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Abstract— In this paper, we address control of Markov Jump
Linear Systems without mode observation via dynamic output
feedback. Because the optimal nonlinear control law for this
problem is intractable, we assume a linear controller. Under this
assumption, the control law computation can be expressed in
terms of an optimization problem that involves Bilinear Matrix
Inequalities. Alternatively, it is possible to cast the problem as
a Linear Matrix Inequality by introducing additional linearity
constraints and requiring that some system parameters are
constant. However, this latter approach is very restricting and it
introduces additional conservatism that can yield poor perfor-
mance. Thus, we propose an alternative iterative algorithm that
does not pose any non-standard restrictions and demonstrate
it in a numerical example.

I. INTRODUCTION

In control engineering, systems with abrupt parameter
changes constitute an important system class. These systems
are often modeled as a set of continuous-valued dynamical
systems, where the active system is selected according to a
jumping parameter or mode. In literature, such systems are re-
ferred to as Hybrid Systems because they possess continuous-
valued and discrete-valued dynamics [1]. In this paper, we
address the control of a special class of Hybrid Systems,
namely the Markov Jump Linear Systems (MJLS) that were
first introduced by Krasovskii and Lidskii in 1961 [2]. In
these systems, the continuous-valued dynamics are linear and
the discrete-valued dynamics are modeled as a Markov chain
that is independent of the continuous-valued dynamics. This
modeling approach allows to consider economic processes [3],
[4], systems with component failures [5], networked control
systems [6], [7], multi-agent systems [8], and many more [9].

We focus specifically on optimal control of MJLS. While
theory on optimal control of MJLS with observed mode is
mature [9]-[11], there are still many unsolved challenges in
control of MJLS with non-observable mode. Even though
the continuous-valued dynamics are linear, the separation
between control and estimation does not hold as it is the
case in the Linear Quadratic Gaussian (LQG) control, i.e.,
there is a dual effect. Thus, the lack of mode observation
leads to nonlinear optimization problems that suffer from the
curse of dimensionality [12], [13]. For this reason, research
concentrates on approximate control laws. We distinguish
between (i) control laws that are based on approximation of
the density of the hybrid system state, and (ii) control laws
that make a structural assumption.
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Control laws that belong to the class (i) usually employ a
multiple-model approach in order to estimate the continuous-
valued state and the distribution of the discrete-valued state.
This information is then used in order to compute the control
input using one-step lookahead regulator gains determined
by a set of coupled Riccati equations from the optimal LQG
controller for MJLS with observable mode [14], [15].

The second class of approaches to optimal control of
MILS without mode observation makes an assumption on
the structure of the control law. Usually, an affine control
law is used. This approach was, e.g., used in [3], where the
authors considered finite-horizon state-feedback control of
MILS without process noise. It was extended to systems with
process noise in [5]. Furthermore, optimal control of MJLS
with time-invariant linear control law assumption is treated
in [16]-[18]. In [16], the authors considered state-feedback
H; control of MJILS via Linear Matrix Inequalities (LMI)
with clustered observations, i.e., the case where some of
the mode values are observed and the others are not. The
provided framework is able to model everything from full
mode observation to a completely non-observable mode. For
the case of a non-observed mode, we proposed an alternative
iterative control law computation method in [17]. And in [18],
we addressed static output-feedback control of MJLS without
mode observation. For this scenario, we derived an iterative
algorithm that computes the regulator gain and provided
feasibility conditions in terms of an LMI. Important related
work is also [19], where the authors consider H,, dynamic
output feedback for MILS with mode observation and discuss
how the case clustered observations can be implemented by
introducing additional constraints and restrictions. In case of
no mode observation, these restrictions require that some of
the system matrices are mode-independent.

In this paper, we extend our results on static output-
feedback control of MILS without mode observation
from [18] to dynamic output-feedback control, i.e., the case
where the controller receives noisy state measurements. As
argued above, the optimal control law for this problem
is nonlinear and intractable. For this reason, we make
the assumption of a linear mode-independent control law.
But even under this assumption, the computation of the
controller is not trivial. Actually this problem can be addressed
via Bilinear Matrix Inequalities (BMI) and in principle be
solved using existing solvers [20], [21]. However, finding
a solution may not always be tractable, because BMIs are
NP-hard [22]. Alternatively, the BMI can be cast as a Linear
Matrix Inequality (LMI) by introducing additional linearity
constraints, which was proposed in [19]. However, not only



these additional constraints introduce conservatism, which can
yield poor performance and even render the LMI unsolvable
although stabilizing controllers exist, but it is also necessary
to require some of the system parameters to be constant within
each cluster. Thus, we take a different approach similar to that
in [23] and [17], [18], and propose an iterative algorithm for
control law computation as alternative and extension of the
method from [19]. Because the convergence of the presented
algorithm does not imply stability of the closed-loop system,
i.e., the proposed algorithm can converge even if the MJLS
cannot be stabilized via linear mode-independent dynamic
output feedback, it is necessary to check stability using the
results from [24]. The convergence proof of the proposed
algorithm is subject of our current research.

Outline. In the next section, we formulate the considered
problem. The algorithm for control law computation is
presented in Sec. III and demonstrated by means of a
numerical example in Sec. IV. Finally, Sec. V concludes
the paper.

II. PROBLEM FORMULATION AND BASIC CONCEPTS

Consider the stochastic system

L = Aeka + Bekﬂk + Hekwk 5
Yy, = Co,z +Jo,0;

(D

where z, € R" is the state, u;, € R™ the control
input, and y, € R® the measurement. The matrices Ay,
By, Hy, Ci, and J; are selected from time-invariant sets
{A;,B;,H;,C;,J;},i=1,...,M, M € N according to
the value of the random variable 8 € {1,..., M}, referred
to as the mode, that forms an ergodic time-homogeneous
Markov chain {6} with transition matrix T = (p;;)mx >
pij = P(0r41 = j|0k = 1). The dynamics (1) are subject
to zero-mean independent and identically distributed Gaus-
sian disturbances w; € RP and v, € R? with identity
covariances!.
For system (1), we seek to find a linear time-invariant
control law
T, =Fz, + Ky, | @)

uy, = L),

that is independent of the initial condition (x, 6y) and where
x, € R™ denotes the internal controller state. The matrices F,
K, and L are to be determined such that the infinite-horizon
average cost function

K
. 1
J = lim —E {;‘)mmgkmk +uIRekuk} 3)

is minimized, where the positive semidefinite Qg, and
positive definite Rg, are selected according to 6 and the
expectation is taken with respect to 8, w;, and v,,.

IPlease note that this assumption is not restrictive because by choosing the
matrices Hg, and Jg, appropriately, we can obtain any other covariance
function.

Under the control law assumption (2), we can construct
the closed-loop system

B, = Ao, Ty, + Ho, W, 4)
with
~ Ly e _ Agk ngL
Qk; - |:§k;:| 3 Aek — |:KCHk F ’
~ w e Hg 0
k&

Then, for the cost function (3) in terms of the closed-loop
dynamics, we obtain

K
. 1 TN~
T rn {ka Qekmk}
k=0
with

5. _ | Qe 0
Qek - |: 0 LTngL
Before we propose the algorithm for computation of F, K,

and L in the next section, we introduce the notion of mean
square stability of MJLS.

Definition 1 The MJLS
Zyp1 = Ao, Zy,
is mean square (MS) stable, if it holds
lim E {z, .
dim Bz} =0
Analogously, we can define mean square stabilizability.

Definition 2 The MJLS (1) is MS stabilizable via mode-
independent dynamic output feedback (2), if there exist
matrices F, K, and L such that the closed-loop system (4)
is mean square stable.

III. CONTROL LAW COMPUTATION

In the remainder of this paper, we assume that system (1)
is (MS) stabilizable via linear dynamic output feedback (2).
Let us define the second moment

~ . X
Xi :E{i & 1o =i} _ { Lk
k k=k k (X127k)T
where 1g,—; = 1 if 6, = ¢ and 0 otherwise. According

to [9], the closed-loop dynamics of the second moment are
given by

i

X1‘2,k]
3 b)

Xz,k

. M -~ o~ -
ch-&-l = Zizlpij [AiXZAzT +HZH1HH 5
where HZ denotes the probability of being in mode ¢ at time
step k, i.e., E;lc =P8, =1).
With these prerequisites, the control problem described in
Sec. II can be formulated as

M ~ o~
FII%HL Zi:l trace {Qix‘x’] 5)

~ . M ~ o~ o~ Lo~ o~



where we already took the limit X' — oo and p__ denotes
the limit distribution of the Markov chain {6} [25]. Next,
introducing the positive definite Lagrange multiplier

~ o P!
Pl — -1 112} 7
> |:(P12)T P

we can formulate the Hamiltonian
M A i Bi i
H= Zi:l trace [QZ—Xoo -P. XY
AL [Aifigoij 4 H@@ﬁfﬂ” (6

where Al = Zﬁl pi;PL_. Necessary optimality conditions

are

OXi, oPL, OF oK oL
From M /0P _, we obtain
~. M o~ o~ SRS
Xl =Y by |[AXLAT + ) BT, ()
and from O /0X,
Pl =Qi+A/ALA; . ®)
At this point, we introduce the substitutions
Xé,oo = Xz ’ Pl2,oo = El ’
32,00 = Xz ) li27oo = _Ei ) (9)
(le,oo)T = Xi ’ (P212,oo)T = _Pi ’

This particular choice constrains )2’00 and 1520 to be positive
definite. It can be made without loss of generality [26].
Furthermore, note that X, = limy_,o E {2, Z, 1¢, i} and
X; = limpoo E { (&), — ) (m) — &) "Lg,—; }. With this
substitution, we obtain from (7) and (8)

— M . .
X, =3 my [ﬁ; HH] + 4 KJJ KT

+(A; - KC;)X;(A; —KC;)" (10)
+(A; — F 4+ B,L - KC))X,(A; - F + B,L - KC,)] ,

— M % Ty T X T T
X, =3 by [0 KIITKT + KCX:C/K
+(F+ KC)X,(F+KC;)'] , (11)

P,=Q+L'R,L+(A;+B,L) A;(A; + B,L) (12)
+(A; -F+B,L-KC;)"A,(A; - F + B,L - KC,) ,

P,=L'R,L+L'B/A;B,L+(F -B,L)"A,(F — B,L) ,
(13)

where A; = Ef\il pijPjand A, = Zf\il pi;P;. The results
in (10)-(13) are derived in Appendix VI-A.

Next, we use the necessary optimality condition
OH/OF = 0 in order to eliminate F from H, (7), and (8).
It holds

vec (F) = (Zj: X, ® Ai]> B [vec (Zfl AiAiXi>
- (ZA: [x,C) ®AJ) vee (K)
+ (ZZ X; ® AiBi]) vec (L)} ,

where vec (-) is the vectorization operator and ® denotes the
Kronecker product [27]. The proof of this result is given in
Appendix VI-B. It is important to emphasize that if the mode
is available to the controller, (14) can be reduced to

(14)

F, = A; +BL; - K;C; ,

which resembles the classical Kalman filter equations. How-
ever, due to the missing mode observation, we cannot apply
this standard solution approach from [9].

Plugging (14) into (30) and using the necessary optimality
conditions 0H /0K = 0 and OH /0L = 0, we obtain

1
Lon = ®gvec (K) + ¥ "vec (L) + T =0
1o i a3
3L = ®yvec (L) + ¥vec (K) +7v, =0,
with

(I)K - (I)K(Xa X7 X7 A)

— (S 0397 + e+ x0€D A
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(X xereal)
@, = 2 (XXX A)
_ (Zi_l X, ® (Ri + B] (A; + Ai)Bz—)J)
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>
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+ (Zﬂi_[x @B/ Ai]) (fol X @Ai]>l
x (Zfl x,c7 @Ai]) ,



The proof is given in Appendix VI-C.

Finally, we have that the optimal solution to (5) is
determined by the set of coupled nonlinear equations (10),
(11), (12), (13), (14), and (15). However, finding a solution to
this set of coupled equations is non-trivial. Thus, we propose
to apply an iterative scheme as argued in [23]. However,
a direct application is not possible because [23] considers
white switching in contrast to Markovian switching considered
here and we have to make some important adaptations. The
iterative scheme consists in iterating

sl +1] M i i
Xj" = Zizlpzj [ﬁooHinT +p! K33 (KT

(A, — KMC)X(A; - K C,)T
+(A; — Fl 4+ B,LM — K[n]ci)zyﬂ

x(A; — F" 4+ B, LM — KM C)) (16)
X+ _ ZM i W K 3,37 (KT
= =11 [Foo e

+KU e X () TKT

+(F[q7] +K[n]CZ)X£77] (F[n] _|_K[77]CZ)T (17)

P — @+ (W) TR, 4 (A, + B,LI) TR

x (A; + B;LM)+ (A, —FI" 4 B,L"W — K C,)T

x Al(A; — I 4 BLI — KUIC) | (18)
27[;77-1—1] _ (L["])TRzL[n] 4 (L[n])TB;rKEU]BLL[n]

+ (FW — B,LI) T AV (FI — B,LI) | (19)
initialized with random positive definite XEO], XEO],

?E‘”, and EEO]. In our implementation, we obtained

the fastest convergence when using le—4I instead
of random values. At each iteration step, we update
K1 — KW and L1 - LI using (15),
where we set P = @K(X[”],X[ﬂl,X[’”,A["]), v =

o(X" X0 A AN, 2y, = @y, (X7 xR AL,
lK _ 1 (X[W]7X[n]’x[ﬂ]’é[n])’ and lL =
7L (X[n] XA ml LAl ). To update
Fl-1 — FU we use (14) with appropriate X[n],
X, A A K and L,

Please note that convergence of the proposed iterative
algorithm does not imply stability of the closed-loop system,
i.e., the algorithm may converge to a solution although the
MILS (1) is not MS stabilizable via (2). For this reason,

it is necessary to check stability using, e.g., Corollary 2.6
from [24] that proposes to check whether the matrix

make the

M = diag [Al ® A, Ay ® AM} (TT @1)
is Schur stable, where ng is the closed-loop system matrix.
If M is Schur then the closed-loop system (4) is stable in
the MS sense.

Also, note that we can solve (15) for vec (K) and vec (L)
according to

vec(K)| _ [Pk ¥ - %

vee(L)| — [T &y, Yl
However, this equation involves a matrix inversion. Thus, it
may be faster to solve

(20)

min {vec(K)—r vec(L)} [VeC(K)—r VeC(L)}T
s.t. (15)

in order to obtain vec (K) and vec (L) instead. , using, e.g.,
the interior-point algorithm.

Remark 1 Please note that if the jumping parameter 0y is
white and not Markovian, we obtain the result from [23] as
a special case.

IV. NUMERICAL EXAMPLE

In order to demonstrate the presented algorithm, we
performed a Monte Carlo simulation with 1e4 runs a 200 time
steps each for different choices of transition, and process and
measurement noise matrices. We compared the performance
of the control law computed using the proposed algorithm
with the time-invariant optimal controller from [9] that
requires mode feedback?. The parameters of the MJLS were
chosen to

1 1 1.2 1.2 Q=Q=1,
A = A_ =
! [0 1}’ 2 [0 1}’R1=R2=17
0 01] Ci=[1 0],
B, = B, = 21

Furthermore, we performed simulations with two different
transition matrices

a_ [07 03 2 [09 0.1
T _[0.2 08| ™ T =101 09 -

2We chose not to compare our method with [19], because the mode-
independent feedback from [19] requires Ag, , By, , and Cg, to be mode-
independent, i.e., constant.



1 (1] 1 (1] 1 [2] 1 [2] 2 (1] 2 (1] 2 [2] 2 [2]
T[]vHek? T[]vHek’ T[]vHek’ T[]vHek’ T[]vHek’ T[]vHek’ T[]vHek’ T[]vHek’
(1] (2] (1] [2] (1] [2] (1] [2]
Jek Jek J9k ‘]9k ‘]ek .191c ‘]ek ‘]ek
costs - optimal
11.0848 11.3172 14.5255 14.7933 10.1433 10.2526 13.3096 13.5912
controller [9]
costs - proposed 11.2070 11.5388 15.4048 15.8356 10.2826 10.7506 14.2897 14.7641
TABLE I

RESULTS OF THE MONTE CARLO SIMULATION
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Fig. 1. State, control, and mode trajectories of an example run with T[l],
H%ll (1]
05 and J 0,

two different sets of matrices H[ll] = H[Ql] = 0.01-I and
H[12] = H[22] = 0.1-1I, and two different sets J[ll] = J[Ql] =
0.05 and J[f] = J[;] = 0.1. Also, we drew the initial
. . _ T
state @, from a Gaussian with mean Zp = [2 0] and

covariance = = 0.22 - I. An example run with T[l], Hgi,

and J 5}1 is depicted in Fig. 1. The simulation results are
depicted in Table I. They indicate that the proposed control
law performs quite well and that the performance decrease
due to the non-observability of the mode is low. This can
also be seen in the spectral radii of the controlled MJLS.
The spectral radius of the uncontrolled MJLS with T is
p(M(TM)) = 1.2968 and p(M(T[?!)) = 1.3295 with T2,
respectively, i.e., the MJLS (1) is unstable for both transition
matrices. For the optimal controller from [9], the spectral
radii are p(M(TM)) = 0.7654 and p(M(T!?)) = 0.8089.
For the proposed algorithm, we obtain p(M(TM)) = 0.9591
and p(M(T[!)) = 0.9530, which yields that the controller
computed using the proposed algorithm can stabilize the

MILS. Of course, the stabilization property of the optimal
controller with mode observation is better. The proposed
control law required on average 20 iterations to converge.
A reference implementation of the presented algorithm is
available on GitHub [28].

V. CONCLUSION

In this paper, we addressed dynamic output-feedback
control of Markov Jump Linear Systems without mode
observation. We assumed a linear control law and, to our
knowledge, proposed the first solution to this problem that
does not make any non-standard restrictions. The computation
of the control law is given in terms of an iterative algorithm.
Simulations indicate that this algorithm always converges,
if the MJLS is stabilizable via dynamic output feedback.
However, a proof of this conjecture is not yet available and
is subject of current research. Nevertheless, the presented
algorithm can be used in order to compute the control law.
Then, the stability of the closed-loop system can be checked
using results available in literature.

VI. APPENDIX
A. Proof of (10)-(13)
From (7) and (8), we have
X1 = Zizlpz‘j [AX] A +AX], L'B (22)
7 TAT i TpT i T
+BiL(X}y00) AT + BiLX} LTB] + ! HH]|
X‘iQ,oo = Zi:l Dij [AZXLI,OOC;FKT + Ainl2,ooFT
+B;L(X}, ) 'C/K" +BLX}, _F'] | (23)
M . .
Zizl pij [KC;X{  C/K" + KC;Xi, F'

X} o
+F(X}y ) C/ KT +FX) F' + H;KJZ-J:KT} ,

(24
Pl =AAl A, +A]Al, KC;
+C/K (Al o)A+ C/KTAL _KC; +Q; , (25
Pl =A/Al B.L+AJA}, F

+C/ K (Aly o) 'BiL+C/K'A; F, (26)
P, =L"B/A} BL+L'B/A}, F
+F (Al ) BiIL+F A, F+L'RL. 27)

Using the substitutions from (9), we obtain (11). Next, the
correspondence

XJ’ = klgfolo E {@k -z ) () — ik)T]lOk:j}

(28)



implies X; = X] . — X1, .. — (X]5..0)" + X3 .. where
we can use (22)-(24) and apply (9) in order to obtain (10).
Accordingly, (27) yields (13). Finally, from the classical
optimal control theory, we can infer that PZ is the second
moment of the costate £ of the closed-loop state x;. Thus,

Pi= kli)Holo B {(§k - /é\k)(ék - §k) ]lek:i}

is the analogy to (28), where ﬁ

(29)

is the costate of x; and

f €, the costate of Z,, respectively. Taking the limit in (29),
and using (25)-(27) and (9) yields (12), which concludes the
proof.

B. Proof of (14)
The Hamiltonian (6) can be evaluated to
H= Z trace [Qi(X; + X;) + LTR,LX,
-PX,; - PZ-L- +u (A + A)HH]
it AKIITK + (A + A) AKX+ X;)A[]
+2(Ai + A)AX LB + (A + A)B.LX,L'B/
—2A,A;(X; +X,)C/ K" —2A,B,LX,C/K"
—2A,AX.F' —2A,B,LX,F' +2A,KC,X,F'
+AKC;(X; +X,)C/K" + A, FX,F']

- P:X;

(30)

Differentiation with respect to F and setting the result to 0
yields

OH M
F 2y

—-AFX, + AKC X, — AB,LX,
1
- AiAzXz =0.

Using vec (AXB) = (BT ® A)vec (X) and resolving for
vec (F'), we obtain (14). Please note that if there was only
one mode, i.e., (1) was an ordinary stochastic system, or
if the parameters of (1) were white, we could premultiply
with X~ ! and postmultiply with A ! to obtain one of the
classical Kalman filter equations.

C. Proof of (15)

Using trace [ATB] = vec (A)" vec (B), we can write
the Hamiltonian (30) as

H= Z trace [Q;X| —
+HZOOA§H¢H¢T FATAXIAT } +vec (L) @y vec (L)

PiX} —2(P},) " X, — PX)

+ vec (K) " ®xvec (K) + 2vec (L) ®vec (K)

Differentiation with respect to vec(K)
yields (15).

and vec (L)
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