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A First-Order Theory of Ordinals

Peter H. Schmitt

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. This technical report documents the work done leading up to
a paper on a theory of ordinal submitted to the Tableaux 2017 conference.

1 Introduction

The theory of ordinals presented in Section 2 below is the same as in the Tableaux
paper. The list of lemmas derivable in the full theory ThOrd in Subsection 2.3
below is considerable larger then was possible under the page restriction of that
paper. Section 4 makes good on the promise in the concluding section of the
Tableaux paper in giving full proofs of Theorems 2 and 3. These proof use the
concept of normal forms for ordinals. References on normal forms abound in the
literture. For the convenience of the reader we have however collected all the
details we need in Section 3. Sections 6 and 7 on Goodstein numbers and the
proof of their termination are an extension of what is covered in the Tableaux
paper. We use however different names for the involved functions:

Tableaux paper here
oHNF (n,m) fm,n(n+ 1)
oGS(n,m) o(n,m)

The general three-argument function fn,m(x) has no counterpart in the Tableaux
paper.

Furthermore this technical report contains the full JML-annotated Java
program for Goodstein sequences, Figures 17 and 18. But here there is also room
for the Java program that computes Goodstein sequences using BigInt, Figure
16.

Also in this report, but not in the Tableaux paper, is Section 5 containing a
small example of a program termination proof using ordinals.

2 A Theory of Ordinals

We consulted the books [3,15] and also the books [9,10] in German on ordinal
arithmetic in axiomatic set theory.



mathematical notation Dynamic Logic JML
predicate n < m : (Ord,Ord) olt(n,m) \ord_less(n,m)
functions n+ 1 : Ord→ Ord oadd(n, o_1) \ord_add(n, \o_1)

0 : Ord o_0 \o_0
ω : Ord omega \omega

binder supm<bj : Ord×Ord→ Ord osup{m; }(b, j) −−−

Fig. 1. The vocabulary of the Core Theory

2.1 The Core Theory

We start out with a very simple core theory Th0
Ord. This plays the same role

here as Peano’s theory for the arithmetic of natural number. The vocabulary
of Th0

Ord is shown in Figure 1. In this text we use the mathematical notation
throughout. The figure also gives the corresponding notation in Dynamic Logic
and the corresponding JML notation that is used in annotating Java programs.
In the binder symbol m is the bound variable. The intended meaning of these
symbols is fixed by the axioms in Figure 2.

1. ∀x, y, z(x < y ∧ y < z → x < z) transitivity
2. ∀x(¬x < x) strict order
3. ∀x, y(x < y ∨ x .= y ∨ y < x) total order
4. ∀x(0 ≤ x) 0 is smallest element
5. 0 < ω ∧ ¬∃x(ω .= x+ 1) ω is a limit ordinal
6. ∀y(0 < y ∧ ∀x(x < ω → x+ 1 < y)− > ω ≤ y) ω is the least limit ordinal
7. ∀x(x < x+ 1) ∧ ∀x, y(x < y → x+ 1 ≤ y) successor function
8. ∀z(z < α→ t[z/λ] ≤ supλ<αt) def of supremum, part 1
9. ∀x(∀z(z < α→ t[z/λ] ≤ x)→ supλ<αt ≤ x) def of supremum, part 2

10. ∀x(∀y(y < x→ φ(y))→ φ)→ ∀xφ transfinite induction scheme

Fig. 2. The axioms of the Core Theory

We thus see that < is to be interpreted as a strict, total, order relation. We
use already here x ≤ y as a shorthand for x .= y ∨ x < y. This predicate will
be systematically included in the extended vocabulary introduced below. The
constants 0 and ω are part of the core vocabulary. From the axioms we see that 0
is the least element with respect to < and ω is the first infinite ordinal. Without
the two axioms for ω the natural numbers with strict order and successor would
be a model of the remaining axioms and nothing would have been gained over
Peano’s theory. We use x+ 1 to denote the immediate successor of x to avoid
the introduction of an additional symbol. Furthermore supλ<αt is the strict
supremum of the {t | λ < α}. Here the term t will typically contain the variable
λ, while λ is not allowed to occur in α. We use the notation t[z/λ] to denote



the term that arises from t by replacing λ by z everywhere. The last and most
powerful axiom is the axiom of transfinite induction that is an extension the
course-of-value induction scheme in finite arithmetic: Let φ be a formula that
typically would contain x as a free variable and let φ(y) stand for the formula
obtained from φ by replacing x by y (assuming of course that y does not occur in
φ, neither free nor bound). If we can prove for every x the transfinite induction
step ∀y(y < x→ φ(y))→ φ then we conclude that φ is true for all x.

One could ask whether the sup operator should be part of the core vocabulary
or if it would not have been better to include it later as a definitional extension.
The answer is no! Since we follow the usual set-up of first-order logic all functions
are total. Consequently, inclusion of a function symbol in the vocabulary already
implies an implicit existence axiom: the function values exist for all arguments.
Adding sup is not a definitional extension since the associated existence claim
could not be proved in the theory without sup.

An alternative would have been to include the following axiom scheme instead
of the two parts of the definition of sup

∀λ(∃z(∀x(x < λ→ t ≤ z)))
Then it would than have been possible to show, using transfinite induction, that
adding the sup operator is a definitional extension of this version of the core
theory. The adopted approach is more straightforward.

Note, that the way we definied sup the formulas supλ<0t
.= 0 and supλ<1t

.=
t[0/λ] can be derived. By t[0/λ] we denote the term that arises from t by replacing
everywhere the variable λ by the constant 0.

As an alternative of the supremum sup defined in Figure 2 we could have
defined a strict supremum ssupλ<αt as the least ordinal that is strictly greater
than all t[λ]. Figure 3 shows what further changes would have been entailed.

osup ossup
∀z(z < α→ t[z/λ] ≤ supλ<αt) ∀z(z < α→ t[z/λ] < supλ<αt)
∀x(∀z(z < α→ t[z/λ] ≤ x)
→ supλ<αt) ≤ x)

∀x(∀z(z < α→ t[z/λ] < x)
→ supλ<αt) ≤ x)

supλ<1 t
.= t[0/λ] supλ<1 t

.= t[0/λ] + 1
∀x(lim(x)→ supλ<x λ

.= x) ∀x(supλ<x λ
.= x)

∀x(supλ<x+1 t
.= max(supλ<x t, t[x/λ])) ∀x(supλ<x+1 t

.= max(supλ<x t, t[x/λ] + 1))
∀x, y(lim(y)→ x ∗ y = supλ<y(x ∗ λ)) ∀x, y(lim(y)→ x ∗ y =

if x .= 0 then 0 else supλ<y(x ∗ λ))

Fig. 3. Comparison between supremum and strict supremum

Note, that the way we definied sup the formulas supλ<0t
.= 0 and supλ<1t

.=
t[0/λ] + 1 can be derived. By t[0/λ] we denote the term that arises from t by
replacing everywhere the variable λ by the constant 0.



A real disadvantage of ssup is the fact that the equation supλ<xi ∗ t =
i ∗ supλ<xt is not true. Here are counterexamples for x a limit and x a succsessor
ordinal:

ω = ssupn<ω2 ∗ n 6= 2 ∗ ssupn<ωn = 2 ∗ ω
i ∗ x+ 1 = ssupλ<x+1i ∗ λ 6= i ∗ ssupλ<x+1λ = i ∗ (x+ 1)

2.2 Extension with Auxiliary Predicates

We will describe the extensions of the core theory in several installments in the
following subsections. Figure 4 shows the final vocabulary ΣOrd of the (extended)
theory of ordinals ThOrd after all these extensions. The axioms of ThOrd are

mathematical Typing Dynamic JML
notation Logic

predicates ≤ (Ord,Ord) oleq \ord_leq
lim (Ord) lim \ord_lim

functions 1 Ord o_1 \o_1
ω Ord omega \omega

max Ord×Ord→ Ord omax \ord_max

+ Ord×Ord→ Ord oadd \ord_add
∗ Ord×Ord→ Ord otimes \ord_times
ˆ Ord×Ord→ Ord oexp \ord_exp

Fig. 4. Extended vocabulary ΣOrd

Th0
Ord plus the definitions of the new symbols in Figure 5 and Figure 7.
In this subsection we concentrate on the definition of the auxiliary symbols

≤ and lim in Figure 5. In our set-up 0 is not a limit ordinal.

∀x, y(x ≤ y ↔ x
.= y ∨ x < y) (less or equal relation)

∀x(lim(x)↔ 0 < x ∧ ¬∃y(y + 1 .= x)) (limit ordinal)
∀x, y(max(x, y) .= if x ≤ y then y else x) (maximum operator)

Fig. 5. Definitional extension: Axioms for auxiliary predicates

Already at this point we can derive a couple of useful lemmas from the axioms
considered so far. A non-exhaustive list is shown in Figure 6.

A general comment on presentation is necessary here. In the following we
group lemmas together according to the syntactical symbols involved in them.



This does not reflect the order in which the lemmas can or need to be proved in.
In the KeY system the axioms and derived lemmas are formulated in a dedicated
proof rule language, called the taclet language. Full explanation of the taclet
language can be found in [1, Chapter 4]. The order the taclets appear in the rules
files ordRules.key and intOrdRules.key is the order that is used to make sure
that when the proof of a lemma is started that all the auxiliary lemmas have
been proved before and that cyclic dependencies are avoided.

1. ∃xφ→ ∃x(φ ∧ ∀y(y < x→ ¬φ[y/x]))
2. ∀x, y, z(x ≤ y ∧ y ≤ z → x ≤ z)
3. ∀x, y, z(x ≤ y ∧ y < z → x < z)
4. ∀x, y, z(x < y ∧ y ≤ z → x < z)
5. ∀x, y(x ≤ y ∧ y ≤ x→ x

.= y)
6. ∀x, y, z(max(x, y) < z ↔ (x < z ∧ y < z))
7. ∀x, y, z(z < (max(x, y)↔ (z < x ∨ z < y)))
8. ∀x, y, z(max(x, y) ≤ z ↔ (x ≤ z ∧ y ≤ z))
9. ∀x, y, z(z ≤ (max(x, y)↔ (z ≤ x ∨ z ≤ y)))

10. ∀x(max(0, x) .= max(x, 0) .= x)
11. supλ<0 t

.= 0
12. supλ<1 t

.= t[0/λ]
13. ∀x(lim(x)→ supλ<x λ

.= x)
14. ∀x(supλ<x+1 t

.= max(supλ<x t, t[x/λ]))
15. ∀x(∀y(y < x→ t1[y/λ] .= t2[y/λ])→ supλ<x t1

.= supλ<x t2)
16. ∀α1, α2(
∀x(x < α1 → ∃y(y < α2 ∧ t1[x/λ] ≤ t2[y/λ]))∧
∀y(y < α2 → ∃x(x < α1 ∧ t2[y/λ] ≤ t1[x/λ]))
↔ supλ<α1 t1

.= supλ<α2 t2)
17. lim(λ)↔ λ 6= 0 ∧ ∀ov(ov < λ→ (ov + 1) < λ
18. ∀λ(t1 ≤ t2 → supλ<b t1 ≤ supλ<b t2

Fig. 6. Some lemmas derivable from the axioms considered so far

We now comment on the lemmas in Figure 6. Lemma 1 in Figure 6 is the least
number principle, a well known equivalent to the induction axiom scheme. It is
instructive to figure out why this lemma is true even if x does not occur as a free
variable in φ. Lemmas 2 -4 are versions of transitivity involving both relations ≤
and <. Lemma 5 is an easy consequence of the definition of ≤ and a welcome
simplification in many proofs. Lemmas 6 to 9 show how tha maximum operator
behaves with respect to the order relations < and ≤. Lemma 10 is a simplification
rule that follows from the fact the 0 is the least ordinal. Equation 11 is true
regardless of t. Lemnma 13 could be rephrased as: x is the least ordinal that is
greater or equal than all ordinals that are strictly less than x. This is only true if
x is a limit ordinal. In the successor case we have supλ<x+1λ

.= x. Lemma 14 is
usefull in proving statements involving the sup operator via induction. Lemma



15 helps to show that to suprema are equal especially in the case when equality
between t1 and t2 is not obvious.

We look at a term t that contains λ as a sequence tλ. We say sequence tλ<α1

is confinal in sλ<α2 if for every x < α1 there is y < α2 with t[x/λ] ≤ s[y/λ].
If two sequences are mutually confinal in one another than they share the
same supremum. This is Lemma 16 in Figure 6. Note, that we get equality of
two suprema with different bounds α1 and α2. Lemma 17 gives an alternative
definition of a limit ordinal.

2.3 Defining Ordinal Arithmetic

∀x(x+ 0 .= x)
∀x, y(x+ (y + 1) .= (x+ y) + 1)
∀x, y(lim(y)→ x+ supλ<yλ

.= supλ<y(x+ λ))
∀x(x ∗ 0 .= 0)
∀x, y(x ∗ (y + 1) .= (x ∗ y) + x)
∀x, y(lim(y)→ x ∗ y .= supλ<y(x ∗ λ))
∀x(x0 .= 1)
∀x, y(xy+1) .= (xy) ∗ x)
∀x, y(lim(y) ∧ x 6= 0→ xy

.= supλ<y(xλ))
∀y(lim(y)→ 0y .= 0)

Fig. 7. Definitional extension: Axioms for arithmetic operations

Figure 7 gives the usual recursive defintions of addition, multiplication and
exponentiation.

To prove the equations that still hold among the three arithmetical operators
we need some preparation. Figure 8 list some of the intermediate stepping stones.

1. ∀x, y(y 6= 0→ x < x+ y)
2. ∀x, y(x ≤ x+ y)
3. ∀x, y(y ≤ x+ y)
4. ∀x, y, z(x < y → z + x < z + y)
5. ∀x, y, z(x ≤ y → x+ z ≤ y + z)
6. ∀x, y, z(x+ y < x+ z → y < z)
7. ∀x, y, u, w(x < y ∧ u < w → x+ u < y + w)
8. ∀x, y, u, w(x ≤ y ∧ u ≤ w → x+ u ≤ y + w)
9. (i < ω ∧ j < ω)→ i+ j < ω

Fig. 8. Lemmas involving addition and order relations



Lemma 1 in Figure 8 extends the axiom ∀x(x < x+ 1) from Figure 2 where
we now add on the right side an arbitrary number greater or equal to 1 instead
of just 1. This is, of course, proved via transfinite induction. Lemma 2 is an
easy variant of Lemma 1. Addition of ordinals is not commutative, so we cannot
conclude from Lemma 1 that ∀x, y(x 6= 0 → y < x + y). In fact, y = ω, x = 1
is a counterexample. But, the version for ≤ instead of < is provable. This is
Lemma 3. Lemma 4 is also proved using transfinite induction. We remark that
∀x, y, z(x < y → x+ z < y + z) is not true, as can be seen by the instantiation
0 for x, 1 for y, and ω for z. But, the relaxed version with ≤ instead of < is
derivable, this is Lemma 5. Lemma 6 is the reverse of Lemma 4.

1. ∀x(0 + x
.= x)

2. ∀x, y(x+ y
.= 0↔ x

.= 0 ∧ y .= 0)
3. ∀x, y, z(max(z + x, z + y) .= z +max(x, y)
4. ∀x, y, z(max(x+ z, y + z) .= max(x, y) + z
5. ∀x(x < ω → x+ ω

.= ω)
6. ∀x(lim(λ)→ lim(x+ λ))
7. ∀x(ω ≤ x→ ∃λ, n(lim(λ) ∧ n < ω ∧ x .= λ+ n))
8. ∀x, y(x ≤ y → ∃z(x .= y + z))
9. ∀x, y, z(x+ (y + z) .= (x+ y) + z)

10. ¬∃x(x+ 1 .= 0)
11. ∀x, y(x < y → (x+ 1) < (y + 1))
12. ∀x, y((x+ 1) .= (y + 1)→ x

.= y)
13. ∀x, y, z((z + x) .= (z + y)→ x

.= y)
14. supλ<x (i+ t) .= i+ supλ<x t if λ does not occur in i and x > 0
15. i+ j

.= j if ω ≤ j and i < ω

Fig. 9. Lemmas on addition

Since ordinal addition is in general not commutative Lemma 1 in Figure 9 may
not be immediately obvious, but it can be easily proved using ordinal induction.
Lemma 5 is a fact on ordinal addtion that we have referred to already above.
Lemma 6 is a useful lemma formalizing the intuition that the property of being a
limit ordinal is determined by the right end part of the ordinal regardless of what
come before. Lemma 7 gives a first general representation theorem for ordinals.
In [15, Theorem 8.13] it is proved using set comprehension. This is not available
in our setting. Fortunately, it turned out that there is a much simpler proof
using ordinal induction. Lemma 8 required the most complex proof so far. The
basic idea, however, is quite simple. As a witness for z take b, the least ordinal
such that y ≤ x+ b. It can easily be seen that such a number exists by the least
number principle (Lemma 1 in Figure 6). Then a case distinction b = 0, b .= b0 +1
for some b0, or lim(b) leads to success. Lemma 9 is the wellknown associative law.
The next three lemmas could have come earlier. Lemma 10 and 12 correspond to
the Peano axioms for the natural numbers, which say that 0 is not a successor



and the successor function is injective. Lemma 11 is a stepping stone in the proof
of 12. Lemma 13 shows that addition on the right, with fixed left summand, is
injective. Lemma 14 resisted for a while all my attempts to prove it. Since I
could also not find it in [15] I was, at some point, even in doubt wether it is true
at all. The inequality supλ<x (i + t) ≤ i + supλ<x t is simple. For the reverse
inequality a proof by contradiction turned out to be the right way of attack. So
assume supλ<x (i+ t) < i+ supλ<x t and try to find a contradiction. The key to
the solution, at least my solution, was the case distinction supλ<x (i+ t) < i or
i ≤ supλ<x (i+ t). (I later discovered that in [10] the lemma is proved by a case
disctinction whether supλ<x (i+ t) is a limit or a successor ordinal.) In the first
case we arrive at the contradiction i ≤ i+ t[0/λ] < supλ<x (i+ t) < i. Here also
the assumption x > 0 comes in. In the second case there is by Lemma 5 an ordinal
k such that i+k

.= supλ<x (i+ t). By the proof-by-contradiction assumption this
yiels i+k < i+supλ<x t and further by Lemma 9 in Figure 8 k < supλ<x t. By the
definition of sup there is λ0 < x with k ≤ t[λ0/λ]. This leads to the contradiction
i+ k ≤ i+ t[λ0/λ] < supλ<x (i+ t). The commuted version of Lemma 14, i.e.,
supλ<x (t+ i) .= (supλ<x t) + i provided λ does not occur in i and x > 0, is - as
you would have expected -not true: ω .= supλ<ω (λ+1) .= (supλ<ω λ)+1 .= ω+1
.

Lemma 15 shows a dramatic failure of commutativity for ordinal addition: A
left finite ordinal summand is simply absorbed if the right summand is infinite.
We found it helpful to split the proof of Lemma 15 in the cases ω .= j and ω < j.



1. ∀x(1 ∗ x .= x ∗ 1 .= x)
2. ∀x(0 ∗ x .= 0)
3. ∀x, y, z((0 < z ∧ x < y)→ z ∗ x < z ∗ y)
4. ∀x, y, z(z ∗ x < z ∗ y)→ (0 < z ∧ x < y))
5. ∀x, y, z(0 < z ∧ z ∗ x .= z ∗ y → x

.= y)
6. ∀x, y, z(x ≤ y → x ∗ z ≤ y ∗ z)
7. ∀x, y(x 6= 0→ y ≤ x ∗ y
8. i ∗ j .= 0↔ i

.= 0 ∨ j .= 0
9. i ∗ j .= 1↔ i

.= 1 ∧ j .= 1
10. ∀x, y(x < ω ∧ y < ω → x ∗ y < ω)
11. ∀x(0 < x < ω → x ∗ ω .= ω)
12. ∀x, y, z(max(z ∗ x, z ∗ y) .= z ∗max(x, y))
13. ∀x, y, z(max(x ∗ z, y ∗ z) .= max(x, y) ∗ z)
14. supλ<x (i ∗ t) .= i ∗ supλ<x t
15. ∀i, j, k(i ∗ (j + k) .= i ∗ j + i ∗ k)
16. ∀i, j, k((i ∗ j) ∗ k .= i ∗ (j ∗ k)
17. ∀λ, n, i(lim(λ) ∧ n < ω → i ∗ λ .= (i+ n) ∗ λ)
18. ∀λ, x((lim(λ) ∧ 0 < x < ω)→ x ∗ λ .= λ)
19. ∀i, j(1 < i ∧ 1 < j → i+ j ≤ i ∗ j)
20. ∀i, λ(0 < i ∧ lim(λ)→ lim(i ∗ λ))
21. ∀i, λ(0 < i ∧ lim(λ)→ lim(λ ∗ i))

Fig. 10. Lemmas on multiplication

Figure 10 shows derivable properties of ordinal multiplication. Lemma 3 shows
that the strict order relation is preserved by multiplication on the left provided
that the left multiplyer is not 0. Multiplication on the right only preserves ≤, as
Lemma 6 further down shows. Lemma 4 is the reverse implication from Lemma 3.
Lemma 5 states that multiplication on the right, with a fixed multiplicand on the
left, is an injective function. Lemmas 12 and 13 parallel Lemmas 3 and 4 from
Figure 9, here for multiplication instead of addition. Lemma 14 is crucial for the
proof of distributivity (Lemma 15) and multiplicative associativity (Lemma 16).
After all the preparations the proof of multiplicative associativity is now straight
forward. We use ordinal induction on the variable k. The base case is trivial. The
successor induction step is proved as follows:

i ∗ (j ∗ (k + 1)) .= i ∗ (j ∗ k + j) definition of ∗
.= i ∗ (j ∗ k) + i ∗ j distributivity, Lemma 15
.= (i ∗ j) ∗ k + i ∗ j induction hypothesis
.= (i ∗ j) ∗ (k + 1) definition of ∗

The induction step in the limit case is shown next. We us λ instead of k to signal
that k is a limit ordinal:

i ∗ (j ∗ λ) .= i ∗ supx<λj ∗ x definition of ∗
.= supx<λi ∗ (j ∗ x) Lemma 14
.= supx<λ(i ∗ j) ∗ x induction hypothesis
.= (i ∗ j) ∗ λ definition of ∗



Lemma 18 (we are still talking about Figure 10) is a strengthening of Lemma
10: multiplicative absorbtion on the left of finite ordinals not only holds for ω
but for any limit ordinal λ. Lemma 18 is an auxilliary step in the proof of 18.
Lemma 19 states when addition of two ordinals is less than their product. The
restrictions are necessary as can be seen by the simple examples
j = 0 + j 6≤ 0 ∗ j = 0

1 + j 6≤ 1 ∗ j = j
i = i+ 0 6≤ i ∗ 0 = 0

i+ 1 6≤ i ∗ 1 = i
Though commutativity of addition and multiplication and the second dis-

tributive law fail when all ordinals are considered they still hold true for finite
ordinals. This is recorded in Figure 11.

1. ∀x, y(x < ω ∧ y < ω → x+ y
.= y + x)

2. ∀i, j, k((i < ω ∧ j < ω ∧ k > ω)→ (i+ j) ∗ k .= i ∗ k + j ∗ k)
3. ∀x, y(x < ω ∧ y < ω → x ∗ y .= y ∗ x)

Fig. 11. Lemmas on finite ordinals

Next we turn to the investigation of the laws for exponentiation. The first
three lemmas in Figure 12 cover simple equations when the base 0 or 1 or exponent
is 1. Note, that for Lemma 2 the restriction on x is neccessary since be definition
we have 00 .= 1. Also the restrictions in Lemma 4 are neccessary as can be seen
by the following examples 2 6< 20 .= 1, 2 6< 21 .= 2, 0 6< 02 .= 0, and 1 6< 12 .= 1.

Lemma 1 of Figure 13 prepares the ground for the next lemma which is the
ordinal version of division with remainder. Lemma 3 is an easy instance of Lemma
2 and a very useful representation of limit numbers.



1. x1 .= x
2. ∀x(0 < x→ 0x .= 0)
3. ∀x(1x .= 1)
4. ∀x, y(1 < x ∧ 1 < y → x < xy)
5. ∀x, 0 < y → x ≤ xy)
6. ∀x, y(1 < x ∧ 0 < y → 1 < xy)
7. ∀x, y(1 < x→ 1 ≤ xy)
8. ∀x, y(x 6= 1→ x ∗ y ≤ xy)
9. ∀x, y(1 < x→ y ≤ xy)

10. ∀x, y1, y2(1 < x ∧ y1 < y2 → xy1 < xy2 )
11. ∀x, y1, y2(1 < x ∧ xy1 < xy2 → y1 < y2)
12. ∀x1, x2, y(x1 < x2 → xy1 ≤ x

y
2)

13. ∀x1, x2, y(x1 < x2 ∧ 0 < y ∧ ¬lim(y)→ xy1 < xy2)
14. xy .= 0→ x

.= 0 ∧ y 6= 0
15. xy .= 1→ y

.= 0 ∨ x .= 1
16. ∀x, y(x < ω ∧ y < ω → xy < ω)
17. ∀x, y(1 < x ∧ x < ω → xω

.= ω)
18. ∀x, y((0 < x ∧ lim(y)→ lim(yx)
19. ∀x, y(1 < x ∧ lim(y)→ lim(xy)
20. ∀x, y, z(xy+z .= xy ∗ xz)
21. ∀x, y, z((xy)z .= xy∗z)
22. ∀b((0 < b ∧ ∀x(x < b→ 0 < j))→ supx<b(ij) = isupx<b(j))

for all terms i, j such that x does not occur in i.

Fig. 12. Lemmas on exponentiation

1. ∀x, y(y 6= 0→ ∃z(y ∗ z ≤ x < y ∗ (z + 1)))
2. ∀x, y(y 6= 0→ ∃d∃r(x .= y ∗ d+ r ∧ r < y))
3. ∀x(lim(x)→ ∃d(x .= ω ∗ d))
4. ∀x, y(0 < x ∧ 1 < y → ∃z(yz ≤ x < yz+1))
5. ∀x, y, u, w(x < y ∧ u < ω ∧ w 6= 0→ ωx ∗ u+ ωy ∗ w .= ωy ∗ w
6. ∀x, y,m, z( (lim(x) ∧ 0 < y ∧ 0 < m < ω ∧ ∃z1(z .= z1 + 1))

→ (xy ∗m)z .= xy∗z ∗m
7. ∀x, y,m, z( (lim(x) ∧ 0 < y ∧ 0 < m < ω ∧ lim(z))

→ (xy ∗m)z .= xy∗z

Fig. 13. Lemmas leading to a normal form



3 Normal Form

For simplicity we will use in this section constants n ∈ N also for n > 1 as
abbreviation for the n-fold iterated sum 1 + 1 . . .+ 1.

A ground term is built up from constants {n | n ∈ N} and the functions
symbols +, ∗, exp. The set HNFof normal forms is a subset of the set of all ground
terms. It will play a special role in the following. Simultaneous with the inductive
definition of normal forms we define a binary relation � on normal forms and a
rank function rk.
Definition 1 (Normal Form).

1. A constant n ∈ N is a normal form of rank 0, in symbols rk(n) = 0, and
n� m if n is strictly greater than m as natural numbers.

2. If αi for 0 ≤ i < k are normal forms such that α0 � α1 � . . . >� αk−1 � 0,
k > 0, and mi ∈ N for 0 ≤ i < k, and mi > 0 for 0 ≤ i < (k − 1) then

t = ωα0 ∗m0 + ωα1 ∗m1 + . . .+ ωαk−2 ∗mk−2 +mk−1

is a normal form.
If k = 1 then rk(t) = 0, otherwise rk(t) = max{rk(αi) | 0 ≤ i < k}+ 1.
If

t1 = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = ωβ0 ∗ b0 + ωβ1 ∗ b1 + . . .+ ωβs−2 ∗ bs−2 + bs−1

are normal forms, with t1 6= t2 let t0 be their greatest common initial sum,
i.e.

t1 = t0 + ωαi ∗ ai + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = t0 + ωβj ∗ bj + . . .+ ωβs−2 ∗ bs−2 + bs−1

Then t1 � t2 if αi � βj or αi = βj and ai > bj.

This normal form shows some similarity to Cantor normal form. It differs in that
is is hereditary, i.e. the exponents of a normal form are again normal forms and
it is a strictly syntactic concept.

Lemma 1. The relation � is total, i.e. for any two normal forms t1, t2

either t1 � t2 or t2 � t1 or t1 = t2

Proof. The proof proceeds by induction on max(rk(t1), rk(t2))
If t1, t2 ∈ N the claim is obvious.
In the general case, assume t1 6= t2 and let t0 be the greatest common initial
sum:

t1 = t0 + ωαi ∗ ai + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = t0 + ωβj ∗ bj + . . .+ ωβs−2 ∗ bs−2 + bs−1

Since max(rk(αi), rk(βj)) < max(rk(t1), rk(t2)) we obtain from the induction
hypothesis αi � βj or βj � αi or αi = βj . This implies t1 � t2 in the first case,
t2 � t1 in the second. In case αi = βj we have either ai > bj or bj > ai, since
ai = bj would contradict the maximality of t0. Thus again t1 � t2 in the first
case, and t2 � t1 in the second. ut



Lemma 2. If ωα0 ∗m0 + ωα1 ∗m1 + . . . + ωαk−2 ∗mk−2 + mk−1 is a normal
form then

ωα0 ∗m0 + ωα1 ∗m1 + . . .+ ωαk−2 ∗mk−2 +mk−1 < ωα0 ∗ (m0 + 1)

is derivable in ThOrd.

Proof. The proof will proceed by induction on k.
In the initial case k = 1 the claim reduces to m0 < (m0 + 1) which is obviously
true.
For the step case assume

ωα1 ∗m1 + ωα1 ∗m1 + . . .+ ωαk−2 ∗mk−2 +mk−1 < ωα1 ∗ (m1 + 1) (1)

We will show

ωα0 ∗m0 + ωα1 ∗m1 + . . .+ ωαk−2 ∗mk−2 +mk−1 < ωα0 ∗ (m0 + 1) (2)

By Lemma 4 in Figure 8 we obtain from (1):

ωα0 ∗m0 + ωα1 ∗m1 + ωα1 ∗m1 + . . .+ ωαk−2 ∗mk−2 +mk−1
<
ωα0 ∗m0 + ωα1 ∗ (m1 + 1)

(3)

It thus suffices to show for 0 < a0, a1 < ω, α0 > α1

ωα0 ∗ a0 + ωα1 ∗ a1 < ωα0 ∗ (a0 + 1) (4)

By Lemma 8 in Figure 9 we get k with α0 = α1 + k. Obviously, k > 0. This
allows the following derivation
ωα0 ∗ a0 + ωα1 ∗ a1

.= ω(α1+k) ∗ a0 + ωα1 ∗ a1 choice of k

.= (ωα1 ∗ ωk) ∗ a0 + ωα1 ∗ a1 Lem.20 in Fig.12

.= ωα1 ∗ (ωk ∗ a0) + ωα1 ∗ a1 Assoc. of ∗

.= ωα1 ∗ (ωk ∗ a0 + a1) Lem15 in Fig.10
< ωα1 ∗ (ωk ∗ a0 + ωk ∗ 1) see below
.= ωα1 ∗ (ωk ∗ (a0 + 1)) Lem15 in Fig.10
.= (ωα1 ∗ ωk) ∗ (a0 + 1) Assoc. of ∗
.= ωα0 ∗ (a0 + 1) choice of k

To fill in the gap we first observe a1 < ω ≤ ωk = ωk ∗ 1. From this ωk ∗ a0 + a1 <
ωk ∗ a0 + ωk ∗ 1 follows via Lemma 4 in Figure 8. The last step uses Lemma 3
from Figure 10. ut

Lemma 3 (Uniqueness Lemma).
For any two normal forms t1, t2

1. t1 � t2 if and only if ThOrd ` t1 > t2
2. t1 = t2 if and only if ThOrd ` t1

.= t2



Proof. ad(1) We first prove the implication from left to right. So we start from
the assumption t1 � t2. The proof proceeds by induction on max(rk(t0), rk(t1)).
If rk(t0) = rk(t1) = 0 then t0, t1 ∈ N and the claim is obvious.

In the inductive step let t0 be the greatest common initial sum of t1, t2. Thus:
t1 = t0 + ωαi ∗ ai + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = t0 + ωβj ∗ bj + . . .+ ωβs−2 ∗ bs−2 + bs−1
and αi � βj or αi = βj and ai > bj . In the first case the induction hypothesis
yields ThOrd ` αi > βj . The following formulas are then derivable in ThOrd:

ωβj ∗ bj + . . .+ ωβs−2 ∗ bs−2 + bs−1 < ωβj ∗ (bj + 1) Lemma 2
< ωβj ∗ ω since (bj + 1) < ω
= ω(βj+1) def. of exp
≤ ωαi since βj < αi

Since ThOrd ` ∀x, y(y 6= 0→ x ≤ x ∗ y) and ThOrd ` ∀x, y(x ≤ x+ y) we arrive
at ThOrd ` t1 > t2.
If αi = βj and ai > bj we obtain derivability of

ωβj ∗ bj + . . .+ ωβs−2 ∗ bs−2 + bs−1 < ωβj ∗ (bj + 1) Lemma 2
≤ ωαi ∗ ai case distinction

and continue from here as above. This finishes the proof of the implication ⇒.
For the reverse implication assume ThOrd ` t1 > t2. By Lemma 1 we have

t1 = t2 or t2 � t1 or t1 � t2. The first two cases yield by rules of equality logic or
by the implication just established ThOrd ` t1

.= t2 respectively ThOrd ` t1 > t2.
Both contradict the strict order property of >. Thus we must have t1 � t2, as
desired.

ad(2)
The implication ⇒ is a trivial consequence of equational logic.
To prove the reverse implication assume ThOrd ` t1

.= t2. By Lemma 1 t2 � t1
or t1 � t2 or t1 = t2. The first two choices contradict the strict order property
of > using part (1) of this lemma. ut

We note, that Lemma 3 implies for any two normal forms t1, t2 the strong
property ThOrd ` t1

.= t2 or ThOrd ` t1 > t2 or ThOrd ` t1 < t2.

Lemma 4 (Adding Normal Forms).
Let
t1 = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = ωβ0 ∗ b0 + ωβ1 ∗ b1 + . . .+ ωβs−2 ∗ bs−2 + bs−1

be normal forms. Then

t1 + t2
.= ωγ0 ∗ c0 + ωγ1 ∗ c1 + . . .+ ωγq−2 ∗ cq−2 + cq−1

such that

1. for every 0 ≤ i < r− 1 such that there is no 0 ≤ j < s− 1 with αi = βj there
is 0 ≤ k < q − 1 with γk = αi and ck = ai, and



2. for every 0 ≤ j < s− 1 such that there is no 0 ≤ i < r− 1 with αj = βi there
is 0 ≤ k < q − 1 with γk = βj and ck = bj, and

3. for every 0 ≤ i < r− 1 and 0 ≤ j < s− 1 with αi = βj there is 0 ≤ k < q− 1
with γk = αi = βj and ck = ai + bj,

4. cq−1 = ar−1 + bs−1.

and vice versa for every 0 ≤ k < q − 1

1. either there is 0 ≤ i < r − 1 with γk = αi and ck = ai and there is no
0 ≤ j < s− 1 with γk = βj

2. or there is 0 ≤ j < s−1 with γk = βj and ck = bj and there is no 0 ≤ i < r−1
with γk = αi

3. or there are 0 ≤ i < r − 1 and 0 ≤ j < s − 1 with γk = αi = βj and
ck = ai + bj.

Proof. Easy computation using repeatedly associativity of multiplication and
Lemma 8 from Figure 9, Lemma 20 from Figure 12, and Lemma 5 from Figure
13.
We also have to make sure that all γi are normal forms. But, that is obvious
since γi = αj or γi = βj for some j.

Corollary 1. Let
t = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1

be a normal form and n < ω. Then

t ∗ n .= ωα0 ∗ (a0 ∗ n) + ωα1 ∗ (a1 ∗ n) + . . .+ ωαr−2 ∗ (ar−2 ∗ n) + ar−1 ∗ n

Proof. Follows by repeated application of the special case t1 = t2 of Lemma
4. ut

Lemma 5. Let
t = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1

be a normal form and δ > 0. Then

t ∗ ωδ .= ωα0+δ

Proof. See also [15, Thm.8.46].
By Lemma 2 and the fact that multiplication and addition on the right are
non-decreasing we have

ωα0 ≤ t ≤ ωα0 ∗ (m0 + 1) (5)

By Lemma 6 in Figure 10 we obtain

ωα0 ∗ ωδ ≤ t ∗ ωδ ≤ (ωα0 ∗ (m0 + 1)) ∗ ωδ (6)

By associativity of multiplication and Lemma 11 in Figure 10 we obtain further

ωα0 ∗ ωδ ≤ t ∗ ωδ ≤ ωα0 ∗ ωδ (7)



Actually, the strenghtening ∀x(0 < x < ω → x∗ωα .= ωα) of Lemma 11 is needed
here. But, this can be easily established. From equation 7 the claim of the lemma
immediately follows. ut

Lemma 6 (Multiplying Normal Forms).
Let
t1 = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = ωβ0 ∗ b0 + ωβ1 ∗ b1 + . . .+ ωβs−2 ∗ bs−2 + bs−1

be normal forms. Then there is a normal form for t1 ∗ t2.

Proof.

t1 ∗ t2 = t1 ∗ ωβ0 ∗ b0 + . . .+ t1 ∗ ωβs−2 ∗ bs−2 + t1 ∗ bs−1
distributivity

= ωα0+β0 ∗ b0 + . . .+ ωα0+βs−2 ∗ bs−2+ Lemma 5
ωα0 ∗ (a0 ∗ bs−1) + . . .+ ωαr−2 ∗ (ar−2 ∗ bs−1) + ar−1 ∗ bs−1 Cor. 1

All summands are normal forms, but the constraints on the exponents might
not yet bew satisifed. Lemma 4 guarantees that this can be achieved. The same
lemma is needed to obtain normal forms for the exponents α0 + βj .

Theorem 1. For every ground term t there is a normal form tn such that t .= tn
is derivable.

Proof. The proof proceeds by induction on the number of non-constant functions
symbols f(t) of t.

If f(t) = 0 then either t = n, and it is itself a normal form, or t = ω, and
t
.= ω ∗ 1.
In the induction step we need to distinguish three cases:

t = t1 + t2 This is covered by Lemma 4.
t = t1 ∗ t2 By the induction hypothesis we may assume that
t1 = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = ωβ0 ∗ b0 + ωβ1 ∗ b1 + . . .+ ωβs−2 ∗ bs−2 + bs−1
are normal forms. Then there is a normal from for t1 ∗ t2 by Lemma 6.

t = tt2
1 By the induction hypothesis we may assume that

t1 = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1
t2 = ωβ0 ∗ b0 + ωβ1 ∗ b1 + . . .+ ωβs−2 ∗ bs−2 + bs−1
are normal forms. In a first step we rewrite tt21 using (20 ) from Figure 12 as:

tt21 = tω
β0∗b0

1 ∗ . . . ∗ tω
βs−2∗bs−2

1 ∗ tbs−1
1 (8)

If we succeed to show that each summand is equivalent to a normal form then
the claim follows from Lemma 6.
The last summand tbs−1

1 is equivalent to the bs−1-fold multiplication t1 ∗ . . . ∗ t1
and this is equivalent to a normal form by Lemma 6.
For the remaining summands we observe that all exponents ωβi∗bi for 0 ≤ i ≤ s−2
are limit ordinals.



From 3 in Figure 10 and 1 in Figure 8 we obtain ωα0 ≤ ωα0 ∗ a0 + ωα1 ∗
a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1 From Lemma 2 we get ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+
ωαr−2 ∗ ar−2 + ar−1 ≤ ωα0 ∗ a0 ∗ (m0 + 1). Thus

ωα0 ≤ ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1 ≤ ωα0 ∗ a0 ∗ (m0 + 1)

From 12 in Figure 12 and 7 in Figure 13 we get for any limit ordinal γ

ωα0∗γ ≤ (ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1)γ
≤ (ωα0 ∗ a0 ∗ (m0 + 1))γ = ωα0∗γ

Thus in particular for all i, 0 ≤ i ≤ s− 2

tω
βi∗bi

1 = ωα0∗ωβi∗bi (9)

Since Lemma 4 guarantees that α0 ∗ ωβi∗bi is equivalent to a normal form we
have finished the proof. ut

Lemma 7.

1. A normal form t 6∈ N is a limit ordinal exactly if the last summand is 0.
2. For any limit ordinal t ∈ HNF there is a term t0 such that

ThOrd ` t
.= supx<ω(t0)

and t0[n/x] is a normal form for every n ≤ ω

Proof. ad(1) Easy.
ad(2) The proof proceeds by induction on rk(t).
There are no limit ordinal normal form with rank 0. For the inductive step look
at t1 = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2.
In the following we will tacitly use Lemma 14 from Figure 9 and Lemma 22 from
Figure 12.
Case A: αr−2 = γ + 1
Thus t .= ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωγ ∗ ω ∗ ar−2
Case A1: ar−2 = 1 Thus t .= ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωγ ∗ ω
Now we see t .= supx<ω(ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωγ ∗ x)
Case A2: ar−2 = c+ 1 Thus
t
.= ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ (c+ 1)
.= ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ c+ ωγ ∗ ω

Now we see t .= supx<ω(ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ c+ ωγ ∗ x)
Case B αr−2 is a limit ordinal
By induction hypothesis there is a term α such that αr−2 = supx<ωα.
Case B1: ar−2 = 1 Thus t .= ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2

Now we see t .= supx<ω(ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωα)
Case B2: ar−2 = c+ 1 Thus
t
.= ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ c+ ωαr−2

Now we see t .= supx<ω(ωα0 ∗ a0 + ωα1 ∗ a1 + . . . ωαr−2 ∗ c+ ωα).
It is easily checked that in all four cases t0[n/x] is a normal form for any n ≤ ω.

ut



4 Semantics

We follow the well established pattern for set theoretic semantics and work in a
fixed informal model of set theory. In this setting all ordinals with the usual set
theoretic interpretation of the constants, operations, and predicates would be a
model of ThOrd. The problem is that the collection of all ordinals is a proper
class and not a set. One could now investigate how much model theory would
change if classes were allowed in place of sets. We follow another line and define
below a standard model, called the ε standard model, whose universe is an initial
segment of ordinals and thus a set.

Definition 2. We define the following notation:
ω0 = ω
ωn+1 = ωωn

ε0 = supn<ω(ωn)
It is convenient to stipulate ω−1 = 1.
For example ω3 = ω(ωω). We not that all ωi are in HNF.

Note that this is a semantic definition. There is no term denoting ε0 in ThOrd.

Lemma 8.

1. For n < m < ω we have ωn < ωm.
2. For all n,m < ω

(a) ωn + ωm < ωmax{n,m}+1
(b) ωn ∗ ωm < ωmax{n,m}+1,
(c) ωωmn < ωmax{n,m}+2

Proof.
ad(1)By induction on n
For n = 0 < m the inequality ω0 = ω < ωωm−1 follows from (4) in Figure 12.
In the induction step we know ∀m(n < m → ωn < ωm) and we want to prove
∀m(n+ 1 < m→ ωn+1 < ωm). We start with the definition ωn+1 = ωωn . From
n+ 1 < m we derive n < m− 1 and by induction hypothesis ωn < ωm−1. Now
(10) from Figure 12 implies ωωn < ωωm−1 which is by definition ωn+1 < ωm.
ad(2.a)
ωn + ωm ≤ ωmax{n,m} + ωmax{n,m} by (4), (5) in Fig. 8

= ωmax{n,m} ∗ 2 def. of ∗
< ωmax{n,m} ∗ ω by (3) in Fig. 10
= ωωmax{n,m}−1 ∗ ω def. of ωmax{n,m}
= ωωmax{n,m}−1+1 def. of exp.
< ωωmax{n,m} since ωk + 1 < ωk+1 and (10) in Fig. 12
= ωmax{n,m}+1 def. of ωmax{n,m}+1

It is easy to see that ωk + 1 < ωk+1 is true for all k, since by (18) in Fig. 12 all
ωk are limit ordinals and from part one ωk < ωk+1.
ad(2.b)



ωn ∗ ωm ≤ ωmax{n,m} ∗ ωmax{n,m} by (3) and (6 ) in Fig. 10
= ω2

max{n,m} def of exp.
= (ωωmax{n,m}−1)2 def of ωmax{n,m}
= ωωmax{n,m}−1∗2 by (21) in Fig. 12
= ωωmax{n,m}−1+ωmax{n,m}−1 def. of ∗
< ωωmax{n,m} claim 2.a and (10) in Fig. 12
= ωmax{n,m}+1 def. of ωmax{n,m}+1

ad(2.c)
ωωmn = (ωωn−1)ωm def. of ωn

= ωωn−1∗ωm by (21) in Fig. 12
< ωωmax{n−1,m}+1 claim 2.b and (10) in Fig. 12
= ωmax{n−1,m}+2 def. of ωmax{n−1,m}+2
≤ ωmax{n,m}+2 part 1 of this lemma

Lemma 9. For a term t in the language of ThOrd with the free variables
x1, . . . , xn we denote by ft the n-place function that associates argument tuples
α1, . . . , αn with the value ft(α1, . . . , αn) that is obtained by evaluating term t
under the variable assignment xi  αi.
For every term t there is natural number bt < ω such that

αi < ωmi for 1 ≤ i ≤ n implies ft(α1, . . . , αn) < ωk+bt
with k = max{mi | 1 ≤ i ≤ n}

Proof. The proof proceeds by structural induction on t. The claim is trivial if t
is just a variable or if t is a constant.
If t = t1 + t2 there are by induction hypthesis bounds bt1 , bt2 such that for all tu-
ples α1, . . . , αn with αi < ωmi for all 1 ≤ i ≤ n and k = max{mi | 1 ≤ i ≤ n} we
have ft1(α1, . . . , αn) < ωk+bt1 and ft2(α1, . . . , αn) < ωk+bt2 . By (2.a) of Lemma
8 we get ft(α1, . . . , αn) < ωk+b+1 with b = max{bt1 , bt2}.
The cases t = t1 ∗ t2 and t = tt21 are handled analogously.
It remains to consider t = supx0<t1(t2).
By induction hypothesis there are bounds bt1 , bt2 such that for all arguments
α0, α1, . . . , αn with αi < ωmi we know ft1(α1, . . . , αn) < ωmax{m1,...,mn}+bt1
and ft2(α0, α1, . . . , αn) < ωmax{m0,m1,...,mn}+bt2 . Observe, that the variable x0,
to which α0 is assigned, is not allowed to occur in t1. For fixed α1, . . . , αn
with αi < ωmi ωmax{m1,...,mn}+bt1 is an upper bound for the assignments to
x0. We thus get for all instantiations α0 for x0 that ft2(α0, α1, . . . , αn) <
ωmax{m1,...,mn}+bt1 +bt2 . This is an uppper bound also for the supremum, i.e.
ft(α1, . . . , αn) < ωmax{m1,...,mn}+bt1 +bt2 . ut

Definition 3 (ε-Standard Modell).
The ε standard model S = (U,<, 0, ω,+, ∗, exp, sup) has as universe U the

set of all ordinals strictly less than ε0: U = {α | α < ε0}. The two constants,
the ordering, ordinal addition, multiplication, exponentiation and the supremum
operator sup are determined by the usual set theoretic definitions.
Lemma 8 guarantees that the results of the arithmetic operations never exceed ε0



and Lemma 9 guarantees that also the result of the sup operator stays below ε0
for any choice of the terms t1, t2.

Theorem 2. S is a model for ThOrd.

Proof. Obvious.

Note, that as a conseqeunce of Theorem 2 the existence of ε0 cannot be proved
in ThOrd.

Lemma 10. The structure (HNF,�) is a wellordering.

Proof. Assume for the sake of a contradiction that there is an infinite decreasing
chain t1 � t2 � . . .� tn � . . . of constant terms tn ∈ HNF.
By Lemma 3 we have ThOrd ` tn > tn+1 for every n ∈ N. Thus by Theorem 2
also for n ∈ N that tSn > tSn+1. This contradicts the well-foundedness of the ε
standard model S. ut

Since ThOrd is a first-order theory there will be ω-nonstandard models, i.e.
models M such that there are elements o with o <M ωM and nM <M o for
every finite ordinal n.

Definition 4 (ω-Standard Modell).
A modelM of ThOrd is called a ω-standard model if for every o <M ωM there
is a finite ordinal n such that o <M nM.

Theorem 3. Let M be an ω-standard model of ThOrd. Then M contains an
initial segment that is isomorphic to the ε-standard moodel.

Proof. We start out by proving

For every t0 ∈ HNF and every o ∈M with o <M tM0
there is t ∈ HNF such that o = tM.

(10)

The proof of this claim proceeds by induction on the wellfounded ordering
(HNF,�) (see Lemma 10). The initial case and the successor step are simple. So
let us assume that claim (10) is true for all t1 ∈ HNF with t0 � t1 and aim to
show that it is true for t0.

Using Lemma 7(2)) we find a term t′0 such that tM0 = supMx<ω(t′0). By the
defining axioms of the supremum operator there is o′ <M ωM with o <M

(t′)M0 [o′/x]. Since M was assumed to be a ω standard model we must have
o′ = nM for some constant n. Thus o <M tM1 for t1 = t′0[n/x]. Using Lemmata
1 and 3 we must have t0 � t1 since the only other options, t1 � t2, t0 = t1,
would contradict tM0 = supMx<ω(t′0). By our inductive assumption there must be
a constant term t ∈ HNF that names o inM.

Thus the set E = {o ∈ M | o <M tM for some t ∈ HNF} where M is - as
usual - the universe ofM equals {tM | t a ground term}.

We close this section with some observations in the informal model of set
theory-



Lemma 11. 1. ωε0 = ε0
2. δ < ωδ for all 0 < δ < ε0

Proof. add 1

ωε0 = ωsupn<ωωn Definition 2
= supn<ωω

ωn Lemma 22 in Figure 12
= supn<ωωn+1 Definition 2
= supn<ωωn Lemma 16 in Figure 6
= ε0 Definition 2

add 2 We procced by induction on δ. We assume that δ′ < ωδ
′ for all 0 < δ′ < δ.

By (3) in the proof of Theorem 3 we know that δ can be represented by a term
in HNF

δ = ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1

Thus

ωδ = ωω
α0∗a0+ωα1∗a1+...+ωαr−2∗ar−2+ar−1 previous equation

= ωω
α0∗a0 ∗ ωωα1∗a1 ∗ . . . ∗ ωωαr−2∗ar−2 ∗ ωar−1 Lemma 20 in Figure 12

= ωω
α0∗a0 + ωω

α1∗a1 + . . .+ ωω
αr−2∗ar−2 + ωar−1 Lemma 19 in Figure 10

> ωα0 ∗ a0 + ωα1 ∗ a1 + . . .+ ωαr−2 ∗ ar−2 + ar−1 induction hypothesis
= δ

We add that because of Lemmas 1 and 3 in Figure 8 we know ωαi ∗ ai < δ for
all 0 ≤ i < r. This guarantees that the induction hypothesis is applicable in the
above reasoning. ut

5 Application Scenario

We will consider applications in the area of program verification. Ordinals will
never occur in the programs but only in their specifications. We thus need a
way to link program data to ordinals. Figure 14 shows an axiomatisation of
the function onat : Int → Ord that maps the positive natural numbers into
corresponding ordinals less than ω. For negative arguments onat is undefined
via underspecification. Figure 14 also show usful derived lemmas. We use in this
figure and also later on overloaded syntax. Thus, whether 0 denotes an interger
or an ordinal, wether + is ordinal addition or addition of natural numbers can
be found out by looking at the type information.

As a possible application area we propose program termination proofs. This
was already suggested by Alan Turing in [2] (see also the corrected and commented
account [5]). As a simple example we want to prove termination of the program in
Figure 15. As in all pratical examples that we know of program termination can
be proved within Peano Arithmetic the advantage of using transfinite ordinals is
seen in simplifying specification and verification.



Definitional Extension

1. onat(0) .= 0
2. ∀n(0 ≤ n→ onat(n+ 1) .= onat(n) + 1)

Derived Lemmas

3. onat(1) .= 1
4. ∀n,m(0 ≤ n ∧ 0 ≤ m→ onat(n+m) .= onat(n) + onat(m)
5. ∀n,m((0 ≤ n ∧ 0 ≤ m)→ (onat(n) .= onat(m)→ n

.= m))
6. ∀n,m((0 ≤ n ∧ 0 ≤ m)→ (onat(n) < onat(m)↔ n < m))
7. ∀n(0 ≤ n→ onat(n) < ω)
8. ∀i1, i2, j1, j2 ((0 ≤ i1 ∧ 0 ≤ i2 ∧ 0 ≤ j1 ∧ 0 ≤ j2)→

ω ∗ onat(i1) + onat(j1) < ω ∗ onat(i2) + onat(j2)
↔ i1 < i2 ∨ (i1

.= i2 ∧ j1 < j2))

Fig. 14. Positive integers as ordinals

Figure 15 shows a possible pattern. In a while loop two positive integer
variables x and y are reassigned. Either y is decremented by 1, if not already 0,
and x is left alone or x is decremented by 1, if it is nor already 0, and y is assigned
an arbitrary natural number. The point is that an upper bound on the new y
may not be known or too complicated to estimate. In the while loop in lines 7
to 14 both actions happen. It can easily be proved that ω ∗ onat(x) + onat(y)
is variant for this loop. Here onat is a function that injects Java integers into
ordinals. In line 8/9 of course the JML syntax for the variant has to be used.

One should, however, not overestimate the usefulness of ordinals in termination
proofs. For the program shown in Figure 15 the KeY system would allow to specify
(x, y) in the decreases clause, which would be interpreted as the lexicographical
ordering of pairs of positive integers. The proof completes automatically.

6 Goodstein Sequences

Goodstein sequences were first introduce in the paper [14]. This section is mainly
based on the paper [8].

The hereditary base-n notation for a natural number m is obtained from its
ordinary base-n notation

m = mk · nk +mk−1 · nk−1 + . . .m1 · n+m0, 0 ≤ mi < n,mk 6= 0

by also writing the exponents k, k − 1, . . . , n+ 1 in base-n notation and again
the thus arising exponents, and so on.

The following formal recursive definition is taken from [8].

Definition 5. For n,m ∈ N with n > 1 and a new constant x define by recursion
on m a term fm,n(x). To this end the n- addic expansion of m is computed:

m = nk · ak + nk−1 · ak−1 + . . . n · a1 + a0



1 class Aclass {
2 /*@ normal_behaviour
3 @ requires 0 <= x && 0 <= y;
4 @*/
5 void method(int x, int y) {
6 /*@ loop_invariant
7 @ x>=0 && y>=0;
8 @ decreases \ord_add (\ ord_times (\omega ,\onat(x)),
9 \onat(y))

10 @*/
11 while (x>0 || y>0)
12 { if (x>0) {x = x-1 ; y = g(y);}
13 if (y>0) {y=y-1;}
14 }
15 }
16 /*@ normal_behaviour
17 @ ensures \result > 0;
18 @*/
19 int /* strictly_pure */ g(int p){
20 }

Fig. 15. An Example Programm

Thus we have ai < n for all 0 ≤ i ≤ k and ak > 0. Now set

fm,n(x) = Σk
i=0aix

fi,n(x)

f0,n(x) = 0

From the term fm,n(x) the hereditary base-n expansion of m is obtained by
replacing x by n.

fm,n(x) is far from being additive in the first argument, i.e., in general fm1+m2,n(x) 6=
fm1,n(x) + fm2,n(x). But, in the following very special case additivity pervails.

Lemma 12. Let m1 = nk · ak + nk−1 · ak−1 . . . n
r · ar and nr > m2 then

fm1+m2,n(x) = fm1,n(x) + fm2,n(x)

Proof. Ovious. ut

Lemma 13. In this lemma fm,n(n) is not the term but the value obtain by
evaluating it.

1. f i,n(x) = i for all i with 0 ≤ i < n

2. fm,n(n) = m



Proof To prove claim (1) we start with the n-addic expansion of i which under
the present assumption is i = i · n0. Thus f i,n(x) = i · xf0,n = i · x0 = i · 1 = i.

Claim (2) is proved by induction on m. The case m = 0 follows directly form
the definition. We assume the claim for m and set out to prove it for m+ 1. Let

m = ak · nk + ak−1 · nk−1 + . . .+ a1 · n+ a0

the n-addic expansion of m. From this we derive the n-addic expansion of m+ 1

m+ 1 = ak · nk + . . .+ (aj + 1) · nj

where 0 ≤ j ≤ k + 1 with aj < n− 1 and ar = n− 1 for all 0 ≤ r < j. Here we
also stipulate ak+1 = 0
In the extreme cases we get

m+ 1 = ak · nk + ak−1 · nk−1 + . . .+ a1 · n+ (a0 + 1)

in case j = 0 and
m+ 1 = nk+1

in case j = k+ 1. In this last case we obtain by definition fm+1,n(n) = nf
k+1,n(n).

Since k + 1 ≤ m we obtain from the induction hypothesis fm+1,n(n) = nk+1.
Since the assumptions for this case are ar = n − 1 for all 0 ≤ r ≤ k we have
nk+1 = (aj · nk + ak−1 · nk−1 + . . .+ a1 · n+ a0) + 1 Thus fm+1,n(n) = m+ 1.

For the cases j ≤ k we obtain

fm+1,n(n) = ak · nf
k,n(n) + . . .+ (aj + 1) · nfj,n(n) definition off

= ak · nk + . . .+ (aj + 1) · nj induction hypothesis
= ak · nk + ak−1 · nk−1 + . . .+ a1 · n+ (a0 + 1) case assumptions on j
= m+ 1

ut

Example 1. base-2 35 = 25 + 21 + 20

hereditary base-2 35 = 222+1 + 2 + 1
base-3 100 = 34 + 2 · 32 + 30

hereditary base-3 100 = 33+1 + 2 · 32 + 1.

Definition 6 ( Next numner function).
The function Gn(m) is defined by

Gn(0) = 0
Gn(m) = fm,n(n+ 1)− 1

Definition 7 (Goodstein sequence for m).

m0 = m
mi+1 = Gi+2(mi)

Thus

m0 = m m1 = G2(m0) m2 = G3(m1) m3 = G4(m2) . . .



Another way to notate the Goodstein sequence for m is:

m,G2(m), G3(G2(m)), . . . , Gi+1(Gi(. . . G2(m) . . .)) . . .

Using the f notation that leads to a slanting tower of exponents is less suitable
as e.g.,

m2 = ff
m,2(3)−1,3(4)− 1

shows.

Example 2. The Goodstein sequence for m = 3

m0 by definition 3
m1 write 3 in her. base 2 notation 21 + 1

replace 2 by 3 minus 1 31 + 1− 1 3
m2 write 3 in her. base 3 notation 31

replace 3 by 4 minus 1 41 − 1 3
m3 write 3 in her. base 4 notation 3

replace 4 by 5 minus 1 3− 1 2
m4 write 2 in her. base 5 notation 2

replace 5 by 6 minus 1 2− 1 1
m5 write 1 in her. base 6 notation 1

replace 6 by 7 minus 1 1− 1 0

Example 3. Initial part of the Goodstein sequence for m = 4

4
221 331 − 1 26 ωω

32 ∗ 2 + 31 ∗ 2 + 2 42 ∗ 2 + 41 ∗ 2 + 2− 1 41 ω2 ∗ 2 + ω ∗ 2 + 2
42 ∗ 2 + 41 ∗ 2 + 1 52 ∗ 2 + 51 ∗ 2 + 1− 1 60 ω2 ∗ 2 + ω ∗ 2 + 1
52 ∗ 2 + 51 ∗ 2 62 ∗ 2 + 61 ∗ 2− 1 83 ω2 ∗ 2 + ω ∗ 2
62 ∗ 2 + 61 ∗ 1 + 5 72 ∗ 2 + 71 ∗ 1 + 5− 1 109 ω2 ∗ 2 + ω + 5
72 ∗ 2 + 71 ∗ 1 + 4 82 ∗ 2 + 81 + 1 + 4− 1 139 ω2 ∗ 2 + ω + 4
82 ∗ 2 + 81 ∗ 1 + 3 92 ∗ 2 + 91 ∗ 1 + 3− 1 173 ω2 ∗ 2 + ω + 3
92 ∗ 2 + 91 ∗ 1 + 2 102 ∗ 2 + 101 ∗ 1 + 2− 1 211 ω2 ∗ 2 + ω + 2
102 ∗ 2 + 101 ∗ 1 + 1 112 ∗ 2 + 111 ∗ 1 + 1− 1 253 ω2 ∗ 2 + ω + 1
112 ∗ 2 + 111 ∗ 1 122 ∗ 2 + 121 ∗ 1− 1 299 ω2 ∗ 2 + ω
122 ∗ 2 + 11 132 ∗ 2 + 10 348 ω2 ∗ 2 + 11

1058
232 ∗ 2 242 ∗ 2− 1 1151 ω2 ∗ 2
242 + 24 ∗ 23 + 23 252 + 25 ∗ 23 + 23− 1 1222 ω2 + ω ∗ 23 + 23

Figure 16 shows a runnable Java program that computes the Goodstein
sequence for m, where you enter m as a command line parameter. Note, that
BigIntergers have to be used, since numbers get large very quickly. For m ≥ 4



the program would certainly stop, but not during your lifetime. The Goodstein
sequence for m = 4 e.g., terminates after 10121210700 steps in order of magnitude.
The program ist thus incremental and prompts the user to specify how many more
numbers in the sequence should be computed next. Entering 0 will terminate the
program.

Figure 17 shows a Java program for Goodstein sequences without big integers
and without input output. Since in the default setting the KeY system treats Java
integers as mathematical integers this is the program we need to verify. Since
exponention is not part of the Java language the method intPow from Figure 18
is needed.



1 import java.io.*;
2 import java.math.BigInteger;
3

4 public class Goodstein{
5 static BigInteger m;
6

7 public static BigInteger changeBase(BigInteger m, BigInteger
oldBase ){

8 BigInteger acc = BigInteger.ZERO;
9 BigInteger exp = BigInteger.ZERO;

10 while (m.compareTo(BigInteger.ZERO)>0) {
11 BigInteger [] divArray = m.divideAndRemainder(oldBase );
12 acc = acc.add(( divArray [1]). multiply(intPow(oldBase.add(BigInteger.ONE),
13 changeBase(exp ,oldBase ))));
14 m = divArray [0];
15 exp = exp.add(BigInteger.ONE);
16 }
17 return acc;}
18

19 public static BigInteger intPow(BigInteger base , BigInteger exp){
20 BigInteger r = BigInteger.ONE;
21 while (!exp.equals(BigInteger.ZERO)) {
22 r = r.multiply(base);
23 exp = exp.subtract(BigInteger.ONE);
24 }
25 return r;}
26

27 public static void main(String [] args){
28 int answer;
29 int bunch = 0;
30 m = new BigInteger(args [0]);
31 System.out.println("Goodstein␣sequence␣for␣" + m);
32 System.out.println("");
33 BigInteger base = new BigInteger("2");
34 while (m.compareTo(BigInteger.ZERO )!=0) {
35 if (bunch == 0) {
36 System.out.println("Continue␣n␣steps");
37 answer = LiesInt ();
38 if (answer == 0) {break;}
39 else { bunch = answer ;}}
40 System.out.print("Next␣Goodstein␣number␣" + m + "␣␣␣");
41 System.out.println("Base␣" + base);
42 m = changeBase(m,base). subtract(BigInteger.ONE);
43 base = base.add(BigInteger.ONE);
44 bunch = bunch -1;
45 } }
46 static int LiesInt () {
47 DataInput StdEingabe = new DataInputStream(System.in);
48 int ergebnis = 0;
49 try{ ergebnis = Integer.parseInt(StdEingabe.readLine ()); }
50 catch (IOException io) {}
51 return ergebnis ;}
52 }

Fig. 16. Runnable program for Goodstein sequences



1 public class Goodstein{
2 static int start;
3

4 /*@ requires m>0;
5 @ diverges false;
6 @*/
7

8 public static void goodstein(int m){
9 int base = 2;

10 while (m>0) {
11 m = changeBase(m,base)-1;
12 base ++;
13 }}
14

15 public static int changeBase(int m, int oldBase ){
16 int acc = 0;
17 int exp = 0;
18 while (m>0) {
19 acc = acc + (m%oldBase )* intPow(oldBase+1, changeBase(exp ,oldBase ));
20 m = m/oldBase;
21 exp++;
22 }
23 return acc;
24 }}

Fig. 17. Goodstein program for verification

1 public static int intPow(int base , int exp){
2 int r = 1;
3 while (exp != 0) {
4 r = r*base;
5 exp --;}
6 return r;}

Fig. 18. Auxiliary method for the Goodstein progrm



7 Termination

Goodstein considered in his paper [14] more general sequences involving a non-
decreasing function f : N → N as a parameter. The Goodstein sequences con-
sidered here and in the Kirby and Paris paper [8] are obtained by the choice
f(i) = i+ 2. A short proof of the termination of general Goodstein sequences is
given in [13, Theorem 2.5] while [8] presents a much more involved argument.
For the convience of the reader we review the special case here giving full proofs,

The most important function that in the end measures the steps to termina-
tion is given by the next definition making use of the term fm,n as defined in
Definition 5:

Definition 8. For n > 1, m ≥ 0 the function o(n,m) : N× N→ Ord is defined
by

o(n,m) = fm,n(ω)

Example 4. 12 = 23 · 1 + 22 · 1 is the 2-addic expansion of 12. Thus o(2, 12) =
ωo(2,3) · 1 + ωo(2,2) · 1. Since o(2, 3) = ω + 1 and o(2, 2) = ω we get as final result

o(2, 12) = ωω+1 + ωω

The next lemma is Lemma 2.3(iii) in [13].

Lemma 14. For m1 > m2 and n > 1

fm1,n(ω) > fm2,n(ω)

Thus also o(n,m1) > o(n,m2)

Proof. We prove by induction on b:

f i,n(ω) > f j,n(ω) for all i, j with b ≥ i > j and all n > 1

In the initial case b = i = 1, j = 0 we have f1,n(ω) = 1 > 0 = f0,n(ω).
In the inductive step from b to b+ 1 is suffices by transitivity of the ordinal

ordering > to show f b+1,n(ω) > f b,n(ω).
Let

b = nk · ak + nk−1 · ak−1 + . . .+ n · a1 + a0 (11)

be the n-addic expansion of b with 0 ≤ ai < n and ak 6= 0 and thus

f b,n(ω) = ωf
k,n(ω) · ak + ωf

k−1,n(ω) · ak−1 + . . .+ ω · a1 + a0 (12)

Let j, 0 ≤ j ≤ k + 1 be such that aj < n − 1 and ai = n − 1 for all 0 ≤ i < j.
Then

b+ 1 =
{
nk+1 if j = k + 1
nk · ak + . . .+ nj · (aj + 1) if j ≤ k (13)



is the n-addic expansion of b+ 1 which yields

f b+1,n(ω) =
{
ωf

k+1,n(ω) if j = k + 1
ωf

k,n(ω) · ak + . . .+ ωfj,n(ω) · (aj + 1) if j ≤ k
(14)

The case k = 0 and thus b = a0 is easy. We may thus assume k > 0. Then
k + 1 ≤ b and we obtain from the induction hypothesis

fk+1,n(ω) > fk,n(ω) > . . . > f j,n(ω)

Comparing (12) and (14) we conclude by the rules of ordinal arithmetic f b+1,n(ω) >
f b,n(ω), as desired. ut

The following lemma will play a crucial role 5 in the upcomming proof.

Lemma 15.

1. For all n,m ∈ N with n > 1 fm,n(x) = ff
m,n(n+1),n+1(x)

2. o(n,m) = o(n+ 1, fm,n(n+ 1))

Proof. It suffices to prove (1). (2) is only a notational variation.
The proof proceeds by induction on m. For m < n fm,n(x) = m = fm,n+1(x).
Thus also fm,n(n + 1) = m. In total ffm,n(n+1),n+1(x) = fm,n+1(x) = m =
fm,n(x).

Assume now that the claim fk,n(x) = ff
k,n(n+1),n+1(x) is true for all k < m

and we set out to prove it for m. To this end consider the n-adic expansion of m:

m = nrar + nr−1ar−1 + . . .+ na1 + a0

By definition

fm,n(x) = xf
r,n(x)ar + xf

r−1,n(x)ar−1 + . . .+ xa1 + a0 (15)

fm,n(n+ 1) = (n+ 1)f
r,n(n+1)ar + . . .+ (n+ 1)a1 + a0 (16)

Since 16 is the (n+1)-addic expansion of fm,n(n+ 1) we obtain again from the
definition

ff
m,n(n+1),n+1 = xf

fr,n(n+1),n+1(x)ar + xf
fr−1,n(n+1)(x)ar−1 + . . .+ xa1 + a0

(17)

Since r < m the induction hypothesis applies and yield the desired result. ut

Theorem 4. The Goodstein sequence

m0 = m m1 = G2(m0) m2 = G3(m1) m3 = G4(m2) . . .

terminates for every m ≥ 0.



Proof. We will show that o(n+2,mn) decreases, i.e. o(n+2,mn) > o(n+3,mn+1):

o(n+ 2,mn) = o(n+ 3, fn+2,mn(n+ 3)) Lemma 15(ii)
> o(n+ 3, fn+2,mn(n+ 3)− 1) Lemma 14
= o(n+ 3, Gn+2(mn)) Def. 6
= o(n+ 3,mn+1) Def. 7

ut

Definition 8 serves theoretical purposes very well. The following recursive defini-
tion of o(n,m) is more amenable for machine assisted reasoning.

Definition 9. The function o(n,m) : Int× Int→ Ord is defined by

1. o(n,m) = m for all n ≥ 2 and 0 ≤ m < n

2. For 2 ≤ n let m = nkak + c with 1 ≤ k, 0 < ak < n and c < nk then

o(n,m) = ωo(n,k)ak + o(n, c)

This is a valid recursive definition since k < m and c < m.
For m 6= 0 there is a unique k with nk ≤ m < nk+1. Furthermore, there are
unique a, c with c < nk such that m = nka + c. By choice of k we nust have
0 < a < n. If k = 0 then m < n. Thus, if m = 0 or k = 0 then o(n,m) is given by
clause 1 in Definition 9 otherwise clause 2 applies. Thus o(n,m) is unambiguously
fixed for m,n ∈ N and n ≥ 2. Function values for negative m and smaller n are
left open.

8 Related Work

The papers [4,7] deal with ordinals in the context of the Isabelle proof assistent.
The second paper is in fact a contribution to The Archive for Formal Proofs
(AFP) http://afp.sourceforge.net/ and is only accessible to readers familiar
with the Isabelle\HOL syntax and semantics. [4] copes with the problem that
Isabelle\HOL is a strongly typed logic while ZF is an untyped axiomatization
of set theory. Ordinals are replaced in the HOL approach by well-orders. Note,
there no concept of an ordinal as an equivalence class (class as opposed to set)
of order-isomorphic well-orders, nor is there a unique representation of such an
equivalence class.

The research report [6] describes constructions of ordinals in Coq.
In the context of ACL2 the paper [12] and its predecessor [11] present an

algorithm for solving problems in ordinal arithmetic working on a kind of nested
Cantor Normal Form representation.

In [16] a finite rewrite system is presented whose termination encodes the
termination of Goodstein sequences and termination of the rewrite system is
proved. This is the first automatic termination proof for Goodstein sequences.
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