

 Karlsruhe Reports in Informatics 2017,7
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Some Notes on Permutations

 Peter H. Schmitt

 2017

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Some Notes on Permutations

Peter H. Schmit

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. This note states and proves a theorem on permutations that
solves a problem that turned up during the verification of a Java program
implementing the dual pivot quicksort algorithm.

1 Introduction

During an attempt to formally verify the dual Quicksort algorithm implemented
in JDK the question arose whether the conjecture, now formulated as Theorem
1 below, is true. And if it is how it could be proved, or even formally proved.
These notes answer these questions.

The conjecture is in fact true. Lemma 4 plays the crucial role in the proofs.
In fact, the proof of the theorem consists merely in reducing its claim to the
statement of the lemma. Essential for the proofs of the lemma is the property
of a function to be s-stabilizing for a finite sequence s and the property of a
function to be P-stabilizing for a partition P of an initial segment of the natural
numbers. The properties are closely related, one might say they are two sides of
the same coin. The first proof of Lemma 4 is based on the s-stabilizing property,
the second on the P-stabilizing property. In this second approach the claim of
the lemma becomes very transparent, also most trivial.

The proof for both Lemma 4 and Theorem 1 have been checked by using KeY
as an interactive automated proof system. Appendix A contains the formulation
of these results in KeY’s language for formulating proof rules while Appendix
B and Appendix C contain the corresponding proof trace respectively the proof
script.

2 Notation

Definition 1. A permutation ρ : X → X of a set X is a surjective and injective
function.
We will use S(X) to denote the set of permutations on X.

For each natural number n ∈ N, n > 0 we use S(n) for the special case
S({0, . . . , n− 1}).

Definition 2. Let s, t : n → W be two finite sequences of length n and range
W .
We say that s is a permutation of t if there is a permuation σ ∈ S(n) such that
t[i] = s[σ(i)] for all 0 ≤ i < n. Here, σ is called a witness.

We trust that the use of the same word permutation with two different meanings
does not cause any problems since the first meaning is a unary predicate while
the second is a binary relation.

We may view a permutation ρ ∈ S(n). as any other functions, as the set of
pairs {(i, ρ(i)) | 0 ≤ i < n}. This allows us to use set theoretic operations on
permutations. We may thus speak of the union of two permutation ρ1 ∪ ρ2, of
ρ1 being a subset of ρ2, ρ1 ⊆ ρ2, etc. In general the union of two permutation is
not a permutation, not even a function. But

Lemma 1. Let ρ1 be a permutation of the set X ⊆ N and ρ2 a permutation of
the set Y ⊆ N with X and Y disjoint then ρ1 ∪ ρ2 is a permutation of X ∪ Y .

Proof. Obvious. ut

Definition 3. Let s : n→W be a finite sequence.
A function (partial function) f : {0, . . . n−1} → {0, . . . n−1} is called stablizing
for s if for all 0 ≤ i < n (for all i in the domain of definition of f) we have

s[i] = s[f(i)].

By Stab(s) we denote the set of all stabilizing permuations for s.
If s is injective, i.e., i 6= j implies s[i] 6= s[j], then of course Stab(s) consists

only of the identity permuations, Stab(s) = {id}.

Definition 4. Let P = (Pi)0≤i<k be a partition of n = {0, . . . , n− 1}.
A function (partial function) f : {0, . . . n−1} → {0, . . . n−1} is called stablizing
for P if for all 0 ≤ i < n an all x ∈ {0, . . . n − 1} (all x in the e domain of
definition of f)

x ∈ Pi implies f(x) ∈ Pi.

We denote the P-stablizing permutations by Stab(P).

Definitions 1 and 4 are closely related.
Lemma 2.
1. Let s : n→W be a finite sequence and f : {0, . . . , n− 1} → {0, . . . , n− 1} a

function (partial function).
If f is stabilizing for s the f is also P-stabilizing for P = (Pi)0≤i<k with
W = {wi | 0 ≤ i < k} and Pi = {m < n | f(m) = i}. We omit possibly
empty sets Pi from the partition.

2. Let P = (Pi)0≤i<k be a partition of n = {0, . . . , n− 1} and f : {0, . . . , n− 1}
→ {0, . . . , n− 1} a function (partial function).
If f is stabilizing for P then f is also s-stabilizing or the sequence s : n→W
with W = {0, . . . , k − 1} and s(m) = i iff m ∈ Pi for all m < n.

Proof. The definition of P from s ins case 1 and the definition of s from P in
case 2 satisfy for all x, y ∈ {0, . . . , n− 1} the following equivalence

s[x] = s[y]⇔ for all i ∈ {0, . . . , k − 1}(x ∈ Pi → y ∈ Pi)

ut

3 The Results

Lemma 3. Let s : n → W be a permutation of t with witness σ. Furthermore
let ρ ∈ Stab(s).
Then ρσ is also a witness of the permutation.

Proof. For 0 ≤ i < n we obtain

s[ρσ(i)] = s[ρ(σ(i))] = s[σ(i)] = t[i]

Lemma 4. Let s : n→W be a finite sequence.
For every partial injective s-stabilizing function ρ0 : n→ n there is ρ ∈ Stab(s)
extending ρ0.
In greater detail:
Let X,Y be subsets of {0, . . . , n − 1} and ρ0 : X → Y a bijection from X onto
Y such that ∀x ∈ X(s[x] = s[ρ0(x)]).
Then there is a permutation ρ in Stab(s) that extends ρ0, i.e., ρ0 ⊆ ρ.

Proof.

Y = Y0 ∪ Y1 with Y0 = Y ∩X and X ∩ Y1 = ∅ (1)

To extend ρ0 to a permutation ρ ∈ S(n) we need to find for every 0 ≤ i < n
that is not in X a value ρ(i) that is not in Y .
For 0 ≤ i < n with i 6∈ X and i 6∈ Y we set ρ(i) = i.
It remains to deal with i ∈ Y1. For every i ∈ Y1 we define a sequence xk(i)
with x0(i) = i and ρ0(xk+1(i) = xk(i). Note, xk+1(i), if it exits, is uniquely
determined by xk(i) by the injectivity of ρ0. All elements of this sequence are
different. xk(i) for k > 0 and x0(i) = i cannot be equal since they are elements
of disjoint sets, i ∈ Y1 and xk(i) ∈ X. If a = xk(i) = xm(i) with 0 < k < m
then ρ0(a) = xk−1(i) and ρ0(a) = xm−1(i) which is impossible. By this and
the fact that all xk(i) are natural numbers < n each sequence must terminate.
i = x0(i), x1(i), . . . , xk(i)(i) with xk(i)(i) /∈ Y . We complete the definition of ρ
by

ρ(i) = xk(i)(i) for i ∈ Y1 (2)

It is easily checked that ρ ∈ S(n). By the assumptions on ρ0 we also know
s[xk(i)(i)] = s[i] Thus ρ ∈ Stab(s). ut

Theorem 1. Let s, t : n → W be finite sequences and s a permutation of t.
Consider furthermore X0, Y ⊆ {0, . . . , n − 1} and σ0 a bijective mapping from
X0 onto Y such that

t[x] = s[σ0(x)] for all x ∈ X0

Then there is a permuation σ ∈ S(n)

1. extending σ0, i.e., σ ↓ X0 = σ0 and

2. t[i] = s[σ(i)] for all 0 ≤ i < n
i.e., σ is a witness of s being a permutation of t.

Proof. Since s is a permutation of t there is σ′ ∈ S(n) with

t[i] = s[σ′(i)] for all 0 ≤ i < n (3)

Set X = σ′(X0) and define ρ0 : X → Y by ρ0 = σ0 ◦ (σ′)−1. Obviously, ρ0 is a
bijection from X anto Y . From the properties of σ′ and σ0 we derive

s[x] = s[ρ0(x)] for all x ∈ X

Thus Lemma 4 is applicable and we obtain ρ ∈ Stab(s) extending ρ0. By Lemma
3 also σ = ρ ◦ σ′ is a witness for s being a permutation of t. In addition, we
obtain for all x ∈ X0

σ(x) = ρ(σ′(x))
= σ0((σ′)−1(σ′(x)))
= σ0(x)

ut

Corollary 1. Let s : n → W be a permutation of t and 0 ≤ x, y < n indices
with

t[x] = s[x] (4)

and

t[y] = s[y] (5)

.
Then there is a witness σ such that σ(x) = x and σ(y) = y.

Proof. Follows from Theorem 1 by X0 = Y = {x, y} and ρ0(x) = x, ρ0(y) = y.
ut

Alternative Proof of Corollary 1
This alternative proof is unrelated to the rest of these notes. It is a kind of finger
exercise. The intention was to come up with a proof plan that is not deep but
wide, i.e., that consists of many simple case, 12 cases in fact. The hope was that
such a proof plan would be more amenable for an automated reasoning system.
This was however never put to the test.

The idea of this alternative proof is to specialize the combined proofs of
Lemma 4 and Theorem 1 to the very special situation of the corollary.
So we start withX0 = {x, y}, σ0 : X0 → X0 is the identity function, thus Y = X0
and σ′ ∈ S(n) witnessing that s is a permutation of t. X = {σ′(x), σ′(y)}. Next,
ρ0 : {σ′(x), σ′(y)} → {x, y} is given by ρ0(σ′(x)) = x and ρ0(σ′(y)) = y.

Case A: x = y

Case A1: σ′(x) = x Nothing to do. We can use σ′ for σ.

Case A2: σ′(x) 6= x Let σ be σ′ followed by a swap of σ′(x) and x. Note, that
σ can also be represented as σ = seqSwap(σ′, x, u) where σ′(u) = x.

Case B: x 6= y The case assumption implies σ′(x) 6= σ′(y).

Case B1: σ′(x) = x and σ′(y) = y Nothing to do. We can use σ′ for σ.

Case B2: σ′(x) = x and σ′(y) 6= y We obtain Y0 = {x} and Y1 = {y}. Note,
that y = σ′(x) = x is not possible, it would imply the contradiction to the
case assumption x 6= y. Following the definition in the proof of Lemma 4 we
obtain xk(y)(y) = σ′(y). Unravelling these definitions we see that we may define
σ to be σ′ followed by a swap of σ′(y) and y. Note, σ = seqSwap(σ′, y, w) with
σ′(w) = y.

Case B3: σ′(x) 6= x and σ′(y) = y This is symmetric to case B2 and we obtain
σ to be σ′ followed by a swap of σ′(x) and x.

Case B4: σ′(x) 6= x and σ′(y) 6= y In all the following cases these two conditions
are implicitely assumed.

Case B4i: σ′(x) = y and σ′(y) 6= x Y0 = {y}, Y1 = {x}. x0(x) = x, x1(x) =
σ′(x) = y, x2(x) = σ′(y) and k(x) = 2. Thus ρ is given by ρ(σ′(x)) = x,
ρ(σ′(y)) = y, ρ(x) = σ′(y) and ρ(i) = i for all other i. Furthermore, σ = ρ ◦ σ′
or explicitly

σ(i) =


x if i = x
y if i = y
σ′(y) if σ′(i) = x
σ′(i) otherwise

Careful inspection shows that σ = seqSwap(seqSwap(σ′, u, x), u, y) with, as
usual, σ′(u) = x.

Case B4ii: σ′(x) 6= y and σ′(y) = x This is symmetric to case B4i i.e., we may
use σ with

σ(i) =


x if i = x
y if i = y
σ′(x) if σ′(i) = y
σ′(i) otherwise

or σ = seqSwap(seqSwap(σ′, w, y), w, x) with, as usual, σ′(w) = y.

Case B4iii: σ′(x) = y and σ′(y) = x In this case we get from σ′(y) = x
and σ′(u) = x the equalitiy u = y. The permuation from B4i reduces to σ =
seqSwap(seqSwap(σ′, u, x), y, y) = (seqSwap(σ′, u, x).

Case B4iv: σ′(x) 6= y and σ′(y) 6= x Y0 = ∅, Y1 = {x, y}. Futhermore, x1(x) =
σ′(x), k(x) = 1 and x1(y) = σ′(y), k(y) = 1. Thus σ is obtained by σ′ and the
two swaps σ′(x) with x and σ′(y) with y. Or explicitely,

σ(i) =


x if i = x
σ′(x) if σ′(i) = x
y if i = y
σ′(y) if σ′(i) = y
σ′(i) otherwise

or σ = seqSwap(seqSwap(σ′, x, u), y, w) with σ′(u) = x and σ′(w) = y.
In all cases we have to convince ourselves that σ is indeed a witness for s being
a permutation of t. But, once we know what σ should be, this is easy. ut

Corollary 2. Let s : n → W be a permutation of t and X0 ⊆ {0, . . . , n − 1}
such that s[x] = t[x] for all x ∈ X0.
Then there is a witness σ such that σ(x) = x all x ∈ X0.

Proof. Follows from Theorem 1 with ρ0(x) = x for all x ∈ X0. ut

4 A Second Approach

Lemma 5. Let P = (Pi)0≤i<k be a partition of n = {0, . . . , n−1} and f : n→ n
a function (partial function).
Then f is stabilizing for P iff f is the disjoint union of functions (partial func-
tions) fi : Pi → Pi for 0 ≤ i < k, in symbols: f =

⋃
0≤i<k fi

Proof. Define for 0 ≤ i < k the function fi with Pi (Pi intersected with the
domain of definition of f in the partial function case) as it sdomain of definition
by

fi(x) = f(x)

Since P is a partition we get in any case

f =
⋃

0≤i<k

fi

If f is stabilizing for P then we see that the range of fi is contained in Pi.
On the other hand of we know that the range of fi is contained in Pi then the
union is P-stabilizing. ut

Second Proof of Lemma 4

Proof. By Lemma 2(1) ρ0 is P-stabilizing for the partition P = (Pi)0≤i<k of
{0, . . . n−1} defined there. By Lemma 5 we can write ρ0 =

⋃
0≤i<k ρ

i
0 for partial

functions ρi
0 : Pi → Pi. Since ρ0 was assumed to be injective all ρi

0 are also
injective partial functions. It is easy to extend each ρi

0 to a ρi ∈ S(Pi). Then
ρ =

⋃
0≤i<k ρ

i is an extension of ρ0 and again by Lemma 5 ρ is P-stabilizing.
An appeal to Lemma 2(2) shows that ρ is also s-stabilizing. Note: if P is defined

from s as described in Lemma 2(1) and subsequently s′ is defined from P as
described in 2(2) then s′ = s.

For the readers who want more detail on the extension argument, let X ⊆ Pi

be the domain and Y ⊆ Pi the range partial of the injective function ρi
0, i.e.,

ρi
0 : X → Y . By injectivity card(X) = card(Y), in other wordsX and Y have the

same number of elements. Thus card({0, . . . , n−1}\X) = card({0, . . . , n−1}\Y),
i.e. there is a bijection ρi

1 : {0, . . . , n−1}\X → {0, . . . , n−1}\Y . Now, ρi = ρi
0∪ρi

1
the the permutation of Pi that we were looking for. ut

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book - From Theory to
Practice, Lecture Notes in Computer Science, vol. 10001. Springer (2016),
http://dx.doi.org/10.1007/978-3-319-49812-6

A Taclets

lemma
schiffl_lemma_2 {

\schemaVar \term Seq s, t;
\schemaVar \variable Seq r;
\schemaVar \variable int x, y, iv;

\find (seqPerm(s,t)==>)
\varcond (\notFreeIn (iv,s,t),

\notFreeIn (r ,s,t),
\notFreeIn (x ,s,t),
\notFreeIn (y ,s,t))

\add(\forall x;\forall y;(
any::seqGet(s,x)=any::seqGet(t,x) &
any::seqGet(s,y)=any::seqGet(t,y) & 0 <= x & x < seqLen(s) &
0 <= y & y < seqLen(s)

-> \exists r; (seqLen(r) = seqLen(s) & seqNPerm(r) &
(\forall iv; (0 <= iv & iv < seqLen(s) ->
any::seqGet(s,iv) = any::seqGet(t,int::seqGet(r,iv)))) &
int::seqGet(r,x)= x & int::seqGet(r,y)= y))

==>)
};

Fig. 1. Taclet for Lemma 4

To use Lemma 4 and Theorem 1 in the KeY system they have to be formu-
lated in KeY’s language for proof rules. Rules in this format are called taclets.
Full explanation of the taclet language can be found in [1, Chapter 4].

Figure 1 shows the taclet for Lemma 4. It has been proved with the KeY
prover with the proof script reproduced in Appendix B.

nodes 8819
branches 135
quantifier instantiations 42
One-step simplifications 123
totel rule applications 8950

Figure 2 shows the taclet for Theorem 1. It has been proved with the KeY
prover with the proof script reproduced in Appendix C

\lemma
schiffl_thm_1 {

\schemaVar \term Seq s, t;
\schemaVar \term int x, y;
\schemaVar \term any a, b;
\schemaVar \variables int idx;
\varcond (\notFreeIn(idx, x), \notFreeIn(idx, y),

\notFreeIn(idx, a), \notFreeIn(idx, b),
\notFreeIn(idx, s), \notFreeIn(idx, t))

\add(seqPerm(s,t) & any::seqGet(s,x)=any::seqGet(t,x) &
any::seqGet(s,y)=any::seqGet(t,y) & 0 <= x & x < seqLen(s) &
0 <= y & y < seqLen(s) ->

seqPerm(seqDef{idx;}(0,s.length,\if(idx=y)\then(b)\else
(\if(idx=x)\then(a)\else(any::seqGet(s, idx))))

,seqDef{idx;}(0,s.length,\if(idx=y)\then(b)\else(
\if(idx=x)\then(a)\else(any::seqGet(t, idx)))))

==>)
};

Fig. 2. Taclet for Theorem 1

nodes 830
branches 17
quantifier instantiations 11
One-step simplifications 30
totel rule applications 850

B Proof Script for Lemma 4

\profile "Java Profile";

\settings {
omitted

}

\proofObligation "#Proof Obligation Settings
#Thu Oct 27 13:34:28 CEST 2016
name=schiffl_lemma_2
class=de.uka.ilkd.key.taclettranslation.lemma.TacletProofObligationInput
";

\proofScript "
macro split-prop;
rule allRight;
rule allRight;
macro split-prop;
rule ’seqPermDefLeft’;
rule ’andLeft’;
rule ’exLeft’;
macro split-prop;
the following equations are useful in many case.
rule seqNPermRange;
instantiate var=iv with=’v_x_0’ occ=1;
rule impLeft;
tryclose branch;
rule andLeft;
rule andLeft;
1. triple of equations
instantiate var=iv with=’v_y_0’ occ=1;
rule impLeft;
tryclose branch;
rule andLeft;
rule andLeft;
2. triple of equations
rule seqNPermDefLeft;
instantiate var=iv with=’v_x_0’ occ=2;
rule impLeft;
tryclose branch;
rule exLeft;
rule andLeft;
rule andLeft;
3. triple of equations
instantiate hide var=iv with=’v_y_0’ occ=2;

rule impLeft;
tryclose branch;
rule exLeft;
rule andLeft;
rule andLeft;
4. triple of equations
instantiate var=iv with=’jv_0’ occ=1;
rule impLeft;
tryclose branch;
rule andLeft;
rule andLeft;
rule castAdd formula=’s_0[jv_0] = v_x_0’ occ=0;
5. set of equations
instantiate hide var=iv with=’jv_1’ occ=1;
rule impLeft;
tryclose branch;
rule andLeft;
rule andLeft;
rule castAdd formula=’s_0[jv_1] = v_y_0’ occ=0;
6. set of equations
instantiate var=iv with=’v_x_0’;
rule impLeft;
tryclose branch;
7. equation
instantiate var=iv with=’v_y_0’;
rule impLeft;
tryclose branch;
8. equation
cut ’v_x_0 = v_y_0’;
This corresponds to case A in the Notes.
instantiate hide var=’v_r’ with=’seqSwap(s_0,v_x_0,jv_0)’;
in the following r refers to this instantion
rule andRight;
rule andRight;
rule andRight;
rule andRight;
rule lenOfSwap;
tryclose branch;
established: r is of correct length
rule seqNPermSwapNPerm;
instantiate hide var=’iv’ with=’v_x_0’ occ=1;
instantiate hide var=’jv’ with=’jv_0’;
rule impLeft;
tryclose branch;
tryclose branch;

established: r is permutation
rule allRight;
rule impRight;
rule andLeft;
instantiate var=iv with=’v_iv_0’;
rule impLeft;
tryclose branch;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: witness property of r
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: r fixes v_x_0
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: r fixes v_y_0
from now on v_x_0 != v_y_0
cut ’(int)s_0[v_x_0] = (int)s_0[v_y_0]’;
rule seqNPermInjective;

instantiate hide var=iv with=’v_x_0’;
instantiate hide var=jv with=’v_y_0’;
rule impLeft;
tryclose branch;
tryclose branch;
from now on s_0[v_x_0] != v_x_0
cut ’(int)s_0[v_x_0] = v_x_0’;
This corresponds to case B1 & B2 in the Notes.
instantiate hide var=v_r with=’seqSwap(s_0,v_y_0,jv_1)’;
in the following r1 refers to this instantion
rule andRight;
rule andRight;
rule andRight;
rule andRight;
tryclose branch;
established: r1 is of the correct length
rule seqNPermSwapNPerm;

instantiate hide var=iv with=’v_y_0’;
instantiate hide var=jv with=’jv_1’;
tryclose branch;
established: r1 is permutation
rule allRight;
rule impRight;
rule andLeft;
instantiate var=iv with=’v_iv_1’;
rule impLeft;
tryclose branch;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
instantiate var=iv with=’v_y_0’;
rule impLeft;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
established: witness property for r1
rule getOfSwap;

rule ifthenelse_negated;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
established: r1 fixes v_x_0
tryclose branch;
established: r1 fixes v_y_0
from now on v_x_0 != v_y_0 and s_0[v_x_0]!= v_x_0
cut ’(int)s_0[v_y_0] = v_y_0’;
This corresponds to case B3 in the Notes.
instantiate hide var=v_r with=’seqSwap(s_0,v_x_0,jv_0)’;
in the following r2 refers to this instantion
rule andRight;
rule andRight;
rule andRight;
rule andRight;
tryclose branch;
established: r2 is of the correct length
rule seqNPermSwapNPerm;
instantiate hide var=iv with=’v_x_0’;
instantiate hide var=jv with=’jv_0’;
rule impLeft;
tryclose branch;
tryclose branch;
established: r2 is permutation
rule allRight;
rule impRight;
rule andLeft;
instantiate var=iv with=’v_iv_2’;
rule impLeft;
tryclose branch;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: witness property for r2
rule getOfSwap;

rule ifthenelse_negated;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
established: r2 fixes v_x_0
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
established: r2 fixes v_y_0
from now on v_x_0 != v_y_0 and s_0[v_x_0]!= v_x_0 and s_0[v_y_0]!= v_y_0
cut ’(int)s_0[v_x_0]=v_y_0’;
This corresponds to case B4i & B4iii in the Notes.
instantiate hide var=v_r with=’seqSwap(seqSwap(s_0,jv_0,v_x_0),jv_0,v_y_0)’;
in the following r3 refers to this instantion
rule andRight;
rule andRight;
rule andRight;
rule andRight;
tryclose branch;
established: r3 is of the correct length
rule seqNPermSwapNPerm;
instantiate hide var=iv with=’jv_0’;
instantiate hide var=jv with=’v_x_0’;
rule impLeft;
tryclose branch;
rule seqNPermSwapNPerm formula=’seqNPerm(seqSwap(s_0, jv_0, v_x_0))’;
instantiate hide var=iv with=’jv_0’;
instantiate hide var=jv with=’v_y_0’;
rule impLeft;
tryclose branch;
tryclose branch;
established: r3 is permutation
rule allRight;
rule impRight;
rule andLeft;
start: providing equation for latter use
in many case distinctions
instantiate var=iv with=’v_iv_3’;
rule impLeft;
tryclose branch;
end: providing equation for latter use
rule getOfSwap;
rule ifthenelse_negated;

rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: case v_iv_3=jv_0 in the unravelling of r3
rule ifthenelse_split;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: case v_iv_3=v_y_0 in the unravelling of r3
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
established: witness property for r3
rule getOfSwap;

rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
established: r3 fixes v_x_0
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
established: r3 fixes v_y_0
from now on v_x_0 != v_y_0 and s_0[v_x_0]!= v_x_0 and
s_0[v_y_0]!= v_y_0 and s_0[v_x_0]!= v_y_0
cut ’int::seqGet(s_0, v_y_0) = v_x_0’;
This corresponds to case B4ii in the Notes.
instantiate hide var=v_r with=’seqSwap(seqSwap(s_0,jv_1,v_y_0),jv_1,v_x_0)’;
in the following r4 refers to this instantion
rule andRight;
rule andRight;
rule andRight;
rule andRight;
tryclose branch;
established: r4 is of the correct length
rule seqNPermSwapNPerm;
instantiate hide var=iv with=’jv_1’;
instantiate hide var=jv with=’v_y_0’;
rule impLeft;
tryclose branch;
rule seqNPermSwapNPerm formula=’seqNPerm(seqSwap(s_0,jv_1,v_y_0))’;
instantiate hide var=iv with=’jv_1’;
instantiate hide var=jv with=’v_x_0’;
rule impLeft;
tryclose branch;
tryclose branch;

established: r4 is permutation
rule allRight;
rule impRight;
rule andLeft;
start: providing equation for latter use
in many case distinctions
instantiate var=iv with=’v_iv_4’;
rule impLeft;
tryclose branch;
instantiate var=iv with=’v_iv_4’;
rule impLeft;
tryclose branch;
end: providing equation for latter use
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
rule ifthenelse_split occ=0;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;

rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
established: witness property for r4
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
established: r4 fixes v_x_0
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;

tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: r4 fixes v_y_0
from now on v_x_0 != v_y_0 and s_0[v_x_0]!= v_x_0 and
s_0[v_y_0]!= v_y_0 and s_0[v_x_0]!= v_y_0 and s_0[v_y_0]!=v_x_0;
instantiate hide var=’v_r’ with=’seqSwap(seqSwap(s_0,v_x_0,jv_0),v_y_0,jv_1)’;
this corresponds to case B4iv in the Notes
in the following r5 refers to this instantion
rule andRight;
rule andRight;
rule andRight;
rule andRight;
tryclose branch;
established: r5 is of the correct length
rule seqNPermSwapNPerm;
instantiate hide var=iv with=’v_x_0’;
instantiate hide var=jv with=’jv_0’;
rule impLeft;
tryclose branch;
rule seqNPermSwapNPerm formula=’seqNPerm(seqSwap(s_0,v_x_0,jv_0))’;
instantiate hide var=iv with=’v_y_0’;
instantiate hide var=jv with=’jv_1’;
rule impLeft;
tryclose branch;
tryclose branch;
established: r5 is permutation
rule allRight;
rule impRight;
instantiate hide var=iv with=’v_iv_5’;
rule impLeft;
tryclose branch;
rule andLeft;
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
tryclose branch;
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;

rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
rule ifthenelse_split occ=0;
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
established: witness property for r5
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;

rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
rule getOfSwap occ=0;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;
rule andLeft;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
rule getOfSwap;
rule ifthenelse_negated;
rule ifthenelse_split occ=0;
rule andLeft;
rule andLeft;

rule andLeft;

rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
tryclose branch;
established: r5 fixes v_y_0
"

C Proof Script for Theorem 1

\profile "Java Profile";
\settings {
"#Proof-Settings-Config-File

omitted
}

\proofObligation "#Proof Obligation Settings
#Thu Oct 27 16:09:31 CEST 2016
name=schiffl_thm_1
class=de.uka.ilkd.key.taclettranslation.lemma.TacletProofObligationInput
";

\proofScript "
macro split-prop;
rule schiffl_lemma_2 formula=’seqPerm(f_s, f_t)’;
instantiate hide var=x with=’f_x’;
instantiate hide var=y with=’f_y’;
rule impLeft;
tryclose branch;
rule exLeft;
macro split-prop;
rule seqPermDef occ=1;
rule andRight;
tryclose branch;
instantiate hide var=s with=’r_0’;
rule andRight;
tryclose branch;
rule allRight;
rule impRight;
instantiate hide var=iv with=’iv_0’;
rule impLeft;
tryclose branch;
rule andLeft;
rule seqNPermRange;
instantiate hide var=iv with=’iv_0’;
rule impLeft;
tryclose branch;
rule andLeft;
rule andLeft;
rule seqNPermRange;
instantiate hide var=iv with=’f_x’;
rule impLeft;
tryclose branch;
rule andLeft;

rule andLeft;
rule seqNPermRange;
instantiate hide var=iv with=’f_y’;
rule impLeft;
tryclose branch;
rule andLeft;
rule andLeft;
rule getOfSeqDef occ=0;
rule getOfSeqDef;
rule ifthenelse_split occ=0;
rule andLeft occ=0;
rule sub_zero_2 occ=0;
rule ifthenelse_split occ=2;
rule andLeft;
rule sub_zero_2 occ=0;
rule add_zero_right occ=0;
rule add_zero_right occ=0;
rule add_zero_right occ=0;
rule add_zero_right occ=0;
rule add_zero_right occ=0;
rule add_zero_right occ=0;
rule ifthenelse_split occ=0;
rule ifthenelse_split occ=0;
tryclose branch;
tryclose branch;
rule ifthenelse_split occ=0;
tryclose branch;
rule ifthenelse_split occ=0;
rule seqNPermInjective;
instantiate hide var=iv with=’iv_0’;
instantiate hide var=jv with=’f_y’;
rule impLeft;
tryclose branch;
tryclose branch;
rule ifthenelse_split occ=0;
rule seqNPermInjective;
instantiate hide var=iv with=’iv_0’;
instantiate hide var=jv with=’f_x’;
rule impLeft;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
tryclose branch;
"

