., for any other planar labeling L ′ of (F , S) it
holds c(L) ≤ c(L ′).

We consider the special case that the ports of the labels lie on a common contour

enclosing F . In contrast to classical boundary labeling, which assumes a rectangu-
lar �gure, this contour schematizes the shape of the �gure with a certain o�set; in
Section 13.7 we shortly describe how to construct a reasonable contour. Thus, the
contour describes the common silhouette formed by the labels. We assume that the
contour is given as a simple polygon C enclosing F . An external labeling L is called
a contour labeling if for every label of L its leader lies inside C and its port lies on
the boundary ∂C of C . Since not every part of C’s boundary may be suitable for the
placement of labels, we require that the ports of the labels are contained in a given
subset P ⊆ ∂C of candidate ports. If P is �nite, the input instance has �xed ports and
otherwise sliding ports.

Observation 13.1. In a planar contour labeling the ports of the labels induce the same

radial ordering with respect to C as the exit points of the labels with respect to F .

A tuple I = (C, S, P) is called an instance of contour labeling. The region of I is the
1This assumption can be met by slightly perturbing sites.
2To ease presentation we de�ne that the leader is a component of the label. In preceding research

and in Chapter 10 only the rectangle r is called label.

238



Algorithmic Core Section 13.5

region enclosed by C . We restrict ourselves to convex contours and clearly separated
sites and text boxes as follows, implementing Criteria G1 and G3, respectively.

Assumption 13.1. The contour C is convex and no text box of any label intersects the

convex hull of S .

For all of the 202 analyzed medical drawings it holds that no text box of any label
intersects the convex hull of S .

Due to the convexity ofC , the contour can be uniquely split into a left and right side
described by two maximal y-monotone chains CL and CR, respectively. The following
assumption implements Criterion G4.

Assumption 13.2. A left label has its port on CL and a right label has its port on CR.

Given a cost function c , the problem ContourLabeling then asks for an (cost)
optimal, planar staircase contour labeling L of (C, S, P) with respect to c , i.e., for any
other planar staircase contour labeling L ′ of (C, S, P) it holds that c(L) ≤ c(L ′).

13.5 Algorithmic Core

In this section we describe how to construct the optimal labeling L of a given instance
(C, S, P) with respect to a given cost function c . To that end we apply a dynamic
programming approach. The basic idea is that any optimal contour labeling can be
recursively decomposed into a set of sub-labelings inducing disjoint sub-instances.
As we show later, these sub-instances are specially formed; we call them convex

sub-instances. We further show that any such sub-instance can be described by a
constant number of parameters over S and P . Hence, enumerating all choices of these
parameters, we can enumerate in polynomial time all possible convex sub-instances
that an optimal labeling may consist of. For each such sub-instance we compute the
cost of an optimal labeling reusing the results of already computed values of smaller
sub-instances. In this way we obtain the value of the optimal labeling for the given
instance. Summarizing, our approach consists of four steps.

Step 1. Compute all possible convex sub-instances by enumerating all possible
choices de�ned over S and P .

Step 2. In increasing order of the number of contained sites, compute the optimal
cost for each convex sub-instance I . More precisely, to compute the optimal cost
of I consider all possibilities how I can be composed of at most two smaller convex
sub-instances.

Step 3. Consider all possibilities how the input instance can be described by a
convex sub-instance. Among these, take the convex sub-instance with optimal cost.

Step 4. Starting with the resulting sub-instance of Step 3, apply a standard back-
tracking approach for dynamic programming to construct the corresponding labeling
with optimal costs.
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Figure 13.4: Illustration of Lemma 13.1. (a) The base line (dotted line) of `′′ intersects the text
box of `. (b) The segment connecting the sites of `′ and `′′ intersects the text box of `.

In the remainder of this section we explain the approach in more detail. In Sec-
tion 13.5.1, we �rst prove some structural properties on contour labelings. These
properties are crucial for the dynamic programming approach, which we describe in
Section 13.5.2.

13.5.1 Structural Properties of Contour Labelings

The intersection of two labels is characterized by three types: the two leaders intersect,
the two text boxes intersect or the leader of one label intersects the text box of the other
label. The following lemma allows us to �nd planar labelings by avoiding leader-leader
intersections and intersections between two consecutive labels.

Lemma 13.1. Let I be an instance of ContourLabeling and let L be a staircase contour

labeling of I . If no pair of leaders intersect and if no two consecutive labels intersect, then
L is planar.

Proof. We prove that L is planar by systematically excluding the possible types of
intersections.
Text-box–text-box intersection. Assume that there are two labels ` and `′ that are

not consecutive and whose text boxes intersect. The labels either lie on the same side
or on di�erent sides of C .

First consider the case that ` and `′ belong to di�erent sides; without loss of gener-
ality let ` be a left label and `′ be a right label. Due to T4, text boxes of ` and `′ may
only intersect if the port p of ` lies to the right of the port p ′ of `′. Since p lies on CL
and p ′ lies on CR, this contradicts the convexity of C .

Now consider the case that ` and `′ belong to the same side; without loss of generality
let both be left labels; see Figure 13.4(a). For intersecting each other, one of both labels
intersects the base line of a left label in between both labels contradicting Criterion T5.
Text-box–leader intersection. Now assume that there is a label ` whose text box is

intersected by the leader λ′ of another label `′; see Figure 13.4(b). We denote the ports
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Figure 13.5: Decomposition in convex in-
stance I ′ (blue region) and concave instance
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of ` and `′ by p and p ′ respectively. Further, let t be the �rst intersection point of λ′
with ` going along λ′. We choose `′ such that there is no other leader intersecting `’s
boundary c between p and t . Let R be the region that is bounded by the boundary
of ` from p to t , the line segment tp ′, and the boundary c ′ of C from p ′ to p. Since `
and `′ are not consecutive, there is a label `′′ with port p ′′ on c ′. The site s ′′ of `′′ lies
in R because otherwise the leader of `′′ intersects c or the segment tp ′. Due to the
convexity of C , the segment s ′s ′′ is contained in C . Since s ′ lies in the complement
of R, the segment s ′s ′′ intersects c , which implies that ` intersects the convex hull of S
contradicting Assumption 13.1. �

In the following, we show that each solution can be subdivided into a �nite set of
sub-instances of three types. We describe a sub-instance by a simple polygon that
consists of two polylines. One polyline is part of the original contour C and the
other polyline consists of a convex chain of sites and two leaders. More precisely,
assume that we are given a convex chain K = (s1, . . . , sk ) of sites with k ≥ 2 and the
two non-intersecting labels `1 and `k of s1 and sk , respectively; see Figure 13.5. The
directed polyline K ′ = (p1, s1, . . . , sk ,pk ) splits the polygon C into two polygons C ′
and C ′′, where p1 and pk are the ports of `1 and `k , respectively. We consider the
sites in the order such that we meet p1 before pk when going along the contour of C
in clockwise-order starting at the top of C . Further, going along K ′ we denote the
sub-polygon to the left of K ′ by C ′ and to the right of K ′ by C ′′. With respect to
the direction of K ′, the sub-polygon C ′ is counter-clockwise oriented, while C ′′ is
clockwise oriented. Further,C ′′ contains the top point ofC . We de�ne thatC ′ contains
the sites s2, . . . , sk−1, while C ′′ does not contain them.

Thus, the polyline K ′ partitions the instance (C, S, P) into two sub-instances I ′ =
(C ′, S ′, P ′) and I ′′ = (C ′′, S ′′, P ′′) such that
(1) S ′ ∪ S ′′ = S \ {s1, sk } and P ′ ∪ P ′′ = P \ {p1,pk },
(2) the sites of S ′ lie in C ′ or on K and the sites of S ′′ lie in the interior of C ′′,
(3) the ports of P ′ lie on the boundary of C ′ and the ports of P ′′ lie on the boundary

of C ′′.
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Note that the sites s1, sk and the ports p1, pk neither belong to I ′ nor to I ′′, because
they are already used by the �xed labels `1 and `k . We call (`1, `k ,K), which de�nes
the polyline K ′, the separator of C ′ and C ′′. For two sub-instances we say that they
are disjoint if the interiors of their regions are disjoint.

In the following, we only consider sub-instances in which the convex chain K lies
to the right of the line l through s1 and sk pointing towards sk from s1; we will show
that these are su�cient for decomposing any instance. Put di�erently, the chain K is
a convex part of the boundary of C ′ and a concave part of the boundary of C ′′. We
call I ′ a convex sub-instance and I ′′ a concave sub-instance.

The line l splits C ′′ into three regions A1, A2 and A3; see Figure 13.5. Let A2 be the
region to the right of l and let A1 and A3 be the regions to the left of l such that A1
is adjacent to the leader of `1 and A3 is adjacent to the leader of `k . Depending on
the choice of `1 and `k , the regions A1 and A3 may or may not exist. We call C ′′ the
exterior of C ′ and vice versa. We distinguish the following convex instances.
(A) A convex instance has type A if there is a site s ∈ A1 such that `1 and the half-lineh

emanating from s through s1 separates K from the sites in C ′′; see Fig 13.6(a).
(B) A convex instance has type B if there is a site s ∈ A3 such that `k and the half-lineh

emanating from s through sk separates K from the sites in C ′′; see Fig 13.6(b).
For both types the chain K is uniquely de�ned by the choice of `1, `k and s . Thus,
type A and type B instances are uniquely de�ned by `1, `k and s; we denote these
instances by IA[`1, `k , s] and IB[`1, `k , s], respectively. We call s the support point of
the instance. In case that C ′′ is empty, the chain K is already uniquely de�ned by `1
and `k and we write IA[`1, `k ,⊥] and IB[`1, `k ,⊥]. Hence, we can enumerate all such
instances by enumerating all possible triples consisting of two labels and one site.
Since each label is de�ned by one port and one site, we obtain O(|S |3Û|P |2) instances in
total. Note that instances of type B are symmetric to type A instances.

For k = 2 the chain consists of the sites s1 and s2 and the support point is super�uous;
such an instance is solely de�ned by the labels `1 and `2 of s1 and s2, respectively. We
call these instances capstone instances and denote them by IC[`1, `2]; see Figure 13.6(c).

We now show that any labeling can be composed into instances of these three types.
We say that an instance is empty if its set S of sites is empty. For a labeling L of an
instance I we write L|I ′ for the labeling L ′ ⊆ L that is restricted to the sites and ports
of the sub-instance I ′ of I . Let (`1, `k ,K) denote the separator of I ′. For a labeling L ′
of a sub-instance I ′ we require that any leader of any label ` in L ′ lies in the contour
of the sub-instance not intersecting the separator (the sites s2, . . . , sk−1 are excluded
from this restriction). In that case we say that the label ` is contained in I ′. We further
emphasize that the labels `1 and `k are contained in L ′, but they are �xed describing
the contour of I ′ so that their sites and ports do not belong to the sites and ports of I ′,
respectively. The next lemma states how to decompose type A and type B instances
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Figure 13.6: Decomposition in convex instance I ′ (blue) and concave instance I ′′ (orange).
(a) Type A instance with k > 2. (b) Type B instance with k > 2. (c) Capstone instance.

into smaller type A, type B and capstone instances. Figure 13.7 illustrates Case (i).
Case (ii) is symmetric to Case (i).

Lemma 13.2. Let I be a convex instance with separator (`1, `k ,K = (s1, . . . , sk )) and
k > 2. Further, let L be a planar labeling of I .

(i) If I has type A, the label `2 ∈ L of s2 splits I into the disjoint sub-instances I
′ =

IC[`1, `2] and I ′′ = IA[`2, `k , s1] such that any label ` ∈ L is contained in I ′ or I ′′.

c(L) = c(L|IC[`1, `2]) + c(L|IA[`2, `k ,s1]) − c1(`2)

(ii) If I has type B, the label `k−1 ∈ L of sk−1 splits I into the two disjoint sub-instances
I ′ = IC[`k−1, `k ] and I ′′ = IB[`1, `k−1, sk ] such that any label ` ∈ L is contained in

I ′ or I ′′.

c(L) = c(L|IC[`k−1, `k ]) + c(L|IB[`1, `k−1,sk ]) − c1(`k−1)
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Figure 13.7: Illustration of Lemma 13.2,
Case (i).

Proof. We only argue for type A instances. Symmetric arguments hold for type B
instances. Consider an arbitrary sub-instance I = (C, S, P) of type A; see Figure 13.7.
Since `2 connects two points of C’s boundary, it partitions I into two sub-instances I ′
and I ′′ with labelings L|I ′ and L|I ′′ such that any label of L \ {`2} either is contained
in I ′ or I ′′. Let I ′ be the instance containing s1 and I ′′ the other one. Obviously, I ′ forms
the capstone instance IC[`1, `2]. We now show that I ′′ forms instance I ′′ = IA[`2, `k , s1]
of type A.

By de�nition of I the label `1 and the half-line h emanating from s through s1
separates the convex chain K of I from the sites in the exterior of I . Because of
the convexity of K , the half-line h′ emanating from s1 through s2 and the label `2
separate the convex chain K ′ = (s2, . . . , sk ) from the sites in the exterior of I ′′. Hence,
I ′′ = IA[`2, `k , s1] has type A.

The cost of L is composed of the costs of L|I ′ and L|I ′′ : c(L) = c(L|IC[`1, `2]) +
c(L|IA[`2, `k ,s1]) − c1(`2). To not count `2 twice, we subtract c1(`2). �

The convex sub-instances I ′ and I ′′ of the previous lemma contain fewer sites than I .
Thus, recursively applying Lemma 13.2 decomposes I into a set of type A and type B
instances until all instances are capstone instances. The next lemma states how to
decompose capstone instances into smaller type A, type B and capstone instances. Fig-
ure 13.8(a) illustrates Case i, Figure 13.8(b) illustrates Case (ii), Figure 13.8(c) illustrates
Case (iii), Case (iv) is symmetric to Case (iii) and Figure 13.8(d) illustrates Case(v).
Lemma13.3. Let I = IC[`1, `2] be a capstone instance with separator (`1, `2,K = (s1, s2)).
Further, let L be a planar labeling of I . One of the following statements applies for I .
(i) The instance I is empty.

c(L) = c1(`1) + c1(`2) + c2(`1, `2)

(ii) There is a label ` in L such that any label in L is contained in one of the two disjoint

capstone instances IC[`1, `] and IC[`, `2].

c(L) = c(L|IC[`1, `]) + c(L|IC[`,`2]) − c1(`)
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Figure 13.8: Decomposition of a convex instance I (dashed polygon). (a) Empty capstone
instance. (b) Capstone instance is decomposed into two smaller capstone instances. (c)–
(d) Capstone instance is decomposed into type A and type B instances.

(iii) There is a label ` ∈ L s.t. any label in L is contained in IA[`1, `, s2].

c(L) = c(L|IA[`1, `,s2]) + c2(`, `2)

(iv) There is a label ` ∈ L s.t. any label in L is contained in IB[`, `2, s1].

c(L) = c(L|IB[`,`2,s1]) + c2(`1, `)

(v) There are labels `, `′ ∈ L with ` , ` s.t. any label in L is contained in either

IA[`1, `, s2] or IB[`′, `2, s1].

c(L) = c(L|IA[`1, `,s2]) + c(L|IB[`′, `2,s1]) + c2(`, `′)

Proof. If I = (C, S, P) is empty, the cost of L are composed by c(L) = c1(`1) + c2(`2) +
c2(`1, `2), which yields Case (i).
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So assume that I is not empty. The line l through s1 and s2 splitsC into three regions
A1, A2 and A3; see Figure 13.8(b). Let A2 be the region to the left of l (going along l)
and let A1 and A3 be the regions to the right of l such that A1 and A3 are adjacent to
the leaders of `1 and `2, respectively. Further, let p1 and p2 be the ports of `1 and `2,
respectively.

First assume that there is a site s with label ` ∈ L such that the separating triangle

∆(s1, s, s2) lies in C and its interior is not intersected by any label in L; the triangle
must lie in A2. Together with `, it partitions I into the two sub-instances I ′ and I ′′.
They form the capstone instances I ′ = IC[`1, `] and I ′′ = IC[`, `2] as in Case (ii). It
is easy to see that c(L) = c(L|IC[`1, `]) + c(L|IC[`,`2]) − c1(`).We subtract c1(`) to not
count ` twice.

So assume that there is no such separating triangle, which implies that A1 ∪ A3
contains sites. If this were not the case, A2 would contain a site, because I is not
empty. Among these sites we easily could �nd a site forming a separating triangle. In
particular due to Assumption 13.1 such a triangle cannot be intersected by any text
box. We distinguish three cases how A1 and A3 contain sites.

Case: A1 contains a site, butA3 is empty. Let s be a site in A1. We denote its label by `
and the port of ` by p. We choose s and ` such that no label of any site in A1 succeeds `
in the radial ordering. Let K be the convex chain of sites in A1 such that K starts at s1,
ends at s , and any site in A1 lies in the counterclockwise oriented polygon C ′ de�ned
by p1, K , p and the part ofC in between p and p1; see Figure 13.8(c). All sites in A2 also
lie in C ′, because otherwise we could �nd a separating triangle. Hence, the clockwise
oriented polygon C ′′ de�ned by p2, s2, s1, K , p and the part of C in between p and s2
does not contain any site. By the choice of ` all labels must be contained in the instance
induced by C ′. In particular the half-line h emanating from s2 through s1 separates K
from the sites in the exterior of I ′. Hence I ′ is the type A instance IA[`1, `, s2]. This
yields Case (iii) and c(L) = c(L|IA[`1, `,s2]) + c2(`, `2).
Case: A3 contains a site, but A2 is empty. Symmetrically, we construct a type B

instance I ′ = IB[`, `2, s1], which yields Case (iv).
Case: Both A1 and A2 contain sites. Combining the construction of the previous

two cases, we obtain two labels ` and `′ that de�ne the type A and type B instances
I ′ = IA[`1, `, s2] and I ′′ = IB[`, `2, s1] of case (v); see Figure 13.8(d). �

Lemma 13.2 and Lemma 13.3 describe how to decompose an arbitrary convex
sub-instance I into a set of empty capstone instances. The next lemma implies that
any labeling of any instance I of ContourLabeling can be decomposed into empty
capstone instances.

Lemma 13.4. Let I be an instance of ContourLabeling and let L be a planar labeling

of I . The �rst leader ` and the last leader `′ in the radial ordering of L de�ne a type A
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Figure 13.9: Illustration of Lemma 13.4
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instance I ′ = IA[`, `′,⊥] such that the exterior of I ′ is empty and

c(L) = c(L|I ′) + c2(`, `′).

Proof. Let I = (C, S, P). Further, let s and s ′ be the sites and let p and p ′ be the ports
of the two labels ` and `′, respectively. The polyline (p, s, s ′,p ′) partitions C into two
sub-polygons; see Figure 13.9. LetC ′ be the counterclockwise oriented polygon andC ′′
be the clockwise oriented polygon. Let S ′′ be the sites in C ′′. The port of any label
in L lies on the boundary of C ′, because otherwise ` and `′ would not be the �rst and
last labels in the radial ordering of L, respectively. Hence, any leader of any label with
site in S ′′ must intersect the line segment ss ′. This in particular implies that any of
these sites must lie to the right of the line l that goes through s and s ′ in that direction.
Let H be the convex hull of S ′′ ∪ {s, s ′}. Removing ss ′ from H , we obtain the desired
convex chain K , which lies to the right of l . Together with ` and `′ it forms the type A
instance IA[`, `′,⊥]. �

13.5.2 Dynamic Programming

Applying the results of the previous section we present a dynamic programming
approach that solves ContourLabeling with �xed ports optimally. For type A, type B
and capstone instances the approach creates the three tables TA, TB and TC storing the
optimal costs of the considered instances, respectively. We call an instance valid if the
two labels `1 and `k de�ning the separator do not intersect and comply with T5.

Step 1. We compute all valid instances of type A and type B, and all valid capstone
instances.

Step 2. We compute the optimal costs for all convex sub-instances. Let I be the
currently considered instance of size i ≥ 0 with separator (`1, `k ,K = (s1, · · · , sk )),
where the size of I is the number of sites contained in I ; recall that s1 and sk do not
belong to I . Considering the instances in non-decreasing order of their sizes, we can
assume that we have already computed the optimal costs for all convex instances with
size less than i . We distinguish the two main cases k = 2 and k > 2.
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Case k = 2. The instance forms the capstone instance IC[`1, `2]. Let s1 and s2 be the
sites of `1 and `2, respectively. Following Lemma 13.3 we apply �ve steps.
(1) If IC[`1, `2] is not empty, we set w1 := ∞ and otherwise

w1 := c1(`1) + c1(`2) + c2(`1, `2).

(2) We consider every site s in IC[`1, `2] such that the separating triangle ∆(s1, s2, s)
lies in the region of I and does not contain any other site. For all such sites we
determine each label candidate ` that partitions I into valid disjoint capstone
instances IC[`1, `] and IC[`, `2]. Let D denote the set of all those labels.

w2 := min
`∈D

TC[`1, `] +TC[`, `2] − c1(`).

(3) We determine every label ` of IC[`1, `2] such that every site of I lies in IA[`1, `, s2].
Let D denote the set of those labels. We set

w3 := min
`∈D

TA[`1, `, s2] + c2(`, `2).

(4) We determine every label ` of IC[`1, `2] such that every site of I lies in IB[`, `2, s1].
Let D denote the set of those labels.

w4 := min
`∈D

TB[`, `2, s1] + c2(`1, `).

(5) We determine every pair (`, `′) of intersection-free labels of IC[`1, `2] such that
every site of IC[`1, `2] lies in IA[`1, `, s1] or IB[`′, `2, s2]. Let D denote the set of
those pairs labels.

w5 := min
(`,`′)∈D

TA[`1, `, s2] +TB[`, `2, s1] + c2(`, `′).

In any of the above cases we choose the labels of the candidate set D such that the
considered instances are valid. Further, if D is empty in step (i), we set wi := ∞
(2 ≤ i ≤ 5). We set TC[`1, `2] := min1≤i≤5{wi }.

Case k > 2. Following Lemma 13.2 we distinguish two sub-cases. If I is a type A
instance IA[`1, `k , s] (where possibly s = ⊥), we determine every possible label ` for
site s2. Let D be the set of those labels. If D is empty, we set TA[`1, `k , s] := ∞ and
otherwise

TA[`1, `k , s] := min
`∈D

TC[`1, `] +TA[`, `k , s1] − c1(`).

If I has type B, we analogously de�ne D for sk−1. If D is empty, we setTB[`1, `k , s] := ∞
and otherwise

TB[`1, `k , s] := min
`∈D

TC[`, `k ] +TB[`1, `, ssk ] − c1(`).
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In any of the cases above we call the elements in D the descendants of the given
instance.

Step 3. After computing the optimal costs of all convex instances, we enumerate
all possible choices (`, `′) of �rst and last labels in the radial ordering. Let D denote
the set of those choices. By Lemma 13.4 any choice (`, `′) ∈ D forms a convex type A
instance I ′ = IA[`, `′,⊥]. Hence, the optimal cost OPT(I ) of I are

OPT(I ) = min
(`,`′)∈D

TA[`, `′,⊥] + c2(`, `′).

Recall that if the convex chain K of I ′ has length 2, then we have I ′ = IC[`, `′] and
therefore TA[`, `′,⊥] = TC[`, `′]. If OPT(I ) = ∞, we return that I does not admit a
contour labeling.

Step 4. Also storing the according descendants for each instance, we apply a standard
backtracking approach for dynamic programming to obtain the corresponding the
labeling L.

Theorem 13.1. For an instance I = (C, S, P) contour labeling, the problem ContourLa-

beling can be solved in O(|S |4 |P |4) time.

Proof. We �rst show the correctness and then argue the running time. Let I be an
arbitrary instance of ContourLabeling.

Correctness. Let L be a labeling constructed by our algorithm. We �rst show that L
is planar proving the conditions of Lemma 13.1.

By construction we ensure that for a convex instance I the labels of I ’s separator
comply with T5. In particular this implies that any two consecutive labels in L
comply with T5, which implies that L is a staircase labeling. When computing the
descendants D for an instance, we ensure that D does not contain any label that
intersects the separator of that instance. By induction this implies that no leader in L
intersects any other leader in L. Further, we ensure that no two consecutive labels
intersect. Hence, by Lemma 13.1 the labeling L is planar.

Finally, we prove thatL is an optimal labeling of I . By Lemma 13.2, 13.3 and 13.4 any
labeling can be recursively decomposed into type A, type B, and capstone instances.
Our algorithm enumerates all these instances. For each such instance I ′ we search for
the label(s) ` (`′) that split I ′ into smaller type A, type B and capstone instances. Since
we enumerate all such labels, we also �nd the label minimizing the cost of I ′.

Running Time. We now analyze the running time step by step.
Step 1. We create all possible convex instances of type A and type B and all capstone

instances by (conceptually) enumerating all tuples (`1, `2) and (`1, `2, s), where `1 and
`2 are labels based on the ports and sites of I and s ∈ S . Since each label is de�ned by a
site and a port, we enumerate O(|S |3 · |P |2) tuples. For each instance we also compute
the convex chain K and the sites contained in the instance, which needs O(|S |) time
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assuming that the sites are sorted by their x-coordinates. Sorting the instances by size
needs O(|S |3 · |P |2(log |S | + log |P |)) time.

Step 2. Handling a single capstone instance we need O(|S |2 |P |2) time: For the cases
(1)–(4) there are O(|S | · |P |) descendants, while for case (5) there are O(|S |2 · |P |2)
descendants. Since we consider O(|S |2 · |P |2) many instances, we obtain O(|S |4 |P |4)
running time in total for capstone instances.

Handling a single type A or type B instance there are O(|P |) descendants, because
the site of the descendants is �xed. Since we consider O(|S |3 · |P |2) such instances,
we obtain O(|S |3 |P |3) running time, which is dominated by handling the capstone
instances.

Step 3. Enumerating all pairs of �rst and last labels in the radial ordering can be
done in O(|S |2 |P |2) time.

Step 4. Storing for each instance its descendant of lowest cost, we can do backtrack-
ing in linear time.

Altogether, Step 2 dominates with O(|S |4 |P |4) running time. �

The criteria mentioned in Section 13.3 can be easily patched into the approach. If a
criterion should become a hard constraint not to be violated, we simply exclude any
sub-instance violating this speci�c criterion. For example, to enforce monotonicity
(L4) we remove any sub-instance whose de�ning labels violate this criterion. Similarly,
if the criterion should become a soft-constraint, we do not exclude the sub-instance,
but include its compliance with this criterion into its cost—provided that it can be
modeled by the cost functions c1 or c2. This is true for all criteria listed in Section 13.3.

13.6 Algorithm Engineering

Initial experiments showed that a naive implementation of the dynamic programming
approach does not yield reasonable running times, which matches the high asymp-
totic running times. In this section, we therefore describe how the approach can be
implemented e�ciently to prevent these problems for instances of realistic input sizes
of |S | ≤ 70.

13.6.1 Bundling

Instead of considering each possible label individually, we bundle labels and rede�ne
the di�erent types of instances based on bundles instead of single labels. More precisely,
consider two label candidates `1 and `2 of the same site s such that `1 precedes `2 in the
radial ordering; see Figure 13.10. Let p1 and p2 be the ports of `1 and `2, respectively.
Further, let R be the region enclosed by `1, `2 and the part of the contour C that lies
between p1 and p2 (going in clockwise direction aroundC). We call `1 and `2 equivalent
if the region R does not contain any site. Hence, `1 can be slid along C to `2 without
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Figure 13.10: Illustration of Bundles.
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passing any other site. A bundle of s is a set B of labels of s that are pairwise equivalent.
A set B is maximal if there is no bundle B′ with B ( B′. We order the labels according
their radial ordering. To ease the description we assume without loss of generality
that there is no bundle that contains the top point ofC ; we can split bundles at the top
point of C , if necessary.

As presented in Section 13.5.1 we describe a sub-instance IA[`, `′, t] (IB[`, `′, t],
IC[`, `′]) by two labels ` and `′ and by a support point t . We now generalize this
concept to bundles. For two bundles B and B′ of two sites s and s ′ the instance set

IsA[B,B′, t] contains every instance IA[`, `′, t] with ` ∈ B and `′ ∈ B′. We analogously
de�ne the sets IsB and IsC. Using these instance sets, we speed up the steps of our
algorithm without losing optimality as follows.

Step 1. Instead of creating every instance of every type, we create all possible
instance sets IsA, IsB and IsC based on the maximal bundles of the input instance.
We note that we do not compute the instance sets explicitly, but each such set Is is
uniquely described by the two labels that occur �rst and last in Is with respect to the
radial ordering. Since any two instances of an instance set contain the same sites, we
only compute these contained sites once per instance set. We further exclude any
instance set that does not permit a labeling at all. To that end, we test whether there
is enough space along the enclosed contour for all labels.

Step 2& Step 3. Instead of computing the optimal cost for each individual instance,
we iteratively compute lower and upper bounds of the optimal cost of the instance
sets and re�ne these until we obtain the optimal cost.

More precisely, in each iteration we compute for each instance set Is a lower bound L
and an upper boundU for the optimal costs of the instances in Is, i.e., for each instance
I ∈ Is it holds L ≤ OPT(I ) ≤ U . To that end we de�ne for two bundles B and B′ the
cost functions c1 and c2 as follows.

c1(B) =(min
`∈B

c1(`),max
`∈B

c1(`))

c2(B,B′) =( min
`∈B, `′∈B′

c2(`, `′), max
`∈B, `′∈B′

c2(`, `′))

Interpreting the result of c1(B) and c2(B,B′) as two-dimensional vectors we compute
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Figure 13.11: Shells (blue). (a) The label ` does not directly strive outwards and disturbs the
overall appearance of the drawing. (b) No label candidate `′ of s ′ can intersect the separating
triangle ∆(s1, s2, s) without intersecting a shell of higher level.

the tables TA, TB and TC in the same manner as before, but this time we use instance
sets instead of instances and bundles instead of single labels. We analogously adapt
Step 3.

Hence, we obtain for each instance set lower and upper bounds. In particular
we obtain a lower bound L̄ and an upper bound Ū for the given input instance. In
case that L̄ = ∞, the input instance does not admit a labeling and we can abort the
algorithm. Otherwise, we collect all instance sets of Step 3 whose lower bound does
not exceed Ū and start a standard backtracking procedure to collect all instance sets
whose lower bound does not exceed Ū . Any other instance set is omitted, because
it cannot be part of the optimal solution. Afterwards, we split each bundle B into
two half-sized bundles B1 and B2, i.e., let `1, . . . , `h be the labels in B with respect to
the radial ordering. We then set B1 = {`1, . . . , `m} and B2 = {`m+1, . . . , `h} where
m = b h2 c. Thus, based on those new bundles we obtain new corresponding instance
sets. We start the next iteration with the newly created instance sets.

We repeat this procedure until each bundle contains exactly one label. Thus, the
bounds L̄ and Ū equal the optimal cost of the input instance. Doing backtracking we
construct the according labeling.

Shells. In this section, we describe two adaptations that further accelerate the
approach. In contrast to the previous section these techniques do not necessarily
preserve optimality. In Section 13.7 we show that in practice our heuristics achieve
near-optimal solutions in reasonable time.

We observe that leaders typically point outwards without passing through the center
of the �gure; see Figure 13.11(a). This guarantees short leader lengths and leaders �t in
the overall appearance of the �gure. We use this as follows. Based on the contourC we
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construct a set of o�set polygons in the interior ofC such that they have a pre-de�ned
distance to each other; see Figure 13.11(a). We call these polygons shells. The level of
a shell is the number of shells containing that shell and the level of a site is the level
of the innermost shell containing s .

We require for every site that its leader does not intersect a shell with higher level.
Hence, we can exclude any label that violates this requirement. The more shells
are used the more labels are excluded improving the running time. However, it also
becomes more likely that the optimal labeling gets lost. In our experiments we have
chosen the shells such that less than 0.9% of the labels in handmade drawings violate
this property; see also Section 13.7.

We further speed up Step 2(2). To that end let IC[`1, `2] be the currently considered
capstone instance and let s1 and s2 be the sites of `1 and `2, respectively. Further,
let D be the set of descendants. We only consider descendants that have a level that
is at least as high as the level of s1 and s2. If such descendants do not exist, we take
those with highest level. In case that the shells are convex and nested this particular
adaption does not have any impact on the achievable cost, because for any such
site s the triangle ∆(s1, s2, s) is contained in the shell of s1, s2 or s . It therefore cannot
be intersected by any leader of a descendant with a site that has a lower level; see
Figure 13.11(b).

Miscellaneous. We further can speed-up the approach as follows.
Simple-Instances. Initial experiments showed that non-capstone instances are

more of theoretical interests proving the optimality of the approach, but typically
the optimal labeling can be decomposed into capstone instances. Hence, it lends
itself to only consider capstone instances; particularly Step 2(3)–(5) are omitted. The
asymptotic running time remains the same, because handling capstone instances
dominates the running time.

One-Sided-Instances. Assuming criterion G4 we can apply the following speed-up
technique preserving the optimality of our approach. Consider a capstone instance
IC[`1, `2] such that both labels `1 and `2 are right labels. Let D be the descendants
computed in Step 2(2). Indeed we only need to consider the descendants in D with
the leftmost site s among all those descendants. It preserves optimality, because no
descendant in D of any other site can intersect the separating triangle ∆(s1, s2, s); due
to criterion G4 they all lie to the right of the vertical line through s . Here s1 and s2 are
the sites of `1 and `2. Symmetrically, we can apply the same technique for left labels `1
and `2 and the descendants with the rightmost site among all descendants in D. The
asymptotic running time remains the same, because handling capstone instances with
left and right labels dominates the running time.

Small-Triangles. Computing the set D of descendants of a capstone instance
IC[`1, `2] in Step 2(2), any site s in IC[`1, `2] is considered that forms an empty separating
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triangle ∆(s1, s2, s). Hereby s1 and s2 are the sites of `1 and `2. For this speed-up
technique we only consider the site s with smallest triangle ∆(s1, s2, s) among those
sites reducing the number of descendants in D. This improves the asymptotic running
time by a factor of O(n).

13.7 Experimental Evaluation

We have implemented a prototype of our approach incorporating the speed-up tech-
niques of Section 13.6. For simplicity we constructed the contour of the �gure based on
its convex hull H , i.e., the contourC is an exterior o�set polygon of H with distance of
25 pixels. More sophisticated approaches can be applied [Vol+07]. Similarly, the shells
are interior o�set polygons of the contour having distance of 70 pixels to the next
shell. Both choices are ad-hoc values that mimic handmade drawings, but a designer
may select them depending on the actual �gure. Further, we placed ports by sampling
the contour every 10 pixels.

The implemented algorithm uses bundles, the speed-up of one-sided instances, and
parallelizes Step 1; see Section 13.6. We distinguish the following variants of our
algorithm:

1. Optimal (OPT): No further speed-up techniques.
2. Capstone-Heuristic (CH): Restricted to capstones.
3. Simple-Shell-Heuristic (SCH): Same as CH, but also shells are applied.
4. Triangle-Heuristic (TSCH): Same as SCH including Small-Triangles.

The implementation was done in C++ and compiled with GCC 4.8.5 using optimiza-
tion level O2. Further, the experiments were performed on an Intel Xeon E5-1630v3
processor clocked at 3.7 GHz, with 128 GB of RAM.

To gain realistic input data, we have vectorized 202 �gures of Sobotta [PW13] by
extracting the text boxes, the leaders, the sites and the contour F of the �gure. In case
that a leader λ was connected to multiple sites, we have pragmatically extracted the
leader only up to the �rst fork point p and placed a single site at p. In case that p was
not contained F , we took the projection of p on the boundary of F along the half-line
from the port of λ through p. The �gures contain between 4 and 64 sites; see also
Figure 13.12. We used the same data for justifying our drawing criteria.

For reasonably de�ning the cost functions c1 and c2, we �rst created six labelings
for each of �ve selected �gures. These labelings varied in the choice of minimum label
distances, as well as enforcing monotonicity (L4) or not. Then we discussed these
30 labelings with a domain expert. She con�rmed that monotonicity is an important
criterion to obtain balanced labelings and rated the labelings best where labels with
less than 30 pixels distance were penalized. Smaller and larger penalty thresholds were
rated worse. Further, the expert emphasized that leaders should not run past sites too
closely. The analysis of handmade labelings also supports monotonicity: 93.8% of the
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labels satisfy this property. For about 70% of the test instances violating monotonicity,
the violation was less than 10◦ in maximum. About 93% of these instances have at
most 5 violations.

We incorporated these �ndings into the cost function as follows. Let M be a big
constant. Any label candidate and any instance with cost at least M is excluded.
In our experiments we set M = 109. The cost function c1 takes the leader’s length
and the smallest distance to sites into account. More precisely, any candidate label
whose leader is three times longer than the shortest possible leader for the same site
is excluded. Hence, sites located close to the contour of the �gure have short leaders,
while sites in the center of the �gure are not a�ected by this exclusion at all. Let `
be a label candidate and λ be the leader of `. If the distance d of λ to any site (not
connected to λ) is less than 10 pixels, we set c1(`) = length(λ)2 + M/(100 · d) and
otherwise c1(`) = length(λ)2. Hence, we penalize both long leaders as well leaders
that closely run past a site.

We de�ne c2 as follows. Let `1 and `2 be a pair of possible consecutive label can-
didates. We set c2(`1, `2) = M if `1 and `2 violate monotonicity by more than 10◦,
excluding these pairs. For smaller violations we set c2(`1, `2) = M/6 + cv , which
e�ectively allows at most 5 of these violations in total. If `1 and `2 satisfy monotonicity,
we set c2(`1, `2) = cv . Here, cv is the cost caused by the vertical distance dv of `1’s
and `2’s text boxes: If `1 and `2 lie on di�erent sides of C , we set cv = 0. Otherwise, if
the vertical distance dv is less than 5 pixels, we set cv = M excluding these pairs. If
5 ≤ dv < 30 pixels, we set cv = M/(100 · dv ) penalizing too small distances, and in all
other cases cv = 0.

We now discuss the quality of the produced labelings as well as the running time of
our approaches. Figure 13.14–13.19 at the end of this chapter show the labelings of
some of the considered medical drawings.

�ality. To analyze the quality of the labelings constructed by CH, SCH and TSCH,
we compare the cost ratio c(LA)/c(LOPT), where LOPT is created by OPT and LA is
created by the variant A ∈ {CH, SCH,TSCH}; see Figure 13.12. About 73% (CH), 56%
(SCH) and 53% (TSCH) of the labelings achieve optimal costs. For 90% of the �gures,
the algorithms achieve labelings whose costs are at most a factor of 1.06 (CH), 1.75
(SCH) and 1.99 (TSCH) worse than the optimal costs. Only for two �gures the optimal
costs could not be computed, because their contour is too small to host all labels and no
solution exists; hence their original labelings contain nested labels. In such a case the
designer would need to adapt the contour. For the majority of the �gures monotone
labelings (criteria L4) were created. Only for one �gure none of the algorithms could
create a monotone labeling. For two further �gures SCH and TSCH could not create
monotone labelings, while the other two approaches did. Finally, for one �gure only
TSCH did not create a monotone �gure.
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Figure 13.12: Quality. Each column represents one �gure broken down into the labelings
computed by the algorithm OPT (blue rectangle), CH (green disk), SCH (pink diamond) or
TSCH (orange triangle). X-axis: The �gures are sorted by their number of sites in increasing
order. Y-axis: not solved: Labelings that could not be constructed. not optimal: Cost ratio
of non-optimal labelings. optimal: Any labeling LA with c(LA) = c(LOPT). Hereby A ∈
{CH, SCH,TSCH,OPT}. Symbols of labelings violating monotonicity (L4) are enlarged and
stabbed by a vertical dashed line.

A consulted domain expert stated that the created labelings would be highly useful
as initial labeling for the remaining process of laying out the �gure. According to the
expert, the labelings already have high quality and would require only minor changes,
due to aesthetic reasons. These can be hardly expressed as general criteria, but rely on
the expertise of the designer. Altogether, the domain expert assessed the approach to
be a tool of great use that could reduce the working load of a designer signi�cantly.

Running Time. The average running times of our algorithms range between 7
seconds (TSCH) and 346 seconds (OPT); see Figure 13.12. The variants SCH and TSCH
are remarkable faster than OPT; see Figure 13.12. On average they achieve a speedup
by a factor of 8.4 and 23.0, respectively. For some �gures, TSCH and SCH even achieve
a speed up to 198 and 76. Further, TSCH and SCH do not exceed 62 and 312 seconds,
respectively. On average TSCH is by a factor 2.5 faster than SCH; in maximum by a
factor of 7.1. The variant CH only slightly improves OPT by a factor of 1.4 on average
and of 3.7 in maximum.

Since OPT has a high memory consumption, we ran the experiments on a server
with 128 GB RAM. When such a system is not available, SCH and TSCH are appropriate
alternatives for OPT, because they use signi�cantly less memory, are fast and mostly
produce labelings of high quality. To assess the applicability of the approaches in
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Figure 13.13: Running time in seconds (log. scale). Each column represents one �gure broken
down into the labelings computed by the algorithm OPT (blue rectangle), CH (green disk),
SCH (pink diamond) or TSCH (orange triangle). X-axis: The �gures are sorted by their number
of sites in increasing order.

a typical setting, we ran both SCH and TSCH on an ordinary laptop with an Intel
Core i7-3520M CPU clocked at 2.9 GHz and 8 GB of RAM. In comparison to the
previous setting, SCH and TSCH are slower by a factor of 1.24 and 1.22 in maximum,
respectively. On average SCH needs 28 seconds and TSCH needs 8 seconds. Within 27
(94) minutes the labelings of all 202 �gures were produced by TSCH (SCH); in contrast,
one domain expert stated that creating a labeling for a �gure with about 50 sites by
hand may easily take 30 minutes.

13.8 Conclusions

In this chapter, we presented a �exible model for contour labeling, which we validated
through interviews with domain experts and a semi-automatic analysis on handmade
labelings. With some engineering, the developed dynamic programming approach can
be used to generate labelings of high quality in short time. The presented approach is
particularly interesting for creating labelings of large collections of �gures that must
follow the same design rules; a prominent example are �gures in atlases of human
anatomy.

Although the produced labelings already have high quality, we can improve on
them by applying post-processing steps, e.g., �x the order of the labels and restart
the dynamic programming approach on a larger set of ports to do �ne-tuning on the
label placement. More sophisticated post-processing steps are future work. Another
research direction is to identify more rules for excluding unnecessary instances to
further speed up the procedure.
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Shells and contour are illustrated by red polygons.

Original Labeling OPT Labeling (time: 269 sec.)

SCH (time: 15 sec., cost ratio: 1.0) TSCH (time: 9 sec., cost ratio: 1.0)

Figure 13.14: Source: Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen, 23.Au�age
2010 ©Elsevier GmbH, Urban & Fischer, München; Chapter 8, Figure 6.
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Shells and contour are illustrated by red polygons.

Original Labeling OPT Labeling (time: 7792 sec.)

SCH (time: 102 sec., cost ratio: 1.12) TSCH (time: 39 sec., cost ratio: 1.12)

Figure 13.15: Source: Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen, 23.Au�age
2010 ©Elsevier GmbH, Urban & Fischer, München; Chapter 8, Figure 12.
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Shells and contour are illustrated by red polygons.

Original Labeling OPT Labeling (time: 10 sec.)

SCH (time: 2 sec., cost ratio: 1.03) TSCH (time: 1 sec., cost ratio: 1.03)

Figure 13.16: Source: Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen, 23.Au�age
2010 ©Elsevier GmbH, Urban & Fischer, München; Chapter 8, Figure 44.
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Shells and contour are illustrated by red polygons.

Original Labeling OPT Labeling (time: 2388 sec.)

SCH (time: 105 sec., cost ratio: 1.03) TSCH (time: 34 sec., cost ratio: 1.03)

Figure 13.17: Source: Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen, 23.Au�age
2010 ©Elsevier GmbH, Urban & Fischer, München; Chapter 8, Figure 72.
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Shells and contour are illustrated by red polygons.

Original Labeling OPT Labeling (time: 1619 sec.)

SCH (time: 86 sec., cost ratio: 1.04) TSCH (time: 25 sec., cost ratio: 1.04)

Figure 13.18: Source: Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen, 23.Au�age
2010 ©Elsevier GmbH, Urban & Fischer, München; Chapter 12, Figure 116.
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Shells and contour are illustrated by red polygons.

Original Labeling OPT Labeling (time: 10 sec.)

SCH (time: 2 sec., cost ratio: 1.0) TSCH (time: 1 sec., cost ratio: 10.2)

Figure 13.19: The labeling produced by TSCH is an outlier in our evaluation (see Figure 13.12):
Its cost ratio is 10.18. The labeling has high cost because some of the labels’ distances are quite
small. In a post-processing step this can be corrected. Alternatively, SCH can be used, which
achieves optimal cost. Source: Paulsen, Waschke, Sobotta Atlas Anatomie des Menschen,
23.Au�age 2010 ©Elsevier GmbH, Urban & Fischer, München; Chapter 9, Figure 40.
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14 Conclusions

The goal of this thesis was the development of algorithms for label placement in maps
and �gures. Building on preceding research, we both extended existing and introduced
new models for automatic label placement. We validated our models for internal label
placement by generally accepted cartographic criteria. For external label placement we
conducted a formal user study as well as interviews with domain experts con�rming
our design decisions. Throughout this thesis, we focused on a precise mathematical
formalization of each model, which enabled us to derive mathematically proven results.
These results give new insights into the computational complexity bounds of automatic
label placement. They comprise proofs on NP-hardness as well as e�cient algorithms.
In a second step, we utilized the developed algorithms to obtain general work�ows
for automatic and semi-automatic label placement. We proved their usefulness by
their experimental evaluation on real-world data. In the following, we summarize our
results for both internal and external label placement, and subsequently give a short
outlook on future work.

14.1 Internal Labeling

In the �rst part of this thesis, we investigated internal labeling for three di�erent
cartographic applications, namely label placement in road maps, temporal labeling
and label placement in metro maps. We tackled each of these problems using the same
systematic approach.

In the �rst phase of our investigations, we developed formal models for each labeling
problem. We made sure that these models are both general and simple such that they
can be easily extended. For each setting we also formulated mathematical optimiza-
tion problems. In contrast to large parts of preceding research, we did not focus on
maximizing the number of labels, but we took more complex objectives into account
to enforce certain cartographic criteria [Imh75, Chi00]. For label placement in road
maps, we argued that maximizing the number of labeled road sections is a desirable
objective to increase the informational content of the map. For temporal labeling the
overall activity of labels is maximized subject to consistency criteria introduced by
Been et al. [BDY06]. For metro maps each stop gets a label candidate assigned such
that the constructed labeling blends in with the overall appearance of the map.

In accordance with preceding research on internal label placement, it turned out
that the considered optimization problems are NP-hard. We therefore either relaxed
the constraints so that the problem is solvable in polynomial time, or we developed

267



Chapter 14 Conclusion

e�cient approximation algorithms with provable guarantees. More precisely, for road
maps we developed an e�cient algorithm for labeling road graphs that are trees. For
temporal labeling, we introduced constant-factor approximation algorithms for unit
square labels and proved that the restricted, yet practically relevant case that no more
than k labels can be active at any time can be solved in polynomial-time. For metro
maps we presented an e�cient algorithm that labels a single metro line optimally under
additional assumptions, which are typically satis�ed by realistic input instances. These
results particularly point out the complexity bounds of the optimization problems.

In the second phase of our investigations, we turned our focus to the practical
implementation of our models and approaches. For each of these three problems we
embedded the algorithms developed in the �rst phase into �exible frameworks. To
assess their practical usefulness, we experimentally evaluated the frameworks on
real-world data. We further compared the results with optimal solutions, which we
obtained by means of integer linear programming formulations. For all three problems,
we showed that our approaches achieve near-optimal results.

14.2 External Labeling

In the second part of this thesis, we investigated the automatic external label placement
in �gures. We started with a formal user-study to assess the readability of the four
most important leader-types do, po, s and opo. While these leader types have been
investigated extensively in the scope of boundary labeling, research on their usefulness
has been mostly neglected so far. We showed that s- and po-leaders perform best
concerning the assignment of sites with their labels, while opo-leaders lag far behind.
Conducted interviews indicate that po- and do-leaders are preferable concerning their
aesthetics.

In the subsequent chapters, we focused on external label placement using po- and s-
leaders. Forpo-leaders we applied the boundary labeling model of Bekos et al. [Bek+07]
assuming that the labels lie on two or more sides of a given rectangle; in case of two
sides the labels lie on two adjacent sides. Based on an intricate analysis on structural
properties of po-labelings, we introduced an algorithm for the two-sided case that
decides the existence of a planar labeling in O(n2) time. Further, we generalized the
algorithm to labels on three and four sides alongside the rectangle.

Finally, inspired by medical drawings in human anatomy, we developed a dynamic
programming approach for the external labeling in �gures using s-leaders. The model
is based on few key assumptions that are typically inherent in these kinds of labelings,
which we con�rmed by a semi-automatic analysis of medical drawings and interviews
with domain experts. We presented a versatile and general dynamic programming
approach that solves the underlying optimization problem in polynomial time. It
stands out by its great �exibility allowing the integration of further criteria as both
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hard and soft constraints. This provides an automatic enforcement of common design
rules into the label placement of large collections of drawings. In contrast to preceding
research on boundary labeling, which typically assumes rectangular �gures, our
approach allows signi�cantly more �exible shapes. Moreover, it provides the rating of
consecutive labels, which is mandatory for incorporating label-label-relations such
as the distance between two labels. The strength of this approach comes with a high
asymptotic running time. We therefore engineered the approach to speed it up. In an
experimental evaluation, we proved its practicability for realistically sized instances.

14.3 Outlook

The quality of a labeling—no matter whether internal or external—crucially depends
on the applied objective function. As an example take point features in a geographic
map: Many algorithms for point features aim at maximizing the number of placed
labels. In case of a large number of point features, this may clutter the map and
make the actual map content hardly legible. As further consequence, the produced
labelings look homogeneous in the sense that the label density is approximately the
same in each region. This does not necessarily re�ect the actual density of the point
features, which, however, may be desirable, e.g., to convey the spatial distribution of a
country’s population: Densely populated regions contain more labels for cities than
sparsely populated regions. Hence, depending on the application, other objectives
than maximizing the number of labels might be desirable. Put di�erently, one subject
of research is the development of labeling approaches with more complex objectives.
In the best case an algorithm is not specialized in one objective, but it can be adapted
to the demands of the user. In this thesis, we already took this direction by focusing
on approaches that allow an easy adaption of the objective functions as well as the
labeling styles. Since many of the presented approaches rely on dynamic programming,
the objective function can easily be exchanged.

Still, the question about appropriate objectives in label placement is not completely
solved. This cannot be answered in general, but each application must be considered
speci�cally. This requires a close cooperation between computer scientists and domain
experts such as cartographers and designers. Further, user studies are required to
validate drawing criteria, e.g., an interesting open research question is the impact of the
consistency criteria proclaimed by Been et al. [BDY06]. For the problems considered in
this thesis, we therefore also con�rmed our models by means of commonly accepted
criteria, user studies and interviews with domain experts.

Imhof’s classi�cation [Imh75] between point, line and area features was willingly
accepted by the computer science community. Heuristics, approximation algorithms,
local optimization approaches as well as exact algorithms were developed for each
feature type separately. The combination of all features has been almost completely
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neglected; only few heuristics have been proposed, e.g., by Edmondson et al. [Edm+96].
Since typically many map types contain all three feature types, the question arises,
how the labeling approaches for the di�erent map features can be combined. The
easiest way is sequentially applying algorithms for the di�erent types of features, e.g.,
�rst place all labels for area features, then for all line features, and �nally for all point
features such that the labels do not overlap. Obviously, this results in labelings in
which the �rst considered feature type is preferred. Thus, considering all three types
of map features simultaneously is one of the big open problems in automatic label
placement. Especially, when considering di�erent cartographic criteria for each map
feature type, the problem becomes intricate and complex.

Similarly, the map content in the background is mostly neglected in algorithm design.
Thus, labels may occlude map features, which signi�cantly a�ects the legibility of the
map. Therefore, Imhof required that "names should disturb other map contents as little
as possible. Avoid covering, overlapping, and concealment." [Imh75]. Since the labels
of line and area features are typically placed inside their features, their placement
is less problematic than the placement of labels for point features. Therefore, one
prospective research direction in automatic label placement is the incorporation of the
map content into the algorithmic design. For external label placement, our presented
approach (see Chapter 13) already supports this by excluding or rating label candidates
accordingly. Similarly, for road labeling, metro map labeling and temporal labeling
the objective functions can be adapted, correspondingly.

For dynamic maps further algorithmic problems need to be investigated. While
point features have been considered in the dynamic setting extensively, line and
area features got signi�cantly less attention. Hence, the question arise, whether
the existing techniques for point features can be adapted to the other two feature
types. Furthermore, in the existing models for dynamic map labeling it is typically
assumed that the change of the map is known in advance. However, in many interactive
scenarios the sequence of map changes cannot be predicted, but relies on the interaction
of the user. Hence, reacting to these changes while maintaining certain consistency
criteria is a challenging problem, which requires new algorithmic solutions in the area
of map labeling. The development of online algorithms with quality guarantees could
be one possibility to tackle those interactive scenarios.

Summarizing, much research e�ort has been invested into automatic label placement
in maps and �gures. It is not to be expected that a single approach can solve all
labeling problems satisfactorily, but depending on the application, specialized models
and algorithms are needed. In this thesis we contributed such models and algorithms
for four labeling problems bridging the gap between theory and practice.
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