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1. Introduction

Within the last decade tremendous progress in designing, controlling and measuring meso-
scopic systems has been achieved. For example, in the context of quantum information
the design of superconducting qubits enabled the improvement of their coherence times up
to 100 µs. Such coherence times are achieved in three-dimensional transmon qubits [1] in
which a Josephson junction is embedded in a three-dimensional cavity. Similar coherence
times are nowadays possible in xmon qubits [2], which are constructed on a planar chip.
This results in a comparatively simpler production and control of such qubits. At the same
time the ability to control and manipulate mesoscopic electronic systems has considerably
progressed.

All these experimental advances have opened up an avenue to study a quite different
field of research: thermodynamics in the quantum regime. In a classical picture, ther-
modynamics provides universal relations between macroscopic physical quantities such as
temperature heat or work. Microscopically these relations arise from statistical mechanics.
The dynamics of isolated microscopic systems is symmetric with respect to time reversal as
their respective microscopic equations of motions obey this symmetry. The irreversibility
paradox exists within this context. At first glance the time-reversible dynamics of the par-
ticles seem to contradict the fact that macroscopic processes in principle are irreversible.
However, from a statistical point of view, this paradox is easily resolved. Considering
a macroscopic closed system consisting of a huge number of particles N ∼ 1023, whose
individual dynamics are time-reversible, it is very unlikely that the system will return to
its initial phase space volume.

In thermodynamics everything is well defined and understood considering equilibrium
situations. From a microscopic point of view, even in equilibrium, matter is in a state
of motion undergoing random fluctuations. In the beginning of the last century it was
discovered that these equilibrium fluctuations determine the dynamics of a system in linear
response as it is driven out from equilibrium. These early results are known as Einstein-
relation [3, 4] derived in the context of brownian motion, and as Johnson-Nyquist noise
relation associated to the thermal noise of an electronic resistor [5, 6]. These relations
have been elaborated to also apply to the quantum regime by Callen and Welton resulting
in the well-known fluctuation dissipation theorem [7].

In the late 1970s one of the first universal relations out of equilibrium was discovered by
Bochkov and Kuzovlev. They found a fluctuation relation of work for classical systems
which is valid irrespective of how far the system has been driven out of equilibrium [8]. This
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2 1. Introduction

and the discovery of further universal fluctuation relations, e.g. the Crooks and Jarzynski
relations [9, 10, 11, 12, 13], led to the recognition that fluctuations of the entropy (or
heat and work) and micro-reversibility are the key concepts relevant for the dynamics far
from equilibrium. These fluctuations become pronounced as the system size decreases.
First tests of the fluctuation relations have been carried out in relatively small systems as
colloidal particles and biomolecules [14, 15, 16]. Due to the progress in micro-electronics,
the fluctuation relations could be demonstrated at the single electron level [17, 18, 19].
However, almost all experimentally obtained results were explained in a classical stochastic
picture [13]. Although the fluctuation relations have been generalized to the quantum
regime [20, 21, 22], there is still plenty of research activity. For example, experimental
[22] and theoretical [23, 24, 25] studies focusing on the Crooks fluctuation relation [10]
have been carried out using driven qubits. As the Crooks fluctuation relation is based on
the concept of work being performed along each individual trajectory, there may arise a
problem to define work in a non-ambiguous way in the quantum regime [26].

In a quantum system however, energy is a well defined observable. Hence, measuring the
dissipated energy of a system driven out of equilibrium yields an alternative approach to
extract information about the system. Such measurements are possible by using a calori-
metric approach [27, 28]. The idea behind this approach is to detect single microwave
photons emitted by the driven system via a measurement of the temperature change in a
resistor coupled to the system [29]. These time-resolved calorimetric measurement tech-
niques have improved within the past few years [30, 31, 32], thereby approaching the
single-photon resolution.

A very peculiar fluctuation relation which has not yet been mentioned is the detailed
fluctuation relation [33] which received its name because of its structure: The detailed
fluctuation relation is structurally akin to the detailed balance relation. This relation takes
into account an explicit choice of the initial and final states of the system. A very intimately
related concept in the context of pre- and post-selection is the weak measurement [34, 35]
approach to measure a quantum system. The idea of a weak measurement is to perform a
slightly invasive measurement on the system. Hence, the system is perturbed very little by
the measurement process. On the other hand, very little information is gained because of
the weakness of the measurement. Surprisingly, the outcome of a weak measurement of a
quantum observable, i.e. a weak value, can in principle be way larger than the expectation
value of the observable [34]. The concept of the weak measurement has opened up new
possibilities in accessing physical quantities experimentally. As an example, in the context
of the spin Hall effect, the pre- and post-selection of the weak measurement protocol has
been used as an amplification mechanism [36]. In this particular experiment, the achieved
enhancement increased the original outcome by four orders of magnitude. In another
remarkable experiment the weak measurement technique was used to directly measure the
quantum wavefunction of a photon [37], which may be advantageous to the procedure of
quantum state tomography [38].

In this context this thesis is devoted to the detailed study of the statistics of energy
dissipated by a driven two-level system. The goal of this thesis is to achieve a better
understanding of the energy exchange between the system and the heat bath including
quantum effects. Motivated by the experimental advances in control and manipulation
of two-level systems, e.g. qubits, we analyze the dependence of the statistics of energy
dissipation on various external manipulations. We propose to prepare the system in a
distinct initial state |i〉 before the external driving is switched on. After the driving is
switched off again, the system undergoes a second strong post-selective measurement to
be projected on its final state |f〉. As we will show and discuss, due to this distinct pre- and
post-selection, important quantum corrections induced by the coherences of the density
matrix will influence the respective conditional probability distribution.
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3

Furthermore, we extend the analysis by considering a weak measurement approach to
the dissipative energy current Îε transferring energy between the system and the bath.
We check the self-consistency of the approach by verifying that the integral of the en-
ergy current over the measurement time is indeed equivalent to the conditional average of
dissipated energy. However, the weak value of the energy current as obtained by that par-
ticular approach turns out to be a complex oscillating quantity, which should in principle
be detectable.

The content of this thesis is divided into the following chapters:

Chapter 2 (Fundamentals):

In this chapter we review and introduce the principal physical properties of a two-level
system. Besides introducing the notation used throughout this thesis, we also discuss
how the dynamics of the two-level system is influenced when an external periodic driving
is applied. We explain how to treat the generic situation by introducing the Floquet-
approach to time-periodic problems [39]. For the situation of relatively simple periodic
driving, we explain the widely used transformation into the rotating frame and discuss the
consequences arising from it. Furthermore we present the measurement protocol, which
we propose to achieve a pre- and post-selection of the two-level system states.

Chapter 3 (Fundamentals):

Here we review the theoretical framework to deal with the dynamics of open quantum
systems. In particular, we review the master equation approach. We discuss the necessary
conditions for the validity of the equations. Using the example of a two-level system
coupled to the bath, we discuss the dissipative effects induced by the bath.

Chapter 4 (Fundamentals):

In this chapter we present a brief review of the concept of full counting statistics. For
historical reasons the fundamental idea is explained using the example of the spin-1/2 gal-
vanometer [40]. This is followed by the discussion of the two-point measurement statistics
[12], a suitable counting statistics approach in the context of energy exchange.

Chapter 5:

This chapter deals with the energy dissipation of the driven two-level system in the con-
text of the fluctuation relations. We give a brief introduction to the field of research by
reviewing the Bochkov-Kuzovlev fluctuation relation [8]. This is followed by a derivation
of the characteristic function capable of calculating the energy-exchange-statistics between
a periodically driven system and a heat bath. This is achieved by a counting-field-modified
master equation approach in the spirit of the two-point measurement statistics [12]. We
demonstrate the applicability of the derived equation using the example of a driven two-
level system, discussing different limits of coupling between the system and the heat bath,
i.e. longitudinal and transversal coupling. We compute the conditional probability distri-
butions with respect to the pre- and post-selection of the states of the system. Within our
model we are capable of splitting the characteristic function into a classical part, which
is fully determined by the populations of the reduced density operator of the system, and
a quantum part, which solely depends on the dynamics of the coherences. Consequently,
the conditional probability distributions split into a classical and a quantum part. We
find that the quantum part constitutes relatively large contributions to the conditional
probability distribution, depending on the choice of pre- and post-selected system states.

3



4 1. Introduction

Chapter 6:

After discussing the impact of the pre- and post-selection on the conditional probability
distributions, we present a detailed analysis on the first two cumulants of the dissipated
energy, i.e. the conditional average and the conditional noise of the dissipated energy. The
analysis is focused on an interplay between the pre- and post-selection of system states and
varying the character of the driving. In particular, we discuss and compare the resonantly
driven TLS and the off-resonantly driven TLS. Although quantum features are visible, the
most pronounced features can be explained by a classical analysis.

Chapter 7:

In this chapter we provide an alternative approach to the problem by applying a generalized
weak measurement scheme [34]. We propose a weak measurement of the energy current
Îε including pre- and post-selection of the states of the system. We show that with this
approach the conditional average is still accessible, i.e. the integral of the weakly measured
energy current is real and equal to the conditional average as obtained by the full counting
statistics approach. However, a detailed analysis shows that the weak value of the energy
current emerging in this approach turns out to be a complex oscillating quantity.

Chapter 8:

In the last chapter we conclude by reviewing the findings of the thesis and providing an
outlook for further studies on the subject.

Throughout the work at hand we will set ~ = 1.
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2. Fundamentals: The driven
two-level-system

This chapter provides a brief introduction to the physics of two-level-systems (TLSs).
Although being part of various standard quantum mechanics textbooks, e.g. [41] or scien-
tific articles [42, 43], the most important fundamental mathematical tools will be briefly
reviewed. The mathematical framework of TLSs provides a valuable tool describing vari-
ous physical systems. The most prominent physical system which serves as a TLS is the
well-known spin-1/2 particle. A natural example of a spin-1/2 particle is a silver atom
as used in the famous Stern-Gerlach-experiment [44]. In this particular experiment the
magnetic moment ~µ = ~γM~σ/2 of a silver atom has been measured. Here, γM denotes the
gyromagnetic ratio and ~σ = (σx, σy, σz)

T denote the Pauli matrices.

However, many other physical systems can be described by the same mathematical tools.
For example, superconducting Josephson-circuits in the proper parameter regime serve ei-
ther as charge, flux or phase-qubits, where their two lowest energy states are well separated
from their respective higher-energy states [45, 46]. The same mathematical description,
but in a completely different physical context, is attributed to defects in glasses [47, 48],
which are usually thought of as TLSs.

This chapter will give a brief review about the mathematical description of a TLS. The
most important parts will be reviewed in order for the text to be self-contained and in
order to introduce and define the notation which will be used throughout this thesis. For
further details we refer to the corresponding special literature.

The notation necessary to describe the driven situation will be introduced using the ex-
ample of a spin-1/2 in an external magnetic field. In the following, periodic driving due
to an external field will be included and the transformation into the rotating frame will
be performed and discussed.

2.1. Preliminaries to the TLS

In this section we want to review the basic mathematical and physical framework necessary
to describe a quantum TLS. The TLS may be described by Pauli matrices within a two-
dimensional Hilbert space

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.1)

5



6 2. Fundamentals: The driven two-level-system

We chose the representation where the σz matrix is diagonal.

In a quite general situation, a spin-1/2 particle may be exposed to an externally applied
magnetic field. The most general Hamiltonian has the form

Ĥspin(t) = −~µ ~B(t)

= −γM
2

(σxBx(t) + σyBy(t) + σzBz(t)) , (2.2)

where Bi(t) denote the possibly time-dependent magnetic field components. Consequently,
the orientation of the spin strongly depends on the applied magnetic field.

The dynamics of the TLS is most illustratively described by using the Bloch sphere as
depicted in Fig. 2.1. The Hilbert space of the TLS is spanned by the states | ↑〉 and | ↓〉,
which are the eigenstates of the σz-operator. Within this representation, the state of the
TLS is described by

|Ψ〉 = cos
θL
2
| ↑〉+ eiφL sin

θL
2
| ↓〉, (2.3)

where the angles θL ∈ [0, π] and φL ∈ [0, 2π] denote the rotation around the ẑ- and x̂-axis,
respectively. The subscript L is used to indicate that we are referring to the laboratory
frame. We note that the dynamics of θL and φL are determined by the the components of
the magnetic field Bi(t).

In the context of periodically driven systems, another important reference frame is the
rotating frame, which will be mainly used throughout this thesis. It will be introduced
below.

Figure 2.1.: Schematic of the Bloch sphere. The state |Ψ〉 of the TLS lives on the sphere
in an arbitrary superposition of the σz basis kets. The angle with respect to
the | ↑〉 axis is denoted by θ, whereas the phase φ denotes the angle the state
is rotated with respect to the x̂-axis.

6



2.2. Periodic driving 7

2.2. Periodic driving

The manipulation of TLSs via applying an external driving is a task of practical impor-
tance. Thus, it is necessary to understand the behavior of TLSs which are exposed to
a time-dependent driving. Prominent examples of practical applications are the nuclear
magnetic resonance spectroscopy [49], qubit manipulations [50], driving schemes designed
for charge pumping [51, 52] or analyzing defects in amorphous solids [53].

Most of the aforementioned applications use a time-periodic driving scheme. In the fol-
lowing we will present a general theoretical treatment, which is suitable to describe pe-
riodically time-dependent problems. It is known as Floquet theory. Within this section
we will introduce the Floquet formalism. This is followed by an explicit discussion of two
very prominent driving schemes, the linearly polarized and the circularly polarized driv-
ing. While the first driving scheme will turn out to be not exactly solvable, the second one
belongs to one of the very rare time-dependent problems which are exactly solvable. We
will introduce the transformation into the rotating frame and discuss the rotating wave
approximation (RWA). It turns out that the problem of the linearly polarized driven TLS
reduces to the problem of the circularly polarized driven TLS within the limits of the
RWA.

2.2.1. Floquet theory

The Floquet approach is applicable to any time periodic problem. Historically, Gaston
Floquet studied the properties of periodic differential equations [39]. He was able to show
that for any periodic differential equation there are solutions with the same periodicity as
the differential equation. The Floquet theory is formally an analog to the Bloch theory
but with regard to time periodic problems rather than to space periodic problems. For a
detailed presentation of the Floquet theory we refer to [43, 54].

We consider a time-periodic Hamiltonian Ĥ(t) with Ĥ(t) = Ĥ(t + τp), where τp = 2π/ω
is the period of the driving. We may write the Schrödinger equation describing the time
evolution of the system’s state as(

Ĥ(t)− i∂t
)

︸ ︷︷ ︸
H

|Ψ(t)〉 = 0, (2.4)

where |Ψ(t)〉 is the state of the system. According to the Floquet-theory, there exists a
solution

|Ψ(t)〉 =
∑
α

e−iεαt|φα(t)〉, (2.5)

fulfilling

H|φα(t)〉 = εα|φα(t)〉, (2.6)

where |φα(t)〉 is the so called time-periodic Floquet-state with |φα(t)〉 = |φα(t+ τp)〉. The
Floquet-energy εα is real-valued and determined up until to multiples of ω = 2π/τp. As
both the Hamiltonian and the Floquet states obey the same periodicity, it is useful to
perform a Fourier decomposition

|φα(t)〉 =
∑
l

e−iωlt|φα(l)〉, (2.7)

Ĥ(t) =
∑
l

e−iωltĤ(l), (2.8)

7



8 2. Fundamentals: The driven two-level-system

of the Floquet modes and the Hamiltonian for further analysis. Inserting both Fourier
representations into Eq. (2.6), we obtain∑

l

e−iωlt

(
−ωl − εα +

∑
m

e−imωtĤ(m)

)
|φα(l)〉 = 0. (2.9)

We are now able to project the equation onto a particular Fourier coefficient yielding

−lω|φα(l)〉+
∑
m

Ĥ(l −m)|φα(m)〉 = εα|φα(l)〉, (2.10)

where we used 1/τp
∫ τp

0 dtei(l−m)ωt = δl,m and Ĥ(l − m) = 1/τp
∫ τp

0 dtĤ(t)ei(l−m)ωt. We
note that each |φα(n)〉 has the same number of components as the the original Hamiltonian.
As an immediate consequence, we can think of Eq. (2.10) as a matrix equation

Ĥm,l|φα(l)〉 = εα|φα(l)〉, (2.11)

with coefficients Ĥm,l = −mωδm,l + Ĥ(l −m). The resulting matrix Ĥ is infinitely large.

The spectrum of Ĥ is invariant with respect to shifts of values of nω, where n is an integer,
i.e. the eigenvalues εα do not change under the transformation Ĥ → Ĥ + nω1. It turns
out to be useful to rewrite the previously introduced index α = (i, n), with i ∈ [1, N ],
where N is the dimensionality of the Hamiltonian Ĥ(t) and n ∈ Z. The different Floquet
energies are connected according to εi,l+n = εi,l +nω. Consequently, an infinite number of
copies of the original problem appear, which are connected as

|φi,l+n(t)〉 = eiωnt|φl(t)〉. (2.12)

The Fourier components of the Floquet copies are connected in the same way. The con-
nection between different Fourier components of the Floquet copies can analogously be
rewritten using a second quantization scheme for the external driving. This seems obvious
by the structure of Eq. (2.12). We introduce an additional Fock space and interpret the
exponentials as raising and lowering operators, i.e.

e±iωt|n〉 → |n± 1〉, (2.13)

where |n〉 denotes an n photon state in the Fock space. The states are separated by energy
quanta of the driving frequency ω. Consequently, the Hilbert space under consideration is
extended due to the fact that an infinite set of copies of the original Hamiltonian occurs.
We will use this representation to explain the physical processes further below.

An immediate advantage of the Floquet approach is quite obvious. By the structure of
Eq. (2.11) one has to deal with an equation similar to the time-independent Schrödinger
equation. The price one has to pay is that the number of degrees of freedom of the problem
due to the Fourier expansion increase dramatically. However, in the proper parameter
regime one is able to approximately truncate the Fourier decomposition of the Hamiltonian
so that the analysis only involves a manageable number of Fourier components.

2.2.2. Linearly polarized driving

In a realistic situation one wants to manipulate the system by applying an external field.
There are multiple variants to apply an external driving to a TLS depending on its physical
nature. Optical TLSs may be controlled by applying an external electric field, whereas
spins are exposed to an external magnetic field. A popular driving is the linearly polar-
ized driving where the system is exposed to an oscillating classical field. An exemplary
Hamiltonian of a TLS exposed to a linearly polarized magnetic field is

Ĥlin = −ω0

2
σz + ΩR cosωtσx, (2.14)

8



2.2. Periodic driving 9

where ω0 denotes the static magnetic field in ẑ- direction and ω is the driving frequency. In
the case of resonant driving ω = ω0, the amplitude of the driving ΩR is identified with the
Rabi-frequency of the system. Interestingly, even such a relatively simple problem turns
out to be not exactly solvable.

For illustration we decompose the cosine to exponential functions and rewrite the Hamil-
tonian as

Ĥlin = −ω0

2
σz +

ΩR

2
(σ+ + σ−)

(
eiωt + e−iωt

)
, (2.15)

where we introduced σ± = 1
2(σx ± iσy). Using the above introduced second quantization

scheme, we readily see four different processes emerging. Two of them turn out to be
energy conserving whereas the other two do not conserve energy. The energy conserving
processes involve a spin-flip while emitting or absorbing a photon. For example, we can
consider a flip from | ↑〉 → | ↓〉 (excitation) while a photon is absorbed by the system,
(σ+e

−iωt) or the vice-versa process where the spin flips from | ↓〉 → | ↑〉 (relaxation) while
emitting a photon, which corresponds to the process σ−e

iωt.

The energy non-conserving processes involve an excitation while emitting a photon (σ+e
iωt)

or a relaxation of the spin while absorbing a photon (σ−e
−iωt). In the RWA the two

non-energy-conserving processes are usually neglected. We will discuss the RWA when
introducing the rotating frame in Sec. 2.2.4.

2.2.3. Circularly polarized driving

The circularly polarized driving is one of the few exactly solvable time-dependent problems.
In the current thesis we will mostly use this type of driving. However, as we will show
further below, in the RWA the circularly polarized driving and linearly polarized driving
appear to be equivalent.

The Hamiltonian of a TLS exposed to a circularly polarized magnetic field is given by

ĤTLS(t) = −ω0

2
σz +

ΩR

2
(cos(ωt)σx − sin(ωt)σy) , (2.16)

where the parameters ω0, ω and ΩR are analogous to the ones introduced in the previous
section. In the same manner we can rewrite the trigonometric functions using exponential
functions and find

ĤTLS(t) = −ω0

2
σz +

ΩR

2

(
σ+e

−iωt + σ−e
iωt
)
. (2.17)

We can repeat the above discussion of the second quantization scheme of the driving terms
e±iωt. We immediately see that in contrast to the linearly polarized driving only the energy
conserving transitions are present. This problem was first studied and solved by Rabi in
1937 [55]. Considering a resonant driving ω = ω0 and assuming that the system was
initially prepared in the | ↑〉 state, the occupation probabilities are found as

Pt(↑) = cos2 ΩRt

2
, Pt(↓) = sin2 ΩRt

2
, (2.18)

which oscillate with the Rabi frequency ΩR.

2.2.4. Transformation into the rotating frame

The aforementioned situation of the circularly polarized driving is exactly solvable by
a transformation into the rotating reference frame. The procedure is equivalent to the
Floquet approach. Generally, as soon as the system is driven, the Schrödinger equation

i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (2.19)

9



10 2. Fundamentals: The driven two-level-system

may be quite involving to solve. In the case of the circularly polarized driving we are
able to find an exact time-dependent transformation R1(t) of the system which turns out
to make the problem completely time-independent. The same transformation yields an
approximate solution to the linearly polarized driving as well, as we will discuss below.

In both cases, the transformation matrix is found to be

R1(t) = exp

[
−iωt

2
σz

]
, (2.20)

and accordingly the state transforms as

|Ψ̃〉 = R1(t)|Ψ〉, (2.21)

where |Ψ̃〉 denotes the state of the system in the rotating frame.

The transformation of the Hamiltonian ĤTLS(t) follows directly from substituting the
transformed state into the Schrödinger equation (2.19)

i∂t|Ψ̃〉 = iṘ1(t)|Ψ〉+ iR1(t)∂t|Ψ〉

=
(
R1(t)ĤTLS(t)R†1(t) + iṘ1(t)R†1(t)

)
|Ψ̃〉, (2.22)

where we identify

H̃TLS = R1(t)ĤTLS(t)R†1(t) + iṘ†1(t)R†1(t)

= −∆

2
σz +

ΩR

2
σx, (2.23)

the Hamiltonian in the rotating frame, which is totally time-independent. We further
introduced the detuning ∆ = ω0−ω. Consequently, in the rotating frame the problem has
been reduced to a time-independent problem.

If we perform the exact same transformation onto the Hamiltonian Ĥlin(t), we find

H̃lin = −∆

2
σz +

ΩR

2

((
1 + e−2iωt

)
σ− −

(
1 + e2iωt

)
σ+

)
. (2.24)

We see that the Hamiltonian still is time-dependent as parts of the tunneling matrix el-
ements oscillate with a frequency of 2ω. If the the fast oscillating terms are neglected,
we immediately find that H̃lin ≈ H̃TLS . This procedure is known as rotating wave ap-
proximation and may be justified by arguments of energy conservation or simply by the
fact that the contributions average out as they oscillate very fast. In a more rigorous
perturbation theory analysis, one can show that the leading order contributions of the fast
oscillating terms have an amplitude proportional to ΩR/ω. Thus, the RWA is justified by
the perturbation theory for ω � ΩR .

In the following we use the Floquet picture to describe the transformation into the rotating
frame. We demonstrate that the transformation R1(t) into the rotating frame causes a
mixing between two different Floquet copies of the system. By virtue of the transformation
R1(t), it may be unclear to interpret the exponentials as raising and lowering operators of
energy quanta of ω since they involve half integer values of the driving frequency. However,
the net energy difference between two different states undergoing the transformation R1(t)
is still given by integer values of the driving frequency. To circumvent this problem, we
may simply shift the Floquet spectrum by ω/2. Consequently, we write down explicitly
the transformation into the rotating frame Eq. (2.21)

R1(t)|Ψ〉 ≡ e−i
ωt
2
σz
(
a↑| ↑n+ 1

2
〉+ a↓| ↓n+ 1

2
〉
)

= a↑| ↑n+1〉+ a↓| ↓n〉, (2.25)

10



2.3. Measurement protocol 11

Figure 2.2.: States of the system using the Floquet-picture. The TLS is shifted by integer
values of nω corresponding to different Floquet modes. The spin statest | ↑n〉
and | ↓n〉 are separated by ω0. The rotation R2(θ) yields a diagonalization of
the Hamiltonian but invovles a mixing between two different Floquet modes,
represented by the states |g〉 and |e〉, depicted in red. The two eigenstates are
separated by the level splitting Ω.

where the subscript n labels the Floquet copy, i.e. the Floquet mode the state belongs
to (see Fig. 2.2), and a↑, a↓ are the amplitudes of the respective states. The transformed
Hamiltonian of the circularly polarized spin using the Floquet picture reads

H̃TLS = −∆

2
(|↑n+1〉〈↑n+1| − |↓n〉〈↓n|) +

ΩR

2
(| ↑n+1〉〈↓n |+ | ↓n〉〈↑n+1 |) . (2.26)

The eigenstates of the Hamiltonian are

|g〉 = cos
θ

2
| ↑n+1〉+ sin

θ

2
| ↓n〉 (2.27)

|e〉 = sin
θ

2
| ↑n+1〉 − cos

θ

2
| ↓n〉, (2.28)

where the angle θ = arctan ΩR/∆ denotes the angle between the state of the TLS and the
ẑ−axis in the rotating frame. The energy difference between the two eigenstates is given
by

Ω =
√

∆2 + Ω2
R = Ee − Eg. (2.29)

For clarification we illustrate both transformations using the Floquet picture depicted in
Fig. 2.2. The transformation into the rotating frame causes a mixing between different
Floquet modes. The eigenstates obtained by diagonalization are composed of the two
compound rotated spin states.

2.3. Measurement protocol

Due to the vast variety of TLSs, many procedures exist to manipulate their states or
measure their intrinsic properties. Spin particles may be measured either by using a Stern-
Gerlach apparatus or a nuclear magnetic resonance spectrometer. The measurement of

11



12 2. Fundamentals: The driven two-level-system

Figure 2.3.: The orientation of the different angles θ, θi and θf with respect to the x̂ẑ
plane are depicted in panel (a). In panel (b) the driving protocol is shown
schematically. The protocol is discussed in the main text.

the state of a superconducting qubit may be performed capacitively [56, 57] or byf using a
resonator in the desired frequency range [58], depending on the design and nature of the
qubit. TLSs in glasses are surveyed using measurement devices which could serve qubits
themselves [59]. As it becomes obvious by this list of a few examples of TLSs, discussing
all different measurement approaches to different types of physical TLSs is far beyond the
scope of this thesis.

Throughout this thesis we will consider a pre- and post-selection of the states of the TLS
before and after the driving is applied to the TLS. The corresponding measurement proto-
col has been proposed in [60]. As most of the calculations in this thesis are performed in the
energy eigenbasis in the rotating frame, we adjust the measurement protocol accordingly.

The measurement protocol is schematically sketched in Fig. 2.3 (b). At time t = 0 before
the driving is turned on, the system is prepared in a certain initial state |i〉, which is
characterized by the angle θi. The angle denotes a rotation in the x̂ẑ-plane with respect to
the ground state of the system, as depicted in Fig. 2.3 (a). The adjustment of the initial
state may be achieved by a strong resonant θi pulse around the ŷ-axis with an amplitude
Jy. After the preparation the system is exposed to the possibly off-resonant driving with
an amplitude Jx = ΩR and Jy = 0. Since a change of the driving frequency ω may be
cumbersome in a realistic experimental situation, we propose changing the TLS intrinsic
quantity ω0 to obtain off-resonant driving. At t = τ the driving is turned off and the
system state is post-selected onto the desired final state |f〉 by a second resonant pulse in
ŷ direction with an amplitude Jy around the angle θf .

Transition probability for the circularly polarized driving

Later in this work we will use the measurement scheme introduced above. It will be used
in the context of a slightly modified situation where the TLS is coupled to a heat bath. As
it will turn out, the coupling to the bath significantly changes the transition probabilities
of the TLS as compared to the isolated situation. Thus, it might be insightful to briefly
calculate the transition probability for the isolated TLS in order to compare the changes
in the transition probability due to the coupling to the bath. The transition probability or
more precisely the conditional probability of finding the system in the desired final state
|f〉 at time τ , given it was initially prepared in |i〉, is obtained as

P0,τ (f |i) ≡ |〈fS |iS(τ)〉|2

=
1

2
(1 + cos θf cos θi + cos Ωτ sin θf sin θi) . (2.30)

12



2.4. Conclusion 13

In the absence of the driving, this formula reduces to P0(f |i) = cos2 θf−θi
2 which gives the

expected conditional probability regarding pre- and post-selection of a non-driven spin-
system. In the situation of resonant driving ω = ω0, for θi = π/2 and θf = π/2, 3π/2, we
obtain the expected Rabi occupation probabilities given by Eq. (2.18).

2.4. Conclusion

In this chapter we presented a review of the mathematical framework which is necessary to
describe the physics of TLSs. We introduced an intuitive picture of representing the state
of the TLS on the Bloch sphere. Afterwards we provided an introduction to periodically
driven systems including a brief survey of the Floquet theory. This was accompanied by
discussing two prominent periodic types of driving, namely the linearly polarized driving
and the circularly polarized driving. We further examined the transformation into the
rotating frame and explained how and in which conditions both types of driving appear to
be approximately equivalent. Furthermore, we embedded the circularly polarized driving
in the Floquet picture. Finally, we introduced a measurement protocol for probing the
TLS, which will be used throughout most of the following parts of this thesis.

13





3. Fundamentals: Formalisms for open
quantum systems

In this chapter we provide an introduction to the standard description to the dynamics of
open quantum systems. In this context open means that a small subsystem interacts with
an environment. The environment usually is assumed to be much larger than the subsystem
of interest. As the scope of the work at hand is to analyze the energy dissipation of a driven
two-level system to its surroundings, it is instructive to clarify the general treatment of
open quantum systems.

There are many different approaches to the problem of open quantum systems which
involve an approximate description of the dynamics of the subsystem. Two prominent
approaches are, for example, the master equation approach [61] or the Keldysh-technique
[62, 63]. We will focus on the master equation approach. The master equation describes the
time evolution of the reduced density operator of the system of interest. In this chapter we
will provide a derivation of a Markovian master equation. Particular differential equations
describing the dynamics of open quantum systems are often called Bloch, Redfield or
Bloch-Redfield type master equations. This is attributed to the pioneering work of Bloch
and Redfield, who developed those equations in the 1950s [64, 65, 66, 67].

As mentioned above we are interested in the dynamics of a system which is coupled to a
bath. The corresponding Hilbert space

H = HS ⊗HB, (3.1)

is spanned by the Hilbert spaces HS of the system and HB of the bath. Here and in the
following, the labeling corresponds to the system (S) and the bath (B) respectively. The
generic Hamiltonian describing such a situation consists of three parts,

Ĥ = ĤS ⊗ 1B + 1S ⊗ ĤB + ĤI

= ĤS ⊗ 1B + 1S ⊗ ĤB +AS ⊗B (3.2)

where ĤS describes the Hamiltonian of the subsystem S, and ĤB corresponds to the
Hamiltonian of the bath. A sketch of the situation is provided in Fig. 3.1. Note that the
coupling constant is assumed to be contained in the bath operator B.

The interaction between the system and the bath is given by ĤI . Due to the interaction
between the two systems, a non-ambiguous description using the state |Ψ(t)〉 of the whole

15



16 3. Fundamentals: Formalisms for open quantum systems

Figure 3.1.: Schematic of the system S surrounded by the environment B. The systems
act on their corresponding Hilbert spaces HS and HB and are described by
their density operators ρS and ρB.

system is not possible anymore. The interaction between the system and the bath leads
to a random statistical mixture of states. Consequently, it is more effective to describe the
system using the density matrix.

3.1. The density matrix

A quantum mechanical system is usually described by its state |Ψ(t)〉. The dynamics of
the state are governed by the Schrödinger equation

i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (3.3)

where Ĥ(t) is the possibly time-dependent Hamiltonian of the system. Situations do exist
where the description of a system by its state is impossible. For example, this is the case
when one needs to describe a statistical mixture of states. In this situation the use of a
density matrix is unavoidable. The density operator has the general form

ρ = |Ψ〉〈Ψ|, (3.4)

where |Ψ〉 denotes the state of the system. From Eq. (3.4) it is quite obvious that the
density operator has a matrix structure. Hence, it is sometimes also referred to as density
matrix. For a detailed study of the density operator we refer to [68].

An important advantage of the density matrix description manifests itself in the context of
coupled systems. Interested in the time evolution of a coupled system one may be able to
write the initial state of both systems in a product state as |ΨSB(0)〉 = |φS(0)〉 ⊗ |ϕB(0)〉,
where the states belong to their corresponding Hilbert spaces. However, the time-evolved
state |ΨSB(t)〉 generally cannot be represented by a product state anymore. As the two
states are correlated, an independent analysis of the states of the subsystem S regardless
of the subsystem B is no longer possible.

Here is where the advantage of the density matrix description becomes apparent. In
accordance to the approach discussed above, we may choose the density matrix ρSB to be
initially represented by a product state, i.e. ρSB(0) = ρS(0)⊗ρB(0). Although the density
operator generally cannot be written in a product state at any time t > 0 later on, one can
trace out the degrees of one system to obtain the reduced density operator of the system
of interest,

ρS(t) = TrB [ρSB(t)] =
∑
j

〈ΨB,j |ρSB(t)|ΨB,j〉, (3.5)

16



3.2. Microscopic derivation of a master equation 17

where |ΨB,j〉 are the basis states of the subsystem B.

The time evolution of the density operator is called von Neumann equation

ρ̇(t) = −i
[
Ĥ(t), ρ(t)

]
, (3.6)

which directly follows from the Schrödinger equation (3.3). Considering the situation of a
system coupled to an infinitely large bath, this equation of motion is impossible to solve
exactly. Thus, one needs to derive an approximate equation of motion which governs the
time evolution of the density operator.

In the following we will give a brief derivation of a master equation describing the time
evolution of the reduced density operator of a system S coupled to a bath B. It turns
out that the time evolution of the reduced density matrix of the system is non-unitary
as the interaction with the infinitely large bath causes irreversible processes. Since the
density operator contains occupation probabilities, the time evolution governed by a master
equation needs to fulfill certain conditions. Firstly, the trace of the density operator needs
to be preserved. Secondly, the entries corresponding to the occupation probabilities need
to remain positive. In other words, the generator given by the master equation must
provide a positive and trace-preserving map, i.e. the map ρS → VρS is called positive
if VρS is positive. Sometimes an even stronger condition onto the mapping is desired,
namely complete positivity. This condition is fulfilled if V ⊗ 1n is positive for all identity
operators 1n with size n ∈ Z. A map which provides complete positivity for any initial
condition of the density operator is ensured by a master equation in Lindblad-Form [69].

3.2. Microscopic derivation of a master equation

A large variety of master equations and their respective derivations can be found in the
literature. In the following we will provide a microscopic derivation for a master equation
in the weak coupling limit, where we assume the coupling between system and bath to
be small. We further discuss the assumptions necessary to derive certain types of master
equations. Our presentation is along the lines of [61].

3.2.1. The Bloch-Redfield master equation

As stated above, we are interested in the dynamics of a quantum mechanical system S
which is weakly coupled to a bath. The total Hamiltonian is given by

Ĥ = ĤS + ĤB + ĤI , (3.7)

where ĤS denotes the free Hamiltonian of the system. For simplicity we consider the
system to be time-independent. The system is coupled to the bath via ĤI =

∑
j AS,j⊗Bj .

The free Hamiltonian of the bath is represented by ĤB. The coupling Hamiltonian consists
of system operators AS,j = A†S,j and bath operators Bj = B†j , which all are considered to be
hermitian. It is useful to perform the derivation of the master equation in the interaction
picture. The starting point of the derivation is the von Neumann equation (3.6) which is
rewritten in its integral form

ρI(t) = ρI(0)− i
∫ t

0
ds[ĤI

I (s), ρI(s)], (3.8)

where the superscript I denotes the interaction picture. Taking the integral form and
putting it back into the von Neumann equation yields

d

dt
ρI(t) = −i[ĤI(t), ρ

I(0)]−
∫ t

0
ds[ĤI

I (t), [ĤI
I (s), ρI(s)]]. (3.9)

17



18 3. Fundamentals: Formalisms for open quantum systems

As we are interested in the time evolution of the reduced density operator ρS(t) of the
system, the next step is to trace out the bath degrees of freedom. We assume that the
density operator can initially be written as a product of the two density operators, i.e.
ρ(0) = ρS(0) ⊗ ρB(0). Consequently, we can rewrite Eq. (3.9) for the reduced density
operator of the system as

d

dt
ρIS(t) = −

∫ t

0
dt′TrB

[
ĤI
I (t), [ĤI

I (s), ρI(s)]
]
, (3.10)

where we set

TrB

[
ĤI
I (t), ρI(0)

]
= 0. (3.11)

Although this may seem to be an additional approximation, Eq. (3.11) is nothing but an
energy shift of the system which can be discarded by a proper renormalization. This is
achieved as follows. At first one absorbs the term into the free Hamiltonian of the system,
i.e. HS → HS +

∑
j AS,j(t)〈Bj〉. By a proper renormalization of the bath operators

Bj → Bj − 〈Bj〉, one readily arrives at Eq. (3.10).

In the weak-coupling limit we are able to perform the Born approximation. This means we
restrict the calculations to the lowest order iteration of the above equation of motion. This
may easily be understood using a diagrammatic expansion, which we will discuss later in
section 3.3.

A second assumption based on the weak-coupling limit is given by

ρI(t) ≈ ρIS(t)⊗ ρB, (3.12)

i.e. the density operators of the system and the bath factorize. Physically this means that
the coupling between the bath and the system is small enough and that the bath itself
is large enough for the density operator of the bath to be insignificantly changed by the
interaction. We thus obtain a closed differential equation for the reduced systems density
operator.

The Markov approximation is more subtle. At first, the density operator depending on
the integral time ρIS(s) is replaced by the reduced density operator ρIS(t). This leads to

d

dt
ρIS(t) = −

∫ t

0
dsTrB

[
ĤI
I (t), [ĤI

I (s), ρIS(t)⊗ ρB]
]
, (3.13)

which is local in time as the time evolution of the reduced density operator does not depend
on the integral time s anymore. The Markovian approximation has not yet been fully
performed. In order to obtain a fully Markovian master equation, one has to substitute
s→ t−s and take the upper integral limit to infinity. We finally obtain a master equation

d

dt
ρIS(t) = −

∫ ∞
0

dsTrB

[
ĤI
I (t), [ĤI

I (t− s), ρIS(t)⊗ ρB]
]
, (3.14)

in Born-Markov approximation. This master equation is also known as Bloch-Redfield
master equation. The requirement for the Markov equation to be justified is provided
by τB � τR, where τB is the decay time of the bath correlation functions and τR is the
relaxation time of the system. This means that the bath correlation function decays much
faster than the system responds to the interaction with the bath. This means that the
bath is memoryless with respect to previous physical events. In addition, taking the upper
integral limit to infinity requires that the bath correlation function decays sufficiently fast
at times τB � s so that the integrand in Eq. (3.14) vanishes fast enough.

18



3.2. Microscopic derivation of a master equation 19

In principle, this master equation (3.14) allows for a reasonably good description of the
weakly coupled open system. However, it does not guaranty complete positivity for the
density operator. Furthermore, it may have the disadvantage of only being solvable nu-
merically. Applying a further approximation, one is able to derive the master equation in
Lindblad form. This derivation is performed in the subsequent section.

3.2.2. The Lindblad master equation

In this section we provide the derivation of the master equation in Lindblad form. The
starting point of the derivation is Eq. (3.14). The necessary approximation to obtain
the Lindblad master equation is the secular approximation. The secular approximation
neglects coupling terms between populations and coherences if they oscillate fast enough.
It is a quite similar approximation to the rotating wave approximation which has been
discussed in chapter 2.

The secular approximation is most easily explained and performed in the interaction pic-
ture using the eigenbasis of the system. We denote the eigenvalues of ĤS by ES . The
corresponding projector onto the eigenstate of energy ES is given by P (ES). We recall the
system-bath interaction in the Schrödinger picture ĤI =

∑
j AS,j ⊗ Bj . The system part

of the interaction is rewritten as a frequency dependent operator, i.e.

ASj (ω) =
∑

E′S−ES=ω

P (ES)AS,jP (E′S) (3.15)

where the sum is taken over all possible energy differences ω regarding the energies ES
and E′S . We further note that A†S,j(ω) = AS,j(−ω) and

∑
ω AS,j(ω) =

∑
ω A
†
S,j(ω) = AS,j

as well as

eiĤStAS,j(ω)e−iĤSt = e−iωtAS,j(ω), (3.16)

eiĤStA†S,j(ω)e−iĤSt = e+iωtA†S,j(ω). (3.17)

Consequently, we are able to rewrite the system bath interaction in terms of the newly
introduced operators

ĤI =
∑
j

∑
ω

AS,j(ω)⊗Bj =
∑
j

∑
ω

A†S,j(ω)⊗B†j , (3.18)

and furthermore

ĤI
I (t) =

∑
j

∑
ω

e−iωtAS,j(ω)⊗Bj(t) =
∑
j

∑
ω

eiωtA†S,j(ω)⊗B†j (t), (3.19)

where Bj(t) = eiHBtBje
−iHBt. Assuming an infinitely large bath in equilibrium, we have

〈Bj(t)〉 = TrB [Bj(t)ρB] = 0.

Next we rewrite the Bloch Redfield equation using the the new representation of the system
operators

ρ̇IS(t) =
∑
ω,ω′

∑
j,k

∫ ∞
0
dseiωs〈B†j (s)Bk(0)〉ei(ω′−ω)t

(
AS,k(ω)ρIS(t)A†S,j(ω

′)

−A†S,j(ω
′)AS,k(ω)ρIS(t)

)
+
∑
ω,ω′

∑
j,k

∫ ∞
0
dse−iωs〈B†k(0)Bj(s)〉e−i(ω

′−ω)t
(
AS,j(ω

′)ρIS(t)A†S,k(ω)

−ρIS(t)A†S,k(ω)AS,j(ω
′)
)
, (3.20)

19



20 3. Fundamentals: Formalisms for open quantum systems

where we used that

〈B†j (t)Bk(t− s)〉 = 〈B†j (s)Bk(0)〉 (3.21)

is fulfilled. Physically this is achieved if the bath is in a stationary state or in ther-
mal equilibrium. The equation becomes more compact introducing the one-sided Fourier
Transforms (Laplace Transforms) of the bath correlation function

Γjk(ω) ≡
∫ ∞

0
dseiωs〈B†j (s)Bk(0)〉, (3.22)

which are-time independent, i.e. do not depend on t anymore. In the Laplace transform
Γjk(ω) the dissipation rates γjk(ω) as well as the Lamb shift renormalization terms related
to the bath are stored. To develop the connection we introduce the Fourier transform of
the bath correlation function

Cjk(ν) =

∫ ∞
−∞

dteiνs〈B†j (s)Bk(0)〉, (3.23)

which is real-valued. We are able to rewrite the Laplace transform (with a convergence
generator δ > 0) as

Γjk(ω) = lim
δ→0

∫ ∞
0

dseiωs−δs〈B†j (s)Bk(0)〉

= lim
δ→0

∫ ∞
0

dseiωs−δs
∫
dν

2π
Cjk(ν)e−iνs

= lim
δ→0

i

∫ ∞
−∞

dν

2π
Cjk(ν)

1

ω − ν + iδ
, (3.24)

which gives

<Γjk(ω) =
1

2
Cjk(ω) ≡ 1

2
γjk(ω), (3.25)

=Γjk(ω) = P.V.

∫ ∞
−∞

dν

2π
Cjk(ν)

1

ω − ν
. (3.26)

Here, P.V. denotes the Cauchy principal value.

As a next step we want to apply the secular approximation, i.e. all terms of Eq. (3.20)
oscillating with ei(ω

′−ω)t for ω 6= ω′ are discarded. This approximation relies on the
separation of time scales of the dynamics of the system and the system bath coupling. It
is usually applicable when |ω−ω′| � Γrel,Γϕ for ω 6= ω′ where we anticipate the relaxation
rate Γrel and the dephasing rate Γϕ which we will introduce later on.

Using the secular approximation, we arrive at the master equation in Lindblad form

d

dt
ρIS(t) = −i[ĤLS , ρ

I
S(t)]

+
∑
ω

∑
j,k

γjk(ω)

(
AS,k(ω)ρIS(t)A†S,j(ω)− 1

2

{
A†S,j(ω)AS,k(ω), ρIS(t)

})
, (3.27)

where we introduced the quasi Lamb shift Hamiltonian

ĤLS =
∑
ω

∑
jk

=Γjk(ω)A†S,j(ω)AS,k(ω). (3.28)

The name arises as it evokes a Lamb shift like renormalization of the systems energy levels
due to the interaction.

20
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3.2.3. Summary

In the above two subsections we have derived two very prominent master equations from a
microscopic approach. We want to briefly compare both equations (3.14) and (3.27), and
summarize the approximations which were used in their respective derivations.

Initially a microscopic derivation of the Bloch Redfield equation Eq. (3.14) was provided.
The necessary assumptions that have been made to arrive at this equation were the Born
and the Markov approximations. Thus, a weak coupling between system and bath as well
as an infinitely large bath are necessary to justify the expansion of the exact von Neumann
equation to second order. Additionally, the equation relies on a coarse-grained description
of time scales and a memoryless bath. This is assured by a sufficient fast decaying bath
correlation function, and thus a short bath correlation time τB � τR compared to the
relaxation time of the system.

The Lindblad equation (3.27) relies on an additional approximation, the secular approxi-
mation. It may be applied under the condition of |ω − ω′| � Γrel,Γϕ.

Although the Bloch Redfield equation is more exact than the Lindblad equation, there are
a few advantages regarding the latter. For large systems the Bloch Redfield equation may
become quite cumbersome to solve and may require a lot of computation power.

The Lindblad equation, although being slightly less exact, may be easier to be solved even
analytically. Consequently, it grants an adequate amount of insight to the dynamics of the
open system of interest.

3.3. Diagrammatic approach

An alternative approach to the derivation of the master equation is given by a diagram-
matic expansion of the time evolution of the density operator. This analysis is based on a
perturbative expansion of the time evolution using the Keldysh formalism. In this section
we briefly review the framework of the diagrammatic approach which was developed by
Schoeller and Schön [63].

Starting point of the diagrammatic expansion is the von Neumann equation (3.6) in the
interaction picture

d

dt
ρI(t) = −i[ĤI

I (t), ρI(t)], (3.29)

which yields the formal solution

ρI(t) = T e−i
∫ t
0 dt
′ĤI
I (t′)ρI(0)T̄ ei

∫ t
0 dt
′ĤI
I (t′), (3.30)

Figure 3.2.: Sketch of the time evolution
of the density operator via the
propagator Π. The processes
inbetween the two dashed lines
are exemplary processes.

Figure 3.3.: Diagrammatic representation
for the Dyson equation of the
propagator Π.
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22 3. Fundamentals: Formalisms for open quantum systems

where T (T̄ ) denote the chronological (anti-chronological) time ordering operator. If we
assume that the initial density operator factorizes, i.e. ρI(0) = ρIS(0) ⊗ ρB, we are able
to take the trace over the bath and perform an expansion of the exponents in the system
bath interaction. Note that this assumption is suitable concerning a Markovian situation,
but may disregard non-Markovian effects. We obtain a formal expression for the time
evolution of the reduced density operator

ρIS(t) = ΠI(t, 0)ρIS(0), (3.31)

where Π(t, t′) is the propagator of the reduced density operator of the system. The situation
is sketched in Fig. 3.2. The propagator fulfills the Dyson equation

Π = Π0 + ΠΣΠ0, (3.32)

where Σ is the self-energy and Π0 is the free propagator. The corresponding diagrammatic
equation is depicted in Fig. 3.3. The self-energy is defined as the contribution of all non-
irreducible diagrams to the propagator. Two examples of an irreducible and a reducible
diagram are shown in Fig. 3.4. We emphasize that the diagrams used in this work differ
from the usual notation as the time direction of time is inverted.

One arrives at the interaction picture differential equation describing the equation of mo-
tion of the reduced density operator of the system (often referred as kinetic equation)

d

dt
ρIS(t) =

∫ t

0
dt′ΣI(t, t′)ρIS(t′), (3.33)

where ΣI(t, t′) is the interaction picture self energy. If the problem obeys time translational
invariance, the self-energy only depends on the time difference, i.e. ΣI(t, t

′) = ΣI(t − t′).
The equation of motion (3.33) yields a useful tool to investigate the dynamics of the density
operator up to any order of interest by calculating diagrams to the order of interest.

In this thesis we restrict ourselves to the lowest order contribution, which is equivalent to
the weak coupling assumption and the Born approximation discussed previously. In the
following we briefly want to explain the basic diagrammatic rules which were defined in
Ref. [63].

The diagrammatic rules necessary to calculate the diagrams are as follows. The vertices
are depicting system-bath interaction contributions at a given time ĤI

I (t′). Propagators
inbetween two vertices following the Keldysh contour yield a free time evolution U0,S(t, t′)
of the system where the time difference is indicated by the arrow of time. Two vertices
connected by a dashed line denote a contraction of two bath operators B(t) and B(t′)
at different times. Note that a vertex can only undergo one contraction. We omitted
the indices of different bath operators j, k for the ease of legibility. The time ordering

Figure 3.4.: Two exemplary second order contributions to the self-energy Σ. In the situa-
tion (a) the diagram is reducible, whereas diagram (b) denotes an irreducible
second order process. Diagrams are regarded to be reducible if one can cut
vertically without crossing a dashed line.
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3.4. Super operator representation 23

Figure 3.5.: Sketch of diagrammatic rules. The rules are explained in the main text.

depends on the appearance on the Keldysh contour. The rules are depicted in Fig. 3.5.
The approximations used within the diagrammatic technique are essentially the same as
discussed in the previous section 3.2. Thus, using the Born and the Markov approximations
one obtains a Markovian master equation in the Schrödinger picture

d

dt
ρS(t) = LSρS(t) +

∫ ∞
−∞

dsΣ(s)e−LSsρS(t), (3.34)

where LS with LS ρS(t) ≡ −i[ĤS , ρS(t)] is the free Liouville super operator or Liouvillian
of the system. If only first order diagrams are considered in the calculation of the self
energy Σ, Eq. (3.34) is of Bloch-Redfield form. Thus, it is equivalent to Eq. (3.14).

3.4. Super operator representation

In many situations it is convenient to write the Master equation in super operator form.
The advantage of the super operator representation over the regular operator represen-
tation is that we directly obtain and see the coupling between different elements of the
density operator. Furthermore, in the super operator space (or Liouville space) the master
equation obtains a relatively simple matrix differential equation, which is quite handy to
analyze.

The master equation for the reduced system density operator is given by

d

dt
~ρS(t) = L~ρS(t), (3.35)

where L is a N2×N2 dimensional super operator with N being the dimensionality of the
Hilbert space of the system. The N -dimensional density operator ρS(t) has been rewritten
as a vector of with N2 rows. The ordering of the resulting vector can be chosen quite
arbitrarily. A super operator, consisting of two operators A and B acting from two sides
onto third operator C in Hilbert space, is constructed as (see for example Ref. [70])

−−−→
ACB =

(
A⊗BT

)
~C, (3.36)

where ⊗ denotes the tensor product which is in this situation equivalent to the the Kro-
necker product. In the same spirit the super operator M is determined from Eq. (3.14)
or Eq. (3.33). We note that this transformation refers to a specific arrangement of the
resulting vector

C =



c11 c12 ... c1n
c21 c22 .. c2n
... ... ... ...
... ... ... ...
... ... ... ...
cn1 cn2 ... cnn

→ ~C =



c11

c12

...
c21

...
cnn

 , (3.37)
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24 3. Fundamentals: Formalisms for open quantum systems

such that the rows are counted first. The advantage of this particular representation
becomes obvious regarding the master equation in Bloch Redfield form. One obtains a set
of N2 coupled linear differential equations where the solution is accessible via the matrix
diagonalization of the super operator L, which is in the literature often referred as the
Redfield tensor.

3.5. The bath correlation functions

The properties of the bath are usually characterized by the bath correlation functions.
Depending on the physical properties of the bath, it may influence the system in various
ways. In this thesis we will treat the bath as an infinite set of harmonic oscillators which
can be represented by bosonic operators. The discussion in this section is restricted to
autocorrelation functions only.

Within the master equation approach discussed above, the bath correlation function ap-
pears usually in the time domain

CBB(t) ≡ 〈B†(t)B(0)〉 = TrB

[
B†(t)B(0)ρB

]
, (3.38)

where ρB is the density operator of the bath. Assuming that the system couples to the
coordinate of the oscillator, we are able to rewrite the coordinate using the bosonic creation
and annihilation operators b† and b yielding

B =
∑
j

λj

(
b†j + bj

)
, (3.39)

where λj = gj
√

1/(2mjωj) and gj is the coupling constant. Consequently, the correlation
function is

〈B†(t)B(0)〉 =
∑
j

λ2
j

(
〈b†j(t)bj〉+ 〈bj(t)b†j〉

)
=
∑
j

λ2
j

(
eiωjtnB(ωj) + e−iωjt(nB(ωj) + 1)

)
, (3.40)

where nB(ωj) is the Bose function. In the literature one often finds

〈B†(t)B(0)〉 =
2

π

∫ ∞
0

dωJ(ω)
(
eiωtnB(ω) + e−iωt (nB(ω) + 1)

)
, (3.41)

where J(ω) is the spectral density is given by

J(ω) ≡ π

2

∑
j

λ2
jδ(ω − ωj). (3.42)

The spectral density can be understood as a density of states of the bath. The structure
of J(ω) contains the complete information about the properties of the bath. In this
thesis we restrict the bath to be ohmic which is represented by a linear spectral density
J(ω) = gωπ/2, where g is the dimensionless coupling constant.

Concerning the transition rates used within the master equations discussed in the previous
sections, we introduced the Fourier transform of the bath correlation functions

CBB(ω) =

∫
dteiωt〈B†(t)B(0)〉, (3.43)
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which is real-valued as CBB(t) = C∗BB(−t). Furthermore, the correlation function obeys
the property

CBB(−ω)

CBB(ω)
= e−βω, (3.44)

where β = 1/T is the inverse temperature. Inserting this property to the transition rates
Γij in Eqs. (3.54) and (3.55), we obtain the detailed balance relation

Γeg
Γge

= e−βE , (3.45)

where Γeg is the excitation rate and Γge is the relaxation rate. Physically this means that
the transition of the system to a state of lower energy is more probable as the inverse
transition is suppressed by a Boltzmann factor characterized by energy difference of the
two states. Introducing the symmetrized and anti symmetrized correlation functions

SBB(ω) =
1

2
(CBB(ω) + CBB(−ω)) , (3.46)

ABB(ω) =
1

2
(CBB(ω)− CBB(−ω)) , (3.47)

we immediately find

SBB(ω) = coth
βω

2
ABB(ω), (3.48)

which is the fluctuation dissipation theorem (FDT) derived by Callen and Welton [7]. We
may emphasize that Eq. (3.48) is not affected by the choice of the bath’s spectral density
J(ω).

3.6. Example: a two-level system coupled to a heat bath

In this section we want to give an example of the application of the master equation ap-
proach by discussing the dissipative treatment of a two-level system. For a comprehensive
and extensive analysis of the dissipative two-level system we refer to a review by Leggett
et al. [42]; for a detailed discussion in the context of Josephson qubits wrefer to [71].

Quite generally the Hamiltonian of a non-driven TLS (see Chapter 2) coupled to a heat
bath may be written as

Ĥ = ĤTLS + ĤI + ĤB

= −E
2
σz︸ ︷︷ ︸

=ĤTLS

+
1

2
(cosϑσx + sinϑσz)⊗B︸ ︷︷ ︸

ĤI

+ĤB, (3.49)

where E denotes the level splitting of the TLS and B is a bath operator. The angle ϑ
determines the nature of the system bath coupling enjoined by the physical properties
of the TLS. The bath does not yet need to be specified except for the property of being
infinitely large. The master equation in Lindblad is obtained as (in Liouville space)

d

dt
~ρS(t) =


−Γeg Γge 0 0
Γeg −Γge 0 0
0 0 −Γϕ − i(E + ELS) 0
0 0 0 −Γϕ + i(E + ELS)




ρgg
ρee
ρeg
ρge

 , (3.50)
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where Γij denote the transition rates between different populations of the density operator
induced by the bath. We also introduced the dephasing rate Γϕ which characterizes the
decay of the coherences. The energy shift (Lamb shift) induced by the bath is indicated by
ELS . The secular approximation results in the absence of the matrix elements coupling the
coherences and the populations. Thus, the dynamics of the coherences and the populations
totally decouple and can be solved separately.

The solution of the master equation (3.50) is

ρz(t) = ρth + (ρz(0)− ρth) e−tΓrel , (3.51)

ρeg(t) = ρeg(0)e−i(E+ELS)te−tΓϕ = ρge(t)
∗, (3.52)

where ρth = (Γge − Γeg)/(Γeg + Γge) is the thermal steady state of the TLS. Thus, the
system reaches the state of thermal equilibrium as ρz(t → ∞) ≡ ρth. The relaxation
rate is given by Γrel = Γge + Γeg, characterizing the decay to thermal equilibrium. In the
literature the relaxation rate and the dephasing rate are often referred by their inverse,
the relaxation time T1 = Γ−1

rel and the dephasing time T2 = Γ−1
ϕ . They also are connected

via

1

T2
=

1

2T1
+

1

T ∗2
, (3.53)

where (T ∗2 )−1 is called the pure dephasing rate. The rates within this particular model are
given by

Γge =
cos2 ϑ

4
CBB(ω = E) (3.54)

Γeg =
cos2 ϑ

4
CBB(ω = −E) (3.55)

Γϕ =
Γge + Γeg

2
+

sin2 ϑ

4
CBB(ω = 0), (3.56)

where CBB(ω) ≡
∫
dteiωt〈B(t)B(0)〉 is the Fourier transform of the bath correlation func-

tion. The pure dephasing rate in this particular scenario is obtained from Eq. (3.53)
as (T ∗2 )−1 = sin2 ϑ/4CBB(ω = 0) which depends only on the zero frequency correlation
function. Physically this effect is due to the longitudinal coupling of the TLS to the bath
which is not capable of flipping the state of the system. Thus, the transitions in the bath
induced by this coupling do not carry any energy. We can identify two physical processes
contributing to the dephasing: First, the zero energy phase loss by the pure dephasing
and, second, the relaxation of the coherence which is also known as decoherence.

In general, the pure dephasing or loss of phase coherence does not have to be an exponential
decay, i.e. the decay of the coherences may be written as ρeg ∼ e−t/(2T1)f(t). Here, f(t)
determines the loss of phase coherence due to the low frequency noise spectrum of the bath.
A very prominent example is the phenomenon of 1/f noise, where the low frequency bath
correlation function CBB(ω ≈ 0) ∝ A/ω tends to diverge [72]. Regarding a free induction
decay (Ramsay decay), the decay function turns out to be cutoff dependent and one finds
[71, 73] f(t) ≈ exp[−t2A ln 1/(ωirt)] where ωir is a low-frequency cutoff. However, these
effects are beyond the scope of the work at hand.

The coupling parameter ϑ allows for distinguishing between two different physical coupling
limits between the system and the bath. In the situation of ϑ = 0 we obtain a pure
transversal coupling to the bath, i.e ĤI ∼ σxB. In this situation the pure dephasing rate
becomes immaterial regarding the decay of the coherences. Although the pure dephasing
is absent, the dephasing rate Γϕ is still finite due to the decoherence.
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Another interesting situation occurs for ϑ = π/2, where the system is purely longitudinally
coupled to the bath. In this situation the populations of the system do not change as the
relaxation rate Γrel = 0 vanishes. The dephasing rate is determined solely by the pure
dephasing, i.e. Γϕ = (T ∗2 )−1.

In the previous section 3.2.2 we saw that the level splitting of the system is renormalized
by the interaction with the bath. The renormalization only emerges from the transverse
coupling to the system. It is evaluated as

ELS =
sin2 ϑ

2
P.V.

∫ ∞
−∞

dν

2π

CBB(ν) + CBB(−ν)

ν − E
,

= −sin2 ϑ

2
P.V.

∫ ∞
−∞

dν

2π
E
CBB(ν) + CBB(−ν)

ν2 − E2
. (3.57)

As we have discussed in the previous section, the bath is characterized by the spectral
density J(ω). In most situations one can model the bath consisting of an infinite set
of harmonic oscillators. Although the bath is supposed to be of infinite size, an infinite
frequency range of the oscillators in the bath would be clearly unphysical. Thus, one may
incorporate a high frequency cut-off ωc to the bath. In the situation of ohmic dissipation,
one finds that ELS ∼ E ln(ωc/E).

3.7. Conclusion

This chapter provided a compact review of the theoretical treatment of open quantum
systems. A detailed derivation of a quantum master equation was given and the underlying
assumptions have been discussed. The differences between two different types of master
equations, i.e. the Bloch-Redfield and the Lindblad master equations have been pointed
out and we have annotated their respective advantages. Additionally, we provided a brief
survey of the real-time Keldysh diagrammatic approach, which turns out to lead to the
same results with respect to the applied approximations.

The derivation of the master equation was followed by a more thorough and explicit
treatment of the autocorrelation functions of the bath. This was carried out to be self-
contained concerning the bath correlation functions used throughout the thesis.

We concluded the chapter by providing an intuitive example on the basis of a non-driven
TLS weakly coupled to the bath. In the example we discussed the physical processes
induced by the system-bath interaction, such as the relaxation and the dephasing as well
as the Lamb shift like energy shift.
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4. Fundamentals: Full counting statistics

One of the main mathematical tools used in this thesis is that of full counting statistics
(FCS). It is a very powerful tool to calculate transport statistics properties. The FCS
was first used in charge transport calculations by Levitov and Lesovik [40] and has been
generalized for a variety of transport problems. The idea is to calculate the transport
statistics of a system using the characteristic function (CF) of a probability distribution
rather than the probability distribution itself.

In this section we will briefly review the general idea of the FCS technique in the context
of its first application to the problem of electron counting statistics. This is followed by
a discussion of two quite similar approaches of FCS, which will be used to determine the
energy exchange statistics between two systems.

4.1. An intuitive example: The spin-1/2 galvanometer

To give a brief idea of the power of the FCS, we want to quickly review the basic idea on
the basis of the original work by Levitov and Lesovik [40]. In their work they developed a
theoretical framework to calculate the statistics of the current in a conductor by ‘counting’
the number of electrons running past a measurement device. We will review their approach
to the problem of electron transport in the following.

Concerning the statistics of electrical charge flowing through a constriction during a certain
measurement time τ one could ask the following question: What is the probability PN,τ of
N electrons passing the constriction during the measurement time τ? Even more precisely
rephrased, the question is: What is the probability distribution for N electrons passing the
constriction during a measurement of time τ? For clarification we included a schematic of
that approach in Fig. 4.1.

The CF χτ (λ) is calculated rather than the distribution function itself. They are connected
via Fourier transform, i.e.

χτ (λ) =
∑
N

eiNλPN,τ , (4.1)

where λ is the counting field. Note that the CF itself still depends on the measurement
time τ .

In a realistic experimental situation, one is not capable of directly measuring the traversed
charge but the current flowing through the constriction is observed instead. The classical
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30 4. Fundamentals: Full counting statistics

Figure 4.1.: Schematic of the spin-1/2 galvanometer: The spin precesses as an electron e−

traverses the constriction, which is indicated by the dashed line.

connection between charge and current is easily obtained by taking the integral over the
current

Q(τ) =

∫ τ

0
dt′I(t′). (4.2)

However, the reliability of this connection in the quantum regime is rather questionable, as
the current is a quantum mechanical operator which does not necessarily need to commute
with itself at different times.

The theoretical strategy is to incorporate a measurement device that is capable of mea-
suring the charge directly instead of the current. Here, this is performed by coupling a
spin-1/2 galvanometer to the constriction. The coupling between the current and the spin
is given by

Ĥcoup = −
∫

1

c
~j ~A, (4.3)

where ~j is the current density and ~A is the vector potential. By hand, the vector potential
~A is modified in such a way, that the spin only couples to the current whenever a charge
passes the constriction, i.e. Aj = λφ0

4π σz∇jΘ(f(r) − f0). Here φ0 = 2πc/e, f(r) = f0

defines the surface of the constriction, Θ denotes the Heaviside step function and λ has
been introduced as coupling constant. The latter will turn out to be the counting field in
the following. The effective coupling Hamiltonian is obtained by integrating the current
density over the surface of the constriction resulting in

Ĥcoup = − λ

2e
σzI (4.4)

where I =
∫
S
~jd~s is the total current through the constriction. The modification of the

spin-current interaction makes it possible to actually count the number of electrons travers-
ing the intersection to which the spin is coupled.

This is easily verified by having a look at the density operator of the spin

ρspin(τ) = Tre

[
e−iĤστρspin(0)⊗ ρe(0)eiĤστ

]
, (4.5)
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where Ĥσ is the total Hamiltonian depending on the modified vector potential. As the
choice of basis for the spin system is arbitrary, one can choose the eigenstates of σz and
obtain

ρspin(τ) =

(
ρ↑↑(0) χτ (λ)ρ↑↓(0)

χτ (−λ)ρ↓↑(0) ρ↓↓(0)

)
, (4.6)

where

χτ (λ) = Tre

[
eiĤ−λτρe(0)e−iĤλτ

]
(4.7)

turns out to be the desired CF [40]. The Hamiltonian Ĥλ is obtained by disregarding the
σz dependence in the coupling Hamiltonian Ĥcoup → Ĥλ = − λ

2eI. Note that in Eq. (4.6)
the spin degree of freedom is taken care of explicitly.

The main advantage of the FCS approach is rather obvious. Since one is capable of deriving
the CF of the desired probability distribution, one can determine the statistical properties
of the probability distribution quite comfortably. These properties, i.e. the cumulants, are
connected to the CF by taking the derivative of the logarithm

〈〈Cn〉〉 ≡ (∂iλ)n lnχτ (λ)|λ=0 , (4.8)

at λ = 0, where we abbreviated ∂iλ ≡ 1
i
∂
∂λ . This is readily seen by applying the derivative

to the representation of the CF, Eq. (4.1),

∂iλ lnχτ (λ)|λ=0 =
∑
N

NPN,τ

= 〈N〉, (4.9)

which in this situation gives the average number N of electrons passing the constriction.

4.2. The two-point measurement statistics

The two-point measurement statistics is a very similar yet quite different technique to the
above discussed FCS approach. It has been developed by Esposito, Harbola and Mukamel
[12] and is used in the context of the fluctuation relations. The purpose of the two-point
measurement statistics is to calculate the energy and the matter transfer statistics between
coupled open systems. In this section we will review the necessary parts of this particular
technique used in this thesis.

Instead of the charge, the quantity of interest is the energy exchanged between two systems.
To be more precise we restrict ourselves to the energy ε emitted to the bath by a subsystem
S. We aim to calculate the CF of the probability distribution of dissipated energy ε to
the bath. As the energy in this case does not need to be quantized like in the previously
discussed scenario, the connection is given by the continuous Fourier-transform

χτ (λ) =

∫ ∞
−∞

dε eiλεPτ (ε), (4.10)

where Pτ (ε) is the probability of dissipating the amount of ε energy to the bath. One can
think of the dissipated energy ε as a difference of two measurement outcomes of energy:
First, the energy of the bath is determined by a measurement resulting in ε0. At a later
time t = τ the energy again is measured resulting in ετ , yielding ε = ετ − ε0. Thus, the
probability distribution of the dissipated energy is rewritten as

Pτ (ε) =
∑
ετ ,ε0

δ(ε− (ετ − ε0))P[ετ , ε0], (4.11)
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where

P[ετ , ε0] ≡ Tr
[
PετU(τ, 0)Pε0ρ(0)Pε0U

†(τ, 0)Pετ

]
(4.12)

is the joint probability of measuring ετ at time t = τ and ε0 at time t = 0. Here, the
projection operators P0/τ onto the eigenstates of the corresponding energy ε0/τ have been
introduced and

U(τ, 0) = T exp

[
−i
∫ τ

0
dtĤ(t)

]
(4.13)

is the full time evolution operator. Here, T is the time-ordering operator and Ĥ(t) is the
full Hamiltonian of the problem of interest.

Using this approach it turns out [12] that the CF Eq. (4.10) can be calculated via

χτ (λ) = Tr [ρ(λ, τ)] , (4.14)

where

ρ(λ, τ) ≡ Uλ/2(τ, 0)ρ(0)U †−λ/2(τ, 0), (4.15)

is the counting field dependent density operator. Furthermore a modified time-evolution
operator

Uλ(τ, 0) ≡ eiλĤB(τ)U(τ, 0)e−iλĤB(0)

= eiλĤBU(τ, 0)e−iλĤB , (4.16)

has been introduced. This particular modification may be achieved by a transformation
of the Hamiltonian according to

Ĥ(t)→ Ĥλ(t) = eiλĤBĤ(t)e−iλĤB (4.17)

providing the exact same result with the explicit form of the modified time evolution
operator given by

Uλ(τ, 0) = T exp

[
−i
∫ τ

0
dtĤλ(t)

]
. (4.18)

In the limit of zero counting field, i.e. λ → 0, the operator ρ(0, τ) reduces to the density
operator of the full system as the complete modification becomes obsolete.

For later purposes it is useful to define the corresponding energy current to the dissipated
energy

Îε ≡ i
[
Ĥ(t), ĤB

]
, (4.19)

which is nothing but the total derivative of the dissipated energy. This is obvious by
changing to the Heisenberg picture, where we find

ÎHε (t) =
d

dt
ĤH
B (t). (4.20)

Note that we introduced the superscript H to indicate the Heisenberg picture where
ÎHε (t) = U †(t, 0)ÎεU(t, 0). With the definition of the energy current Eq. (4.19) we can
rewrite Eq. (4.17)

Ĥλ(t) = eiλĤBĤ(t)e−iλĤB

=

∞∑
m=0

1

m!

[
iλĤB, Ĥ(t)

]
m

= Ĥ(t)− λÎε +O(λ2), (4.21)
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where [A,B]m = [A, [A,B]m−1] with [A,B]0 = B is the nested commutator. If we go to

the interaction picture with respect to the energy current Îε, we immediately find

χτ (λ) = Tr

[
T exp

[
−iλ

2

∫ τ

0
dtÎHε (t)

]
ρ(0)T exp

[
−iλ

2

∫ τ

0
dtÎHε (t)

]]
. (4.22)

The structure of Eq. (4.22) is equivalent to the generating function derived by Nazarov
and Kindermann [74]. We will discuss and comment on that in the next section, where we
will review the Nazarov-Kindermann approach for FCS.

4.3. The Nazarov-Kindermann-approach to energy counting
statistics

In this section we review an alternative approach to FCS as suggested by Nazarov and
Kindermann [74]. In contrast to their original work, which provided the full analysis of
the FCS of a general quantum mechanical variable, we will restrict ourselves to the FCS
of the dissipated energy. As anticipated in the previous section, the outcome of the FCS
will be equivalent to the two point measurement statistics, however, it involves a slightly
different approach.

In contrast to the two-point measurement approach, where the counting field becomes
incorporated more or less ‘by hand’, this proposal introduces and includes an actual de-
tector (we will sometimes refer to it as meter or measurement device) to the discussion.
The detector is based on the pioneering measurement proposal by von Neumann [75] and
is supposed to be a quantum system with coordinate X̂M and momentum P̂M , satisfying
[X̂M , P̂M ] = i.

The detector is coupled to a current-like quantity similar to the original proposal by Levitov
and Lesovik [40]. Considering the situation of system coupled to a heat bath represented
by the Hamiltonian ĤSB, the current is identified with the energy current Îε = −i[ĤB, ĤI ]
in our problem where ĤI is the system-bath interaction Hamiltonian. The full Hamiltonian
including the meter reads

Ĥ = ĤSB − ÎεP̂M + ĤM , (4.23)

with ĤM being the free Hamiltonian of the meter. In the following we completely discard
the internal dynamics of the detector and set ĤM = 0. Being interested in the outcome
of the meter, we have to study the reduced density operator of the meter ρM . By tracing
out the system and bath degrees of freedom, we obtain

ρM (τ) = TrSB

[
USBM (τ, 0)ρS(0)⊗ ρB ⊗ ρMU †SBM (τ, 0)

]
, (4.24)

where USBM (τ, 0) is the full time evolution operator for system bath and measurement
device. We further assumed that the initial density operator can be written as a product
ρSBM (0) = ρS(0)⊗ ρB ⊗ ρM . Introducing the eigenstates of the momentum operator as

P̂M |λ〉 = λ|λ〉, (4.25)

we are able to evaluate a certain matrix element of the density operator of the detector.
We find

〈λ/2|ρM (τ)| − λ/2〉 = χτ (λ)〈λ/2|ρM (0)| − λ/2〉, (4.26)

where χτ (λ) is the desired CF and 〈λ/2|ρM (0)|λ/2〉 yields the initial deflection of the
meter. It is quite simple to verify that the CF as obtained by Eq. (4.26) is equivalent to
Eq. (4.22).
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34 4. Fundamentals: Full counting statistics

The calculation of the average dissipated energy is straightforward. As discussed above in
Eq. (4.8), we find

〈ετ 〉 = ∂iλ lnχτ (λ)|λ=0

=

∫ τ

0
dt 〈ÎHε (t)〉, (4.27)

where ÎHε (t) = USB(t, 0)ÎεU
†
SB(t, 0) is the energy current in the Heisenberg picture.

Until now, we had anticipated the CF to be the Fourier-transform of the probability
distribution. Strictly speaking, as we are dealing with a quantum mechanical density
operator, a more careful analysis may be necessary. Hence, in a rigorous treatment, the
CF should be identified with a Wigner distribution [76] function

W(x, p) =

∫ ∞
−∞

dλ 〈p+ λ/2|ρM (τ)|p− λ/2〉e−ixλ, (4.28)

which may involve problems in actually interpreting the result as a probability distribution
function. This is due to the fact that the Wigner transform is not completely positive and,
thus, may contain negative values. A discussion about this peculiarity in the context of
superconductors can be found in [77]. Consequently, we need to check if the generating
function obtained by

〈p+
λ

2
|ρM (τ)|p− λ

2
〉 = χτ (p, λ)〈p+

λ

2
|ρM (0)|p− λ

2
〉, (4.29)

is independent of p. We obtain

χτ (p, λ) = TrSB

[
eiĤB(p+λ

2
)USB(τ, 0)ρS(0)e−iĤB(p+λ

2
)ρB(0)eiĤB(p−λ

2
)U †SB(τ, 0)e−iĤB(p−λ

2
)
]

= χτ (λ), (4.30)

where we used that [ĤB, ρB] = 0 and the invariance of the trace regarding cyclic permu-
tation. Therefore, the interpretation of the FCS approach to the statistics of dissipated
energy in terms of a probability distribution is in fact possible.

4.4. Conclusion

In this chapter an introduction to the FCS was presented. To present the general idea
behind the FCS we reviewed the original proposal by Levitov and Lesovik [40] via the
example of the spin 1/2-galvanometer. We highlighted the benefit of the FCS, which allows
access to the CF of the problem and, consequently, to the complete transport statistics.

This was followed by the introduction of the two-point measurement statistics [12] of
energy which will be used for most of the calculations within this thesis. We discussed
the consistency of the two-point measurement statistics by reviewing the energy counting
statistics in the full-fledged Nazarov-Kindermann approach [74]. Within this discussion
we convinced ourselves that the CF derived within this approach is indeed connected to a
classical probability distribution function via Fourier transform.
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5. The driven two-level system in the
context of fluctuation relations

This chapter deals with the topic of fluctuation relations (FRs). The FRs are exact rela-
tions for the probability distributions of thermodynamic quantities such as heat or entropy
production. Interestingly, the relations are exact even if the system under consideration is
far from equilibrium. Although they were discovered more than 30 years ago, they have
recently attracted great attention. This is due to several reasons. Firstly, the impact of
fluctuations becomes pronounced as the system size decreases. Thus, from an experimen-
tal point of view it is very difficult to test the FRs. Consequently, experiments needed to
be improved to detect the small fluctuations of the thermodynamic quantities. Secondly,
besides the first FR derived by Bochkov and Kuzovlev [8] in the late 1970s, which consid-
ered fluctuations of work, there have been found FRs of entropy production [10] and heat.
Hence, a study of several thermodynamic quantities and their fluctuations in mesoscopic
systems is possible, opening an avenue towards thermodynamics in the quantum regime
[78].

The thermodynamics of macroscopic systems is well-understood in the picture of statistical
mechanics. However, the description is restricted to equilibrium or near to equilibrium
situations only. The FRs enable the study of the dynamics of the system even far from
equilibrium. The mathematical form of the FRs quite generally has a structure of [11]

P(x) = PB(x)ea(x−b) (5.1)

which relates the probability density P(x) of a thermodynamic quantity x undergoing a
certain possibly non-equilibrium process to the corresponding reversed (backward) prob-
ability density PB(x). Despite the fact that the equality holds for quite arbitrary non-
equilibrium processes, one still needs to know the initial equilibrium properties of the
system. Here, this information is stored in the quantities a and b. Two main elements are
obligatory for the FRs: Firstly, as already mentioned, one needs to know about the equi-
librium initial conditions of the system of interest. Secondly, the FRs rely on the principle
of microreversibility. These two building blocks of the FRs will be discussed further below.

In this chapter we will present our results in the context of the FRs. Before we do so
we will introduce the concept of the FRs on the basis of the very first appearance in the
literature derived by Bochkov and Kuzovlev in the late 1970s [8]. We then comment on
the current experimental situation and briefly discuss a related state-of-the-art experiment
[19]. For a detailed review on the general topic we refer to Campisi et al. [11]; a more
technical guidance is found in Esposito et al. [12].
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36 5. The driven two-level system in the context of fluctuation relations

5.1. Introduction of the fluctuation relations

As an introduction to the FRs we will review and discuss the work FR derived by Bochkov
and Kuzovlev. Later on we will comment on the subtlety of defining work and give a short
comparison between the Bochkov-Kuzovlev and the Jarzynski fluctuation relations. As it
will become apparent, they both not only rely on two different protocols but also use two
different definitions of work. Finally, we will introduce the detailed fluctuation relation
which will be involved in our analysis.

5.1.1. The Bochkov-Kuzovlev fluctuation relation

In 1977 Bochkov and Kuzovlev discovered a first exact fluctuation relation covering fluc-
tuations of all orders [8]. In order to introduce the concept of the FRs, we will provide
a derivation of the FR. We note that the FR is only valid for classical systems; thus, the
discussion and calculation in this section is restricted to classical systems only.

Here, a classical system with the Hamiltonian H0 = H0(q, p), depending on its coordinates
q and the conjugated momenta p, is considered. The system is supposed to be in an
equilibrium state at time t < 0, characterized by a Gibbs distribution

ρG(q, p) =
1

Z
e−βH0(q,p), (5.2)

where Z is the partition function. Note that this condition is one of the two crucial basic
elements necessary for the FR.

At time t = 0 an external force FQ(t) is applied onto the system, such that the new
Hamiltonian becomes

H(t) = H0(q, p)− FQ(t)Q(q(t), p(t)), (5.3)

where Q(q(t), p(t)) is the generalized conjugate coordinate to FQ(t). The generalized
conjugate coordinate is expressed in terms of

Q(t) ≡ Q(q(t), p(t)) = Qt[q0, p0;FQ(t′)], (5.4)

where Qt[q0, p0;FQ(t′)] is a functional depending on the initial values q0, p0 and a distinct
realization of the external force FQ(t′) for 0 ≤ t′ ≤ t.

As a next step one makes use of the principle of time reversal symmetry. This means
that time-odd parameters, such as momenta, change sign when the direction of time is
inverted. In the time symmetric case we have H0(q,−p) = H0(q, p), which can be achieved
in the presence of other odd parameters by changing their direction accordingly. The
generalized coordinate Q(t) is assumed to have a non-ambiguous parity ε = ±1 under the
time reversal operation Q(q,−p) = εQ(q, p). This leads to the microreversibility condition
for the generalized coordinate at time τ inbetween [0, t]

Q(τ) = Qτ [q0, p0;FQ(t′)] = εQt−τ [qt,−pt; εFQ(t− t′)], (5.5)

where qt, pt are the initial values for the time reversed protocol starting at time t. This
microreversibilty condition is the second crucial building block of the FR.

The situation is depicted in Fig. 5.1 as a sketch of the phase space. Starting at an inital
point (q0, p0) in phase space, the systems evolves according to the functionalQτ [q0, p0;FQ(t′)]
following a distinct realization of FQ(t′) to the point (qτ , pτ ). The time reversed process
starts at (qt,−pt) and traverses through the phase space according to the time reversed
functional with respect to the exact same but time reversed realization FQ(t − t′) of the
external force.
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Being interested in the statistics of the coordinate Q(τ), one can calculate the characteristic
function for a given realization of FQ(t), given by〈

exp

(∫ t

0
dτu(τ)Q(τ)dτ

)〉∣∣∣∣
FQ(τ)

=

∫
dq0dp0 exp

(∫ t

0
dτu(τ)Qτ [q0, p0;FQ(t′)]

)
ρG(q0, p0),

(5.6)

where u(τ) is an arbitrary test function and the integration is taken over the distribution
of the initial state. The characteristic function for the reversed process undergoing the
same but time reversed force protocol is obtained as〈

exp

(∫ t

0
dτu(t− τ)Q(t− τ)

)〉∣∣∣∣
FQ(t−τ)

=

∫
dqtdpt exp

(∫ t

0
dτu(t− τ)Qt−τ [qt,−pt; εFQ(t− t′)]

)
e−βH0(qt,pt)

Z
, (5.7)

which is averaged over the distribution of the final coordinates qt and momenta pt. In the
following we want to derive the relation between the two characteristic functions. To do
so one defines work as

W =

∫ t

0
dτFQ(τ)

dQ(τ)

dτ
=

∫ τ

0
FQ(τ)dQ(τ), (5.8)

the integral of a given realization of the externally applied force FQ(t) over the traversed
trajectory of Q(t) during that process. By virtue of Eq. (5.8), the work is defined as the
change of the internal energy of the system as a response to the applied external realization

Figure 5.1.: A sketch of the traversed path in phase space is shown. The forward protocol
starts at (q0, p0) traversing according toQτ [q0, p0;FQ(t′)] until it finally reaches
the point (qt, pt) in phase space . The corresponding time-reversed process
following the protocol Qt−τ [qt,−pt; εFQ(t− t′)] is depicted as well.
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38 5. The driven two-level system in the context of fluctuation relations

of the force. This is obtained by the Hamiltonian equations of motion, where

d

dt
H =

∂H

∂q

dq

dt
+
∂H

∂p

dp

dt
+

∂H

∂FQ

dFQ
dt

= −Q(t)ḞQ(t), (5.9)

yielding

dH0

dt
=

d

dt
(H + FQ(t)Q(t)) (5.10)

= FQ(t)Q̇(t). (5.11)

Hence, the work is given by

W (q0, p0) = H0(qt(q0), pt(q0))−H0(q0, p0), (5.12)

which can be written as a function of the initial internal coordinates q0 and momenta
p0. The connection between the characteristic function of the forward protocol and the
characteristic function of the backward protocol is established by〈

exp

(∫ t

0
u(τ)Q(τ)dτ

)〉 ∣∣∣∣∣
FQ(τ)

=

∫
dq0dp0 exp

(∫ t

0
u(τ)Qτ [q0, p0;FQ(t′)]dτ

)
1

Z
e−βH0(q0,p0)

=

∫
dq0dp0 exp

(∫ t

0
u(τ)εQt−τ [qt,−pt; εFQ(t− t′)]dτ

)
1

Z
e−βH0(q0,p0)

=

∫
dqtdpt exp

(∫ t

0
u(τ)εQt−τ [qt,−pt; εFQ(t− t′)]dτ

)
1

Z
e−βH0(q0(qt),q0(qt))

=

∫
dqtdpt exp

(∫ t

0
u(τ)εQt−τ [qt,−pt; εFQ(t− t′)]dτ

)
1

Z
e−β(H0(qt,pt)+W (qt,pt)). (5.13)

Here, it was utilized that the distribution function is symmetric under time reversal, i.e.
ρG(q, p) = ρG(q,−p). In addition the quantity

W (qt, pt) = −W (q0, p0) = H(q0, p0)−H(qt, pt) (5.14)

has been introduced. It is identified as the work performed onto the system during the
backward process. The starting and end position of the drive can be chosen arbitrarily
yielding〈

exp

(∫ ∞
−∞
u(τ)Q(τ)dτ

)〉 ∣∣∣∣∣
FQ(t′)

=

〈
exp

(∫ ∞
−∞
u(−τ)εQ(τ)dτ

)
eβW (q0,p0)

〉 ∣∣∣∣∣
εFQ(−t′)

, (5.15)

which is the famous result derived by Bochkov and Kuzovlev. To demonstrate the physical
implications one may consider the statistics ofQ(τ) following a given realization of the force
protocol FQ(t). We introduce the probability density P(Q;FQ) in the space of trajectories
Q(τ). The analog of the fluctuation relation Eq. (5.15) written in terms of the probability
density reads

PF (Q(τ);FQ)e−βW = PB(εQ(−τ); εFQ(−τ)), (5.16)

where the subscripts F,(B) label the forward (backward, time reversed) protocol. The
integration on both sides yields

〈e−βW 〉 = 1, (5.17)
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Bochkov Kuzovlev Jarzynski

Fluctuation
relation

〈e−βW 〉 = 1 〈e−βWtot〉 = e−β∆F

Work
W = H0(qt, pt)−H0(q0, p0)

=

∫ t

0
dt′FQ(t′)

dQ(t′)

dt′

Wtot = H(qt, pt)−H(q0, p0)

=

∫ t

0
dt′
dFQ(t′)

dt′
Q(t′)

Table 5.1.: Two different fluctuation relations of work.

which is probably the most widely used form of the Bochkov-Kuzovlev formula. A physical
intuitive result immediately follows by using Jensens inequality 〈e−βW 〉 ≥ e−β〈W 〉, which
gives

〈W 〉 ≥ 0. (5.18)

Here, the equality sign applies to idealized reversible processes of closed systems, whereas
in a more general situation a system perturbed by an external force always absorbs energy.
Thus, Eq. (5.18) is often denoted as the FR equivalent of the second law of thermodynamics
for work performed onto a system.

5.1.2. The subtlety of defining work

Yet, classical FRs have been derived for various different thermodynamic quantities such
as entropy production ∆S. The FR derived by Crooks [10] is given by

P(∆S)

PB(−∆S)
= e∆S , (5.19)

where ∆S denotes the entropy production of a driven system and P(B)(∆S) is the corre-
sponding probability distribution following a certain forward (backward) protocol. From
the Crooks relation (5.19) the second law of thermodynamics is directly obtained by ap-
plying the Jensens inequality, providing 〈∆S〉 ≥ 0.

Another relation widely discussed in the literature is the Jarzynski equality [9]

〈e−βWtot〉 = e−β∆F , (5.20)

which incorporates the equilibrium free energy difference ∆F of the initial and final states
in the parameter space of the system subjected to external driving. The relation derived
by Jarzynski relies on a different protocol as the Bochkov-Kuzovlev FR. This leads to
a different definition of work Wtot as compared to the Bochkov-Kuzovlev approach. In
comparison, both relations and the corresponding definition of work are shown in table
5.1. Indeed, the definition of work following the Jarzynski protocol is obtained as Wtot =
H(τ)−H(0), being the total work performed onto the system.

For a meaningful comparison of the two relations it is convenient to introduce the difference

Wtot −W = FQ(0)Q(0)− FQ(t)Q(t). (5.21)
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40 5. The driven two-level system in the context of fluctuation relations

Setting FQ(0) = 0 and inserting the difference into Eq. (5.17) yields

〈e−β(Wtot+FQ(t)Q(t))〉 = 1. (5.22)

Comparing this relation with Eq. (5.20) shows that both equations refer to two different
random quantities Wtot and Wtot +FQ(t)Q(t). A very enlightening and detailed discussion
about the relation between those two equations has been given in [79].

5.1.3. A detailed fluctuation relation

In this thesis we study the energy dissipation of a driven TLS. Hence, an analysis in
the context of FRs is reasonable. Since the previous discussions in this section dealt
with fluctuation relations of work, one could naturally ask for a quantum definition of
work. Such definitions exist in the literature [26], however, there is an ongoing discussion
about the controversial definition. To circumvent this problem we will stick to the energy
dissipated by the driven system.

As discussed in Chapter 2.3 we use a certain measurement protocol. We include two
additional strong measurements, which select the initial and the final state of the system.
Hence, we expect the quantum version of the detailed fluctuation relation [33]

Pτ (ε, f |i)
Pτ,B(−ε, i|f)

= e−βε (5.23)

to be satisfied. The detailed FR explicitly considers the initial and the final state of the
system. In Eq. (5.23) we introduced the conditional probability distribution Pτ (ε, f |i) of
the dissipated energy ε given that the system was initially prepared in a distinct initial
state |iS〉 and post selected onto a chosen final state |fS〉. The subscript τ denotes the
driving time. To fulfill the detailed FR the corresponding CF needs to possess a certain
symmetry [80]

χτ (λ, f |i) = χτ,B(−λ+ iβ, i|f), (5.24)

where λ is the counting field of the dissipated energy. A demonstration of Eq. (5.24) is
provided in the appendix A.

5.1.4. Experimental situation

Since the rediscovery of the FRs by Jarzynski and Crooks, many experiments have been
performed to test and verify the FRs. Experimental tests are a subtle task since very
small system sizes as well as very precise measurement techniques are required. Thanks
to the progress in recent years, the test of the FRs has become a feasible task. One of
the first experimental verifications of the FRs has been demonstrated by Wang et al. [14],
monitoring a colloidal particle in an optical trap. More recent experiments have been
carried out on mesoscopic electronic circuits [17, 19, 81].

Referring to [19] in particular, the authors Kooski et al. were able to obtain the thermody-
namic entropy production ∆sth

tot by directly measuring the number of electrons tunneling
inbetween a normal conducting single electron box and a superconducting Cooper pair
box. The superconductor insulator normal conductor (SIN) junction, which was used in
this experiment, is depicted and sketched in Fig 5.2. The tunneling of the electrons was
controlled via the manipulation of the gate voltage Vg.

The distribution of the entropy production ∆sth
tot obtained in the experiment is depicted

in Fig. 5.3 for different temperatures. Furthermore, they were able to test the detailed
FR of the entropy production

P�(∆sth
tot)

P�(−∆sth
tot)

= e∆sthtot , (5.25)
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Figure 5.2.: Electron scanning micrograph and sketch of the device used in the experiment
by the Kooski et al. [19], taken from [19] (Reprinted by permission from
Macmillan Publishers Ltd: Nat. Phys. [19], copyright 2013). The content is
explained in the main text.

with their results. However, even though the experiment was carried out at the single elec-
tron level at temperatures well below 1 K, the results were understood and well described
on a classical level. For further details on the experiments we refer to [19].

Figure 5.3.: Experimental result for the measurement of the distribution of the thermo-
dynamic entropy production P→(∆sth

tot), taken from [19] (Reprinted by per-
mission from Macmillan Publishers Ltd: Nat. Phys. [19], copyright 2013).
The different symbols indicate different temperatures of the sample while the
measurement has been carried out.
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42 5. The driven two-level system in the context of fluctuation relations

5.2. Probability distribution of energy dissipated by the driven
two-level system

After providing an introduction to the FRs in the previous Sec. 5.1, we focus on one
particular physical situation in the following. We study the energy dissipation at the
example of the well-known spin-boson model, considering a periodically driven TLS which
is coupled to a bosonic heat bath.

The probability distribution function is calculated via the method of FCS which has been
introduced in Ch. 4. In order to calculate the corresponding CF we will use the master
equation approach for the reduced density operator of the system. The derived master
equation is used to calculate the CF of the energy dissipated by the driven TLS. Fur-
thermore, the TLS will be manipulated according to the measurement protocol which was
presented in Ch. 2.3. Hence, the system will be pre- and post-selected in two distinct
states |i〉 and |f〉. Consequently, the conditional probability distribution function (PDF)
is determined as

Pτ (ε, f |i) =
∑
n

∑
k

∑
σ=−1,0,1

pk,n,στ (f |i)δ(ε− nω − σΩk), (5.26)

where ε is the dissipated energy.The time-dependent weights pk,n,στ (f |i) indicate the height
of the peaks of the distribution function. The peak positions are quantized to multiples
of the driving frequency ω plus the level splitting Ωk in the rotating frame. The results
presented in this section have been published in [82].

5.2.1. Counting field dependent master equation for the driven system

We derive a master equation in order to obtain the CF of the conditional PDF. The Floquet
theory introduced in Ch. 2.2 will become helpful within this approach. The resulting
master equation will be of Lindblad-form, i.e. we perform a full secular approximation.

The Hamiltonian of the complete system is given by

Ĥ(t) = ĤS(t) + ĤB + ĤI , (5.27)

where ĤS(t) = ĤS(t+τp) is the periodically driven Hamiltonian of the system with period
τp = 2π/ω. The bath is described by an infinite set of harmonic oscillators. Accordingly,

the Hamiltonian of the bath is given by ĤB =
∑

α ωαb
†
αbα, where b†α and bα are the bosonic

creation and annihilation operators. The frequencies of the bath are given by ωα. The
system is coupled to the bath via ĤI =

∑
αAαBα, where Aα, Bα are system and bath

operators, respectively.

In the following we will focus on the situation, where the time-dependency of the free
Hamiltonian of the system is removed by a transformation into the rotating frame. A
generalization suitable to more complicated time periodic problems using the full-fledged
Floquet approach is straightforward and can be found, for example, in [83].

Even though the free Hamiltonian of the system has become time-independent, in the
general situation the system bath coupling may become time-dependent. Consequently,
the Hamiltonian we have to consider reads

H̃ = H̃S + H̃I(t) + ĤB, (5.28)

where

H̃S = R(t)ĤS(t)R†(t) + iṘ(t)R†(t), (5.29)
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and

H̃I(t) =
∑
α

R(t)AαR
†(t)⊗Bα, (5.30)

where R(t) denotes the transformation into the rotating frame. Note that the Hamiltonian
of the bath ĤB remains invariant under the transformation R(t). Furthermore, as we
employ a FCS calculation, we have to incorporate the counting field into the problem.
This is achieved by the two-point measurement approach introduced in Ch. 4.2.

In the following we present the derivation of the master equation with counting field
dependency in full secular approximation. All the approximations which are used in this
derivation have been described in detail in Ch. 3.2. The starting point of the derivation is
a master equation structurally equivalent to Eq. (3.14) with an additional counting field
dependency,

d

dt
ρ(t) =

∫ ∞
0

dsH̃I(λ, t)ρ(t)H̃I(−λ, t− s) + H̃I(λ, t− s)ρ(t)H̃I(−λ, t)

− H̃I(λ, t)H̃I(λ, t− s)ρ(t)− ρ(t)H̃I(−λ, t− s)H̃I(−λ, t), (5.31)

where ρ(t) is the full density matrix of the system and the bath and

H̃I(λ, t) =
∑
α

Ãα(t)⊗ eiĤBλ/2Bαe−iĤBλ/2, (5.32)

is the time-dependent and counting-field-dependent system-bath interaction. We empha-
size that the only term of the Hamiltonian, which is affected by the counting field, is the
system-bath interaction H̃I(λ, t). Employing the Born and the Markov approximation
ρ(t) ≈ ρS(t) ⊗ ρB and assuming that the bath is in thermal equilibrium, we are able to
trace out the bath degrees of freedom. As the counting field appears in terms of bath
operators, we note that the arising bath correlation functions may contain a counting field
dependence. We find two different types of correlation functions

TrB

[
Bβ(λ, t− s)ρBB†α(−λ, t)

]
= TrB

[
BβρBe

iHB(s−λ)B†αe
−iHB(s−λ)

]
= 〈B†α(s− λ)Bβ(0)〉 , (5.33)

TrB

[
Bβ(λ, t)ρBB

†
α(−λ, t− s)

]
= TrB

[
eiHB(s+λ)Bβe

−iHB(s+λ)ρBB
†
α

]
= 〈B†α(0)Bβ(s+ λ)〉 , (5.34)

containing information about the counting field. The counting field appears as a quasi
time shift with respect to λ. We are able rewrite Eq. (5.31) as a master equation for the
reduced density operator of the system ρS(t)

d

dt
ρS(t) =

∑
α,β

∫ ∞
0

ds
[
〈B†β(0)Bα(s+ λ)〉 Ãα(t)ρS(t)Ã†β(t− s)

+ 〈B†α(s− λ)Bβ(0)〉 Ãβ(t− s)ρS(t)Ã†α(t)

− 〈B†α(s)Bβ(0)〉 Ã†α(t)Ãβ(t− s)ρS(t)

− 〈B†β(0)Bα(s)〉 ρS(t)Ã†β(t− s)Aα(t)
]
. (5.35)

We note that by construction the counting field in the latter two bath correlation functions
drops out.
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44 5. The driven two-level system in the context of fluctuation relations

Since the free Hamiltonian of the system in the rotating frame is time-independent, we are
able to perform a spectral decomposition of the operators Ã(t) with respect to H̃S . Thus,
we write

Ã(t) =
∑
n,n′

|n〉〈n|A(t)|n′〉〈n′| =
∑
n,n′

|n〉〈n′|Ann′(t), (5.36)

Ã†(t) =
∑
n,n′

(
|n〉〈n|A(t)|n′〉〈n′|

)†
=
∑
n,n′

|n′〉〈n|Ann′(t), (5.37)

where |n〉 denote the systems eigenstates. Inserting the spectral decomposition into the
master equation (5.35), we obtain

d

dt
ρS(t) =

∫ ∞
0
ds〈B†α(s−λ)Bβ(0)〉e−iωnn′ (t−s)|n〉〈n′|Ann′α (t− s)ρS(t)|m′〉〈m|Aβm

′m(t)eiωmm′ t

+

∫ ∞
0
ds〈B†α(0)Bβ(s+λ)〉e−iωmm′ t|m〉〈m′|Amm′β (t)ρS(t)|n′〉〈n|Aαn

′n(t−s)eiωnn′ (t−s)

−
∫ ∞

0
ds〈B†α(s)Bβ(0)〉eiωmm′ t|m′〉〈m|Aαm

′m(t)|n〉〈n′|ρS(t)Ann
′

β (t− s)e−iωnn′ (t−s)

−
∫ ∞

0
ds〈B†α(0)Bβ(s)〉ρS(t)eiωnn′ (t−s)|n′〉〈n|Aαn

′n(t− s)Amm′β |m〉〈m′|e−iωmm′ t .

(5.38)

Here we introduced the energy differences ωnn′ = En − En′ of the Hamiltonian of the
system in the rotating frame. We further simplify the equation by applying the secular
approximations, i.e., we neglect fast oscillating parts of the master equation oscillating
with frequencies ωnn′ 6= ωmm′ . It is useful to perform a Fourier decomposition of the
periodic matrix elements,

Ann
′

α (t) =
∑
k

eiωktAnn
′

α (k), (5.39)

Ann
′

α (k) =
1

τp

∫ τp

0
dte−iωktAnn

′
α (t), (5.40)

where Ann
′

α (k) denote the Fourier coefficients. Using the Fourier representation, the full
secular approximation is achieved by neglecting fast oscillating terms which oscillate with
the driving frequency ω. This approximation is in agreement with the usual secular ap-
proximation in the regime ω > ωnn′ . We finally obtain

d

dt
ρS(t) = −i[HLS , ρS(t)]

+
∑
α,β

∑
n,n′

∑
k

γαβ(ωnn′ − kω)
[
eiλ(ωnn′−kω)Ann

′
β (k)Ann

′∗
α (k)|n〉〈n|ρn′n′S (t)

− 1

2

{
Ann

′∗
α (k)Ann

′
β (k)|n′〉〈n′|, ρS(t)

}]
, (5.41)

where

γαβ(ωnn′ − kω) =

∫ ∞
−∞

dsei(ωnn′−kω)s〈B†α(s)Bβ(0)〉 (5.42)

are the transition rates and

HLS =
∑
α,β

∑
nn′

∑
k

=Γ(ωnn′ − kω)Ann
′∗

α (k)Ann
′

β (k)|n′〉〈n′|, (5.43)

denotes the Lamb shift like part of the Hamiltonian, which is independent of the counting
field. In the limit of λ→ 0 the above master equation (5.41) reduces to a master equation
in Lindblad form. Consequently, the master equation is applicable to systems where the
previously discussed transformation into the rotating is possible.
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5.2. Probability distribution of energy dissipated by the driven two-level system 45

5.2.2. Structure of the generating function

In the following we determine and evaluate the conditional CF of the conditional PDF.
Before we do so we will discuss several properties of the conditional CF. The general
structure is given by

χτ (λ, f |i) = Tr
[
Pfe

L(λ)τρi(λ, 0)
]
, (5.44)

where Pf = |f〉〈f | is the projector onto the desired final state of the system responsible
for the post-selection. The initial density operator is represented by ρi(λ, 0). At first, a
simple check in accordance with Eq. (4.30) yields

χτ (p, λ, f |i) = χτ (λ, f |i). (5.45)

Thus, the characteristic function is connected to the conditional PDF via Fourier-transform,
i.e.

χτ (λ, f |i) =

∫
dεeiελPτ (λ, f |i). (5.46)

Another interesting property of the CF is generated by the secular approximation. Due
to the secular approximation, the dynamics of the populations and the coherences of the
system decouple. Consequently, the CF for the conditional PDF splits into a classical part
χclτ (λ, f |i) which solely depends on the dynamics of the populations and a quantum part
δχτ (λ, f |i) which is characterized by the dynamics of the coherences. This effect migrates
to the conditional PDF. Hence, the PDF separates into a classical and a quantum part,

Pτ (ε, f |i) = Pclτ (ε, f |i) + δPτ (ε, f |i)

=
1

2π

∫
dλe−iλε

(
χclτ (λ, f |i) + δχτ (λ, f |i)

)
. (5.47)

Although the secular approximation allows for a separate analysis of the classical and
the quantum component of the conditional probabilities, we wish to emphasize that the
quantum corrections only appear when the system was initially prepared in a superposition
state. In other words, if no initial coherences are present, the quantum corrections to the
CF δχτ (λ, f |i) and to the PDF vanish.

5.2.3. Results for the driven two-level system

Having established the mathematical framework to derive the CF we will now apply the
technique to the driven spin-boson model by using the example of the circularly polarized
driving. We recall the full Hamiltonian

Ĥ(t) = ĤTLS(t) + ĤI(ϑ) + ĤB, (5.48)

ĤTLS(t) = −ω0

2
σz +

ΩR

2
(cos(ωt)σx − sin(ωt)σy) , (5.49)

ĤI(ϑ) = (cosϑσx + sinϑσz)⊗B, (5.50)

ĤB =
∑
α

ωαb
†
αbα. (5.51)

By transforming the system into the rotating frame (cf. Ch. 2.2.4), the free Hamiltonian
of the system becomes time-independent. However, the system bath interaction will be
affected by the rotation.

For convenience we present the master equation in Liouville space

d

dt
~ρ(t) = L̃(λ)~ρ(t) , (5.52)
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46 5. The driven two-level system in the context of fluctuation relations

where the reduced density operator of the system is represented by a four component
vector with

~ρS(t) =


ρgg(t)
ρee(t)
ρeg(t)
ρge(t)

 . (5.53)

The super operator generating the dynamics of the reduced density operator is given by

L̃(λ) =


−Γgg(λ) Γge(λ) 0 0
Γeg(λ) −Γee(λ) 0 0

0 0 +iΩ− Γϕ(λ) 0
0 0 0 −iΩ− Γϕ(λ)

 , (5.54)

where Γij(λ) are the counting field dependent transition rates and Γϕ(λ) is the dephasing
rate. Consequently, the CF is obtained as

χτ (λ, f |i) = ~feL̃(λ)τ~ρ iS , (5.55)

where ~f is the projector onto the final state, represented by a four component vector.

To perform the desired initial and final state selection, we use the measurement protocol
introduced in Ch. 2.3. According to the protocol, the initial density operator as well as
the final state projector are parametrized as

~ρ iS =


cos2 θi

2

sin2 θi
2

sin θi
2

sin θi
2

 , ~f =


cos2 θf

2

sin2 θf
2

sin θf
2

sin θf
2

 , (5.56)

such that the pre-selected initial state as well as the post-selected final state is the ground
state of the system for θi = θf = 0.

In the following we investigate two different limits. At first we study the situation where
the system in the laboratory frame is purely longitudinally coupled to the bath, referring
to ϑ = π/2. The second limit of study considers a purely transversal system-bath coupling
with ϑ = 0.

Longitudinal system bath coupling:

In the situation of ϑ = π/2 the system-bath coupling acquires the form ĤI(π/2) = σz⊗B.
We find that the transformation into the rotating frame itself does not affect the system
bath interaction, i.e. H̃I(π/2) = R1(t)ĤI(π/2)R†1(t) = ĤI(π/2). For clarification we
use the Floquet picture introduced in Ch. 2 to clarify what the possible energy transfer
between system and bath can be. We thus consider the driving exponents e±iωt as raising or
lowering operators of energy quanta of ω absorbed or emitted by the bath. With ĤI(π/2)
being invariant with respect to the rotation R1(t), we immediately note that the energy
exchange between system and bath of energy quanta of ω are not possible. Consequently,
the only energy transfer between the system and the bath allowed by this coupling is
restricted to energy dissipation of the level splitting Ω in the rotating frame.

This becomes apparent by the structure of the CF

χzτ (λ, f |i) = ~feL̃z(λ)τ~ρ iS , (5.57)
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where

L̃z(λ) =


− sin2 θγ(−Ω) sin2 θeiΩλγ(Ω) 0 0

e−iΩλ sin2 θγ(−Ω) − sin2 θγ(Ω) 0 0
0 0 −iΩ− 2 cos2 θγ(0) 0
0 0 0 iΩ− 2 cos2 θγ(0)


(5.58)

is the super operator yielding the dynamics of the TLS governed by a fully longitudinal
coupling. Here γ(ω) =

∫
dteiωt〈B†(t)B(0)〉 are the Fourier transforms of the autocorrela-

tion functions of th bath. The only counting field dependency is apparent within the rates
that are responsible for changes of the respective system state.

The conditional PDF is calculated via Fourier transform yielding

Pzτ (ε, f |i) =

∫
dλ

2π
e−iλεχzτ (λ, f |i)

= Pz,cτ (ε, f |i) + δPzτ (ε, f |i), (5.59)

where the classical part is given by

Pz,cτ (ε, f |i) = δ(ε)pz,0τ (f |i) + δ(ε+ Ω)pz,−1
τ (f |i) + pz,1τ (f |i)δ(ε− Ω). (5.60)

The corresponding weights are given by

pz,0τ (f |i) =
sin2 θ

Γzrel

(
γ(Ω)

(
cos2 θi

2
cos2 θf

2
+ e−Γzrelτ sin2 θi

2
sin2 θf

2

)
+ γ(−Ω)

(
e−Γzrelτ cos2 θi

2
cos2 θf

2
+ sin2 θi

2
sin2 θf

2

))
, (5.61)

pz,−1
τ (f |i) =

sin2 θγ(Ω)

Γzrel

cos2 θf
2

sin2 θi
2

(
1− e−Γzrelτ

)
, (5.62)

pz,1τ (f |i) =
sin2 θγ(−Ω)

Γzrel

cos2 θi
2

sin2 θf
2

(
1− e−Γzrelτ

)
, (5.63)

(5.64)

where Γzrel = sin2 θ(γ(ω) + γ(−ω)). The quantum part yields a shift to the weight of the
zero energy peak, i.e.

δPzτ (ε, f |i) =
1

2
sin θi sin θf cos Ωτe−2 cos2 θγ(0)τδ(ε), (5.65)

which decays according to the dephasing rate Γzϕ = 2 cos2 θγ(0).

The resulting conditional PDFs Pzτ (ε, f |i) of energy emitted to the bath are shown in Fig.
5.4. Four different PDfs regarding different pre- and post-selected states are presented.
A pre- or post-selection of the | ↓〉 state of the system corresponds to θi = θf = 5π/4,
whereas the selection for the system being in the state | ↑〉 is achieved by θi = θf = π/4.
As expected, there are three peaks visible in the picture. A central peak at ε = 0 and two
side peaks at ε = ±Ω.

Transversal system bath coupling:

The situation of transversal system-bath coupling with ϑ = 0 is more interesting. Since
the transformation into the rotating frame does not commute with ĤI , we obtain a time
dependency of the system bath interaction in the rotating frame yielding

H̃I(t) =
(
eiωtσ+ + e−iωtσ−

)
⊗B. (5.66)
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Figure 5.4.: Conditional probability densities Pzτ (ε, f |i) of energy emitted to the bath.
Here, f(i) indicates the final (initial) state selection in the rotating frame.
The energy ε is normalized to the driving frequency ω. The probability den-
sities are plotted for coupling γ0 = 0.01, temperature β = 1/ω, detuning
∆ = 0.2ω, Rabi-frequency ΩR = 0.2ω and a driving time ωτ = 200.

We immediately see that with the transversal system-bath couplingm the energy exchange
of quanta of the driving frequency ω is possible between the system and the bath. To
illustrate the possible transitions of the system with respect to energy transfer to the bath
we use the Floquet picture as illustrated in Fig. 5.5. The available transitions depend on
the current state of the system. For example, the system could be in the ground state |g〉 of
the rotating frame. Consequently, the system can either make transitions with frequency
±ω to neighboring Floquet mode ground states |g〉 or to neighboring Floquet mode excited
states |e〉, corresponding to transition frequencies ±ω − Ω. Transitions with frequencies
±ω + Ω are blocked as there are no final states available. In the opposite scenario, where
the system is in the excited state |e〉 of a particular Floquet mode, it can either change
to an excited state of a neighboring Floquet mode by exchanging ±ω quanta of energy to
the bath or it ends up in a neighboring ground state corresponding to an energy exchange
of ±ω + Ω with the bath. Due to the lack of an available final state, the transitions with
frequencies ±ω − Ω are blocked. Thus, the conditional PDF depends on the initial state
of the system.

In the same manner as for the longitudinal coupling, we obtain the PDF via Fourier
transform of the characteristic function χxτ (λ, f |i) given by Eq. (5.55). With the separation
into the classical part, depending only on the dynamics of the populations of the reduced
density operator, and the respective quantum part, only depending on the dynamics of
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5.2. Probability distribution of energy dissipated by the driven two-level system 49

Figure 5.5.: Floquet-picture of the two level system in the energy-eigenbasis in the case
of transversal coupling. The index n depicts the n-th Floquet-mode of the
system, which is energetically shifted to the system by the Frequency nω.
There are 8 possible transitions. If the system was in the ground state |g〉 of
the rotated frame, then only (blue) transitions with energy exchange of ±ω
(1g, 2g) or ±ω−Ω (3g, 4g) are possible. If the system has been in it’s excited
state |e〉, only the (red) transitions (1e− 4e) are possible.

the coherences, we find

χx,clτ (λ, f |i) =
e−

τ
2

(Γgg(λ)+Γee(λ)−2Λ(λ))

2Λ(λ)
×

×
(
A(λ, θf , θi) +B(λ, θf , θi)

4
−
A(λ, θf , θi)−B(λ, θf , θi)

4
e−2Λ(λ)τ

)
, (5.67)

δχxτ (λ, f |i) =
1

2
cos(Ωτ) sin θi sin θfe

−Γϕ(λ)τ , (5.68)

where

A(λ, θf , θi) = (cos θi + cos θf ) (Γge(0)− Γeg(0))

− (cos θf − 1)(cos θi + 1)Γeg(λ)− (cos θf + 1)(cos θi − 1)Γge(λ) (5.69)

B(λ, θf , θi) = 2Λ(λ)(1 + cos θf cos θi) (5.70)

Λ(λ) =
1

2

√
4Γeg(λ)Γge(λ) + (Γee(λ)− Γgg(λ))2 (5.71)

The matrix elements for the time evolution of the reduced density operator of the system
are computed as

Γgg(λ) = Γeg(λ = 0)− γ−(ω, λ) , (5.72)

Γge(λ) = cos4 θ

2
γ(Ω + ω)eiλ(Ω+ω) + sin4 θ

2
γ(Ω− ω)eiλ(Ω−ω) , (5.73)

Γeg(λ) = cos4 θ

2
γ(−Ω− ω)eiλ(−Ω−ω) + sin4 θ

2
γ(−Ω + ω)eiλ(−Ω+ω) , (5.74)

Γee(λ) = Γge(λ = 0)− γ−(ω, λ) , (5.75)
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which reflect the energetically possible transitions based on their counting field dependency.
The dephasing rate is obtained as

Γϕ(λ) = γ+(ω, λ) +
1

2
(Γeg(0) + Γge(0)) . (5.76)

In all the rates ((5.72) - (5.76)) we have obtained contributions

γ±(ω, λ) =
sin2 θ

4

(
γ(ω)

(
eiλω ± 1

)
+ γ(−ω)

(
e−iλω ± 1

))
, (5.77)

which originate from processes where only the Floquet index is changed and the state
of the system remains unchanged. Consequently, those contributions provide an energy
exchange of quanta ±ω with the bath and are belonging to the transitions 1g, 2g, 1e and
4e in Fig. 5.5.

The conditional PDFs Pxτ (ε, f |i) are depicted in Fig. 5.6 for four different choices of
pre- and post-selected system states. We chose two different pre- and post-selected states
of the system, i.e. the | ↑〉 state corresponding to a choice of θi = θf = π/4 the | ↓〉
state, which is achieved by choosing θi = θf = 5π/4. The conditional PDFs have been
obtained by numerical Fourier transform of Eq. (5.55). We find that the PDF consists of
peaks positioned at nω + σΩ with σ = 0,+,− and n being integer. As discussed above,
the conditional PDFs contain considerable quantum contributions (see Fig. 5.6), most
pronounced in Fig. 5.6 (d), which we calculate analytically. Interestingly, these corrections
appear only for ε = nω and thus only for the central peaks. Via Fourier transform of Eq.
(5.68) we obtain

δPxτ (ε, f |i) =
1

2
sin θi sin θf cos(Ωτ) e−τΓ0

ϕ ×
∑
n

δ(ε− nω)

(
iγ(ω)1/2

γ(−ω)1/2

)n
Jn [iητ ] , (5.78)

where Jn[iητ ] is the Bessel function of the first kind. The factor in the argument has been
abbreviated for legibility reading η = sin2 θ(γ(ω)γ(−ω)1/2)/2. A detailed calculation of
the dephasing rate is found in the Appendix B. The dephasing rate is given by

Γ0
ϕ ≡ (Γeg(0) + Γge(0))/2 + γ+(ω, 0)/2, (5.79)

which characterizes the decay of the quantum contribution to the conditional PDF. Conse-
quently, the quantum contribution decays over time, oscillating with the frequency of the
level splitting. We observe that the quantum corrections to the PDF are maximized for a
selection of θi = θf = π/2, 3π/2, corresponding to a state selection of maximal coherence
of the eigenstates of the rotating frame Hamiltonian of the system. As expected, in the
situation of the system being prepared or post-selected in an eigenstate of the Hamiltonian
of the system in the rotating frame, the quantum correction vanishes. The quantum cor-
rections to several probability weights are depicted in Fig. 5.7 as a function of the driving
time. For convenience they are calculated for θi = θf = π/4. The dotted vertical line is
used to indicate the time ωτ = 200 at which the PDFs in Fig. 5.6 where calculated.

On a technical level we are able to explain why only the central peaks corresponding to
integer values of ε/ω are affected by the quantum corrections. The quantum corrections
arise from the coherences and hence are assigned to the dephasing rate Eq. (5.76). The
two parts are given by Eq. (5.77) and 1

2(Γeg(0) + Γge(0)). The first part yields only
transitions between different Floquet modes without changing the state of the system
with an associated energy transfer of ±ω. The second part consists of the two diagonal
components of the matrix of rates which are, by construction, independent of the counting
field λ. Consequently, they do not contribute to the distribution function of dissipated
energy.
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Figure 5.6.: Conditional probability densities Pτ (ε, f |i) as a function of normalized energy
ε/ω. The distances between the peaks are given by the driving frequency ω
or the level splitting Ω. The parameters are the same as in Fig. 5.4. The
distinct choice of initial and final state drastically changes the structure of
the probability densities. The markers denote the difference between the PDF
with (black solid) and without (red dashed) quantum corrections δPτ (ε, f |i)
at peak positions with integer values of ε/ω.

In the context of the aforementioned FRs, we can successfully check that our generating
function obeys

χτ (λ, f |i) = χτ (−λ+ iβ, i|f), (5.80)

which is in agreement with Eq. (5.24). Hence, the detailed FR

Pτ (ε, f |i)
Pτ (−ε, i|f)

= eεβ (5.81)

is satisfied. Note that in a general situation, the PDF Pτ should be related to the time-
reversed PDF Pτ,B, where not only the state but, in addition, the driving protocol is
time-reversed. In our case the driving protocol only contributes a phase shift, which is
immaterial within the RWA.

5.3. Conclusion

After providing an introduction to the general topic of the FRs and discussing the current
experimental situation, we presented our results on the energy dissipation of the driven
TLS.
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Figure 5.7.: Quantum correction δPτ (ε, f |i) for θf = θi = π/4 as a function of time for
different values of ε = 0 (orange, dashed dotted), ε = ω (blue, dotted), ε = 2ω
(red, dashed) and ε = −ω (black). The intersection at τ = 200/ω denotes the
time, where the conditional probabilities of Fig. 5.6 have been calculated.

We calculated the conditional PDFs of the dissipated energy for certain pre- and post-
selected system states. The obtained conditional PDFs fulfilled the quantum version of
the detailed fluctuation relation.

We discussed two different system-bath couping scenarios. In the situation of pure lon-
gitudinal coupling it turned out that the energy pumped into the system by the external
driving cannot be dissipated to the surrounding heat bath. Instead, only relaxation pro-
cesses with energy dissipation of quanta of the energy splitting of the TLS ±Ω were visible
in the conditional PDF.

In the situation of transversal system-bath coupling, the situation became more interesting.
The coupling allowed for energy exchange of quanta of the driving frequency ω between the
system and the bath. The energy exchanged between the system and the bath turned out
to be quantized to multiples of the driving frequency ω shifted by ±Ω, the level splitting of
the TLS in the rotating frame. Consequently, the structure of the PDF resulted in peaks
positioned at integer values of ω with side peaks appearing at ±Ω next to them.

The main result were relatively large quantum corrections to the conditional probabilities
due to the coherences of the density operator of the system. The quantum corrections
turned out to solely influence the weights to the central peaks, i.e. the peaks of nω with
integer n. Furthermore, the quantum corrections were found to decay with respect to the
dephasing rate Γ0

ϕ. An observation of the quantum corrections would constitute a first
test of the FRs in the quantum regime, explicitly taking into account quantum effects.
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6. The conditional cumulants of
dissipated energy

The previous chapter was devoted to the analysis of the conditional probability distribu-
tions of the dissipated energy. In this chapter we present a detailed analysis of the first
two conditional cumulants, i.e. the conditional average and the conditional noise. The
cumulants are computed using the FCS technique. Our analysis focuses on how the ex-
ternal manipulation of the TLS influences the energy dissipation as well as the noise of
dissipated energy. Consequently, the analysis contains the effect of pre- and post-selection
of the states of the TLS. Additionally, we consider and analyze two different situations,
where the TLS is either driven in resonance or off resonance. We focus on the situation
of transversal system bath coupling ĤI(ϑ = 0) = σxB. Although quantum features are
visible in our results, the most pronounced features are explained by a classical analysis.
The results presented in this chapter have partially been published by the author in [60].

6.1. Numerical analysis of the cumulants

To obtain an overall picture, as to how the energy dissipation is influenced either by the
choice of pre- and post-selection of system states or the type of the drive, we first perform
a numerical analysis. Hence, we first investigate the qualitative picture of the conditional
average and the conditional noise.

6.1.1. Analysis of the conditional average

We start our investigations with the analysis of the conditional average of dissipated energy

〈ετ 〉i→f ≡
∫
dε εP̃τ (ε, f |i)

= ∂iλ lnχτ (λ, f |i)|λ=0 , (6.1)

where

P̃τ (ε, f |i) =
Pτ (ε, f |i)∫
dεPτ (ε, f |i)

, (6.2)

=
Pτ (ε, f |i)
Pτ (f |i)

. (6.3)
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54 6. The conditional cumulants of dissipated energy

In the second line of Eq. (6.1) we used the fact that the conditional average is connected to
the CF by the derivative with respect to the counting field λ. As discussed in the previous
Ch. 5, the FR demands a lower bound on the conditional average. Indeed, utilizing
Jensen’s inequality on the conditional probabilty densities yields∫

dε P̃τ (ε, f |i)e−βε ≥ exp

[
−β
∫
dε εP̃τ (ε, f |i)

]
. (6.4)

Using Eqs. (6.1) and (6.4) one obtains

〈ε〉i→f = −β
∫
dε εPτ (ε, f |i)
Pτ (f |i)

≤ ln

(∫
dεPτ (ε, f |i)e−βε∫
dεPτ (ε, f |i)

)
= ln

(∫
dεPτ,B(−ε, i|f)∫
dεPτ (ε, f |i)

)
, (6.5)

which results in

〈ε〉i→f ≥
1

β
ln

(
Pτ (f |i)
PτB (i|f)

)
. (6.6)

Eq. (6.6) can be undestood as the second law of thermodynamics for the pre- and post-
selected ensemble. Interestingly, the lower bound for the conditional average of dissipated
energy can in general be negative, depending on the selection of initial and final states of
the system.

In Fig. 6.1 the conditional average 〈ε〉i→f is depicted as a function of the two pre- and
post-selective measurement angles θi and θf for a finite driving time ωτ = 30 × 2π and
finite temperature T = ω. The driving time is chosen to be of the order of the charac-
teristic relaxation times Γ−1

rel ,Γ
−1
ϕ of the spin. At such time scales the effect of the pre-

and post-selection is prevailing. The longer the driving lasts, the more the statistics of
the conditional average will be characterized by the properties of the stationary state,
irrespective of the systems initial state preparation.

Furthermore, in Fig. 6.1 a comparison of two different driving scenarios is shown: Panel (a)
shows the situation of finite detuning ∆ = 0.2ω, whereas panel (b) depicts the resonantly
driven scenario (∆ = 0). We immediately notice that the detuning has a pronounced
impact on the amount of energy being dissipated. Furthermore, the conditional average of
the energy dissipated by the detuned driven TLS exhibits regions where it is negative. The
corresponding selection angles are in the in the vicinity of θi = 0, θf = π, which correspond
to a pre-selection of the system in its ground state |g〉 and a post-selection in the systems
excited state |e〉.

In both driving schemes we note that the largest value of dissipated energy lies at θi = π
and θf = 0, which corresponds to a preparation in the excited state and a final state
selection in the ground state of the rotating frame. Interestingly, for this choice of driving
time and temperature, the absolute value of 〈ε〉e→g turns out to be larger at finite detuning
as compared to the case of resonant driving.

A deeper understanding of the results depicted in Fig. 6.1 may be achieved by considering
special pairs of pre- and post-selected system states which we will study in the following.
We start our analysis by a choice of θi and θf , either being 0 or π, which corresponds to
a pre- and post-selection of the systems eigenstates in the rotating frame. As discussed in
the previous Ch. 5.2.2, with this choice of states coherences are neither initially present,
nor are they ever generated. By that means we do not expect any coherent oscillations to
appear and the result is completely determined by the classical part of the CF.
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6.1. Numerical analysis of the cumulants 55

We start with the conditional average 〈ετ 〉g→e (corresponding θi = 0 and θf = π) and
its respective lower bound, cf. Eq. (6.6) depicted in Fig. 6.2 (a) as a function of the
normalized temperature T/ω for a fixed driving time ωτ = 30 × 2π. We observe a sign
change of the dissipated energy at a transition temperature which we denote by T0. Above
the transition temperature the bath is more likely to provide the energy required for the
transition to the energetically unfavorable state. Below T0 the bath is not capable of
exciting the system. Consequently, the system solely receives its energy from the driving
source which is partly dissipated to the bath, yielding a positive value for the dissipated
energy. The aforementioned transition temperature T0 referring to this particular pre-
and post-selection scenario is depicted in Fig. 6.2 as a function of the driving time. The
transition temperature tends to diverge the longer the drive lasts. Indeed, the longer
the drive lasts, the more energy has been pumped into the system by the driving source.
Consequently, after enough energy has been pumped into the system the average dissipated
energy will become positive irrespective of the magnitude of the temperature of the bath.

We further show the conditional average and the corresponding lower bounds in Fig.
6.2 (c) for two different pairs of pre- and post-selected system states. Referring to the
energetically unfavorable process |g〉 → |e〉, the average dissipated energy is negative and
increasing with the driving time. Finally we depict the conditional average for the |e〉 → |e〉
process in Fig. 6.2 (d) for different temperatures. With increasing temperature the the
amount of dissipated energy decreases. Indeed, the bath is more likely to transfer energy
to the system than to receive energy from the system as temperature increases.

In a next step we analyze pairs of pre- and post-selected system states corresponding to the
spin states in the rotating frame, i.e. the state | ↑〉 and ↓〉 (along the ẑ-axis in the rotating
frame). For finite detuning ∆ = ΩR = 0.2ω the angle between the ground state and the
ẑ-axis is given by θ = π/4. Consequently a pre selected state | ↑〉 corresponds to θi = π/4,
whereas a pre-selection of the | ↓〉 state is achieved by a rotation angle θi = 5π/4. The
same holds true for the selection angle θf regarding the post-selected systems state. In
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Figure 6.1.: The conditional average 〈ε〉i→f depicted at finite temperature T = ω and
finite driving time ωτ = 30× 2π. In panel (a) we have a finite detuning ∆ =
0.2ω. Panel (b) corresponds to the case of resonant driving with ∆ = 0. The
dimensionless coupling strength between system and bath is set to γ0 = 0.01.
The Rabi-frequency is set to ΩR = 0.2ω. Lines of equal energy have been
included for clarity.
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56 6. The conditional cumulants of dissipated energy

Fig. 6.3 we show results similar to those of Fig. 6.2, however with respect to the selection
to the spin states. Since the pre- and post-selected states are no longer eigenstates of the
Hamiltonian in the rotating frame, in addition to the above discussed features the results
undergo coherent oscillations which decay with respect to the relaxation and dephasing
processes. However, the qualitative characteristics of the results remain unchanged despite
the coherent oscillations.

Regarding to Fig 6.3 (d) in particular, we observe that the amplitude of the oscillations
decreases with increasing temperatures. In conclusion, most of the observed features seem
to be explainable by the classical part of the CF. We will provide an analysis of the
corresponding contribution χclτ (λ, f |i) in the subsequent Sec. 6.2.

6.1.2. Analysis of the conditional noise

After having provided a qualitative analysis of the conditional average in the previous
section we will now turn our attention to the second cumulant, the conditional noise, with

Figure 6.2.: Conditional average of the energy dissipated to the bath for various choices
of the pre- and post-selected states. In all panels ∆ = ΩR = 0.2ω. In panel
(a) the conditional average 〈ετ 〉g→e (black) and its lower bound (blue, dashed)
is shown as a function of the temperature T (driving time ωτ = 30 × 2π).
Panel (b) shows the transition temperature T0/ω for the same pre and post
selection as a function of the driving time ωτ . In panel (c) and (d) we show the
behavior of the conditional average as a function of the driving time. Panel
(c) shows the conditional average 〈ετ 〉e→g (black) and the corresponding lower
bound (black, dashed) as well as the the conditional average 〈ετ 〉g→e (blue)
and the lower bound (blue, dashed), respectively. In panel (d) we show the
dependence of the conditional average 〈ετ 〉e→e on the driving time for three
different temperatures: T = 0.01ω (black), T = 0.5ω (blue,dotted) and T = ω
(red, dashed).
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6.1. Numerical analysis of the cumulants 57

respect to the impact of the pre- and post selection

〈∆ε2τ 〉i→f ≡ 〈ε2τ 〉i→f − 〈ετ 〉2i→f
= −∂2

λ ln(χτ (λ, f |i))|λ=0 . (6.7)

In a similar manner as in the previous section, we show the results for the conditional noise
after a driving time of ωτ = 30× 2π in Fig. 6.4. We show the situation for finite detuning
∆ = 0.2ω in Fig. 6.4 (a), whereas in Fig. 6.4 (b) we show the resonant case, ∆ = 0. As
one would expect, the magnitude of the noise is generally enhanced for a resonant drive.
Furthermore, the variance reaches a maximum in the situation of the |e〉 → |g〉 pre- and
post-selection scenario. In the situation of finite detuning ∆ = 0.2ω, the exact same choice
of pre- and post-selected system states yields a suppressed noise. We will discuss this in
more detail in the subsequent section.

Figure 6.3.: Conditional average of the energy dissipated to the bath for various choices
of the pre- and post-selected states. In all panels ∆ = ΩR = 0.2ω. In panel
(a) the conditional average 〈ετ 〉↓→↑ (black) and its lower bound (blue, dashed)
(both measured in units of the driving frequency ω) is shown as a function
of temperature T (driving time ωτ = 30 × 2π). Panel (b) shows the tran-
sition temperature normalized to the driving frequency T0/ω as a function
of the driving time ωτ . The transition temperature is plotted for the con-
ditional average 〈ετ 〉↓→↑. Panels (c) and (d) depict the time dependence of
the conditional average. In panel (c) we show the conditional averages and
the corresponding lower bounds for different pre- and post-selected states, i.e.
〈ετ 〉↓→↑ (blue, bottom) and its lower bound (blue, dashed, bottom) as well as
〈ετ 〉↑→↓ (black, top) and its lower bound (black, dashed, top). Finally panel
(d) depicts 〈ετ 〉↑→↑ as a function of ωτ for different temperatures T = 0.01ω
(black), T = 0.5ω (blue, dotted) and T = ω (red, dashed).
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58 6. The conditional cumulants of dissipated energy
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Figure 6.4.: Conditional variance as a function of the initial and final states characterized
by the angles θi and θf . The conditional variances are plotted at the time
ωτ = 30 × 2π and temperature T = ω. In Panel (a) we consider a finite
detuning ∆ = 0.2ω. Panel (b) shows the case of resonant driving. Lines
indicating equal noise amplitude have been included for clarity.

6.2. Discussion and analytics to the conditional cumulants

Within this section we provide an analytic analysis of the conditional cumulants. This
is carried out to recover the main features as depicted in Figures 6.1 and 6.4 from the
classical part of the CF.

As discussed in the previous Ch. 5.2.2, the CF derived with the help of a master equation in
full secular approximation, splits into a classical part, fully determined by the dynamics of
the populations and a quantum part, solely depending on the dynamics of the coherences.
In the following we will focus on an analysis of the classical part of the CF. We will
discuss and argue that it is responsible for most of the pronounced features appearing
in Figs. 6.1 and 6.4. This is also attributed to the fact that at the timescale of the
order of the relaxation time of the system, the conditional average of dissipated energy
is strongly affected by the expectation values of energy differences with respect to the
pre- and post-selected states. This effect should be clearly visible at very long driving
times τ →∞ but obviously will be overpowered by the contribution of the energy current
growing linear in time. Hence the information about the state selection should be found
as a time-independent part of the classical part of the CF. In the following we will analyze
the classical part of the CF

lnχpτ (λ, f |i) =
τ

2
(−Γgg(λ)− Γee(λ) + 2Λ(λ))

− ln 2Λ(λ) + ln
A(λ, θf , θi) +B(λ, θf , θi)

4

+ ln

(
1−

A(λ, θf , θi)−B(λ, θf , θi)

A(λ, θf , θi)+B(λ, θf , θi)
e−2Λ(λ)τ

)
. (6.8)

The quantities used within Eq. (6.8) are given by

A(λ, θf , θi) = (cos θi + cos θf ) (Γge(0)− Γeg(0))− (cos θf − 1)(cos θi + 1)Γeg(λ)

− (cos θf + 1)(cos θi − 1)Γge(λ) , (6.9)

B(λ, θf , θi) = 2Λ(λ)(1 + cos θf cos θi) . (6.10)
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6.2. Discussion and analytics to the conditional cumulants 59

Figure 6.5.: Conditional average of energy for |e〉 → |g〉 pre- and post-selection shown in
panel (a) for resonant driving ∆ = 0 (black, solid) and with finite detun-
ing ∆ = 0.2ω (blue, dashed). Panel (b) depicts the average heat current
limτ→∞〈ετ 〉i→f/τ as a function of the detuning ∆.

The first line of the above Eq. (6.8) is related to the vanishing eigenvalue of the super-
operator Eq. (5.54) for λ = 0. This eigenvalue in particular determines the long time
behavoir of the CF. The second line of Eq. (6.8) denotes a time-independent offset carrying
information about the pre- and post-selected states of the system. The last contribution
to the CF are transient contributions. They decay on timescales of order of the relaxation
time Γ−1

rel . For zero driving time τ = 0 we can check that χ0(λ, f |i) becomes independent
of λ and consequently all cumulants vanish.

For convenience we present in Fig. 6.5 the results for the conditional average as obtained
from Eq. (6.8). In Fig. 6.5 panel (a) the conditional average 〈ετ 〉e→g is depicted for both
the resonant driving ∆ = 0 as well as the detuned driving scheme ∆ = 0.2ω. We observe
that for a shorter driving time more energy is emitted in the detuned case rather than in
the resonantly driven situation. On the other hand, the longer the driving lasts, the more
energy tends to be dissipated during the resonant drive.

For long driving times τ →∞ the energy dissipation should be dominated by the stationary
state heat current, being independent of the state selection. Indeed, we obtain the heat
current of dissipated energy as

lim
τ→∞

〈ετ 〉i→f
τ

= lim
τ→∞

∂iλ lnχτ (λ, f |i)|λ=0

τ

=
sin2 θ ω

4Γrel

(
Γrelγ(ω)

(
1− e−βω

)
+

sin2 θ

2
γ(ω + Ω)γ(ω − Ω)

(
1− e−2βω

))
.

(6.11)

It is clearly independent of the choice of pre- and post-selected states of the system.
Furthermore, as expected, the heat current is sensitive to the detuning, maximal for the
resonant drive ∆ = 0 and decreasing as the detuning increases. For convenience we plot
the heat current in Fig. 6.5 (b) as a function of the detuning.

Next, we analyze the time-independent part of the CF, given by line 2 of Eq. (6.8), or to be
more precise, its contributions to the conditional cumulants. This contribution dominates
the selection sensitivity of the cumulants at long driving times τ → ∞ since all other
selection sensitive contributions will have vanished by then. Hence they determine the
landscape of limτ→∞〈ετ 〉i→f as a function of the selection angles θi and θf . Dropping out
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60 6. The conditional cumulants of dissipated energy

the selection insensitive contribution of Eq. (6.8) we readily define

cn(θi, θf ) ≡ ∂niλ ln
A(λ, θi, θf ) +B(λ, θi, θf )

4

∣∣∣∣
λ=0

. (6.12)

Consequently, the contribution to the first cumulant, the conditional average of dissipated
energy, is given by

c1(θi, θf ) =
1

2(Γrel + cos θf (Γge − Γeg))

(
(1−cos θf )(cos θi+1)Γ′eg+(cos θf+1)(1− cos θi)Γ

′
ge

+
2

Γrel
(1 + cos θf cos θi)(ΓgeΓ

′
eg + Γ′geΓeg)

)
, (6.13)

where Γ′ij ≡ ∂iλΓij |λ=0. We show c1(θi, θf ) as a function of the selection angles for the
detuned drive ∆ = 0.2ω in Fig. 6.6 (a) and for the resonant drive in Fig. 6.6 (b).
A comparison to the numerically obtained results in Fig. 6.1 yields a high degree of
similarities in both pictures. Considering the detuned driving scenario, cf. Figs 6.1 (a) and
6.6 (a), we observe that the effects of pre- and post-selection are much more pronounced
in comparison to the resonantly driven situation, depicted in Figs 6.1 (b) and 6.6 (b). In
order to explain this effect of higher sensitivity to the pre- and post-selection of states to
the detuned regime, we analyze the |e〉 → |g〉 state selection. The corresponding angles
are θi = π and θf = 0. The constant contribution is determined to be

c1(π, 0) =
Γ′ge
Γge

= ω + Ω− 2ωγ(ω − Ω)

γ(ω − Ω) + eβ(ω−Ω) cot4 θ
2γ(ω + Ω)

. (6.14)

This particular state selection identifies the relevant contributions to the |e〉 → |g〉 transi-
tion, which is solely determined by the corresponding matrix element Γge(λ). The matrix
element is given by (cf. Eq. (5.74))

Γge(λ) = cos4 θ

2
γ(Ω + ω)eiλ(Ω+ω) + sin4 θ

2
γ(Ω− ω)eiλ(Ω−ω) . (6.15)

Both processes contained in this matrix element involve a transition process of energy
exchance of quanta Ω ± ω. At elevated temperatures T ∼ ω and in the resonant regime
∆ = 0, θ = π/2, both processes have comparable rates. This results in an average en-
ergy dissipation of quanta of Ω. Hence, c1(π, 0) ≈ Ω with respect to the resonant regime.
However, by increasing the detuning, the first rate within this process is favored. Con-
sequently, an additional process emitting energy of the amount of ω + Ω has to occur.
This is reflected by c1(π, 0) ≈ ω + Ω for the detuned driving scheme, which results in a
much higher amount of energy dissipated as compared to the resonantly driven situation.
Furthermore, this result explains the enhancement of energy dissipation for short driving
times regarding the detuned drive as compared to the resonant situation shown in Fig.
6.5 (a). In this regime the enhancement is dramatically larger than the natural increase

of energy difference Ω =
√

∆2 + Ω2
R due to the detuning. What we observe is related to

the effect of detuning on the Mollow-Triplet [84, 85, 86].

Finally, we want to discuss the state selection sensitive contribution c2(θi, θf ) to the con-
ditional variance. The time-independent contribution to the noise c2(θi, θf ) is depicted in
Fig. 6.6 (a) for finite detuning and for the resonant situation in Fig. 6.6 (b). A comparison
shows a qualitative similarity to the numerically obtained results in Fig. 6.4. Regarding
the resonant regime, the noise is generally enhanced and relatively insensitive to the pre-
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6.2. Discussion and analytics to the conditional cumulants 61

and post-selection of system states. Again, the situation with finite detuning yields a more
versatile dependency on the pre- and post-selection. Interestingly, the noise appears to
be minimal in the vicinity of the |e〉 → |g〉 transition, which yielded a maximal energy
dissipation. We find

c2(π, 0) =
Γ′′ge
Γge
−
(

Γ′ge
Γge

)2

=
sin4 θeβ(ω−Ω)ω2γ(ω − Ω)γ(ω + Ω)

4
(
sin4 θ

2γ(ω − Ω) + eβ(ω−Ω) cos4 θ
2γ(ω + Ω)

)2 , (6.16)

which leads to a suppression of the conditional variance as the detuning increases due to
the sin4 θ dependency in the numerator. The physical explanation of the noise suppression
is completely analogous to that of the time-independent contribution to the conditional
average. The state selection identifies the matrix element of the master equation respon-
sible for the |e〉 → |g〉 transition, Γge(λ). In the resonant regime, both transitions with
energy exchange of quanta Ω+ω and Ω−ω are equally probable, resulting in an enhanced
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Figure 6.6.: Top panels: Selection sensitive contribution c1(θi, θf ) to the conditional aver-
age. Panel (a) depicts the situation with ∆ = 0.2ω. In Panel (b) the situation
for resonant driving ∆ = 0 is shown. Bottom panels: Selection sensitive con-
tribution c2(θi, θf ) to the conditional noise. The panels compare the situation
(c) with finite detuning ∆ = 0.2ω and (d) resonant driving.
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62 6. The conditional cumulants of dissipated energy

noise. As the detuning tends to favor the energy exchange of Ω + ω, i.e. this transition is
favored; the noise is suppressed.

6.3. Quantum part of the dissipated energy

So far we have provided a detailed analysis of the effect of pre- and post-selection of states
of the TLS on the conditional average. We showed that the most pronounced features
are due to the classical contributions of the CF. In Sec. 6.1 we observed that quantum
features, i.e. coherent oscillations are observable but relatively small. Referring to our
analysis in the previous Ch. 5, the CF, as obtained by a master equation in Lindblad
form, splits into a classical and a quantum part. Hence, we can extract the quantum part
from Eq. (5.47)

δχxτ (λ, f |i) =
1

2
cos(Ωτ) sin θi sin θfe

−Γϕ(λ)τ . (6.17)

Consequently, the quantum part of the conditional average is obtained as

〈δετ 〉i→f =
∂iλ δχ

x
τ (λ, f |i)|λ=0

Pτ (f |i)

=
−τ cos Ωτe−Γϕ(0)τ

8Pτ (f |i)
sin2 θ sin θi sin θfω (γ(ω)− γ(−ω)) . (6.18)

where

Pτ (f |i) = Px,clτ (f |i) + δPxτ (f |i) (6.19)

denotes the conditional transition probabilty of the system to end up in the post-selected
state |f〉, given it was prepared in the state |i〉. As expected, the quantum effect on the
dissipated energy is largest if the driving time is chosen in the vicinity of the dephasing
time Γϕ(0). Furthermore, it is largest for a set of pre- and post-selected states of maximal
coherence, i.e. θi = θf = π/2, with respect to the eigenstates of the TLS in the rotating
frame.

In order to demonstrate that the quantum states did play a secondary role in the prior
analysis of the effect of pre- and post-selection on the conditional average, we depict the
exact same situation as in Fig. 6.1 for finite detuning in Fig 6.7. In Fig. 6.7 (a) we show the
pure quantum contribution to the conditonal average at the exact same conditions where
Fig. 6.1 (a) has been calculated for. The conditional average depicted in Fig. 6.7 (b) is
equivalent to the one depicted in 6.1 (a), where all contributions to the conditional average
have been taken into account. In Fig. 6.7 (c) we show the situation where the conditional
average was calculated by only considering the classical part of the CF. However, the
quantum contribution turns out to be completely overshadowed by the classical features,
as they are about two orders of magnitude smaller in this parameter regime. At much
lower temperatures the quantum corrections may become noticeable as demonstrated in
Fig. 6.8.

6.4. Conclusion

In this chapter we studied the effect of the pre- and post-selection of states of the TLS
on the first two conditional cumulants of the dissipated energy. We found that not only
the choice of initial and final states but additionally driving the TLS off resonance yields
interesting and rich results.
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Figure 6.7.: Contribution of the coherences to the conditional average as a function of the
pre- and post-selection angles for finite detuning ∆ = 0.2ω. In panel (a) the
bare quantum contribution is depicted. Panel (b) shows the situation where
the quantum corrections have been taken into account to compute the total
conditional average (cf. Fig. 6.1). The conditional average shown panel (c) has
been calculated by only considering the classical part of the CF. As indicated
by the different plot legends, the quantum signatures are suppressed by two
orders of magnitude.

The average heat current limτ→∞〈ετ 〉i→f/τ is independent of choice of the pre- and post
selection and is only sensitive to the detuning of the drive. As expected, the heat current
becomes maximal when the driving is resonant. For finite detuning and an energetically
unfavorable choice of pre- and post-selected system states, our analysis shows that the
conditional average becomes negative at times of order of the relaxation times above a
crossover temperature T0. Further analysis shows that this temperature tends to diverge
as a function of the driving time. Thus, for a long enough driving time the system has to
dissipate energy to the bath independent of the temperature of the bath.
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Figure 6.8.: Contribution of the quantum corrections to the conditional average at low
temperatures. In panel (a) we show the conditional average of the dissipated
energy where the quantum contributions are fully included. In panel (b) the
quantum corrections are dropped. The plots are evaluated in the same pa-
rameter regime as in Fig. 6.1 except that the temperature is much lower, i.e.
T = 0.1ω.

Furthermore we find that the state selection manifests itself mostly in a time-independent
contribution which turns out to be sensitive to the detuning. In the vicinity of the |e〉 →
|g〉 transition a detailed analysis shows that the increase of detuning favors a distinct
transition rate and, therefore, a distinct energy emission Ω +ω. Consequently, this causes
a suppression of the conditional noise.

As the effect is time-independent, it may be most easily detectable after long driving
times τ � Γ−1

rel (as a small pre- and post-selection dependent correction to the selection
independent contribution). However, even at times of order of relaxation times, τ ∼ Γ−1

rel ,
the selection dependent contribution may dominate.

We further show that the quantum contributions to the conditional average play a minor
role on the effect of pre- and post-selection in the parameter regime of study. However,
the quantum features become largest in the vicinity of the pre- and post-selected states of
the system with maximal coherence and at a driving time of order of the dephasing time
Γ−1
ϕ .
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7. A weak measurement proposal and the
connection to the conditional average

The concept of weak measurements was firstly proposed by Aharonov, Albert and Vaidman
in 1987 [34]. It provided a new interpretation for the outcome of a quantum measurement.
Using a distinct initial and final state selection of the measured system, very peculiar but
also very improbable measurement outcomes were to appear: the weak values. There are
several theoretical generalizations and studies [87, 88, 89, 90] on the topic of weak values.
Additionally, they have been observed experimentally [91]. Interestingly, the weak value
of an observable can in general be complex and larger than the expectation value of the
observable itself. Hence, the concept of weak measurements turns out to be useful in many
different ways. As an example, the weak measurement may be used as an amplification
mechanism [36] or allows for the direct detection of the wave function of the system [37].

As the name indicates, the weak measurement approach is in contrast to a strong measure-
ment. The strong measurement, as proposed by von Neumann [75] consists of a quantum
mechanical measurement apparatus which is a quantum mechanical system itself. The
measurement apparaturs is coupled to the observable A of the system of interest. For an
ideal strong measurement, the outcome of the measurement is an eigenvalue aj of the mea-
sured observable A. As a consequence, the system will be in the corresponding eigenstate
of that eigenvalue after the measurement has been performed. Consequently, the system
has been strongly disturbed by the measurement.

The idea behind the weak measurement is to either modify the coupling between the
system and the detector in a way that the system is weakly disturbed or to prepare the
detector in an uncertain state. We will clarify below what is meant by this preparation of
the detector. The weakness of the measurement guarantees that the system is only weakly
disturbed by the measurement. On the other hand the output does not necessarily provide
much information about the state of the system.

In this chapter we propose an extension to the existing concept of weak measurements.
We will consider the weak continuous measurement of a driven open quantum system. In
the following, we suggest the weak measurement of the energy current, which transfers
the energy exchanged between the system and the bath. Using the driven TLS, we show
that the weak value of the energy current turns out to be a complex oscillating quantity.
Yet, we will show that the outcome is related to the conditional average of the dissipated
energy by integrating the weak value over the measurement time.
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Before we derive the continuous weak measurement approach, we will provide a brief detour
to introduce the concept of weak measurements. We will also discuss the outcome of a
weak measurement, the weak value.

7.1. Weak measurements and weak values

This section provides a brief introduction to the concept of weak measurements. We will
briefly review the pioneering considerations by Aharonov, Albert and Vaidman [34]. We
further clarify the circumstances in which the outcome of a weak measurement may become
a weak value, i.e. discuss the necessary conditions of the detector.

7.1.1. The weak measurement and weak values

In principle, a quantum mechanical measurement as proposed by von Neumann requires a
detector, which is a quantum mechanical system itself [75]. Concerning the measurement
process itself, there are a few requirements necessary to the measurement [35]. At first,
the measurement will last for some measurement time τM . During this measurement time
the system and the detector are coupled, whereas, before and after the measurement both
systems are decoupled and independent. However, there is no restriction to the duration of
the measurement, but in some situations an impulsive measurement, i.e. a measurement
with a very short measurement time, may be desirable. Secondly, the measurement causes
a deflection of the meter which is correlated to the measured observable of the system.
Furthermore, the measured observable is not changed by the measurement.

Keeping this in mind, one is able to write down a quite general system detector Hamiltonian

Ĥ = ĤS + ĤM + ĤSM , (7.1)

where ĤS/M are the free system / detector Hamiltonians. They are coupled via

ĤSM = g(t)APM , (7.2)

where g(t) is the coupling function with
∫ τM

0 dt g(t) = g0 and A denotes the observable
of interest. The observable A is coupled to the detector operator PM , which could, for
example, be the momentum of the detector. There is a conjugate operator QM to PM with
the commutation relation [QM , PM ] = i. This will be crucial for the measurement as we
illustrate in the following. The detector itself is prepared in a known initial state of QM .
From the Heisenberg equation of motion follows that the operator QM evolves according
to

QM (τM )−QM (0) =

∫ τM

0
dt
dQM
dt

= i

∫ τM

0
dt[ĤM , QM ] + g0A. (7.3)

One immediately sees that for an impulsive measurement (τM → 0, but finite g0) the
change of QM is determined by g0A, i.e. it corresponds to the measured observable of
interest. From the structure of Eq. (7.2) one immediately sees that by choosing a very
small coupling constant g0 � 1, the measurement can, in principle, be weak.

Yet, there is another possibility to manipulate the strength of the measurement as we will
discuss in the following. The discussion will be made in the context of pre- and post-
selected ensembles [35]. Consequently, the system has been initially prepared in a distinct
state |i〉. After the measurement has been performed, a distinct final state |f〉 is post-
selected. For example, this may be achieved by a measurement protocol as presented in
Ch. 2.3.
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7.1. Weak measurements and weak values 67

In what follows, the measurement is supposed to be impulsive, i.e. the internal dynamics of
the meter may be discarded. The corresponding system-detector coupling is set to g0 = 1.
The initial state of the meter is given by

φin(QM ) =
1

(ε2π)−1/4
e−

Q2
M

2ε2 , (7.4)

which is chosen to be Gaussian distributed. Hence, the uncertainty is given by ∆QM =
ε/
√

2. Note that ε may be used to determine the strength of the measurement: A small ε
corresponds to a strong measurement where the distribution ofQM of the initial state of the
detector is quite well known. In the limit of ε→ 0, the initial state is known exactly which
corresponds to an ideal measurement. In the opposite case of large ε, the uncertainty of
QM is large. This implies a small uncertainty for the coupling observable ∆PM = 1/(

√
2ε)

such that PM can generally chosen to be small. Consequently, the measurement for large
ε can be considered as weak.

The combined state of the system and of the meter evolves according to the time evolution
operator U = exp[−iAPM ]. Considering a large ε, the time evolution operator can be
expanded in powers of PM . Taking the post-selection into account, one arrives at [34, 35]

〈f |e−iAPM |i〉φin(QM ) ≈ 〈f | (1−APM ) |i〉φin(QM )

= 〈f |i〉
(

1− i〈f |A|i〉
〈f |i〉

PM

)
φin(QM )

≈ 〈f |i〉e−iAWPMφin(QM ), (7.5)

where the weak value of A is defined as

AW ≡
〈f |A|i〉
〈f |i〉

. (7.6)

Since QM and PM are conjugate variables, the matrix exponent in the last line of Eq.
(7.5) gives the deflection of the state of the meter, i.e.

φfin(QM ) ≈ φin(QM −AW ). (7.7)

Consequently, the initial state of the meter is shifted by the weak value AW .

The concept of weak measurements and weak values has been considered for mixed states
as well. The weak value in this case was derived in [92, 87] as

AW,ρ =
〈f |Aρ|i〉
〈f |ρ|i〉

, (7.8)

where the system is described by a density operator ρ rather than a pure state |Ψ〉.

7.1.2. A gedanken experiment: The weak measurement of a spin 1/2
particle

To provide an illustrative example for the weak measurement, we review the gedanken
experiment proposed by Aharonov, Albert and Vaidman [34]. They considered the weak
measurement of a spin 1/2 particle with an additional pre- and post-selection of the spin
states. In a modified Stern-Gerlach experiment the particle beam is prepared in such a way
that the orientation of the spin is along a certain direction ξ in the x̂z-plane (cf. Fig 7.1).
Consequently, the pre-selected state is given by | ↑ξ〉, which is characterized by the angle α
with respect to the x̂-direction. The beam passes through a first measurement apparatus
which weakly measures the σz component of the spin. The weak measurement of the σz
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68 7. A weak measurement proposal and the connection to the conditional average

Figure 7.1.: Sketch for the experimental setup regarding to a weak measurement, taken
from [34]. The content of the picture as well as the experiment are discussed
in the main text.

component makes the initial wave function to separate spatially into two parts connected
to the σz value. Finally, the beam is guided through a second measurement device which
strongly measures the σx component. However, only states which finally were measured
in the | ↑x〉 state are kept for the measurement. Due to the weak measurement of the σz
component, the deflection visible on the detector is correlated to the weak value of σz

σz,W =
〈↑x |σz| ↑ξ〉
〈↑x | ↑ξ〉

= tan
α

2
, (7.9)

which can, in principle, be larger than the expectation value of σz.

7.2. Weak measurement for the driven open quantum system

Analogous to previous works [34], we consider the weak measurement of the dissipative
energy current Îε ≡ −i[HB, HI ] of a driven open system. The time-dependent Hamiltonian
is given by

Ĥ(t) = ĤS(t) + ĤB + ĤI + ĤSM , (7.10)

where ĤS(t) denotes the Hamiltonian of the driven system and the bath is represented by
ĤB. The system-bath coupling is denoted by ĤI = AB with system (bath) operators A
(B). The coupling to the meter is denoted by ĤSM = gÎεPM , where PM is the momentum
operator of the measuring device. Note that in the general situation, the weakly monitored
observable may be a pure system (or bath) observable or (as in our case) any arbitrary
combination of system plus bath observable. The free Hamiltonian of the meter will be
neglected in our approach. The setup is depicted in Fig. 7.2. The dimensionless coupling
between system and measuring device g � 1 is supposed to be small.

The measurement protocol is organized as follows. The system S is prepared at time t = 0
in the initial state |i〉 with a strong projective measurement. At the same time the driving
begins. At time t = τ , the system is again strongly measured and projected onto the
desired final state |f〉. During the driving, the measurement device weakly measures the
desired observable Îε continuously.
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7.2. Weak measurement for the driven open quantum system 69

Figure 7.2.: ]

Sketch of the measurement setup. The system S is coupled to the bath via ĤI . The
detector is weakly monitoring the dissipated energy current Îε.

We evaluate the reduced density matrix of the meter, which is defined as

ρfM (τ) ≡ TrSB [Pfρ(τ)] , (7.11)

where Pf = |f〉〈f | is the projector on the final (postselected) state of the system and ρ(τ)
is the density matrix of the whole system including the meter. For the latter we obtain

ρ(τ) = USBM (τ, 0)ρiSBρMU
†
SBM (τ, 0) . (7.12)

Here the initial density matrix of the system with the bath and of the meter is assumed
to factorize. The density operator evolves according to the full time evolution operator
USBM (τ, 0), see Eqs. (7.17)-(7.21). Next, we expand the time evolution operator USBM(τ,0)

in powers of the system-meter coupling g to obtain

ρfM (τ) ≈ Pf (τ)(τ) e−ig
∫ τ
0 dtÎε,W (t)PMρMe

ig
∫ τ
0 dtÎ†ε,W (t)PM . (7.13)

Here

Pf (τ) = TrSB

[
PfUSB(τ, 0)ρiSBU

†
SB(τ, 0)

]
= TrSB

[
PHf (τ)ρiSB

]
(7.14)

is the conditional probability to obtain the desired final state of the system given it was
prepared in |i〉. The resulting deflection of the meter in first order system-detector coupling
g is given by the integral g

∫ τ
0 dtÎε,W (t), where

Îε,W (t)=
TrSB

[
PfUSB(τ, t)ÎεUSB(t, 0)ρiSBU

†
SB(τ, 0)

]
P fS (τ)

. (7.15)

We rewrite Eq. (7.15) to finally obtain

Îε,W (t)=
TrSB

[
PHf (τ)ÎHε (t)ρiSB

]
TrSB

[
PHf (τ)ρiSB

] , (7.16)

69



70 7. A weak measurement proposal and the connection to the conditional average

where the superscript H denotes the Heisenberg picture. We note that Eq. (7.16) has a
structure similar to the weak value for the mixed state (7.8).

7.3. The connection between the weak value and the condi-
tional average of dissipated energy

In this section we will derive a connection between Eq. (7.16) and the strong measurement
approach which is used in the context of the FCS. We will demonstrate two properties.
Firstly, we will show that both measurement approaches yield the same result for the
dissipated energy. Secondly, we will show that the outcome of the weak value approach,
i.e. the time integral of Eq. (7.16) is real, which may not be obvious by Eq. (7.16) itself.
It is useful to introduce all the necessary time evolution operators

USBM (t, 0) = USB(t, 0)S(t, 0) , (7.17)

S(t, 0) = T exp

(
−i
∫ t

0
dt′ ĤH

SM (t′)

)
= T exp

(
−i
∫ t

0
dt′ U †SB(t′)ĤSMUSB(t′)

)
,

(7.18)

USB(t, 0) = U0(t, 0)W (t, 0) , (7.19)

U0(t, 0) = U0,S(t, 0)U0,B(t, 0) , (7.20)

W (t) = T exp

(
−i
∫ t

0
dt′ ĤW

I (t′)

)
= T exp

(
−i
∫ t

0
dt′ U †0(t′)ĤIU0(t′)

)
. (7.21)

Here, USBM (t, 0) is the full time evolution operator with respect to system, bath and
measuring device. It can be split into the product of USB(t, 0), determining the evolution
of system plus bath, and S(t, 0) being the time-ordered exponent of the interaction be-
tween system bath and measurement device. The operator USB(t, 0) itself can again be
decomposed into the free evolution of system and bath U0(t, 0) and the interaction between
system and bath W (t, 0). The transformed Hamiltonians for the time ordered product in
the exponent are labeled by W (interaction between full system plus measuring device)
and I (interaction between system and bath). We keep in mind that the time evolution
operator for two different time arguments reads

USBM (t, t0) = USB(t, 0)S(t, t0)U †SB(t0, 0). (7.22)

Similarly, the relation (7.22) holds for USB(t, t0) by replacing USB(t, t′) → U0(t, t′) and
S(t, t0)→W (t, t0).

7.3.1. Full counting statistics approach

In this section we describe the FCS approach to the problem. The method of FCS has
been introduced in Ch. 4. In a first approach we briefly rederive the CF using the two-
point-measurement approach, cf. Ch. 4.2 and Ref. [12] We have

χτ (λ, f |i) = TrSB

[
Pfe

iHBλ/2USB(τ, 0)e−iHBλ/2ρ0e
−iHBλ/2U †SB(τ, 0)eiHBλ/2

]
= TrSB

[
Pfe

iHBλUSB(τ, 0)e−iHBλρ0U
†
SB(τ, 0)

]
, (7.23)

where we used [HB, Pf ] = [HB, ρ0] = 0 in the second line. Taking the derivative with
respect to λ at λ = 0 gives

1

i
∂λχτ (λ, f |i)|λ=0 = TrSB

[
PfHBUSB(τ, 0)ρ0U

†
SB(τ, 0)

]
− TrSB

[
PfUSB(τ, 0)HBρ0U

†
SB(τ, 0)

]
= TrSB

[
Pf [HB, USB(τ, 0)] ρ0U

†
SB(τ, 0)

]
. (7.24)
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Similarly we can write

1

i
∂λχτ (λ, f |i)|λ=0 = TrSB

[
PfUSB(τ, 0)ρ0

[
U †SB(τ, 0), HB

]]
=
(

TrSB

[
Pf [HB, USB(τ, 0)] ρ0U

†
SB(τ, 0)

])†
. (7.25)

This imposes that the derivative must be real. To evaluate the commutator, we introduce

tn = ∆tn, ∆t =
t

N
, (7.26)

which enables us to rewrite the time-evolution operator as

USB(t, t0) = lim
N→∞

USB(tN , tN−1)USB(tN−1, tN−2)...USB(t1, t0). (7.27)

Consequently, the commutator yields

[HB, USB(τ, 0)] = lim
N→∞

([HB, UN ]UN−1...U0 + UN [HB, UN−1]...U0 +...+ UN ...U1[HB, U0]) ,

(7.28)

where UN ≡ USB(tN , tN−1). Each commutator in Eq. (7.28) is approximated as

[HB, UN ] ≈ −i∆t[HB, H] = ∆tÎε , (7.29)

which finally enables us to rewrite Eq. (7.28)

[HB, USB(τ, 0)] =

∫ τ

0
USB(τ, t)ÎεUSB(t, 0)

= USB(τ, 0)

∫ τ

0
dtÎHε (t). (7.30)

Inserting the integral representation of the commutator Eq. (7.30) into the derivative of
the CF, Eq. (7.24) yields

1

i
∂λχτ (λ, f |i)|λ=0 =

∫ τ

0
dtTrSB

[
PHf (τ)ÎHε (t)ρ0

]
. (7.31)

Consequently, the conditional average of the dissipated energy is obtained as

〈ετ 〉i→f = ∂iλ lnχτ (λ, f |i)|λ=0

=

∫ τ
0 dtTrSB

[
PHf (τ)ÎHε (t)ρ0

]
TrSB

[
PHf (τ)ρ0

]
=

∫ τ

0
dt
〈PHf (τ)ÎHε (t)〉
〈PHf (τ)〉

. (7.32)

With Eq. (7.32) a connection between the conditional average as derived by the FCS
approach and the above proposed weak measurement scheme in Ch. 7.2 is established.
The FCS calculations result in the integral of the weak value Eq. (7.16). To convince
ourselves that the proposed weak measurement scheme is indeed self-consistent, we may
check if the integral over the weak value indeed appears to be real-valued.
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7.3.2. Proof that Eq. (7.32) is real

In the following we show that the integral of
∫ τ

0 dtTrSB

[
PHf (τ)ÎHε (t)ρ0

]
is real-valued. We

rewrite∫ τ

0
dtTrSB

[
PHf (τ)ÎHε (t)ρ0

]
= TrSB

[
U †SB(τ, 0)Pf

∫ τ

0
dtUSB(τ, t)ÎεUSB(t, 0)ρ0

]
= TrSB

[
U †SB(τ, 0)Pf [HB, USB(τ, 0)]ρ0

]
= TrSB

[
[U †SB(τ, 0), HB]PfUSB(τ, 0)ρ0

]
, (7.33)

where we used Eq. (7.30). Consequently, we obtain

[U †(τ, 0), HB] = ([HB, U(τ, 0)])†

=

∫ τ

0
dtU †(t, 0)IεU

†(τ, t), (7.34)

which finally provides the identity∫ τ

0
dtTrSB

[
PHf (τ)ÎHε (t)ρ0

]
=

∫ τ

0
dtTrSB

[
ÎHε (t)PHf (τ)ρB

]
=

(∫ τ

0
dtTrSB

[
PHf (τ)ÎHε (t)ρ0

])∗
. (7.35)

So far we have established a connection between the proposed continuous weak measure-
ment scheme in Ch. 7.2 and the FCS approach. The equivalence is independent of the
duration of the measurement (a longer drive demands that the system meter coupling g
must be arbitrary small) and independent of the coupling between system and bath. We
further showed that the integral over the weak value with respect to the duration of the
measurement time is real which is not obvious by the general structure of Îε,W (t).

7.4. Continuous weak measurement of the energy current dis-
sipated by the driven TLS

In this section we explicitly calculate the weak value Eq. (7.16) of the energy current Îε.
The calculation is carried using the circularly polarized driven TLS. For convenience, we
provide again the Hamiltonian Eq. (5.48),

Ĥ(t) = ĤTLS(t) + ĤI(ϑ = 0) + ĤB, (7.36)

containing, inter alia, the Hamiltonian ĤTLS(t) of the circularly polarized driven TLS.
The analysis is carried out for the transversal system bath coupling ĤI(ϑ = 0) = σxB.
Consequently, the energy current of the dissipated energy to our problem is obtained as

Îε = σxÎB, (7.37)

where ÎB = −i[ĤB, B]. At first, we present and discuss the weak value of the energy
current of the dissipated energy in the subsequent section.

7.4.1. Weak value of the energy current

In order to calculate the weak value of the dissipative energy current, it is convenient to
analyze the numerator and the denominator of the weak value Eq. (7.16) separately. We
start with the analysis of the numerator 〈PH(τ)IH(t)〉. We make use of the quantum
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7.4. Continuous weak measurement of the energy current dissipated by the driven TLS73

Figure 7.3.: Exemplary sketch for diagrams contributing due to the quantum regression
approximation. Type (a) and (b) diagrams show allowed contractions of bath
operators whereas type (c) diagrams are discarded.

regression approximation [93, 94, 95]. This approximation is a powerful tool for analyzing
multi-time correlation functions. It states that, with respect to time ordered correlation
functions, the earlier operator can be considered to be the initial density operator to the
latter operator. Considering the dynamics of an open system, the quantum regression
approximation results in the discarding of certain diagrams as depicted in Fig. 7.3. We
rewrite the numerator of Eq. (7.16)

〈PHf (τ)ÎHε (t)〉=TrSB

[
PfUSB(τ, t>)USB(t>, t)ÎεUSB(t, t<)USB(t<, 0)ρiSρBU

†
SB(τ, 0)

]
≈TrSB

PfUSB(τ, t>)USB(t>,t)ÎεUSB(t,t<)ρS(t<)ρBU
†
SB(t>,t<)︸ ︷︷ ︸

ρS(t>)ρB

U †SB(τ, t>)


≈TrSB

[
PeL(τ−t>)USB(t>, t)ÎεUSB(t, t<)ρBe

Lt<ρiS

]
, (7.38)

where we used the quantum regression approximation in the last line. Consequently, the
initial density operator evolves dissipatively in time until the energy is exchanged with
the bath via the energy current Îε is measured. After the measurement of the dissipative
energy current has taken place, the system again evolves dissipatively until it is projected
onto the desired final state. The dissipative time evolution in the intervals [0, t<] and
[t>, τ ] is described by the super operator L, which has been derived previously in Ch.
5, Eq. (5.54). The operator Îε itself contains a system bath coupling Hamiltonian ĤI .
Hence, the zeroth contribution 〈Îε〉 = 0 will vanish as we are considering a bath in thermal
equilibrium. Consequently, we expand ÎH(t) in the vicinity of t, i.e. inbetween the times
t< and t<, diagrammatically (see Ch. 3.3) with respect to the applied protocol, in lowest
order non-vanishing contributions. Hence, we rewrite

Îε(t) = U †SB(t, 0)ÎεUSB(t, 0)

= U †SB(t>, 0)USB(t>, t)ÎεUSB(t, t<)USB(t<, 0), (7.39)

where t> > t′ > t and, t <, t′ < t< denote the times between which a contraction of Îε(t)
and ĤI(t

′) appears. Considering the dissipative time evolution in a rigorous manner, we
expand USB(t>, t)ÎεUSB(t, t<) in Eq. (7.38) in the system-bath coupling, obtaining

〈PHf (τ)ÎHε (t)〉 ≈ TrSB

[
Pfe

Lτ (−i)
∫ t>

t
dt′e−Lt

′
ĤI
I (t′)ÎIε (t)ρBe

LtρiS

]
+ TrSB

[
Pfe

L(τ−t)ÎIε (t)(−i)
∫ t

t<

dt′ĤI
I (t′)ρBe

Lt′ρiS

]
≈ TrS

[
Pfe

L(τ−t)Îdiss(t)e
LtρiS

]
, (7.40)

73



74 7. A weak measurement proposal and the connection to the conditional average

Figure 7.4.: Sketch of the Keldysh contour of the problem. The density matrix evolves
according to L until the energy is exchanged between system and bath via the
energy current operator Îε. After the energy exchange has taken place, the
system again evolves according to L.

where

Îdiss(t) = −iTrB

[∫ ∞
0

ds e−LsĤI
I (s)ÎIε (t)ρB +

∫ 0

−∞
ds Î(t)ĤI

I (s)eLsρB

]
,

≈ −iTrB

[∫ ∞
0

ds ĤI
I (s)ÎIε (t)ρB +

∫ 0

−∞
ds Î(t)ĤI

I (s)ρB

]
, (7.41)

is the first order expansion of ÎHε (t) in system bath coupling in the vicinity of t. In the
second line of Eq. (7.41) we used the fact that the contributions of the super operator L
are negligibly small. This is explained as follows. In the expansion of the superoperator
Îdiss(t) there appear bath correlation functions CBI(s) ≡ 〈B(s)ÎB(0)〉. These correlation
functions CBI(s) = 〈B(s)ÎB(0)〉 decay on a time scale determined by the bath correlation
time τB. However, the super operator L becomes influential at timescales of 1/Γrel � τB,
where the the bath correlation functions have already decayed. Hence the influence of
L in the integrals of Eq. (7.41) are negligibly small and the corresponding integrals are
evaluated neglecting the exponential functions e±Ls. The time evolution of that problem
is depicted on a Keldysh contour in Fig 7.4. The explicit calculation of Îdiss(t), including
the matrix elements of Îdiss(t), is carried out in the appendix C. The matrix elements of
the current operator Îdiss(t) turn out to be complex oscillating functions. Consequently,
the quantity 〈PHf (τ)ÎHε (t)〉 in general turns out to be a complex oscillating function.

So far, we have evaluated the numerator of Eq. (7.16). In what follows, we will briefly
discuss the denominator, i.e. the transition probability to Pτ (f |i) for the system to found
in the final state |f〉, given it has been prepared in the state |i〉. To determine the transition
probability, we make use of the CF obtained by the FCS approach in Ch. 5.2.3. Recalling
Eq. (6.19) we have

= Pclτ (f |i) + δPτ (f |i). (7.42)

where

Px,clτ (f |i) = χx,clτ (0, f |i) =
Γrel + cos θf (Γge − Γeg) + e−Γrelt cos θf (cos θiΓrel − Γge + Γeg)

2Γrel
,

(7.43)

is the classical part of the transition probability, which only depends on the dynamics of
the populations of the density operator. For convenience, the quantum part is given by

δPxτ (f |i) = δχxτ (0, f |i) =
1

2
cos(Ωt) sin θi sin θfe

−Γϕ(0)t. (7.44)
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7.4. Continuous weak measurement of the energy current dissipated by the driven TLS75

Figure 7.5.: Lowest order diagrams contributing to the super operator Îdiss(t).

As we see from the transition probability, the information about the initially prepared
system state is lost due to dephasing and relaxation processes induced by the bath. The
bath tends to relax the system towards its thermal equilibrium state, where all the infor-
mation from the initial state is lost. The expected behavior is reflected by the transition
probability Eq. (7.42) at times τ � Γ−1

rel , which is dominated by the time-independent
part of Eq. (7.43)

Px,clτ�1/Γrel
≈ 1

2
+ cos θf

Γge − Γeg
2Γrel

, (7.45)

which is independent of the choice of the initial state and the final state selection is taken
with respect to the steady state, (Γge − Γeg)/Γrel of the driven TLS.

Hence, in order to achieve an outcome in the spirit of a weak value, where the transition
probability between the pre- and post-selected states of the system remains small, the
driving time τ should be chosen in the vicinity of the characteristic relaxation times Γ−1

rel

and Γ−1
ϕ (0) of the system.

7.4.2. Comparison with the FCS result

In this section we want to compare the results of the previous section with the results
obtained by the FCS calculation carried out in Ch. 5. We were able to check with the
help of Mathematica that∫ τ

0
dtTrS

[
Pfe

L(τ−t)Îdiss(t)e
LtρiS

]
≈ ∂iλ χτ (λ, f |i)|λ=0 , (7.46)

is fulfilled. For the subsequent discussion it is convenient to split the dissipative energy
current into two parts,

Îdiss(t) = Î 0
diss(t)− Îosc

diss(t), (7.47)

where

Î 0
diss(t) =


Igg←gg(t) Igg←ee(t) 0 0
Iee←gg(t) Iee←ee(t) 0 0

0 0 Ieg←eg(t) Ieg←ge(t)
0 0 Ige←eg(t) Ige←ge(t)

 , (7.48)

and

Îosc
diss(t) =


0 0 Igg←eg(t) Igg←ge(t)
0 0 Iee←eg(t) Iee←ge(t)

Ieg←gg(t) Ieg←ee(t) 0 0
Ige←gg(t) Ige←ee(t) 0 0

 . (7.49)
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76 7. A weak measurement proposal and the connection to the conditional average

Both contributions Eqs. (7.48) and (7.49) to the energy current contain complex oscillating
functions, oscillating with frequencies of order of the driving frequency ω. We keep in mind
that the quantity obtained by the integral of the current has the dimension of energy.
Consequently, the leading contributions with respect to the driving time are proportional
to the heat current times the driving time τ . The integration of any oscillating function
contained in Eqs. (7.48) and (7.49), needed to evaluate Eq. (7.46), results in contributions
containing a prefactor ∼ ω−1. However, constant contributions to the matrix elements
exist, which will receive a prefactor of Γ−1

rel from the integration. In our analysis the
system is weakly coupled to the bath, hence Γrel � ω. Consequently, the fast oscillating
complex contributions to Eq. (7.40) are strongly suppressed after the integration over the
driving time has been performed. In particular, all the contributions ascribed to the part
of the energy current Îosc

diss(t) become insignificant after the integration.

Considering the contributions of Î 0
diss(t) the non-oscillating real contributions remain, pro-

viding the the result as obtained by the FCS approach. Interestingly, the only remaining
matrix elements contributing to the conditional average are processes corresponding to
diagrams of type (a) and (b) in Fig. 7.5. On a technical level this looks rather similar to
the FCS approach. Reminding the derivation of the CF in Ch. 5.2.1, the counting field of
the dissipated energy was affecting the bath correlation functions equivalent to type (a)
and (b) diagrams.

7.5. Conclusion

This chapter provided an alternative way to investigate the energy dissipation. Rather than
in the well known FCS approaches we presented a generalization of the weak measurement
protocol [34]. We proposed a weak measurement of the energy current Îε including the
pre- and the post-selection of the states of the system. Using a diagrammatic expansion of
the energy current, we were able to determine its weak value. Our findings show that the
resulting quantity is a complex oscillating function. Despite its complicated structure we
could show that the conditional average of the dissipated energy is obtained by integrating
the weak value in time.
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8. Conclusion

In this thesis we have investigated the statistics of energy dissipated by a periodically
driven TLS. We proposed a measurement scheme, where not only the energy exchange
between system and bath is considered but, in addition, the system undergoes two strong
measurements before and after the drive is applied. These two strong measurements are
fixing the initial and final state of the TLS. Consequently, the energy exchange between
the system and the bath does not only depend on the duration of the drive but also on
the difference of the energy expectation values with respect to the choice of the pre- and
post-selected states of the TLS.

In Ch. 5 we elaborated upon the necessary framework to calculate the statistics of energy
dissipated by a driven TLS. We extended and adjusted the existing formalisms concerning
energy exchange statistics [12, 83] to our model and derived the CF of dissipated energy
using a master equation in full secular approximation. Further analysis showed that the
energy received from the driving source can only be transfered to the bath if the system-
bath coupling contains a transverse coupling element. Nevertheless, we studied both limits
of pure longitudinal and transverse system-bath couplings. In both situations we were
capable of computing the full conditional probability distribution of the dissipated energy
considering the pre- and post-selection of states of TLS. In the limits of our model, i.e. in
full secular approximation, it turned out that the conditional probability distributions of
dissipated energy split into a classical part, which is fully characterized by the dynamics
of the populations of the TLS and a quantum part, which is solely depending on the
dynamics of the coherences. Depending on the choice of pre- and post-selected states of
the TLS, these quantum corrections significantly changed the structure of the conditional
probability distribution function. Furthermore, our results were in agreement with the
quantum version of the detailed fluctuation relation [33].

The results obtained for the distribution function led to the question as to whether the
quantum signatures were visible when considering the conditional average of dissipated
energy rather than the conditional distribution function. This was primarily motivated by
the fact that the conditional average of dissipated energy may be more easily accessible in
an experiment. Consequently we studied the effect of pre- and post-selection of states of the
TLS on the first two conditional cumulants of the dissipated energy in Ch. 6. Considering
the conditional average of the dissipated energy, we found that the pre- and post-selection
as well as the character of the drive, i.e. whether the system was driven in resonance or off
resonance, significantly affected the results. The most pronounced features with respect to
the state selection were attributed to a time-independent contribution which turned out
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78 8. Conclusion

to be sensitive to the detuning. Subsequently, we carried out an analysis of the conditional
noise. Similar to the conditional average, the overall dependency on the pre- and post-
selection could be mostly attributed to a time-independent contribution. Considering
the off-resonant drive, one particular set of pre- and post-selected system states, namely
the |e〉 → |g〉 selection, showed quite an interesting property. The conditional average of
dissipated energy exhibited a maximum while the noise simultaneously was suppressed. We
found that the pre- and post-selection tend to favor a certain matrix element connecting
the excited- and the ground-state populations of the associated density operator. This
particular matrix element contains two competing transitions. The detuning generates
an asymmetry in favor of the transition corresponding to maximal energy dissipation.
Consequently, the preference of one particular transition was reflected in the simultaneous
suppression of noise.

Considering the quantum contributions to the conditional average, we found that quan-
tum features were still detectable in our analysis. However, in the parameter regime we
investigated, they were strongly overshadowed by contributions which were of classical
origin.

In Ch. 7 we approached the problem from a quite different point of view. We proposed to
weakly measure the dissipative energy current Îε rather than the energy exchanged between
the TLS and the bath. Hence, we derived a generalization of the weak measurement scheme
in the spirit of the pioneering work by Aharonov, Albert and Vaidman [34], suitable to
the problem of energy dissipation. We convinced ourselves that the deflection appearing
on the ancillary measurement device, i.e. the time integral of the weak value of the heat
current, is indeed equivalent to the conditional average of dissipated energy. Considering
the weak value in the context of the driven TLS, we were able to show that the resulting
quantity is a complex oscillating function. Furthermore, we checked if the integral of the
weak value over the driving time is equivalent to the previously obtained results obtained
by the FCS technique. In what we found the weak measurement approach turned out to
be self-consistent up to negligibly small contributions.

Within the work at hand we were able to show that an additional manipulation of the
system, namely the pre- and post-selection of states, may be a valuable tool to detect
quantum effects appearing in the context of energy dissipation. What are the next steps
to be done? At least from an experimental point of view, it seems to be less demanding
to measure the conditional average of the dissipated energy rather than the distribution
function. As it turned out, the investigation of the statistics of the energy, dissipated by a
driven TLS, is a non-trivial task. A variety of parameters, i.e. the pre- and post-selection of
states, the detuning, the driving time and the temperature, act in combination, providing
a rich area of interesting physics. Hence, looking in a different parameter regime, e.g. a
variation of temperature and driving time, could provide further insight into the problem.
Furthermore, going beyond secular approximation may be an insightful approach to the
problem. However, in this case the distinct separation between classical and quantum
contributions may no longer be possible.

Within this work a consideration of the detector back-action [96] has not been taken into
account, i.e. the measurement process itself could perturb the system and modify the re-
sults. In a recent experiment on the fluctuation relations in a double quantum dot [97, 17],
it was recognized that the detector back-action changed the obtained results in a signifi-
cant way. Hence, the concept of a weak measurement seems to provide an appealing tool
in this context. One could consider using the weak measurement approach to amplify the
quantum features by elaborating a clever measurement protocol while minimally disturb-
ing the system of interest. As the weak value of the energy current turned out to be an
interesting but challenging quantity, it requires further investigations.
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In conclusion, this thesis has offered novel perspectives to the research field of fluctuation
relations and thermodynamics towards the quantum regime. The concept of pre- and
post-selection provides a valuable tool in the search for quantum signatures in the context
of energy dissipation.
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Appendix

A. Quantum version of the detailed fluctuation relation

Within this appendix we demonstrate the quantum version of the detailed fluctuation
relation[33]. We will need the anti-unitary time reversal operator Θ[41]. With Θ|n〉 = |n̄〉
we have

〈n|n′〉 = 〈n̄′|n̄〉 (A.1)

Θ
(
a|n〉+ b|n′〉

)
= a∗|n̄〉+ b∗|n̄′〉, (A.2)

with a and b being complex numbers. From the two above equations follows

〈n|O|n′〉 = 〈n̄′|ΘO†Θ−1|n̄〉 (A.3)

ΘU(τ, 0)Θ−1 = UB(0, τ) (A.4)

ΘĤBΘ−1 = ĤB (A.5)

ΘPfΘ−1 = Pf , (A.6)

ΘρiSΘ−1 = ρiS , (A.7)

which will be useful in the following. We write the generating function as

χτ (λ, f |i) = Tr
[
Pfe

iλĤBU(τ, 0)e−iλĤBρiSρBU
†(τ, 0)

]
= Tr

[
(ΘU(τ, 0)Θ−1)(ΘρBΘ−1)(ΘρiSΘ−1)(ΘeiλĤBΘ−1)

× (ΘU †(τ, 0)Θ−1)(Θe−iλĤBΘ−1)(ΘPFΘ−1)
]

= Tr
[
UB(0, τ)ρBρ

i
Se
−iλĤBU †B(0, τ)eiλĤBPf

]
= Tr

[
Pie

i(−λ+iβ)ĤBUB(τ, 0)e−i(−iλ+iβ)ĤBρfSρBU
†
B(τ, 0)

]
= χτ,B(−λ+ iβ, i|f), (A.8)

where we used the fact that the bath is in thermal equilibrium, i.e. the density operator
ρB = e−βHB/ZB of the bath does not change. Performing the inverse Fourier transform

Pτ (ε, f |i) =
1

2π

∫
dλ e−iλεχτ (λ, f |i), (A.9)

we immediately find the desired equality

Pτ (ε, f |i)
Pτ,B(−ε, i|f)

= eβε. (A.10)
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B. Analytic result for the Quantum correction of probability
densities

In the following, we sometimes use ε′ = ε/ω and λ′ = λω. We now focus on the calculation
of the corrections due to the coherences

δχτ (λ, f |i) = ~fϕe
Mϕτ~ρ iϕ(0), (B.1)

where ~ρϕ = (ρeg, ρge) is the vector representing the coherences of the density matrix. We
then find

δχτ (λ, i|f) =
1

2
cos(Ωτ) sin θi sin θfe

−Γϕτ . (B.2)

To calculate the change in the PDF, we need to perform a Fouriertransform. We then find

δPτ (ε, f |i) =
1

2π

∫
dλe−iλεδχτ (λ, f |i)

=
1

2
cos(Ωτ) sin θi sin θf

1

2π

∫
dλe−iλεe−Γϕ(λ)τ . (B.3)

It may be usefull to define the abbreviation

Γ0
ϕ = (γ+(Ω) + γ−(−Ω))/2 + sin2 θ(γ(ω) + γ(−ω))/4 (B.4)

The integral of is of the form

κ

∫ ∞
−∞

dλe−iλ
′ε′e−ate

iλ′
e−bte

−iλ′
= κ

∫
dλe−iε

′λ′
∞∑

n,m=0

(−at)n

n!

(−bt)m

m!
eiλ
′(n−m)

= 2πκ

∞∑
n,m=0

(−at)n

n!

(−bt)m

m!
δ(n−m− ε′)

= 2πκ

∞∑
n,m=0

(−at)m+ε′

(m+ ε′)!

(−bt)m

m!
δ(n−m− ε′)

= 2πκ
∞∑
m=0

∞∑
n=−m

(−at)m+ε′

(m+ ε′)!

(−bt)m

m!
δ(ε′ − n)

= 2πκ

∞∑
m=0

∞∑
n=−∞

(−at)m+ε′

(m+ ε′)!

(−bt)m

m!
δ(ε′ − n)Θ(ε′ +m),

(B.5)

where

κ =
1

2
cos(Ωτ) sin θi sin θf

1

ω2π
e−τΓ0

ϕ (B.6)

We now have to evaluate different regions of ε′. For ε′ ≥ 0, the Heaviside function will
always be one and we find

δP>τ (ε, f |i) =
1

2
cos(Ωτ) sin θi sin θf ×

∑
n

δ(ε− nω)

(
iγ(ω)1/2

γ(−ω)1/2

)n
Jn [iητ ] , (B.7)

where we introduced η = sin2(θ)/2(γ(ω)γ(−ω))1/2 and Jn[iητ ] is the Bessel function of
the first kind. In the region ε < 0, at a first glance, we find some corrections. First we
invoke another abbreviation

Ξ(m, ε′) =
(−at)m+ε′

(m+ ε′)!

(−bt)m

m!
. (B.8)
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In the case of ε′ < 0, we find

δP<τ (ε′, f |i) ∝
∞∑

n=−∞

∞∑
m=|ε′|

δ(ε′ − n)Ξ(m, ε′)

=
∞∑

n=−∞
δ(ε′ − n)

 ∞∑
m=0

Ξ(m, ε′)−
|ε′|−1∑
m=0

Ξ(m, ε′)

 (B.9)

We will now have a closer look at the second sum

|ε′|−1∑
m=0

Ξ(m, ε′) =

|ε′|−1∑
m=0

(−a)ε
′
(ab)2mt2m+ε′

(m+ ε′)!m!

=

|ε′|−1∑
m=0

(−a)ε
′
(ab)2mt2m+ε′

Γ(m+ ε′ + 1)Γ(m+ 1)
. (B.10)

As ε′ is restricted to negative integers and the sum yields contributions from m = 0 to
|ε′| − 1, the first Gamma function in the denominator always diverges and thus the term
vanishes. Hence the total quantum corrections are given by

δPτ (ε, f |i) =
1

2
cos(Ωτ) sin θi sin θf ×

∑
n

δ(ε− nω)

(
iγ(ω)1/2

γ(−ω)1/2

)n
Jn [iητ ] . (B.11)

C. Calculations concerning the dissipative energy current Îε

In this appendix we provide the calculation of the dissipative energy current Îε(t). We use
the diagrammatic expansion and expand the current in the weak system-bath coupling. We
restrict our calculations to the first order of non-vanishing contributions. Our calculation
starts at Eq. (7.41)

Îdiss(t) = −iTrB

[∫ ∞
0

ds e−LsĤI
I (s)ÎIε (t)ρB +

∫ 0

−∞
ds Î(t)ĤI

I (s)eLsρB

]
,

≈ −iTrB

[∫ ∞
0

ds ĤI
I (s)ÎIε (t)ρB +

∫ 0

−∞
ds Î(t)ĤI

I (s)ρB

]
. (C.1)

Explicitly we have

ÎIε (t) = Ã(t)ÎB(t), (C.2)

ĤI
I (t) = Ã(t)B(t), (C.3)

where ÎB = −i[ĤB, B] and

Ã(t) = az(t)σz + b(t)σ+ + b∗(t)σ−, (C.4)

where

az(t) = − cosωt sin θ (C.5)

b(t) = e−iΩt (cos θ cosωt− i sinωt) . (C.6)

With this we may rewrite Eq. (C.1) obtaining

Îdiss(t) = −i
∫ ∞

0
ds
(
Ã(t+ s)Ã(t)− Ã(t)Ã(t− s)

)
ρSCBI(s)

+ i

∫ ∞
−∞

ds Ã(t)ρSÃ(s+ t)CBI(s), (C.7)
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96 8. Appendix

Figure C.1.: Lowest order diagrams contributing to the super operator Îdiss(t).

where the first line corresponds diagrams of type (c) and (d) and the second line corre-
sponds diagrams of type (a) and (b) in Fig. C.1. It may be useful for further calculations
to define

aj(t, s) = Tr
[
σjÃ(t)Ã(s)

]
, (C.8)

such that

Ã(t)Ã(s) =
a0(t, s) + ~a(t, s)~σ

2
. (C.9)

The contributions of type (c) and (d) diagrams are easily obtained via

αj(t) = −i
∫ ∞

0
dsCBI(s) (aj(t+ s, t)− aj(t, t− s)) , (C.10)

α0(t) = −isin
2 θ sin(2ωt)

2

(
ABI(ω)− 1

2

(
ALBI(ω + Ω) +ALBI(ω − Ω)

))
(C.11)

αx(t) = −i cosωt sin θ

(
1

2
(cosωt sin Ωt+ cos θ cos Ωt sinωt)

(
−SLBI(ω + Ω) + SLBI(ω − Ω)

)
− (cos Ωt sinωt+ cos θ cosωt sin Ωt)

(
−SLBI(ω) +

1

2

(
SLBI(ω + Ω) + SLBI(ω − Ω)

)))
(C.12)

αy(t) = i cosωt sin θ

(
cosωt cos Ωt

(
cos θ

(
SLBI(ω)− 1

2

(
SLBI(ω + Ω) + SLBI(ω − Ω)

))
+

1

2

(
SLBI(ω − Ω)− SLBI(ω + Ω)

))
+ sinωt sin Ωt

(
−cos θ

2

(
−SLBI(ω + Ω) + SLBI(ω − Ω)

)
+

(
−SLBI(ω) +

1

2

(
SLBI(ω + Ω) + SLBI(ω − Ω)

))))
(C.13)

αz(t) = i
1

4
sin2 θ sin 2ωt

(
SLBI(ω − Ω)− SLBI(ω + Ω)

)
. (C.14)

From this, we can readily write down the contribution to the current by type (c) and (d)
diagrams with contractions of bath operators on upper Keldysh contour, yielding

Î same
diss (t) =


Idiv
gg←gg 0 Idiv

gg←eg 0

0 Idiv
ee←ee 0 Idiv

ee←ge
Idiv
eg←gg 0 Idiv

eg←ge 0

0 Idiv
ge←ee 0 Idiv

ge←ge

 , (C.15)
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where

Idiv
gg←gg = α0(t) + αz(t) Idiv

gg←eg = αx(t)− iαy(t) (C.16)

Idiv
ee←ee = α0(t)− αz(t) Idiv

ee←ge = αx(t) + iαy(t) (C.17)

Idiv
eg←gg = αx(t) + iαy(t) Idiv

eg←eg = α0(t)− αz(t) (C.18)

Idiv
ge←ee = αx(t)− iαy(t) Idiv

ge←ge = α0(t) + αz(t) (C.19)

The contribution to the current obtained by diagrams of type (a) and (b) where the
contractions connecting bath operators on the lower and the upper Keldysh contour are
obtained as

Î cross
diss (t) =


I same
gg←gg(t) I same

gg←ee(t) I same
gg←eg(t) I same

gg←ge(t)

I same
ee←gg(t) I same

ee←ee(t) I same
ee←eg(t) I same

ee←ge(t)

I same
eg←gg(t) I same

eg←ee(t) I same
eg←eg(t) I same

eg←ge(t)

I same
ge←gg(t) I same

ge←ee(t) I same
ge←eg(t) I same

ge←ge(t)

 , (C.20)

with the matrix elements

I same
gg←gg(t) =

∫ ∞
−∞

ds az(s+ t)az(t)CBI(s) I same
gg←ee(t) =

∫ ∞
−∞

ds b(t)b∗(t+ s)CBI(s)

(C.21)

I same
gg←eg(t) =

∫ ∞
−∞

ds az(s+ t)b∗(t)CBI(s) I same
gg←ge(t) =

∫ ∞
−∞

ds az(t)b(s+ t)CBI(s)

(C.22)

I same
ee←gg(t) =

∫ ∞
−∞

ds b(s+ t)b∗(t)CBI(s) I same
ee←ee(t) =

∫ ∞
−∞

ds az(s+ t)az(t)CBI(s)

(C.23)

I same
ee←eg(t) = −

∫ ∞
−∞

ds b∗(s+ t)az(t)CBI(s) I same
ee←ge(t) = −

∫ ∞
−∞

ds b(t)az(t+ s)CBI(s)

(C.24)

I same
eg←gg(t) =

∫ ∞
−∞

ds b(t)az(s+ t)CBI(s) I same
eg←ee(t) = −

∫ ∞
−∞

ds b(s+ t)az(t)CBI(s)

(C.25)

I same
eg←eg(t) = −

∫ ∞
−∞

ds az(t)az(t+ s)CBI(s) I same
eg←ge(t) =

∫ ∞
−∞

ds b∗(t)b∗(t+ s)CBI(s)

(C.26)

I same
ge←gg(t) =

∫ ∞
−∞

ds az(t)b
∗(s+ t)CBI(s) I same

ge←ee(t) = −
∫ ∞
−∞

ds az(s+ t)b∗(t)CBI(s)

(C.27)

I same
ge←eg(t) =

∫ ∞
−∞

ds b(s+ t)b(t)CBI(s) I same
ge←ge(t) = −

∫ ∞
−∞

ds az(t)az(t+ s)CBI(s).

(C.28)

Finally, we obtain

Îdiss(t) = Î same
diss (t) + Î cross

diss (t), (C.29)

which is the desired energy current operator of the problem.

C.1. Bath Correlation functions

In the above calculation, we introduced the bath correlation function CBI(t) = 〈B(s)ÎB〉.
In what follows we briefly discuss the properties of the bath correlation functions and their
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Fourier- and Laplace-transforms,

LBI(ω) =

∫ ∞
0

dseiωs−δsCBI(s) =

∫ ∞
0

dseiωs−δs
∫
dν

2π
CBI(ν)e−iνs

= i

∫
dνCBI(ν)

1

ω − ν + iδ

=
1

2
CBI(ω) + EBI(ω), (C.30)

where

EBI(ω) = iP.V.

∫
dν

2π

CBI(ν)

ω − ν
(C.31)

and we used

1

ω ± i0
= P.V.

1

x
∓ iπδ(ω). (C.32)

In the time domain, the correlation functions are given by

CBI(s) = 〈B(s)IB〉

= −i
∑
α

T 2
αωα

(
−eiωαsnB(ωα) + eiωαs(nB(ωα) + 1)

)
, (C.33)

yielding

CBI(ω) = −i
∑
α

∫
dseiωsT 2

αωα
(
−eiωαsnB(ωα) + eiωαs(nB(ωα) + 1)

)
= −i

∑
α

T 2
αω

(
1

e−βω − 1
δ(ω + ωα) +

eβω

eβω − 1
δ(ω − ωα)

)
. (C.34)

For ω > 0 we have

CBI(ω) = −iω2γ0
eβω

eβω − 1
, (C.35)

The symmetrized and anti- symmetrized correlators are calculated as

SBI(ω) = CBI(ω) + CBI(−ω) = −iγ0ω
2 (C.36)

ABI(ω) = CBI(ω)− CBI(−ω) = −iγ0ω
2 coth

βω

2
. (C.37)

Furthermore, we use the symmetrized versions of the Laplace-Transforms, i.e.

SLBI(ω) = LBI(ω + LBI(−ω) (C.38)

ALBI(ω) = LBI(ω)− LBI(−ω). (C.39)

C.2. Analysis of combinations of SBI(ω) and ABI(ω)

In this section we investigate the combinations of

SEBI(ω) = EBI(ω) + EBI(−ω) = iP.V.

∫
dν

2π
CBI(ν)

2ν

ω2 − ν2
, (C.40)

AEBI(ω) = EBI(ω)− EBI(−ω) = iP.V.

∫
dν

2π
CBI(ν)

2ω

ω2 − ν2
, (C.41)
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which occur in the matrix elements of the current Îdiss(t). We obtain combinations like

− SEBI(ω) +
1

2

(
SEBI(ω + Ω) + SEBI(ω − Ω)

)
= iP.V.

∫
dν

2π
νCBI(ν)

(
− 2

ω2 − ν2
+

1

(ω + Ω)2 − ν2
+

1

(ω − Ω)2 − ν2

)
= iP.V.

∫
dν

2π
CBI(ν)ν

2Ω2(ν2 + 3ω3 − Ω2)

(ω2 − ν2)((ω + Ω)2 − ν2)(ω − Ω)2 − ν2)
, (C.42)

which turns out to be depending on an high frequency cutoff ωc and hence cause contri-
bution of the order of lnωc/ω. Additionally we have

SEBI(ω − Ω)− SEBI(ω + Ω) = iP.V.

∫
dν

2π
CBI(ν)2ν

(
1

(ω − Ω)2 − ν2
− 1

(ω + Ω)2 − ν2

)
= iP.V.

∫
dν

2π
CBI(ν)

−8νωΩ

((ω − Ω)2 − ν2)((ω + Ω)2 − ν2)
, (C.43)

which is also dominated by lnωc/ω. Finally, we have

AEBI(ω)− 1

2

(
AEBI(ω + Ω) +ABI(ω − Ω)

)
= iP.V.

∫
dν

2π
CBI(ν)

(
2ω

ω2 − ν2
− ω + Ω

(ω + Ω)2 − ν2
− ω − Ω

(ω − Ω)2 − ν2

)
= iP.V.

∫
dν

2π

−2CBI(ν)ωΩ2
(
3ν2 + ω2 − Ω2

)
(ω2 − ν2)((ω + Ω)2 − ν2)((ω − Ω)2 − ν2)

, (C.44)

which is non divergent, providing a smaller contribution than the above integrals.

99


	Contents
	1 Introduction
	2 Fundamentals: The driven two-level-system
	2.1 Preliminaries to the TLS
	2.2 Periodic driving
	2.2.1 Floquet theory
	2.2.2 Linearly polarized driving
	2.2.3 Circularly polarized driving
	2.2.4 Transformation into the rotating frame

	2.3 Measurement protocol
	2.4 Conclusion

	3 Fundamentals: Formalisms for open quantum systems
	3.1 The density matrix
	3.2 Microscopic derivation of a master equation
	3.2.1 The Bloch-Redfield master equation
	3.2.2 The Lindblad master equation
	3.2.3 Summary

	3.3 Diagrammatic approach
	3.4 Super operator representation
	3.5 The bath correlation functions
	3.6 Example: a two-level system coupled to a heat bath
	3.7 Conclusion

	4 Fundamentals: Full counting statistics
	4.1 An intuitive example: The spin-1/2 galvanometer
	4.2 The two-point measurement statistics
	4.3 The Nazarov-Kindermann-approach to energy counting statistics
	4.4 Conclusion

	5 The driven two-level system in the context of fluctuation relations
	5.1 Introduction of the fluctuation relations
	5.1.1 The Bochkov-Kuzovlev fluctuation relation
	5.1.2 The subtlety of defining work
	5.1.3 A detailed fluctuation relation
	5.1.4 Experimental situation

	5.2 Probability distribution of energy dissipated by the driven two-level system
	5.2.1 Counting field dependent master equation for the driven system
	5.2.2 Structure of the generating function
	5.2.3 Results for the driven two-level system

	5.3 Conclusion

	6 The conditional cumulants of dissipated energy
	6.1 Numerical analysis of the cumulants
	6.1.1 Analysis of the conditional average
	6.1.2 Analysis of the conditional noise

	6.2 Discussion and analytics to the conditional cumulants
	6.3 Quantum part of the dissipated energy
	6.4 Conclusion

	7 A weak measurement proposal and the connection to the conditional average
	7.1 Weak measurements and weak values
	7.1.1 The weak measurement and weak values
	7.1.2 A gedanken experiment: The weak measurement of a spin 1/2 particle

	7.2 Weak measurement for the driven open quantum system
	7.3 The connection between the weak value and the conditional average of dissipated energy
	7.3.1 Full counting statistics approach
	7.3.2 Proof that Eq. (7.32) is real

	7.4 Continuous weak measurement of the energy current dissipated by the driven TLS
	7.4.1 Weak value of the energy current
	7.4.2 Comparison with the FCS result

	7.5 Conclusion

	8 Conclusion
	Bibliography
	Appendix
	A Quantum version of the detailed fluctuation relation
	B Analytic result for the Quantum correction of probability densities
	C Calculations concerning the dissipative energy current 
	C.1 Bath Correlation functions
	C.2 Analysis of combinations of SBI() and ABI()



