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Abstract Resolving the problem of missing data via imputation can theoreti-
cally be done by any prediction model. In the field of machine learning, a well
known type of prediction model is a decision tree. However, the literature on
how suitable a decision tree is for imputation is still scant to date. Therefore,
the aim of this paper is to analyze the imputation quality of decision trees. Fur-
thermore, we present a way to conduct a stochastic imputation using decision
trees. We ran a simulation study to compare the deterministic and stochastic
imputation approach using decision trees among each other and with other im-
putation methods. For this study, real datasets and various missing data settings
are used. In addition, three different quality criteria are considered. The results
of the study indicate that the choice of imputation method should be based on
the intended analysis.

1 Introduction

Missing data, an occurrence in many areas of empirical research, is problematic
because common analysis methods require complete datasets (Graham, 2009).
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One solution for this problem is to replace missing values with estimations – a
process called imputation.

In principle, any prediction model can be used to estimate the missing values.
Simple approaches for imputation substitute an appropriate location parameter
(e.g. the mode or mean) or a randomly drawn value from the observed data
(also known as a random hot deck imputation). However, more advanced pre-
diction models, which use more available information, usually lead to better
imputation results (Little and Rubin, 2002). One of these more advanced meth-
ods is the decision tree, first proposed for imputation by Kalton and Kasprzyk
(1982). The usage of decision trees for prediction is already well researched in
machine learning, but still has not been thoroughly examined for imputation.
Unfortunately, it is not possible to infer decision tree performance for imputa-
tion from machine learning contexts. For machine learning prediction, accuracy
is usually of interest, whereas for imputation subsequent parameter estimation
is key. To this end, imputation is not the same as prediction (van Buuren, 2012),
and the distribution of the resulting data plays a role. Further, it depends on
the missing data mechanism which imputation method suits best for resolving
missing data.

The concept of the missing data mechanism was first developed by Rubin
(1976). This concept is based on treating the missing data indicator matrix
M =(mi j)n×q, a matrix that shows whether a datum xi j from the data matrix X =
(xi j)n×q is observed (mi j = 0) or not observed (mi j = 1), as a random variable.
The concept defines three classes of dependencies between the data matrix
X and the missing data indicator matrix M: missing completely at random
(MCAR), missing at random (MAR) and not missing at random (NMAR). If
the data is MCAR, the distribution of M is independent of all data

f (M | X ,φ) = f (M | φ) for all X ,φ , (1)

where φ is the parameter vector of the missing data mechanism. In this case,
the observed data is a simple random sample of all data. If the distribution of
M is related to the observed values Xobs, but not to the missing Xmis

f (M | X ,φ) = f (M | Xobs,φ) for all Xmis,φ , (2)

a MAR mechanism is present and the observed values are no longer a simple
random sample. If the distribution of M also depends on values that are not
observed, the mechanism is called NMAR (Little and Rubin, 2002). Thus, the
prediction of missing data based solely on observed data is only meaningful in
the first two cases.
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Due to the caveats surrounding the application of decision trees in the con-
text of missing data, this paper seeks to analyze the performance of classical
decision trees in the context of missing data. To this end, the remainder is orga-
nized as follows. Section 2 illustrates the induction of decision trees and how
decision trees can be used for imputation. In Sect. 3, the design of the simula-
tion study used to determine the performance of decision trees for imputation
is presented. The results of this study are given in Sect. 4 and implications from
these results are discussed in Sect. 5.

2 Decision trees for imputation

The idea to use decision trees for missing data dates back to Kalton and
Kasprzyk (1982). They propose to use a decision tree for imputation, but fail
to provide further guidance on how. Later Kalton (1983) used decision trees
to identify covariates subsequently used to construct imputation classes. Creel
and Krotki (2006) went one step further. These authors used the nodes of a
decision tree to define imputation classes and then applied different imputation
methods within the classes.

In this paper, we will go beyond the existing approaches and use the deci-
sion tree directly for imputation. Decision trees will be inducted using complete
observations (Quinlan, 1986b; Lobo and Numao, 1999; Twala, 2009). The re-
sulting tree is then used to replace the missing values. Further, we limit this
paper to the prediction of categorical data. Imputation of categorical data is
equivalent to a classification in machine learning. However, the concepts devel-
oped may also be useful for imputing quantitative data.

2.1 Induction of decision trees

Popular algorithms for the induction of decision trees are C4.5 (Quinlan, 1993),
CART (Breiman et al, 1993), or CHAID (Kass, 1980). These algorithms vary
in details, but they are all based on the divide and conquer strategy. This means
the algorithms divide a dataset recursively into subsets that are more and more
homogeneous with respect to a criterion.

The mentioned algorithms use a measure of impurity as decision criterion
to determine the optimal division of the data. For example, the C4.5, CART,
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and CHAID algorithms use the Information Gain, Gini-Index, and chi-squared-
value as impurity measure. All these impurity measures increase with the num-
ber of unequal objects in the subset, which in this context means that they
belong to different classes (Rokach and Maimon, 2008). The decision tree algo-
rithm calculates the criterion for every possible split and chooses the one with
the highest gain of purity. The algorithms stop splitting when a subset consists
only of objects belonging to the same class or a different rule is satisfied. In the
tree, a node represents a subset, a branch represents a split, and the final nodes
are called leafs (Han et al, 2011).

2.2 Choosing the value for imputation

After the decision tree is induced, it can be used to impute missing data. For this,
two basic possibilities exist: The majority rule and the probability rule. When
applying the majority rule, the predicted class of an object corresponds to the
most common class of the final subset. This leads to deterministic imputation
and can be seen as a mode imputation by subset. In contrast to this, when
applying the probability rule the predicted class of an object is set to a random
class, with probabilities equal to the empirical class frequencies in the final
subset. This leads to stochastic imputation and corresponds to a random hot
deck imputation by subset. So far, only the majority rule has been considered to
substitute missing values (e.g. Quinlan, 1986b; Lobo and Numao, 1999; Twala,
2009). Thus, we propose to use the probability rule for the prediction of missing
values.

It is not clear, whether the majority or the probability rule will yield supe-
rior results. In the context of missing data it is argued that draws, not means,
should be used as imputation values (Little and Rubin, 2002). Thus, a stochastic
imputation method, such as a decision tree using the probability rule, should
produce better imputation values. However, with respect to accuracy, Quinlan
(1986a) stated that the majority rule is always better than the probability rule.
But in turn, Quinlan’s argumentation assumes that a simple random sample of
the data is used for decision tree induction, which in the context of missing
data is equivalent to the presence of an MCAR mechanism. This assumption is
very strong and the consequences for the effectiveness of an imputation method
are unforeseeable, if this assumption is not met. Furthermore, as already stated
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For each dataset (Breast Cancer, SPECT, Alex5, Chess)
For each missingness mechanisms (MCAR, MAR1, MAR2)

For each portion of missing data (10%, 20%, 30%, 40%, 50%)
Repeat 1000 times

Create a dataset with missing values
For each imputation method

Imputation of the missing values
Analysis of the imputation results

Fig. 1 The design of the simulation study

Table 1 Datasets

Few Attributes Many Attributes

Few Objects Breast Cancer
(10 attributes, 277 objects)

SPECT
(23 attributes, 267 objects)

Many Objects Alex5
(11 attributes, 5000 objects)

Chess
(37 attributes, 3196 objects)

in Sect. 1, higher accuracy does not imply better imputation. Thus, empirical
evidence is needed to decide on the preferable strategy.

3 Study design

To compare the imputation quality of decision trees with other imputation meth-
ods, a simulation study was conducted using R (R Core Team, 2014). Figure 1
gives a schematic overview of the study.

Four real datasets with different characteristics were selected to determine
the possible influences that the number of objects and attributes have on the
imputation results. Properties of these datasets are summarized in Table 1.
Breast Cancer, SPECT, and Chess are freely available from the UCI Machine
Learning Repository (Lichman, 2013). The dataset Alex5 consists of the first
5000 objects from the training dataset used in a machine learning competition
(Causality Workbench, 2014). Before applying the imputation mechanism, all
datasets are reduced to complete cases.

We used one MCAR mechanism and one MAR mechanism at two differ-
ent parameter levels to create missing values in one binary attribute. For the
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Breast Cancer, SPECT, Alex5, and Chess this attribute was Class, Overall Di-
agnosis, attribute 11, and Classes, respectively. The MCAR mechanism was
achieved by deleting values depending on independent Bernoulli trials with
success probability equal to the proportion of missing values pmis

f (M | pmis) =
n

∏
i=1

(
(pmis)

mik(1− pmis)
1−mik ∏

j 6=k
11−mi j 0mi j

)
(3)

where k is the index of the attribute with missing data, n is the number of objects
and mi j is the missing data indicator as defined in Sect. 1.

The MAR mechanism is achieved by deleting different proportions of values,
dependent on the value of a second, binary attribute. Let l be the index of this
second attribute, xil ∈ {0,1} and 1 be the mode value of this second attribute.
Then the MAR mechanism is defined as

f (M | Xl, pMAR,c) =
n

∏
i=1

[(
(pMAR)

mik(1− pMAR)
1−mik

)1−xil×(
(c pMAR)

mik(1− c pMAR)
1−mik

)xil×

∏
j 6=k

11−mi j 0mi j
] (4)

where pMAR was chosen so that the expected number of missing values equals
npmis. We used this MAR mechanism at two levels of the parameter c. For
MAR1 we set c = 2, so that the proportion of missing values was two times
higher, when the object had the mode value of the second attribute. To increase
the effect we set c = 4 for MAR2. The second attribute used in generating
the missing values is attribute 5 (Breast Cancer), 22 (SPECT), 1 (Alex5) and
33 (Chess). All attributes are moderately related (corrected contingency coef-
ficient about 0.4) to the attribute in which the missing values are generated.

The contingency coefficient C =
(
χ2
) 1

2
(
χ2 +n

)− 1
2 is based upon Pearson’s χ2

between two nominal variables. The corrected contingency coefficient is then
defined as Ccorr = CM

1
2 (M−1)−

1
2 , where M is the minimum of the number

of rows and columns of the contingency table on which χ2 is based. Further,
the proportion of missing values was varied from 10% to 50% in steps of 10
percentage points.

As imputation methods, we applied the decision tree algorithms CART (us-
ing rpart version 4.1-8, Therneau et al 2014) and C4.5 (using RWeka version
0.4-23, Witten et al 2011; Hornik et al 2009), both with the majority and proba-
bility rule. C4.5 was run, using the recommended setting from Quinlan (1993).
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rpart was run with no pre-pruning except for minsplit=2 and 0-SE-Pruning. For
further comparison, we also applied a random hot deck, a mode imputation and
a nearest neighbor hot deck (using HotDeckImputation (Joenssen, 2013)).

To single out the superior imputation methods, we used three quality criteria.
The first criterion measures the distortion of the micro structure – the single
objects – of the dataset. This imputation accuracy is defined as the number
of times the imputed value is equal to the deleted value, divided by the total
number of imputed values.

The second criterion evaluates the effect on the marginal distribution of the
attribute with missing values Xk = (x1k, . . . ,xnk)

T . For this purpose, we calcu-
lated the absolute bias between the estimate p̂(Xorig

k ) based on the originally
observed values Xorig

k and the estimate p̂(X imp
k ) based on the imputed variable

X imp
k ∣∣∣p̂(X imp

k )− p̂(Xorig
k )

∣∣∣ , (5)

where p is the mode value probability (before deletion) of the attribute with
missing values Xk.

The last criterion is the root mean square error (RMSE) of the corrected
contingency coefficients. It measures the distortion of the relationship between
the attribute with missing values Xk and the other attributes X j, j 6= k, in the
dataset. It is defined as

∆Ccorr =

√
1

q−1 ∑
j 6=k

(
Ccorr

(
X j,X

orig
k

)
−Ccorr

(
X j,X

imp
k

))2
(6)

where q is the number of attributes in the dataset and Ccorr(Xk,X
orig
k ) and

Ccorr(X j,X
imp
k ) are the corrected contingency coefficients between the attributes

X j, j 6= k, and Xorig
k , and X j and X imp

k , respectively. We averaged the results of
each criterion over 1000 simulation runs.

4 Results

This section presents the results of the simulation study, separated by the three
quality criteria. To investigate whether the induction of a decision tree is worth-
while, we stress the difference between the random hot deck and the probability
rule, as well as the difference between the mode imputation and the majority
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rule. Furthermore, we emphasize differences between the stochastic and the de-
terministic imputation methods. Finally, since the differences between the C4.5
and CART algorithms, for both majority and probability rule, are negligible,
only the results of the C4.5 algorithm are discussed.

4.1 Accuracy

Figure 2 shows the results for the accuracy criterion. Here, higher accuracy
values indicate better imputation results. The graphs show that a decision tree
using the majority rule always leads to one of the most accurate imputations,
whereas the random hot deck is normally the least accurate method.

Furthermore, Fig. 2 shows that mode imputation achieves relatively high
accuracy, except for the Chess dataset. The nearest neighbor hot deck is usually
midway between the most accurate and least accurate method. It is observable
that the decision tree methods improve with more objects as well as more
attributes. An increase in both leads to more accurate imputations. This is
especially obvious for the probability rule, which leads to poor results in the
small Breast Cancer dataset, but is very competitive in the big Chess dataset.

In addition, the influence of the missing data mechanism on the results is
negligible. The sole exception is mode imputation in the Chess dataset. Here,
the combination of a high percentage of missing values and a MAR mechanism
leads to a decline in accuracy.

As expected from the literature, deterministic imputation methods generally
lead to a higher accuracy than the corresponding stochastic imputation meth-
ods in case of MCAR. Also, the deterministic methods are often more accurate
when the missing data mechanism is MAR. But, as the results for the Chess
dataset show, this need not be the case. Further, when comparing random hot
deck to the probability rule or mode imputation to the majority rule, the re-
sults indicate that the decision tree methods are usually at least as good as the
corresponding simple imputation method.

4.2 Estimation of p

Figure 3 gives the results for the absolute bias of the estimator p̂. For this quality
criterion, lower values indicate better results. The results are unambiguous as to
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Portion of missing data
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Fig. 2 Accuracy of the imputation methods

which method performs worst. For all simulated cases, mode imputation leads
to the highest absolute bias. In contrast, the probability rule and the random
hot deck perform best when the missing data mechanism is MCAR. When
the mechanism is MAR, results for the random hot deck are dependent on the
portion of missing data, whereas the probability rule is nearly unaffected and
remains the method of choice.
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Portion of missing data
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Fig. 3 Absolute bias of p for the different imputation methods

In accordance with previous results the nearest neighbor hot deck ranks mid-
field. Further, confirming previous results, the decision tree with majority rule
performs poorly in the small Breast Cancer dataset, but improves with both
more objects and more attributes. In contrast, we observe that stochastic meth-
ods generally outperform deterministic methods for this criterion. However,
the general order between simple and more complex imputation methods still
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holds. The majority rule is better than mode imputation, and the probability
rule is still at least as good as the random hot deck.

4.3 RMSE of contingency coefficients

Figure 4 shows the results for the last criterion, the RMSE of contingency coef-
ficients. As for the last criterion, a smaller RMSE indicates better imputation
results. Hence, we can observe that the probability rule is typically the method
of choice, whereas the random hot deck usually leads to the worst results.

Contrary to the previous results, the nearest neighbor hot deck is one of the
best methods in the datasets with a low number of covariates, namely Breast
Cancer and Alex5. For the other two datasets however, it ranks in the middle
again and the decision tree imputation methods offer superior performance.
This shows once more, that decision trees benefit more substantially from an
increase in available covariates than the nearest neighbor hot deck. However, the
nearest neighbor hot deck seems to be a strong contender when the preservation
of the relationships in small datasets is of interest.

In contrast to the previous criteria, there is no consistent order in the stochas-
tic and deterministic imputation methods. On the one hand, the probability
rule as a stochastic method is typically better than the deterministic majority
rule. On the other hand, the random hot deck is worse than mode imputation.
Nonetheless, the induction of a decision tree is worthwhile. Hence, the prob-
ability rule is always better than the random hot deck, and the majority rule
usually leads to better results than mode imputation.

5 Conclusion

In this paper, we investigated decision trees for imputation and introduced the
probability rule to achieve a stochastic imputation based on decision trees. The
results of the simulation study indicate that decision tree imputation is generally
at least as good as the corresponding simple imputation method, independent
of the chosen quality criterion. Thus, the results of using a decision tree with
the majority rule for imputation are at least as good as the results when using
mode imputation. The same applies to decision trees using the probability rule
and random hot deck. Furthermore, the effort required to induce a decision tree
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Portion of missing data
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Fig. 4 RMSE of contingency coefficients for the different imputation methods

is especially worthwhile when many attributes or objects are available in the
dataset.

In addition, the results indicate that there is no best imputation method. A de-
cision tree with the majority rule typically leads to the best accuracy, whereas a
decision tree with the class probability rule is a better choice with respect to the
absolute bias in the estimation of p and regarding the RMSE of the contingency
coefficients. In short, the majority rule preserves the micro structure (the single
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objects) of the dataset better, whereas the probability rule is more appropriate
for the macro structure (for the single attribute and the dependencies between
attributes) of the dataset. The nearest-neighbor hot deck appears to offer a com-
promise between preserving the micro and macro structure of the dataset. In
summary, the results indicate that, on the one hand, a deterministic imputation
is preferable when the following analysis relies strongly on the values of single
objects. On the other hand, a stochastic imputation seems to be more appro-
priate when the subsequent analysis involves statistical parameter estimations.
Therefore, the choice between deterministic and stochastic imputation methods
should not be made without the intended analysis in mind.
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