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Abstract 

Water diffusion into silica glass results in a thin zone near the surface of the 
glass. In this zone molecular and hydroxyl water are present. The content of 
hydroxyl water increases its specific volume so that the silica expands and the 
volume near the surface is larger than it was before being penetrated by the 
water. Suppressed free expansion of the glass causes biaxial compressive 
swelling stresses.  
The effect of such swelling stresses and also of moderate externally applied 
stresses on the diffusion behaviour will be studied in this report for the case of a 
gaseous water environment at temperatures <500°C.  
In the Appendix also the effect of stress-enhanced equilibrium constant is 
addressed and the behavior at higher temperatures briefly considered. 
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1. Water diffused into silica  

When H2O (l) comes in contact with silica surfaces, the water diffuses into the glass, 
and reacts with the silica network [1] 

  Si-O-Si +H2O  SiOH+HOSi (1.1) 

with the concentrations of molecular water, C=[H2O], and hydroxyl water, S=[SiOH]. 
For the following considerations, it is assumed that the reaction (1.1) is in equilibrium.  
The equilibrium constant of the reaction (1.1) is at low temperatures, T500°C, repre-
sented by the ratio  

  
C

S
k   (1.2) 

The “water” concentration may be represented by the molecular water species, C.  
In a previous report we have drawn attention to the fact that surface diffusion of water 
into silica can be described analytically by introducing mass transfer boundary condi-
tions [2] or by a slow surface reaction according to Doremus [3].  

This condition reads  

  )( 0 CC
D

h

dz

dC
   at  z=0 (1.3) 

where z is the depth coordinate, C0 the maximum content of molecular water reached 
at the surface, z=0, D the effective diffusivity, and h the mass transfer coefficient. The 
diffusion equation under reaction conditions follows from the motivation by Doremus 
[1] according to [4] 
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with the diffusivity DC of molecular water, the effective diffusivity D for constant S/C 
and the equilibrium constant in the absence of stresses, k0 (see also Appendix A1).  

In [2] we applied eq.(1.4) for the special case of stress-independent diffusivity and 
equilibrium constant. In normal test specimens, the diffusion zones are very small 
compared to the specimen thickness. Under all these assumptions, the solution for the 
semi-infinite body reads according to Carslaw and Jaeger [5]  
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and for z=0: 
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In the present report stress effects are included. 

2. Swelling stresses  
Clear evidence has been given in the literature for a volume swelling due to the 
water uptake in silica. Swelling of water-containing silica at high temperatures was 
reported by Shelby [6]. Since the measurements were performed at 1100°C, no mo-
lecular water was involved, only ≡SiOH. As pointed out in [7], the related volume 
swelling strain εv can be written in this special case as 

 wv C84.1  (2.1) 

where Cw is the total water concentration in the silica glass in mass units (g H2O/g 
glass). By curvature measurements on silica disks it could be shown that the water 
penetrated into the silica surface caused volume expansion accompanied by compres-
sive swelling stresses [8]. In the present report it is checked whether the swelling 
stresses can explain several interesting experimental results known from literature. As 
outlined in [9] the volume swelling strain is related to the hydroxyl concentration by  

 S
S

v  
2

)1(17
18  (2.2) 

with the coefficient 

 ]02.1,92.0[97.0  (2.3) 

The numbers in brackets represent the 95% confidence interval. 
A volume element in a plate that undergoes swelling cannot freely expand. If the dif-
fusion zone is small compared to the component dimensions; expansion is completely 
prevented in the plane of the surface and can only take place normal to the surface 
plane. This results in a compressive hydrostatic swelling stress h [8]: 
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where E=72 GPa is Young’s modulus and =0.17 is Poisson’s ratio of silica. Conse-
quently, it can be written 

 GPa7.18,,   CkSswh   (2.5) 
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3. Stress effects on diffusivity  
Due to diffusion, the concentrations of both molecular water, C = [H2O], and hydroxyl 
water, S = [SiOH], decrease with increasing distance, z, from the surface. Stress can 
modify the effective diffusivity of water in silica in two different ways, directly 
through the activation free energy for diffusion and indirectly through its effect the 
equilibrium constant that determines the ratio of ≡SiOH to H2O. In this report the first 
effect will be considered exclusively. The second effect is not unimportant and in fact 
has to be considered for very high stresses as for instance occur at the tips of 
loaded cracks in glass [7]. Its influence on surface concentrations is briefly addressed 
in the Appendix B. 
The diffusivity D is a function of stress, commonly expressed by the hydrostatic stress 
component, σh. The stress-enhanced diffusivity is given by [10] 

  



 


RT

V
DD whexp0   (3.1) 

where D0 denotes the value of the diffusivity in the absence of a stress. T is the abso-
lute temperature in K; ∆Vw is the activation volume for stress-enhanced diffusion and 
R is the universal gas constant.  
When an externally applied stress appl and swelling stresses sw are present simulta-
neously, the total hydrostatic stress is  

 swhapplhh ,,    (3.2) 

Since the swelling stress depends on the water concentration C, the diffusivity also 
depends on C, i.e. D=D(C). The diffusion of molecular water is now governed by the 
partial differential equation for the uniaxial diffusion  
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Equation (3.3) was numerically solved using the Mathematica procedure NDSolve 
[11]. Fig. 1a shows water profiles as a function of time with the actual water concen-
trations normalized on the actual surface value C(0).  
The swelling stress related to a certain concentration C is 

  )(, 0,0,
0

0,, C
C

C
swhhhswh     (3.4) 

where the quantity h,0 is the hydrostatic swelling stress value reached for C=C0. For 
reasons of simplicity, we introduce a normalized dimensionless time  and normalized 
depth coordinate , defined by  
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With these abbreviations, eqs.(1.5) and (1.6) read 
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The blue curves in Fig. 1a show the concentration profiles in the absence of swelling. 
The red curves represent the profiles under swelling conditions. In both cases the bold 
curves show the limit cases for t, i.e. under saturation conditions C(0) = C0 [12].  
In the absence of swelling, the widths of the diffusion profiles increase with the limit 
distribution described by 
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The profile for t=0 or =0, introduced as the black dash-dotted curve, can be analyti-
cally computed. This concentration profile reads 
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From the condition  
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the half width for 0 follows by application of the FindRoot-routine of Mathematica 
[11] as 1/2=0.69950.7.  

The profiles under swelling conditions are shown by the red curves of Fig. 1a. With 
increasing normalized time, the curves become clearly steeper than those obtained 
without swelling.  

In Fig. 1b the normalized depth 1 /2  at which the water concentration decreased to 
the half of the surface value is plotted as a function of time. Whereas the diffu-
sion zones in the absence of swelling stresses increase with time, they are clearly 
reduced with increasing time in the case of swelling included. This effect was al-
ready visible from Fig. 1a. 
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Fig. 1  a) Diffusion profiles as a function of normalized time without and with consideration of swell-
ing stress effect on diffusivity, b) normalized diffusion depth (depth where 1/2=0.5) versus normalized 
time.  

 

 
Fig. 2 a) Effect of the saturation stress h,0, on the shape of the profiles, b) surface concentrations vs. 
time. 
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Fig. 2a shows the effect of the maximum swelling stress h,0 on the shape of the con-
centration profiles and Fig. 2b represents the time-dependent surface concentration. 
The higher the compressive saturation swelling stress is, the earlier is saturation 
reached. 
 
4 Comparison with experimental results from literature 

4.1 Apparent diffusivity from diffusion profiles 

Time-dependent diffusion profiles were measured by Davis and Tomozawa [13] in 
terms of the hydroxyl concentration S on silica hydrated in water vapour of 355mm Hg 
pressure at 350°C. The results, Fig. 3, showed reduced normalized diffusion depths 
with increasing soaking time. This behavior obviously agrees amazingly with the trend 
shown by the red curves in Fig. 1a. This can be interpreted as further evidence for the 
occurrence of compressive swelling stresses. 
Approximate methods for the determination of the diffusivity from measurements of 
water profile and water uptake were proposed by Tomozawa and co-workers [13, 
14]. Basis of their evaluation is the use of an equation that is only valid for a con-
stant surface concentration, although the concentrations clearly increased with time: 
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One possibility for the computation of an “effective diffusivity” is via the measured 
depth z1/2 at which the concentration decreased to 50% of the surface concentration.  
 

 
Fig. 3   Diffusion profiles by Davis and Tomozawa [13]. 
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Fig. 4  a) Measurements of effective diffusivities by Oehler and Tomozawa [14] at 250°C and 39 bar 
water vapour pressure, b) effective diffusivity computed from the curves for the diffusion zone half-
width z1/2 of Fig. 1b. 

An apparent diffusivity decreasing with time is clearly visible from experiments by 
Oehler and Tomozawa [14] measured at 250°C and 39 bar vapor pressure (Fig. 4a).  

Computed apparent diffusivities obtained from the zone widths in Fig. 1b are shown in 
Fig. 4b. The same time dependency is obvious as obtained in the experiments by Oeh-
ler and Tomozawa [14].  

4.2 Influence of externally applied stresses 

4.2.1 Prediction of stress influence on water profiles 

Beside the swelling stresses also externally applied stresses as present for instance in 
bending tests must affect the diffusion profiles. The diffusivity in the presence of a hy-
drostatic swelling stress term h and an externally applied hydrostatic stress h,ext is 
given by 
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For bending tests, the stresses are sufficiently constant within the range of the diffu-
sion layers. In such tests, the upper and the lower surface of a bending bar show tensile 
and compressive stresses.  
Concentration profiles computed with eqs.(3.1) and (3.3) are plotted in Fig. 5 and Fig. 
6 for varied hydrostatic swelling terms h,0Vw/RT and varied time. It is obvious that in 
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all cases surface concentrations are smaller under externally applied tensile stresses 
than in the absence of such stresses. Compressive stresses cause an increase of water at 
the surface. The enlarged surface concentrations for compression decrease with respect 
to depth steeper than for tension. In deeper regions the concentrations under tension 
exceeds that for the compression side.  

Since the swelling stresses h,0 depend on the saturation concentration which is pro-
portional to the vapour pressure and since the activation volume Vw in eq.(3.1) is not 
known sufficiently, the parameter h,0Vw/RT was tentatively varied in Fig. 5.  
Comparison of Fig. 5a to Fig. 5c shows clearly that the reason for the difference in 
surface concentrations is not caused by the swelling stresses since the effect occurs 
even in the absence of swelling, (Fig. 5a). With increasing swelling the difference at 
the surface is only slightly increased. From Fig. 5a we therefore have to conclude that 
the effect of the externally applied stresses on surface concentrations is due to the in-
crease of water with time. 
In Fig. 6 the time is varied for constant swelling h,0Vw/RT=-2. The results indicate 
that for short times the concentration differences at the surfaces are larger than for 
longer times. For    the differences must of course disappear completely because 
then the water concentration reaches saturation independent of the applied stress.  
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Fig. 5   Diffusion profiles under externally applied stresses; effect of swelling (soaking time, =1). 
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Fig. 6   Diffusion profiles under externally applied stresses; effect of normalized soaking time, t, for 
h,0Vw/RT=-2. 
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Equivalent to (4.3) it is 
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In the case of bending tests the difference of the concentrations on the two surfaces is 
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The stress effect on the surface concentration can simply be summarized: 
Under tensile stresses the diffusivity is increased and diffusion is enhanced. This must 
result in  
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 an increased zone thickness compared to the tests without externally applied 
stresses.  

 Due to the higher diffusivity under tensile stresses, the water diffusion into the 
bulk material is also increased. Since the water entrance from the environment in-
to the surface is limited by the finite value of h, the concentration of water at the 
surface must decrease.  

Under compressive stresses the diffusivity is reduced. This results in a reduced penetra-
tion depth and an increased surface concentration. 

 

 
Fig. 7 Water concentration at the surface as a function of time under externally applied and swelling 

stress, a) for negligible swelling, h,0=0; b) with swelling included, h,00.  

The water concentration at the surface is plotted in Fig. 7 as a function of applied 
stress and time  with the swelling stress varied. In Fig. 7a the case of negligible swell-
ing stresses, h,0=0, is plotted. Figure 7b shows the effect of considerable swelling. For 
short normalized time  the surface water concentration is proportional to  and for 
large time it equals the concentration prescribed by the environment, C0: 
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It is visible that the water concentration on the tensile side of a bending specimen is 
lower than the concentration on the compressive side. This difference disappears with 
increasing time. For  the concentration is on both sides equal C0. Under swelling 
stresses the change from the -dependency to C/C0=1 is more abrupt. 
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4.2.2 Results by Nogami and Tomozawa 
Figure 8a shows experimental results on bending bars by Nogami and Tomozawa [15] 
at 190°C carried out after 300h treatment in water atmosphere at 12 bars water vapour 
pressure. Measurements were carried out on the tensile and compression side under 
load and in an additional test also on unstressed bars. 

 

   
Fig. 8  Concentration profiles by Nogami and Tomozawa [15] as a function of the hydrostatic stress, a) 
bending bars for silica at 192°C (water vapour pressure: 12.3 bars), b) externally pressurized speci-
mens at 350°C (water vapour pressure: 25 bars), C: in absorption coefficients (1/mm). 

In Fig. 8b similar results at 350°C are shown for 5h soaking (water atmosphere at 25 
bars). In this case, Nogami and Tomozawa [15] applied hydrostatic pressures directly. 
The results of Fig. 8 completely confirm the computed curves in Fig. 5 and Fig. 6. The 
effective activation volume was experimentally determined in [15] as Vw =170 
cm3/mol for 192°C and 72 cm3/mol at 350°C. 

4.2.3 Results by Davis and Tomozawa 

Figure 9a shows hydroxyl concentration data in mass units under water saturation 
pressure as could be computed from measurements by Zouine et al. [12] using the 
equilibrium equation from Wiederhorn et al. [8]. The straight line introduced in this 
plot reads 
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with the temperature  in °C. An extrapolation to =250°C results in the saturation 
concentration of S=0.94 wt%. The corresponding hydrostatic swelling stress term at a 
free surface is given by eq.(2.5): h,0= -177 MPa. 

Consequently, it holds for 250°C: 

  w
wh V

RT

V



0407.00,

 (4.9) 

 
Fig. 9 a) Concentration of hydroxyl water at silica surfaces under saturation pressure by Zouine et al. 
[12], b) results of Fig. 4b together with the curve related to the effective volume Vw=72 cm3/mol (red 
curve) as was derived by Nogami and Tomozawa [15], arrows: limit values for . 

In Fig. 9b the results of Fig. 4b are shown once more together with the parameter cho-
sen for the results obtained by Nogami and Tomozawa [15], namely, Vw =72 cm3/mol 
(the value of Vw =170 cm3/mol seems to be extremely large). For the parameter (4.9) 
it results: h,0Vw/RT= 2.93. 
The ratio of diffusivities for the asymptotic limit, , are given by the arrows to the 
right. This limit case has to be expected either for liquid water in contact with silica 
surfaces or for water vapour environment after extremely long times t. 

Finally, Fig. 10 illustrates the ratio Deff/D0 from Fig. 9 as a function of the swelling 
parameter h,0Vw/RT by the circles. The dash-dotted straight line represents eq.(3.1). 
The red arrows indicate the activation volumes suggested by Nogami and Tomozawa 
[15]. For strongly negative swelling parameters, the integration procedure for the nu-
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merical solution of eq.(3.3) becomes rather unstable. A rough estimation for the very 
large value of 170 cm3/mol needs an extrapolation of computed results. Such an ex-
trapolation is tentatively shown by the dashed extension of the computed data curve. 

 

 
Fig. 10 Diffusivity ratio of Deff/D0 from Fig. 9b for normalized time =3 versus the swelling parameter 
h,0Vw/RT (symbols) compared with the diffusivity ratio D/D0 according to eq.(3.1) (dash-dotted 
line); the dashed line is tentatively introduced for extrapolations.   
 
 
4.2.4 Results by Agarwal et al. 

Hydrogen concentrations close to silica surfaces were reported by Agarwal et al. [16]. 
These authors used the nuclear reaction analysis (NRA) on water profiles in specimens 
that were hot-water soaked at 250°C under 355 Torr vapour pressure. These results are 
represented in Fig. 11a. The water content under pressure (compressive side of a bent 
specimen) is always higher than under tension. This is in complete agreement with the 
data by Nogami and Tomozawa [15] and shows the same behaviour as the predictions 
given in Figs. 6 and 7.  

Since no surface concentrations are given in [16], we plotted the data at 0.12 µm be-
low the surface versus soaking time in Fig. 11b. The slopes of the regression lines are  
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0.495 [0.467, 0.523]   for compression, 60 MPa 

with the 90% Confidence Intervals in brackets. 

These results roughly fulfil the surface predictions for short times, namely C/C0  t. 
This result indicates that even the longest soaking time of 16h is far away from satura-
tion.  
When stress-enhanced swelling is taken into consideration, the influences of tension 
and compression will change for long soaking time. This is outlined in the Appendix 
B. 

    
Fig. 11 a) Water concentration below the surface at 250°C and 355Torr vapour pressure under bend-

ing stresses of 60MPa, b) data at a depth of 0.12 µm below the surface plotted vs. soaking time. 

Conclusions 

There are several important findings from the computation of diffusion profiles for water va-
pour soaked silica when the surface condition, eq.(1.3), is applied. The results plotted in Figs. 
1 and 2 show that the existence of a finite mass transfer coefficient or reaction parameter h 
affects the shape of the profiles. Whereas in liquid water the profile of the water distribution 
zone can be described by the well-known dependency  

)]2/([erfc tDzC  ,  

[12], the concentration distribution for a vapour environment deviates.  

 In the absence of swelling stresses, the steepness of the normalized water diffusion 
profile, given by the continuous curves in Fig. 1a, decreases with increasing normal-
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ized time. The concentration profile given by the above equation is reached after an 
infinite normalized time; 

 In presence of swelling stresses in the diffusion layer, the water profiles become 
steeper with increasing time as is visible from the dashed curves in Fig. 1a; 

Measured water concentration profiles, Fig. 3, clearly show the effect of time on the shape of 
the diffusion profiles. The increasing curve steepness with increasing time is evidence for the 
presence of compressive swelling stresses. 

From the depths z1/2 at which the water concentration decreases to 50% of the surface value 
an apparent diffusivity, Deff, was defined by Davis and Tomozawa [13] via tDz eff2/1 . The 
apparent diffusivity Deff, Fig. 1b, decreases with time and swelling stresses. This result is in 
best  agreement with the experimental observations by Davis and Tomozawa [13] and by Öh-
ler and Tomozawa [14], Fig. 4a. This also shows that swelling of silica is present.   

From our computations, the results by Nogami and Tomozawa [15] became easily under-
standable. The same holds for equivalent results by Agarwal et al. [16], Fig. 11. 
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APPENDIX  A:   

A1 Diffusion differential equation and approximations  

Introducing (1.2) in (1.4) gives  
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Several steps can be made to simplify these equations: 

 Under the assumption of a stress-independent equilibrium constant, k=k0, we ob-
tain  
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defining an effective diffusivity D.  

 Assuming in addition a stress-independent diffusivity, D=const., yields in the sim-
plest approximation 
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as was used in [2]. 

A2 A semi-analytical approach 

The numerical effort for the solution of the diffusion equation, eq.(3.3), is hardly man-
ageable in presence of swelling stresses. An approximate analytical solution can be 
obtained following the general procedure usual in perturbation theory. If we consider 
the diffusivity D(C) as the disturbance parameter, perturbation theory suggests to 
solve the problem for the case of D(0)=D0 and to insert the disturbance parameter into 
this solution. The disturbed solution is then obtained by introducing D(C) instead of 
D0 into the undisturbed solution. Since the analytical solution of the undisturbed 
problem, here denoted as the first-order solution C ( 1 )  is given by  
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the analytical second-order solution C(2) simply reads 
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with the diffusivity, eq.(3.1), taken at the local- and time-dependent concentration 
C=C(1).  
 

 
Fig. A1 a), b) Semi-analytical solutions C(n) compared with numerical results for th2/D0=1. 

Higher iteration solutions are possible by introducing D(C(n)) on the right-hand side, 
resulting in C(n+1), etc.  
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A comparison of the perturbation solutions and the numerical results from eq.(3.3) is 
given in Fig. A1. Whereas for h,0Vw/RT= 2 (Fig. A1a) the iteration solution C(3) is 
in complete agreement with the numerical solution, first small deviations are visible 
for h,0Vw/RT= 3, Fig. A1b. Therefore, it is suggested to use the perturbation solu-
tion only for not too strong swelling stresses.  

 

APPENDIX  B:   

B Stress-enhanced equilibrium constant  

B1 Low temperature <500°C 

Because of the principle of Le Chatelier [17], the equilibrium of reaction (1.1) and the 
hydroxyl concentration depend on stresses. Whereas in the preceding derivations  the 
influence of swelling stresses was considered exclusively, here the effect of externally 
applied uniaxial stresses appl is taken into account at temperatures < 500°C. Then the 
equilibrium constant k reads in terms of the hydrostatic part of the applied stresses, 
h,appl=appl/3, and the hydrostatic part of the swelling stresses, h,sw, 
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The parameter k1,0 is the equilibrium constant in the absence of any stress. V1 is the 
increase in partial molar volume during the reaction. It is of importance to note that the 
swelling stress, h,w is proportional to the hydroxyl concentration S as given by 
eq.(2.5).  
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This is an implicit equation with k occurring on the left side as well as in the argument 
of the exponential function. The explicit solution of (B1a) reads 
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with the product logarithm or Lambert W function PLog. Finally, eq.(1.4) is rewritten 
as 

  














































RT

V

RT

VCk

tV

RT

z

C
D

zt

C appl
C

13
1

10,1

1

expPLog
2

1 


  (B2) 



 

 20

again obtained by using NDSolve of Mathematica [11].  

Since water concentration measurements are mostly performed via the IR band 
(3670/cm) for the hydroxyl species, S, it is of advantage for predictions to give S as a 
function of time. The result of eq.(A2), given as molecular water concentration C(t), 
reads according to eq.(B1): 
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Figure B1a shows the surface concentration S normalized on (C0k1,0). The hydroxyl 
water concentration shows for short time  a concentration proportional to (time)1/2. 
The water concentration under compressive stresses is larger than in tension for short 
times. After longer time, the concentration on the tensile side becomes larger than that 
on the compression side.  

To our knowledge, there are no results available for very long times, t >>16h, for 
which the predicted change of the stress effect would be expected. An indication for an 
expected intersection of the tensile and compression results might by identified by the 
different slopes of the two lines in Fig. 11b. 

B2 High temperature >500°C 

The equilibrium at high temperatures is given by 
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Consequently, it holds instead of eq.(1.2) 
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The numerical solution of this differential equation is plotted in Fig. B1b as S(). The 
slope in this diagram is ¼ instead of ½ as was obtained in Fig. B1a. 

Measurements by Agarwal et al. [16] at 650°C and 355 Torr water vapour pressure are 
plotted in Fig. B2. These data confirm clearly the effect of higher water concentration 
under compression for short time and higher water concentration in tension for longer 
times.  
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Fig. B1 a) Hydroxyl concentrations for stress-enhanced hydroxyl water at a silica surface for tempera-
tures <450-500°C computed with a parameter of |appl|/3Vw/RT=0.5, b) for stress-enhanced hydroxyl 
water at a silica surface for temperatures >450-500°C.  

 

     

Fig. B2 a) Hydrogen concentration below the surface at 650°C and 355Torr vapour pressure under 
bending stresses of 45MPa, b) H-concentration in 0.12µm depth versus time. 
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