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Abstract. This proceeding gives a summary of the current status and open questions of

the radio technique for cosmic-ray air showers, assuming that the reader is already famil-

iar with the principles. It includes recent results of selected experiments not present at

this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex

have demonstrated that areas of several km2 can be instrumented for reasonable costs with

antenna spacings of the order of 200 m. For the energy of the primary particle such sparse

antenna arrays can already compete in absolute accuracy with other precise techniques,

like the detection of air-fluorescence or air-Cherenkov light. With further improvements

in the antenna calibration, the radio detection might become even more accurate. For the

atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR

features a precision similar to the fluorescence technique, but analysis methods for the ra-

dio measurement of Xmax are still under development. Moreover, the combination of radio

and muon measurements is expected to increase the accuracy of the mass composition,

and this around-the-clock recording is not limited to clear nights as are the light-detection

methods. Consequently, radio antennas will be a valuable add-on for any air shower array

targeting the energy range above 100 PeV.

1 Introduction

Immense progress has been made in the last years regarding the understanding of the radio emission

by air showers and regarding the development of experimental techniques. Because of this progress

current radio arrays can measure air-shower observables such as the arrival direction, the energy,

and the depth of the shower maximum, Xmax, with accuracies similar to those of the established and

leading optical techniques. While these classical techniques of air-Cherenkov and fluorescence light

detection are limited to clear nights, radio detection is possible around the clock. Only a few percent

of the total time is not usable for cosmic-ray physics, since thunderstorm clouds alter the radio signal

[1, 2]. The advantages and the recent success of the radio technique are outlined in detail in longer

review articles [3, 4], which also contain plenty of introduction to the field. This proceeding gives

a short summary and points out some open tasks for the future development of the radio technique

for air showers. On the one hand, technical improvements are necessary for using antennas arrays as

stand-alone detectors, e.g., the demonstration of an efficient and pure self-trigger. On the other hand,

there are aspects in which the radio technique brings intrinsic advantages over other techniques, e.g.,

for the detection of inclined air showers (θ ≈ 70◦) [5, 6], or for determination of the cosmic-ray energy

scale [7].

�e-mail: frank.schroeder@kit.edu

     
 

DOI: 10.1051/, 01001 (2017) 713501001 epjconf/201135EPJ Web of Conferences
ARENA 2016

 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
 Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



��� ����
�����	
�� 	�
��
�����������

���

����

�
�	

��
��

�
	�


�
�
�

��
���

��
��

�

��	�� �����
	��
�
�������
��
��
�����������

����	 ��!

� ��
�����	
�� 	�
��
��������� ��� �� � "#$� ��

�

��

�
�	

��
��

�
	�


�
�
�

��
���

��
�

��
�

�
�

"
#

$
� �

��	�� �����
	��
�
�������
��
��
�����������

%&'��

Figure 1. Comparison of radio amplitudes measured by Tunka-Rex and LOPES to CoREAS simulations of air-

showers initiated by protons and iron nuclei. The energy and shower geometry was set to the values reconstructed

by the host experiments Tunka-133 and KASCADE-Grande (from Ref. [18]).

2 Understanding of the radio emission

There is consensus among theorists working in the field, that the radio emission of air-showers is

mostly due to the geomagnetic deflection of electrons and positrons [8–10], and to a smaller extent

by the Askaryan effect due to the time-variation of the negative charge excess [11–14]. The strength

of the Askaryan relative to the geomagnetic effect for a given geomagnetic angle α depends on the

distance to the shower axis and on the zenith angle θ (see Refs. [4, 15] for a compilation of various

measurements). There likely is a small phase shift between both emission mechanisms, and first ex-

perimental indications by LOFAR and SLAC T-510 have been discussed at this conference. Moreover,

there is agreement and experimental evidence [16, 17] that the refractive index of the air affects the

coherence conditions. Therefore, the emission is enhanced at the Cherenkov angle which is around

1◦ for air-showers leading to a Cherenkov ring of about 200 m diameter at ground for vertical show-

ers. While at lower frequencies � 100 MHz the signal fills the complete area inside the Cherenkov

ring and extends beyond, at higher frequencies of several 100 MHz up to a few GHz, the emission is

detectable almost exclusively at the Cherenkov angle.

This experimentally confirmed knowledge of the radio emission is implemented implicitly [19, 20]

or explicitly [21, 22] in a variety of codes calculating the radio emission of simulated air showers.

Until now only CoREAS has been extensively tested against measurements: absolute amplitude mea-

surements by LOPES and Tunka-Rex are consistent inside of a 20 % scale uncertainty with CoREAS

(see figure 1). The apparent disagreement of LOPES and CoREAS published earlier [23], has recently

been solved by a reevaluation of the absolute calibration of LOPES [24]. Moreover, Tunka-Rex [25]

and LOFAR have been [26] calibrated with exactly the same reference source as LOPES: LOPES

and Tunka-Rex measurements agree within the calibration uncertainty [18], and a comparison with

LOFAR measurements has still to be done. AERA features an independent absolute calibration [27],

and the measured radiation energy is at least on average compatible with CoREAS and ZHAireS [7].

Finally, measurements at SLAC under controlled laboratory conditions agree with simulations, but

still feature a larger systematic uncertainty of 40 % [28].
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Table 1. Selected antenna arrays dedicated to air-shower detection, and the local strength of the geomagnetic

field according to the international geomagnetic reference model IGRF [30]. Some experiments have been

operated in additional configurations, and some are missing in the table, e.g., those located at Antarctica.

Name of Operation Latitude Longitude Bgeo Number of Area Band

experiment period in μT antennas in km2 in MHz

Yakutsk [31] since 1972 61◦42’ N 129◦24’ E 59.7 6 0.1 32

LOPES [32] 2003−2013 49◦06’ N 8◦26’ E 48.4 30 0.04 40 − 80

CODALEMA [13] since 2003 47◦23’ N 2◦12’ E 47.6 60 1 2 − 200

TREND [33] 2009−2014 42◦56’ N 86◦41’ E 56.3 50 1.2 50 − 100

AERA [34] since 2010 35◦06’ S 69◦30’ W 24.0 153 17 30 − 80

LOFAR [35] since 2011 52◦55’ N 6◦52’ E 49.3 several 1000 ∗ huge∗ 10 − 240

Tunka-Rex [25] since 2012 51◦49’ N 103◦04’ E 60.4 63 1 30 − 80

SKA-low [36] planned 26◦41’ S 116◦38’ E 55.5 60, 000 1 50 − 350
∗ Air showers are measured by several 100 antennas within a few 100 m from the center of LOFAR.

In summary, the physics of the radio emission seems to be understood to a level of at least 20 %,

and a better test is hampered by the calibration uncertainty of current experiments. The same calibra-

tion uncertainty also limits the scale accuracy of the shower energy determined from radio measure-

ments. Currently the scale accuracy is between 10 % [29] and 20 % [24] for different experiments,

where the difference primarily originates from the scale accuracies of the calibration sources claimed

by the manufacturers. The calibration uncertainty also limits the scale accuracy of the shower energy

determined from radio measurements. Consequently, one of the most important tasks is to improve

the absolute calibrations of antennas. Then, the radio technique has a chance to provide an even more

accurate measure of the absolute shower energy than the currently leading fluorescence technique,

since the strength of the radio signal amplitude depends less on atmospheric conditions.

3 Experiments

Already in the 1960s a variety of analog radio experiments measured cosmic-ray air showers [8]. In

the 2000s digital radio experiments started to successfully measure air-showers, and several second-

generation digital arrays do so now. Apart from antenna arrays dedicated to this purpose (see table

1), also radio experiments aiming mainly at neutrino searches, such as ANITA [37] and ARIANNA

[38], have detected cosmic-ray air showers. Articles on most of these experiments can be found in this

issue, with a few exceptions: LOPES was the radio extension of the KASCADE-Grande air-shower

array at the Karlsruhe Institute of Technology. Several methods have been developed by LOPES,

e.g., for amplitude and time calibration [39, 40], or for the measurement of the energy [41], and

position of the shower maximum [41–43]. These methods are now applied to newer experiments in

more radio-quiet environments. While LOPES was stopped in 2013, its data analysis still continues,

and the data are planned to be released to the public as part of the KCDC project [44]. TREND

was a prototype experiment in Tianshan, China. It has shown that self-triggering on the radio signal

enables the detection of air showers in this radio-quiet environment [33]. Its successor, GRANDproto,

will examine the self-triggering efficiency and purity in more detail, especially for inclined showers,

since near-horizontal showers are an interesting target for neutrino detection. TAROGE is an antenna

tower on top of a mountain in Taiwan [45]. The principle is similar to ANITA except that the antennas

are not hanging on a balloon [37]. Observing the ocean, TAROGE aims mainly at the detection of

near-horizontal air showers before and after reflection on the water.
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Figure 2. Mean Xmax values measured by radio arrays using different analysis methods, and for reference mea-

surements by the Auger fluorescence detectors and the Tunka-133 air-Cherenkov detectors, and predictions by

CORSIKA simulations using various interaction models (from Ref.[4], values from Refs. [15, 32, 35, 46–48]).

4 Applications of the radio technique for air showers

Ultra-dense arrays, such as LOFAR and the future SKA [36], feature antenna spacings which partly

are of the order of a wavelength and can measure the radio signal in great detail. Thus, their resolu-

tion on the main shower observables (direction, energy, Xmax) is not limited by background, but by

various systematic uncertainties. Including these systematic uncertainties LOFAR already now has a

resolution similar to the leading air-fluorescence technique [35], but with less exposure than the Pierre

Auger Observatory [47, 49] or the Telescope Array [50] in the energy range between 1017 and 1018 eV

(see figure 2). Although the SKA will be able to compete also in exposure, the real advantage of ultra-

dense arrays is that their precision can be even better than that achieved by the optical techniques.

Nevertheless, methods exploiting mass-sensitive radio observables going beyond a simple analysis of

Xmax distributions still have to be developed.

Radio extensions of existing air-shower arrays, such as AERA or Tunka-Rex, can enhance the total

accuracy by providing an independent measurement of the electromagnetic shower component for

relatively little additional costs. This use-case of radio extension is the one most advanced, with

dedicated software publicly available [51]. The co-located particle detector array can provide a fully

efficient trigger, which reduces systematic uncertainties due to the dependencies of the radio detection

efficiency on the arrival direction and on the time-varying background level. It has been shown that

even with detector spacings of about 200 m, radio measurements of the absolute shower energy are

precise and accurate to about 15 − 20 % [52, 53], which is similar to other detection techniques. The

Xmax precision currently achieved with AERA and Tunka-Rex is of the order of 40 g/cm2 [53, 54], i.e.,

twice worse than that of air-fluorescence measurements. However, reconstruction methods of Xmax are

still under development, and the precision likely can be improved by combining complementary radio

observables [54], e.g., the footprint [55], the wavefront [43], or the frequency spectrum [56]. Fur-

thermore, a combined analysis of the radio signal with muon measurements ought to bring additional

mass-sensitivity for all zenith angles [57]. This is important since it is not yet clear whether the Xmax

precision will be sufficient for inclined showers.

Huge autonomous arrays larger than the Pierre Auger Observatory, such as the proposed project
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GRAND [58], might provide a way for enhancing the world aperture on the highest energy cosmic

rays and additionally for searching neutrinos above 1019 eV. Since the radio footprint extends over

several km2 for inclined air showers [6], detector spacings of 1− 2 km would allow for reasonable to-

tal costs, i.e., below the costs of typical space experiments. CODALEMA [59], TREND [33], AERA

[60], and ARIANNA [38] have shown that autonomous radio detection is feasible, but there remain

some open questions: it has to be shown that the trigger can be pure and efficient enough for inclined

showers, and there are technical challenges regarding infrastructure, data communication, and reli-

ability of long-term and large-scale remote operation. Alternative ways to large apertures might be

provided by observing air-showers with antennas in space [61], or by using the moon as a target [62].

However, these methods require successful proof-of-principle demonstrations, and it is not yet clear

how they will compare in terms of measurement accuracy to ground-based antenna arrays.

5 Conclusion

The original dream of completely replacing air-fluorescence by radio detection might not become true:

not because the radio technique would not be accurate enough, but simply because the dense antenna

spacing required for full-sky coverage makes it more expensive than originally thought. Nevertheless,

the radio technique likely is a suitable replacement for inclined showers, has a variety of other use

cases, and will potentially become even more accurate than the optical techniques.
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