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Abstract
Conjugated microporous polymers (CMPs) are materials of low density and high intrinsic porosity. This is due to the use of rigid

building blocks consisting only of lightweight elements. These materials are usually stable up to temperatures of 400 °C and are

chemically inert, since the networks are highly crosslinked via strong covalent bonds, making them ideal candidates for demanding

applications in hostile environments. However, the high stability and chemical inertness pose problems in the processing of the

CMP materials and their integration in functional devices. Especially the application of these materials for membrane separation has

been limited due to their insoluble nature when synthesized as bulk material. To make full use of the beneficial properties of CMPs

for membrane applications, their synthesis and functionalization on surfaces become increasingly important. In this respect, we

recently introduced the solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed

azide–alkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we

present the synthesis of surface grown CMP thin films and nanomembranes via light induced thiol–yne click reaction. Using this

reaction, we could greatly enhance the CMP nanomembrane synthesis and further broaden the variability of the LbL approach.
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Introduction
The synthesis of microporous organic and inorganic materials

such as zeolites [1], mesoporous silica [2] as well as metal-

organic frameworks (MOF) [3,4] and covalent organic frame-

works (COF) [5-7] attracted large attention because of their

high potential in catalysis, gas storage and separation as well as

in organic electronics [8]. Among the microporous materials,

conjugated microporous polymers (CMPs) [9,10] or porous aro-

matic frameworks (PAF) [11] have favorable properties for

many applications, since they combine a high chemical and

thermal stability, which is comparable to inorganic materials,

with the variability of organic compounds.

Nevertheless, their insoluble nature has so far greatly limited

their processing and integration into functional devices, since

CMPs and PAF are usually synthesized as highly crosslinked

interconnected and insoluble powders [12]. Only few examples

of soluble and therefore processable CMP materials are known,

all limited to linear CMPs [13,14].

To overcome the issue of low processability, recently the group

of Jiang and our group introduced the interfacial synthesis using

an electro-activated approach [15] and a copper catalyzed

azide–alkyne cycloaddition (CuAAC) approach, respectively

[16]. These procedures are still limited to conductive substrates

or associated with long reaction times.

In this work, we present a novel strategy for the LbL synthesis

of CMP thin films and nanomembranes, using the light-induced

and catalyst-free thiol–yne coupling (TYC) reaction.

TYC has gained large attention as a representative of the click

chemistry concept [17]. In the TYC reaction, usually a photoini-

tiator creates thiyl radicals [18-20], which react with nearby

alkyne moieties to form covalent sulfur–carbon bonds and vinyl

radicals. Additional thiol moieties can undergo hydrogen

transfer to the vinyl radical leading to thiyl radicals and vinyl

sulfides. The vinyl sulfides can then undergo a thiol–ene cou-

pling (TEC) reaction, leading to bis-sulfide species. TYC has

been used for surface modification [21,22], biofunctionaliza-

tion [23,24] and fabrication of 3D structures via direct laser

writing (DLW) [25].

Results and Discussion
Synthesis of CMP thin films
We prepared the CMP nanomembranes in a LbL approach

using the thiol–yne coupling (TYC) reaction. In order to

perform the reaction on surfaces, we first functionalized the

substrates with an alkyne terminated self-assembled monolayer,

which presents initial groups for the stepwise growing of the

CMPs using the TYC reaction.

In the first step, we immersed the functionalized surface in a

solution of the tetra-topic thiol building block (tetrakis(4-

sulfanylphenyl)methane, TPM-SH) and a small amount of

photoinitiator (2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-

methylpropan-1-one) [26]. Afterwards we irradiated the sub-

strate using a standard UV lamp at a wavelength of 365 nm for

3 minutes. We then rinsed the substrate thoroughly with

absolute THF and immersed the substrate in a solution of the

tetra-topic alkyne building block (tetrakis(4-ethynylphen-

yl)methane, TPM-alkyne), again with a small amount of

photoinitiator. Then we irradiated the substrate for 3 minutes

and rinsed the substrate thoroughly with absolute THF.

Figure 1 shows the LbL synthesis procedure as well as the mo-

lecular structures of the reactants used in the described reaction.

We repeated the described reaction cycle 20 times to obtain

CMPs thin films on functionalized gold wafers.

Characterization of CMP thin films
We characterized the reaction using infrared reflection absorp-

tion spectroscopy (IRRAS). Figure 2 shows the IRRA spectrum

of the CMP thin film after 20 reaction cycles and the corre-

sponding band assignments.

The absence of bands associated to alkyne and thiol functional

groups in the IRRA-spectra suggest an almost quantitative reac-

tion. (For IRRA-spectra of the starting materials, see Support-

ing Information File 1, Figures S1–S3.)

We evaluated the thickness of the CMP thin film using ellip-

sometry. The measurements show an average thickness of about

25.1 ± 0.1 nm with a mean squared error (MSE) value of 5.69

after fitting with Cauchy mode with the parameters An = 1.399,

Bn = 0.051, Cn = −0.0026, k-amplitude = 0 and exponent = 1.5

suggesting a very low surface roughness. To further confirm the

thickness we performed the LbL synthesis on a sacrificial sub-

strate [27,28]. Prior to the dissolution of the substrate, we

coated the CMP thin film with a stabilizing layer of poly(methyl

methacrylate) (PMMA). Upon substrate dissolution, we

transferred the PMMA stabilized CMP thin film to a fresh

gold substrate. After drying, we dissolved the PMMA layer in

acetone, leaving only the CMP thin film. We then investigated

the thickness of the film by an atomic force microscope (AFM)

line scan along the edge of the film. Figure 3 shows the

AFM image and the line-scan across the edge of the CMP thin

film.

The AFM investigation also suggests a homogeneous thickness

of the CMP thin film and the line-scan across the edge confirms
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Figure 1: LbL synthesis with TPM-SH and TPM-alkyne using light-induced TYC reaction in the presence of the photoinitiator 2-hydroxy-1-[4-(2-
hydroxyethoxy)phenyl]-2-methylpropan-1-one.

Figure 2: IRRA-Spectrum of the CMP thin film on a gold-coated silicon wafer and the corresponding band assignments.

a thickness of roughly 20 nm after 20 reaction cycles. The

growth rate of roughly 1 nm per reaction cycle is in the

same order as the previously described LbL synthesis of CMP

nanomembranes using CuAAC click chemistry [16].

Synthesis of freestanding CMP nanomem-
branes
In order to produce freestanding CMP nanomembranes, we

coated the CMP thin films on sacrificial substrates with a stabi-
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Figure 3: AFM image and line-scan across the edge of the CMP thin film.

Figure 4: SEM images of freestanding CMP nanomembranes coated with a stabilizing PMMA layer containing large holes. The SEM images confirm
the homogeneous thickness and freestanding nature of the CMP nanomembranes synthesized via TYC reaction.

lizing layer of PMMA containing large holes [29]. This stabi-

lizing layer was spin-coated from a dichloromethane (DCM)

solution containing PMMA and polystyrene (PS) in a weight

ratio of PMMA/PS = 4:1. During spin-coating, the PS phase

separates into islands, which then were selectively dissolved

using cyclohexane. Afterwards we dissolved the sacrificial sub-

strate to obtain the freestanding CMP membranes. To investi-

gate the freestanding CMP nanomembrane we transferred it to a

copper grid and recorded scanning electron microscopy (SEM)

images. Figure 4 shows the SEM images of the CMP nanomem-

brane.

Conclusion
We described a new synthesis of CMP thin films and nanomem-

branes using a thiol–yne coupling (TYC) reaction. The TYC

reaction allows a rapid synthesis of homogeneous thin films

with a thickness of about 1 nm per reaction cycle as confirmed

by ellipsometry and AFM investigations. The thin films show

high mechanical stability as evidenced by the possibility to

create feestanding membranes across holes of about 3–5 µm di-

ameter. The rapid and scalable synthetic method for CMP

nanomembranes described in this article, along with the possi-

bility to transfer the nanomembranes to virtually any support,

allows the integration of TYC based CMP materials in func-

tional devices for applications in organic electronics or gas and

liquid phase separation.

Experimental
Chemicals: All chemicals were purchased from commercial

sources and used without further purification if not stated other-

wise. Cyclohexane, dichloromethane and dry tetrahydrofuran

(THF) were purchased from Merck Millipore; acetone was pur-

chased from VWR Chemicals. Dry THF was degassed three

times via freeze-pump-thaw prior to use. PMMA average

Mw ≈120.000, PS average Mw ≈170.000, 2-hydroxy-1-[4-(2-

hydroxyethoxy)phenyl]-2-methylpropan-1-one), iodine and
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potassium iodide were purchased from Sigma-Aldrich. TPM-

SH [30] and TPM-alkyne [31] were synthesized as described in

the literature.

Substrates: The sacrificial substrate consists of a 150 nm gold

film on mica. For analytical measurements, we transferred the

membrane to a Si(100) wafer, coated with 5 nm titanium and

100 nm gold (Au/Ti/Si). The substrates were obtained from

Georg-Albert-PVD, Germany and stored under an argon atmo-

sphere prior to use.

Infrared reflection absorption spectroscopy (IRRAS): The

IRRA-spectra were recorded on a Bruker Vertex 80 purged with

dried air. The IRRAS accessory (A518) has a fixed angle of

incidence of 80°. The data were collected on a middle band

liquid nitrogen cooled MCT detector. Perdeuterated hexade-

canethiol-SAMs on Au/Ti/Si were used for reference measure-

ments [32]. The absorption band positions are given in

wavenumbers  (cm−1).

Scanning electron microscopy (SEM): We recorded SEM

images using a FEI Philips XL30 (FEI Co., Eindhoven, NL), a

field emission gun environmental scanning electron micro-

scope (FEG-ESEM). Samples have been coated with a thin

layer (about 5 nm) of a gold/palladium film in order to avoid

charging and improve samples conductivity. All specimen were

imaged under high-vacuum conditions (1.0 Torr), using an

acceleration voltage of 20 keV.

Atomic force microscopy (AFM): AFM-imaging was per-

formed using an Asylum Research Atomic Force Microscope,

MFP-3D BIO. The AFM was operated at 25 °C in an isolated

chamber in alternating current mode (AC mode). AFM cantile-

vers were purchased from Ultrasharptm MikroMasch. Three

types of AFM-cantilevers were used, an NSC-35 (resonance

frequency 315 kHz; spring constant 14 N/m), an NSC-36 (reso-

nance frequency: 105 KHz; spring constant: 0.95 N/m) and an

NSC-18 (resonance frequency: 75 kHz; spring constant:

3.5 N/m).

Self-assembled monolayer (SAM) preparation: For SAM for-

mation, a clean gold substrate (2.2 cm × 2.2 cm) was rinsed

with absolute ethanol and then immersed in a solution of S-[11-

oxo-11-(propargylamino)undecyl] thioacetate (AcSC10H20-

C(O)NHCH2C≡CH) (with a concentration of 1 mmol/L) in

ethanol for 18 h. Afterwards the substrate was taken out, rinsed

thoroughly with ethanol and dried in a nitrogen stream [33].

Preparation of conjugated microporous polymer (CMP)

films: 6.7 mg of TPM-SH (15.0 µmol, 1.00 equiv), 6.3 mg of

TPM-alkyne (15.0 µmol, 1.00 equiv) and 1.1 mg of 2-hydroxy-

1-[4-(2-hydroxyethoxy)phenyl]-2-methylpropan-1-one)

(5 µmol, 0.333 equiv) as photoinitiator were separately dis-

solved in 20 mL abs. THF. The synthesis was carried out under

inert conditions using an argon atmosphere. At first, 1 mL of

TPM-SH solution and 0.5 mL of the photoinitiator solution

were added to the SAM coated substrate and stirred gently to

ensure proper mixing. Then the mixture was exposed to 365 nm

UV-light for 3 minutes. Afterwards, the substrate was rinsed

with dry THF. Subsequently, 1 mL of TPM-alkyne solution and

0.5 mL of the photoinitiator solution were added to the sub-

strate and stirred gently to ensure proper mixing. Then the mix-

ture was exposed to 365 nm UV-light for 3 minutes. Then, the

substrate was again rinsed with dry THF. The procedure was

then repeated for the next reactant 20 times each. After the

cycles were completed, the wafer was taken out of the inert

environment, washed thoroughly with dry THF and ethanol and

dried using a nitrogen stream.

Transfer of CMP nanomembranes: To obtain freestanding

nanomembranes, the CMP-films were grown on sacrificial sub-

strates using the above-described procedure. The membrane

was then obtained by following a procedure described in litera-

ture [28]. First, PMMA was spin coated as a supporting layer.

Then, the mica was removed by floating in solutions of

I2/KI/H2O; KI/H2O and in the last step by immersing the sub-

strate in H2O. The retaining gold film was etched in a solution

of I2/KI/H2O. The membrane was washed 3 times with water

[28]. Then the membrane was transferred to Cu-TEM grids. The

obtained membrane size was 0.3 cm × 0.3 cm.

Preparation of freestanding nanomembranes: To obtain free-

standing nanomembranes, the CMP-films were grown on sacri-

ficial substrates using the above-described procedure. The

membrane was then obtained by following a procedure de-

scribed in literature [29]: First PMMA/PS was spin coated as a

supporting layer and afterwards rinsed overnight in cyclo-

hexane to remove the PS. Then, the mica was removed by

floating in solutions of I2/KI/H2O; KI/H2O and in the last step

by immersing the substrate in H2O. The retaining gold film was

etched in a solution of I2/KI/H2O. The membrane was washed

3 times with water [28]. Afterwards the membrane was trans-

ferred to either a glass slide or a gold coated Si-wafer. The ob-

tained membrane size was 2 cm × 2 cm.

Supporting Information
Supporting Information File 1
Additional IRRA spectra.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-13-54-S1.pdf]
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