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ABSTRACT

Paradoxically optical feedback (OF) (the phenomenon in which a fraction of the optical field
emitted by a laser is fed back into its cavity), that was once considered an undesired phenomenon
in the context of optical fibre communications because it introduces instabilities in the laser, has
proven to be extremely useful in different real world photonic sensing applications. The optical
feedback affects the internal parameters of the laser, such as the facet reflection coefficient,
the laser gain, the photon and carrier density, and ultimately the emitted intensity from the
laser. This direct relationship among the OF, intensity and frequency modulation is appealing
because it transfigures the laser into a complete interferometric set-up where the laser itself
acts as source, detector and interfering media all in one, suited for non-contact, non-destructive
photonic sensing. The study in this Thesis contributes to different areas of optical feedback
interferometry (OFI): from the theoretical formalization of understanding the transfer function
of the laser under OF based on scattering theory, to signal processing of the optical feedback
signal (OFS) in time and frequency domain simultaneously using the wavelet transform for
combating noise, speckle management and extraction of the vibration related parameters of
periodic and transient vibrations all in a single processing step. Furthermore, based on the Lang-
Kobayashi formulation, experimental evidences are shown of the ability of injection modulation
to stabilize the laser even under strong feedback conditions, taking advantage of the fact that
the frequency deviation produced in the laser emission by OF is in opposite direction to that
of injection modulation. To add on, however, the main contribution of this Thesis has been to
develop yet another variant of OFI, continuous wave frequency modulated differential optical
feedback (CWFM-DOF), that combines the non-linear dynamics due to OF and that due to
injection modulation to measure the optical path difference (OPD) below half the emission
wavelength with resolution way below the classical optical feedback (C-OF), while keeping the
experimental setup the same as that of C-OF. Among the broad range applications which would
benefit from such a sensor, such as Photo-acoustic tomography (PAT) or laser ultrasonic (LUS),
the proposed methodology is tested to characterize the vibration of membrane of an acoustic
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transducer and to measure the displacement of a metallic target due to the acoustic pressure.
Thus, the Thesis extends the performance of OFI sensors and covers in detail the theoretical
and experimental aspects of CWFM-DOF, and its application to the detection of very small
perturbations.
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1. Introduction
The origin of light amplification by stimulated emission of radiation (LASER) can be traced
back to the concept of spontaneous and stimulated emission, well known from Einstein’s quan-
tum theory of radiation in 1917 [15]. There it was explained that the interaction of a photon of
specific frequency with an excited atom under population inversion causes the emission of an-
other photon of the same frequency, phase, polarization and direction as the incident one. Three
ingredients are thus fundamental to any laser: an (active) medium providing gain/amplification,
a pump method enabling population inversion, and a cavity confining the optical field. In the
quest to invent the laser, the first population inversion was demonstrated in ammonia atoms
passing through an electrostatic focuser by Gordon et al. in 1955, in the first successful demon-
stration of the microwave amplification by stimulated emission of radiation (MASER), which
emitted radiation in the microwave region [16]. The first successful laser that emitted radiation
in the visible/infrared region was demonstrated by Maimam using ruby as the active medium,
with population inversion obtained by optical excitation (shining a flash lamp on a ruby used as
active medium) and the cavity formed by enclosing the active medium within highly polished
mirrors [17]. Since then different types of laser families have been developed - chemical lasers,
dye lasers, solid-state lasers, metal-vapor lasers, free electron laser (FEL), fibre lasers, etc., all of
them emitting radiation of different wavelengths and powers. Of special interest to us is the fact
that in 1962, Hall et. al reported emission of radiation using Gallium-Arsenide (GaAs) as a p-n
junction, and at the same time transmission of light over a considerable distance [18]. This was a
major breakthrough, as it meant the start of the development of SCLs, also known as LD. Since
then SCLs are the frontier in laser industries and the choice for many important applications
because of their small size, low cost, high reliability, spectral and modulation characteristics,
and its capability of mass production and integration. SCLs are widely used in modern life and
appliances, in fields as diverse as telecommunications, compact disc (CD), digital versatile disc
(DVD), Blu-ray, printing, pointers, bar code readers, surgery, material processing, biophoton-
ics, metrology, or sensors, to name a few [19, 20]. Current technological applications demand
the miniaturization and integration of low-consumption optoelectronic devices, a feature which
reinforces SCLs as the referential coherence source in many fields. At the same time, faster
devices are needed to process and transmit the information. Hence, SCLs have become the
technology of choice in the laser field and extensive research to stabilize its operation in terms
of emission frequency and power for longer duration and harsh conditions are under way. For
example, multi quantum well (MWQ) SCLs, quantum wire, quantum dot lasers and quantum
cascade laser (QCL) have been currently developed to meet the requirements of the upcoming
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technologies. [21–24].
In spite of today’s extensive use of SCLs1 in diverse applications, its performance has also

shown some instabilities when subjected to different external perturbations. Situations like OF,
the phenomenon in which a fraction of the field radiated from the laser is fed back into its own
cavity, or modulation of the injection current of the laser, the condition induced by controlled
changes in the intensity that feeds the laser, and also combinations of both, create different
interesting behaviours in the laser. The effect of OF on the laser dynamics and stability was
observed first by King and Stewart in 1963 [25]. It was observed that an external perturbation
(in their case, the motion of a remote target) caused an intensity fluctuation of the laser emission
comparable to that of classical interferometry. Since then, widespread research to explain the
dynamics of the laser under feedback has been undertaken. Heil et. al proposed a successful
delay difference equation for the phenomena [26–28]. Lang, Kobayashi and Petermann proposed
a compound cavity model to explain the dynamics of the laser under feedback [29, 30]. In all
the cases, an equivalent reflection coefficient set as a function of the reflection coefficient of the
individual boundaries forming the cavity is taken into account, leaving the absorption (explained
by attenuation coefficient, α) of the medium in between the boundaries unaccounted. One direct
implication of the presence of OF is the use of expensive optical isolators in telecommunication
systems, in order to prevent instabilities in the laser cavity resulting from OF effects. Beyond
this very direct practical aspects, OF has gained considerable attention in the last few decades
because it introduces a very rich and complex dynamical behaviour which enhances or degrades
the performance of the laser significantly. On one hand, OF can cause important improvements
in given aspects of the laser’s performance (like decreasing the linewidth, or enhancing the
modulation bandwidth) whereas on the other hand, the same phenomenon may severely degrade
the performance of the laser (providing wide linewidth broadening and coherence collapse),
depending upon the feedback strength (C) [31]. The list of phenomena induced is very extense,
in particular, when used in conjugation with IM, causing quasi periodicity, period doubling,
tripling and chaotic output, [32–34]. Further, modal instability [35–37], mode-locked pulses
[38–43], frequency locked states [44], and low frequency fluctuations (LFF) [45, 46] have also
been reported. Since OF cause such a rich dynamics in a laser, characterizes its properties, and
causes instabilities in an otherwise very stable system, a better understanding of the dynamical
behaviour of the laser in presence of OF is required to set the conditions to avoid or use the
instabilities for real world applications. The study of these instabilities in the laser helps to
eliminate them stabilizing the laser, and, at the same time, can be used to take advantage of the
instability for real world applications. For example, such an analysis of laser dynamics can help
to eliminate LFF [45,46], which is undesirable for fibre optic communications, but on the other
hand the same LFF is useful if applied to model and understand neural activities, or to map
functional networks like the visual, auditory, or memory functions in the human brain using

1Hereafter, throughout the text, the term SCLs is replaced generally by laser unless explicitly stated.
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functional magnetic resonance imaging (fMRI) [47]. Several other fields including climatology,
biology, or communication find useful explanations and tools from the behavior of the non-
linear dynamics and instabilities in the laser. OF, thus, has attracted interest to harness the
instabilities of the laser for new applications, to explain complex nonlinear phenomena, and/or
to eliminate existing instabilities, as required by the considered applications.

Further, OF has also been used to characterize different parameters of the laser under test.
Destrez et al. used OF to characterize the spectral linewidth of single and multimode lasers
as a function of feedback strength [48]. Yu et al. demonstrated the use of OF to measure the
linewidth enhancement factor (LEF) (also called phase-amplitude coupling) of the considered
laser [49]. In addition, OF also has found a very important application in the field of non-
destructive testing in the form of non-contact optical sensors, first observed in [25], and explained
in detail by Lang and Kobayashi [30]. In the case of OF-based optical sensors, normally referred
to as OFI2 sensors, the field emitted from the laser incides upon a remote target under test,
where it is partially scattered. A small fraction of this scattered beam is re-injected back into the
laser cavity, and the beating of the delayed optical field with that of the field emanating from the
laser introduces a modulation in the optical frequency and power emitted from the laser. This
modulation of optical power contains the signature of the properties of the remote target to be
measured through the delayed field (e.g. vibration parameters, reflectivity etc.), and is detected
using the built-in monitor PD implemented at the backside of the laser cavity. Since then,
it has been used in a wide variety of diverse applications such as chaotic communication [32],
displacement and velocity measurement [50,51], distance measurement, imaging [52,53], surface
profiling [54], strain measurement [55], or characterization of the reflectivity of materials [56], to
name a few. The main advantage of the use of OF in optical sensors and metrology for different
real world applications lies in the fact that the laser is not only used as the light source, but at the
same time it is also the interfering medium and the detector. This “all-in-one” approach makes
the set-up extremely compact, economic, self-aligned and efficient. Further, the resolution and
accuracy with the use of OF is comparable to that of classical optical interferometry.

In the use of OFI for the above mentioned sensing applications, the basic principle underlying
is the detection of change in OPD in the external cavity, formed by the facet of the laser and
the target under test, with an accuracy and precision as high as possible. Two approaches have
been normally undertaken. One is the use of extensive setups including external modulators [57],
dual frequency lasers [58], wave plates [59] and mis-alignment of components [60]; and another
approach has been the use of extensive signal processing. Signal processing for the extraction
of the desired parameters with a high level of accuracy is desirable for all kind of sensors, as
it keeps the experimental setup simple and compact. Different approaches such as FC [50],
Fourier transform [61], PUM [14], and Hilbert transform [62] have been implemented to extract
the parameters under measurement (amplitude, velocity, strain, flow, etc.) with increased

2Also called self-mixing interferometry (SMI), or optical autodyne
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accuracy. So far, in the various applications mentioned above, OF has been used to detect
the OPD changes greater than half the emission wavelength, thus limiting the resolution of
the applications to that value. This is due to the need to induce and detect fringes in the
OFS. Breaking this legacy and increasing the resolution below half the emission wavelength, it
was demonstrated that the use of OF to measure displacements lower than half the emission
wavelength was also possible [63,64].

A number of different variations of OF are described in the community and will be dis-
tinguished in this Thesis. The first one is what we will call C-OF, where the current fed to
the laser is constant and the optical path difference between the laser and the remote target
forming the external cavity is varied so a measurable perturbation is induced in the field within
the cavity [30]. The second one is CWFM-OF, where the current to the laser is modulated and
the optical path difference of the external cavity is kept constant [52]. A third variation, which
we named CWFM-DOF will be introduced along this Thesis, where the current to laser and
the external cavity length are modulated [65,66]. A last variation, the case where the injection
current to the laser and the external cavity are both maintained unmodulated has laso been
described [45]. In this thesis, however, only the first three variants of OF are analyzed, and the
last variant is left outside of scope.

Let’s briefly comment also the two main impairments which degrade the OFS and make OF-
based sensors difficult to implement in practice are the presence of noise and speckle. Different
signal processing techniques have been implemented to combat the different types of noise
including AWGN and impulsive noise [67, 68] to improve the performance and robustness of
the OFI sensor. Speckle causes random intensity modulation of OFS, causing it to degrade and
making the extraction of the parameters related to the vibration very difficult in some situations.
Methods such as spatial division multiplexing [10] and the sliding window approach [69] to deal
with it have been proposed, but they require multiple measurements and are computationally
expensive, respectively.

The main research activities and novelties contributed in this Thesis, which form the sub-
sequent Chapters, are briefly detailed in the following. In Chapter 2, we will introduce the
basic theory of the laser and of OF, beginning with the traditional compound cavity, the Lang-
Kobayashi and delay difference models to explain the OF phenomenology [26–30] and the insta-
bilities which it introduces in the laser performance. Following the description of the theoretical
model, a review of the various applications described for the OFI sensor is performed, including
its uses in laser characterization, as a vibrometer to measure displacement and velocity, and
in various other applications. A review of the different signal processing techniques used to
combat the different types of noise, or speckle, in order to extract the vibrational parameters
from the OFS with improved accuracy is then presented. All these aspects are both the basis
and the state of the art of the developments performed in the different Chapters of this Thesis.

Chapter 3 is dedicated to an in-depth analysis of C-OF. In spite of the different existing
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theories to calculate equivalent reflectivity in presence of external or multiple cavities, a novel
theory based on the scattering matrix method is introduced and developed in detail. Such a
development introduces a novelty from the classical compound cavity model [29], which only
takes into account the phase constant (β) of the optical field travelling through the cavities, but
not its attenuation coefficient (α), which considers how the media degrades and attenuates the
optical field which propagates through it. A modified mathematical model for equivalent reflec-
tivity for single and double cavities including attenuation, later on generalized to N external
cavities is presented. Based on this novel concept of the equivalent reflectivity, the character-
istics of the laser under OF are reviewed in detail under different conditions. It is generally
accepted that the laser dynamics under OF are dependent on the feedback strength and the ex-
ternal cavity length. However, this theory we propose shows also that the attenuation constant
of the medium in which the optical field propagates must be taken into account. A complete
theoretical model based on the scattering matrix method [70] will be developed to include the
effect of the attenuation constant of each “individual” cavity in the system in which the optical
field propagates, so the effects of α in each cavity are included into the equivalent reflectivity
of the whole external cacvity system.

It will be shown how the role of the attenuation constant becomes significant in several
practical cases, in particular when the field emanating from the laser has to travel a path length
through a diffusive medium enclosed by diffusive boundaries, such as measuring blood flow in
skin or tissue. It will be shown (and quantified) that the attenuation constant of the medium has
a direct relationship to the fringe visibility of the OFS. An increase in the attenuation constant
causes losses of optical field such that the beating of the returned field with the field in the
cavity produces fringes with very reduced visibility, making the signal processing step of OFS
quite difficult. It is found that there exists a deterministic relationship between attenuation
(determined in general by the thickness of the external cavity or cavities) which allows to
optimize fringe visibility if external attenuation is controllable.

Continuing the legacy of other authors in the contribution to the improvement of OF, the
use of the CWT [71] to process OFS in the time and frequency domains simultaneously is
covered along Chapter 4. The use of CWT for extracting parameters related to the vibration
of the target simultaneously in the time and frequency domain (e.g. displacement, frequency,
velocity), remove AWGN and impulsive noise, and manage speckle all in a single processing
step is demonstrated in detail. While the information in the time domain is used to determine
the instantaneous displacement of the target, the information in the frequency domain is used
to determine its frequency and velocity. Next, with the choice of complex Morlet transform as
the analyzing wavelet, the phase of the complex wavelet coefficients is also used to extract the
amplitude of vibration of the target with increased resolution and accuracy PUM as compared
to that computed just with the information from the time domain. Still within Chapter 4, a
novel approach to detect the envelope of OFS and keep track of speckle based on CWT will be
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also proposed. Such a methodology has advantages in terms of simplicity and computational
cost over previous methods described in the literature [10] [69]. Finally, the algorithm proposed
here is tested upon a transient vibration to extract its dynamic vibrational parameters, which
would not have been possible to extract using standard PUM and Fourier-based methods, as
they are applicable to periodic signals only. To the best of our knowledge, this is the first
application of C-OF to transient signals, enabling to quantify not only the parameters of the
vibration but also when they happen.

Having described the instabilities and non-linearities in the laser due of OF, injection mod-
ulation or both in previous Chapters, it is worth to further study the static, dynamic and
spectral characteristics of the laser in presence of these external perturbations simultaneous-
ly. In Chapter 5, the dynamics of laser the when subjected to C-OF and CWFM-OF based
on the Lang-Kobayashi rate equation [30] are studied. Evidence of its theoretical predictions
concerning the dynamics, and, in particular, the presentation of the use of injection modula-
tion to stabilize the laser and to attain a monomodal state even in presence of strong feedback
conditions is experimentally demonstrated. In this context, since the frequency coefficient Ωf

3

(GHz/mA) of the laser plays a significant role in determining the stability of the laser under
strong feedback, an experiment is designed to measure Ωf experimentally. The main novel-
ty of the proposal, however, lies in using the non-linearities in phase introduced by injection
modulation to compensate that other ones introduced by strong OF. It is shown that the non-
linearities in phase introduced by both phenomena contribute in opposite directions, enabling
to compensate each other and keeping the laser in a quasi stationary state even in presence of
strong feedback. It is worth pointing out that both OF and injection modulation are reported
to independently produces instabilities and non-linearities in the laser [31–34,45,46], but it will
be shown how when acting together in a precise manner they may compensate each other.

So far OF has been mainly used to measure the amplitude of vibrating targets whose am-
plitude is larger than half the emission wavelength. In Chapter 6, the non-linear dynamics of
a semiconductor laser in presence of OF combined with injection modulation will be demon-
strated to suffice for the measurement of sub wavelength changes in the position of a vibrating
object. A novel method (CWFM-DOF) combining C-OF and CWFM-OF is proposed. The
proposed method is defined based on the Lang-Kobayashi rate equation in presence [52] and
absence of injection modulation [30]. The details of the method are explained using different
simulations, and then experimental results showing the performance of the method are present-
ed. CWFM-DOF is shown to be able to measure amplitudes smaller than λ/2 with resolutions
in the magnitude of a few nanometers. Thus, CWFM-DOF extends the typical performance
of OFI sensors to the measurement of very small amplitudes using a very simple setup, and
with an increased bandwidth when compared to previous versions of differential OFI based on

3The property of laser which determines the change in emission frequency (wavelength) with the injection
current

6



mechanical modulation and a double laser arrangement [63,64]. A detailed mathematical model
of the proposed sensor in terms of bandwidth, sensitivity, resolution, range of detectable ampli-
tudes and trade off among the different adjustable parameters is illustrated, and experiments
on periodic and nonperiodic vibrations presented.

In our final Chapter 7, CWFM-DOF is tested in a real world application. With the recent
interest in the use of acoustic transducers and acoustic waves in diverse applications (such as
biomedicine, non destructive testing, or acoustic holography), it is of utmost importance for
the manufacturer to monitor and control the vibration of the membrane of the transducer to
provide proper acoustic fidelity. CWFM-DOF is used in this Chapter to characterize electro-
mechanical transducers in terms of amplitude, frequency and repetition rate of the vibration of
the membrane of the transducer. This characterization is significant for the manufacturer to
understand and validate the dynamics of acoustic transducers. Further, CWFM-DOF is shown
to satisfy the need of sensitive methods to detect and visualize acoustic surface perturbations on
remote targets, by properly measuring the instantaneous surface displacement of an Aluminium
plate due to acoustic radiation pressure.

Finally, a summary of the main conclusions of this research work, and comments on proposed
future works related to findings of this Thesis is presented in Chapter 8, followed by the list of
publications, patents and conference presentations achieved during the research work.

As a summary, the main contributions of the research in this Thesis are thought to be

• Scattering Theory: A developed a mathematical model for equivalent reflection coef-
ficient taking into account both the phase and the attenuation constant of the media in
the different cavities has been developed. Based on this equivalent reflectivity, the char-
acteristics of laser under OF is studied. The model developed is suitable to optimize the
performance of OFI sensors in multiple cavity systems.

• Laser stability: A methodology to keep the laser in mono modal and quasi stationary
state is presented, even at strong feedback conditions, taking advantage of the phase
effects introduced by injection modulation. Further, based on the methodology CWFM-
OF a technique for the measurement of the frequency modulation coefficient of the laser
is experimentally demonstrated.

• Signal processing: Signal processing of C-OF signal using the wavelet transform has
been developed and applied, showing it efficiently combats noise, manages speckle and
extracts vibrational parameters all at one single processing step. The method also enables
the measurement of pulsed perturbations and the characterization of the moment in time
when they occur.

• CWFM-DOF as a photonic sensor: A photonic sensor based on OF to measure
amplitudes of vibration smaller than λ/2 with resolutions of a few nanometers is presented.
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Such a tecnique has a bandwidth depending upon the amplitude and frequency modulation
of the laser injection current and the separation of target from laser, wider than current
methods.

• CWFM-DOF applied to acoustic wave characterization: The proposed photonic
sensor has been tested for real world applications, in particular for the characterization of
the electro-mechanical vibration of the membrane of an acoustic transducer and for the
determination of the instantaneous surface displacement of a remote target under acoustic
wave pressure.
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2. Optical Feedback

2.1 INTRODUCTION

The laser, which was once supposed to be “a solution without a problem” soon after its invention
in 1960, finds itself as “solution to several existing and future problems”. At present, laser finds
itself used in a variety of applications from basic consumer electronics to telecommunications,
medical imaging, environmental monitoring or other advanced future applications including
spectroscopy, microscopy and cosmology to name a few. Among the different types of lasers,
which include solid state lasers (based on Neodymium-doped Yttrium Aluminium Garnet (Nd-
YAG)), gas lasers (carbon dioxide (CO2)), FEL, or liquid lasers, the SCL is very widely used.
SCL distinguishes from other types of lasers primarily because of its ability to be directly
pumped by an electric current, making it more power efficient than other laser families. The
efficiency of SCL is in general around ∼ 50 % while solid state or gas lasers stay around∼ 1-10
% , due to the fact that they need be pumped by plasma excitation or an incoherent flash
lamp [72]. Furthermore, it is small and compact, integrable, cheap, high power, and has a
longer lifetime and a wider range of tunability in wavelength, which can go from near infrared
(NIR) to ultraviolet (UV) depending upon the material used in the cavity (III-V material and
Nitrides). The future of SCL and its applications is bright and strengthened by its multiple and
diverse applications.

However, the performance of SCL may be significantly affected by external perturbations,
being some of the most relevant optical feedback (OF), IM or combinations of both. This effects
may occur, for instance, from reflection of the optical field from the end of a fibre (in data
transmission in fibre optics communication), or from reflection from an arbitrary surface during
laser operation, among other cases. This small optical field re-injected inside the laser’s cavity
has shown a very rich spectral and temporal dynamics. Different models, such as the compound
cavity, the delay difference equation, or the Lang-Kobayashi model have been proposed. Such
studies help to analyze in depth the working principle of the laser, and make it more efficient
and effective for upcoming future applications.

This chapter is devoted to the review of the state of the art regarding the SCL, its dynamics
under OF and IM, its potential applications and the present pitfalls which need to be overcomed
to enhance its performance. In the sections to follow, starting with Sec. 2.2, the basic working
principle of laser1 is introduced. Particular attention is given to the analysis of small signals in
laser performance, and to introduce some properties which will be relevant in upcoming Chapters

1From now onwards, SCL is replaced by laser unless otherwise stated
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of this work, like modulation bandwidth, frequency chirp, and the relationship between IM and
FM. Such phenomena form the basis for the development of the OF-based sensor developed
in this thesis, and ultimately determine its bandwidth. In Sec. 2.3, the systematic derivation
of the equations of laser under feedback for C-OF, and CWFM-OF is presented. They are
derived from the two most popular models, the Petermann’s compound cavity model [73] and
the Lang-Kobayashi’s model [30]. Such derivation enables to study the laser’s temporal and
spectral behaviour. Following this modelling, some of the real world applications of OF as a
photonic sensor are presented in Sec. 2.4, showing the advantages of OF-based sensors. Next
in Sec. 2.5, a review of the main signal processing techniques used in OF based sensors is
presented. Finally, Sec. 2.6 ends the chapter with a brief conclusion of this review on lasers
and OF.

2.2 THE SEMICONDUCTOR LASER

From quantum theory, the electrons within an atom are restricted to occupy a set of discrete
energy levels. The same is true for electrons in solids, as well. However, in the case of solids,
the electrons have a band of energy levels to occupy, instead of a set of discrete energy levels,
which is the case in isolated atoms. Solids are formed by the bonding forces between individual
atoms. When one or many isolated atoms are brought in close proximity, the wave functions
of electrons in the neighbouring atoms overlap, altering the overall wave function which, in
turn, affects the boundary conditions of Schrödinger wave equation. Under these conditions,
the solution of the wave equation has different allowed energies, so the electrons in solids have
a range or band of energy allowed to them. Usually, the influence of an atom upon the energy
level of its neighbouring atom can be treated as a small perturbation, and causes the splitting
of the discrete energy levels to bands separated by an energy band gap Eg, containing no energy
level for the electrons to occupy [1, 2, 72,74].

The upper band, with the larger energy levels Ec, is called the conduction band and the
lower band, with the smaller energy levels Ev, is called the valence band, so Ec > Ev. As an
example, the discrete energy levels in an isolated Si atom are shown in Fig. 2.1. The formation
of energy bands in a semiconductor silicon crystal is shown in Fig. 2.2. In perfect equilibrium
state, at T = 0 K, the electrons in an atom occupy the valence band leaving the conduction
band empty. However, in a non-equilibrium state, when T > 0 K, electrons make transitions
from the valence band to the conduction band, partially filling the conduction band and leaving
holes2 in the valence band. The number of electrons present in a particular energy level is given
by Boltzmann statistics [2].

N2
N1

= e−
Ec−Ev
kT = e−

Eg
kT , (2.1)

2A “hole" is an empty state in the valence band. It is customary to treat such empty state as a charge carrier
with unit positive charge and unit mass.
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Si

(a) (b) (c)

Figure 2.1: Discrete energy levels of an isolated Si atom. (a) Conduction and valence energy levels are discrete.
(b) At temperature T = 0 K, electrons (shown by filled circle) occupy the valence band and conduction band is
empty. (c) At T > 0 K, electrons can transition from valence to conduction band leaving a hole (open circle)
behind.

SiSi

Si

Si

Si

(a) (b) (c)

Figure 2.2: Energy band diagram of a Si crystal. (a) At temperature T = 0 K, electrons occupy the valence band
and conduction band is empty. (b) At T > 0 K, electrons can transition from valence band to conduction band
leaving a hole behind.

where N1 and N2 are the number of electrons in the valence and conduction bands, respectively;
Eg= Ec-Ev, k is the Boltzmann constant, and T is the temperature. It is evident from Eq.
(2.1) that for most of the cases N2 < N1, and electrons occupy mostly the valence band, as
it corresponds to the lower energy levels. At best, when T = ∞, the population at both the
level equals (N2 = N1), but the population inversion condition (N2 > N1) which will be key to
laser performance never will be attained under equilibrium conditions. However, Einstein [15]
showed that the necessary working condition for a laser is to have population inversion in a
material, and to introduce gain, coherence monochromaticity and directionality via stimulated
emission.

Having explained the concept of energy levels and energy bands in semiconductor materials,
we are ready to review the different potential electronic transitions, and its relationship with
photon emission. Fig. 2.3 shows the different potential electronic transitions that involve
absorption and emission of photons. As illustrated, three different transition mechanisms are
relevant. The first case is spontaneous emission (Rsp). Eq. (2.1) shows that at T 6= 0 K, some
electrons can absorb enough thermal energy to cross the energy gap and make a transition
to the conduction band. However, electrons tend naturally to occupy the minimum energy
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(a) (c)(b)

Figure 2.3: Electronic transitions between conduction and valence bands. (a) Spontaneous emission; (b) Absorp-
tion; (c) Stimulated emission. Adapted from [1].

level, so each electron in the conduction band can occupy it only for a limited time, described
by its lifetime 3. Beyond the duration of its lifetime, the electron makes a transition back
to the valence band to spontaneously recombine with a hole, emitting a photon of frequency
f0, corresponding to Eg (Fig. 2.3 (a)). Since different electrons recombine at different time
instances, after recombination photons of different phase are emitted in all possible directions
and phase states, contributing to incoherent emission [1]. The second relevant case to analyze is
absorption (R12), where electrons in the valence band absorb radiation and make a transition to
the conduction band, leaving a hole behind (Fig. 2.3 (b)) [1]. Absorption can be accomplished
by some pumping mechanism, e.g. shining a flash lamp as a source of photons of frequency f0

larger than the energy band gap (i.e hf0 >= Eg) or injecting direct current. A continuous pump
effect causes the electrons to make transitions from lower to higher energy levels. Given the
lifetime of electrons in the higher energy level is longer than the absorption rate, after a certain
time population inversion may be achieved [2]. The final case shown in Fig. 2.3 is stimulated
emission (R21), where the electrons are mostly in the excited state, and before the spontaneous
emission of any photon another photon of frequency f0 corresponding to the energy gap incides
on the atom, causing the excited electron to relax to its ground state, while another photon of
same frequency f0, phase, and direction of propagation [1] is emitted. The probability in an
atom of an individual electron to absorb a photon is the same as that of the excited electron
to emit a photon via stimulated emission. Thus, the set of electrons in equilibrium will be
a net absorber and amplification will not be possible. Under population inversion conditions,
however, as there are a large number of pre-excited electrons, the atoms become net emitters
of coherent photons [2].

Beyond accomplishment of the stimulated emission condition just described, it is seen that
in a single pass of the beam the gain attained is normally very small. To enhance the gain, a
large number of emission processes are required, which are obtained by placing a medium with
gain in an optical resonator with positive feedback. Under these conditions, lasers are able to
create relevant stimulated emission, to produce intense beams of light which are monochromat-
ic, coherent, and highly collimated. In particular, the wavelength of laser light is extremely

3The lifetime of the electron is dependent on energy level and material.

12



(c)
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(a)

(d)

Figure 2.4: Components and mechanism involved in a laser: (a) Active medium; (b) Pump; (c) Stimulated
emission; (d) Optical resonator.

monochromatic when compared to other sources of light, and all of the photons that compose
the laser beam have a fixed phase relationship relative to one another, called coherence [1, 2].

Looking at the situation from another physical point of view, an excited atom acts as a
small electric dipole which oscillates with the external field provided by the incident photon.
One of the consequences of this oscillation is that it causes the electrons to decay to the lowest
energy state, enabling the atom to return to its ground state. When this happens, a photon is
released with same frequency, phase and direction as the “stimulating” photon, giving rise to
“stimulated emission”. At the end of the process two coherent photons are produced, enabling
cascaded optical amplification (Fig. 2.3(c)). Generally speaking, when favourable conditions
are created for stimulated emission in a system with inversion population, more and more atoms
are forced to release photons, initiating a kind of chain reaction which releases a large amount
of energy. This favourable conditions are achieved by placing the gain medium in a optical
resonant cavity with positive feedback [2]. In this way, incoherent photons generated in the
active medium by spontaneous emission travel in all possible directions, but when incident
upon the excited atoms in the medium cause stimulated emission of another photon. This
increases the number of photons and so introduces gain. As the single pass gain is very small,
the entire process is performed inside an optical resonator, enclosing the active media between
highly reflective mirrors [74]. The large number of photons in the cavity escape from one side,
the one with a lower reflectivity, providing directionality to the beam. The process results in a
rapid build up of energy emitting in a single particular wavelength (monochromatic light), and
travelling coherently in a precise, fixed direction.

Thus, a laser requires for its operation four main components: (a) an active medium, where
the population inversion can take place; (b) a pump mechanism, which creates population
inversion in the active medium; (c) a stimulated emission process to cause gain in the active
medium; and (d) a resonant cavity to enhance the gain, that is, an optical resonator. All these
components are shown in Fig. 2.4.

Once the fundamental principles of laser functioning have been described, now the details
on how such phenomenology is achieved within a semiconductor material, yielding a SCL are

13



(a)

(b)

(c)

(d)

Figure 2.5: Working principle of the SCL. (a) p−n DH diode; (b) Carrier confinement to increase the probability of
effective recombination; (c) Optical field confinement resulting from difference in refractive index profile between
active region and cladding; (d) Generated optical field, proportional to photon density in the active region, or
|E|2 confined in the wave guide resulting from (c). Adapted from [1,2].

presented. A SCL is basically a double DH p − n diode which effectively confines the carriers
(electrons and holes) in a small active region, so increasing the probability of effective recom-
bination and enabling stimulated emission to happen [2]. Current state of the art technology
enables crystals with different bandgap values and small variations in lattice constants to be
grown adjacent to one other, using techniques like e.g. molecular beam epitaxy (MBE). Fig
2.5 shows the schematics of a DH laser together with its energy band diagram, refractive index
profile, field emission, and how carrier and field confinement are induced.

As illustrated in Fig 2.5, a thin (0.1-0.2 µm) layer of active material (typically GaAs) is
sandwiched between a p and n Aluminium Gallium Arsenide (AlGaAs) cladding layer (Fig.
2.5(a)). The cladding layer has a greater bandgap than the active region. Under forward bias,
the electric field exerts a force on the electrons and holes in the AlGaAs cladding to move
them towards the sandwiched GaAs active region. When carriers are confined in the thin active
region they behave as the classical “particle in a potential well" problem in quantum physics [2].
Therefore, the carriers occupy discrete energy levels in the quantum well (Fig. 2.5(b)). The
formation of discrete energy levels changes the energies at which photons can be emitted from
the material. For instance, (Fig. 2.5(b)), electrons in the discrete energy levels in the conduction
band may make transition to the empty discrete levels in the valence band, to produce a photon
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of energy (wavelength) of 1.43 eV (868 nm). Similarly, engineering the energy bandgap, GaAs
has been used in semiconductor lasers to emit from infrared to red regions of the spectrum. For
confining the emitted emission, the principle of refractive index mismatch is used. The refractive
index of the active region is in general larger than that of the adjacent cladding (Fig. 2.5(c)),
so a waveguide in transverse direction is formed, which confines the optical energy created by
the recombination. The optical energy generated is proportional to the photon density or the
squared amplitude of the electric field (|E|2), as shown in Fig. 2.5(d) [1].

2.2.1 RATE EQUATION

As explained in Fig. 2.5(a), biasing the DH arrangement generates carriers in the active region.
Various mechanisms, including radiative and non-radiative emission and carrier leakage provide
recombination processes. The rate equation can thus be written as [1, 15,72]

dN

dt
= Ggen −Rrec, (2.2)

where N is the carrier concentration (number of carriers per unit volume), Ggen is the rate of
injected electrons and Rrec is the rate of recombination per unit volume within the active region.
There is a loss of electrons in the active region due to different phenomena, including diffusion
processes, the effect of the electric field, or thermal effects, which cause some electrons to be
swept away from the active region. Taking into account this leakage current, the net electron
generation is given by [1]

Ggen = ηiI

qV
, (2.3)

where ηi is the internal quantum efficiency of laser 4, V is the volume of the active region, q
is the electron charge and I is the current flowing through the laser terminals. The recom-
bination process is complex to describe as it involves different types of phenomena. The net
recombination rate Rrec may be described as [1]

Rrec = Rsp +Rnr +Rl +Rst, (2.4)

where Rnr is the non radiative recombination, and Rsp, Rst, Rl correspond to spontaneous,
stimulated, and leakage recombination rates, respectively. One example of non-radiative radi-
ation is Auger recombination, where electrons recombine with the hole to radiate an emission,
but the emitted energy is transferred to another electron, instead of creating a photon. The
first three terms correspond to natural decay phenomena, and it is customary to describe them
through a carrier life time, τ . Thus, Eq. (2.4) can be rewritten as [1]

Rrec = N

τ
+Rst, (2.5)

4Defined as the ratio of carriers injected in the active region rated to the total carriers pumped
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where
N

τ
= Rsp +Rnr +Rl. (2.6)

Using power series expansion for spontaneous, non radiative recombination and leakage current,
and using Rsp = NN2 and Rnr +Rl = AN + CN3, Eq. (2.5) can be written as

Rrec = BN2 + (AN + CN3) +Rst, (2.7)

where A is the surface and defect recombination coefficient, B is the bimolecular recombination
coefficient, and C is the Auger coefficient [75]. Similarly, the photon rate generated in the cavity
is

dNp

dt
= ΓRst + ΓβspRsp −

Np

τp
, (2.8)

where Γ is the confinement factor5, βsp is the spontaneous emission rate, Np is the number of
photons in the cavity, and τp is the photon lifetime, also known as the cavity lifetime . The first
two terms on the right represent the rate of photons generated by stimulated and spontaneous
emission, respectively. The third term represents the photon loss within the cavity, as an effect
of optical absorption, propagation of optical field within the cavity, and coupling of the optical
field out of the cavity. It is shown in [1] that photon-stimulated electron-hole recombination
(stimulated recombination) has an effect on gain which is given by

Rst = vggNp = vga(N −Ntr)Np, (2.9)

where vg6 corresponds to the group velocity of the photon within the cavity, g the gain per unit
length, a the differential gain, and Ntr the electron density when at transparency7. It is worth
mentioning that gain in a laser is related directly to the electron density. Hence, the coupled
carrier and photon density rate in the case of the laser, obtained from Eq. (2.2), (2.3), (2.5),
(2.8), (2.9) are given as

dN

dt
= ηiI

qV
− N

τ
− vggNp. (2.10)

dNp

dt
= ΓvggNp + ΓβspRsp −

Np

τp
. (2.11)

2.2.2 STEADY STATE GAIN IN A LASER

As explained earlier, the optical mode in a SCL is confined within the cavity. In this section
we will describe and characterize the cavity losses associated with optical field absorption and
propagation inside a cavity, and its relationship to the cavity mirrors. It should be remembered

5Since the volume occupied by a single photon, Vp is larger than that of the actual volume of the active region
(V ), the photon density rate is V

Vp
R21 = ΓR21

6vg is the group velocity related to the effective refractive index of the considered material, as ñl = c/vg, with
c the velocity of the field in vacuum

7The condition when absorption equals emission i.e, when Rsp = Rst (Fig. 2.3)
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Figure 2.6: Working principle of laser. An active medium enclosed in between two reflective surfaces.

that we are using a quantum well to describe the DH which defines the laser cavity. For the
cavity to work as a resonator and introduce gain, the losses associated with propagation need
be overcomed, which essentially means that the dimension of the cavity has to be properly
chosen to provide the desired gain to a particular mode. In this section, the condition to lase is
derived from the semiconductor parameters. Referring to Fig. 2.6, a typical arrangement with
an active media enclosed in between the cleaved semiconductor material is presented. In such
arrangement the field amplitude reflection coefficients are described by r1 and r2 at each side
of the internal cavity, respectively, The optical field ~E(z, t) = E0e

−j(βz−ω0t) generated at point
A, B, C and D is thus given by

~E(z = 0, t) = E0e
ω0t, (2.12a)

~E(z = l, t) = E0e
−j(βl−ω0t)eΓ g2 le−

αi
2 l, (2.12b)

~E(z = l, t) = r2E0e
−j(βl−ω0t)eΓ g2 le−

αi
2 l, (2.12c)

~E(z = 0, t) = r1r2E0e
−j(2βl−ω0t)eΓgle−αil, (2.12d)

where l is the laser cavity length, E0 is the initial optical field, ω0 is the emission angular
frequency, αi is the internal loss per unit length, and β = ω0/c is the phase constant of the
optical field (explained in detail in Eqs. (2.17) and (2.18) ). In order to impose the condition
that the optical field within the cavity is not attenuated, it needs to keep the same amplitude
after the round trip time, i.e. the optical field at point A and D, must be equivalent. It should
be noticed that the factor of 1/2 associated to αi and g comes from the fact that the optical
field ~E is the magnitude being considered, instead of power P , as | ~E|2 = P . Hence equating
Eq. (2.12a) and (2.12d), the steady state condition is

r1r2e
(Γg−αi)le−j2βl = 1. (2.13)

Eq. (2.13), describes the equation of the threshold gain required for lasing, defined by

Γgth = αi + 1
l
ln( 1

r1r2
) = αi + αm, (2.14)
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where αm is the mirror loss. The subscript associated with the gain (gth) is to demonstrate the
fact that this is the minimum amount of gain required to compensate the losses and provide
an effective gain mechanism within the cavity. Alternately, using the photon decay rate in the
cavity (1/τp), which is the sum of the cavity loss rate (1/τi) and the mirror loss rate (1/τm)8,
one gets.

1/τp = 1/τi + 1/τm = vg(αi + αm), (2.15)

The threshold gain required to lase is thus described in terms of cavity (photon) lifetime as

Γgth = αi + αm = 1
vgτp

= ω

Qvg
, (2.16)

where Q is the quality factor of the cavity. It should be noted that Eq. (2.14) and (2.16) only
relate the gain and loss of the system, and are independent from the stimulated emission rate.

Since gain is the main mechanism for lasing, slight alterations of the cavity losses or of
the properties of the cavity result in different properties of the emitted laser radiation and the
lased field. Eq. (2.13) sets the equation for the valid lasing frequency, which will be of special
significance afterwords when we consider OF. Equating the phase at both sides of Eq. (2.13)
we get to

βl = mπ, (2.17)

where p is the number of the longitudinal mode. The phase constant is dependent upon the
frequency (ω0) of the optical field (Eq. (2.18)), so Eq. (2.17) the allowed lasing frequencies in
the resonator are bound and linked to the value of the longitudinal size of the cavity l.

β = ñlω0
c

= 2πf0ñl
c

, (2.18)

where ñl is the group refractive index of the material which forms the laser cavity. Equating
Eqs. (2.17) and (2.18), the emission frequency needs be

f0 = p
c

2ñll
. (2.19)

where p is the longitudinal mode. Since there can be multiple modes allowed depending upon
the cavity length, the frequency (mode) spacing (df0) corresponding to the round trip time
delay (τl) is given by

df0 = c

2ñll
= 1
τl
. (2.20)

It is evident, then, that both the lasing mode and its spacing are dependent upon the cavity
round trip time, and subsequently upon the cavity length. As an example, taking a typical
realistic value of ñl=3.5 and l=300 µm, then τl=2.3 ps and df0=420 GHz. It should be noted

8Understood as the rate at which photons escape from the cavity to the outer world
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that if the cavity length is perturbed periodically (by placing an external vibrating target, as
in some cases within our experiments), the emission frequency also changes periodically. This
has profound implications in the use of SCL as vibrometers, which will be covered in detail in
Sec. 2.3.

Finally, let us consider that at steady state above threshold there exist a certain value of
gain and carrier clamping, so that they do not increase monotonically [1]. This happens because
as the current increases beyond the threshold value, it introduces population inversion. For a
fraction of time (ns), the carrier concentration at the higher energy levels increases. Due to the
stimulated recombination this concentration drops gradually, but at the same time the photon
density grows causing an increase in gain. In the end, carrier concentration reaches the value
it had under threshold conditions, causing the photon density and gain to fall, so a sustained
cycle takes place [1]. So, per Eq. (2.14)

g(I > Ith) = gth (2.21)

N(I > Ith) = Nth (2.22)

Similarly, in steady state conditions above threshold Eq. (2.10) becomes

dN

dt
= ηi(I − Ith)

qV
− vggNp, I > Ith (2.23)

From Eq. (2.23), the photon density at steady state above threshold is calculated using

Np = ηi(I − Ith)
qV vggth

, I > Ith (2.24)

where Ith, gth and Nth are the current, gain and carrier concentration at the emission threshold.
Since the power is proportional to the number of photons, the power out of cavity may now
be calculated. The photon density Np is multiplied by the energy of each emitted photon hf0,
and by the volume occupied by the photons in the cavity Vp, where they gather their optical
energy. This optical energy is then multiplied by the loss factor due to the outcoming mirror
vgαm = 1/τm, giving the optical power out of the cavity, P0 as

P0 = hf0NpVpvgαm, I > Ith (2.25)

From Eqs. (2.25), (2.24) (2.14) and using Γ = V/Vp we get

P0 = ηi
αm

αi + αm

hf0
q

(I − Ith), I > Ith (2.26)

= ηd
hf0
q

(I − Ith), I > Ith (2.27)

where ηd is the differential quantum efficiency that defines the number of photons generated
per injected electron. Eq. (2.27) defines the total power P0 out of the cavity. If both mirrors
have the same reflection coefficients, then the power out of each mirror is P0/2. However, in
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Figure 2.7: Effect of reflectivity of the mirror at z = l (r2) on power emission (P02), for different values of r1.
The power emitted from laser facet normalized to total power (P02/P0)varies with the reflection coefficient of the
laser facet. The dashed line corresponds to the ideal situation with r1 = r2 confirming that the emitted power
becomes halved whenever the above condition is met.

the general case, the mirrors will have unequal reflection coefficients, so the emission will take
place only in one direction. Let P01 be the power out of the mirror having reflection coefficient
r1 (which corresponds to the left mirror, z = 0 in Fig. 2.6), and P02 that leaving the mirror
with a reflectivity r2 (the right surface, z = l in Fig. 2.6). Obviously P0 = P01 +P02. The ratio
of both P01 and P02 is given by Eq. (2.28), and similarly the fraction of total power emitted
from each surface is given by Eqs. (2.29) and (2.30), respectively. It is evident that the power
emitted from one mirror is dependent upon the reflection coefficient of both of them.

P01
P02

= r2(1− r2
1)

r1(1− r2
2)
. (2.28)

P01
P0

= (1− r2
1)

(1− r2
1) + r1

r2
(1− r2

2)
. (2.29)

P02
P0

= (1− r2
2)

(1− r2
2) + r2

r1
(1− r2

1)
. (2.30)

Fig. 2.7 explains the effect of the reflectivity of both mirrors upon the optical power emitted
(P0) by the right mirror at z = l, P02. Initially the optical power generated in the cavity is
a function of the pump current, the internal cavity losses and the mirror losses (Eq. (2.27)).
The rest of the curves show the dependence of P02 upon r1 and r2. Keeping r1 constant and
increasing r2, P02 decreases. In addition, whenever r1 = r2, P02 is exactly halved as compared
to P0, as expected (shown by the dashed line).

This strong dependence of the laser’s power and its stability on the reflection coefficient
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of the cavity mirrors is an important mechanism with profound implications. If the reflection
coefficient is perturbed periodically, for instance by coupling the reflected field from an external
vibrating target, so an equivalent cavity may be formed, the optical output power will change
periodically, containing the signature of the vibrating parameters. This is exploited in depth
when we use the laser as a sensor. This is further detailed in Sec. 2.3, where it is shown that by
just placing a reflective surface in front of the laser, the equivalent reflectivity and ultimately
the emission power is changed.

2.2.3 SMALL SIGNAL FREQUENCY RESPONSE OF THE LASER

In this section, the laser rate equation presented in (2.10) and (2.11) is used to determine the
relaxation resonance frequency and its relationship to the modulation bandwidth when an AC
component is applied to the current feeding the laser. Let us consider that the laser is biased at
I0 and an additional AC current im(t) = Ame

jωmt is applied. In steady state, this new current
changes the carrier and photon density in a similar way to the AC current. Using complex
frequency notation,

I = I0 +Ame
jωmt. (2.31)

N = N0 +Nme
jωmt. (2.32)

Np = Np0 +Npme
jωmt. (2.33)

where im(t) is the modulation current with modulation frequency ωm and amplitude Am. Simi-
larly, N0(Np0) is the carrier (photon) density at the bias point; and Nm (Npm) is the peak carrier
(photon) density subjected to modulation current im(t). Rewriting Eqs. (2.10) and (2.8) using
(2.9) and neglecting the spontaneous emission term, we get

dN

dt
= ηiI

qV
− N

τ
− vga(N −Ntr)Np. (2.34)

dNp

dt
= Γvga(N −Ntr)Np −

Np

τp
. (2.35)

Using the values of I (Eq. (2.31)), N (Eq. (2.31)) and Np (Eq. (2.31)) in Eqs. (2.34) and (2.35),
and after some manipulation (shown in appendix A) the response in the frequency domain of
the carrier concentration and photon density are

jωmNm = ηiAm
qV

− Nm

τ
− Npm

Γτp
− vgaNmNp0. (2.36)

jωmNpm = ΓvgaNmNp0. (2.37)

Eqs. (2.36) and (2.37) describe the coupling of the carrier density Nm and the photon density
Npm induced by the added small AC current. From Eq. (2.36) we see how as Nm increases,
Npm also increases, meaning that the small AC current causes population inversion and creates
the mechanism for gain and for an increase in photon density. However, from the third term on
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Figure 2.8: Frequency response of a laser under small AC signal modulation. The resonance frequency shifts
to higher frequency values at increased bias current. The parameters used in the simulation were Γ = 0.6;
vg = 0.75× 1010 cm/s; a = 5× 10−16/ cm2; ηi = 1; V = 5× 0.25× 200 µm3; λ = 692.5 nm; Ith = 30 mA; τp = 2
ps; τ = 3 ns; αm = 60/cm; αi = 5/cm [1]. The 20log10(∗) scale is used because optical power is proportional to
current and, for most of the cases, we are concerned about electrical power.

the right of Eq. (2.36), as Npm increases Nm needs to decrease, as stimulated emission results
in a decrease in the carrier concentration. Once Nm starts to decrease, Npm also decreases (E-
q.(2.37)), as there are less carriers to introduce recombination and emit a photon. Furthermore,
as Npm decreases, this causes Nm to increase (Eq.(2.36)). This completes one full cycle which
is then repeated. This coupling of carrier and photon density produces a natural resonance
in the laser’s cavity. The frequency ωR describing this natural resonance of oscillation in the
cavity (the relaxation frequency) is found by multiplying Eq.(2.36) and (2.37), and adding some
manipulation (shown in appendix A).

ω2
R = vgaNp0

τp
. (2.38)

The overall frequency response of the laser under a small signal modulation is determined by
the optical-electrical transfer function, which is the ratio of the output optical power to the
current input. It is obtained by solving Eqs. (2.36) and (2.37) and the detailed derivation is
given in appendix B)

Pac(ωm)
Am(ωm) = ηd

hf0
q

1
(1− ω2

m

ω2
R

) + j ωmωR ( 1
ωRτ

+ ωRτp)
. (2.39)

Fig. 2.8 shows the resonance frequency of the semiconductor laser at different AC current
modulation frequencies ωm, and for different values of the bias current. The detailed simulation
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parameters are indicated in the figure caption. It is observed how keeping Am constant, an
increase in ωm increases the magnitude of the transfer function. When ωm = ωR a resonance
occurs, and further increasing ωm degrades significantly the transfer function. Thus, there
is a limited range of frequencies over which the laser can be modulated. It is also observed
that the resonance increases when the bias current is increased. It is also observed that the
higher the bias current, the higher the resonance frequency and hence the higher the modulation
bandwidth. This relationship is explicitly explained in Eq. (2.41) Using Eqs. (2.25) and (2.16),
the definition of Γ = V /Vp and the expression for ηd from Eq. (2.27) (detailed in appendix A)
, the equation which expresses the relaxation frequency in terms of output optical power is

ωR = [ Γvga
hf0V

ηi
ηd

]
1
2
√
P0. (2.40)

Similarly, using Eq. (2.27) and Eq. (2.40), the relaxation frequency is expressed in terms of
threshold current as

ωR = [Γvga
qV

ηi]
1
2
√
I − Ith. (2.41)

Equation (2.40) and (2.41) demonstrate the fact that the relaxation frequency is proportional
to the output optical power or, equivalently, that it will be key to keep the bias of the laser well
above the threshold value. This has a direct implication, as it will be shown in Sec. 6.2.2 that
the bandwidth of proposed CWFM-DOF sensor is dependent upon the modulation frequency
of the laser and hence it is desirable to modulate the laser as high as possible. This requires
that the laser to be biased away from threshold, but this in turn has a trade-off that for the
OFI to be efficient, it should be biased close to the threshold [76]. For most of the cases it is
of interest to find the modulation bandwidth of laser, ω3dB, defined as the frequency at which
the electrical power reduces to half its value at direct current (DC) value. Using Eq. (2.39), it
is determined by [1]

ω3dB =
√

1 +
√

2ωR ≈ 1.55ωR, (2.42)

using typical values in a semiconductor laser, like Γ = 0.6, vg = 0.75 × 1010 cm/s, a = 5 ×
10−16/cm2, q = 1.6 × 10−19 C, V = 5 × 0.25 × 200 µm3, ηi = 1, I = 80 mA, Ith = 30 mA,
the calculated ωR (fr) is 53 Grad/s (8.4 GHz) (Eq. (2.41)) and ω3dB (f3dB) is 82 Grad/s
(13 GHz) (Eq. (2.42)). Authors in [77] experimentally measured the resonance frequency of
Indium Gallium Arsenide (InGaAs) lasers to be 6 GHz when a 4 mA bias current was used.
The modulation bandwidth of laser is thus in the order of a few GHz. This relationship will be
very important in the cases when wideband frequency modulation of the laser is desired, e.g.
in high speed data communication using optical fibre. In addition, it is shown in Sec. 6.2.2
of this Thesis how the bandwidth of the proposed sensor based on OF is proportional to the
modulation frequency of laser, so a high relaxation frequency is very desirable so the laser may
be modulated to high frequencies, and ultimately to increase the bandwidth of the proposed
sensor, which is part of the goals of this PhD.
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2.2.4 FM RESPONSE OR FREQUENCY CHIRP

It was shown in Eqs. (2.36) and (2.37) that injection modulation changes both the carrier
density and the photon density in the gain medium. Since carrier density is related to both
gain and refractive index, its modulation affects both of them. Eq. (2.19) shows that the
frequency of the emitted photons depend upon the effective refractive index of the material
forming the cavity, and the cavity length. The effective refractive index depends upon the
lasing frequency (the wavelength dispersion, defined as dn/dλ) and the carrier concentration
(the plasma loading, defined as dn/dN) [1].

In addition, refractive index of the active medium forming the laser cavity is a complex
quantity consisting of real (nl) and imaginary parts (n”l), with the imaginary part directly
related to gain through

ñl = nl + jn′′l . (2.43)

g = 4π
λ
n′′l . (2.44)

On one hand, the modulation of the gain due to the AC current causes IM, while, on the other
hand, the modulation of refractive index causes a modulation in the optical path length of
the cavity, which introduces FM. The parameter that relates IM to the FM is the linewidth
enhancement factor (α), described by

α = − dnl/dN
dn′′l /dN

= −4π
λ

dnl/dN

dg/dN
= −4π

λa

dnl
dN

. (2.45)

From Eq. (2.45), with a change in carrier density defined by ∆N , the change in refractive index
∆nl is

∆nl = λ

4πaα∆N. (2.46)

Further, it is shown in [72] that the frequency shift (also called the frequency chirp, ∆ν) in the
emission is related to α so ∆N is written as

∆ν = α

4πΓvga∆N. (2.47)

It is observed that frequency chirp is directly proportional to the linewidth enhancement factor.
For instance, consider an Indium Gallium Arsenide Phosphite (InGaAsP) laser with emission
frequency at 692 nm which is modulated as ∆N = 5 × 1017/ cm3. Let us also consider the
other parameters to be α = 4, Γ = 0.6, vg = 0.75 × 1010 cm/s, a = 5 × 10−16 cm2. Under
these conditions, the frequency chirp is ∆ν = 358 GHz, which corresponds to a change in
wavelength ∆λ = 0.57 nm. Similarly, if the carrier concentration is periodically swept using
injection modulation by an AC current, the frequency shift introduced varies periodically. This
mechanism is the basis of the concept behind the high frequency vibrometry sensor described
later in Ch. 6 of this memory. Fig. 2.9 shows the linear chirp introduced in the laser by varying
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Figure 2.9: Frequency chirp in laser emission due to IM: (a) Carrier concentration changed due to injection
current; (b) Change in frequency (wavelength) of the emission due to the change in carrier concentration.

the carrier density using a triangular modulation current. It should be noted that the Fig. 2.9
shows the magnitude of chirp, and the sign has not been taken into account.

In the general case, the frequency (wavelength) decreases (increases) following the increase
in carrier concentration. In most of the cases, it is desirable to relate the frequency chirp to
the power output of the laser, so the relation between IM and FM can be established. Authors
in [78] have shown that the frequency chirp is related to power emission by

∆ν = α

4π [ ddt ln(P0(t)) + 2Γ
V hf0

P0(t)]. (2.48)

The first term of Eq. (2.48) corresponds to the chirp caused by electron-hole resonance, while
the second term is the adiabatic chirp. It is clear from Eq. (2.48) that the amount of chirp
introduced in a semiconductor laser depends strongly upon the power emission. So, the higher is
the bias point relative to the threshold, the larger will be the power and, subsequantly, the larger
will be the chirp introduced. As a consequence, in the case where a large chirp in the emission
is desired, the operating point should be set well above the threshold of the laser. Secondly,
the amplitude of the current modulation should be large enough to produce significant changes
in the power emission from the laser. Eq. (2.48) is plotted in Fig. 2.10 showing the effect of
the change in optical power on the frequency chirp. Here the emitted power is modulated by
an injection current with different amplitudes but a with constant frequency fm = 1 kHz. It is
observed that with an increase in modulation current, the emitted power increases (Fig. 2.10
(a)) and simultaneously the frequency chirp also increases (Fig. 2.10 (b)).

Along Ch. 6 of this Thesis the feasibility of the use of the phenomena of frequency chirp for
high frequency vibrometry is demonstrated. There the effect of IM, upon the chirp is exploited
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Figure 2.10: Frequency chirp in laser emission depending upon the emission power (Eq. (2.48)). With the
increase in amplitude of the modulation current (a sawtooth waveform), the emission power increases (a) and
ultimately the chirp also increases (b).

for the development of a laser based vibrometer. However, chirp has some secondary effects as
it causes spectrum and linewidth broadening, which are not desirable features for a laser-based
sensor. While spectrum broadening introduces the need of wideband detectors and amplifiers,
linewidth broadening causes the laser beam to be incoherent and thus to reduce fringe visibility.
For the use of the SCL as an interferometric sensor, there exists a trade-off between the amount
of chirp and the bandwidth, which is analyzed next.

The frequency response of the laser in the presence of chirp is described in [1] as

∆Bchirp = α

4π (γpp + jωm)P1
P0

= α

4πm1(γpp + jωm), (2.49)

where ∆Bchirp is the chirp of the signal emitted from the laser, γpp = ΓvgapNp is a parameter
related to effective photon life time with a typical value of 1.32 × 109/s, ap = ∂g/∂Np is the
change in gain due to changes in photon density, P1 is the peak power emitted from laser
under modulation, and mi = P1/P0 is the intensity modulation index. It should be noted that
although mi is the ratio of power, however normalizing the power to the emitted beam area, we
get intensity and it is desirable to express it in terms of intensity rather than the power. In most
of the cases, it is also desirable to express the frequency spectrum in terms of the bias current,
as it is the main factor controlling the power emitted from the laser. The modulation in the
emission power P1 is related to the transfer function of the laser H(ωm) and the modulation
current Am as

P1 = hf0
q
H(ωm)Am. (2.50)
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s, αm = 6000/m, αi = 2000/m, ηd = 0.75, α = 4, γpp = 1.32× 109/s.

Using Eqs. (2.49), (2.50), and (2.27), one may find out the frequency response of the laser in
presence of chirp in terms of the modulation current as

∆Bchirp = α

4π (γpp + jωm) Am
ηd(I − Ith)H(ωm), (2.51)

Dividing both sides of Eq. (2.49) by fm = ωm/(2π), we get

M = α

2mi(
γpp
ωm

+ j1), (2.52)

whereM=∆Bchirp /ωm is the FMmodulation index of the laser. Equation (2.52) is important as
it demonstrates the fact that IM and FM have complex relationships, and both their magnitude
and phase need be taken into account to determine the general behaviour of the laser. In
addition, the magnitude of FM is proportional to the magnitude of IM, and is related to the
LEF. Fig. 2.11 shows the effect of mi on the frequency chirp. It is observed how the chirp in the
laser increases when IM does. This confirms the fact that higher modulation currents induce
larger chirps in the laser.

Figure 2.12 shows the detailed magnitude and phase relationships between IM and FM, as
a function of the modulation frequency at a fixed mi = 0.2. It is observed that keeping the
mi constant at 0.2, while increasing the modulation frequency ωm, the relationship between IM
and FM is modified substantially. When ωm << ωR the magnitude response of FM is dominant
over IM (Fig. 2.12 (a)) and both have the same phase (Fig. 2.12 (b)). When the modulation
frequency increases (ωm < ωR), the magnitude response of FM is still dominant over that of IM
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(Fig. 2.12 (c)), however a phase difference between them starts to appear, which increases with
an increase in the modulation frequency ωm (Fig. 2.12 (d)). Such phase change is equivalent to
a delay between IM and FM in the time domain. Further increasing the modulation frequency
so it becomes close to the resonance frequency of the laser (ωm ≈ ωR) makes the magnitude
response of IM to increase very significantly and approach the magnitude of FM (Fig. 2.12 (e)),
and also a sharp transition appears near the resonant frequency ωR in both phase terms (Fig.
2.12 (f)). Finally, when modulating the laser beyond the resonance frequency ωm > ωR, the
magnitude response of both terms does not significantly change (Fig. 2.12 (g)), but a constant
phase difference between them appears (Fig. 2.12 (h)) (in opposition to what happened in Fig.
2.12 (d), where the phase difference increased with increase in modulation frequency).

Let us now briefly look at the role of the value of m, the amplitude modulation index defined
in Eq. 2.49 . It is observed that equivalent results are found when mi is increased to 0.5 (Fig.
2.13). A more useful descriptor is the ratio of FM to IM response, (M/mi). From Eq. (2.52),
it is clear that such ratio is dependent upon the internal parameters of the laser γpp and α. The
ratio of FM to IM at different values of the linewidth enhancement factor α is shown in Fig.
2.14. It is observed that keeping α constant and increasing the modulation frequency, the ratio
decreases. However, the ratio increases with the increase in α as expected from Eq. (2.52). The
ratio of FM to IM for an InGaAsP DFB laser has been measured experimentally [79] showing
values as high as 3 in a linear scale for a modulation frequency of fm = 3 GHz.

2.2.5 LINEWIDTH BROADENING

The quantitative broadening of the spectral width of the laser due to the induced chirp can be
calculated considering the spectral broadening (δνi) due to sinusoidal frequency modulation.
The spectral broadening in response to FM, in this case, defined as the difference in spectral
width of laser under IM (δν1) and solitary laser (δν0) is given as [72]

δνi = δν1 − δν0 = 2(M + 1)fm. (2.53)

Equation (2.53) states simply that the linewidth of the laser increases linearly with the increase
in modulation frequency fm. Further, given the source has a Gaussian emission spectrum, the
spectral width of the laser is inversely proportional to the coherence length of the beam (Eq.
(2.54)) [72]. Thus, the chirp introduced by injection modulation has on influence on coherence,
and subsequently on the inherent internal properties of the laser as well. Coherence is related
to spectral broadening through

δlcoh ≈
c

δνi
, (2.54)

where δlcoh is the change in coherence length of laser under IM as compared to solitary case.
Figure 2.15 shows the effect of the modulation frequency on the spectral width and coherence
length of the field emitted, for different values of the amplitude modulation index. It is seen
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that the larger the value of mi, the larger the spectral broadening and the smaller the coherence
length. Further, it may be appreciated how the most relevant effects are found for values close
to fm = 0.
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Figure 2.12: Magnitude and phase relationships between IM and FM in a laser subject to a modulation with
mi = 0.2,at different ωm. ωR is the resonance frequency defined by Eq. 2.41.
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Figure 2.13: Magnitude and phase relationships between IM and FM in a laser subject to a modulation with
mi = 0.5 at different ωm. ωR is resonance frequency defined by Eq. 2.41.
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Figure 2.15: Effect of IM on the spectral width and coherence length of the laser. An increase in the modulation
index (mi) brings on an increase in spectral width and a decrease of the coherence length
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2.3 OPTICAL FEEDBACK

Because of their high-gain active medium, low-Q optical cavity, and extraordinarily small size,
SCL are extremely sensitive to OF [80]. In addition, as a result of the change in reflectivity in
the facets of SCL, they are extremely sensitive to spurious reflections, which cause a fraction of
the light emitted by the laser to re-enter the laser cavity. Surprisingly, levels of emitted field fed
back into the cavity below -90 dB, which correspond to reflected powers in the 1 pW range for
emitted powers in the 1 mW range, are enough to significantly change the spectral and temporal
characteristics of the laser [3]. It was shown in Eq. (2.20) that the mode emission from the laser
was dependent upon the length of the cavity in which the gain medium was placed. Hence,
altering the cavity length the mode emission is significantly changed, which for example happens
when placing an external reflective mirror at a given distance from the emitting facet of the laser.
In typical laser-based applications, like for instance in fibre optics communications, OF causes
a serious degradation of the laser behaviour when a small fraction of the emitted power is sent
back to the cavity from the laser-fibre interface. It is well known that lasers are used in a wide
variety of applications, including spectroscopy, biomedical imaging, aeronautics, environmental
sensing, or optical metrology, where the stability and reliability of the laser performance is
of utmost importance, so the influence of OF on laser performance has gained considerable
attention in the late years, as it causes a very rich and complex dynamical behaviour which
alters significantly the properties of the laser and gives rise to different applications. Therefore,
a deeper understanding of the dynamical behaviour of the semiconductor laser is required in
order to avoid, or to take advantage, of such instabilities in real world applications. This will
be covered in this Section.

The history of OF dates to 1970 when Broom et al. reported, for the first time, the obser-
vation of some dynamical effects arising in SCL coupled to an external resonator [81]. Later,
Morikawa et al. discussed the appearance of oscillations in the output of SCL subject to optical
reflections [82]. Hirota and Suematsu [83] theoretically demonstrated that conditions of OF
introduced noise in the laser. They also demonstrated that the laser’s dynamic properties, in
the presence of OF, were strongly dependent upon the distance of the external reflector from the
laser. Specifically, the behaviour was classified as being either that of a “double cavity state” or
that of an “external injection state”, depending on whether the distance to the external reflector
was smaller or greater than the coherence length of the laser. One of the most important effects
of OF described in this paper was that induced noise would be expected to play a central role
in many applications of semiconductor lasers.

Paradoxically, very soon it was realized that OF could have a beneficial effect for laser
applications. Authors in [84] used OF to enhance the longitudinal mode selection and for nar-
rowing the linewidth of the laser. Chinone et al. [85] showed an improvement of the relaxation
oscillations when the external reflector was placed at large distances from the laser, while the
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contrary, that is, a reduction in the relaxation oscillations was achieved when such distance
was less than a few centimetres from the laser. Lang and Kobayashi [30] presented a complete
theoretical model to explain the various complex phenomena arising due to the presence of
OF. Moreover, they explained several of the aspects of the basic physics of semiconductor laser
gain media which led to complex behaviour under conditions of external feedback, including
the description of the broad gain spectrum which appeared. The paper included experimental
measurements of the behaviour of the semiconductor laser subject to optical reflections from
an external mirror placed a few centimetres away from the laser. Among a number of different
interesting features of the behaviour of the device, the authors reported experimental obser-
vation of bistability, and of hysteresis effects in light output power against the drive current
characteristics of the lasers. In addition, they experimentally demonstrated that OF from an
external vibrating reflector changed the optical output power periodically (where each period
represented an amplitude of half the emission wavelength), which paved the way to use the laser
as a sensor to detect the vibration of remote external reflectors [30]. Thus, studying the OF
effects in semiconductor lasers is key due to the confluence of a number of significant features
arising from both practical and theoretical considerations if we are to develop and understand
SCL-based sensors. In particular, it is key to understand the compound cavity effects, [72] and
the Lang-Kobayashi model [30] which are discussed further in the following.

2.3.1 COMPOUND CAVITY MODEL

To consider the effect of OF, the model of the laser cavity in Fig. 2.6 is modified to include a
third external cavity, as shown in Fig. 2.16(a). In the presence of a partially reflective target
at distance Lext, an external cavity is formed in addition to the laser’s internal cavity. The
equivalent reflection coefficient (req)9 resulting from the laser’s facet r2 and the external target
rext is a complex term given by [72].

req = r2 + (1− |r2|2)rexte−jωsτext , (2.55)

= |req|e−jφeq , (2.56)

where ωs is the angular frequency of emission under OF, τext = 2Lext/c is the round-trip time
of the field in the external cavity, often called the external round-trip delay, and |req| and
φext = ωsτext are the magnitude and phase of the equivalent reflection coefficient, respectively.
Using this concept of equivalent reflection coefficient, the model now reduces to an “equivalent”
internal cavity of the laser provided that the facet reflection coefficients are chosen to be r1 and
req (Fig. 2.16(b)). Under these conditions, the phase equation (2.17) becomes

2βl + φext = 2qπ, (2.57)

9A more detailed derivation of the equation for equivalent reflectivity is described in Ch. 3, where this
compound cavity model will be expanded to include absorption and consider multiple cavities.
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(a) (b  )

Figure 2.16: Compound cavity model used to explain the effect of OF in the laser cavity. (a) Internal cavity of
the laser plus external cavity formed with the target at distance Lext; (b) Equivalent cavity.

where p is an integer, and is the round trip phase of the external cavity (that is, the phase
of the reflected field). Without loss of generality, the reflection coefficient of the facet of the
laser and the external target can be considered as a positive real number. Equating the real
and imaginary parts of Eq. (2.55), we get the in-phase ( and quadrature phase components of
equivalent reflectivity, given by [72]

Re(req) = rreq = r2 + r2κcos(ωsτext), (2.58)

Im(req) = rieq = −r2κsin(ωsτext), (2.59)

with rr
eq being the real part and ri

eq the imaginary part of reflection coefficient, and with the
coupling coefficient κ determining the fractional increase in the optical field due to the reflection
from the external target, described by

κ = (1− |r2|2)rext
r2

. (2.60)

Assuming the reflection coefficients of the facet of the laser and the external target to be real
and positive, rr

eq is seen to directly affect the gain of the laser. Using Eqs. (2.14) and (2.58);
and ln(1 + x) ∼ x (ignoring higher order terms), the change in the threshold gain of the laser
due to OF relative to the original gain, ∆gth is given as

∆gth = −2k
Γvgτl

cos(ωsτext). (2.61)

which implies that the change in gain of the laser under OF varies as the cosine of the round-
trip delay, a very relevant effect for using the laser under OF as a sensor. While rr

eq affects
the performance of the gain in the laser, both ri

eq and rr
eq contribute to the change in the

emission frequency. ri
eq, on its side, changes the phase of net reflection at mirror (z = l in Fig.

2.16) from zero to φext = rr
eq, influencing on the cavity resonant frequency. Without OF, the

resonance condition is given by 2βl = 2pπ (Eq. (2.17)). In the presence of OF, however, the
new phase condition taking into account the phase change due to the quadrature components of
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the effective reflection coefficient is 2βl+ φext = 2pπ = 2βsl (Eq. (2.57)). This implies that the
phase constant needs to adjust itself such that φext = 2(βs − β)l = 2∆βl. Using ∆β = ∆ω/vg,
we get

φext = 2∆ω
vg

l. (2.62)

Rewriting Eq. (2.62) in terms of the laser’s cavity round trip time, the change in emission
frequency due to the change in the propagation constant, ∆ωβ, is given by

∆ωβ = φext
τl

= −κ
τl
sin(ωsτext). (2.63)

In addition to the phase change introduced in the external cavity through ri
eq, the in-phase

component rr
eq that changes the threshold gain of laser (Eq. (2.61)) has its own relationship

with the threshold carrier density, described through α. This change in the threshold of the
carrier density contributes to an additional phase change, and hence shifts the emitted frequency.
For small changes, the differential gain is approximated as a ∼ ∆g/∆N [1]. Using Eq. (2.61),
the change in carrier density at threshold, ∆Nth, is determined as

∆Nth = −2κ
Γvgτla

cos(ωsτext). (2.64)

Using Eq. (2.47), the induced change in frequency emission due to carrier concentration ∆ωN
becomes

∆ωN = −α κ
τl
cos(ωsτext). (2.65)

Adding Eqs. (2.63) and (2.65) and using asinθ + bsinθ =
√

(a2 + b2)sin[θ + tan−1(b/a)], the
total change in emission frequency due to the presence of OF is written as

∆ω = −κ
τl

√
1 + α2sin(ωsτext + tan−1α), (2.66)

where ∆ω = ωs − ω0 is the change in emission frequency due to the presence of OF. It is
convenient to rewrite Eq. (2.66) in terms of the change in frequency in the argument of the sin
function as well, yielding

∆ω = −κ
τl

√
1 + α2sin(∆ωτext + ω0τext + tan−1α). (2.67)

Multiplying Eq. (2.67) by τext, we get the expression for the excess phase introduced in the
system due to OF,

∆φext = −Csin((ωs − ω0)τext + φ0), (2.68)

where ∆φext = φs − φ0
’, and φs = ωsτext and φ0

’ = ω0τext are the phases of the OFS under
feedback, and in absence of OF10, respectively. The feedback coefficient C and the feedback

10A condition often called the free running state of the laser, or the standalone laser
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Figure 2.17: Effect of the feedback coefficient C on the number of modes allowed in a cavity under feedback.

phase φ0 [86] are given by

C = −κτext
τl

√
1 + α2 = −(1− |r2|2)rext

r2

τext
τl

√
1 + α2. (2.69)

φ0 = ω0τext + tan−1α. (2.70)

Eq. (2.68) is thus a nonlinear equation, and its graphical solution is the value of the abscissa
where the ordinate becomes zero. The variation of excess round trip phase ∆φext as a function
of the change in emission frequency (ωs − ω0) due to OF is shown in Fig. 2.17. It is observed
that the solution of Eq. (2.68) determines a very limited number of allowed steady state solu-
tions, corresponding to the number of possible emission frequencies ωs, which are conventionally
referred to as the “modes” in the cavity. The number of solutions of Eq. (2.68) is thus strongly
dependent upon the feedback parameter C and the initial phase φ0 [87]. For C < 1, there is
only one solution to Eq. (2.68) and only one mode exists in the cavity, but as the value of
C becomes greater than 1, multiple solutions to Eq. (2.68) may appear, making the laser to
behave as a multimodal system. Such multimodal behaviour gives rise to relevant experimental
phenomena, being the most important in practice the presence of mode competition, so the
mode having highest gain and/or minimum linewidth becomes the dominant one [72]. The
existence of feedback levels where two or more modes can simultaneously exist leads also to
different nonlinear phenomena, such as mode beating or hystheresis. These are the conditions
for C-OF.

Proceeding similarly, when under the presence of both IM and OF, there is an additional
frequency shift due to injection modulation, which is added to Eq. 2.66 in order to get the
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equation for frequency emission for CWFM-OF [52], which stands as

ωs − (ω0 + 2πΩf im(t))τext = −Csin(ωsτext + φ0), (2.71)

where Ωf is the frequency modulation coefficient of the laser in (Hz/mA), and im(t) is the
modulation current. It should be emphasized that the phase equation in the case of CWFM-
OF (Eq. 2.71) has significant differences when compared to that of C-OF (Eq. 2.71), due to the
additional term containing Ωf . Such phase equation has thus different boundary conditions and
different laser response as compared to C-OF. The entire Chapter 5 of this Thesis is dedicated
to perform a thorough analysis of the laser dynamics for the case of CWFM-OF, and to compare
them to the temporal and spectral properties of the laser with C-OF. Such comparison, to the
best of our knowledge, is performed for the first time from the laser sensor point of view.

Even though the above detailed analysis was made for a laser of a Fabry-Perot (FP) type,
it holds equally true for vertical cavity surface emitting laser (VCSEL) and DFB lasers as
well [88, 89]. The detailed analysis of the effect of OF in DFB lasers has been studied in [90].
The sensitivity of these lasers to OF is dependent upon the coupling coefficient (κ) and feedback
strength (C). If lasers are to present low sensitivity to OF, the reflection coefficient of the exit
facet r2 of the cavity must be large. This is justified from Eq. (2.60), which suggests that as
r2 increases, the coupling coefficient κ decreases. Such low sensitivity can also be attained by
making the laser cavity longer (given the external round trip delay is fixed) hence decreasing
the feedback coefficient C (Eq.(2.69)). Since the effective internal round trip delay within the
laser cavity in the case of a DFB laser is smaller than in a FP laser of the same cavity length
(l), this gives a higher feedback coefficient in DFB lasers. In the case of VCSEL, on one hand,
its short cavity length make it sensitive to the OF, but on the other hand, its high reflective
facet degrades its response to OF. In addition, as VCSELs are grown on (001) substrate, they
lack strong polarization anisotropy and may undergo polarization switching and degrade its
performance when subjected to OF [91]. Thus DFBs are more sensitive to OF when compared
to FP and VCSEL.

2.3.2 THE LANG-KOBAYASHI MODEL

Although the effects of OF on the operation of a semiconductor laser had been studied earlier
[81, 92], the 1980 paper by Lang and Kobayashi [30] is generally considered a milestone in the
sense that it settled the basis for the initiation of enormous research efforts devoted to studying
in depth optical-feedback effects from both theoretical and experimental sides. Essentially,
Lang and Kobayashi showed that a semiconductor laser, when subject to external OF, can
show multi-stability as well as hystheresis features, analogous to those occurring in a nonlinear
Fabry-Perot resonator. The presence of a reflecting surface outside the laser cavity creates an
external cavity, which has its own longitudinal modes with a frequency separation 1/τext. The
existence of two sets of longitudinal modes leads to a competition between the laser cavity (with
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a much larger mode spacing) and a passive cavity (no gain in the external cavity), each having
its own resonances. Although the results obtained by the Lang-Kobayashi model are exactly
the ones obtained using the compound cavity model (Sec. 2.3), this model better describes the
situation in a SCL, and it additionally helps to explain other non-linear phenomenons in the
cavity such as LFF, period doubling and chaos, to name a few. However, all these phenomena
lie outside the scope of this PhD.

The basic concept of the Lang-Kobayashi model lies in studying the non-linearity induced in
the laser due to OF by modifying the rate equations of the standalone laser ((2.10) and (2.11))
to accommodate OF.

dE(t)
dt

= 1
2(1− jα)Γvga(N −Ntr)E(t) + γfbE(t− τext)ejω0τext , (2.72)

dN(t)
dt

= ηiI

qV
− N(t)

τ
− [ 1

τp
+ Γvga(N −Ntr)]E(t)2, (2.73)

where γfb = κ/τl is the feedback rate, understood as the increase in the optical field per
unit round trip time of the internal laser cavity due to feedback. The steady state solution is
obtained by equating the Eqs. (2.72) and (2.73) to zero. It is shown in [93] that the phase
equation obtained is the same presented in Eq. (2.68). Further, the phase modulation resulting
from OF causes the intensity modulation as well, [93, 94]

Ps(t) = P0(1 +m(F (ωsτext))), (2.74)

where Ps(t) is the power emission from the laser under feedback; P0 is the power emission from
the solitary laser, m is the modulation index as a result of OF effect, and F (φ) is a function
of the feedback phase, whose shape depends upon the feedback strength. For low feedback
strengths C << 1 (very weak feedback regime), the shape of OFS is a cosine. Increasing the
feedback strength to C < 1 (weak feedback regime), the shape of OFS starts to deviate from a
pure cosine as some inclination appears during the transitions. Further increasing the feedback
coefficient to 1 < C < 4.6 (moderate feedback regime) the inclination increases to eventually
become triangular and exhibits hystheresis. At C > 4.6 (strong feedback regime), mode hopping
is observed and the OFS becomes chaotic. [86, 95].

2.3.3 CLASSIFICATION OF OPTICAL FEEDBACK

Authors in [3] studied the effect of OF on 1.5µm DFB lasers. It was observed that there
exist five regimes of the laser behavior with clear transitions from one to another, depending
upon the feedback power ratio and the distance of the laser to the external reflector. The five
regimes are schematically depicted in Fig. 2.18. Regime I corresponds to low feedback levels,
and is characterized by C < 1. The spectral broadening and narrowing of the emission occurs
depending upon the phase of the reflected optical field. A change in spectral width of 30%

39



was observed at a distance of 40 cm with feedback power being -80 dB. This corresponds to a
reflected power of 10 pW when the emitted power out of laser is 1 mW. It should be noted that,
the further the external reflector, the smaller should be the feedback level, so that the laser will
be expected to lie in this regime. For most of the metrological applications of our interest, it is
desirable to work in this regime [50].

Regime II is characterized by (C > 1), where in principle multiple modes in the cavity may
be allowed to exist. The observable phenomenon includes the presence of hopping between the
different modes which solve the excess phase equation. However, the external cavity length
can be adjusted so a particular mode attains the minimum spectral width, or the minimum
threshold gain compared to other competing mode, so with the maximum reduction in spectral
width it will become the dominant stable mode. It is shown in [72] that the mode with minimum
spectral width is more stable than the one with minimum threshold gain. In addition to mode
hopping, mode splitting was also observed depending upon the feedback level and the distance
to external reflector. If we further increase the feedback level (from -39 dB to -45 dB), mode
hopping is supressed, and the laser operates in a stable mode whose characteristics do not change
with the distance to the target. These phenomena are characerized by regime III. Regime IV
is the region of coherence collapse. The spectral width becomes so wide that the laser is no
longer coherent, and emits radiation of different wavelengths. This regime is not affected by the
change in the distance from the laser to the target, and is only dependent upon the feedback
level. Finally, regime V is observed when the feedback dominates the field inside the cavity. This
is achieved when rext >> r2. Similarly to Regimes III and IV, the characteristics of the laser in
this regime are independent of the distance to the external reflector, and is solely determined
by the feedback level.

2.4 APPLICATIONS OF OPTICAL FEEDBACK

The effect of OF on the laser dynamics was studied as early as the invention of the laser
itself. This was first discovered by King and Steward as early as in 1963 to induce intensity
modulations of the laser. It was found that each modulation period corresponded to a λ/2 optical
displacement of the external reflector [25]. In 1968 Rudd reported detection of the Doppler shift
due to the displacement of the remote reflector in gas lasers [96]. Later on, a complete self-
aligned interferometer for measurement purposes was presented by Donati in 1978 [97]. OF
injection causes rapid intensity modulations of the laser through the interference between the
incident lasing field and the frequency shifted (due to target motion), extremely weak reflected
field injected back into the laser cavity. Such modulations and are detected by either a built
in monitor photodiode or the junction voltage fluctuations [97]. Since then a lot of theoretical
and experimental work has been done to use OF in diverse fields of application. In electrical
engineering, it has been used to measure the motor shaft runout in an electric motor [98], and
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Figure 2.18: Feedback regime of 1.5µm DFB lasers (after [3]).

the shaft trajectory in synchronous motors [99]; in civil engineering, it has been used to measure
beam deformation [100]; in biology, for tissue imaging [101] and tomography [102, 103], or for
non-invasive measurements of blood flow rates [8,61]; it has also been used for the determination
of the parameters of lasers [104–106]. Generally speaking, it has been used for the measurement
of a large number of other different quantities and applications, inclusing distance [107–110],
displacement [111], vibration [112], velocity [113], pressure [114], strain [55], hole depth during
laser-based ablation [115]; imaging [52], or acoustic field measurements [7]. A comprehensive list
of applications of OF in real world applications can be found in [89], among other sources. In the
following we will briefly overview some of the most general parameters, that is, measurements of
displacement, velocity, absolute distance, and the applications of the technique more close to the
ones in this Thesis, including acoustic fields, biomedical applications, and laser characterization,
reviewing the main features of the sensing technique in each case.

LDPD
Target

Oscilloscope

Figure 2.19: Block diagram for OF based Displacement. LD; PD.
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2.4.1 DISPLACEMENT

It was shown in Sec. 2.3.2, Eq. (2.74) that the OF causes the frequency of the laser, its
phase and ultimately its emitted power to modulate. This property is used easily to measure
the displacement of a remote vibrating target with just an laser diode. The block diagram to
use OF to measure displacement is shown in Fig. 2.19. Suppose the target is vibrating i.e.
that the external cavity is no longer constant but a function of time Lext(t). Then the round-
trip delay in the external cavity is no longer a constant but a function of time τext(t). Thus,
the continuously delayed reflected field causes an interference pattern when it beats with the
stationary field inside the laser cavity. The condition for maxima and minima corresponding to
the phase change of 2π can be found by equating the argument of Eq. (2.74) to 2π, we get

ωsτext = 2π, (2.75)

since the frequency change due to OF is very small (ωs − ω0)/ω0 << 1, we can assume for
simplicity that ωs ∼ ω0. Then the above equation becomes,

Lext = λ0
2 . (2.76)

It is evident from Eq. (2.76), that for every displacement of the target equal to half the emission
wavelength, the phase of the OF signal will change by 2π, which will be seen as a fringe in the
OFS. Thus, by counting the fringes, the target displacement can be easily retrieved. This
methodology of FC to measure the target displacement was first proposed by Donati [97].

The experimental set-up to measure the displacement is normally similar to the one present-
ed in Fig. 2.19. As an example of typical performance, one simple experimental measurement to
show the method is presented. A Hitachi HL6501 0.65 µm band Aluminium Gallium Arsenide
Phosphite (AlGaAsP) LD with a MWQ structure is used, although several other laser families
and geometries could equally serve for our purpose. For this laser, the emission wavelength (λ0)
was 692 nm. The light emitted from the LD was then focused on the target using a Thorlabs
352240 lens with focal length of 8 mm and numerical aperture of 0.5. A piezoelectric linear stage
(PI-LISA P-753.3CD) was used as target [4]. The conversion ratio from voltage to displacement
for this transducer is 3.8 µm/V. A triangular-shaped voltage of amplitude 1V pp is applied to
the piezo resulting in a displacement of 3.8 µm pp (Fig. 2.20 (b), solid line). The OFS resulting
from the target motion is shown in Fig. 2.20 (a). From Eq. (2.76), each fringe corresponds to
λ0/2 of target displacement, so a total of ten fringes in one ramp gives the amplitude of target
vibration is 10 × λ0/2, which results in 3.8 µm pp as expected, and a complete displacement
reconstruction presented in Fig. 2.20 (b), dashed line.

This is thus a very a direct method to measure the target displacement, or any equivalent
change in OPD between the laser and the external target. The method is, however, limited
by the resolution and accuracy of λ/2. Very important research efforts have been devoted to
improve this limited resolution, which are briefly overviewed along section 2.5.1 and 2.5.2. This
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thesis is, partially, devoted to present a method to increase the resolution of the OFI sensor
beyond this limit of half the emission wavelength.
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Figure 2.20: Displacement measured using a general OFI sensor; (a) Experimental results for displacement in
the example described in the text. (b) Displacement of the piezo (dash) resulting from applied voltage [4].

2.4.2 VELOCITY

Several sensors based on a myriad of measurement principles are used today in industry. Induc-
tive, magnetic, capacitive, or photoelectric sensors are good examples of this [116]. Accelerom-
eters are a type of sensors widely used to measure the vibration of an object in terms of its
acceleration, which later can be converted into velocity or displacement by integration when
required. However, accelerometers are contact based sensors, which distort the measurements of
acceleration due to its presence, an effect which is critical in several applications. Non-contact
sensors are required to overcome this problem, and obviously laser Doppler velocimetrys (LD-
Vs) are one of the best suited candidates for it. In addition to being non-contact, LDV can
be directed at objects under test which are difficult to access, or which are either too small or
too hot to attach a physical sensor. LDVs, then, do not cause mass loading of objects under
test, which is especially important for micro electro mechanical systems (MEMS) devices. LDV
are basically interferometers which measure the Doppler shift of light when reflected back from
vibrating objects [117]. A variety of LDV systems have been developed to measure vibration
parameters, typically displacement, velocity or acceleration under single point, scanning, 3-D,
rotational, multi beam, differential, and continuous scan LDVs arrangements. OF based in-
terferometry adds on to this list, as OFI based LDVs has been demonstrated by a number of
scholars and researchers [96,118–124].
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The same set up we built in the former paragraph to demonstrate displacement measurement
(Fig. 2.19) is used for OF based laser velocimetry as well. The basic principle of measuring the
target velocity is based on the principle of Doppler shift in the emission frequency resulting from
a moving target. The optical field emitted by the laser, when reflecting onto the non-stationary
target is subject to a Doppler shift proportional to the velocity of target. This reflected and
Doppler-shifted field interferes with the “stationary" field inside the laser cavity, resulting in an
OFS whose frequency is shifted by the Doppler frequency. The resulting OFS is detected by the
PD embedded at the rear of laser, as in the case of displacement measurement or the junction
voltage changes, which when processed in the frequency domain outlines clearly the Doppler
frequency, proportional to the velocity of the target through

fD = 2vt
λ0
cos(θ). (2.77)

where fD, vt, λ0, and θ are the Doppler frequency, the velocity of the target, the emission
wavelength and is the angle between the laser beam and the target motion (in this case it is set
to π/2) respectively. Using the OFS presented in Fig. 2.20 (a), the velocity of target vibration
is directly found by performing its Fourier transform and results are presented in Fig. 2.21).
The sharp peak at the Doppler frequency, fD = 440 Hz is clearly observable (stressed using the
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Figure 2.21: Experimental results of OF based velocimetry. A sharp peak in the spectrum of OFS correspond
to the Doppler shift due to relative velocity between the laser and the target. The dashed line demonstrates the
experimental width of the spectrum.

dashed line in 2.21 ). Using Eq. (2.77), the velocity of target motion is found to be 152 µm/s.
This is in exact match with the one recovered from the measured displacement in Fig. 2.20 (b)
(since the target moves 3.8 µm in 0.025 s, the velocity is 152 µm/s).
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2.4.3 ABSOLUTE DISTANCE

The basic principle behind distance or range calculation is to project some type of electromag-
netic field (either optical, radio or ultrasonic waves) on a distant target and then process the
field back-reflected from the target in order to estimate the range to the target. Among the oth-
er types of electromagnetic field used in the measurement of absolute distance, th optical field
presents added advantages in terms of its resolution (because of its shorter wavelength), and its
relatively longer range (because of long coherence length, and the ability to focus sharply using
lenses) [125]. Absolute distance measurements based on optical methods can be categorized
essentially in in three main types: time-of-flight, triangulation and interferometry [5].

Fig. 2.22 (a) shows the block diagram of a time-of-flight set-up. This method os based on
detection of time delay between the emitted pulse and reflected pulse from the distant target.
The distance is then calculated by R = c∆τ/2, where R is the distance to the target, or range;
∆τ is the time interval between the transmitted and reflected pulses; and c is the and velocity of
light in medium (normally air, but also water and other media, depending upon the application).

The optical power in the reflected signal in the case of the time-of-flight technique decreases
rapidly, specially under highly scattering media. In order to increase the dynamic range and
resolution, other approaches such as FMCW radar are used. The basic principle of FMCW
radar is shown in Fig. 2.22 (b). The method is based on the FM of the radar signal introduced
by the modulation of injection current (Fig. 2.9).

Referring to Fig. 2.22(b), frequency sweeping of the emitted optical field is accomplished
by modulating the injection current of a tunable laser, which results in a frequency modulated
continuous signal. The reflected optical field from the reference mirror and the object (the
distance between the beam splitter and mirror being a known quantity) causes beats in the
external photodiode at an intermediate frequency (fif ) which is related to the distance of
object compared to the known reference mirror (R) as

fif = ∆frτ
Tm

= 2∆frR
cTm

, (2.78)

where ∆fr is the change in the frequency and Tm is the modulation period. These interferometric
signal, typically set in a Michelson configuration, carries information on the difference in length
of the reference and measuring arms of the interferometer. This method can have a high
accuracy, but at the expense of a quite complex experimental set-up [5].

Based on the principle of FMCW radar, and taking advantage of OF, the set-up for an OF
based range finder is shown in Fig. 2.23. The setup is obviously much more compact, without
need of any isolator, beam-splitter, or the rest of optical elements required for FMCW radar
(Fig. 2.22 (b)). The working principle of a OF based range finder is based on the modulation of
the frequency of the emitted optical field by a sawtooth (or triangular) waveform, which results
in a frequency modulated signal, equivalent to that in the FMCW radar. This FMCW signal
is incident upon the distant target. The reflected and delayed FMCW signal is then fed back
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(a)

(b)

Figure 2.22: Block diagram of optical method to measure the distance of target. (a) time-of-flight (b) FMCW
radar [5].

LDPD
Target

Oscilloscope

Modulator

Figure 2.23: Block diagram of OF based range finder.

to the laser cavity where it beats together with the optical field in the cavity. This, of course,
differs with the FMCW radar principle, where the reference and object beam are separate and
interfere on an external photodiode. Such beat in the cavity causes an interference pattern and
a number of fringes appear, which are detected by the either internal monitor photodiode of
the laser package or the variations in the junction voltage. Let us suppose that Nf fringes are
produced in the interference pattern we just described. Referring to Sec. 2.3.2 (Eq. (2.74)), the
change in phase of the OFS due to the change in wavelength described by injection modulation
is [6, 120,126]

dNfφs
dλ = d

dλ(4πNf

λ0
Lext) = −4π

λ2 Lext. (2.79)

Since the phase difference between consecutive fringes is 2π, it can be equated to 2π in Eq.
(2.79). The distance to the external target Lext is

Lext = λ2
0

2dλNf = λ2
0

2ΩλAm(pp)Nf , (2.80)

where λ0 is the emission wavelength, dλ is the change in wavelength emission, Ωλ is the wave-
length modulation coefficient of the laser, and Am(pp) is the amplitude of the modulation
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current. The resolution (r) of this measurement method is thus

r = λ2
0

2dλ. (2.81)

Similarly, in terms of the frequency sweep ∆fr, and the frequency modulation coefficient Ωf ,
Lext is given by

Lext = c

2∆f Nf = c

2ΩfAm(pp)Nf . (2.82)

Beheim and Frietch in 1986 laid the theoretical and experimental results which demonstrated
the use of OF combined with FM to measure the distance [6]. Groot et al. implemented the
sensor experimentally and measured the range of a distant target at distances from 0.25m to
2.35m with an accuracy of 2 cm [120]. Norgia et al. in 2007 improved the resolution to 0.3 mm
by working under a closed feedback loop [110].

As in previous sections, an experiment based on the set-up in Fig. 2.23 with parameters
λ0 = 826.2 nm, Lext = 7 cm, Ωλ = 0.005 nm/mA, Am = 13.36 mA is performed as an example.
Results are presented in Fig. 2.24 (a). The number of fringes in each ramp Nf = 13 is clearly
visible. Using Eq. (2.81), the resolution of this sensor is calculated to be 5 mm, and using
Eq. (2.80), the calculated distance is 6.64 cm (compared to an actual value of 7 cm), giving an
error of 3.6 mm. For comparison purpose only, the equivalent waveform obtained in the original
paper is presented in Fig. 2.24 (b) [6].

(a)
(b)

Figure 2.24: Experimental results for OF-based absolute distance measurement: (a) Experimental results de-
scribed in the text; (b) Original experiment at [6] .

2.4.4 IMAGING OF ACOUSTIC FIELDS

The need for sensitive methods of detection and visualization of acoustic surface perturbations
has grown with the increasing interest of fields such as acoustic holography [127, 128], ultra-
sonics or acoustic surface wave devices [129], acoustic trapped energy resonators [127], or laser
ultrasonics [130]. In acoustic holography, the bulk wave emanating from the transducer incides
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upon the surface of the target. Such incident acoustic pressure wave causes instantaneous sur-
face displacement, transferring the acoustic pattern to the interrogating optical beam, which
when processed reveals the acoustic hologram. For ultrasonic or acoustic surface devices, the
vinration of the membrane reveals important information, as power flow or attenuation, which is
important to design and manufacture transducers and detectors. In trapped energy resonators,
the surface perturbations reflect the pattern of acoustical localization, which is essential to
them. In special advanced methods for dynamics testing, e.g. dynamic displacement and/or
vibration of membranes of MEMS devices , ultrasound or acoustic transducers are necessary
to develop reliable, marketable products. The purpose of testing is to provide a feedback to
design and manufacture process. In order to fully understand the behaviour of many devices e.g.
micromachined mechanical devices, such as those used to generate and detect acoustic or ultra-
sound is thus necessary to be able to measure their dynamic displacement behaviour [131,132].
Further, laser-induced ultrasound (laser ultrasonics) is currently an state-of-the art method for
non-destructive testing of weldings and materials, where the detection of surface acoustic waves
induced by a ns laser pulse is used to investigate inner structural defects [130].

Optical methods permit to study the acoustic waves at any point in or on the specimen in al
the cases cited, without either absorbing or interfering with the acoustic waves in any way.The
use of lasers or optical methods to detect acoustic waves is an emerging area of research. There
are various techniques used to detect the effect of the acoustic perturbations on the light beam
and to relate the results to the acoustic field parameters. One of the optical methodologies to
detect the membrane vibration is the use of coherent laser sources as a probe to measure the
amplitude or phase of the displacements induced by the acoustic wave. If the cross section of
the sampling beam, or the spot size of the probing beam is small compared to the wavelength of
the acoustic field as it appears on the sampled surface, the acoustically induced temporal and
spatial variations are coupled to the phase of the reflected beam, and the information related to
the amplitude variations normal to the surface can be deduced by simple phase demodulation
techniques or phase to intensity modulation interferometric techniques. Several optical methods
have been used to characterize the acoustically perturbed surfaces. Optical interferometry
has been used for the accurate detection of displacements in microscale devices, in particular,
interdigital phase sensitive diffraction gratings enabled the implementation of interferometric
detection in atomic force microscopy units and in very sensitive accelerometers [133]. The
displacement of the membrane of the micromachined capacitive acoustic transducers has been
performed with interferometric detection techniques [134]. Authors in [135] used the optical
heterodyne technique to measure and characterize surface acoustic wave (SAW) devices. The
classical knife-edge technique has been also used to measure the tilt of the surface [129]. An
amplitude grating technique for detecting the phase and the amplitude of a particular spatial
frequency component in the perturbation [136]. Optical superheterodyning techniques have
also been used to measure the displacement directly [137–139]. A review of the available optical
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(a) (b)

Figure 2.25: Imaging an acoustic field using OF. (a) Schematic diagram; (b) Experimental image of the detected
acoustic field [7].

methods to extract acoustic related parameters is provided in [139]. However, despite the many
techniques available to probe the acoustic parameters optically, most of them are complex, bulky,
use several electrical and optical components, which present issues related to the alignment,
robustness and performance of setups. For instance, the problem with the optical heterodyne
technique is the complexity, extensive use of optical and electrical devices and components in
the experimental set-up followed by a signal processing step. The experimental set up consists
of a frequency shifter (an acoustic-optic modulator) and a lock-in amplifier to lock the output
signal at a particular frequency and so increase signal to noise ratio (SNR).

Quite recently, Bertling et al. [7] used OF to measure the variation in the local pressure
associated to the acoustic wave, permitting its reconstruction as a 2D image without the re-
quirements of the complex setups typical of the methods mentioned above. They used the
principle of optical path change (in particular, the change in refractive index) due to compres-
sion and rarefaction of a media when a sound or acoustic wave propagates through it. Fig.
2.25 (a) shows the schematics of an experimental set-up for imaging an acoustic wave. The
ultrasonic transmitter was placed midway (z = 150 mm) between the laser (z = 0 mm) and the
retro-reflective screen (z = 300 mm), at a height of 110 mm above the surface of the optical
table, in order to produce a sound wave propagating in free-space which travels perpendicular
to the axis of propagation of the optical beam. The acoustic wave propagating through the
medium between the laser and the reflective surface changes the effective refractive index of the
medium, and also the phase of the OFS, and ultimately its amplitude. The field distribution
resulting from a 101× 101 pixel scan area in a 40 mm×40 mm area is show in Fig. 2.25 (b).

2.4.5 BIOMEDICAL APPLICATIONS

Owing to its simple, self-aligned, and compact structure, OF has been widely used in the
biomedical field to measure the blood flow noninvasively since some years ago [8, 61, 101, 102,
140, 141]. The flow measurements are based on the same principle of velocity measurement
already discussed (Sec. 4.26). Fig. 2.26 (a) shows the principle of blood flow measurement
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(a) (b)

Figure 2.26: Principle of blood flow measurement using OFI. (a) Schematicsof the setup; (b) Experimental results:
with the increase in blood flow, the Doppler frequency increases corresponding to larger velocity. [8].

and 2.26 (b) the Doppler shift in OFS due to blood flow, where information about the blood
flow velocity may be retrieved [8]. Using a single-channel OF laser vibrometer, Hast et al. [141]
measured the Doppler signal of the cardiovascular pulse in radial arteries of the forearm. Norgia
et al. used a single channel OF based sensor to measure the transfer impedance of the respiratory
system by a forced oscillation technique [142]. The transfer impedance is important in the sense
that it provides information on tissues and airways, and is useful for assessing the mechanical
properties of lungs and a number of associated disorders. Dean [143] has proposed OFI detection
of T-waves. The application is about sensing with a QCL (in Tera Hertz (THz) regime), with the
prospect of using them as an optical radar on living tissue, targeting the detection of skin cancer.
Alternatively, Kayaozdemir et al. used the speckle phenomenon in an OF to measure the blood
flow non-invasively [144]. Norgia et. al used OF to measure blood flow in an extracorporeal
circulator [145]. Milesi et al. used OF to measure the displacement of chest walls for the
monitoring of respiration, with a resolution as small as 400 nm, and validated the results both
in vitro and in vivo on seven healthy volunteers [146]. A thorough review of a number of current
research activities around OFI in biosensing is found in [76].

OF has also been used in conjugation with several other techniques in the field of microscopy,
in a very promising combined approach. Blaize et al. proposed OF based laser imaging for
scattering type scanning near-field optical microscopy (SNOM). They implemented an ultra
sensitive imaging method by combining a SNOM with optical heterodyne interferometry and
the dynamic properties of the laser under feedback [147]. Authors in [148], taking advantage of
the high sensitivity of the frequency-shifted feedback laser and the axial positioning ability of
confocal microscopy developed cross-sectional imaging in highly scattered media with an axial
resolution better than 2 nm.
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2.4.6 LASER CHARACTERIZATION

Amongst the diverse applications of OF, it is also quite relevant and frequent its use to measure
and characterize different parameters of the laser itself. Several authors have demonstrated
measurements of the LEF α using OFI [104–106,149–153]. In a recent approach, Fan et al. [154]
proposed a simple solution independent of C to measure α, using two independent OFS. In that
approach, it was shown that the phase of the OFS under feedback and that of the free-running
laser intersect when the condition φs = pπ − tan−1α is met. By further investigating the
relationship between light phase and emitted power, α could be measured from the combination
of the power values of two OFS, acquired under two different optical feedback strengths. The
intersection point of the two OFS was computed by checking the zero crossing point and then
Eq. (2.83) was used to compute α from OFS Ps as

α =
√

1
P 2
f

− 1. (2.83)

So at each zero crossing of OFS, α was measured. In case of multiple zero crossings, the
arithmetic mean gave the value of α of the laser under test.

2.5 IMPROVING THE PERFORMANCE OF OFI

The extraction of the measured physical parameters with the utmost accuracy and resolution
is a desirable property of all instrumentation and sensors; so it is for OF-based sensors. Gen-
erally speaking, two approaches are taken to increase resolution and accuracy of the measured
parameters: (a) using external hardware and devices to improve the setup and (b) signal pro-
cessing. Both are briefly overviewed in the coming paragraphs. The former causes set-ups to
be more bulky, expensive and difficult to operate and align, while the latter attains improved
results keeping the setup simple and compact, normally at the price of increased processing
time. Since a relevant part of this thesis is devoted to OFI sensors of improved resolution,
and to enhanced signal processing procedures of the OFS, a brief overview of the state of the
art regarding experimental setup with extended properties, and of signal processing techniques
applied to OFS is presented. The main trends within signal processing in OFS involve man-
aging noise in the signal, dealing with speckle effects, and increasing the resolution and/or the
accuracy of the measurements, hence extending the range of applications of OFI-based sensors.

2.5.1 EXTENDED EXPERIMENTAL SETUP

Addy et al. [60] in 1996 reported that the frequency of the fringes of an OFS can be doubled
because of the misalignment of the external reflector to attain a resolution to λ/4. However,
the doubled fringe was observed to be independent of the external cavity length on a scale of
approximately 1 mm only, so it could not be used for a displacement measurement beyond that.

51



Servagent at al. in 2000 used an electro optic modualtor (EOM) to introduce an additional phase
change in OFS to that produced by the target vibration. The comparison between the OFS
before and after the phase shift allowed to measure the displacement with resolution of λ/4 and
with an error of 65 nm. In addition, using five sets of phase-shifted OFS, and comparing among
them, the error was reduced to λ/20 ≈ 40 nm [155]. Liu et al. [156] in 2003 also demonstrated
doubling the fringe frequency by putting a quartz crystal plate in the external cavity at a specific
angle between the crystalline axis and the laser beam, getting displacement measurements with
a resolution of λ/4. Mao et al. in 2006 [58] doubled the fringe frequency using a folded feedback
cavity formed by a hollow cube corner prism (HCCP), decreasing resolution to λ/4. Tan at
el. in 2007 [59] used single-mode Nd-YAG laser with a birefringent waveplate in the external
cavity. Because of the birefringent effect, two kinds of light could be fed back into the laser
cavity by an external feedback mirror and modulate the laser intensities in two orthogonal
directions resulting in a resolution of λ/8 in the measurement of target displacement. Further,
using orthogonally polarized dual frequency Helium-Neon (He-Ne) lasers, a resolution of λ/16
in target displacement was attained. Fei at el. in 2006 [157] used a He-Ne laser and tilted
the target (in this case, a mirror) to reconstruct the displacement with resolutions down to
λ/80 ≈ 7.91 nm resolution. They observed that by tilting a highly reflective target, the fringe
count could be made 40 times larger than the normally available fringes, so as a result each
fringe corresponded to λ/80. The drawback of this last method was the fact that the number of
fringes was dependent upon the separation of the laser and the target, so when keeping the tilt
angle of the target fixed, an increase in the separation of the laser and the target meant that
the fringe count decreased.

So far, the techniques mentioned above increase the resolution of displacement calculation
provided that the amplitude of the target displacement is greater than half the wavelength of
emission. A different approach based on the active heterodyne technique 11 was proposed to
measure displacements of the target smaller than half the emission wavelength [158]. In that
technique, the authors used a pair of laser diodes, each with its own external cavity. The first
was used as a reference having a fixed cavity length, whereas the external cavity of the second
LD (the one used for measurement) was perturbed resulting in a shift in frequency due to OF
(Eq. (2.66)). This shift is then determined experimentally using an heterodyne approach. With
this approach the authors were able to measure a displacement of 160-170 nm (≈ λ/5), with
an error of just ±5 nm [158]. However, the main disadvantage of this technique was that it
used two lasers, and its accuracy was dependent upon the precise measurement of the spectral
emission frequency and the frequency shift. Since the shift in emission frequency in the laser
due to nanometric displacements is very small (≈ MHz as compared to the conventional THz
range in emission frequency), it implied the need of a very high resolution spectrum analyzer. In

11The process of detuning the emission frequency of the laser due to the displacement of the remote target, to
then determine the shift using an heterodyne technique [158]
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addition to that, this method could only translate the beat frequency to give the peak amplitude
of the displacement, not to measure the entire waveform. Finally, using a double laser setup,
Azcona et al. in 2013 [63] retrieved the entire displacement waveform of a target wich vibrated
with amplitude smaller than half the emission wavelength, at nanometric resolution. This
methodology, which set the basis for the works in this PhD, had a number of inconveniences
which is enhanced in this work. A first discussion on this method was introduced in Chapter 1,
and will be detailed in depth in Chapter 6.

2.5.2 SIGNAL PROCESSING

The use of mathematics, statistics and algorithms to extract the information desired from the
data outcome of a physical system is a common practice to improve the results of experimental
measurements. This not only may remove the need of extensive and expensive components in
the setup, but also help the global system to perform better. This general principle also applies
to OF based sensors. On one side, OFI sensors consist of a single laser capable of measuring a
variety of physical phenomena; on the other side, signal processing of the OFS helps to make it
applicable in a number of wide and diverse fields effectively and efficiently, while maintaining
its simplicity and compactness. Thus, a great deal of research effort has been devoted to signal
processing of the OFS.

2.5.2 NOISE IN OFI

Among the different types of noise (shot noise, thermal noise, AWGN, impulsive noise, or
amplification noise to name a few), three major types are dominant in the OFS: shot noise
[159,160], AWGN and impulsive noise [9, 161].

Shot noise is an inherent property of optoelectronic devices that results from the quantum
nature of photons arriving to the photodiode. It is directly related to the amount of light
incident upon the detector. The mean squared shot noise current from a photodiode is given
by [162]

< i2n >= 2qIdcBL, (2.84)

where in is the shot noise current and BL is the electrical bandwidth under consideration
(which typically refers to the bandwidth of the photodiode or the amplifier that follows it). In
the particular case of an OF based sensor, the power of the shot noise in the weak feedback
regime has been described in [93] as

Psn = 2ηcpdηqpd
q

hfs
m < Pf > BL = 2ηpd

q

hfs
mP0BL, (2.85)

where ηcpd, ηqpd and ηpd are the coupling, quantum, and the overall efficiency of the photodiode,
respectively; fs is the frequency emission of laser under OF; and ηpd = ηcpdηqpd, and idc =

53



ηpdmP0q/(hfs). Further, the peak current (is(t)) and power (Ps(t)) obtained from the PD
embedded in the rear of LD under OF in the weak feedback regime is given by Eqs. (2.86) and
(2.87) respectively [93]

is = ηpd
q

hf0
mP0, (2.86)

Ps = i2f = [ηpd
q

hf0
mP0]2, (2.87)

where the modulation index m is

m = 2κτp/τl. (2.88)

The SNR in the case of an OF based sensor (SNRf ) with noise dominated by the shot noise is
obtained by dividing Eq. (2.87) by Eq. (2.85) so

SNRf = 1
2ηpd

q

hfsBL
P0m

2. (2.89)

Placing the value of κ from Eq. (2.60) in Eq. (2.88), the signal to noise ratio under feedback of
Eq. (2.89)) may be obtained in terms of the reflection coefficient of the target, and then given
by

SNRf = 2ηpd
q

hfsBL
P0

(1− r2
2)r2

ext

r2
2

τ2
p

τ2
l

. (2.90)

Eq. (2.89) shows that keeping the emission power constant, the SNR improves with an increase
in the modulation index. Thus, a large modulation index is desirable for OF-based sensors.
This is also intuitive because the modulation index is related to fringe visibility, so the higher
the modulation index, the larger the contrast of the interference fringes, so they can be easily
detected. Fig. 2.27 demonstrates the effect of the reflection coefficient of the external target
on the shot noise (SNR due to shot noise) on an OF based system. It is seen that increasing
rext the SNR and m both increase. However, m increases continuously with rext, but the SNR
attains saturation (SNRf ∼ −88 dB) as m → 1. This gives the minimum value of SNR that
must be maintained so the OFS can be separated from noise. To put it in another way, the
signal to noise ratio of the OFS must always be greater than −88 dB in order to be separated
from noise, and any signal below this value remains undetectable.

Let us now take a look onto the other noise classes dominant in OFI. AWGN results from two
or many stochastic processes which occur in nature, and is additive to any other noise present in
the system. AWGN is known to spreas across the frequency spectrum according to a Gaussian
function. Impulsive noise, on the contrary, appears as sharp random fluctuations consisting
of random occurrences of energy spikes of random amplitude, with an spectral content caused
by a variety of sources, such as electromagnetic interference, ill synchronization between data
acquisition devices, or even typing on the keyboard of a compute [163]. Because of its impulse
nature, impulsive noise has a wide spectrum very much dependent upon its duration and cause.

54



0 0.2 0.4 0.6 0.8 1
−120

−115

−110

−105

−100

−95

−90

−85

Reflection coefficient (r
ext

)

S
N

R
f (

dB
)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

m

 

 
m

SNR
f

Figure 2.27: Effect of refectivity of external target on shot noise the signal to noise ratio induce dby show noise
and the modulation index. The parameters used in the simulation are ηpd = 0.35, λ = 830 nm, BL = 10 MHz,
τp = 2 ps, r2 =

√
0.5; P0 = 1 mW, Lext = 10 cm, l = 10 µm, ñl = 3.5.

In general, the bandwidth of impulsive noise in the frequency domain is inverse to its duration
in the time domain. Fig. 2.28 shows the AWGN and the impulsive noise in an experimental
OFS compared to that presented in [9].

Several signal pre-processing solutions have been proposed in order to efficiently remove
these different sources of noise and so improve the SNR of the OFS. The most common has
been the use of a low-pass filter to remove AWGN. Zabit et al. in [164] proposed a moving-
average filter to remove the AWGN. A Kaiser-based FIR filter combined with a median filter
was implemented by Yu at el. [165]. Wei proposed the use of neural network interpolation [161],
and Sun, a filter based on the wavelet transform combined with a median filter [9].

2.5.2 SPECKLE IN OFI

Speckle is an intensity pattern produced by interference of multiple coherent waveforms after
scattering at a rough object. It is a result of the interference of multiple waves with the same
frequency but different amplitude and phase, which add up to produce an intensity of random
amplitude depending upon the distribution of the interfering waves, which is generally unknown
and only can be managed statistically. When a surface is illuminated by a coherent beam of
light, such that of a laser, from the theory of diffraction each point on the surface acts as a
secondary source of emission. In this case, if the separation between two points on the target is
greater than half the emission wavelength, then numerous reflected fields from distinct points
on the target reach each detector with different amplitude and phase, equivalent to different
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Figure 2.28: AWGN and impulsive noise in an OFS. (a) Experimental data acquisition; (b) Compared with that
in [9].

delays in the time domain. Such coherent reflected fields randomly interfere among themselves
and cause random fluctuations in the observed intensity. Figure 2.29 shows the irregularities
in the surface of a piezoelectric target compared with the laser spot size incident upon it. Fig.
2.30 (a) shows the resulting experimental OFS. The sharp fluctuation in intensity captured by
the photodiode results in random sharp fluctuations of the amplitude envelope of the OF signal,
which are clearly visible. Similar results were observed by [10, 166]. Since OF based sensors
are phase sensitive (basically phase modulation is turned into intensity modulation), the phase
error resulting because of the speckle effect affects the measurement as well. Comprehensive
details on how the speckle introduces error in displacement measurement has been explained by
Donati in [167], and since then different methodologies based on signal processing [62, 69] and
extensive set-up approaches [10] have been proposed.

2.5.2 RESOLUTION AND ACCURACY IN OFI

Displacement measurement is one of the most important applications of OFI-based sensing, and
has been briefly described before. In 1995, Donati et al. [50] developed a fringe counting method
based on the fact that each fringe on an OFS waveform corresponds to a half-wavelength shift

LDPD

Target (Piezo)

(a) (b)

Figure 2.29: Speckle in an OF based sensor. (a) Schematics of the OF based sensor. (b) Surface irregularities in
the target (a piezo [4]) seen under a microscope and compared to the laser spot (central above).
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Figure 2.30: Speckle effects in an OFS. (a) Experimental ; (b) Presented in [10].

(a)

(b)

Figure 2.31: FC method to reconstruct displacement with resolution and accuracy of half emission wavelength [11].
(a) OF based and reference displacement (b) Acquired OFS.

of a moving target (also described in Sec. 4.11). Fig. 2.31 demonstrates graphically how the
FC method works [11]. It is also a method easy to automate by software. The method is simple
and powerful, but only achieves a resolution of half-wavelength for displacement measurements.
Since then, a lot of the activity in the field has been oriented to increase the resolution of this
measurements, and to decrease its error.

In one of the first attempts to improve the method, Servagent et al. in 1998 linearised
the normalized optical power approximating it to an ideal sawtooth signal, demonstrating a
resolution of λ/12 [168]. In order to further increase the resolution Merlo and Donati [169]
in 1997 proposed PUM which reduced the error to only λ/67. This algorithm, however, was
limited only to C < 1. To extend this, Bes at al. in 2006 [13] extended the phase unwrapping
algorithm to values of C > 1 as well.

Zabit et. al in 2010 [12] proposed for the first time a fringe loss compensation algorithm which
allowed to compensate for fringe losses under moderate feedback conditions, where hysteresis
is present, and decreased the error in the reconstruction of displacement to λ/20 = 40 nm.
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Figure 2.32: Fringe compensation algorithm. (left) Schematics. (a) Experimental displacement retrieval; (b)
difference between the compensated signal and the reference signal [12].

Figure 2.33: Phase unwraping method. (left) Schematics. (a) Experimental displacement retrieval; (b) reference
displacement; (c) difference between them (lower) [13].

The schematics of the algorithm is shown in Fig. 2.32 (a). It is based on the principle of
comparing the sign of consecutive fringes to determine the moment when the transition takes
place. If the fringes have the same sign, this should correspond to a no transition condition,
so the slope segment 2π is chosen. Otherwise, if there is a change in the sign, a transition
must occur and a slope segment of π/2 is chosen. This has a twofold effect. First, it provides
the compensation of displacement by adding π/2 at the maximum and at the minimum of the
phase reconstructions. Second, for harmonic vibrations, it compensate the fringe-loss effect
which appears at the edges of the harmonic displacement, when the target changes its direction
of motion. The displacement retrieval based on this signal processing algorithm is superior in
terms of peak to peak error to the PUM, and as commented reduces error to 40 nm (2.32 (b)).

Bes et al. in 2006 proposed the PUM, which enabled joint estimation of feedback strength
[13] and reconstruction of the displacement, decreasing the error down to λ/20 ≈ 40 nm. The
principle of the signal processing method is illustrated in Fig. 2.33 and can be split up into
two principal steps. The first step is to make a rough estimation of the phase of the OFS,
from the standard phase equation (Eq. (2.68)), and then the phase value obtained is refined
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Figure 2.34: Improved phase unwrap method. (left) Schematics. (a) OFS; (b) Experimental displacement
retrieval using IPUM; (c) Error using IPUM (black) compared with error in PUM (grey). [14].

based on the joint estimation of the feedback strength and the feedback phase to optimize the
reconstructed phase, which contains detailed information about the target displacement. The
schematics of the signal processing technique are shown in Fig. 2.33 (left) with results in Fig.
2.33 (a) compared with the reference in 2.33 (b) and the error resulting in 2.33 (c).

In the last approach we are aware of in order to improve resolution and accuracy by signal
processing of the OFS, Bernal et al. in 2013 [14] introduced IPUM, which optimized the
PUM method we just described to decrease the peak to peak error down to just 37 nm. This
improvement was achieved based on modifications of the PUM method, which were essentially
(a) taking into account both the peak and the valley of a given fringe before normalizing;
(b) inverting the displacement obtained by PUM for correcting the phase; and (c) the joint
estimation of feedback strength and feedback phase is now used to improve the calculation of
the phase. The detailed schematics of the signal processing scheme are shown in Fig. 2.34 (left)
with the results in 2.34 (a), compared to reference in 2.34 (b) and the resulting error in 2.34
(c).

2.6 CONCLUSION

In this Chapter an overview, which combined the main theoretical aspects of the laser togeth-
er with the state of the art related to OFI measurements was presented. Starting with the
very basic principles of the SCL, the Chapter progressed towards the rate equation and the
fundamental properties which lay the foundations of this PhD work. Among different relevant
properties of SCL studied, much attention was given to the small signal analysis of laser, the re-
lationship of the frequency emission and the length of the cavity, and the modulation bandwidth
of laser and, specially, the frequency chirp introduced in the laser due to injection modulation,
used extensively in subsequent Chapters. Further, the relation between IM and FM resulting
from injection modulation was studied. These properties form the basic theory which builds
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the wideband, sub nanometric displacement sensor based on OF which is developed in chapters
to follow.

Next, among the different models used to explain OF, the two best known approaches were
analyzed in detail. Both the Petermann’s compound cavity model, and a model based on the
Lang-Kobayashi equations were explained. Among the rich dynamical behaviour observed in
the laser under OF, literature review concentrated on the works related to harnessing the OF
for developing non-contact and non-destructive photonic sensors. The comparison of OF based
sensor with that with other optical / radio frequency (RF) sensors was introduced to reflect
the advantages in terms of cost (basically converting a single SCL to source, detector and
interfering media all in one) and ease of implementation (without needing of bulky components
and necessity to align them). It was also shown that the OFI is used in a wide variety of
applications in various field e.g. absolute distance (range), displacement, imaging to name a
few. Examples of appplication of the main parameters measured were presented, and a review of
the applications more directly related to this PhD was also presented together with a thorough
review of the associated literature. In our last section, we discussed the late approaches for
improving the performance of OFI sensors, including hardware and signal processing strategies.
This sets the framework to present the main contributions of this Thesis in its proper context.
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3. Optical Feedback Based on
Scattering Theory

3.1 INTRODUCTION

In Chapter 2 (Sec. 2.3.1, Eq. (2.55)), it was mentioned that, in the case of reflection from an
external target, the equivalent reflection coefficient of the laser facet is a function of phase delay,
or equivalently of the round trip delay. However, the attenuation of the optical field, determined
by the attenuation coefficient (α) of the medium forming the external cavity was not taken into
account [72]. The attenuation of the optical field in the external cavity, among many others, is
an important parameter as it determines the fringe visibility of the OFS and ultimately enables
its detection. The dependence of the attenuation coefficient of the material forming the external
cavity (or cavities) and the reflection coefficient at the boundaries is important, in particular,
in the case of diffusive materials which need to be characterized, or when

In this Chapter, starting with the concept of scattering theory and its tool scattering (S)
matrix to represent the laser cavity with gain and loss, and the external cavities with only
losses, the associated transmission matrix (T matrix) is also presented in parallel in Sec. 3.2.
The difference between S and T matrices is that the former relates the reflected field to the
incidence field at any interface; however, the later relates the fields of one side of the interface
to the other. Both matrices are equivalently used depending upon the desired analysis of the
parameters under study. Next, the S and T matrix formalism just introduced is applied to the
laser to obtain its characteristic gain equation (Chapter 2, Eq. (2.14)) in Sec. 3.3. In Sec.
3.4, the concept is extended to OF from single cavity and the standard equation of equivalent
reflection coefficient (Chapter 2, Eq. (2.56)) is modified taking into account the attenuation
coefficient of the material found within the cavity. The detailed joint effect of the reflection
and attenuation coefficients, and their contribution to the resonance under feedback is then
studied. Next, utilizing the cascade properties of S and T matrix, the effect of OF from a single
external cavity is extended to situations where multiple cavities are involved, by just changing
the boundary conditions in a recursive way. The optimal condition for the effective coupling of
the reflected optical field from multiple cavities in terms of individual cavity parameters such
as cavity length, attenuation and reflection coefficients, or losses is studied in Sec. 3.5. Finally,
a conclusion in Sec. 3.6 ends the Chapter.
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(a) (b)

Figure 3.1: Formalization of scattering matrix. (a) Wave propagation through medium of different refractive
index. (b) Conversion to two port system.

3.2 BASICS OF SCATTERING THEORY

The scattering matrix (S matrix) relates the amplitude of the reflected and incident waves.
The scattering matrix (~S) relates the reflected (~R) and incident (~I) field as ~R = ~S~I. Scattering
matrix theory is widely used in describing the travelling wave in electrical networks with multiple
impedance mismatch. It has widely been used e.g. in microwave circuits [70]. The same concept
may be applied to explaining the optical wave propagation in the laser, and OF as well. It was
first used by Wang et al. for analysis of interferometric and ring lasers [170]. Lau et. al used it
to describe a three junction triangular ring wave guide laser [171]. [172] analysed scattering loss
in DFB lasers due to the presence of the grating. Coldren et al. used S and T matrix both to
determine the equivalent reflection and transmission coefficients in groove coupled lasers, and
two section coupled resonator systems [173,174]. In general, for a two port system like the one
shown in Fig. 3.1 (a), the reflected and incident field are related the to scattering coefficient asb1

a2

 =

s11 s12

s21 s22

a1

b2

 , (3.1)

where sij are the scattering coefficients that determine the amplitude of the field at port i due
to the incident field at port j, and are the coefficients which constitute matrix ~S, so sij ∈ ~S,
b1, a2 ∈ ~R and a1, b2 ∈ ~I. Further, each scattering coefficient sij is defined as

sij = Ri
Ij
|Ik=0;k 6=j , (3.2)

where Ri is the amplitude of the reflected wave at port i, and Ij is the incident wave at port j.
For example, consider i = 1, 2 and j = 1, 2 for a two port system (Fig. 3.1 (b)) Using Eq. (3.2),
the scattering coefficient for the two port system (Fig. 3.1 (b)) in which we have converted Fig.
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3.1 (a) is [1, 70,171]
s11 = b1

a1
|b2=0 = r = n1 − n2

n1 + n2
,

s21 = a2
a1
|b2=0 = t = 2n1

n1 + n2
,

s12 = b1
b2
|a1=0 = t′ = 2n2

n1 + n2
,

s22 = a2
b2
|a1=0 = −r,

(3.3)

where nN is the refractive index of the medium forming the medium N , r and t are the reflection
and transmission coefficients at interface 1; and t′ is the transmission coefficient at interface
2. It is clear that using the scattering matrix, the transmission and reflection coefficient are
determined in a single shot. s11 and s21 give information about the reflection and transmission
coefficient for a field incident from the left and s22 and s12 give information about the reflection
and transmission coefficient for a field incident from the right. Hence, using Eqs. (3.3) and
(3.1), the relation between the reflected and incident fields is given by S matrix as

S matrix :

b1
a2

 =

r t′

t −r

a1

b2

 . (3.4)

There is another important and related matrix which relates the quantity on the left side (the
forward wave) of the port to the quantity on the right side (the backward wave), which is the
transmission matrix ~T , mathematically explained as

a1

b1

 =

t11 t12

t21 t22

a2

b2

 , (3.5)

where tij ∈ ~T . One important feature of the T matrix is that it allows cascading of the systems
in a chain and its implementation in explaining the effect of OF on laser dynamics (explained
shortly). Further the T matrix is related to the S matrix [1] according to

t11 = 1
s21

, t12 = −s22
s21

t21 = s11
s21

, t22 = s12 −
s11s22
s21

(3.6)

and, equivalently,
s11 = t21

t11
, s12 = t22 −

t12t21
t11

s21 = 1
t11
, s22 = − t12

t11

(3.7)

Placing the value of sij from Eq. (3.3) in Eq. (3.6) to obtain tij , then Eq. (3.5) becomes

T matrix:

a1

b1

 =

1
t

r
t

r
t

1
t

a2

b2

 . (3.8)
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Lossless Media Laser cavity

(a) (b)

Figure 3.2: Schematic diagram to obtain S and T matrix for different media. (a) Lossless and continuum media;
(b) Laser cavity with gain and attenuation.

For the basic case of transmission in lossless medium without discontinuities (Fig. 3.2 (a)), the
S and T matrix are given by [1]

S matrix :

b1
a2

 =

 0 ejβl

ejβl 0

a1

b2

 . (3.9)

T matrix :

a1

b1

 =

e−jβl 0
0 ejβl

a2

b2

 , (3.10)

where β and l are respectively the phase constant and the cavity length. It should be noted that,
since the media does not have discontinuities, the coefficients sij and tij related to reflection
are set to zero in Eqs. (3.4) and (3.8) to obtain Eqs. (3.9) and (3.10), respectively. Similarly,
for the laser cavity (Fig. 3.2 (b)) the associated loss and gain are introduced and the S and T
matrix are given by

S matrix :

b1
a2

 =

 0 ejβle(Γ g2−
α
2 )l

ejβle(Γ g2−
α
2 )l 0

a1

b2

 , (3.11)

T matrix :

a1

b1

 =

e−jβle−(Γ g2−
α
2 )l 0

0 ejβle(Γ g2−
α
2 )l

a2

b2

 , (3.12)

where Γ is the confinement factor.

3.3 LASER MODEL USING S AND T MATRICES

Following the definitions in Sec. 3.3, in this section the basic laser gain equation is derived
using the S and T matrix formalism just introduced, and compared to that in Chapter 2 (Eq.
(2.14)). To do so, first the laser cavity is analyzed from the point of view of scattering theory.
Then, the corresponding gain equation is compared with the one obtained using the standard
methods available in the literature [1, 72].
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Fig. 3.3 shows a laser cavity enclosed by two surfaces named as 1 and 2. At interface 1, T
matrix (Eq. (3.8)) equals a1

b1

 =

 1
t1

r1
t1

r1
t1

1
t1

a2

b2

 . (3.13)

Between interface 1 and 2, T matrix (Eq. (3.12)) equals

a2

b2

 =

e−jβle−(Γ g2−
α
2 )l 0

0 ejβle(Γ g2−
α
2 )l

a3

b3

 . (3.14)

Finally, at interface 2, T matrix (Eq. (3.8)) equalsa3

b3

 =

 1
t2

r1
t2

r2
t2

1
t2

a4

b4

 . (3.15)

From Eqs. (3.13), (3.14) and (3.15), the relationships between the waves entering the laser
cavity and leaving it, and the overall transmission characteristics, are grouped as

a1

b1

 =

 1
t1

r1
t1

r1
t1

1
t1

e−jβle−(Γg−α) l2 0
0 ejβle(Γg−α) l2

 1
t2

r2
t2

r2
t2

1
t2

a4

b4

 . (3.16)

=

 1
t1t2

e−jβle−(Γg−α) l2 + r1r2
t1t2

ejβle(Γg−α) l2 r2
t1t2

e−jβle−(Γg−α) l2 + r1r2
t1t2 e

jβle(Γg−α) l2

r1r2
t1t2

e−jβle−(Γg−α) l2 + r1
t1t2

ejβle(Γg−α) l2 r1r2
t1t2

e−jβle−(Γg−α) l2 + 1
t1t2e

jβle(Γg−α) l2

a4

b4

 .
(3.17)

=

t11 t12

t21 t22

a4

b4

 . (3.18)

Using the boundary conditions under steady state, the standalone laser emits without light
input from the outside i.e. a4 and b1 6= 0 even though a1 and b4 = 0, i.e.

a4, b1 6= 0 | a1, b4 = 0. (3.19)

Figure 3.3: Schematic diagram of laser cavity as a two port system. Γ, β, α, n, r1, r2, have the usual meaning
defined in Ch. 2; t1 (t2) is the transmission coefficient of the first (second) laser facet (not shown in the figure).
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Using condition (3.19) in Eq.(3.18), we get 0
b1

 =

t11 t12

t21 t22

a4

0

 . (3.20)

From Eq. (3.20), we get a pair of coupled equations

0 = t11a4. (3.21)

b1 = t21a4. (3.22)

where substituting the value of t11 from Eq. (3.17) into Eq.(3.21), we get

e−jβle−(Γg−α) l2 + r1r2e
jβle(Γg−α) l2

t1t2
a4 = 0. (3.23)

Since, a4, t1, t2 6= 0, Eq. (3.23) reduces to

e−jβle−(Γg−α) l2 + r1r2e
jβle(Γg−α) l2 = 0. (3.24)

e−jβle−(Γg−α) l2 (1 + r1r2e
2jβle2(Γg−α) l2 ) = 0. (3.25)

Either,

1 + r1r2e
2jβle2(Γg−α) l2 = 0. (3.26)

Or,

e−jβle−(Γg−α) l2 = 0. (3.27)

From Eq. (3.26),

r1r2e
2jβle2(Γg−α) l2 = −1. (3.28)

And equating the magnitudes on both sides,

e2(Γg−α) l2 = 1
r1r2

. (3.29)

Γg = α+ 1
l
ln

1
r1r2

. (3.30)

Γg = αi + αm, (3.31)

where αi is the internal cavity loss and αm is the mirror loss. This equation is equivalent to
the one obtained in Chapter 2 (Eq. (2.14)). Further, equating the phase of Eq. (3.28) on both
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sides i.e. equating the phase after the round-trip to be zero (or an integral multiple of 2π)

e2jβl = e2jqπ, (3.32)

β = qπ

l
, (3.33)

∆β = π

l
, (3.34)

∆f = c

2ln , (3.35)

∆λ = λ2

2ln , (3.36)

where q is the mode number (an integer) i.e. q =1,2 ... Eq. (3.34) states that the laser cavity
acts as a waveguide which allows electromagnetic waves that differ by π/l to propagate through
it.

The different elements of the T matrix have different meanings. For instance, the parameter
t11 (t211) (Eq. (3.6)) is related to the reflection coefficient (reflectance). Further, it also gives
the information about the cavity modes allowed in the laser cavity. To better visualize the
meaning of the parameter, Fig. 3.4 is the plot of |s21| = 1/t11 obtained from Eq. (3.18) for
different phase and attenuation constants. It is observed that only those modes that are integral
multiples of βl/π are promoted in the cavity, while the rest are attenuated.

Besides, the effect of the attenuation coefficient in mode competition is also shown. It is
observed that the strength of the propagating mode is directly proportional to the product of
the cavity length and the attenuation coefficient of the material forming the laser cavity (αl).
Hence, to the losses incurred in the cavity during propagation. In addition, the FWHM of the
lased field, ∆βFWHM (∆ωFWHM ), and the photon life time (τp) are related to the attenuation
coefficient and to losses in the cavity as [72]

∆βFWHM = 1
l
[1− r1r2e

−αl

r1r2e−αl
]. (3.37)

∆ωFWHM = vg
l

[1− r1r2e
−αl

r1r2e−αl
] = 1

τp
, (3.38)

where the total lifetime of the photon in the cavity is the sum of photon losses due to the
mirror loss rate (escaping to outer world), τ extp and the internal loss rate due to absorption,
τ intp . Mathematically,

1
τp

= 1
τ extp

+ 1
τ intp

. (3.39)

The quality factor (Q) of the laser, which determines the sharpness of the mode emitted by the
laser is given by [72]

Q = ω

∆ωFWHM
= 1
τp
. (3.40)

Fig. 3.5 shows the effect of losses in the laser cavity on mode broadening, obtained from Eq.
(3.37). It is evident that an increase in losses broadens the spectral width of the lasing field.
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Figure 3.4: Lasing mode supported by the laser obtained from S/T matrix calculations. Only those modes that
are an integral multiple of βl/π are supported. The field is attenuated as the loss increases.

Thus, for the modes to be sharper within the cavity (narrower), as desirable, the losses in the
laser cavity must be kept to a minimum, which is an intuitive and logical result . Eq. (3.38) to
(3.40) are important because they demonstrate that an external perturbation such as OF can
change the photon lifetime and thus alter the linewidth of the laser, and ultimately its quality
factor. This will be commented in detail along Sec. 3.4, in particular Eq. (3.63). The same
effect of narrowing the modes can be attained by increasing the reflection coefficient of the laser
facet, but this brings on a subsequent reduction of the emitted power (Chapter 2, Eq. (2.30)).
Eq. (3.30) - (3.36) are the standard gain equations calculated using the formalism of S and

T matrices. This shows that the scattering theory holds true for the solitary laser. Next, the
model is extended to use S and T matrices to calculate the lasing conditions in the presence of
a “lossy” external cavity formed due to the presence of a target placed at a distance L from the
laser, that is, for lasers under optical feedback.

3.4 SCATTERING THEORY APPLIED TO LASER UNDER OF

In this Section, the S matrix (relating the forward and backward field at an interface) is used
to find the equivalent reflection and transmission coefficient of the laser facet in the presence of
an external cavity formed by a target placed at distance L 1 from laser. Referring to Fig. 3.6,

1Here the superscript ext is omitted for ease.
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Figure 3.6: Scattering theory applied to the analysis of OF. (a) Schematic diagram of the fields due to external
target placed at a distance L from the laser. (b) Concept of equivalent cavity.

at interface 2, using S matrix (Eq. (3.4)),b3
a4

 =

r2 t2

t2 −r2

a3

b4

 . (3.41a)

b3 = r2a3 + t2b4. (3.41b)

a4 = t2a3 − r2b4. (3.41c)

In the external cavity (between interface 2 and 3), using Eq. (3.11) has the shape,b4
a5

 =

 0 ejβ1Le−α1L

ejβ1Le−α1L 0

a4

b5

 . (3.42a)
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Table 3.1: List of relevant parameters involved in explaining laser dynamics in presence of OF. Interface 1 and 2
form the laser cavity and interfaces 2 and 3 form the external cavity.

Description Symbol
length of the laser cavity l

length of external cavity L

reflection coefficient at interface 1,2 and 3 r1,r2 and r3

confinement factor Γ
laser gain per unit length g

attenuation coefficient of material that form active region of laser α

attenuation coefficient of material that form the external cavity α1

laser emission frequency ω

phase constant of field in laser cavity β

phase constant of field in the external cavity β1

refractive index of the material forming the first cavity n1

refractive index of the material forming the second cavity n2

b4 = ejβ1Le−α1Lb5. (3.42b)

a5 = ejβ1Le−α1La4. (3.42c)

At interface 3, using Eq. (3.4), it reduces tob5
a6

 =

r3 t3

t3 −r3

a5

b6

 . (3.43a)

Using the new boundary conditions, b6 = 0, as no beam enters the cavity system from behind
the target

b5 = r3a5. (3.43b)

a6 = t3a5. (3.43c)

Using Eqs. (3.41b) and (3.42b), we get

b3 = r2a3 + t2b5e
jβ1Le−α1L. (3.44)

And using Eq. (3.43b)

b3 = r2a3 + t2r3a5e
jβ1Le−α1L. (3.45)
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Which after using Eq. (3.42c) yields

b3 = r2a3 + t2r3a4e
j2β1Le−2α1L. (3.46)

And finally using Eq. (3.41c), we get

b3 = r2a3 + t2r3(t2a3 − r2b4)ej2β1Le−2α1L. (3.47)

b3 = r2a3 + t22r3a3e
j2β1Le−2α1L − t2r3r2b4e

j2β1Le−2α1L. (3.48)

Placing the value of t2b4 from Eq. (3.41b) and r2
2 = 1− t22 gets to the expression

b3 = r2a3 − r3r2b3e
j2β1Le−2α1L + r3a3e

j2β1Le−2α1L. (3.49)

b3(1 + r2r3ej2β1Le−2α1L) = a3(r2 + r3e
j2β1Le−2α1L). (3.50)

req2 = b3
a3

= r2 + r3e
j2β1Le−2α1L

1 + r2r3ej2β1Le−2α1L
. (3.51)

= r2 + r3e
−2(α1−jβ1)L

1 + r2r3e−2(α1−jβ1)L . (3.52)

= r2 + r3e
−2γ1L

1 + r2r3e−2γ1L
., (3.53)

where γ1 = α1 − jβ1 is propagation constant of the field in the medium forming the external
cavity and req is the equivalent reflectivity at interface 2 resulting from the external target placed
at distance L (Fig. 3.6). Although the equation for equivalent reflection coefficient derived in
Eq. (3.53) looks different in the absence of attenuation coefficient, this is the same standard
equation obtained by different authors such as Coldren et al. [1] and can be transformed in
terms of coupling coefficient, κ (ch. 2, Eq. (2.60)) as proposed by Petermann [72]. Equating
the attenuation coefficient in Eq. (3.53) to zero and re-writing it as follows

req2 = r2 + r3e
2β1L + r2

2r3e
j2β1L − r2

2r3e
j2β1L

1 + r2r3e22β1L
. (3.54)

It should be noted that the addition of the last two terms in the numerator of Eq. (3.54) cancels
each other, so effectively it is the same as Eq. (3.53). Further, the first and third terms, and
the second and fourth term are grouped, resulting in

req2 = r2(1 + r2r3e
j2β1L) + r3(1− r2

2)ej2β1L

1 + r2r3ej2β1L
, (3.55)

= r2 + r3(1− r2
2)ej2β1L

1 + r2r3ej2β1L
, (3.56)

= r2 + r3t
2
2e
j2β1L

1 + r2r3ej2β1L
. (3.57)

Equation (3.57) is the same obtained in [1, 30]. This proofs that Eq. (3.53) obtained above
using scattering theory is a generalized form that which takes into account the attenuation, in
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addition to the phase. Further, from ch. 2 (Eq. (2.60)), using κ = (1− r2
2)r3/r2, Eq. (3.56) is

written as

req2 = r2 + κr2e
j2β1L

1 + r2r3ej2β1L
(3.58)

Using Euler’s formula ejθ = cos(θ) + jsin(θ), and considering that the reflection coefficient is a
real quantity (i.e. ignoring the imaginary part of Eq. (3.58)), Eq. (3.58) can be written as

req2 = r2 + κr2cos(2β1L)
1 + r2r3cos(2β1L) , (3.59)

since r2 < 1 and r3 < 1, their product r2r3 << 1 and the maximum value of cos(θ) is 1; so the
condition r2r3cos(2β1L) << 1 holds true, and Eq. (3.59) reduces to

req2 = r2 + κr2cos(2β1L), (3.60)

= r2(1 + κcos(2β1L)) (3.61)

Equation (3.61) is exactly the same obtained in [30, 72]. Thus it is evident that the Eq. (3.53)
is the equivalent reflection coefficient that takes different forms as derived by different authors
[1, 72] under different conditions. From Eqs. (3.52) and (3.53), important conclusions are
drawn. First, the described equivalent reflection coefficient (req) is now dependent upon the
attenuation coefficient α1, the phase constant β1, the reflection coefficient of the external target
r3, and the physical length L of the external cavity. Second, since the attenuation constant
α1 is a frequency dependent value, so will be the equivalent reflection coefficient, which will
also vary with the frequency emission from the laser. Third, since, req depends upon the phase
constant β1, which in turn depends upon the refractive index n1 of the external cavity through
β1 = 2πn1/λ, so if the refractive index n1 changes, the effective reflectivity req is also changed.
Finally, req is shown to be also dependent upon the physical cavity length L.

In particular, referring to Fig. 3.6 and considering the general case where air is the medium
in the external cavity formed by the second laser facet and the target, simulation are carried out
to determine the effect on the laser parameters of the different loss factors in external cavity,
described by α1L. From Fig. 3.7 (a), it is observed that increasing the value of α1L, req in
general decreases. However, there exists a particular value of α1L (in this case it is 6× 10−4 ),
for which a resonance is reached and req is minimal. Beyond this value, req increases again. It is
also observed that for all the values of losses in the external cavity (α1L), a minimal equivalent
reflection coefficient is attained when the reflection coefficient of the external target is equal to
that of the laser facet (r3 = r2). In addition, it was shown in Chapter 2 (Eq. (2.30)) that the
optical field emitted by laser is dependent upon the reflection coefficient of the laser facet. In the
absence of OF, in the conditions described in Chapter 2 (Fig. 2.7), the power emitted from the
laser P02 is 0.54 mW. A simulation is carried under similar conditions to determine the effect of
OF on and losses in the laser emission. Fig. 3.7 (b) shows the effect of OF on the power emitted
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Figure 3.7: Effect of the external cavity on the laser parameters. (a) Effect of losses in the external cavity α1L on
the equivalent reflectivity of laser ; (b) Optical power emitted under feedback normalized to total power without
feedback . Simulation parameters r1 = r2 = 0.54, power output from laser in presence of optical feedback is
obtained from Eq. (2.30), provided that req (defined in Eq. (3.53)) is used. In the absence of OF, P02/P0 = 0.5
(see Ch. 2, Fig. 2.7)

by the laser, taking into account the losses in the external cavity (α1L) at different values of
external reflection coefficient (r3). In short, the power emitted under OF (P ′02) is obtained by
replacing r2 in Eq. (2.30), with the req value defined in Eq. (3.53). Unlike the results obtained
in the case of req, increasing the losses in the external cavity (α1L) brings on the increase in
the power emitted by laser under OF (P ′02), which increases until a resonance is reached (in this
particular case, at α1L = 6×10−4). Beyond that value, the emitted power starts to degrade. It
is also observed that in all of the cases, the maximal optical power emitted from the laser under
feedback takes place when the external reflection coefficient equals the laser facet reflection
coefficient i.e. when r3 = r2. Thus, by engineering the experimental conditions, the amount of
losses in the external cavity and the reflection coefficient of the target, the conditions for laser
emission under feedback can be optimized using the theory being proposed.

Further, the strong dependence of req and P
′
02 on the external parameters (L, n1) is the

basis of OF-based optical sensing. For instance, if the OPL between the laser and the external
reflective target is modulated periodically by changing the physical length (L) (keeping the
refractive index of the medium that forms the cavity constant) (Fig. 3.6), then the equivalent
reflection coefficient req (Eq. (3.53)) is also modulated periodically introducing the well-know
modulation of emitted power P ′02.

Fig. 3.8 further explains this effect. The physical length of the external cavity L is modulated
such that the peak modulation is Lext0=3λ, making the cavity length in the range Lext(t) ∈
L + Lext0. Such a modulation gets encoded in the optical power output of the laser, and is
easily retrieved by processing such a power signal. In the absence of OF, as mentioned, the
power emitted from the laser is P02 = 0.54 mW (Chapter 2, Fig. 2.7) and is a constant value
(shown by the dashed line in Fig. 3.8). However, in presence of OF and when the described
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Figure 3.8: Basic mechanism for the OF-based sensor. Modulation of OPL causes the modulation of emission
power P

′
02, which would have been constant without modulation of OPL (P02). With the increase in r3, the laser

emission power increases and a resonance is reached when r3 = r2. Simulation parameters:Lext0=3λ; r1 = r2=
0.54; n1=1; λ = 692 nm; α1 = 0.005/m.

modulation of OPL is introduced, it is no longer a constant and follows the modulation in OPL,
being maxima or minima for each λ/2 change. The appearance of six fringes for an induced
displacement of 3λ (Fig. 3.8) is similar to that obtained from the standard equation of OF for
displacement measurement (Ps = cos(4πLext(t)/λ)). In addition to this information, the effect
of r3 in the OFS in terms of pp value and fringe width is also presented. It is observed that
at low r3 = 0.1, the OFS is still weak and has a low pp value with wider fringes2 (fringe width
normalized to λ/2 is in this case 0.28); at r3 = r2 = 0.54, a resonance is reached so the pp value
of OFS increases drastically while the fringes are radically narrowed (normalized fringe width,
in this case , is just 0.14) enabling easy and precise fringe detection through signal processing.
Finally, by detuning r3=0.7, the OFS starts to degrade and widens again (normalized fringe
width becomes 0.16) as well.

The observation of the resonance related to OF is coherent with Fig.3.7 (b), where a res-
onance in emitted optical power occurs when r3 = r2. Besides, the increased sharpness, or
narrowing of the fringes as r3 increases can be explained by Eqs. (3.39) and (3.40). In the
presence of OF, there are photons re-injected into the laser cavity that modify Eq.(3.39) and

2Maria et. al in [175] showed that the fringes in OFS have Gaussian distribution, so the fringe width is
calculated as the width at which its magnitude become 1/e of peak value

74



Eq.(3.40) as

1
τ ′p

= 1
τ extp

+ 1
τ intp

− 1
τ ofp

, (3.62)

Q′ = ω

∆ωFWHM
= 1
τ ′p
, (3.63)

where the first two terms in Eq. (3.62) represent photon emission from the laser, and an
additional term −1/τ ofp has been added to represent the effect of the injection of photons in
the laser cavity due to OF. Increasing r3 causes more and more photons to be re-injected into
the laser cavity, so the term -1/τ ofp increases. This causes 1/τ ′p to increase and ultimately the
quality factor Q′ to increase (Eq. (3.63)). This increment in the quality factor in turn poses
a necessary condition on ∆ωFWHM so it needs to decrease (Eq. (3.38)), thus bringing on the
sharpening of the fringes for increased r3 values observed in Fig. 3.8. However, this holds true
until the resonance condition at r3 = r2 is reached. Referring to Fig. 3.7 (a), beyond resonance
(r3 > r2) the equivalent reflection coefficient of the laser facet decreases. This implies that less
field is reflected from the laser facet (interface 1 in Fig. 3.6), and more field is transmitted
through it, and at the same time more field is reflected from interface 3 in Fig. 3.6, making the
laser acts as a single cavity (instead of two individual ones) with cavity length l+L. Hence, the
effect of OF under these conditions is diminished, making the third term on the right side of Eq.
(3.62) negligible and reducing it to the standard equation of the free-running laser Eq. (3.39),
causing the broadening of fringes. An equivalent interpretation can be reached by considering
the fact that increasing r3, the coupling factor κ and the feedback strength C increase (Chapter
2, Eqs. (2.60) and (2.69) ). Further C is in inverse relation to the spectral width of laser as
∆νs = δν0/(1 + C)2 [72]. From the above mentioned relationships, it can again be concluded
that with increase in r3, the fringes so produced have high fineness.

3.5 LASER WITH OPTICAL FEEDBACK FROM MULTIPLE CAV-
ITIES

So far, in the previous sections scattering was used to analyze the detailed response of the laser
to OF from a single external cavity. The effect of reflection coefficient of the external target
on the laser emission was shown in Fig 3.8. Further, it was demonstrated that the resonance
in laser emission is reached when the reflection coefficient of external target is close to that of
laser facet. In this section, the same concept is extended to two external cavities with different
cavity parameters, a situation relatively common when working with some transparent media,
for instance in lab-on-chip applications. The different fields emanating from the two cavities
are shown in Fig. 3.9(a). The setup is an extended version of the case of the external cavity
just analyzed (Fig. 3.6). In the presence of a second external cavity (enclosed by interfaces 3
and 4), a set of additional new fields appear. The parameters that describe the second external
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(a) (b) (c)

Figure 3.9: Scattering theory for multi cavity optical feedback. N = 2 number of external cavity is simplified to
single cavity in N = 2 recursive steps. (a) Field propagation in forward and backward direction under optical
feedback from two external cavities. (b) Intermediate step converting two external cavity to one external cavity.
(c) Converting the two cavities in (b) to a single cavity.

cavity are desiged as g2, β2, α2, n2, where all the parameters have the same physical meaning of
those listed in Table 3.1. Since, the S matrix for interface 1 to 3 is exactly the same presented
in Eqs. (3.41a), (3.42a) and (3.43a) for the previous case analyzed, and are repeated for ease of
reading. So, the complete list of scattering matrices of the multiple cavity system is described
as follows. The S matrix at interface 2, is given byb3

a4

 =

r2 t2

t2 −r2

a3

b4

 (3.64)

In the first external cavity, that is, between interface 2 and 3, we getb4
a5

 =

 0 ejβ1L1e−α1L1

ejβ1L1e−α1L1 0

a4

b5

 (3.65)

At interface 3, the S matrix is given byb5
a6

 =

r3 t3

t3 −r3

a5

b6

 . (3.66)

Furthermore, in the second external cavity, defined by interfaces 3 and 4, the S matrix is given
by b6

a7

 =

 0 ejβ2L2e−α2L2

ejβ2L2e−α2L2 0

a6

b7

 . (3.67)

Finally, at interface 4 b7
a8

 =

r4 t4

t4 −r4

a7

b8

 . (3.68)

Using boundary condition, b8 = 0

b7 = r4a7. (3.69)

a8 = t4a7. (3.70)
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using the boundary condition b8 = 0 (as no light enters the system from behind interface 4),and
substituting b7 from Eq. (3.69) in Eq. (3.67), enables to further solving Eqs. (3.67) and (3.66)
to get,

req3 = b5
a5

= r3 + r4e
j2β2L2e−2α2L2

1 + r3r4ej2β2Le−2α2L2
. (3.71)

= r3 + r4e
−2(α2−jβ2)L2

1 + r3r4e−2(α2−jβ2)L2
. (3.72)

= r3 + r4e
−2γ2L2

1 + r3r4e−2γ2L2
, (3.73)

where γ2 = α2− jβ2 is propagation constant of the medium forming the second external cavity,
r4 is the reflection coefficient at interface 4. (after loss α2L2 has occurred) of the material in
the second cavity, and req3 is the equivalent reflection coefficient at interface 3 resulting from
the external target placed at distance L1 (Fig. 3.9(b)). Now the problem of the two external
cavities gets reduced to the case of the single external cavity previously explained using Eq.
(3.53), provided that r3 in Eq. (3.53) is replaced by r3 (Eq. (3.73)). It is evident that the
procedure proposed enables a setup with N external cavities which can be similarly converted
into a single S matrix in N iterative steps. This observation is similar to the one in [172] when
explaining scattering effects in DFB lasers. Hence the overall equivalent reflection coefficient
for the two external cavities is given by

r′eq2 = r2 + req3e
−2γ1L1

1 + r2req3e−2γ1L1
. (3.74)

The use of the scattering matrix has thus enabled to reduce the laser cavity and the two
external cavities with different optical properties to a single characteristic equation for the laser
operation, which when solved describes the response of the laser under the considered conditions.
One potential application of scattering theory could be to determine the optimal intermediate
cavity length to get the maximal output power from the laser under OF in setups with multiple
cavities. As an example, considering Fig. 3.9 (a), assume the first external cavity (between
interface 2 and 3) is filled with air, and the second external cavity (between interface 3 and 4.)
is filled with water or some solution under test.Under these conditions, the optimal intermediate
cavity length which attains the maximum optical power emitted from the laser is desirable,
which corresponds to the minimal equivalent reflection coefficient. Simulations are carried out in
MATLAB to see the effect of the external cavities on the performance of the laser, and presented
in Fig. 3.10. Keeping the second cavity parameters constant at α2L2=5 × 10−3, n2=1.33 and
r4=0.54, an optimal value of total losses α1L1=5× 10−4 is obtained in the intermediate cavity
for which the equivalent reflection coefficient is minimal and the power emitted from the laser is
maximized. Detuning the loss from this value causes significant degradation in optical output
power, as observed in Fig. 3.10.

Scattering theory may also be applied to characterize optical feedback systems in presence
of multiple cavities. For most of the use cases (e.g. lab-on-chip sensing applications), the first
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Figure 3.10: Comparison between the equivalent reflection coefficient calculated using scattering theory (a) and
power emitted from laser P

′
02 (b) in the cases of single (solid) and double (dashed) external cavities.
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Figure 3.11: Effect of second external cavity on power emission from laser according to scattering theory (a)
Away from resonance conditions; (b) Close to resonance conditions.

(intermediate) cavity is air and the second cavity is some semi-transparent media that is under
test. It is thus desirable to fix the parameters of the first cavity and determine the system
performance in terms of the parameters of the second external cavity. Using this approach,
two different conditions are studied: the response of the laser away from resonance (r3 � r2)
and its response near resonance (r3 u r2). The former case is depicted in Fig. 3.11 (a). The
total loss in the intermediate cavity is kept fixed α1L1= 5× 10−4, and r3 is set to 0.1, which in
this case is the Fresnel reflection coefficient at the air (n1 = 1) - water (n2 = 1.33) interface).
Then, the losses in the second external cavity α2L2 are varied in order to study its effects on
the emitted power. Since for most of the cases, α2 is a known value, basically varying loss is
limited to varying the length of the second external cavity. It is observed that with an increase
in r4, the power output from the laser under OF normalized to the power of the free-running
laser decreases drastically and the rate of decrease increases with the decrease in the total losses
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Figure 3.12: OFS as a function of losses in external cavities and external reflection coefficient.

in the second external cavity (which, known α2, is understood as a reduction in length of the
second external cavity).

For the later case, corresponding to the behaviour of the laser close to resonance, all the
parameters are set as in the former case just described, provided that r2 u r3 = 0.5 (Fig.
3.11(b)). It is observed that the response of the laser can be divided in three regions. For
the region r4 < r3, with an increase in r4 the optical power output from laser increases, and
its slope also increases with the decrease in total losses (α2L2) in the second external cavity.
This means that, in this region, the shorter external cavity (with less losses) yields more power
from the laser under feedback as compared to the free running laser at constant r4 (unlike the
previous case, where the optical power decreased with r4). This is well illustrated by an example.
Keeping α2L2 = 0.025 (red curve), increasing r4 from 0.2 to 0.4, the power in OFS (compared
to the solitary laser emission) increase from 0.6 to 0.7 as compared to 0.5 to 0.6 for the case
when α2L2 = 0.1 (green curve). In the region r4 u r3 (more specifically r4 u r3 u r2 ), the
power output is maximal, although for different losses (α2L2) in the external cavity, resonance
is reached at different r4 values. This is an important conclusion as far as it states that the
laser, under feedback from multiple cavities, presents a resonance condition dependent upon the
losses in the second external cavity and its reflection coefficient. This result could be used to
find the optimal second external cavity length for the most effective coupling of the light into
the laser when under multiple cavity experiments, yielding an improved power output. This
is particularly interesting in the case of highly diffusive samples under test where the power
degrades with depth. Finally, beyond resonance r4 > r3, the power drastically falls down.

To complete the analysis of the double cavity case, it is desirable to study the fringe visibility
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of the OFS under different conditions. To do so, the parameters of both cavities are kept the
same to those in Fig. 3.11 and the OFS corresponding to a target motion of 3λ is obtained. The
amplitude of OFS is recorded for each target reflection coefficient r4. Fig. 3.12 shows the plot
of amplitude of OFS as a function of r4 at different external cavity loss conditions. For the case
α2L2 = 0.025, when r4 = 0.1, the OFS has a very low peak to peak value, resulting in fringes
with reduced visibility and easily covered by noise in detection. Inset (b) in Fig. 3.12 shows
the entire OF waveform under this conditions. However, increasing r4 to 0.6 (in close vicinity
to resonance), makes the amplitude of the OFS to increase drastically. Inset (a) in Fig. 3.12
shows the complete waveform obtained in these conditions and it improvement when compared
to inset (b). It is clear that tuning of the parameters associated with individual cavities can
very significantly improve the OFS and fringe visibility can be maximized, and the OFS can be
detected in presence of disturbances like speckle or different types of noise.

Further, the theory developed in this Chapter may be used to explain the complexity of
attaining a stable configuration when using OF sensors, as each modification in the length,
reflectivity, or losses in any cavity introduces severe effects in the performance of the laser and
the visibility of the fringes.

3.6 CONCLUSION

The scattering theory, described using S and T matrices, has been used as an effective tool to
describe and characterize the effect of different external parameters in the performance of a
solitary laser, of a laser with an external cavity under optical feedback, and of a laser with an
external cavity with a vibrating target. The formalism enabled to include the effect of losses
in every external media involved in the laser power output. It was shown that the expressions
obtained can be used to describe the coupling of the optical field back into the laser cavity,
and how the experimental setup provides some degrees of freedom which enable to optimize
it in order to arrange an OFS with maximized visibility, given the parameters of the laser are
known. Beyond the very relevant result of quantifying the optimal arrangement for a single
cavity OFI setup, a further strength of the method lies in the fact that N cascaded multiple
cavities can be explained extending the method in a recursive manner in N steps, calculating a
final equivalent reflection coefficient. Further, such a multiple cavity model takes into account
all the related external cavity parameters involved, including reflection coefficient, length, and
losses all at once, but including a explicit description of the effects of each individual cavity.
In the case of OF with two cavities, the losses in each individual cavity were analyzed in
detail, a case which usually is neglected elsewhere. It was quantified how losses or length in
each external cavity affect the parameters of the other, and the overall response of the laser
emission. Thus, a tuning is necessary between all the parameters to optimize the response, and
scattering theory has proven to be an effective tool to model the overall response. However,
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analysis require accurate values of the external and internal cavity parameters to get reliable
results, and the tuning gets more complex with the increase in the number of cavities. A further
final conclusion is the behavioural complexity of single and multiple cavity systems under OF,
which tremendously complicates the repeatability of the experimental conditions, a fact which
is well known when working with OFI systems in the lab for accurate amplitude measurements.
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4. Wavelet-Based Signal Processing
of the Optical Feedback Signal

4.1 INTRODUCTION

The OFS is the result of the beat of the time delayed optical field (normally in the order of
10−7 to 10−2 relative to the emitted field) with the field of the standing wave existing inside
of the laser cavity. As seen in different formulations in previous Chapters, the backscattered
field interferes with the existent standing wave and changes the carrier density in the cavity,
giving rise to a change in refractive index and to changes in the gain of the material in the
active region of the laser. This results in a variation of the frequency of the free-running laser,
as the gain shifts towards another dominant mode and phase of emission. This effect was
explained in detail in Chapter 2. The additional phase and/or frequency modulation of the
back-reflected optical field, introduced for instance, by a vibrating target, causes the conversion
of the phase/frequency modulation into an intensity modulation of the laser emission, related
to the interference of both fields, hence the name optical feeback interferometry (OFI). The
intensity modulation is detected by the photodiode in the rear of the laser package which, when
processed, delivers precise information about the external parameter causing the modulation
(typically, the vibration of the target).

So far, OFS are processed in the time or the frequency domain to extract the vibrational
parameters related to displacement and distance in the time domain, and to velocity in the
frequency domain, but usually both of them are not processed simultaneously. In a classical
paper, Donati et al. demonstrated measurement of displacement using theOFS without direction
ambiguity with resolution of half the emission wavelength [50]. This method was based on FC,
as each fringe corresponds to a λ/2 displacement of target motion. Since then, FC has been the
basis for most of the methods. Even though, FC is a very simple methodology for determining
target displacement, but it is limited and even not always feasible because of the presence of
noise. Since the accuracy of the FC method depends upon accurate and precise localization
of fringes, it is very important to detect fringes precisely, and even the loss of a single fringe
automatically decreases the accuracy by λ/2. Typically, two independent types of noise corrupt
the acquired OFS: Additive White Gaussian Noise (AWGN) and impulsive noise, which severely
complicate the implementation of the FC method and its implementation. AWGN can in
principle be removed by simple low pass filtering [67], but an additional conventional median
filter is required to filter impulsive noise [67, 68]. There is, however, an unavoidable trade-off
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between OFS filtering and the accuracy of fringe detection. On one hand, filtering is required
to remove AWGN, but in case of over filtering, it makes the signal so smooth that even the
fringes themselves may be smoothed, with the consequence of a loss in accuracy of the retrieved
displacement. Furthermore, because of the impulse-like nature of impulsive noise in a very short
time period, the spectrum of impulsive noise extends across to whole frequency spectrum so
dedicated signal processing is normally required [163].

In addition to noise, another factor severely affecting fringe detection is speckle (as men-
tioned in 2.5.2.2). Speckle (a random interference of scattered fields in diffusive targets) causes
severe, unwanted intensity modulation in the signal, which turns into unwanted power/voltage
fluctuations in the OFS, in special if large target displacements are involved. Such undesirable
phenomena complicate the work of fringe detection algorithms and result in relevant measure-
ment errors due to missing (or extra) fringes. Speckle is specially relevant as far as OFI works
typically using coherent sources focused onto diffusive targets, the ideal condition to induce
speckle. In order to keep track of speckle, several approaches have been proposed. Zabit et al.
in [69] proposed the use of a sliding window to determine the envelope of the OFS and to prop-
erly locate the fringes for target vibration reconstruction. There, finding the envelope of the
signal was performed twice - for positive and negative envelope separately. Another approach-
es to manage speckle have involved actively tracking a bright speckle spot along time [167].
Atashkhooei et al. [10] proposed two methods denoted “adaptive technique” and “sensor di-
versity technique” to deal with speckle effects to correct erroneous measurements. The main
disadvantage of the proposed techniques is the setup selected requires the use of two indepen-
dent OFI setups, which need be precisely synchronized. Often the case, the velocity of vibration
of the target is usually measured in frequency domain by finding the Doppler shift in the sig-
nal. Kliese and Rakic [176] demonstrated mathematically and experimentally the broadening
of the Doppler spectrum due to speckle. Hence, even frequency domain analysis requires of
some speckle compensation algorithms in order to improve the accuracy of the measurements
performed.

To overcome the resolution limits and errors in accuracy which are inherent to the FC
method, the PUM has been proposed for more precise determination of displacement [12, 14].
The use of the phase of the signal for extraction of displacement takes advantage of the fact that
the phase of the OFS is substantially less susceptible to speckle and AWGN than the amplitude
of the signal. Bernal et al. in 2013 [14] introduced IPUM, which optimized the PUM method
to improve its performance. Authors in [177] proposed Hilbert transformation to analytically
calculate the phase of OFS by representing it in the complex plane.

However, speckle and noise become relevant undesirable phenomena which complicate or
limit the performance of fringe detection algorithms, resulting in measurement errors due to
missing or imprecisely located fringes. In this Chapter, the use of the CWT is discussed to
process the OFS signal in the time and frequency domain simultaneously for the first time to
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our knowledge, with a single transformation addressing noise (both AWGN and impulsive noise),
and allowing to extract parameters such as velocity and amplitude of vibration of the target,
while delivering information for the management of speckle in the signal at the same time. The
time domain component of the CWT is used to determine the target instantaneous displacement,
and the time instance when direction reversal happens, while the frequency domain component,
obtained using a single transformation, is used to determine the frequency and velocity of
the vibration of the target. Such temporal information enables to detect relevant events of
target motion in time out of the behaviour of the OFS whenever the target displacement is not
harmonic. Unlike conventional Fourier analysis of the OFS, here the spectral characteristics of
OFS are picked up directly from the time-frequency plane derived from the application of the
CWT. The analysis of such time-frequency plane is, additionally, used to find the envelope of
the amplitude of the OFS, and thus to keep track of speckle effects in the signal. Furthermore,
the use of a complex wavelet 1 (the Morlet wavelet in this case) as an analyzing wavelet to
process OFS results in wavelet coefficients represented in the complex plane, where the use of
their imaginary and real components may be used to perform the PUM in order to determine
the displacement of the target under test in the frequency domain. This method appears to
have less error and better resolution than if obtained in the time domain using FC.

This Chapter has been organized as follows. Starting with Sec. 4.2, the basic mathematical
definitions and principles behind the use of the complex Morlet wavelet for analysing the OFS
are presented. Then, in Sec. 4.3 the methodology adopted to process the experimental OFS
obtained from the periodic vibration of the target is discussed, followed by the experimental
results obtained using the method proposed. It is shown that the CWT is used to remove
AWGN and impulsive noise in OFS, and to extract most of the relevant vibrational parameters
including target velocity, frequency of vibration, or target displacement without ambiguity, in
a single shot. Such a performance may be appreciated even in presence of weak feedback, while
at the same time it becomes possible to detect the envelope of the amplitude of the OFS to
manage speckle, taking advantage of the complex amplitude coefficients of the CWT. Finally, in
Sec. 4.3.4, taking advantage of the complex plane coefficients resulting from applying the CWT,
a PUM method based on the CWT to process the OFS is described and compared with the
classical FC method. Extending the algorithm, the CWT is used to analyse the OFS resulting
from transient vibrations in the target (in particular, those induced by sinc-shaped pulses) and
to characterize them in Sec. 4.4. A summary of the main contributions of this Chapter in Sec.
4.5 concludes the Chapter.

1a signal x(t) is said to be complex if it contains real and imaginary part both and can be represented in form
x(t) = X + iY
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4.2 THE WAVELET TRANSFORM

The CWT is a mathematical operation that enable transforming the time domain signal into
the time-frequency plane and investigate the time and frequency details of signals whose fre-
quency content varies over time [178]. Wavelets are mathematically and conceptually defined as
localized waveforms, which, instead of oscillating continuously and infinitely in time, oscillate
only for a given duration in time and then rapidly decay to zero. The underlying property of
wavelets, thus, is they are functions localized both in the time and frequency domains. This
makes them different to other types of common basis, in particular to the well-known ejωt used
in the Fourier transform. Since the OFS is dynamic in nature, the wavelet transform is a very
well suited tool for its analysis, in special when non-periodic changes in the external cavity are
involved, as it allows the retrieval of the most relevant parameters related to the vibration of a
target, including when they happen.

The mathematical definition of the wavelet transform of a continuous signal x(t) (the CWT
of x(t))is written as

W (a, b) = 1√
a

∫ +∞

−∞
x(t)ψ( t− b

a
)dt, (4.1)

where W (a, b) is the coefficient of the transform, a represents the dilation wavelet parameter,
also called the scale of the transform, and b represents the translation wavelet parameter, also
known as shift. The coefficient W (a, b) is normalized by 1/

√
a to ensure that all the wavelets

of the basis have the same energy at every scale [71]. The scale parameter a is inversely
proportional to the frequency component of the analysed signal, while b is related to the time
instance at which a frequency component is generated. The physical interpretation of Eq. (4.1)
is that W (a, b) is obtained by correlating the scaled and shifted version of a mother wavelet
ψ(t) with the signal under analysis x(t). As a decreases, ψ(T − b)/a is shrunk in time, so
increasing the resolution in time comes at the expense of decreasing the resolution in frequency,
and viceversa.

There exist a number of wavelet families and choosing the right one among them depends
upon the application considered and the nature of the information to be extracted. For the
methods and applications shown in this Thesis, the complex Morlet wavelet is used as the
analysing mother wavelet, since it has shown very good results in the analysis of sinusoidal-like
signals, a linear phase response, it exhibits symmetry, and has a dyadic nature (the frequen-
cy/scale of wavelet is changed in factors of 2) [71, 179]. Furthermore, it is shown that the use
of complex wavelet coefficients allow the detection of fringes in an OFS as well as the enve-
lope of its amplitude. The former is obtained by taking advantage of the correlation nature of
wavelet based processing and the later taking advantage of the real and imaginary parts of the
coefficients. The Morlet CWT is defined in the time domain as

ψ(t) = eiω0te
−t2

2 , (4.2)
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Figure 4.1: Concept of wavelet transformation using the Morlet wavelet. (a) Real and imaginary parts of the
Morlet Wavelet (ω0 = 6 in Eq. (4.2)); (b) Effect of scaling in the time domain; (c) Effect of scaling in the
frequency domain.

where the second term represents a rapidly decaying signal that constrains the sine and cosine of
frequency ω0 represented in the first term, to a limited time instance. Fig. 4.1 (a) shows the real
and imaginary parts of the Morlet wavelet for a scale a = 0.125 and ω0 = 6 rad/s. (the choice of
this value comes from the admissibility condition of wavelet, explained in following paragraphs).
Fig. 4.1 (b) and 4.1 (c) show the effect of scaling the wavelet waveform in the time domain and
in the frequency domain, respectively. By reducing the scale by a factor of 8, the wavelet in
the time domain shrinks, while, from the time-frequency duality, its frequency is shifted to the
higher part of the spectrum, thus having a higher bandwidth. Since the wavelet for a small scale
(dashed line) changes rapidly and has a wider spectrum, it is suitable to extract information
which varies rapidly with time but which does not change much with frequency. Inversely,
at larger scale (solid line), the wavelet in the time domain is extended and its corresponding
spectrum is much narrower. These properties are useful to extract information which varies
rapidly with frequency, but not with time. Hence, depending upon the situation of either
requiring high temporal or spectral resolution, the scale may be adjusted to better retrieve the
desired information. This flexibility makes the wavelet transform advantageous when compared
to classical Fourier transform, which use only sine and cosine as base functions.

In the frequency domain, the CWT is denoted as

Ψ(ω) =
∫ ∞
−∞

ψ(t)e−jωtdt (4.3)

=
√

(2π)e
−(ω−ω0)2

2 . (4.4)

The wavelet transformation converts 1D (time) signals to a 2D (time and frequency) plane. To
retrieve back the 1D time-dependent signal, there should be no loss in information during the
transformation. Thus, the condition of identity (equivalent to energy conservation, also known
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Figure 4.2: Admissibility condition for the Morlet wavelet.

as Parseval’s equality) should be satisfied. This means the total energy in the 1D time domain
should equal the total energy in the 2D (time-frequency) plane. It has been shown that in order
to satisfy this condition [180], ∫ +∞

0

| Ψ(ω) |2

| ω |
dω < +∞. (4.5)

Eq. (4.5) is called the admissibility condition of a wavelet, which implies that the Fourier
transform of the wavelet should be zero at zero frequency, i.e. a wavelet function is required
not to have any DC component. Accoding to the admissibility condition,

| Ψ(ω) |= 0 at ω = 0 (4.6)

This is the basis of the wavelet transformation, which suggests ψ(t) to be a band-pass func-
tion which decays rapidly to zero as the frequency shifts towards zero (frequency localization).
Equivalently, in the time domain, Eq. (4.6) can also be interpreted as a requirement on the
wavelet to oscillate temporally, similar to a wave which needs to have zero mean value. Using
the admissibility condition together with Eqs. (4.6) and (4.4) we get

Ψ(0) =
√

2πe
−ω2

0
2 . (4.7)

The value of Ψ(0) at different values of ω0 for the Morlet wavelet described in Eq. (4.7) is
shown in Fig. 4.2. Hence, the value at which the admissibility condition ω0(0) = 0 is fulfilled
is ω0> 5. Along the remaining of the signal processing in this Chapter, ω0 has been chosen to
be 6, as it is the minimum value required to accomplish the admissibility condition.
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Figure 4.3: Flow of the signal processing procedure of OFS using wavelets.
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Figure 4.4: Time-frequency plane evolved from wavelet transformation.

The use of the wavelet transform for processing the OFS presents a number of advantages
over traditional derivative-based peak detection methods. For instance, it allows noise removal
and detection of OF relevant parameters in the same processing step. Once the basics of the
CWT have been explained in Sec. 4.2, the flow of the algorithm used to process the OFS is
shown in Fig. 4.3. Such flow is described in the following steps.

1. A mother wavelet shapep ψ is chosen considering the type of signal to be anlyzed. As
commented, Morlet is well suited to the OFS.

2. While time is kept constant (e.g. a = 0 ), the scale is varied as a=aj with j = 0, 1, 2...J-1.
The total number of scale values (J) is given by Eq. (4.8). This process generates a
series of daughter wavelets by a dilation process of the mother wavelet. Then the OFS
under analysis x(t) is convolved with each of the daughter wavelets resulting in wavelet
coefficients at all scales at the particular time instance described by b = 0. This yields
the first column of coefficients in the matrix depicted in Fig. 4.4 (W (a = {aj},b = 0)).

3. Next, time is incremented by a given amount (let us call it dt) so b=b+dt (shift), and
again the scale is varied from a=aj , j = 0, 1, 2...J-1 (dilate), so now the mother wavelet
is both shifted and dilated. Similarly to Step 2, the OF signal x(t) is now convolved with
each of the shifted and dilated daughter wavelets, resulting in another series of wavelet
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coefficients at all scales and at a particular time instance, which constitutes the second
column in Fig. 4.4 (W (a={aj},b = dt)).

4. Step 3 is performed for all the time instances remaining ((N -1)dt), obtaining in the end
a matrix of wavelet coefficients (W (a = {aj},b={bk})), where columns give information
about the OFS at all scales (frequency components) at a particular instance of time, while
rows give information about how each particular frequency components has evolved with
time.

Taking advantage of the dyadic nature of wavelet based signal processing, the entire processing
of a typical OFS takes only a few seconds. However, obviously the duration of the signal
processing stage depends upon the computing resources available.

4.3 ANALYSIS OF A PERIODIC VIBRATION

In this section, a novel algorithm based on the CWT detailed in Sec. 4.2 is implemented to
process to OFS resulting from the periodic vibration of a target, to show the abilities of the
CWT to denoise, track down speckle, and extract the vibration parameters, namely velocity,
displacement and frequency in a single processing step. In addition to the traditional FC method
to detect the fringes and compute displacement, taking advantage of the complex nature of the
Morlet wavelet, PUM is also implemented resulting in a reduced error in displacement retrieval.

4.3.1 EXPERIMENTAL SETUP

The setup in Fig. 4.5 (a) is used as experimental arrangement in the following Sections. A
multiple quantum well InGaAsP Hitachi HL6501 laser with a 0.65 µm band was used. The
emission wavelength measured using an Instrument System’s SPECTRO 320(D) R5 was λ =
692.5 nm. The signal emitted by the laser was focused using a 352240-B Thorlabs aspheric lens
with a fixed focal length of 8 mm and a numerical aperture of 0.5 mm. The lens was placed at a
distance of 3.5 mm from the laser. A piezoelectric stage LISA P753.3CD with a maximum travel
length of 38 µm (3.8 µm/V) was used as a target. The stage includes an embedded capacitive
sensor with a resolution of 0.2 nm [4] which is used as a reference to compare with the obtained
results. The target was placed at a distance of 12 cm from the laser, in the configuration
presented in Fig. 4.5 (a). During the experiments, the target was vibrated by applying both
a triangular and a sinusoidal signal with amplitude (Vv(pp)) = 2 V and a frequency ft = 10
Hz for both of them. The OFS was retrieved using a Tektronix DPO2024B oscilloscope (Fig.
4.5 (b)). After the CWT based signal processing, the measured displacement was compared
with the measurements of the capacitive sensor embedded in the piezoelectric stage [4]. The
experimental parameters are summarized in Table 4.1. Equivalent conditions and parameters
were applied for obtaining a sinusoidal motion of the target.
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Figure 4.5: Experimental arrangement for OF based vibrometry. (a) Experimental setup. FG - Function gener-
ator. (b) Experimental OFS resulting from a triangular target displacement retrieved in the oscilloscope.

Table 4.1: Experimental parameters of the vibrometry setup used.

Parameters Value
Distance to external target from the laser (Lext) 12 cm
Voltage applied to Piezo (Vv (pp)) 2 V
Target vibration amplitude (At (pp)) 7.6 µm
Target vibration frequency (ft) 10 Hz
Operating point of laser (Iop) 45 mA
Emission wavelength of laser (λ) 692.5 nm
Sampling time (dt) 8 µs
Sampling frequency (fs) 125 kHz

4.3.2 METHODOLOGY

A flowchart diagram of the implemented processing method is depicted in Fig. 4.6. CWT, using
Morlet as the analyzing wavelet, is first applied to the acquired OFS. Due to the dyadic nature
of the Morlet [179], it is computationally efficient to choose a as powers of 2 given by

aj = a02jdj , j = 0, 1, 2...J − 1 (4.8)

where a0 is the smallest resolvable scale, which is set to the inverse of the Nyquist frequency,
and dj is an increment in scale related to the expansion of the mother wavelet. To balance the
resolution and computing time, it was chosen to be 1/8. The total scale J can be found out by
setting the frequency range (fR = fmax - fmin) to be analysed, which determines the number
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Figure 4.6: Flowchart diagram for parameter extraction of the parameters vibrating target using wavelets.

of resulting octaves (N0)
J = No

dj
= 1
dj

log2

(
fmax
fmin

)
, (4.9)

where fmax and fmin are the maximum and minimum analysed frequencies. An appropriate
range of octaves and scales depends on the spectral content of the analysed signal, the highest
requested CWT frequency and dj. Here, the maximum CWT frequency is selected to be equal
to Nyquist frequency and frequency of analyzing mother wavelet to be f0 = ω0 /(2π) where ω0

is set to 6, as discussed in Sec. 4.2. The frequency fa corresponding to a scale a is related to
the central frequency f0 of the wavelet by

fa = f0
a

= 0.95
a
. (4.10)

A summary of the wavelet parameters used for OFS analysis is presented in Table 4.2. After
computing the CWT of the OFS (presented in Fig. 4.7 (a)) resulting from the triangular motion
of the target under test (Fig. 4.7 (b)), the real part of W (a,b) (further on noted as Wr(a,b)) is
plotted in order to visualize the spatial and temporal components of the OFS (Fig. 4.8 (b)).
The Doppler shift introduced in the signal by the target motion is then easily estimated using
the maximum value of a, noted as aofi, shown in the scalogram presented in Fig. 4.9. This
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Table 4.2: Wavelet parameters for analysing OFS.

Parameters Value
Choice of wavelet Morlet
Center frequency (ω0) 6 rad/s
Minimum resolvable scale (a0) 1.6× 10−5

Maximum frequency in CWT (fmax) 62500 Hz
Scale increment (dj) 1/8
Total number of scale (J) 128

Doppler shift is related to the velocity of the target from Eq. (4.11). Thus, Wr(aofi,b) is plotted
for all time b, resulting in practice in a denoised OFS for the dominant scale. This waveform
(Fig. 4.10) is used as the basis for the computation of target displacement. Similarly, from the
squared complex amplitude of W (aofi,b) i.e. ± We(aofi,b), the OFS envelope is obtained (Fig.
4.10 (solid black line)). The signal envelope becomes relevant as it allows the determination of
the time instance at which the target changes its direction, showing singular time-dependent
events which may be characterized using the information in the CWT. In addition, the envelope
also helps track the speckle as well. Each fringe on Wr(aofi,b) (represented by a solid blue line
in Fig. 4.10) corresponds to a target displacement of λ/2. The presence of a dip in the signal
envelope is interpreted as a change in the direction of the target, thus allowing to count all the
fringes between two dips as displacements in the same direction. Hence, by counting the total
number of fringes it is possible to estimate the target displacement and its trajectory. Finally,
the vibration frequency is calculated by dividing the obtained Doppler frequency by the total
number of fringes in one period of the acquired OFS as shown in Eq. (4.11).

4.3.3 RESULTS

In this subsection the methodology proposed above regarding the application of the CWT to
an experimental OFS is explained in detail. Such an application is used as an example to
show the potential of CWT in processing the OFS. The methodology used for extracting the
different parameters from the OFS is discussed in detail, with an individual paragraph for each
parameter.

TARGET VELOCITY
Once the OFS (Fig. 4.7 (a)) resulting from the target vibration (Fig. 4.7 (b)) is acquired, a
CWT is applied as signal processing strategy. The wavelet coefficients Wr(a,b) and the corre-
sponding scalogram in frequency and time domains are then obtained by usingWr*Wr/

∑
W (a)

and shown in Fig. 4.8 (b) (the OFS is also shown in 4.8 (a) for clarity and to visualize the
different frequency components generated at different instance of target motion). As mentioned
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Figure 4.7: OFS and vibration reconstruction resulting from a triangular-shaped periodic vibration of the target.
(a) Acquired OFS resulting from target vibration. (b) Voltage applied to the piezoelectric target (dotted line)
and measured target motion (solid line) with the embedded capacitive sensor [4] used as reference.

above, the scalogram shows the fraction of energy contained by each given frequency component
at a particular time instance in the OFS. It is also evident from the described approach that the
energy components of the noisy OFS signal are localized at a particular scale, which is used to
retrieve the information about the dominant frequency that it contains. Fig. 4.9 shows Wr(a,b)
as a function of scale. The maximum value of Wr is found at a = aofi = 0.002125. Using
Eq. (4.10), the dominant frequency in the OFS is fofi = 447.1 Hz. This value can be used to
obtain the velocity of the vibrating target using the Doppler shift property which relates target
velocity and frequency using

fD = 2vt
λ
, (4.11)

where fD is the Doppler shift, vt is the target velocity and λ is the emission wavelength.
Substituting fD with fofi in Eq. (4.11) and using λ from Table 4.1, the target velocity obtained
results in vt = 0.15 mm/s. This is in good agreement with the target velocity calculated from
Fig. 4.7, as the target moves linearly 7.6 µm in 0.05 s, resulting in a velocity of 0.15 mm/s.
Further, the saclogram also contains the information related to the moment of time reversal of
the target motion, determined by the sharp decrease in the magnitude of the wavelet coefficients.
In addition, this contrast in amplitude in the wavelet coefficient, as evident from the scalogram,
is used in the following sections to find the envelope of OFS with speckle tracking purposes.

SIGNAL DENOISING
A typical experimental OFS contains both white and impulsive noise, as can be seen also in the
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Figure 4.8: CWT of the OFS described in the text after CWT. (a) Acquired OFS obtained from a triangular dis-
placement. (b) Scalogram of We. The presence of a clear dominant frequency and the detection of discontinuities
at given moments in time due to velocity reversal is observed.

example proposed. White noise is usually removed using low-pass filtering, while for impulsive
noise a median filter is used [67] [68]. The use of the CWT enables to remove the effect of
noise in the signal in a more efficient way, since it avoids the need of using two different filters
and the associated signal processing steps. This is used to reduce the computational cost and
the time duration of the signal processing stage. As seen, the CWT is in essence a correlation
between a scaled and shifted mother wavelet and the OFS. Since noise itself is uncorrelated to
the OFS, the resulting wavelet coefficients corresponding to noise are lower in magnitude than
those corresponding to the signal. In order to retrieve the denoised OFS, Wr(aofi,b) is plotted
and shown in Fig. 4.10 (solid blue). As it can be seen, not only white and impulsive noise have
been removed in a single step, but also signal processing and peak detection have been notably
simplified. The effectiveness of wavelets being able to filter both types of noise at once is also
demonstrated in Sec. 4.3.4.

ENVELOPE DETECTION
Speckle is an unwanted intensity modulation of the laser caused because of the finite size of the
laser spot when irregularities greater than λ/2 are present in the surface of the target, as dis-
cussed before. Such irregularities can cause the laser beam to add field amplitude constructively
or destructively when dispersed, resulting in a significant increase or decrease of the amplitude
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of the OFS which is detected. Given destructive interference due to speckle becomes dominant,
the signal processing stage to detect the fringes becomes extremely difficult to implement ac-
curately, as there are serious chances that some fringes go undetected, which turns into errors
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Figure 4.10: Signal processing of OFS. Envelope detection We (dark black); Denoised OFS (blue). Detected
fringes (circle); Time instance of direction change (square); Scaled target motion (green) (original target motion
(pp) is 7.6 µm and shown in Fig. 4.7 (b) ).
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Figure 4.11: Target displacement retrieved using CWT: (a) Target displacement obtained from OFI compared
with reference embedded capacitive sensor [4]. (b) Differences between OFI-based and embedded capacitive
sensor measurements.

in target displacement reconstruction. Speckle is consubstantial to OFI due to its experimental
conditions, with a coherent beam shone onto a rough target. Details on different features of
speckle affecting the OFS can be found in [167]. To correctly detect and localize fringes, by
keeping track of speckle-induced fluctuations in signal amplitude the envelope of the OFS is
calculated using the square of the CWT magnitude (We=|W (a, b)|2).

This envelope detection of OFS helps to follow its fading due to speckle enabling to ap-
ply some alternative compensation techniques [10], but it also enables to determine the time
instance when the target motion reverses its direction. Because of the wavelet correlation prop-
erties, when a target changes its displacement direction the magnitude of the signal correlation
decreases, resulting in lower wavelet coefficients which produce large fluctuations presented in
black solid in Fig. 4.10. Envelope detection can then be used to determine the instant of time
when there is a change in the direction of the target. Whenever the target motion2 (green)
in Fig. 4.10 reaches its maximum or minimum position, a rapid decrease of the magnitude of
the envelope is detected. By calculating the time instance of this minimum, it is possible to
identify the time at which the target changed its direction. In Fig. 4.10, the direction change is
noted by the squares on the de-noised OFS. The circles, in the same figure, represent the time
instance of the detected OF fringes.

TARGET DISPLACEMENT: FC METHOD
After denoising the OFS and detecting the time instance when target direction reverses, the next
step is to calculate the displacement of the moving target. In this case, the peaks correspond

2the scaled version is used for clarity. The original target motion is shown in Fig. 4.7 (b)
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to the displacement of λ/2 [50] for each direction, and they are easily counted following the
traditional FC method of OFI, allowing the reconstruction of the displacement of the target with
time. Since the OFS is almost symmetric, a simple fringe detection algorithm is implemented.

In the experiment, the fringes were detected properly (Fig. 4.10) and the target displacement
was retrieved and compared against the signal in the embedded reference capacitive sensor of
the piezoelectric stage (Fig. 4.11 (a)). This resulted in an absolute error value close to 0.6λ at
the transitions, and around 0.1λ elsewhere (Fig. 4.11 (b)). It should be noted that using the
FC method in a triangular-shaped signal introduces significant uncertainty and errors in the
moment when the reversal of the movement happens (in addition, see Fig. 4.21 for appreciating
the abrupt phase change in OFS at the transition).

Figure 4.12: Experimental OFS resulting from sinusoidal target motion.
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Figure 4.13: Different regions of the de-noised OFS and its envelope for a sinusoidal displacement of the target.
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To validate the feasibility of the approach, an equivalent analysis was performed using a
sinusoidal displacement of the target for comparison. Using the parameters presented in Table
4.1 the OFS shown in Fig. 4.12 was obtained. In the case of the triangular motion the change
in direction occurs abruptly, causing a narrow dip in the envelope of the signal as shown in
Fig. 4.10. However, in the case of a sinusoidal motion along the sine flat top region no sharp
movement change happens, so the transition time is not localized and there exists a finite time
interval along which the transition in direction of movement occurs. As a consequence, the
particular instant in time when the reversal of direction happens is not so easy to determine.
Such differences in temporal behaviour between sinusoidal and triangular motions are detected
by the wavelet transform. The denoised OFS and its corresponding envelope for a sinusoidal
target motion are shown in Fig. 4.13. There are a number of relevant conclusions that can be
extracted from the analysis of the envelope of the signal. First, the presence of a dip in the
center corresponds to a discontinuity in the target motion.

In order to continue the discussion let us denote the region corresponding to the sinusoidal
movement reversal as the “flat top region” (FT ), and the fringes inside the FT region as “error
fringes” (EF). Such EF are very low in amplitude and can be eliminated using a proper threshold
filter. They are due to computational error. At the top, the target is stationary, so there should
be no fringes. The fringes appearing are due to numerical errors i.e. the wavelet coefficient
should be zero, but in practice, the wavelet coefficients only tend to zero, but not reach it
absolutely. It is possible to detect two pulsed envelope zones (PE1,PE2 ), symmetric about FT
(along the rise and fall slopes of the target motion), where OFI fringes are present. All the fringes
in this region contribute to the calculation of target displacement. Also, the envelope contains
a tail at the edge denoted as the tail envelope (TE) with its corresponding tail fringes (TF),
which, as in the case of EF, are not considered for displacement reconstruction as they represent
the end or the beginning of a new cycle. A “discontinuity” at the tail denotes the fact that the
slope of the movement of the target has significantly increased to cause effective fringes. The
displacement reconstruction and its comparison with the reference sensor of the piezoelectric
stage for the proposed experiment are shown in Fig. 4.14. As observed, the resulting error
is within 0.2λ with a mean error of just 0.1λ in the full signal, showing the problems in the
reconstruction of the triangular signal were much due to the uncertainty in fringe calculation
introduced due to the sharp displacement transition.

FREQUENCY OF VIBRATION OF THE TARGET
Once the target displacement has been retrieved, a Fourier transform of the displacement pro-
file can be used to obtain the frequency of the target vibration ft. However, this is an indirect
method for calculating the aforementioned frequency. There are several situations (e.g. in con-
dition monitoring of vibrating objects) in which frequency is more relevant than displacement.
In such cases, it is possible to attain directly the frequency ft of a vibrating object dividing the
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Figure 4.14: Displacement reconstruction for a sinusoidal movement of the target: (a) Retrieved target displace-
ment using OFI compared with the embedded reference capacitive sensor [4]. (b) Resultant error within 0.2λ
(average error of 0.1λ) obtained from the difference in the OFI and reference sensor in (a).

fofi by the number of fringes in one period of target motion Nf expressed as

ft = fofi
Nf

. (4.12)

Using the previously calculated values for the triangular motion fofi = 447.1 Hz and Nf = 43,
the target vibration frequency is estimated to be ft = 10.4 Hz which is equal to the original
target vibration frequency mentioned in Table 4.1. A similar analysis was performed using
the Fourier transform method obtaining ft = 10.0 Hz. Thus, the wavelet based approach is
consistent with Fourier analysis and with experimental data.

4.3.4 TARGET DISPLACEMENT: WAVELET-BASED PUM

Two general-purpose methods are usually considered to retrieve the target displacement from
OFS: the FC method already discussed, and the phase unwrapping method (PUM) [12]. In the
FC method discussed in Sec. 4.3.3 it was shown how the real part of the complex coefficients
calculated using the CWT were used to detect the fringes and to retrieve the displacement
of the target. The information contained in the imaginary part of the coefficients, however,
remained unused. In this Section, we make use of the complete information of the wavelet
transformation by taking into account the imaginary part of the wavelet coefficients together
with the real part, in order to obtain the phase angle of the OFS. The use of the complex plane
(real and imaginary coefficients) resulting from the wavelet analysis of OFS with the complex
Morlet wavelet as analyzing wavelet for target displacement using PUM is demonstrated, and its
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Table 4.3: Experimental parameters for wavelet-based PUM displacement reconstruction.

Parameters Value
Distance of external target to the laser (Lext) 12 cm
Voltage applied to Piezo used as target (Vv(pp)) 3 V
Amplitude of vibration of the target (peak) (At (pp)) 11.4 µm
Frequency of vibration of the target (ft) 10 Hz
Operating point of the laser (Iop) 45 mA
Emission wavelength of the laser (λ) 692.5 nm

performance compared with the results of the FC method. A very relevant advantage of PUM
is the larger number of sample points (determined by the acquisition device) to reconstruct
the target displacement as compared to number of sampling points, limited by the emission
wavelength, in the former case.

In order to further explore the capabilities of the CWT for removing AWGN and impulse
noise to determine the target vibration profile, it is now desired to acquire a very noisy signal,
which contains both types of noise, and to process the OFS using PUM to extract the key
parameters of the displacement of the target. A setup equivalent to that in Fig. 4.5 (a) in Sec.
4.3.1 is used for the experiment. The piezo is vibrated using a triangular signal with amplitude
(Vv (pp)) of 3 V and frequency 10 Hz from a general purpose signal generator. This results
in a target motion with peak to peak amplitude of 11.4 µm. The CWT processing combined
with PUM will be applied and compared to the measurements of the reference capacitive sensor
embedded in the piezoelectric stage, as in the previous analysis [4]. Experimental parameters
are summarized in Table 4.3. The acquired OFS due to target motion is shown in Fig. 4.15
(a), while Fig. 4.15 (b) shows the reference signal in voltage applied to the piezo, which results
in a displacement of amplitude 11.4 µm and frequency 10 Hz. The information on target motion
is contained in the OFS, but is embedded within an envelope of AWGN and impulsive noise.
Instead of the conventional approach using an averaging filter to remove AWGN and a median
filter to remove impulsive noise [67, 68], the CWT method alone deals properly with both of
them simultaneously and extracts the relevant parameters of target motion.

As a first step, the CWT is performed upon the noisy OFS shown in Fig. 4.16 (a) in order
to get the complex coefficients W (a,b) ( Fig. 4.16 (a) is same as Fig. 4.15 (a). It is repeated
here for ease of visualizing the scalogram and correlate it with the target motion). Fig. 4.16
(b) shows the complete scalogram with all the scaled and shifted wavelet coefficients obtained.
The figure shows a clear dominant scale (aofi) which contains the frequency information of the
OFS. Fig. 4.17 shows the changes in the dominant scale aofi = 0.0014, which corresponds to a
frequency of 578.5 Hz from Eq. (4.10). The real part of the complex wavelet coefficient at scale
a=aofi and at all time instances Wr(aofi,b) is plotted in Fig. 4.18 (a) to get the 1-D denoised
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Figure 4.15: Experimental results for the measurement of the vibration of the target: (a) OFS showing relevant
levels of both impulsive and AWGN noise. (b) Reference amplitude and frequency of vibration as a result of the
voltage applied to the target. Amplitude is measured using the embedded capacitive sensor [4].

OFS, which contains the temporal and spatial information of the target motion.
It is evident that the strength of using the CWT lies in the fact that in a single shot it

can denoise the experimental OFS, preserve the information content and convert a noisy OFS
(Fig. 4.15 (a)) into a clean Fig. 4.18 (a) which enables an easy and precise fringe counting
procedure. The denoised OFS is symmetrical around y-axis, so using a simple threshold fringe
counting method, the number of fringes from Fig. 4.18 (a) can be easily counted (Fig. 4.18
(b)), so the determination of the motion of the target is set (Fig. 4.19 (a)). The error signal
from the difference between the measurements of the OF sensor and the reference is shown in
Fig. 4.19 (b). It is observed that most of the time error signal lie in between ± λ/2, except at
the transition point where the error signal exceeds λ/2.

FC method has thus been shown to be limited to a coarse resolution of λ/2. However, the
complex nature of the wavelet coefficient can be used to unwrap the phase and to compute
the target displacement with an enhanced resolution well below that value. The phase of the
complex wavelet coefficient is given by

φ(b) = tan−1[Wi(aofi, b)
Wr(aofi, b)

], (4.13)

where Wr(aofi,b) and Wi(aofi,b) are the real and imaginary parts of the complex wavelet co-
efficient obtained at the dominant scale aofi. Further, the phase of the OFS is related to the
target displacement as a function of time b (At(b)) by

φ(b) = 4πAt(b)
λ

. (4.14)
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Figure 4.16: Time frequency plane resulting from Wavelet analysis. (a) Acquired OFS with impulsive and white
noise. (b) Scalogram of absolute value squared of complex coefficients.
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Figure 4.17: Dominant scale in the scalogram in Fig. 4.16, corresponding to aofi = 0.0014, and a frequency of
678.5 Hz.
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Figure 4.18: Intermediate stages for retrieving target displacement. (a) Denoised OFS (Wr(aofi,b)). (b) Fringes
detected (as circles). Time instance of a transition is determined by a sudden “dip” (as filled squares).

Fig. 4.20 (a) shows the wrapped phase, the unwrapped phase (Fig. 4.20 (b) (dashed line)),
and the equivalent unwrapped displacement of target motion (Fig. 4.20 (b) (solid line)). The
reconstructed target motion obtained is shown in Fig. 4.20 (c) compared with the reference
signal from the embedded capacitive sensor [4]. The error signal shown in 4.20 (d) is the
difference between the reference and the measurements based on OFI sensors. It is limited to
a ± 0.2λ maximum value, which only appears at the edges or at the time instance when the
target makes a reversal in the direction of the movement.

Such error magnitude, however, is not attributable to poor signal processing, but to the
nature of the target motion itself. In the moment when the target reverses its direction, it
induces brand new spectral content in the signal (as presented in Fig. 4.16 (b)). This causes the
abrupt change in phase shown in Fig. 4.21. such a sensitivity of the phase of the signal to abrupt
changes when the target changes its direction of movemen has advantages and disadvantages.
Advantages lie in the fact that, due to the abrupt change in target motion, the phase of OFS
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Figure 4.19: Displacement reconstructed using FC. (a) Retrieved displacement from OFS compared with the
reference signal [4]. (b) Error signal in displacement reconstruction between OFI sensor using FC and reference
signal.

changes abruptly so information about target reversal or change in direction may be extracted
precisely. Disadvantages are that, since the phase of OFS is used to extract target displacement,
any undesired change in phase (Fig. 4.21) introduces error in the signal reconstruction, as shown
in Fig. 4.20(d).

Thus, it has been shown how wavelets enable processing the OFS both in the time and
frequency domains simultaneously. While the time domain analysis enables to determine the
target displacement using FC method with an error of ± λ/2, processing it using the complete
complex wavelet coefficients enables us to find the displacement with better accuracy of ± λ/5.
The detailed comparison of wavelet based analysis of OFS in the time and frequency using the
FC and PUM methods is shown in Fig. 4.22.

4.4 ANALYSIS OF TRANSIENT VIBRATIONS

Transient vibrations3 are used extensively in applications related to condition monitoring (e.g.
fault detection), to biosensing and to medical signals (e.g. electroencephalograms or electrocar-
diograms) [181–183]. In the analysis of systems involving transient vibrations, most of the times
it is required to idealize the cause of the vibration as a step or pulse function. Such causes may
typically be either displacement, velocity, acceleration or force. So far OF has been used in the
literature to analyse periodic vibrations using different signal processing schemes, including the
fringe counting process described in Sec. 4.3.3, Fourier [184], Hilbert transformations [62], or
phase unwrapping [14] to extract the vibrational parameters of the target.

3Temporarily sustained vibrations of a system, forced, free, or a combination of both. Mathematically, any
signal whose statistics vary with time is considered a transient signal.
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Figure 4.20: Wavelet-based implementation of PUM: (a) Wrapped phase; (b) Unwrapped phase (dashed line)
and equivalent displacement (solid line); (c) Displacement reconstructed using PUM compared with reference [4];
(d) Error signal in displacement reconstruction between OFI and the reference signal.
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Figure 4.21: Phase fluctuation of OFS during the reversal in direction of the target.

Figure 4.22: Summary of results.

Fringe counting is in general not suitable to process the transient signal as the threshold
of detection would have to be changed or optimized depending on the displacement of the
target. Fourier based signal processing is a very elegant approach, but it requires the knowledge
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Figure 4.23: Experimental OFS obtained from a transient vibration: (a) OFS resulting from the transient motion
of the piezo; the inset shows the OFS under a magnified time scale close to the moment when the transient reaches
its peak; (b) Transient signal applied to the piezo used as target.

or estimation of the complete behaviour of the signal over time, so it becomes very limited
to analyze transient signals, or even signals with unknown future behaviour. Though Hilbert
transform on the signal converts it to the analytic complex plant, it is not always easy and
straight forward to calculate the Hilbert transform. For more advanced functions techniques
from complex analysis is need in order to handle the integral such as contour integrals in the
complex plane and the residue theorem. Further, in the case of phase unwrapping approach,
the OFS has to be processed time and frequency domain separately thus adding complexity as
well. To overcome the drawbacks, the study presented here includes the analysis of a transient
vibration using OF hence broadening its scope.

Due to its localization in time and frequency properties, wavelet is ideally suited to the
analysis of transient signals [185,186]. After applying the CWT, the frequency domain reflects
the behaviour of a temporally localized version of the signal, ideal to study transient signals. The
experimental setup for measuring transient vibrations using OFI is the same already discussed
in Fig. 4.5 (a). A transient signal in the shape of a sinc pulse is applied to the piezo (Fig. 4.23
(b)). A 3 dB pulse duration (the time duration for which the voltage of pulse becomes 1/

√
2

of its maximum value) was set to be τ3dB=τ1-τ2 = 613.3-592.8=20.5 ms, where τ1 and τ2 are
the first and second 3 dB points. The peak value of the pulse occurs at τ0=603 ms, where it
reaches a maximum value V0=1 V. This induced a transient vibration in the piezo of amplitude
Am = 3.8 µm = 5λ/2. The vibration is then captured into the OFS as shown in Fig. 4.23
(a). It is observed for most of the time the signal applied to the piezo is constant, producing
no vibration of the target and subsequently no fringes. At the time instance t=τ0=603 ms, the
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Figure 4.24: Time-Frequency representation of the OFS: (a) OFS; (b) Scalogram obtained using CWT. It should
be noted that here the ordinate is the frequency, obtained by using the relation described in Eq. (4.10), unlike
the scale in previous figures. The direct representation in terms of frequency gives the added advantage to obtain
the pulse width with ease.

voltage switches to V0=1 V following a sinc temporal profile, and the OFS fringes are produced
and captured (Fig. 4.23 (a)). The number of fringes obtained Nf=5 is consistent with the
amplitude of vibration [50] and may be seen in the inset in Fig. 4.23 (a).

The wavelet and algorithms described in Sec. 4.2 and 4.3.2 to process the OFS are used here
on the OFS of transient signal as well. Using the CWT, the spectral and temporal information
related to vibration as (a) duration and (b) instantaneous velocity profile of the transient vi-
bration are obtained. Fig. 4.24 (b) shows the scalogram obtained for the transient OFS (Fig.
4.24 (b)) resulting from CWT. For most of the time of the experiment, the wavelet coefficients
are close to zero (representing a negligible spectral component), but during the duration of
the sinc perturbation their value change significantly, showing the appearance of new spectral
components resulting from the Doppler shift related to the pulse duration. From Fig. 4.24 (b),
we see how the Doppler frequency is fD=453.72 Hz.

To measure the 3 dB pulse duration of the transient vibration, the wavelet coefficients at
f = fD = 453.72 Hz for all time i.e W (fD) is extracted from the scalogram. For simplicity, only
the wavelet coefficients in the vicinity of the pulse are shown in Fig. 4.25. It is observed that
the value of W (fD) is significant only during the pulse duration and zero elsewhere. The plot
of W (fD) has two maxima at τ ′1 and τ ′2 with a sharp dip at τ ′0 represented by point A, C and
B respectively in Fig. 4.25. The 3 dB width (τ ′3dB) and center of pulse (τ ′0) are calculated from
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Figure 4.26: Experimental results. Velocity profile of transient vibration determined using wavelets.

Fig. 4.25 as

τ ′3dB = τ ′2 − τ ′1 = 613.3− 592.5 = 20.8 ms (4.15)

τ ′0 = 603 ms. (4.16)

To determine the velocity profile vt, we proceed as described next. First of all the maximum
wavelet coefficient present at each instance of time is obtained from scalogram (Fig. 4.24).
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Table 4.4: Comparison between the reference and extracted pulse parameters.

Parameters Original value Calculated value Error
Center pulse time τ0 = 603 ms τ ′0 = 603 ms 0.0
First 3 dB time τ1 = 592.8 ms τ ′1 = 592.5 ms 0.05%
Second 3 dB time τ2 = 613.3 ms τ ′2 = 613.3 ms 0.0

3 dB pulse duration τ3dB = τ2 − τ1 = 20.5 ms τ ′3dB = τ ′2 − τ ′1 = 20.8 ms 1.4%
peak velocity Vt0 = 1.65× 10−4 mm/ms V ′t0 = 1.57× 10−4 mm/ms 4.8%

Then the corresponding frequency is found, which gives the value of the Doppler frequency as
a function of time fD(t). Once the instantaneous frequency is known, the velocity of target is
obtained as vt=fD(t)λ/2 and shown in Fig. 4.26. It is observed that the calculated peak velocity
of the target is V ′t0 = 1.57 × 10−4 mm/ms as compared to original value of Vt0 = 1.68 × 10−4

mm/ms (from Fig. 4.26, the target makes a displacement of 3.8 µm in 23 ms). In addition, a
sharp dip in the velocity profile is observed showing how the target has reached its maximum
value and now vibrates in opposite direction. Table C.7 shows the comparison between the
original pulse parameters and the corresponding ones determined by the wavelet based signal
processing. It is shown how all parameters are recovered within small error margins, being the
determination of peak velocity the one which has a larger error value (although limited to below
5%).

4.5 CONCLUSION

In this chapter it was demonstrated that analysis of the OFS based on CWT, in particular using
the complex Morlet wavelet, is proven to be a well suited, simple and efficient technique for
signal de-noising, retrieving the parameters characteristic of the vibration, managing speckle
and performing analysis of transients in a single processing step, because it processes the OFS in
the time and frequency domain simultaneously. Wavelet-based signal processing was shown to
extract the different vibration parameters from a conventional experimental OFS very efficiently.
Furthermore, the use of the Morlet wavelet to recover the envelope of OFS proved to be an
advantage in those cases where speckle induced signal fading. The method is computationally
very efficient as compared to other techniques described in the literature. Two methods - FC and
PUM - were demonstrated for displacement reconstruction using wavelets. While the former
results present a time domain error of λ/2 in a triangular signal reconstruction, later they
were reduced by processing them in the frequency domain with an error of just λ/5. It was
also demonstrated that wavelet analysis permits to precisely pick and detect the occurrence of
fringes, hence, allowing to minimize error in target displacement retrieval. Finally, it was used to
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characterize a transient vibration and to extract several of its displacement-related parameters,
such as the duration of the transient vibration, the precise evolution of the displacement over
time, and the instantaneous velocity of the target.
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5. Injection Modulation Induced
Stability in Laser in Presence of
Strong Feedback

5.1 INTRODUCTION

As shown in detail in Chapter 2, OF with modulation of the current feeding the laser is a
particularly interesting type of perturbation, as the source of the perturbation is externally
controlled in a very easy manner. It has shown instabilities such as quasi periodicity, period
doubling or tripling, and even chaotic output depending upon the modulation frequency (fm)
and amplitude (Am) of the current modulation [32–34]. Within the current Chapter, it is
demonstrated that adjustments in injection modulation can be used to induce laser stability
even for high C values. The modulation of the injection current of the laser causes not only IM,
but also a modulation of the refractive index and the optical path of the active region of the
laser, which results in FM [187]. However, IM and FM modulations present different features
and cause different effects. While IM follows directly the light-current (L-I) curve (which is
exponential in nature) of the laser, FM shows a linear dependence with the modulation current,
which enables a separate influence of IM and FM on the laser performance tailored to the
application.

FM results in a frequency spectrum of emission which consists in a central modulation fre-
quency (fm) accompanied by a series of side-bands separated by the same value. The amplitude
of the side-band pairs is given by a Bessel function of the first kind J1(M), whose argumentM is
the frequency modulation index, defined as the ratio of maximum induced frequency deviation
(∆f) to the modulation frequency (fm) i.e. M = ∆f/fm. Since ∆f = ΩfAm, the amplitude of
the side-band depends upon the amplitude and frequency of the current modulation, and upon
the frequency coefficient of the laser Ωf [188].

This chapter is devoted to study the dynamics of the laser when subject to OF and IM,
in particular, to the ability of such intensity modulation to prevent the feedback induced in-
stabilities described in former chapters. The dynamics of the laser under optical feedback in
presence of injection modulation is studied extensively. It is shown that the frequency deviation
of the field emanating from the laser due to injection modulation alters the dynamic state and
boundary conditions of the laser in such a way that even lasers under strong feedback conditions
may attain stability and perform under a single mode state. The model developed to describe
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the behaviour of the laser is based on the Lang-Kobayashi rate equations [30]. Experimental
evidence of the theoretical predictions concerning the laser dynamics, making use of injection
modulation to stabilize an laser in presence of strong feedback levels is presented. Next, an
experimental set-up based on CWFM-OF is presented to measure the frequency coefficient of
the laser Ωf , which is a key parameter for inducing stability. Finally, it is demonstrated that
the frequency deviation in the emission of the laser caused by injection modulation induces
a phase change in the laser which opposes to that of the phase change induced by OF. It is
shoen that an optimal modulation current exists with the ability to compensate the effects of
optical feedback and maintain the laser in its single-mode stationary state. In summary, this
chapter presents an experimental method to prevent from feedback-induced instabilities in the
laser making use of injection modulation.

In detail, this chapter is organized as follows. In Sec. 5.2, the response of laser under the two
main types of OF (C-OF and CWFM-OF) is briefly reviewed, covering only the aspects most
relevant to this section and not presented in Chapter 2. In Sec. 5.3 it is shown that C may be
interpreted as a frequency deviation parameter. The effect of having quite different boundary
conditions for OF and CWFM-OF brings on that the value of C determines different number
of solutions from the excess phase equation in both cases. Next, the effect introduced by the
interaction of the frequency deviation due to C, and the one due to the modulation current
Am at different Lext is discussed. It is shown that they both act in opposite directions so given
the proper conditions are set, they may make the laser to be monomodal even in presence of
high C values. Further, the frequency modulation coefficient of the laser (Ωf ), one of the key
factors in the determination of laser stability in presence of high feedback strength, is measured
experimentally in Sec. 5.4.1. Using this experimental value of Ωf , the modal behaviour of
the laser as a function of C, Am and Lext is analyzed, and the optimal working conditions
based on those parameters which retain the laser in a single mode state are presented. Finally,
in Sec. 5.4.2, an experiment is performed to show that frequency deviation caused by the
introduction of laser injection modulation pulls back the laser from its potentially undesired
(for metrology applications) multimodal state to a quasi stationary state even under high C

values. A discussion and conclusion of the main contributions presented in Section 5.5 ends the
Chapter.

5.2 THEORY

Different approaches have been used to explain the dynamics of SCL in presence of OF, such as
the delay difference equation [26–28] or the compound cavity model [29]. In this chapter, the
theoretical description based on the Lang-Kobayashi (L-K) formulation [30], already presented
in Chapter 2 is used. From the L-K rate equation, a refined investigation of how the stationary
state of the laser under feedback undergoes changes, loses its stability, and with growing feedback
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strength gives rise to a more complex behavior is studied, showing it is possible to push back
the laser to a stable monomode state by introducing injection current modulation. In its free-
running state, with a constant pump current required to cause population inversion, the set of
equations governing the dynamics of carrier density and photon density inside the laser cavity
are given by the coupled equations (5.1) and (5.2) [93] (equivalent to Eq. (2.11) in Chapter 2)

dN

dt
= ηiI

qV
− N

τ
− vggNp, (5.1)

dNp

dt
= ΓvggNp + ΓβspRsp −

Np

τp
, (5.2)

where the symbols have the usual meaning used in previous chapters, detailed in Eqs. (2.10)
and (2.11), respectively. However, in presence of OF, the laser dynamics are no longer described
by Eqs. (5.1) and (5.2), and the more complex (L-K) equations [30] are required to describe
the C-OF case. Considering the external target has been placed at a distance Lext from the
laser, the time-delayed difference equation caused by optical feedback is given by Eqs. (5.3) and
(5.4) [30]

dE(t)
dt

= 1
2(1− jα)Γvga(N −Ntr)E(t) + γfbE(t− τext)ejω0τext , (5.3)

dN(t)
dt

= ηiI

qV
− N(t)

τ
− [ 1

τp
+ Γvga(N −Ntr)]E(t)2, (5.4)

where the symbols have usual meaning, explained in Eqs. (2.72) and (2.73). The first term
on the right side of Eq. (5.4) represents the rate of carriers injected, and the second and third
terms represent the rate of loss of carrier concentration due to spontaneous and stimulated
emission, respectively. It may be shown that the coherent beating between the emanating field
inside the laser cavity and the field reflected from an external target causes a multistable state
depending on the strength and the phase of the reflected optical field. Furthermore, the periodic
vibration of the external target causes the change in OPL (transformed into a change in the
round trip delay), and ultimately causes the optical power to present periodic variations as well
(Chapter 2, Eq. (2.74)). Similarly, for the case of CWFM-OF, the equations (5.3) and (5.4)
can be modified by adding a term describing the presence of current modulation, instead of the
constant bias of the former case.

The phase equation of the laser under OF and CWFM-OF is given by Eq. (5.5) and (5.6),
respectively [52,93]

φv(t) = 2π(f − f0)τext(t) + Csin(2π(f − f0)τext(t) + 2πf0τext(t) + tan−1α), (5.5)

φm(t) = 2π(f − f0)τext + Csin(2π(f − (f0 − Ωf i(t)))τext + 2πf0τext + tan−1α), (5.6)

where f , f0, τext, α, and im(t) are the emission frequency of laser under feedback, the emission
frequency of the free running laser, the external round trip delay, the linewidth enhancement
factor, and the modulation current, respectively. C-OF as defined by Eq. (5.5) is a non-linear
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equation and its state is thus dependent upon the feedback parameter C and the feedback phase
(φ0 = 2πf0τext) [87]. As discussed in Chapter 2, for C < 1, there is only one solution to Eq.
(5.5) and only one mode exists in the cavity. However, for C > 1, multiple solutions to Eq. (5.5)
may appear and the laser behaves as a multimodal system. However, in the case of CWFM-OF,
governed by Eq. (5.6), the addition of the effect of the modulation current introduces a novel
factor, easy to control and monitor externally, which changes the boundary conditions and so
the modal behaviour of the laser.

5.3 PUSH-PULL EFFECT IN THE SEMICONDUCTOR LASER

The excess phase in presence of optical feedback in C-OF and CWFM-OF is a non-linear
transcendental equation which cannot be solved analytically. In the case of C-OF (Eq. (5.5)),
the phase of the laser is dependent upon the C and τext (Lext), but in the case of CWFM-OF (Eq.
(5.6)), the phase of the laser that determines the number of solutions (i.e. modes in the cavity)
is dependent upon C and τext (Lext), but also upon Ωf and im(t). In the following section,
numerical and experimental methods to solve both excess phase equations (5.5) and (5.6) are
analyzed. Relevant conclusions are drawn from such analysis, in particular the existence of a
push-pull effect for the phase in Eqs. (5.5) and (5.6) when considering feedback and intensity
modulation.

As a first step to illustrate such effect, it is desirable to show that the feedback parameter C
acts as a frequency deviation parameter for the emitted frequency under feedback. Heil et. al
in [189] demonstrated theoretically and experimentally that the frequency deviation of the field
emitted by the laser under C-OF is proportional to its C value. Here it is analyzed the case
of CWFM-OF in an equivalent manner. That is, the time-delayed reflected optical field from
the remote target and the field inside the laser cavity produce an equivalent beat frequency
with the magnitude of the frequency deviation, proportional to C. Eq. (5.6) (corresponding
to CWFM-OF) is solved numerically to find the frequency emission (f) in presence of OF by
equating the phase term to zero i.e. φm(t) = 0 at different C values. The results are plotted in
Fig. 5.1 (a). It is observed that with an increase in C, the frequency of emission under feedback
increases proportionally. The CWFM-OF signal is obtained as Pm = cos(2πft)1 The frequency
spectrum of the CWFM-OF signal, obtained by Fourier transform at different feedback levels is
illustrated in Fig. 5.1 (b). This plot also confirms the argument that new frequency components
are generated, and power in those components increases with an increase in C. It is also evident
that at a low value of C, the frequency deviation follows a sinusoidal pattern, while at higher
values (C = 5), hystheresis with sudden mode jumps are observed, as expected (Fig. 5.1 (a)).

1It should be recalled that the cosine term holds true for low feedback strength, while for higher feedback
strengths a more complex triangular function is desirable. Taking advantage of fact that the triangular function
is the sum of harmonics of cosine (sine) function, cosine is used here in a general sense for simplicity.
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Figure 5.1: Graphical solution of Eq. (5.6). C, as in C-OF, acts as a frequency deviation parameter for CWFM-
OF as well: (a) Frequency deviation increases with increase in C. (b) Spectrum of CWFM-OF signal at different
C values.

The number of modes in the laser cavity is dependent on the solutions of the transcendental
equation Eq. (5.5) (Eq. (5.6)) for C-OF (CWFM-OF). It has been shown that, in the general
case, as long as C < 1, there is only one solution to Eq. (5.5) [30]. However, in the case
of CWFM-OF, the additional frequency shift introduced by the modulation current in the
field emanating from the laser needs be considered. From [30], it is evident that a number of
frequencies appear due to the beating of the time delayed field coming back from the target
with that emanating from the laser cavity. Only those frequencies that lie within the gain
spectrum of laser, or the modes with minimum linewidth, dominate [72]. The evolution of the
induced phase for both cases as a function of time and frequency is presented in Figs. (5.2) and
(5.3) respectively, under the same axes and scales. Feedback strength was fixed at C = 0.9 for
illustrative purposes only. The detailed effect of C on the laser dynamics, and in particuar the
effect of diferent C values in the laser performance is explained in sections to follow. Fig. 5.2
(a) shows the phase profile of the C-OF signal evolved over time in the frequency range ∆f =
[-0.7,0.7] GHz. For example, the phase profile over all times at a particular ∆f = 0.7 GHz is
shown in Fig. 5.2 (b). It is observed that the phase changes to 2π for each λ/2 displacement
of target motion (the displacement due to vibration of the taret being 4λ (pp)). Similarly, the
phase profile of CWFM-OF over the same frequency interval mentioned above is shown in Fig.
5.3 (a), and the phase profile at ∆f = 0.7 GHz is shown in 5.3 (b). The differences in phase in
both cases is clearly observable. The phase change in this case is attributed to the frequency
modulation coefficient (Ωf ) and the amplitude of injection modulation (Am). Since Ωf is a key
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Figure 5.2: Phase profile of the C-OF signal at (C = 0.9). (a) Phase changes in C-OF as a function of time and
frequency; (b) Phase profile at ∆f = f − f0 = 0.7 GHz.

factor that can help to compensate the effect of C in frequency, it is desirable to measure it
experimentally, which is done in next section 5.4.1.

Next, the practical implications of the differences in the phase terms under C-OF and
CWFM-OF are analyzed, in particular their effect into the number of modes (Nm) allowed in
the laser cavity. The number of modes, which provide a solution to equation Eq. (5.6), as
described in Chapter 2, is numerically obtained by equating the phase term φm(t) to zero. Let
Lext, Lext(pp) and Ωf be set to typical values 0.45 m, 0.14 A and 0.005 nm/mA, respectively.
The choice of Lext is chosen to be compatible with the working conditions in laboratory, Am(pp)
is chosen to be compatible with the laser specifications [190] used in the experiments and Ωf is
measured experimentally in Sec. 5.4.2.
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Figure 5.3: Phase profile of CWFM-OF signal (C = 0.9). (a) Phase changes in CWFM-OF as a function of time
and frequency. (b) Phase profile at ∆f = f − f0 = 0.7 GHz.
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Figure 5.4: Graphical solution of Eqs. (5.5) and (5.6). Variation of the number of modes for C-OF (solid) and
CWFM-OF (dash) at Lext = 0.45 m, Am(pp) = 0.14 A for different C values. Results show CWFM-OF is less
susceptible to increase in C than C-OF.

Under these conditions, C is varied in a range from 2 to 7 (moderate to strong feedback)
to see the profile of the phase φm(t) against the change in frequency of the emission, and the
number of modes, seen as the number of crossings across zero of φm(t). Each plot contains
equivalent conditions for C-OF and CWFM-OF in order to compare the behaviour of the phase
term (Fig. 5.4). Under these conditions, and as depicted by classical theory, the number of
modes for C-OF is greater than one (Nm > 1) when C > 1, resulting in multi-modal behaviour,
and potentially hystheresis and mode hopping. However, the CWFM-OF behavior is seen to
present a wide range of C values for which a single mode is still attained, even for C values as
large as 3 (Fig. 5.4 (a) and 5.4 (b)).

Further increasing C causes multiple modes in the cavity for CWFM-OF as well, as seen in
Fig. 5.4 (c) and Fig. 5.4 (d). However, increasing the amplitude of the injection current, Am(pp)
from 0.14 A to 0.30 A at C = 6 (Fig. 5.4 (d)), the laser is pulled out of its multi-modal state
back to a single mode one, as shown in Fig. 5.5. This attribute is associated to the negative
value of Ωf of the laser i.e. to the fact that an increase in the amplitude of modulation decreases
the emission frequency and affects the phase term in opposite sense to that of C (which increases
the frequency deviation as C increases, as shown in section 5.3). Hence, CWFM-OF acts as a
“push-pull" system where there exists at least one theoretical value of Am for each value of C
which is able to compensate the effect of the complementary term so the laser is maintained in a
single mode state. As a further example, Fig. 5.6 (a) shows a CWFM-OF case where at C = 2
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Figure 5.5: Modal behaviour of laser under OF. Laser exhibit multiple mode at C = 6 for C-OF. By addition
of injection modulation, laser is pulled back to single mode state by choosing the optimal modulation amplitude
Am(pp) = 0.3 A.

and Am(pp) = 0.14 A, the laser is kept in the single mode state. By decreasing the Am(pp)
value to 0.03 A brings the laser back into a multi-modal state. Alternately, in Fig. 5.6 (b),
with a feedback strength of C = 5, deviating Am(pp) from 0.14 A to 0.2 A pulls the laser from
a multi mode to a single mode state. It is to be noted that the same value of Am(pp) = 0.14
A causes the laser to attain single mode or multi mode state depending upon C. To clarify the
conditions where this happened, simulations were carried out in MATLAB to carefully study
the effect of Lext, C and Am on the number of modes Nm, and a detailed overview is presented
in Fig. 5.7.

Several applications of lasers under OF (with our interest, sensors and metrology, among
them) benefit from having the laser in a single mode state. One of the main applications of
this push-pull behaviour is thus to retain the laser in a single mode state under high feedback
strength, using a parameter of the laser which may be controlled externally. As a consequence,
a detailed analysis of the Am(pp) values required to retain the laser in single mode state under
large feedback strength was performed. Fig. 5.8 shows the relationship between them for the
cases of different Lext values ranging from 0.4 to 0.8 m. Points show the value for which a
given C value is compensated by a given Am(pp) value. Based on the results in Fig. 5.8, no
fixed relationship is obtained between them and each individual case is different. However for
Lext = 0.45, 0.5 and 0.55 m, the relation tends to be linear. At C = 4 and Lext = 0.45 m, for
instance, Am=0.064 A is required to retain the laser in a single mode state. The optimal value
of Am required to pull back the laser into single mode state depends upon the combination of
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Figure 5.6: Relationship between Am and C. The amplitude of current modulation required to bring the laser
back to single mode behaviour depends upon feedback strength.

Lext and C. However, in practice, there is a limit on the value of Am(pp) determined by the
specifications of the laser considered which limits the maximum feedback strength which may
be pulled back.

In addition to the role of the Am(pp) in the determination of the number of modes for
the CWFM-OF signal, the role of frequency is discussed next. The effect of the number of
modes on fm = 100 Hz and fm = 1 kHz at different C is shown in Fig. 5.9. It is observed
that the modulation frequency does not observably affect the modal behaviour of the system.
This is a consequence of Eq. (5.6). Since τext (in the third term on right side, (f − (f0 −
Ωf im(t)))τext) is constant in this case, the only perturbation factor is the modulation current
im(t) = Imtri(2πfmt). fm gives the perturbation rate and the magnitude of maximum frequency
deviation is given by ΩfIm, which is independent from fm. In case τext was a function of time,
the dynamics of the system are detiled in Chapter 6.
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Figure 5.7: Number of modes in the CWFM-OF case as a function of feedback strength (C), amplitude of
modulating current (Am) and external cavity length (Lext).
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Figure 5.9: Effect of modulation frequency on Nm at different C. Am(pp) = 0.15 A, Lext = 0.2 m.
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5.4 EXPERIMENTS: SINGLE MODE STABILITY INDUCED BY
INJECTION MODULATION

Two different experimental tasks have been developed related to the contents of this Chapter.
On one side, to implement properly the results regarding modal stability a precise measurement
of the frequency coefficient of the laser Ωf is required, as it has a key role regarding the number
of modes in the laser emission under CWFM-OF. Such experimental measurements of Ωf are
covered in Sec. 5.4.1. Next, in Sec. 5.4.2, experimental results showing that the laser may be
used under single mode conditions even under large feedback strength using the amplitude of
the modulating current are presented.

5.4.1 EXPERIMENTAL MEASUREMENT OF Ωf

In equations (5.5) and (5.6), the role of Ωf in the determination of the number of modes emitted
by the laser under OF was presented. This makes it a key parameter in laser performance
under modulation conditions, so it is desirable to present a method which enables to measure
it precisely. The experimental setup used for the measurement of the frequency coefficient of
the laser is given in Fig. 5.10, being obviously a conventional CWFM-OF setup. As shown in
Fig. 5.10, a HL8337MG AlGaAs laser was used in the experiment. The emission wavelength
was measured using an Instrument System’s SPECTRO 320(D) R5 unit, resulting in λ = 826.5
nm. The optical beam emitted from the laser was focused using a Thorlabs lens 352240 (not
shown in the block diagram) with focal length of 8 mm and numerical aperture of 0.5, on a
moving target. The target was a piezoelectric linear stage PI-LISA (P-753.3CD) which includes
an embedded capacitive sensor with a resolution of 0.2 nm [4]. It was placed at Lext = 0.1 m
from the laser. Initially, the current to the laser was modulated by a triangular signal from
the signal generator to introduce the frequency sweeping effect in the laser emission desired.
The number of fringes (Nf ) which form in a CWFM-OF set-up is related to the distance of the
laser to the target (Lext) and to the frequency modulation coefficient of the laser (Ωf ) and is

Oscilloscope

Driver

Signal
generator

PD LD Piezo

Vm(pp)

V'm(pp)

Figure 5.10: Experimental setup to measure the frequency coefficient of the laser (Ωf ) using CWFM-OF
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Table 5.1: Experimental parameters

Parameter Value
Distance to external target from the laser (Lext) 0.1 m

Modulation frequency (fm) 1− 7 kHz
Modulation voltage (Vm(pp)) 700 mV (1 V)

Emission wavelength of the laser (λ) 826.5 nm
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Figure 5.11: Experimental results for measuring the frequency coefficient (Ωf ) of the laser under test. (a) CWFM-
OF signal obtained from PD having Nf = 20 fringes (b) Change in voltage across the laser (v′m(t)); (c) Change
in injection current (im(t)).

expressed as [52]

Lext = λ2Nf

2∆λ = λ2Nf

2Am(pp)Ωλ
= Nfc

2∆f = Nfc

2Am(pp)Ωf
, (5.7)

where symbols have the usual meaning used in former sections. ∆λ is the peak to peak change
in wavelength.

An experimental arrangement with the parameters described in Table 5.1 was arranged.
Keeping the target fixed at a distance of Lext = 0.1 m, a modulation voltage vm(t) with peak
to peak value Vm(pp) = 700 mV. A range of modulation frequencies fm = [1 − 7] kHz was
applied to the laser using the signal generator. The frequency coefficient was then computed for
each modulation frequency. To ensure repeatability, the same experiment was performed under
equivalent conditions with Vm(pp) = 1 V. For illustrative purposes, a particular measurement
case when fm = 1 kHz, and Vm(pp) =700 mV is shown in Fig. 5.11. The CWFM-OF signal
is seen to have Nf = 20 fringes (Fig. 5.11 (a)). The peak to peak voltage change across the
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Figure 5.12: Experimental results. Measured frequency coefficient Ωλ of the laser under test at different modu-
lation frequencies fm = 1− 7 kHz and amplitudes Vm(pp) = 700 mV and 1 V. The frequency coefficient of laser
is constant in the range considered with a value of 0.005 nm/mA.

diode was V ′m(pp) = 278 mV (Fig. 5.11 (b)), and the peak to peak change in the current was
measured to be Am(pp) = 12.63 mA (Fig. 5.11 (c)). Substituting the values of Nf = 20,
c = 3 × 108m/s, Am(pp) = 12.63 mA and Lext = 0.1 m, in Eq. (5.7), the only unknown term,
Ωλ, is determined. The result yields Ωλ = 0.005 nm/mA. With a wavelength of 826.5 nm this
also may be expressed as Ωf = −2.2 GHz/mA (with the negative sign showing that the emission
frequency decreases with increased injection current). The obtained value is consistent with the
value of −3.0 GHz/mA in AlGaAs lasers cited by [191]. Ωλ has been calculated for a number of
experimental cases, and the results are shown in Fig. 5.12. It is evident that, within the range
considered, Ωf can be considered a constant equal to 0.005 nm/mA.

In order to further investigate the effects of external parameters on Ωλ, an alternative
approach is taken into account. Taking advantage of the fact that the Nf in the first approach
can be changed (Eq.(5.7)) by varying the values of Lext and Ampp, the modulation voltage and
frequency from the signal generator is fixed to be Vm(pp) = 700 mV and fm = 5 kHz respectively.
This gives a modulation voltage at the laser V ′m(pp) = 210 mV corresponding to a modulation
current to the laser Am(pp) = 9.54 mA. Next, the distance of the external target from the
laser Lext is varied from 14 to 7 cm. The variation of Nf with the change in Lext at constant
Am(pp) is shown in Fig. 5.13 (a). The experimental data shows a linear relationship between
them with an slope of 0.8 cm/fringe. Equating the slope of Eq. (5.7), λ2/(2Am(pp)Ωλ) = 0.8
and placing the value of Am(pp) = 9.54 mA, λ = 826.5 × 10−7 cm, Ωλ is found again to be
0.005 nm/mA. The same result may be reached by varying the Am(pp) and noting the Nf (Eq.
(5.7)), provided that the distance of external target is kept constant, Lext = 7 cm. Fig. 5.13 (b)
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Figure 5.13: Alternate methods of finding Ωλ (from Eq. (5.7)): (a) Varying Lext to vary Nf while keeping
Am(pp) constant. The Ωλ value computed from the slope of the linar fit is 0.005 nm/mA. Deviations in the fit
shown in inset; (b) Varying Am(pp) to vary Nf while keeping Lext constant. The Ωλ value computed from the
slope of the linear fit is again 0.005 nm/mA.

shows the linear relation between them and having slope 0.9 mA/fringe. Similar to the previous
method, equating the slope λ2/(2LextΩλ) = 0.9, the only unknown quantity Ωλ is found to
be 0.005 nm/mA as well. Hence, different approaches confirm that the frequency modulation
coefficient of laser under consideration is 0.005 nm/mA.

5.4.2 EXPERIMENT: SINGLE MODE STABILITY INDUCED BY INJECTION
MODULATION

Having measured the frequency coefficient (Ωf ) of the laser and studied the relationship of the
number of modes with the amplitude of injection modulation in Sec. 5.4.1, next it will be
shown experimentally how injection modulation can pull the laser into a quasi stable state even
in presence of strong feedback, or when the feedback is strong enough to cause the laser to hop
between two or multiple states. The block diagram of the experimental setup is equivalent to
that in Fig. 5.10, but in this case the target (piezo) was placed at a distance of 8 cm from the
laser. The system is then perturbed by setting the piezo to vibration by applying a triangular
voltage of Vv(pp) = 0.326 V which results in a displacement (pp) of 1.24 µm (3λ/2). Under these
experimental conditions, the C-OF signal is acquired using a LabVIEW code and presented in
Fig. 5.14 (a). In the case of C-OF, each fringe corresponds to a displacement of λ/2, so the
OFS has three fringes in each period, as expected [50]. From the fringes the in C-OF signal
waveform, it is concluded that C should be close to one, and that the laser is close to the
transition between moderate and weak feedback [50]. To push the laser towards a stronger
feedback regime, the position of the lens is tuned to focus the optical power into a smaller
spot on the target, so that C increases. The C-OF signal is then acquired (Fig. 5.14 (b)). In
general, the fringe loss condition is accepted as characterizing the strong feedback regime of the
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Figure 5.14: Experimental results. (a) C-OF experiment described in the text; (b) The laser is forced into a
strong feedback regime by modifying the distance between the laser and the focusing lens, so fringe loss appears;
(c) Further increasing C brings on the fringes to disappear; (d) While in the conditions of (c), the introduction
of injection modulation causes the laser to attain a quasi stationary state under strong feedback.

laser [192]. It is observed that increasing C has caused fringe loss in the OFS and thus the laser
is operating under strong feedback conditions [192]. The lens is then further adjusted to cause
a more severe fringe loss condition, and subsequently to increase C. The waveform is shown in
Fig. 5.14 (c), showing no visible fringes. It is worth mentioning that no quantitative approach
has been made to measure the value of C. Approaches to measure the value of C may be found
in [150, 193]. While keeping the experimental set up of Fig. 5.14 (c) unaltered, a triangular
modulation voltage Vm(pp) = 700 mV resulting in a current modulation of Am(pp) = 12.63 mA
was applied to the laser. The waveform for this case is shown in Fig. 5.14 (d), and its magnified
view repeated in Fig. 5.15 for clarity. It is observed that the laser formerly under strong
feedback is now back under the weak feedback regime, due to the presence of the right number
of sinusoidal fringes over the ramp [52,126] typical of a laser under single mode performance, and
under weak feedback. The value of C that forced the laser to instability or multi modal state
in the case of C-OF is thus pulled back to quasi stationary state under the same C conditions
with the introduction of injection modulation. Hence the effect of C in both types of OF is
different, with CWFM-OF being less susceptible to it. For further clarity, the ramp in Fig.
5.14 (d) is filtered to get a clear view of the number and shape of fringes, as they are related
to the C value. The fringes obtained are presented in Fig. 5.16 (a), with an inset which gives
the magnified view of the shape of fringes. The number of fringes obtained Nf = 14 is clearly
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Figure 5.15: Magnified view of Fig. 5.14 (d) for clarity.

visible in one ramp, corresponding to the known Lext = 7.5 cm (calculated from Eq. (5.7) and
compared to original distance of 8 cm). This itself is evident that the laser is (quasi) stable and
the presence of sinusoidal fringes proofs that it is under weak feedback. To further confirm the
results, a simulation is performed in MATLAB with the parameters of the experiment under
weak feedback C = 1, and the results are presented in Fig. 5.16 (b). The experimental CWFM-
OF signal at Fig 5.16 (a) and that obtained from simulations at Fig. 5.16 (b) resemble each
other both qualitatively and quantitatively, as both of them have same number of fringes, Nf

= 14 and a similar fringe shape. Further, simulations to obtain the CWFM-OF signal at high
feedback strength C = [3, 4] are shown in Fig. 5.16 (c) and (d), respectively. The distortion
in signal under high feedback strength is clearly appreciable (as compared to Fig. 5.16 (a) and
(b)). Hence, we conclude the experimentally obtained CWFM-OF signal obtained in Fig. 5.16
(a) was obtained under weak feedback and that amplitude modulation, as explained by the
theory, is able to modify the laser behaviour under strong feedback conditions.

Thus, modulation induced stability can have direct significance in attaining stability in the
emission of the laser diode under strong optical feedback and / or quasi-periodicity, a desirable
phenomenon for practical applications of OFI sensors for metrology, but also in chaotic com-
munications [32]. Further, the narrowing of linewidth of the semiconductor laser is dependent
upon the feedback strength. The laser linewidth under feedback (δνf ) relative to the standalone
laser (δν) is inversely proportional to C as expressed in δνf = δν/(1 ± C)2, depending upon
the feedback phase [194]. Thus, provided that the laser is stable at high feedback strength, it
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Figure 5.16: Comparison of experimental CWFM-OF signal with that obtained from simulation at different
feedback levels. (a) Experimental CWFM-OF signal obtained after removing the ramp in Fig. 5.14 (d) (the inset
gives the magnified view of fringes); (b) Simulated CWFM-OF signal at C = 1 (inset gives the magnified view of
fringes); (c) Simulated CWFM-OF signal at C = 3; (d) Simulated CWFM-OF signal at C = 4. Experimental and
simulation conditions are the same with parameters Lext = 8 cm, λ = 826.5 nm; Ωλ = 0.005 nm/mA (obtained
experimentally in Sec. 5.4.1), Am(pp) = 12.63 mA (measured experimentally in Sec. 5.4.2).

can then be used to reduce the linewidth as well, which may find applications in the field of
spectroscopy.

5.5 DISCUSSION AND CONCLUSION

The dynamics of the laser subject to optical feedback in case of C-OF and CWFM-OF leading
to frequency modulation were studied and compared. It was shown that the feedback strength
C may be interpreted as a frequency deviation parameter. In case of large C values, it is well
known and accepted that a number of new frequencies evolve, the power in each of the frequency
components is also increased and the laser attains a multi modal state. The introduction of
injection modulation, on the other side, causes also the frequency modulation of the emission
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to change, but in this case it changes in opposite direction to the change induced by C-OF.
Such inverse effect in frequency deviation induced because of OF and IM permits to search
an equilibrium condition that compensates each other’s effects, and induces mode stability in
the laser even under strong feedback conditions. Since the frequency modulation of the laser
induced by intensity modulation plays a significant role in the understanding of the laser’s modal
behaviour in CWFM-OF, the frequency coefficient of laser (Ωλ) was measured experimentally for
the laser unit being used, and it was confirmed to be 0.005 nm/mA, equivalent to −2.2 GHz/mA,
centred at 826.5 nm, using three different approaches. The response of the laser in terms of
number of modes in presence of different levels of feedback, external distance and injection
modulation amplitude was studied and the optimal conditions to retain the laser in mono
modal state were demonstrated. Finally, it was experimentally shown that the introduction of
injection modulation or electron pumping pulls the laser to stability even in presence of strong
feedback.
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6. CWFM Differential Optical
Feedback
6.1 INTRODUCTION

Within this chapter, a novel method of measurement which uses laser non-linear dynamics under
OF for sensing sub-wavelength displacements is demonstrated. This is considered one of the
main contributions of this Thesis. The proposed methodology combines the two types of optical
feedback discussed insofar, C-OF and CWFM-OF, to measure vibration amplitudes smaller than
λ/2 with resolutions of a few nanometers and a bandwidth depending upon the distance to the
external target, the amplitude, and the frequency of the current modulation applied to the laser.
The basic theoretical details involved in the measurements and not described already, together
with a detailed mathematical model for the proposed measurement principle are described in
the following Sections. Experimental results, using a dedicated setup which was specifically
designed and built for this purpose are presented. A conventional OFI sensor working as a
vibrometer measureing a target vibration of amplitude λ/5 (137.5 nm), and results for a mean
peak to peak error of 2.4 nm are demonstrated just by pointing the laser onto the target and
applying appropriate signal processing.

As seen in previous Chapters, C-OF methods are limited to the measurement of displace-
ments with total amplitudes larger than λ/2, with a resolution varying upon the type of ex-
periment and, specially, upon the type of signal processing strategy applied. As discussed,
the original fringe counting method enables a λ/2 resolution [50], while during the last two
decades the increase of accuracy of the measurements has been a driver of the research in the
field [168, 195, 196]. The capability to measure vibration displacements smaller than λ/2 has
also been demonstrated recently [63] using mechanical modulation and a double laser set-up. In
that approach, the bandwidth of the sensor was dependent upon the product of the frequency
and amplitude of the linear mechanical stage used to produce a reference OFS which was later
on compared to the measurement signal. The use of a mechanical modulator with a linear
response increased the sensor’s cost and size while limiting the measurement bandwidth.

To overcome those problems, a novel approach that takes advantage of the amplitude-
frequency coupling in the laser (that is, the existence of a finite non-zero linewidth enhancement
factor α) is developed in order to replace the mechanical modulation depicted in [63] by an
electronic modulation. The developed method introduces two main advantages over [63]. First,
the set-up is simplified since the use of a second laser and of external mechanical elements to
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Figure 6.1: Schematics of the experimental setup.

provide the modulation is no longer necessary. This reduces the cost and size of the sensor
while making it comparable in cost to C-OF applications, but keeping the desired improved
performance. The use of only one laser also reduces the possibility of bias in the measurement
introduced by the difference of the physical properties between each laser or its circuitry. Second,
the bandwidth and resolution of the proposed method is dependent only upon the laser and
its electro-optical parameters, in contrast to the mechanical scheme described before. This, in
turn, allows to reach larger bandwidths since the method is no longer limited by mechanical
constraints.

In the following sections the working principle of the proposed optical sensor based on
CWFM-DOF, including the methodology to calculate the target vibration waveform and am-
plitude, plus the frequency bandwidth of the sensor is explained in detail. Both periodic and
transient vibrations will be measured. A final discussion section analyzing the effects of the
modulation current onto the spectral behavior of the laser will be presented, anticipating some
of the potential limits of the setup and trends of future work to be developed.

6.2 SYSTEM DESCRIPTION AND THEORY

The proposed concept of the experiment is shown in Fig. 6.1. First, a periodic current modu-
lation is applied to the laser while the target is kept stationary. When the current feeding the
laser is modulated, not only the intensity of the emitted signal is changed, but also its emission
wavelength, because of the coupling between amplitude and frequency modulation character-
ized by α. To attain the linear wavelength changes recommended for measurement purposes,
a triangular wave is used as a modulation signal. Under these conditions, the laser can be
thought as a multi-wavelength source whose wavelength (and intensity) changes with time pro-
portionally to the injected current. The field emitted by the laser then hits the stationary target
and is partially back reflected into the laser cavity, where it interferes with the standing wave
already present, producing interference fringes in the emitted power with a phase difference of
2π between them. Of course, this is the working principle of CWFM-OF [107].

The OFS obtained consists of a series of small ripples, caused by the beating of the time
delayed reflected field with the emitted field inside the cavity, superimposed onto the power
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signal ramp induced by the modulated intensity, as shown in Fig. 6.2 (a). The signal is
then subjected to processing, starting by a differentiator which separates the ripples caused by
interference from the linear power ramp induced by modulation. It is shown that the number
of fringes which appear on the ramp depends upon the round trip time delay, that is, upon
the distance between laser and target, and upon the wavelength changes (pp) caused by the
modulation current [196]. This is termed as the reference case and the interference fringes
produced as reference fringes.

Let’s see what happens when, under the same arrangement, the target is not static anymore
but presents a displacement to be measured. Since each λ/2 target displacement produces an
interference fringe in the signal [30,50], if the target vibration amplitude is smaller than λ/2 no
additional fringes are produced as a result of the target motion. Even though the total number
of fringes remains constant, the target motion changes the frequency seen by the laser due to
the change in OPD, in the equivalent to a Doppler shift in the frequency domain.

Thus, when compared to the former reference case, the new set of fringes is shifted in time
proportionally to the OPD change introduced. From this point onward, this case is referred to
as vibration case, and its interference fringes as vibration fringes. It is shown that by comparing
the reference and vibration cases, the complete information of the displacement of the target
can be extracted, hence the name given as continuous wave frequency modulation differential
optical feedback (CWFM-DOF). In order to build the mathematical model of the measurement,
all parameters related to the reference case are denoted by the subscript r, and the ones related
to the vibration case by the subscript v. The excess phase and emitted power (with x = [r, v])
equations that govern both cases are defined by [52]

φr(t) = 2π(fr − (f0 + im(t)Ωf ))τext + Csin(2πfrτext + tan−1α), (6.1)

Pr(t) ≈ cos(2πfr(t)t), (6.2)

φv(t) = 2π(fv − (f0 + im(t)Ωf ))τext(t) + Csin(2πfvτext(t) + tan−1α), (6.3)

Pv(t) ≈ cos(2πfv(t)t), (6.4)

where Lext is the stationary distance from the laser to the target, and Lext(t) = Lext+a(t), with
a(t) = Atcos(2πftt) describes a sinusoidal target motion with peak amplitude At and frequency
ft. τext = 2Lext/c is the external round trip delay for the reference case, while τext(t) =
2Lext(t)/c is the external round trip delay for the vibration case; f r and fv are the emission
frequencies of the laser under feedback for the reference and vibration cases, respectively; f0

is the standalone laser frequency at its operating point; im(t) is the triangular AC modulation
current driving the laser; Ωf is the frequency coefficient of laser; C is the feedback strength;
and P is the emission power of the laser under feedback.

Simulations of performance based on Eqs. (6.1) - (6.4) have been carried out using the
parameters listed in Table 6.1. The goal of the simulation is to prove the appearance of power
shifts in time between the interference fringes of the reference and vibration cases. Non-linear
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Table 6.1: Parameters used in the simulation described in the text

Parameters Value
Distance of external target from laser (Lext) (forward path) 0.3 m

Peak to peak modulating current (Am(pp)) 1.5 mA
Modulation frequency (fm) 100 Hz

Target vibration amplitude (At(pp)) λ
10

Target vibration frequency (ft) 200 Hz
Frequency modulation coefficient (Ωf ) [52] -3 GHz/mA

Feedback strength (C) 0.9
Emission wavelength of the laser (λ0) 692 nm
Linewidth enhancement factor (α) 3
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Figure 6.2: Results of the simulation: (a) Emitted power variations in reference (blue solid) and vibration
(red dash) cases (inset gives a magnified view); (b) Shift in fringes in both cases after fintering the ramp; (c)
Target waveform reconstructed (black star) compared with reference displacement (red square), overlapped on
the simulated power output of the laser. Vertical arrows indicate the position of sampling points due to existing
fringes. Because of the symmetry of the modulation signal, processing any one ramp gives full information about
target vibration, making the other ramp redundant.

equations Eq. (6.1) and (6.3) are solved numerically, equating them to zero, to find f r and fv
respectively. The corresponding power fluctuations are calculated using Eqs. (6.2) and (6.4).
The results of the simulation are presented in Fig. 6.2(a) and 6.2(b), which show a significant
shift of the emission power related to target motion which we can be used for measurement
purposes. In the next paragraphs we will analyze the features of the proposed measurement
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scheme regarding the most usual measured parameters.

6.2.1 DISPLACEMENT OF THE TARGET

The displacement of the target out of the time shift which appears between the vibration and
reference fringes is our first calculation. It is to be noted that in the case of C-OF, the phase
difference between each consecutive fringe is equivalent to a 2π phase change, which in OFS
is related to λ/2 if a displacement is present. Thus, the fraction of time shift in the vibration
fringes relative to the reference fringes multiplied by λ/2 is the equivalent target displacement.
Let tn

r , tn
v, tn

rv, tn−1
rr be vectors containing the time of occurrence of the reference and vibration

fringes, the time difference between consecutive reference and vibration fringes, and the time
difference between consecutive reference fringes obtained in half period of current modulation.
The superscript is the number of elements in the considered vector and tk is the moment
of occurrence of the kth fringe. Thus, the reconstructed target displacement At,rec can be
computed simply using

At,rec = tn−1
rv

tn−1
rr
× λ/2 (6.5)

Using Eq. (6.5), the target waveform is reconstructed as shown in Fig. 6.2(c). It is worth noting
that since the target vibration is twice the modulation frequency, the entire target waveform
has been arranged to lie within one ramp (half period) of the modulation signal. Vertical arrows
illustrate that each fringe corresponds to a measurement point. To extract the information on
the displacement of the target it is then enough to process one of the ramps in the modulation
signal.

6.2.2 FREQUENCY BANDWIDTH

Let fm = 1/Tm be the modulation frequency of the current feeding the laser. In a time
Tm/2 (considering only one ramp of the modulation signal, this discussion is extended in Sec.
6.3), there are Nf fringes giving Nf − 1 sample points. Thus, the sampling rate for target
reconstruction is given byfs,rec = (2Nffm−1). From Nyquist theorem, the maximum frequency
that can be reconstructed is half the sampling rate and using 2Nffm >> 1, it can be estimated
that ft,rec ' Nffm. As a consequence, it is evident that the maximum frequency of target
vibration that can be reconstructed using the proposed sensor is dependent upon the product
of the frequency of the modulation of the laser and the number of fringes, which is defined
by the absolute distance between laser and target. Hence, keeping the number of fringes Nf

constant, the frequency of vibration of the target that can be detected is directly proportional to
the modulation frequency i.e. ft,rec ∝ fm. Since a laser can be modulated at larger frequencies
(MHz) keeping significant frequency deviation [188] when compared to mechanical vibration of
laser (KHz) this method gives significantly wider bandwidth than its mechanical counterpart
[63].
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6.2.3 OPTIMIZATION OF RANGE AND BANDWIDTH

An increase in the frequency bandwidth is one of the expected benefits of the electronic current
modulation in CWFM-OF, so it is worth exploring its dependencies in order to optimize it. In
the case of CWFM-OF the phase after a round trip is given by φ = 4πLext/λ. The change in
phase with respect to the change in wavelength induced by the modulation is

∆φ = −4πLext
λ2 ∆λ. (6.6)

The phase change between two consecutive fringes is 2π. If there are Nf fringes, the phase
change from the first to the last fringe is given by 2Nfπ. Putting this value in Eq. (6.6), the
formula for external distance is

D = λ2

2∆λNf (6.7)

Eq. (6.7) shows that keeping the target distance Lext and the peak to peak amplitude of the
modulation current constant1, the number of fringes Nf is constant. Further, from Sec. 6.2.2 it
is evident that the bandwidth of the proposed sensor (the maximum target frequency that can be
measured) is directly dependent upon the number of fringes and the modulation frequency of the
current. The later parameter is laser dependent, and is defined by the specifications of the laser
model used in the experiment. However, the former parameter can be tuned depending upon
the circumstances, in particular adjusting the distance from the laser to the target. Hence, the
larger the number of fringes, the better the bandwidth of the sensor. Increasing the frequency
of modulation also enhances the bandwidth directly. From Eq. 6.7, Nf can be computed as

Nf = 2∆λLext
λ2 = 2(2AmΩf )Lext

λ2 = 4AmΩfLext
λ2 (6.8)

From Eq.(6.8), it is seen that Nf can be increased by increasing the amplitude of the
current modulation (Am). This parameter depends upon the particular laser unit considered,
as the amplitude of current cannot be increased beyond the laser specifications. This value
is determined by the linear region of the current-wavelength curve of laser. It was shown in
Eq. (6.7) that the distance measured using CWFM-OF is a function of Nf , given by Lext =
λ2Nf/2∆λ, where the resolution (r) of such measurement is given by λ2/2∆λ = λ2/2Am(pp)Ωλ.
Hence, the resolution of the system in the measurement of the absolute distance to the target is
dependent upon the wavelength sweep, and ultimately upon the modulation current (Am(pp)).
Fig. 6.3 shows experimental results illustratig this effect. It is seen in Fig. 6.3 (a) how doubling
Am(pp) from 6.72 mA to 13.36 mA, Nf doubles from 6 to 12 fringes, and the resolution of the
system, determined by the fringe spacing, doubles from 1.2 cm to 0.6 cm.

Secondly, Nf can be increased by choosing a laser with a large frequency coefficient (Ωf ),
although this is also determined by the specifications of the laser manufacturer. For instance,

1 Keeping the modulation amplitude constant, the change in the emitted wavelengths is also constant, from
∆λ = ΩλAm(pp)
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Figure 6.3: Experimental results demonstrating the effect of (a) Am(pp); and (b) Lext on Nf .

with the laser used in Ch. 5 (Oclaro’s HL8337MG), its value was found to be 0.005 nm/mA;
however, for the laser (Hitachi’s HL6501) used in Sec. 6.3 and beyond the value is 0.1 nm/mA
(measured from the slope in Fig. 6.5). It is noted that an experimental value of Ωf was measured
in Ch. 5 of this Thesis.

Finally, Nf can also be increased by increasing the distance Lext between the laser and the
external target, as shown in Fig. 6.3 (b). This is typically quite simple in practice, as when
keeping the modulation current constant, simply increasing the distance from the laser to the
target increases the number of fringes. As a summary, we see that the frequency bandwidth of
the sensor proposed is determined by the parameters of the laser, the peak to peak amplitude
of the modulation current, and the distance of the target to the laser, which gives a number of
free parameters to optimize the frequency response of the sensor to the considered application.

6.2.4 MINIMUM DETECTABLE AMPLITUDE

From Eq.(6.5), the target reconstruction depends upon the shift of fringes between the vibration
and reference conditions. The minimum detectable amplitude of vibration of the target is
reached when the shift of fringes is the minimum detectable shift in time, which is determined
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by the sampling time ts = 1/fs. Thus the minimum detectable amplitude of target vibration is
given by

Amint,rec = ts
trr
× λ

2 . (6.9)

For example, considering some typical values like ts=8 × 10−8 s (fs=12.5 MHz), trr = 0.4167
s, and λ = 692 nm, the minimum detectable amplitude of vibration of the target Atmin,rec is
6.64 × 10−5 nm, which is the maximum resolution which can be attained by the proposed
sensor. It should be noted that the measurement is a difference in time occurrences of the
fringes, so the limit in resolution is dependent upon the sampling frequency of the oscilloscope
or acquisition card. The higher the sampling frequency (the lower the sampling time), the better
is the minimum measurable amplitude. However, a further effect to be discussed is related to
the detection of fringes shifted by a known sample time, which becomes limited by different
types of noise and by the duration of the peak in amplitude being measured.

6.2.5 TRADE OFF BETWEEN MINIMUM DETECTABLE AMPLITUDE AND
BANDWIDTH

From Eq. (6.9), the minimum detectable amplitude of target motion, Atmin,rec is inversely pro-
portional to the time difference between consecutive reference fringes, trr. Hence the larger the
time difference, the smaller the minimum detectable amplitude and hence the better the sensor
performance in terms of amplitude detectivity. However, such an approach has a trade-off on the
frequency of vibration that can be detected by the proposed sensor, that is, in the bandwidth
of the sensor ftmax,rec .

In Sec. 6.2.2 it was shown that the maximum frequency that can be detected by a CWFM-
DOF sensor is directly proportional to the detectable number of fringes. This implies that there
must be a large number of fringes in a given modulation period in order to provide a larger
bandwidth of the sensor, that is, a larger ftmax,rec . This in turn requires that the reference fringes
must be spaced as closely as possible, so the time difference between them is short enough to
make trr small, which in turn reduces the minimum detectable amplitude for the vibration of
the target At,min. Writing it in short

Amint,rec α
1
trr

α Nf . (6.10)

fmaxt,rec α Nf α
1
trr
. (6.11)

As an example, in the case discussed in (Fig. 6.2), let us consider an increase in the number of
fringes by a factor of M=4, for instance by increasing the laser-target distance. Then ftmax,rec and
At

min
,rec would change from its previous values of 1200 Hz and 6.63 × 10−5 nm to new values of

4800 Hz (better) and 26.5× 10−5 nm (worse), respectively. For most of the practical cases the
gain in bandwidth of the sensor is overridden by the need of a minimum detectable amplitude
(extremely small in normal conditions, in the 10−14m range), so in general it is always desirable
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to have a larger number of fringes. The number of fringes, however, is a variable which may be
freely modified in a majority of lab cases to adjust the performance of the sensor.

However, the constraint of having a large number of fringes in one ramp of the modulation
signal to detect a larger bandwidth has another undesirable trade-off. Firstly, the increase in the
number of fringes brings on an increase in the bandwidth of the OFS, so a detector with wide
bandwidth is required to detect it. Secondly, in order to process the signal, a wide band filter,
differentiator or amplifier is required to retrieve the fine details involved and hence to extract the
vibration related parameters accurately. The design of such filter for a given experiment needs
to take into account the bandwidth of the sensor. Finally, due to the coherent and differential
nature of the CWFM-DOF sensor, the phase of the above mentioned detection and filtering
stages needs to be set, so constant phase or phase linearity is maintained, making the design
more complicated and difficult to attain in practice. Such complications are invtigated in more
detail in Appendices C and D of this Thesis.

6.3 MEASURING PERIODIC VIBRATION

The experimental setup (based on the scheme presented in Fig. 6.1) to test the proposed
methodology is shown in Fig. 6.4. Experimentally, a Hitachi HL6501 laser was used to test
the method. The emission wavelength was measured with an Instrument System’s SPECTRO
320(D) R5 unit. The laser was then directly modulated in intensity to obtain the desired
frequency sweeping. Since under this operating conditions the laser may show mode hopping,
a detailed analysis of its spectral characteristics as a function of the injection current was
performed to locate the optimal operating point (Fig. 6.5). The operating point of the laser
was selected as 48 mA, corresponding to an emission wavelength of 692.5 nm. The choice of
this operating point intended to bring the laser close to its threshold, where the efficiency of
OFI is optimal as suggested in [89]. The laser was kept powered on and under stable working
conditions when acquiring the reference and vibration measurements. To produce the frequency
sweep, the current to the laser was modulated using a triangular waveform with a peak to peak
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amplitude of 250 mV, which caused a change in modulation current Am (pp) of 0.2 mA and a
frequency sweep of fm = 100 Hz. The laser was focused on the target using a Thorlabs lens
352240 with focal length of 8 mm and numerical aperture of 0.5 placed at a distance of 3.5
mm from the laser. A piezoelectric linear stage PI-LISA (P-753.3CD) placed at a distance of
12 cm from the laser was used as target, which includes an embedded capacitive sensor with
a resolution of 0.2 nm [4], which, as in former arrangements, is used as a reference for the
comparison of the obtained results. Previous to each measurement, the laser is set to work in
the weak feedback regime and is allowed to attain a stable state. To dissipate the heat produced
by the laser under operation, it is mounted on a heat sink made using an aluminium platform.

In a first step, a measurement of the reference condition is acquired (Fig. 6.6(a)) and
denoised (Fig. 6.6(c)) using a sym6 wavelet transform. Although other families of wavelets
could be used, sym6 wavelet contributed a significant enough improvement in noise reduction,
and was used for simplicity against the more complex coding of the Morlet wavelet used in
Chapter 4. This also follows directly from the choice made by authors in [197]. The time of
occurrence of the reference fringes is then recorded. Next, the target is set into vibration by
applying an AC sinusoidal signal with amplitude 55 mV and frequency 200 Hz to the piezoelectric
stage using a signal generator, resulting in a 137.5 nm displacement measured by the embedded
capacitive sensor [4]. Notice the frequency has been selected so the entire target vibration
waveform lies within one ramp of the modulation signal. The choice of a target vibration
frequency of 200 Hz is a result of different simulations and theoretical tests taking into account
the limits in frequency performance of the piezo. Due to the type of target motion introduced,
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Figure 6.6: Experimental results. (a) OFS, reference case, after differentiation for separating the fringes from the
ramp in the acquired signal; (b) OFS, vibration case, also after differentiation; (c) Denoised and differentiated
OFS for reference (solid line) and vibration (dashed line) cases overlapped; (d) Shift in the time occurrence of
the fringes in the vibration cases relative to the reference case, used as data for the calculation of displacement.

the optical path difference between the laser and the target changes periodically, resulting in a
shift of the fringes when compared to the reference case. As in the reference case, the signal
is acquired (Fig. 6.6(b)), denoised (Fig. 6.6(c)) and the time of occurrence of the vibration
fringes is recorded. The fringe shift is easily appreciated in Fig. 6.6(d).

Once the time of occurrence of each fringe is computed for the reference and vibration cases,
the target displacement is calculated using Eq. (6.5). Fig. 6.7 (a) shows the experimental
target displacement retrieved, corresponding to the detected fringes resulting from a single
oscillation of the target presented in Fig. 6.6, compared with the data obtained from the
embedded capacitive sensor [4]. It should be noted that only one ramp is processed to get
the full period of the target waveform (as the target vibration frequency was set to double the
modulation frequency in the defintion of the experimental conditions), as seen in Fig. 6.7 (b).
The experiment was performed nine times under equivalent conditions with similar results. The
mean error in the measured amplitude (pp) in all measurements was 2.4 nm (shown in Fig. 6.8).

To gather more information on the repeatability and accuracy of the proposed methodology,
an statistical analysis based on the classical t-test analysis was performed. A t-test analysis is a
hypothesis testing method used when the sample size is small. Its shape resembles the normal
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Figure 6.7: Experimental results (third measurement in a series of nine) in Fig. 6.8, with absolute residual error
(pp) 1.5 nm). (a) CWFM-DOF sensor target displacement against embedded capacitive sensor [4]; (b) Direct
oscilloscope view of the section of displacement under the fringes. (yellow) Vibration OFS (after differentiator),
(pink curve) target motion. It clearly demonstrates that an entire cycle of target motion lies with in one period
of modulation current. The markers (a and b in pink) measures the section of target motion from first fringe to
its peak.

distribution for a larger number of samples [198]. A t-test of the null hypothesis shows the data
in vector x (in this case the sample obtained from CWFM-DOF) and y (the samples obtained
from the reference embedded capacitive sensor) have equal mean values, against the alternative
that means were not equal [198, 199]. Using the Ns = 9 samples measured with a number of
degrees of freedom df = 2Ns − 2 = 16 and a significance level2 αs = 0.05, the probability of
obtaining sample data given the null hypothesis was true is p = 0.92. The step-by step procedure
of calculating a t-test analysis may be found in [198,199]. Since p > αs, it is concluded that the

2The significance level is the probability of rejecting the null hypothesis (in this case, the mean of samples
obtained from CWFM-DOF and that of the reference capacitive sensor is equal). In practice it is standardized
as 5% (0.05). The physical meaning, in this particular case, is that a significance level of 0.05 indicates a 5% risk
of concluding that a difference exists between them when there is no actual difference.
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Figure 6.8: Experimental results. Comparison of the CWFM-DOF with the reference embedded capacitive sensor
(inset gives the residue of the linear fit with reference sensor, in all cases are within the 5 nm range).

data samples from the proposed sensor and the reference (Fig. 6.8 ) have the same mean value
with a 95% confidence level. For illustration purposes, the third experimental measurement,
which had an error (pp) of 1.5 nm is shown in Fig. 6.7. Fig 6.8 shows the deviation of the
linear fit expected from the comparison of the experimental measurement and the reference
experimental displacement, which is in all cases smaller than 5 nm (shown in inset).

6.4 MEASURING DIFFERENTIAL DISPLACEMENT

The concept introduced above for measuring displacements smaller than half the emission wave-
length can be extended to the measurement of differential displacements, as well. It is only
needed to consider a modified reference case where the target initially vibrates with an ampli-
tude lower than half the emission wavelength i.e. Atr < λ/2 , in difference with the previous
reference case where the target is stationary. Under these conditions, since Atr < λ/2, no
additional fringes will be produced in the OFS signal, although the phase shift in the beam
does occur. Now if a vibration case is set so the target is allowed to vibrate with amplitude
Atv, provided that Atv < λ/2 and the sum of amplitudes accomplishes Atr + Atv < λ/2, an
associated additional phase shift is produced compared to the reference case, which contains
information about the target vibration although no extra fringes are present. Figure 6.9 shows
the effect of target amplitude vibration on the phase of the CWFM-DOF signal compared with
the conventional CWFM-OF signal (solid). It is observed that the variation in the amplitude
of vibration of the target induces a proportional phase change. Thus, a one-to-one relationship
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between the target vibration amplitude and the phase profile of the OFS is observed.
It is worth mentioning that both the displacement calculation in Sec. 6.3 based on CWFM-

DOF and the differential displacement calculated in this section can be explained from the
curves in Fig. 6.9. For instance, if we pick the At = 0 curve (red solid) as the reference case
and any of the other curves where At 6= 0 (e.g. say At = 0.01λ) (cyan dash) for the vibration
case, then this exactly gives the displacement calculation explained in Sec. 6.3. However, if any
two curves such that At 6= 0 are chosen, say e.g At = 0.01λ (cyan dash) for the reference case
and At = 0.05λ (blue dash) for the vibration case, then the manipulation of these curves yields
the differential displacement calculation, which is the discussion carried out in this section.
It is clear that the same principle which was used for measuring displacement in Sec. 6.3 can
be extended to differential displacement as well. Based on this observation, a simulation with
the parameters listed in Table 6.2 was performed as a proof of concept to measure differential
displacements of the target. the frequency of vibration was again set to double the modulation
frequency. It should be noted that, due to the arrangement, similarly to Sec. 6.2 (Fig. 6.2),
only the first ramp of the OFS is processed to get the entire waveform describing the vibration
of the target, and is presented in Fig. 6.10.

Figure 6.9: Phase change in the case of CWFM-DOF for different amplitudes of displacement of the target
(Att = 0.1λ, 0.05λ and 0.01λ) compared with coonventional CWFM-OF signal (At = 0). There exists a one-to-
one relationship between the amplitude of vibration of the target and the phase of the OFS.
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Table 6.2: Simulation parameters

Parameters Value
Emission wavelength of the laser (λ) 692.5 nm

Distance of external target from the laser (Lext) (forward path) 0.4 m
Peak to peak modulating current (Am(pp)) 1 mA

Modulation frequency (fm) 200 Hz
Amplitude of vibration of the target (reference case) (Atr (pp)) 0.3λ
Amplitude of vibration of the target (vibration case) (Atv (pp)) 0.2λ

Frequency of vibration of the target (ft) 200 Hz
Differential displacement, d(t) (frequency) Atr −Atv = 0.1λ (100 Hz)
Frequency modulation coefficient (Ωf ) [52] -3 GHz/mA

Feedback strength (C) 0.9
Linewidth enhancement factor (α) 3
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Figure 6.10: Results from simulation for differential displacement measurements using CWFM-DOF. (a) CWFM-
DOF signal resulting from “modified" reference case (the target initially vibrates with amplitude Atr = 0.3λ); (b)
CWFM-DOF signal resulting from vibration case (the target amplitude is decreased to Atv = 0.2λ); (c) Shift in
the fringes obtained by comparing (a) and (b); (d) Differential displacement calculated using Eq. (6.5) computed
differential displacement d(t) [4].

Figure 6.11 shows the experimental results obtained using the experimental setup already
presented in Fig. 6.4. In close similarity to Sec. 6.2, the laser is first modulated with a ramp-
like triangular signal with modulation frequency fm = 100 Hz. Then, for the reference case,

144



0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Time (ms)

O
F

S
 (

V
)

 

 

0 1 2 3 4 5 6
0

50

100

150

200

250

P
ie

zo
 d

is
pl

ac
em

en
t (

nm
)

reference OFS
vibration OFS
a

tr
(t) (A

tr
 = 228 nm)

a
tv

(t) (A
tv

 = 152 nm)

d(t) (D
0
=A

tr
 − A

tv
 =76 nm)

(a)

1 1.5 2 2.5 3 3.5 4

20

30

40

50

60

70

Time (ms)

P
ie

zo
 d

is
pl

ac
em

en
t (

nm
)

 

 

CWFM−DOF
d(t)

error = 5.6 nm

(b)

Figure 6.11: Experimental results for a differential displacement measurement using CWFM-DOF. (a) Reference
and vibration fringes resulting from the reference and vibration case described, after modulation carrier removal.
Dashed plots show the reference and vibration cases induced, and the expected differential displacement d(t); (b)
Experimental differential displacement measured and compared with reference.

the piezo (used as target) is vibrated with a sinusoidal signal with peak to peak voltage of 60
mV and frequency 200 Hz such that the entire waveform of target vibration is under one ramp.
Using the conversion factor of the piezo elctric transducer [4], this voltage causes a sinusoidal
displacement of the piezo a(t)r = Atrsin(2πftt) with peak to peak amplitude Atr = 228 nm
(0.33λ) and frequency of vibration ft = 200 Hz. The vibration of the target (dashed lines) and
the fringes for the reference case (solid line) are shown in Fig. 6.11 (a) in blue. Keeping the
setup unperturbed, the vibration case is set so the voltage applied to the piezo is decreased
to 40 mV, causing the motion of the piezo to be a(t)v = Atvsin(2πftt), with a peak to peak
amplitude Atv = 152 nm (0.22λ). The target vibration (dashed line) and fringes (solid line) for
the vibration case are shown in Fig. 6.11 (b), in red. The shift in the fringes in both cases is
significant and may be easily detected. Under these conditions, the differential displacement of
the piezo is d(t) = a(t)r − a(t)v = D0sin(2πftt), where D0 = Atr − Atv = 76 nm (0.11λ). The
differential displacement is shown in Fig. 6.11(a) as a green dashed line. From the measured
shift in time of the fringes, the differential displacement of the target is calculated using Eq.
(6.5) and compared with that of the embedded capacitive sensor used as reference [4]. The peak
to peak error obtained reduces to 5.6 nm (Fig. 6.11 (b)).

Thus, the system can be extremely useful in the measurements of tiny displacements of the
target, even with moving targets, so small perturbations of periodic movements may be easily
detected, e.g. in the control of precision periodic displacements. The main drawback of this
technique is the use of a dedicated differentiator (a low pass filter) upon the acquired OFS (in the
reference and vibration cases) in order to detect the fringes. One critical parameter in the design
of the differentiator for processing OFS is its bandwidth, which should be in principle larger
than that of the acquired OFS, which in turn is dependent upon the frequency of vibration (ft),
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the modulation index (m) and the number of fringes Nf which appear in the application. The
bandwidth of the differentiator needs then be tuned every time depending upon the particular
features of the OFS to be acquired. This has a direct practical implication in the use of variable
resistors or tunable capacitors, or to vary the different components in the electronic card used in
acquisition. The detailed relationship between m and Nf to the bandwidth of the differentiator
required to retrieve back the OFS with minimal error is explained in Appendix C. It is shown
there that the optimal bandwidth of the differentiator is related to the ripple in the response
of the filter allowed in the passband frequencies. The lower the passband ripple, the larger will
be the effective bandwidth of the filter/amplifier, hence the lower will be the error in retrieving
back the OFS. This dependence is a serious drawback, as a small passband ripple in a wide band
differentiator is difficult to attain in practice. In addition, the requirement to have a constant
phase effect of the filter used to process the reference and vibration fringes adds complexity to
the hardware design. The conclusions drawn from the detailed analysis of these filters are shown
as a graphical summary in Fig. 6.12. However, it is worth explaining different parameters again
and how they contribute to the different trade-offs. One of the most desirable parameters is
the Nf , as it contributes to better resolution in the retrieved displacement (Eq. (6.5)) and
increases the bandwidth of the system (Sec. 6.2.2). This, as usual, involves a trade-off as it
has undesirable effects such as the increase in the bandwidth of the OFS, which requires of
filters/amplifiers of high bandwidth and gain to avoid losses in the detection of fine details in
the OFS (Sec. C.3). In practice, the Nf can be increased by increasing the amplitude of current
modulation (Am) and/or the external distance (Lext) from the laser to the target (Eq. (6.8)).
However, they cannot be increased on demand. The former factor becomes limited by the laser
specification, and in addition an increase in Am may cause phenomenon such as multimodal
behaviour of laser, mode hopping and linewidth broadening (??). These parameters in turn
may make the use of the laser undesirable for OFI purposes. The later factor, and increase in
Lext may cause the feedback level to become lower, potentially reducing the efficiency of OFI
and reducing the fringe visibility, making the detection of the fringes more difficult to detect and
process. Another relevant parameter is the modulation index of the OFS (m). An increase in m
has as direct effect an increase in fringe visibility that makes fringe detection easier. In addition,
as explained in appendix C, it makes the OFS to have high power, making filters/amplifiers
with low roll off applicable to filter and amplify the signal, a very desirable feature. However,
it also has the adverse effect of an increase in bandwidth of the OFS (Appendix C.2), which
brings on a requirement of high gain and bandwidth in filters/amplifiers in order to process the
OFS and extract displacement related information.

Taking into account all these trade-offs and its associated drawbacks, which are introduced
in the experimental OFS due to the use of a differentiator, a novel algorithm based on a zero
phase filter (Appendix D) has been developed in order to detect the fringes offline, eliminating
the need of a differentiator (Fig. 6.13). This algorithm will be applied to the measurement of
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Figure 6.12: Summary of the effect of different experimental parameters on CWFM-DOF sensor performance.
GBP is the product of the gain and the bandwidth product of filter/amplifier.

nanometric transient motions (a Gaussian pulse) explained in the following section.
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6.5 MEASURING A TRANSIENT VIBRATION

In order to further prove the capabilities of the proposed methodology, it was applied to detect
arbitrary waveform shapes. The schematics of the experimental setup are shown in Fig. 6.13.
It is very similar to Fig. 6.1, except that the output of the PD is directly captured and used for
processing, eliminating the dedicated active filter. The block-diagram of the signal processing
steps involved is presented Fig. 6.14. Piezo is allowed to vibrate in the form of Gaussian pulse
of width 4 ms and amplitude 63.8 nm (Fig. 6.15 (a)). The inset shows its spectrum obtained
from the signal of the reference capacitive sensor. It should be noted that unlike the periodic
sinusoidal signal, the spectrum of a Gaussian pulse is also Gaussian so the dominant frequency
is around 200 Hz. As a first step of signal processing (Fig. 6.14), the zero phase FIR filter is
applied to the reference and vibration OFS to obtain the smoothed signal without changes in
the phase, which forms the reference for separating the fringes (shown in Fig. 6.15 (b)). For
clarity, only the FIR filtered reference signal is shown. Then the reference and vibration OFS
are subtracted from the filtered signal to obtain the fringes (Fig. 6.5(c)). Finally, from the shift
of fringes in both the cases, and using Eq. (6.5), the displacement is retrieved showing an error
(pp) of 4.05 nm measured under conditions comparable to that of Fig. 6.7 (Fig. 6.15 (d)). The
relatively high error obtained in the Gaussian waveform reconstruction is due to the limited
number of sample points available to track the rapid changes in the slope of the displacement,
which give rise to rapid phase changes, as compared to the experiments in former Sections.

Driver

LDPD

Oscilloscope

Piezo

Figure 6.13: Experimental setup. Note the differentiator described in Fig. 6.1 has been eliminated following the
comments in the end of Sec. 6.4
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Figure 6.14: Signal processing using a zero phase FIR filter.
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Figure 6.15: Experimental results. (a) Gaussian displacement of width 4 ms and amplitude 63.8 nm. The inset
gives the spectrum of the Gaussian pulse showing a dominant frequency at 200 Hz (from the signal obtained
with the reference capacitive sensor); (b) The reference and vibration OFS are shown together with the reference
filtered signal (for clarity only the reference case is shown). Inset shows the magnified view; (c) Shift in reference
and vibration fringes; (d) CWFM-DOF retrieved displacement compared with the reference capacitive sensor.

6.6 DISCUSSION:SPECTRAL EFFECTS DUE TO CWFMOF

A practical application of CWFM-DOF is proposed for measurement of displacement amplitudes
in range 76-165 nm frequencies of ft = 200 Hz (up to 27 kHz in Ch. 7) with an extremely
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Figure 6.16: Experimental set-up to characterize laser under CWFM-OF. OSC: oscilloscope, PS: power supply,
FG: function generator, SM: spectrometer, C: computer, T: stationary target, BS: beam splitter, L: lens, LD:
laser diode, PD: photo-diode, DR: driver and modulator.

simple and cheap laser sensing strategy. Because of the limited number of fringes that translate
to measurement points, error is introduced in the measured waveform. The accuracy of the
CWFM-DOF method can be significantly increased by increasing the number of fringes, which
in turn depends upon the amplitude of the modulation current, as commented in Sec. 6.2.
To explore this approach, the detailed experimental analysis of the effects of the modulation
current on the spectral properties of the laser, including linewidth, emission mode and fringe
visibility, was studied. Fig. 6.16 shows the experimental setup. The laser used here is the
HL8337MG model (used in Ch. 4 and to be used in Ch. 7). The laser is modulated using
its driver from the signal generator. The IM laser emission is splitted into two paths (forward
and orthogonal) using a conventional beam splitter. In the forward path, a stationary target is
placed at distance of 10 cm from laser to produce CWFM-OF. The time domain CWFM-OF
signal is monitored by an oscilloscope in the direct path. In the orthogonal path, the spectral
features are simultaneously observed using an spectrometer. The output of the spectrometer is
connected to the computer to visualize the spectral properties of the laser under CWFM-OF,
while the oscilloscope simultaneously registers the time domain CWFM-OF signal. In order to
differentiate the spectral properties of the laser in its free-running state and under CWFM-OF,
it is desirable to measure the spectral properties of the standalone laser as well. To do so, the
bias current to laser is not modulated, but set to Iop = 48 mA, and the forward path is set
unperturbed (the stationary target in Fig. 6.16 is removed).

The experimental spectral properties of the standalone laser are shown in Fig. 6.17. It
is observed that the laser is completely monomode and shows a neat Gaussian profile, with a
center wavelength at λ = 826.5 nm, and a 3 dB linewidth (one sided)3 which equals δλ = 0.2 nm.
Next, the spectral properties under CWFM-OF, in particular the linewidth and the emission

3Since the linewidth of the laser is Gaussian in nature, the 3 dB width is calculated as the value of wavelength
at which the value of intensity becomes 1/e of the peak value
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Figure 6.17: Laser emission mode in the standalone HL8337MG laser.
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Figure 6.18: Effect of CWFM-OF on laser emission. (a) Additional modes appear as the modulation current
increases; (b) Measured line width of main modes at different Am(pp).

modes of the laser are explored. As shown in Ch. 2, they critically determine the coherence of
the laser and in turn the efficiency of the OFI phenomena in general. Fig. 6.18 (a) shows the
effect of the amplitude of the modulation current (Am (pp)) on the spectral properties of the
laser, while keeping the modulation frequency constant at an arbitrary frequency of fm = 500
Hz, and the distance to the target constant at Lext = 10 cm. It is observed that an increase
in Am(pp), brings on the appearance of undesired side modes in the laser emission, in addition
to the main mode. Thus, the originally monomode free running laser has now additional side
modes under CWFM-OF. However, such side modes are approximately one third of the main
mode. In addition to the relative intensity of each mode (main and side ones), the linewidth
of the emission is also a crucial factor which affects the efficiency and fringe visibility of the
CWFM-OF signals. So, the 3 dB linewidth of the main mode for each Am(pp) is computed and
shown in Fig. 6.18 (b). It is observed that the linewidth almost remains constant and equals
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Figure 6.19: Effect of modulation current (Am(pp)) on fringe visibility: (a) Fringes are visible; (b) fringe visibility
degrades (inset gives the magnified view); (c)-(d) the fringes disappears. This could be due to the interaction of
main and side modes explained in detail in Fig. 6.20.

that of the standalone laser. This is an important conclusion as it illustrates that the modulation
current does not cause the laser to be “incoherent" under the experimental conditions defined
above.

Note, however, what is happening simultaneously in the time domain regarding the fringes in
Fig. 6.19: at a given Am(pp) value and beyond the fringes completely disappear. The interaction
between the side and main modes, in our opinion, might have caused the severe fringe losses
shown for the same experiment. It should be noted that the separation of the target from laser
also might play its role, so the spectral properties of the laser might be totally different for
different distances, although clearly an increase in amplitude of the modulation current brought
on the degradation of the visibility of the fringes until them disappeared. Some more ideas can
be drawn out of the shape of the envelope for the main and side modes as a function of Am(pp).
Referring back to Fig. 6.18, the peak intensity of the main and side mode at different Am(pp)
are shown in Fig. 6.20. The main conclusions drawn are (a) the spectral profile for both main
and side modes are shifted Gaussian distributions. There exists a particular value of Am(pp)
for which main modes reach a maximum intensity, and then it falls thereafter. The same can be
said from side modes. In this particular case, maximum values are shifted in wavelength being

152



0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

 

 

Modulation current (A
m

(pp)) (A)

P
ea

k 
In

te
ns

ity

measurement (main mode)
fit
measurement (side mode)
fit
measurement
(side mode/main mode)
fit

fringes fringe loss

(e)

f
m

=500 Hz
L

ext
=10 cm

Figure 6.20: Comparison of the spectral properties of the laser under CWFM-OF at different Am(pp). The peak
intensity of main and side mode have skewed Gaussian distributions as a function of the modulation current.
The fringe visibility is lost when the ratio of intensity of the side and main modes becomes greater than 0.44.

44 mA for the main mode and 36 mA for the side mode; (b) A relationship between the Am(pp)
value and the fringe visibility exists, and a relationship to the fraction of intensity in the side
mode relative to the main mode was studied and established for the considered laser. Referring
to Fig. 6.18 (a), at Am(pp)=0.02 mA, the fringes are completely lost (Fig. 6.19) (c) and these
condition corresponds to a ratio of intensities of side and main modes of 0.44 (visualized by the
vertical line in Fig. 6.20). Thus, until the ratio is smaller than 0.44, the fringes are still visible
and CWFM-OF can be used as an optical sensor. Beyond this value the fringes are lost and its
functionality as a sensor becomes limited. Nonetheless, it is worth mentioning there are several
parameters e.g. distance, frequency, or feedback strength to name a few that might alter the
total behaviour of the spectral properties of the laser. To overcome such an spectral behaviour,
the choice of DFB lasers could be an alternative owing to better spectral purity and stability,
and should be analysed in detail. Further work related to the characterization of this spectral
behaviour for different experimental parameters is currently being undertaken.

6.7 CONCLUSION

We have proposed and experimentally demonstrated a methodology to make use of the combina-
tion of direct laser injection current modulation to induce continuous wave frequency modulation
(CWFM), and of nonlinear dynamic effects in a laser subject to optical feedback, to build a
sensor able to measure nanometric amplitude displacements. The key contribution of this work
is the use of a single laser diode to detect sub-wavelength target vibrations with nanometric ac-
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curacies, using the modulation of the injection current and expanding the bandwidth of former
differential SMI (DSMI) sensors [63] to at least the MHz frequency range in detection, depend-
ing upon the modulation frequency of laser, The mean peak to peak error of the proposed sensor
out of nine different measurements of a single oscillation was shown to be 2.4 nm when applied
to a periodic sinusoidal motion. Next, the scope of the technique was increased using the the-
oretical predictions related to the excess phase equation derived from the solution of the LK
equation. Such predictions enabled to measure sub-wavelength differential displacements, that
is, removing the restriction on the target to be stationary, and enabling accurate monitoring of
sub-wavelength periodic displacements.

In addition, since the phase linearity of the differentiator is a small fraction of its total
bandwidth and this induces errors in the reconstruction of the displacement of the target, a
novel signal processing technique based on a zero phase FIR filter is implemented to process the
OF fringes, thus eliminating the need of a differentiator to separate the fringes from the ramp.
Based on this, a transient Gaussian pulse of width 4 ms and amplitude 63.8 nm is measured
with an error of 4.05 nm pp. As a summary, a novel laser vibrometry sensor based on CWFM-
DOF has been introduced with its maximum detectable target vibration limited to λ/2, and a
bandwidth of the sensor proportional to the number of fringes in the OFS and the frequency of
the laser current modulation.

Finally, we presented a discussion on the spectral consequences of the increase in Am(pp),
which showed a significant increase in side modes which resulted, under given conditions and
for the considered FP laser, in the complete lossof the fringes. Further work related to this
spectral behavior under different parameters is currently under development.
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7. Application of CWFM-DOF to
the characterization of acoustic
vibrations
7.1 INTRODUCTION

Acoustic wave sensing is currently a well established technology in non-destructive testing, with
a number of applications where it has become the current standard. Although it is a very well
established technology, its applications become limited due to the contact nature of their sensors,
and the need of a well-suited propagating media for the acoustic perturbation. Besides, the need
for sensitive methods for the detection and visualization of acoustic surface perturbations has
grown with the increasing interest in fields such as ultrasonic or SAW detection [129], laser
ultrasonics [200], acoustic trapped energy resonators [127] and acoustic holography [127, 128],
among others.

In particular, with regard to surface or acoustic sensor devices, the vibration of the mem-
brane reveals important information, as power flow and attenuation in the overall system. This
is an information which is very relevant to design and manufacture acoustic transducers. In
trapped energy resonators, for instance, the surface perturbations reflect the pattern of acoustic
localization of the energy, which is essential for its utilization. Advanced testing methods for the
dynamics of the membrane are required to develop reliable sensors, which could be used as sys-
tems for the measurement of the dynamic displacement and/or the vibration of the membranes
of MEMS, ultrasound or acoustic transducers. In order to fully understand the behaviour of
many of these devices used to generate and detect acoustic or ultrasound waves it is necessary to
be able to measure the behaviour of their dynamic displacement [131,132]. Acoustic holography
provides a complementary approach, with the wave emanating from the transducer and inciding
upon the surface of the target. The incident acoustic pressure wave causes an instantaneous
surface displacement, transferring the acoustic pattern to the interrogating optical beam, which
when processed reveals the acoustic hologram [127].

As discussed in Ch. 6, optical methods permit to study the acoustic waves at any point in/on
the specimen without either absorbing part of the energy or interfering with them in any way,
as they are in another energy range and are inherently noncontact. However, the experimental
setup required for optical acoustic wave detection are in most of the cases complex, bulky, and
require the use of several optical and electrical components, making them difficult to apply in
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industrial conditions. Even with this limitations, the use of lasers or optical methods to detect
acoustic waves has been an emerging area of research. Authors in [7], for instance, have devised
a simple setup using OF to measure acoustic fields in 2D without the complex setups of previous
methods.

Further within this chapter, the CWFM-DOF method described in Ch. 6 is applied for
the first time, to the best of our knowledge, to detect “pulsed” perturbations of nanometric
amplitude generated by acoustic beams. More specifically, CWFM-DOF is used to measure the
amplitude of vibration of the membrane of a transducer acoustically perturbed at a frequency of
ft = 26 kHz, and the instantaneous surface displacement of a remote target (an Aluminium plate
0.1 mm thick) under acoustic pressure. This Chapter is organized as follows. In Sec. 7.2, the AW
generated by a general-purpose acoustic transducer is characterized in terms of pulse repetition
time (Tt), pulse width (τt) and emission frequency (ft), using the echo mode of the transducer.
In Sec. 7.3, after some criteria are checked in order to ensure the amplitude of vibration
of the membrane is smaller than half the emission wavelength, the CWFM-DOF method is
implemented to characterize the membrane displacement. In Sec. 7.4, the instantaneous surface
displacement of a distant remote target due to the acoustic radiation pressure is measured
using CWFM-DOF. This concept of transferring the acoustic radiation pressure into surface
deformation, and then to the optical beam forms the basis of the acoustic holographic principle
and of holographic reconstruction [127, 128], although here it is exploited using a different
approach. Finally, Sec. 7.5 ends this Chapter with a review of the conclusions and discussions
attained.

7.2 CHARACTERIZING THE WAVE GENERATED BY AN ACOUS-
TIC TRANSDUCER

In this section, the features of the wave generated by the acoustic transducer to be used as
source in forthcoming sections is characterized in terms of frequency of emission (ft), pulse
repetition time (Tt) and pulse width (τt) using the echo mode of the transducer. When in echo
mode, the transducer acts both as a transmitter and a receiver, where it can listen to its own
transmitted signal using an oscilloscope.

The setup used is outlined in Fig. 7.1 (a). An Airmar’s ATK50TDH Airducer [201] driven
by the developer’s module for evaluation of this family of transducers [202] is used as source of
AW. The jumper settings on the board are adjusted such that the emission frequency lies within
the range 25−34 kHz, the pulse repetition rate is 3 Hz and the pulse period lies within 0.12−24
ms. The output from the transducer is connected to the oscilloscope in order to characterize
experimentally the AW pulse emitted in detail. The frequency of the AW generated is measured
to be ft = 26 kHz, within the expected range, and is shown in Fig. 7.1 (b), including a magnified
inset around the main frequency. In addition to the main dominant frequency (26 kHz), and
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Figure 7.1: Characterization of the transducer under test in echo mode: (a) Schematics of the setup; (b) Frequency
spectrum of the AW emitted by the transducer; (c) Pulse repetition rate of the AW; (d) Pulse period of the AW.
Inset gives the magnified view of the AW pulse in (c).It consists of secondary AW pulses of width τ

′
t ≈ 19 µs,

and period T ′t = 2τ
′
t ≈ 38 µs. Each secondary AW period consists of both a positive and a negative secondary

AW pulse.

because of the pulsed nature of the AW generated, significant additional harmonics in the power
spectrum are present as well. However, their amplitudes are three orders of magnitude smaller,
so they can be ignored. The pulse repetition time of the AW is measured to be Tt = 0.26 s,
which gives a pulse repetition rate (Rt = 1/Tt) of 3.84 Hz, shown in Fig. 7.1 (c). Finally,
the AW pulse width is measured to be 2.37 ms, which is shown in Fig. 7.1 (d). Inset in (d)
shows a very informative magnified view of the AW pulse in (c). It shows that the main pulse
described up to now consists of a number of secondary AW pulses of width τ

′
t ≈ 19 µs, with

period T ′t = 2τ ′t ≈ 38 µs. Each secondary AW period consists of positive and negative secondary
AW pulses. Thus, it is observed that all the measured parameters of the AW pulse emitted by
the transducer lie within the range mentioned in the specification [202], and its precise values
have been determined.
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7.3 MEASURING THE DISPLACEMENT OF THE MEMBRANE
OF THE TRANSDUCER USING CWFM-DOF

Fig. 7.1 (d) has shown that the secondary AW period was T ′t = 2τ ′t ≈ 38 µs, with each of its
two pulses showing a width of τ ′t ≈ 19 µs. Our next step is to measure the amplitude of the
vibration of the membrane of the transducer perturbed by the acoustic wave generated by itself.

As described in Chapter 6, in order to implement the CWFM-DOF setup it is necessary
to superimpose the vibration waveform to be measured (in this case, the secondary AW pulses
that cause the vibration of the membrane of the transducer) on the ramp of modulation current.
Hence, the choice of the frequency of modulation fm needs be fixed according to this criteria,
although the procedure to choose fm is limited by different factors (e.g. the number of fringes,
see Ch. 6). To set fm, let’s suppose we want to measure the vibration of the membrane of the
transducer due to only one of the secondary pulses of the AW. Hence, we need a ramp of the
modulation signal of period equal to the complete secondary AW period (T ′t ≈ 38 µs), making
fm = 26 kHz. At this frequency of modulation, the OFI fringes were clearly visible (Fig. 7.2).
As CWFM-DOF needs the amplitude to be measured to be below half the emission wavelength,
a first qualitative estimation of the magnitude of the amplitude of vibration is needed, based on
the criteria of “absence of additional fringes”. Fig. 7.3 shows the schematics of the experimental
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Figure 7.2: A full period (including a positive and a negative pulse) of the secondary AW waveform superimposed
on the intensity modulation ramp. The ripples on the ramp are due to OF effect. The positive and negative
secondary AW pulse are half the duration of the ramp and enclose equal number of fringes (five). Although
the entire period of secondary AW waveform lies on one ramp, only the portion that lies between the fringes is
detectable (the portion shown between the dashed boundaries).
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Figure 7.3: Schematics of the experimental setup to measure the amplitude of vibration of the membrane of the
transducer.

Table 7.1: Experimental parameters.

Parameters Value

Acoustic wave frequency (ft) 26 kHz
Modulation frequency (fm) 26 kHz

Modulation amplitude (ramp) (Am (pp)) 9.54 mA
Number of fringes/ramp (Nf ) 11

Separation between laser and transducer (Lext) 8 cm
Laser emission wavelength (λ) 826.5 nm

setup used to determine the amplitude of the vibration of the membrane of the transducer.
An OpNext’s AlGaAs laser diode HL8337MG with a MWQ structure is placed axially at

a distance of Lext = 8 cm from the transducer. A custom-built intensity modulator is used to
modulate the injection current of the laser. A Thorlabs lens 352240 with focal length 8 mm
and numerical aperture 0.5 (not shown in the figure) was placed at a distance of 8 mm from the
laser to focus its beam onto the membrane of the transducer. First, the transducer is turned
off, and a ramp modulation voltage of amplitude Vm = 700 mV and frequency fm = 26 kHz,
(as explained above) from the signal generator is applied to the driver, resulting in a current
modulation of Am = 9.54 mA (pp). The experimental parameters are listed in Table 7.1.

It is worth a small digression regarding the techniques implemented during the data acqui-
sition, as they affect the results obtained, in specially regarding a discussion of the triggering
strategy of both signals. Ideally, a double triggering is required, so the OFS and the secondary
AW pulses are triggered separately and synchronously, so that one exact period of secondary
AW pulses lies within one ramp of the OFS. The oscilloscope is configured such that the output
of PD (thus, the OFS) is connected to channel 1 in the oscilloscope, and the output of the
transducer (the secondary AW pulse) is connected to channel 2 (Fig. 7.3).

However, the oscilloscope available in the lab (a Tektronix’s DPO2024) had only one trig-
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Figure 7.4: LabVIEW interface for acquiring the triggered OFS.

gering port, which was used to edge trigger the secondary AW pulses. So, the external edge
triggering function available in LabVIEW was selected to trigger the OFS which was being ac-
quired in Channel 1 in the oscilloscope. This is depicted in Fig. 7.4. Although such a technique
enabled to acquire the required OFS, the synchronization of both signals was lost. Since the
positive and negative secondary AW pulses need be imposed over a single modulation ramp,
during the transitions in the AW pulses (coincident with the end of each period), the edge
threshold could not be maintained and edge triggering did not work properly. As a second ap-
proach, pulse-width triggering was adopted in order to trigger the secondary AW pulses, while
LabVIEW triggering was reserved for the OFS. Pulse-width triggering appeared as a reasonable
alternative, as it applies to pulses that are smaller or larger than a certain specified width and
in addition it can work both on positive or negative pulses [203, 204]. The triggering width
was set to be equal to the width of the secondary AW pulses (τ ′t = 19 µs). However, with
this configuration, the effect of only one of the secondary AW pulses (say the positive) was
acquired, leaving the effect of the second (negative) secondary AW pulse outside the triggering
width, and thus unaccounted. It is stressed that this is a not a problem if oscilloscopes with
two triggering ports, or external devices or electronics which can synchronize the two signals
using some combinational logic circuits are available, which unfortunately was not our situa-
tion. Finally, we decided to first set the time scale of the oscilloscopes adjusted such that two
secondary AW pulses (one period) is visible on the screen. Data acquisition for the reference
case is then straightforward, as the transducer is off. In this situation, only the acquisition of
the OFS is needed and this is done using the LabVIEW interface presented in Fig. 7.4. To
capture the vibration fringes, the transducer is turned on, and the manual stop button on the
oscilloscope is used so when two of them lie within the same ramp (triggered by LabVIEW) is
again acquired by LabVIEW, the vibration OFS is acquired as well. One such acquisition is
shown in Fig. 7.2.

Having set the data acquisition technique, the OFS for reference and vibration used for
signal processing and extraction of the related vibration of the membrane case is acquired and
shown in Fig. 7.5. Modulation ramps for both the reference and vibration cases are removed,
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Figure 7.5: CWFM-OF signal obtained for the reference and vibration cases. The transducer in Fig. 7.3 is turned
off (on) for reference (vibration) case.
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Figure 7.6: Shift in vibration fringes relative to reference fringes due to the membrane perturbed by the AW.
First ramp from Fig. 7.5 is selected and peaks detected. The fringes at the edges are be not taken into account
as they contribute to errors in measurement, so five effective fringes for each of the pulses are detected.

and the corresponding fringes have been detected using a zero phase FIR filter (Appendix D
and Fig.6.14), and shown in Fig. 7.6. From the shift observed in the fringes, the amplitude of
vibration of the membrane of the transducer is calculated using Eq. 6.5.

Finally, we need to account for the ambiguity of the direction of movement from the detected
fringes. The fringes in the positive and negative secondary AW pulses are processed separately.
Since the global effect of the positive and negative secondary AW pulse on the membrane of
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Figure 7.7: Vibration of the membrane of the transducer reconstructed using CWFM-DOF in two independent
measurements. P (N) corresponds to the vibration of the membrane due to the positive (negative) secondary
AW pulse. The displacement (pp) is 104.5 nm and 101.9 nm, and the pulse width is 12.2 µs wide in both cases,
which should have added a fixed 6 µs value in both cases due to lost fringes. See text for details.

the transducer is known, we use our previous knowledge of the shape of the pulse to invert
the displacement of the negative pulses. The reconstructed vibration of the membrane of the
transducer using CWFM-DOF is shown for two independent measurements in Fig. 7.7 (a).
Its amplitude (pp) is measured to be At = 104.5 nm, and At = 101.87 nm for the first and
second measurements, respectively, and its respective durations τtm1 = τtm2 = 12.2 µs, which,
when the extra 6 µs not accounted for due to the first (last) unprocessed fringe of the positive
(negative) pulse are added fit very well with the amplitude of the pulse measured using the echo
mode of the transducer (τ ′t = 19 µs)).

It is confirmed, thus, that the pattern, the amplitude and the pulse width of the vibration
of the membrane has been quantitatively measured in two independent measurements with a
repeatability of 2 nm in amplitude and equivalent pulse widths, although the measurement of
pulse width gets permanently biased in time by a constant value of 6 µs due to lost fringes at
the edges of the modulation ramp.

7.4 DISPLACEMENT IN A METALLIC TARGET INDUCED BY
THE ACOUSTIC PRESSURE WAVE

Once the amplitude of the vibration of the membrane induced by the AW is measured, the same
concept is applied to detect the amplitude of the mechanical vibration induced in a separate
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Figure 7.8: Experimental setup to detect the nanometric displacement in an Al plate using CWFM-DOF.

metallic (Al) plate. The schematics of the experimental setup are now shown in Fig. 7.8, which
are similar to the one presented in Fig. 7.3, provided that an Al plate of dimensions width (w),
height (h) and thickness (t) 650 × 1000 × 0.5 mm respectively is placed between the laser and
the transducer. The distance of the Al plate to the laser is set to Lext = 4 cm, while its distance
to the membrane of the transducer is also set to 4 cm. For the measurement procedure, in the
reference case, the OFS is acquired using the same LabVIEW configuration described in Sec.
7.3. For the vibration case, because of the commented technical difficulties, the moment of time
in which the transducer was turned on could not be transmitted to the LabVIEW interface.
So an alternate automated iterative procedure for time triggering is used. The transducer
is turned on and using the timer in the LabVIEW block diagram (shown in Fig. 7.9 by an
arrow), the vibration-related OFS is continuously acquired along a 500 ms interval. This time
is chosen so there is sufficient time for LabVIEW to acquire without flooding the buffer. About
ten acquisitions are typically made. Finally, the reference and vibration fringes are processed
to obtain the displacement waveform. Qualitative information about the displacement due to
acoustic pressure wave (APW) is estimated depending upon the reconstructed displacement
waveform. If it is symmetric, the pressure waveforms lies exactly on the ramp (desirable),
while if it is asymmetric or skewed, the pressure waveform is shifted relative to the OFS (not
desirable). After observing the reconstructed waveform, adjustments are made to the acquisition
timing so again reference and vibration OFS are acquired and processed, until a symmetric
displacement waveform is reconstructed. This confirms the triggering of the measurement has
been set properly.

Similar to Sec. 7.3, first the transducer is turned off and a set of reference fringes are
obtained (Fig. 7.10 (a)). Then, the transducer is turned on to get the vibration fringes. The
bulk APW from the transducer propagates across the medium (air in this case) towards the
Al plate, exerts a force on it, and causes it to displace from its equilibrium position. This
nanometric displacement shifts the vibration from the reference fringes in a quantity which
depends upon the amplitude of vibration(Fig. 7.10 (a)). Once again, by comparing the relative
position of both sets of fringes in time, the amplitude of the displacement in the Al plate induced
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Figure 7.9: LabVIEW blockdiagram for data acquisition.

by the APW is determined (Fig. 7.10 (b)). The waveform is distorted as expected, although it
follows the same pattern as the AW in the membrane [205].

As in the former case, a second measurement is also performed to estimate the repeatability
of the experiment, and compared with the first one. Both measurements show that the dis-
placement of the Al plate in the region sensed by the laser follows the pulsed-like pattern of
the APW (Fig. 7.10 (b)), being approximately 14 µs wide in time, in good accordance with
previous measurements. The amplitude of vibration of the Al plate perturbed by the APW is
calculated to be 75 nm (pp) in the case of the positive secondary AW pulse and 80 nm (pp) for
the negative secondary AW pulse. Results in amplitude are equivalent in both measurements,
although the shape of the waveform present some deviations, as seen in Fig 7.10 (b). The
reduction of amplitude compared to that of the measured vibration of the membrane of the
transducer in Sec. 7.3, (Fig. 7.7) is assumed to be due to the attenuation in acoustic power
in travelling from the transducer to the Al target, together with the mechanical absorbance of
acoustic energy in the Al plate.

It should be noted that the reconstructed vibration in the Al plate is broadened when
compared to the one from the transducer. Such a broadening in the reconstructed waveform
could be because of the interaction of the AW with the Al layer. However, an insufficient number
of sample points (just five fringes per pulse) are available to reconstruct the waveform vibration
in detail, and the relaxation time of the Al plate could also have caused the described distortion.
In addition, the increase in the amplitude of the vibration in the second pulse (78 nm) relative
to the first (68 nm) in the reconstructed vibration, could be due to some bias introduced by the
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Figure 7.10: Detection of the displacement induced by the AW in the Al plate using CWFM-DOF: (a) Reference
and vibration fringes; (b) Measured displacement in two independent cases calculated using CWFM-DOF.

positive secondary AW pulse on the negative.

7.5 CONCLUSION AND DISCUSSION

A practical application of CWFM-DOF has been proposed for the characterization of electro-
mechanical devices and remote objects under a pulsed AW excitation of extremely small size at
acoustic frequencies. It was demonstrated that the measurement of displacement amplitudes in
the order of 100 nm at frequencies of ft = 26 kHz was feasible using CWFM-DOF, an extremely
simple and cheap laser sensing strategy where only a laser points to the target to be measured,
controlled by simple electronics.

The concept of transferring the acoustic radiation pressure to the surface deformation and
then to the optical beam is the basis of acoustic holography [127,128], hence CWFM-DOF may
be one well suited alternative for sensing in acoustic holography setups. In this context, we
demonstrated measurements of the induced vibration of the APW in a remote Al plate with
amplitudes in the 75 nm range.

However, although results obtained are coherent and show the feasibility of the technique
in this type of measurements, the simplicity of the setup and the limitations of the electronics
available resulted in several inconveniences. First of all, an improved triggering strategy enabling
a better control of the triggering of the AW, the modulation ramp and the OFS would greatly
enhance the results of the experiment. Further, the limited number of fringes available, which
translated to a limited number of measurement points, did not enable a satisfactory enough
reconstruction of the measured waveform. The accuracy of the method can be significantly
increased by increasing the number of fringes, which in turn depends upon the amplitude of
the modulation current, as commented in Ch. 6. To explore this approach, further work in
different types of lasers regarding the analysis of the effect of the modulation current on the
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spectral properties of the laser at higher frequencies is being undertaken.
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8. Conclusion
The aim of this research work has been to study the dynamics of the laser under OF such
that controlled OF into its own cavity transforms the laser into a compact photonic sensor. In
particular, the inclusion of an injection modulation has added a relevant variant to the classical
OF sensor which makes the sensing more versatile. The combination of modulation and optical
feedback turns the laser into a compact, economic, interferometric sensor useful for several real
world sensing purposes, and in particular capable to measure sub-wavelength displacements by
just pointing the laser onto the remote target under test and some signal processing. Further,
the electronic modulation overcomes some of the limitations of former experimental setup, based
on mechanical modulation.

The main contribution of this Thesis is the development of a variant of OFI based on the
modulation of the laser current and its effects, which, based on a differential signal processing
strategy is useful in measurements of displacement in periodic and non periodic signals well
below half the emission wavelength. This has profound implications and increases the scope
of OFI towards several relevant applications including LUS, PAT, or acoustic holography, to
name a few. The study presented in this Thesis has intended to cover the full explanation
of such a laser sensor, including the theoretical analysis of the dynamics of laser feedback
with a laser under injection modulation based on the theoretical formulations available in the
literature, the performance of simulations to analyze its performance in different conditions,
and the design, execution and interpretation of a number of novel experiments which have been
properly validated. Within this final chapter the major findings from the research activities
presented in each Chapter will be summarized, and it will conclude with some relevant questions
raised by the study, and suggestions for future research.

Along the different Sections a number of techniques have been examined to explain the effect
of OF on the modulated laser and its use as a sensor. In Chapter 2, a detailed review of the
theory which describes the semiconductor laser was reviewed, to make clear the origin of the full
terminology used in this Thesis, and to introduce from the beginning the main parameters which
become relevant in the description of the laser under a injection modulation. Next, the main
approaches used to describe the laser under feedback in the literature were revised, including
both the equivalent cavity and the Lang-Kobayashi model. At this point, a thorough review of
the different reported applications of optical feedback was performed. We finalised this Chapter
with a Section reviewing the different improvements applied to signal processing in order to
improve and extend the performance of the OFI sensor, stating the basis from which we will
described further Chapters of this work.
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Particular attention has been paid along Chapter 3 to describe in detail the dynamics of the
laser in response to OF based on scattering theory. To our knowledge, it is the first time that
a complete model including the attenuation of the propagating optical field in each individual
cavity, and its effects on the visibility of the fringes visibility produced by OFI is presented. It
was demonstrated and quantified how the losses in each propagation media affect the visibility
of the fringes, and hence the efficiency of OFI, and which are the main parameters involved and
its role. One of the main strengths of scattering theory lies in the fact that the computation
of all the effects involved as a transfer function of the system in presence of OF results in a
simple matrix manipulation. This property has enabled to extend the same concept recursively
to build a transfer function in a multiple cavity system. It was possible to incorporate in the
model the effect of losses and phase relationships occurring in each individual cavity, quantifying
its overall effect in the fringe visibility. Further, the model developed enables to predict the
optimal depth of the cavity as a function of the reflection coefficient that corresponds to the
maximal fringe visibility in a multiple cavity case. Hence, the model described the boundary
conditions for the optimal OFS , and provides ways to improve fringe visibility by adjustments
in the external cavities. This multiple cavity model including scattering is also developed, to
our knowledge, for the first time, and paves the way for the extension of the use of OFI sensors
into applications where multiple cavities exist, such as lab-on-chip or biomedical sensors.

Another relevant contribution of this work towards an improved OFI sensor was done along
Chapter 4 , in the field of signal processing. Among the different signal processing techniques
available in the literature to process the OFS and extract the vibration parameters of the remote
target with the highest possible accuracy, most of them involve processing in the time domain
(e.g. FC ) to extract displacement or in the frequency domain (e.g. Fourier, PUM , IPUM )
to extract the velocity and frequency of the vibration, but not both domains simultaneously.
In this Thesis a novel technique based on wavelet analysis was proposed and experimentally
demonstrated utilizing Morlet wavelets, localized both in the time and frequency domain. The
advantage in the use of wavelets was shown to be three-fold. First, it results in a transformation
of the OFS to a time-frequency plane, in opposition to Fourier and comparable techniques, which
transfer the signal to the frequency domain while the time domain information is lost. This
ensures its processing in a single shot in time and/or frequency, depending upon the application
of the sensor and the parameters to be measured. Second, the use of Morlet as an analyzing
wavelet transform translates the OFS to a complex plane, which has some added advantages,
such as the use of PUM - like methods. Third, the wavelet transform is equally efficient in
the management of different types of noise simultaneously (in particular, AWGN and impulsive
noise), speckle management, and detection of the envelope of the signal and of the moment of
occurrence of a discontinuity, all in a single shot. This avoids the need of low pass and median
filtering at different moments, or the use of additional extensive setups and/or signal processing
stages to track speckle. The proposed algorithm was first tested upon periodic signals (both
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sinusoidal and triangular) to extract vibration-related parameters from the OFS. In particular,
for the different experimental cases it was shown that wavelet analysis was able to combat
AWGN and impulse noise equally well in a single step, while processing the OFS in the time
domain, detecting fringes properly and limiting the error in reconstruction to within ±λ/2,
which is comparable to standard FC methods available by various authors in the literature.
Next, making use of the information in the time-frequency plane and of the complex amplitude
values of the wavelet coefficients, the reconstruction of the target displacement was improved
and limited to a mean error of ±λ/10. In addition, the vibration frequency of the target and
its velocity were retrieved, with results equivalent to that obtained by Fourier analysis, in a
single processing step. Finally, the same wavelet-based algorithm was tested to characterize a
transient pulse, in particular a sinc function. The proposed algorithm enabled an exact retrieval
of the center pulse time, the pulse width (with error 1.4 %), the moment in time which presented
direction reversal, the instantaneous velocity profile, and the peak velocity (with an error 4.8
%) all in a single processing step.

Further, in addition to C-OF, another variant CWFM-OF was studied in detail and pre-
sented an interesting novelty which also extended the performance of OFI sensors. Chapter
5 analyzed a phenomena not described before, to our knowledge, which enables to maintain
single mode behaviour in laser even in presence of strong feedback conditions. The phenomena
is mathematically modelled out of the basis settled in Chapter 2, and experimental evidences of
its theoretical predictions are presented. It is noticed that both optical feedback and intensity
modulation cause the frequency of the emission of the laser to change, with the interesting
feature that both act in opposite directions, so mutual compensation under certain optimal
conditions may be attained. The laser dynamics subjected to OF and IM were modelled based
on the LK rate equations. The formalism included the effect of different external parameters,
such as distance, feedback strength, modulation current, and frequency of the IM on the num-
ber of modes emitted by the laser. Further, using CWFM-OF, an experiment was designed
and implemented to measure the frequency modulation coefficient of the laser. Two different
approaches were analyzed from the fact that in the case of CWFM-OF, the number of fringes
can be altered either by changing the distance to the target or the amplitude of the modulation
current (Lext = λ2Nf/2∆λ). Experimental results based on both approaches involving of thir-
teen measurements, confirmed that the frequency modulation coefficient of the laser was 0.005
nm/mA, which is consistent with several authors in the literature.

Chapter 6 was devoted to present a variant of optical feedback based on the interaction of
C-OF and CWFM-OF, which we named CWFM-DOF. It is proposed in this Thesis to measure
vibration waveforms with amplitude smaller than half the emission wavelength, and discussed
how its resolution and bandwidth are dependent upon the distance of external target, the
amplitude and frequency of the current modulation, and, in general the number of fringes,
while its setup is essentially the same as that of C-OF. The proposed technique, thus, further
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expands the use of OFI for a wider range of vibration measurements. Complete theoretical
and mathematical descriptions were presented for the proposed technique, and the predictions
of the mathematical model were confirmed by experiments. The proposed methodology was
tested upon measurements of amplitude of both periodic and transient vibrations within the
65-160 nm range (pp). The errors were limited to 6 nm, backed by statistics and hypothesis
testing (t-test) methods. Using the same set-up, a differential displacement of 76 nm was also
measured with also within the 6 nm value.

Finally, along Chapter 7 the proposed CWFM-DOF sensor was applied to a real world ap-
plication, in the shape of the measurement of acoustic vibrations. CWFM-DOF is a method
limited to an amplitude of vibration smaller than half the emission wavelength, so the feasibility
to measure the pulsed transducer membrane was first tested using CWFM-DOF. Then, a com-
plete CWFM-DOF experimental setup for the measurement of the vibration of the membrane
of an acoustic transducer was performed, measuring an acoustic frequency of 26 kHz, pulse
width 18.5 µs and displacement of 100 nm, in good agreement with the values obtained from
the transducer in echo mode. Further, the same setup was applied to the measurement of the
instantaneous surface displacement of a remote metallic target due to the acoustic radiation
pressure emanating from the transducer, which resulted in a 80 nm amplitude displacement.
This concept of transferring the acoustic radiation pressure to surface deformation and then to
optical beam is the basis of the acoustic holography principle and of holographic construction,
making the proposed CWFM-DOF technique a well-suited candidate for its implementation.

Up to here, the list of development so far this Thesis has been presented. However, some
pending tasks are remnant. Although the CWFM-DOF sensor has a wide bandwidth, dependent
upon the modulation frequency of the laser, (see Section 6.2.2), we were limited to detect the
target vibration at a frequency of just 26 kHz. Beyond this frequency fringe loss occured,
either by some mode hopping effect or by some low pass filtering effect which limited the fringe
visibility and its further detection at larger frequencies. There is, apparently, no fundamental
limit to the use of a larger frequency, which, if raised to the MHZ range, would have significant
applications. Thus, a further study of the phenomenon undergoing that loss of visibility of the
fringes needs to be performed and sets the basis for a new PhD. With regard to this observation,
the spectral properties of the laser and its response to C-OF, CWFM-DOF was studied.
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A. Relaxation Resonance Frequency
of Laser
To derive the Eqs. (2.36), (2.38) and (2.37), Eqs. (2.31) to (2.35) need be rewritten for ease of
manipulation.

dN

dt
= ηiI

qV
− N

τ
− vga(N −Ntr)Np. (A.1)

dNp

dt
= Γvga(N −Ntr)Np −

Np

τp
. (A.2)

I = I0 +Ame
jωmt. (A.3)

N = N0 +Nme
jωmt. (A.4)

Np = Np0 +Npme
jωmt. (A.5)

Writing the value of I, N and Np in Eqs. (A.1), we get

dN0
dt

+ Nme
jωmt

dt
= ηiI0

qV
+ ηiAm

qV
ejωmt − N0

τ
− Nm

τ
ejωmt

− vga(N0 +Nme
jωmt −Ntr)(Np0 +Npme

jωmt) (A.6)

= ηiI0
qV

+ ηi
qV

Ame
jωmt − N0

τ
− Nm

τ
ejωmt (A.7)

− (vga(N0 −Ntr)− vgaNme
jωmt)(Np0 +Npme

jωmt)

= ηiI0
qV

+ ηi
qV

Ame
jωmt − N0

τ
− Nm

τ
ejωmt − vga(N0 −Ntr)Np0 (A.8)

− vga(N0 −Ntr)Npme
jωmt − vgaNmNp0e

jωmt − vgaNmNpme
j2ωmt

Equating the constant terms of both sides to zero as they do not change with time, and using
a(N0 −Ntr) = gth = 1/Γvgτp (Eqs. (2.9) and (2.16)), and neglecting higher harmonics, we get

dNm

dt
ejωmt = ηiAm

qV
ejωmt − Nm

τ
ejωmt − Npm

Γτp
ejωmt − vgaNmNp0e

jωmt. (A.9)

Eq. (A.9) gives the rate of change of carrier concentration with IM. Further,using the time
frequency duality, d/dt→ jω and cancelling ejωmt both sides, its effect in the frequency domain
is computed as

jωmNm = ηiAm
qV

− Nm

τ
− Npm

Γτp
− vgaNmNp0. (A.10)
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Proceeding similarly, putting the value of I, N and Np in Eq. (A.2), we get

jωmNpm = ΓvgaNmNp0. (A.11)

To find the equation of resonance frequency ωR, Eqs. (A.10) and (A.11) are multiplied, the
higher harmonics are ignored and the coefficient of NmNpm are equated in both sides so

−ω2
RNmNpm = −ΓvgaNmNp0Npm

Γτp
. (A.12)

On further simplification, the equation of resonance frequency of laser is given by

ω2
R = vgaNp0

τp
. (A.13)

and using Np0 = P0/hνvgαmVp from Eq. (2.25) and Γ = V /Vp (defined in Eq. (2.8)), it gets to

ω2
R = Γvga

τp

P0
hf0vgαmVp

. (A.14)

using vgτp = 1/(αi + αm) (from Eq. (2.16)) and ηd/ηi = αm/(αi + αm) (defined in Eq. (2.27)),
the equation for resonance frequency in terms of the optical power output from the laser is given
by

ωR = ( Γvga
hf0V

ηi
ηd

)
1
2
√
P0. (A.15)

Similarly, using P0 = ηd
hf0
q (I − Ith) from 2.27, the resonance frequency of the laser is expressed

in terms of bias current as

ωR = (Γvga
qV

ηi)
1
2

√
(I − Ith). (A.16)
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B. Transfer function of the laser
The transfer function of the laser is defined as the ratio of output power to the input current.
Mathematically it is defined as H(ωm) = Pac(ωm)/Am(ωm). The equation for transfer function
of the laser is well derived from the resonance conditions as follows. From Eq. (A.11),

Nm = jωmNpm

ΓvgaNp0
. (B.1)

Now, placing the value of Nm from Eq. (B.1) in Eq. (A.10)

jωm(jωmNpm

ΓvgaNp0
) = ηiAm

qV
− jωm

Npm

ΓvgaNp0τ
− Npm

Γτp
− vgaNmNp0. (B.2)

Using the value of Nm from Eq. (B.1) and vgaNp0 = ωR
2τp from Eq. (A.13), we get

−ω
2
mNpm

Γω2
Rτp

+ jωm
Npm

Γω2
Rτpτ

+ Npm

Γτp
+ jωm

Npmω
2
Rτp

Γω2
Rτp

= ηiAm
qV

. (B.3)

Npm
1

Γτp
[(1− ω2

m

ω2
R

) + j
ωm
ωR

( 1
ωRτ

+ ωRτp)] = ηiAm
qV

. (B.4)

and now using Npm = Pac/hf0vgαmVp from Eq. (2.25),

Pac
hf0vgαmVp

1
Am

1
Γτp

[(1− ω2
m

ω2
R

) + j
ωm
ωR

(ωRτ + ωRτp)] = ηi
qV

. (B.5)

Pac
Am

= ηi
hf0
qV

vgαmVpΓτp
1

[(1− ω2
m

ω2
R

) + j ωmωR ( 1
ωRτ

+ ωRτp)]
. (B.6)

Finally, using vgτp = 1/(αi + αm) (from Eq. (2.16)), Γ = V /Vp (defined in Eq. (2.8)) and
ηd = ηiαm/(αi + αm) (defined in Eq. (2.27)), the transfer function of laser is obtained as

Pac
Am

= ηd
hf0
q

1
[(1− ω2

m

ω2
R

) 1
Γτp + j ωmωR ( 1

ωRτ
+ ωRτp)]

. (B.7)
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C. Frequency domain analysis of
OFS
C.1 FREQUENCY SPECTRUM OF THE INTENSITY MODULAT-

ED SIGNAL

From Fourier analysis, the bandwidth of the triangular signal which modulates the laser is not
limited to a particular fundamental modulation frequency, as it contains a significant number
of odd frequencies and harmonics as well. The spectrum of the intensity of the IM laser output
by a triangular waveform is shown in Fig. C.1. It is evident that even though the fundamental
frequency (at 3 dB) is 24 kHz, the IM signal output of laser is wide band and extends up to
approximately 0.2 MHz. This is expected because the triangle waveform not only contains a
single fundamental frequency, but a number of harmonics as well, making the spectrum broader.

To properly design an active filter (or amplifier) for processing electronically the resulting
OFS, it is necessary to carefully answer the following question: What is the minimal bandwidth
of the filter (or amplifier) required to properly retrieve the triangular signal back? The optimal
bandwidth (which is defined by its cut-off frequency fc) is a function of filter type, order and
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Figure C.1: (a) Power emitted by a laser modulated by an IM triangular waveform at 24 kHz; (b)Frequency
spectrum of an IM signal. The 3 dB bandwidth is ≈ 24 kHz.
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Figure C.2: Parameters of a conventional filter.

pass-band (or stop-band) ripple. Let us set the filter type to be Chebyshev (type I) and limit its
order to the first, as higher order filters have a non-linear transfer function and show phase non-
linearity [206], which is undesirable in our application. The choice of a Chebyshev filter is made
here because it provides an optimal trade-off between the roll-off (defined as the steepness in
the transition from passband to stopband) and the passband ripple (rpb) and can be completely
described in terms of only one parameter, rpb [206]. In this sense, rpb can be varied in order
to get the optimal bandwidth to retrieve back the triangular waveform. Figure C.2 show the
basic parameters of a filter. Passband is the range of frequencies that the filter allows to pass
through it. The cut-off frequency (fc) is the frequency at which the magnitude of the signal
falls by 3 dB. Stopband refers to the band of frequencies that are highly attenuated by the
filter. The transition band refers to the switching of the filter from passband to stopband. The
pass-band and stop-band ripple refers to the fluctuations of the signal around their mean values
in the corresponding bands. Among various parameters, as mentioned earlier, a Chebyshev
filter (type I) can be defined in terms of rpb), so the main concern in designing is the selection
of the optimal rpb value and how it affects fc and the phase linearity of the filter.

Fig. C.3 shows the effects of the pass-band ripple in the frequency domain, comparing the
filtered time domain signal to the original IM signal. In each subplot, different fc values have
been used, and at the same time each subplot is associated to a given value of ripple in the
passband rpb. It is seen that the lower the passband ripple, the lower the bandwidth (expressed
through the cut-off frequency, fc, normalized to the Nyquist frequency fs/2, with fs being the
sampling frequency) required to properly retrieve the triangular waveform back. Looking at the
issue from another point of view, Fig. C.4 shows the root mean square error (RMSE) of the IM
signal retrieved back decreases with an increase in fc, but at the cost of a decreased rpb. This
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Figure C.3: Effect of pass band ripple in the cut-off frequency required to retrieve back the triangular waveform.
The cut-off frequency fc is normalized to the Nyquist frequency (fs/2 = 0.12 MS/s). In (a)-(d) the filter
parameter is set to different values of rpb equal to 10, 5, 2, and 1 dB respectively. For each rpb value fc is varied
as 0.02 (green), 0.04 (red), 0.06 (black) and 0.08 (cyan) to visualize the combined effect of rpb and fc on the
waveform retrieval (blue).

trade-off is better understood with a numerical example. When rpb = 10 dB, increasing the fc
from 0.04 to 0.06, the RMSE in waveform retrieval decreases from 0.26 mW to 0.18 mW. Said
in another way, if the fc is fixed to 0.04, to decrease the RMSE from 0.26 mW to 0.18 mW, rpb
must be changed from 10 dB to 5 dB.

Clearly, an increase in the pass-band ripple is undesirable, as it introduces non-linearity in
the phase response of the filter and thus reduces its effective bandwidth when a linear phase
response of the filter is desired. This is the case for the CWFM-DOF sensor proposed, as
explained in detail in Appendix D.
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Figure C.4: Trade off between passband ripple and optimal bandwidth required to retrieve back a triangular
waveform with minimal error. Cut-off frequency normalized to the Nyquist frequency (fs/2 = 0.12 MS/s).
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Figure C.5: Spectral properties of OFS in response to different values of m (m = 0.002 and m = 0.02) with
Nf = 17 fringes; (a) Fringes introduced in the modulation signal due to optical feedback (m = 0.002); (b)
Increased fringe visibility due to an increased m value (m = 0.02); (c) Power spectrum of the OFS under
m = 0.002 and m = 0.02.
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Figure C.6: Effect of pass band ripple on optimal bandwidth of filter to retrieve back the OFS0.002. Inset gives
the magnified view of fringes. Cut-off frequency is normalized to Nyquist frequency (fs/2 = 0.12 MS/s).

C.2 EFFECT OF m ON FILTER BANDWIDTH

A comparable analysis is now performed on the CWFM-OFS1 modulated at fm = 24 kHz with
two different modulation values defined by m = 0.002 and m = 0.02, and a constant number
of Nf = 17 fringes in half period of the modulation signal. The time domain and frequency
domain (power spectrum) responses of a triangular modulation waveform for the standalone
laser and the OFS for the two modulation cases described are shown in Fig. C.5. From the
comparison of the power spectral density (PSD) values in the three cases it becomes clear that
both of them have frequency components which change from 0−0.2 MHz. The 3 dB bandwidth
in both cases is seen to be 36 kHz (Fig. C.5(c)). Furthermore, the OFS has spectral components
at 0.8 MHz which are not appreciated for the standalone laser. This is due to the presence of
34 fringes in one cycle of the modulation current, which gives an effective frequency equal to
34 times the original modulation frequency, yielding a value of 0.8 MHz ( 24 kHz × 34 = 0.8
MHz). This effect of the beat power spectrum induced by the returned field is also seen as
ripples when observed in the time domain (Fig. C.5(a),(b)). In addition, from the spectrum of
OFS obtained at m = 0.002 and m = 0.02 (denoted as CWFM-OF0.002 and CWFM-OF0.02),
it is observed that the nature of the PSD does not change qualitatively. The main lobe is

1Let us skip the CWFM part of the term in the upcoming text for better readability, so CWFM-OFS will
shown in the rest of this Appendix simply as OFS.
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Figure C.7: Trade off between rpb and optimal bandwidth (fc) required to retrieve OFS. fc is normalized to
Nyquist frequency (fs/2 = 0.12 MS/s).

seen to be identical, and both spectra with a feedback component have beat frequencies at 0.8
MHz. However, the quantitative nature of PSD does change. In the m = 0.002 case, the power
in the side lobes is significantly lower than in the m = 0.02 case. This shows that changing
the modulation index does not add new spectral components to the signal, but modifies the
power distribution within the higher harmonics. Under this approach, our interest is to find the
optimal bandwidth of the filter or amplifier required to retrieve back the OFS. The OFS output
from a filter with different fc and different rpb values in the m = 0.002 case is shown in Fig. C.6.
For the purpose of illustration, let us focus in the case when rpb = 10 dB (Fig. C.6 (a) (inset)).
For an increase in fc from 0.08 to 0.83, the retrieved OFS becomes increasingly better as fc
increases, but still a significant amount of error exists. Similarly, for the case when rpb = 2 dB
(Fig. C.6 (c) (inset)), an increase in fc from 0.08 to 0.83, improves the retrieved OFS, although
now the errors are relatively small compared to the former case. We can conclude then, that
larger fc values and smaller rpb values improve the RMSE value of the reconstruction, as one
could expect theoretically.

A more detailed analysis of the RMSE values obtained when retrieving back the OFS after
filtering as a function of different fc for m = 0.002 and 0.02 is shown in Fig. C.7. From the
comparison, two important conclusions are drawn. First, there exists a trade off between band-
width (cut-off frequency) and the allowable ripple rpb in the pass-band at a constant modulation
index. At fixed m, keeping rpb constant, fc has to be increased to retrieve back the OFS with
minimal error. For example, at m = 0.2 and rpb = 2 dB, fc has to be increased from 0.3 to 0.6
to reduce error from 0.6 mW to 0.25 mW. Alternately, to attain a desired error value, fc and rpb
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have to be tuned precisely. For instance, to attain an RMSE of 0.25 mW at m = 0.02, the fc
has to be increased from 0.58 to 0.83 for the choice of rpb of 1 and 5 dB respectively (indicated
by the dashed horizontal line). Secondly, the RMSE of the reconstruction significantly increases
with m. Taking similar conditions in the reconstruction fc = 0.1, and rpb = 10 dB, the RMSE
for m = 0.002 is 0.14 mW as compared to 0.7 for m = 0.2. This may be explained, as with the
increase in m the fringe visibility is increased (see Fig. C.5 (b)), while, on the other hand, the
PSD increases as well (Fig. C.5 (c)). Both increments have as a direct implication that the fc
value of the filter has to be increased to accommodate additional spectral components, as well
as the roll-off factor of the filter has to be lowered. Thus, an additional trade-off exists between
the choice of m and the ease of signal processing. On one hand, a large m value is desirable so
the fringes are easily detected and processed to measure the vibration of the target. However,
on the other hand, the choice of large m values restricts the selection of the cut-off frequency
fc of the filter.

C.3 EFECT OF Nf ON FILTER BANDWIDTH

Let us close this Appendix including the discussion of the effect of the number of fringes Nf

in the OFS in the design of the filter. For most of the applications, and when comparing
with experimental laboratory conditions, typically an OFS with a modulation index close to
m = 0.002 is obtained. Keeping fm = 24 kHz as in previous sections, we intend to explore
the variation in bandwidth of the OFS (and ultimately of the filter or amplifier) with number
of fringes (Nf ). Here the laser to target distance is quartered in order to ensure a quarter of
the number of fringes obtained in the previous case, turning the fringe number into Nf = 4
in one ramp of the modulation signal. Fig. C.8 (c) shows the spectrum of the OFS resulting
from different modulation index m = 0.002 and m = 0.02 (Fig. C.8 (a)(b)). The spectrum is
quite similar to the one previously obtained in Fig. C.5 (c), provided that there are additional
frequency components at integral multiples of 0.2 MHz (24 kHz × 8 = 0.2 MHz compared to
0.8 MHz in Fig. C.5 (c)), the power of which gradually decreases with frequency. It is also
observed that the power in each frequency component increases with an increase in m. Also
an increase in fringe visibility in the time domain (Fig. C.8 (b)) may be appreciated, following
the conclusions of the previous Section. Fig. C.9 shows the retrieved OFS from filters showing
different rpb and fc. For the purpose of illustration, let us consider the case when rpb = 10 dB
(Fig. C.9 (a) (inset)). With an increase in fc from 0.08 to 0.83, the retrieved OFS improves
(unlike in the previous case in Fig. C.6 (a), where the error was significant). Detailed analysis
of the error introduced after filtering as a function of different fc values for m = 0.002 and
0.02 is shown in Fig. C.10. It is evident that in this case as well, the RMSE decreases with
the decrease in m. However, the comparison between RMSE resulting at constant m = 0.02
and different Nf = 17 and 4 is shown in Fig. C.11. It is concluded that with a lower number
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Figure C.8: Spectral properties of OFS in response to different m = 0.002 and m = 0.02 with Nf = 4 fringes;
(a) Fringes introduced in the modulation signal because of optical feedback (m = 0.002); (b) Increased fringe
visibility due to increased m = 0.02; (c) Power spectrum of the OFS under different m = 0.002 and m = 0.02.

of fringes, the same RMSE is attained at lower fc if compared to the RMSE obtained with a
larger number of fringes. For example, referring to Fig. C.11, to maintain RMSE 0.27 mW with
Nf = 17 and rpb = 1 dB, fc is 0.58 as compared to 0.25 under similar conditions for Nf = 4
(explained by dash line). Said in another way, a OFS with a larger number of fringes requires a
larger fc and a smaller rpb to attain the same RMSE when compared to a signal with a smaller
number of fringes.
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Figure C.9: Effect of pass band ripple on optimal bandwidth of filter to retrieve back the OFS. Inset gives the
magnified view of fringes. Cut-off frequency is normalized to Nyquist frequency (fs/2 = 0.12) MS/s. (a)-(d)
the filter parameter set to different rpb equal to 10, 5, 2, and 1 dB respectively. For each rpb the fc is varied as
0.08 (green), 0.25 (cyan), 0.58 (black) and 0.83 (red) to visualize the combined effect of rpb and fc on the OFS
retrieval (blue).
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Figure C.10: Trade off between passband ripple rpb and optimal bandwidth fc required to retrieve the OFS.
Cut-off frequency is normalized to the Nyquist frequency (fs/2 = 0.12 MS/s).

Figure C.11: Effect of the number of fringes in the parameters used for filter design.
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D. ZERO PHASE FIR FILTER
In appendix C, it was shown that the bandwidth of the OFS, and ultimately that of differentiator
is dependent upon fc, m and Nf (with Nf depending upon the distance of the target to the laser
(Lext) and the amplitude of the modulation current (Am)). Further in Fig. C.10 it was shown
that there exists a trade off between the choice of cut off frequency fc and the pass band ripple
rpb. Keeping fc constant, a decrease in rpb decreases the error in the retrieved OFS. However,
only the magnitude response of the filter (differentiator) was taken into account, while the phase
response was ignored. Since CWFM-DOF is a coherent process involving the phase of reference
and vibration OFS to calculate the displacement of the vibrating target, it is desirable to retrieve
its spectral component (phase) with high accuracy, not keeping limited to its amplitude. The
design of the filter or amplifier including the differentiator stage for such application requires a
constant or, ideally, a zero phase delay. Thus, a very relevant question regarding the processing
of the reference and vibration OFS (and, hence, regarding the implementation of CWFM-DOF)
becomes the determination of the effective bandwidth of the differentiator that has a constant
phase response.

Fig. D.1 (a) shows the magnitude (solid) and phase (dash) response of a filter with different
rpb values for a typical Chebyshev (type I) first order filter. It is observed that with an increase
in the allowed rpb the phase linearity decreases. This means that with a lower passband ripple
in the filter (the effective cut-off frequency (fl), defined as the maximum frequency up to which
the phase of the filter is constant) tends to be larger as compared to that with larger pass band
ripples. Another very important parameter that quantifies the phase response of the filter is its
phase delay (shown in Fig. D.1 (b)). It is observed that keeping rpb constant while increasing
fc, the phase linearity increases and the delay introduced in the processing of measured samples
decreases. For ease of understanding, this concept is again better illustrated by an example.
Consider Fig. D.1 (b), at rpb = 1 dB and fc = 0.08. The effective frequency (fl) of the filter
is 0.002 (normalized to Nyquist rate) and the delay introduced by filter (τφ) is 1.93 samples
(denoted by point A). A direct relationship of this fact with CWFM-DOF is that the phase of
each individual frequency component (< fl) in reference and vibration OFS would be shifted
by a constant value of 1.93 samples.

Since the vibration detection strategy used in CWFM-DOF is differential in nature, this
constant phase delay does not affect the measurement at all as it is simultaneously introduced
in both the reference and vibration measurements. However, for the frequency components in
the reference and vibration OFS (> fl) it is phase shifted by a different amount so an error is
introduced. Similarly, at fc = 0.25, fl is increased to 0.006 and, simultaneously, the τφ value
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Figure D.1: Frequency response of a typical Chebyshev (type I) first order filter. (a) Magnitude (solid) and phase
(dash) response at rpb = 10 and 1 dB. (b) Phase linearity and phase delay as a function of rpb.

Figure D.2: Effect of cut-off frequency (fc) and the passband ripple (rpb) on (a) the effective frequency (fl) that
maintains constant phase delay on the OFS (b) sample delay introduced in OFS .

is decreased to 0.061 samples (shown by point B in Fig. D.1 (b)). A similar analysis can be
made for filters with different fc and rpb values, and the comparison is shown in Fig. D.2. Two
important conclusions are drawn of this Figure. First, keeping the pass band ripple constant,
an increase in fc increases the effective frequency fl (D.2 (a)). At the same time, the delay
in phase decreases (D.2 (b)). Secondly, at constant fc, with a decrease in rpb, the effective
frequency increases while the phase delay decreases. However, it is worth mentioning that, even
in the best case (rpb = 1 dB), the ratio of fl to fc is less than a 5 % (fl = 0.028, fc = 0.83).
This suggests that only a very small fraction of the available bandwidth can be used to process
reference and vibration OFS accurately.
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Figure D.3: Cascade filtering for zero phase delay.
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Figure D.4: Cascade filtering for zero phase delay: (a) Magnitude response of individual filter having transfer
function H1(ejω) and H2(ejω), where H2(ejω) = H∗1 (ejω) (Fig. D.3); (b) Phase response of individual cascaded
filter of cascade system as shown in Fig. (D.3); (c) Overall phase response of cascade system in Fig. D.3.

The point of this detailed discussion is to show the use of the differentiator filter as an
inefficient procedure which can be enhanced. To overcome this problem, it becomes desirable
to process the reference and vibration OFS off-line, using a zero phase FIR filter in a computer
[206]. This has a two-fold advantage. First, the cut-off frequency fc of the filter becomes
independent of the parameters analyzed in previous sections 6.2.2, C.2 and C.3 (ft, m and Nf ).
Thus, a properly processed OFS does not need any more tuning the filter cut-off frequency each
time depending on the experimental configuration. Second, due to the low efficiency of the filter
obtained (less than 5 %) , it does not make sense to implement it in a dedicated manner. We
recall here that a zero phase filter is basically a cascade of two independent filters with opposite
transfer functions, as seen in Fig. D.4 [206].

Let x[n] be the time domain signal passing through the two cascaded filters, with an impulse
response h1[n] and h2[n], and a frequency response H1(ejω) and H2(ejω), respectively. Then
the output of the cascaded filters in the time and frequency domains will be given by

y[n] = h1[n] ∗ h2[n] ∗ x[n] (D.1)

Y (ejw) = H1(ejw)H2(ejw)X(ejw) (D.2)
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where the operation (*) is a classical convolution, which becomes a multiplication in the fre-
quency domain. Now, if the second filter having a frequency response H2(ejω) is the complex
conjugate of the first one, i.e. H2(ejω) = H∗1 (ejω), then Eq. (D.2) becomes

Y (ejw) = H1(ejw)H∗1 (ejw)X(ejw) (D.3)

= |H(ejw)||H(ejw)|e(jwM/2)e(−jwM/2)X(ejw) (D.4)

= |H(ejw)|2X(ejw) (D.5)

From Eq. (D.5) it is observed that passing the signal again through a cascaded filter which
has a frequency response of the second filter as the complex conjugate of the first filter causes
the phasor to rotate in opposite directions resulting in the perfect cancellation of the phase
shift introduced by the filter. This is illustrated in Fig. D.4, and is fully equivalent to the
“Lead-Lag” compensation used in control systems, and to the “spectral reversing” technique to
combat dispersion in optical fibre communications. When there is no phase shift introduced by
a system, the subtraction of the output from the input is dictated solely by their magnitudes,
which is the desired situation for CWFM-DOF.
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