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Since their introduction in 1967, Lawson methods have attracted continuous interest for the time dis-
cretization of evolution equations. The popularity of these methods is in some contrast to the fact that
they may have a bad convergence behaviour, since they do not satisfy any of the stiff order conditions. The
aim of this paper is to explain this discrepancy. It is shown that non-stiff order conditions together with
appropriate regularity assumptions imply high-order convergence of Lawson methods. Note, however,
that the term regularity here includes the behaviour of the solution at the boundary. For instance, Lawson
methods will behave well in the case of periodic boundary conditions, but they will show a dramatic
order reduction for, e.g., Dirichlet boundary conditions. The precise regularity assumptions required for
high-order convergence are worked out in this paper and related to the corresponding assumptions for
splitting schemes. In contrast to previous work the analysis is based on expansions of the exact and the
numerical solution along the flow of the homogeneous problem. Numerical examples for the Schrödinger
equation are included.

Keywords: exponential integrators; Lawson methods; linear and nonlinear Schrödinger equations; evolu-
tion equations; order conditions.

1. Introduction

Exponential integrators are a well-established class of methods for the numerical solution of semilinear
stiff differential equations. If the stiff initial value problem stems from a spatial semi-discretization of an
evolutionary partial differential equation (PDE), the very form of the domain of the spatial differential
operator enters the convergence analysis. The stiff order conditions, which guarantee a certain order of
convergence independently of the considered problem, must of course be independent of the domain of
this operator (which, in general, requires certain boundary conditions). This is the main reason why stiff
order conditions for exponential integrators are quite involved (see Hochbruck & Ostermann (2005a)
and Luan & Ostermann (2013)).

For particular problems, however, less conditions are required for obtaining a certain order of con-
vergence. (The same is true for ordinary differential equations (ODEs), where linear problems, e.g.,
require less order conditions for Runge–Kutta methods than nonlinear ones.) It was already observed in
Hochbruck & Ostermann (2005b) that periodic boundary conditions do not give any order reduction in
exponential integrators of collocation type in contrast to homogeneous Dirichlet boundary conditions,
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which restrict the order of convergence considerably (close to the stage order, depending on the pre-
cise situation). Full-order convergence for periodic boundary conditions was also noticed in Kassam &
Trefethen (2005) and Besse et al. (2015).

A similar behaviour can be observed for Lawson methods which are obtained by a linear vari-
able transformation from (explicit) Runge–Kutta methods (see Lawson (1967) and Section 2 below).
These methods are very attractive, since they can be easily constructed from any known Runge–Kutta
method. Unfortunately, Lawson methods exhibit a strong order reduction, in general. For particular
problems, however, they show full order of convergence (see Cano & González-Pachón (2015), Balac
et al. (2016), and Montanelli & Bootland (2016)). By construction, Lawson methods do satisfy the order
conditions for non-stiff problems. Such conditions will be called non-stiff or conventional order condi-
tions henceforth. However, Lawson methods do not satisfy any of the stiff order conditions, as detailed
in Hochbruck & Ostermann (2005a), Hochbruck & Ostermann (2010), and Luan & Ostermann (2013).
This fact can result in a dramatic order reduction, even down to order one for parabolic problems with
homogeneous Dirichlet boundary conditions.

So far, the derivation of (stiff) order conditions for exponential integrators was based on standard
Taylor expansions of the exact and the numerical solution. There, the main assumption on the problem
is that the exact solution and its composition with the nonlinearity are both sufficiently smooth in time
(see Hochbruck & Ostermann (2005a) and Luan & Ostermann (2013)). Any additional regularity in
space is not of immediate benefit in this analysis. This is in contrast to splitting methods, where spatial
regularity usually shows up in form of commutator bounds (see, e.g., Jahnke & Lubich (2000)).

In this paper, we study the convergence behaviour of Lawson methods for semilinear problems. One
of the main contributions of this paper is a different expansion of the solution based on the variation-
of-constants formula. This expansion can be derived in a systematic way using trees as in Hairer et al.
(1993) and Luan & Ostermann (2013). The expansion of the exact solution is carried out in terms
of elementary integrals, that of the numerical solution in terms of elementary quadrature rules. We
show that conventional, non-stiff order conditions together with (problem-dependent) assumptions on
the exact solution give full order of convergence. This involves regularity of the solution in space and
time. Our main result for Lawson methods is stated in Theorems 4.9 and 4.10. We prove that Lawson
methods converge with order p, if the order of the underlying Runge–Kutta methods is at least p and the
solution satisfies appropriate regularity assumptions. These conditions are studied in detail for methods
of orders one and two, respectively, and they are related to the corresponding conditions that arise in the
analysis of splitting methods. In particular, this is worked out for the nonlinear Schrödinger equation.
Our error analysis also reveals a different behaviour between the first-order Lawson method and the
exponential Euler method, which is visible in numerical experiments.

The outline of the paper is as follows. In Section 2, we recall the construction of Lawson meth-
ods. The expansion of the numerical and the exact solution in terms of elementary integrals is given in
Section 3. There, we also introduce the analytic (finite dimensional) framework which typically occurs
when discretizing a semilinear parabolic or hyperbolic PDEs in space. Order conditions and conver-
gence results are given in Section 4. The resulting regularity assumptions are discussed in Section 5.
These assumptions are related to the corresponding conditions for splitting methods. Numerical exam-
ples that illustrate the required regularity assumptions and the proven convergence behaviour are also
presented.
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2. Lawson methods

Consider a semilinear system of stiff differential equations

u′(t) = Au(t)+g
(
t,u(t)

)
, u(0) = u0, (2.1)

where the stiffness stems from the linear part of the equation, i.e., the matrix A. The precise assumptions
on A and g will be given in Section 3. For the numerical solution of (2.1), Lawson (1967) considered
the following change of variables:

w(t) = e−tAu(t).

Inserting the new variables into (2.1) gives the transformed differential equation

w′(t) = e−tAg
(
t,etAw(t)

)
, w(0) = u0. (2.2)

For the solution of this problem, an s-stage explicit Runge–Kutta method with coefficients bi,ci,ai j is
considered. The method is assumed to satisfy the simplifying assumptions c1 = 0 and

i−1

∑
j=1

ai j = ci, i = 2, . . . ,s. (2.3)

Transforming the Runge–Kutta discretization of (2.2) back to the original variables yields the corre-
sponding Lawson method for (2.1)

Uni = ecihAun +h
i−1

∑
j=1

ai je(ci−c j)hAg(tn + c jh,Un j), i = 1, . . . ,s, (2.4a)

un+1 = ehAun +h
s

∑
i=1

bie(1−ci)hAg(tn + cih,Uni). (2.4b)

Here, un is the numerical approximation to the exact solution u(t) at time t = tn = nh, and h is the step
size. Note that this method makes explicit use of the action of the matrix exponential function. Depend-
ing on the properties of A, the nodes c1, . . . ,cs have to fulfill particular assumptions, see Assumption 3.1
in the next section. Because of these actions of the matrix exponential, Lawson methods form a partic-
ular class of exponential integrators. For a recent review on such integrators, we refer to Hochbruck &
Ostermann (2010).

For a non-stiff ordinary differential equation (2.1), it is obvious that the order of the Runge–Kutta
method applied to (2.2) coincides with that of the corresponding Lawson method applied to (2.1). It is
the aim of this paper to show that this is also true in the stiff situation, if appropriate regularity assump-
tions hold (we will explain the meaning of regularity in the context of discretized PDEs in Section 5).

3. Expansion of the exact and the numerical solution

By adding t ′ = 1 to (2.1), the differential equation is transformed to autonomous form. It is well known
that Runge–Kutta methods of order at least one satisfying (2.3) are invariant under this transformation.
Therefore, we restrict ourselves henceforth to the autonomous problem

u′(t) = Au(t)+g
(
u(t)

)
, u(0) = u0. (3.1)

Our main assumptions on A and g are as follows.
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ASSUMPTION 3.1 Let A belong to a family of matrices F satisfying∥∥etA∥∥6CF (3.2)

with a moderate constant CF , uniformly for all t. It is sufficient to require (3.2) for t > 0 if the nodes ci
of the considered explicit Runge–Kutta method are ordered as 0 = c1 6 c2 6 . . .6 cs 6 1.

This assumption is typically satisfied in situations where (3.1) stems from a spatial discretization
of a semilinear parabolic or hyperbolic partial differential equation. The important fact here is that the
constant CF is independent of the spatial mesh width for finite difference and finite element methods,
and independent of the number of ansatz functions in spectral methods. Hence the set F contains all
matrices resulting from any of these discretizations on arbitrarily refined meshes.

ASSUMPTION 3.2 The nonlinearity g is sufficiently smooth in a neighborhood of the solution of (3.1).

We illustrate our assumptions with the following example.

EXAMPLE 3.3 Consider the parabolic initial-boundary value problem

wt = wxx +w(1−w), 0 < x < 1, 0 < t 6 T, (3.3)

with initial value w(0,x) =w0(x) and homogeneous Dirichlet boundary conditions w(t,0) =w(t,1) = 0.
For N ∈ N, let ∆x = 1

N+1 be the spatial grid size and xk = k∆x, k = 0, . . . ,N +1 be the grid points. Dis-
cretizing the second derivative by standard symmetric finite differences gives the following semilinear
problem in the space X = RN :

u′ = Au+g(u), u(0) =
[
w0(x1),w0(x2), . . . ,w0(xN)

]T
, (3.4)

where

A =
1

∆x2


−2 1 0

1
. . . . . .
. . . . . . 1

0 1 −2

 , g(u) =


u1(1−u1)
u2(1−u2)
· · ·

uN(1−uN)

 .
We endow X with the weighted Euclidian norm

‖u‖=
√

1
N ∑

N
j=1 u2

j .

Then, the above assumptions are satisfied and, in particular, CF = 1 for all N ∈ N.
Regularity properties of the partial differential equation (3.3) translate into boundedness results,

uniformly in N, for the spatially discrete problem (3.4). For example, that the initial value w0 lies in
the domain of the Laplacian (considered with homogeneous Dirichlet boundary conditions) means on
the discrete level that Au0 is bounded uniformly for all matrices A in the family F . In particular, it is
independent of the dimension N. This excludes, for instance, any constant vector different from zero. A
numerical example is given in Section 5.5 below.

We recall that the solution of (3.1) can be represented in terms of the variation-of-constants formula

u(t) = etAu0 +
∫ t

0
e(t−σ)Ag

(
u(σ)

)
dσ .
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Applying this formula recursively and expanding the nonlinearity along the flow of the homogeneous
problem yields the following expansion of the exact solution

u(h) = ehAu0 +h
∫ 1

0
e(1−σ)hAg

(
eσhAu0 +h

∫
σ

0
e(σ−η)hAg

(
u(ηh)

)
dη

)
dσ

= ehAu0 +h
∫ 1

0
e(1−σ)hAgσ dσ

+h2
∫ 1

0
e(1−σ)hAg′σ

∫
σ

0
e(σ−η)hAgη dηdσ

+h3
∫ 1

0
e(1−σ)hAg′σ

∫
σ

0
e(σ−η)hAg′η

∫
η

0
e(η−ξ )hAgξ dξ dηdσ

+ 1
2 h3

∫ 1

0
e(1−σ)hAg′′σ

[∫ σ

0
e(σ−η)hAgη dη ,

∫
σ

0
e(σ−ξ )hAgξ dξ

]
dσ +O(h4),

(3.5)

where we have used the short notation

gη = g
(
eηhAu0

)
, g(k)η = g(k)

(
eηhAu0

)
, k > 1. (3.6)

Note that here and throughout the whole paper, the constant in the Landau symbol O only depends on
CF and the derivatives of g, but not explicitly on A itself. This expansion differs considerably from
the previous work (see, e.g., Hochbruck & Ostermann (2005a); Luan & Ostermann (2013)) where the
nonlinearity g(u(t)) was expanded with respect to t.

Next we perform a similar expansion of the numerical solution (2.4), which yields (again in the
autonomous case)

u1 = ehAu0 +h
s

∑
i=1

bie(1−ci)hAgci

+h2
s

∑
i=1

bie(1−ci)hAg′ci

i−1

∑
j=1

ai je(ci−c j)hAgc j

+h3
s

∑
i=1

bie(1−ci)hAg′ci

i−1

∑
j=1

ai je(ci−c j)hAg′c j

j−1

∑
k=1

a jke(c j−ck)hAgck

+ 1
2 h3

s

∑
i=1

bie(1−ci)hAg′′ci

[ i−1

∑
j=1

ai je(ci−c j)hAgc j ,
i−1

∑
k=1

aike(ci−ck)hAgck

]
+O(h4).

(3.7)

As we have used the variation-of-constants formula and its discrete counterpart, respectively, the expan-
sions of the exact and numerical solutions reflect the well-known tree structure of (explicit) Runge–Kutta
methods, see (Hairer et al., 1993, Sect. II.2). This allows us to study the local error in the same way as
for classical Runge–Kutta methods. Exploiting this fact leads to short and elegant proofs as detailed in
the next section. Moreover, a term-by-term comparison of (3.5) and (3.7) reveals that the single terms in
(3.7) can be interpreted as multivariate quadrature formulas for the corresponding multivariate integrals
in (3.5). Consequently, the orders of these quadrature rules determine the local error of the Lawson
method. A similar strategy was used in the analysis of splitting methods by Jahnke & Lubich (2000).
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4. Order conditions and convergence

In this section we present a systematic way of deriving general stiff convergence results for Lawson
methods based on trees. Here we use the same trees which are well-established for the non-stiff or-
der conditions for Runge–Kutta methods, see (Hairer et al., 1993, Section II.2) and references given
there. General stiff order conditions for exponential Runge–Kutta methods have been derived in Luan
& Ostermann (2013) and for splitting methods in Hansen & Ostermann (2016).

By T we denote the set of unlabeled trees (Hairer et al., 1993, Section II.2). We recall that trees are
defined recursively by

(1) ∈T ,

(2) if τ1, . . . ,τk ∈T , then [τ1, . . . ,τk] ∈T .

Here, [τ1, . . . ,τk] (a k tuple without ordering) denotes the tree which is obtained by concatenating the
roots of the trees τ1, . . . ,τk via k branches with a new node. This node becomes the root of the tree
[τ1, . . . ,τk].

For τ ∈ T the elementary differential D(τ) of a smooth function g is defined recursively. For τ =
we have D( )(w) = g

(
w
)

and for τ = [τ1, . . . ,τk] we have

D(τ)(w) = g(k)
(
w
)[

D(τ1)(w), . . . ,D(τk)(w)
]
.

By ρ(τ) we denote the order of the tree τ which is defined as the number of nodes of τ ∈T .
Motivated by the expansion (3.5) of the exact solution we define elementary integrals.

DEFINITION 4.1 For τ ∈ T and 06 ζ 6 1 we define the elementary integral Gζ (τ) recursively in the
following way.

(1) For τ = we set

Gζ ( )(w) =
∫

ζ

0
e(ζ−σ)hAg

(
eσhAw

)
dσ .

(2) For τ = [τ1, . . . ,τk] we set

Gζ (τ)(w) =
∫

ζ

0
e(ζ−σ)hAg(k)

(
eσhAw

)[
Gσ (τ1)(w), . . . ,Gσ (τk)(w)

]
dσ .

Moreover, we also need the integrand of such an elementary integral which is defined as follows.

DEFINITION 4.2 For τ ∈T we set G(τ) = G1(τ). The integrand of G(τ)(w) is denoted by Ψ(τ)(·,w).

Note that G(τ) is a ρ(τ)-fold multivariate integral and thus Ψ(τ) is a function of ρ(τ) variables. For
example, = [ ] and

Ψ( )(σ1,σ2,w) = e(1−σ1)hAg′σ1
(w)e(σ1−σ2)hAgσ2(w).

Our assumptions on g and A ensure that the integrand Ψ(τ) is bounded.
The following theorem shows how the expansion (3.5) can be expressed in terms of elementary

integrals.
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THEOREM 4.3 The solution of (3.1) formally satisfies

u(h) = ehAu0 + ∑
τ∈T

hρ(τ)
α(τ)G(τ)(u0) (4.1)

with certain coefficients α(τ) which are independent of the differential equation (3.1). If g is sufficiently
smooth, we have

u(h) = ehAu0 + ∑
τ∈T

ρ(τ)6k

hρ(τ)
α(τ)G(τ)(u0)+O(hk+1). (4.2)

Proof. The theorem follows immediately by observing that we have the following isomorphism:

τ ' D(τ)' G(τ).

The remainder in (4.2) is bounded if g is sufficiently smooth. �
Now we proceed analogously for the numerical solution starting with the definition of elementary

quadrature formulas.

DEFINITION 4.4 For τ ∈ T we define the elementary quadrature formula Ĝ(τ) recursively in the
following way.

(1) For τ = we set

Ĝ( )(w) =
s

∑
i=1

bie(1−ci)hAg
(
ecihAw

)
,

Ĝi( )(w) =
i−1

∑
j=1

ai je(ci−c j)hAg
(
ec jhAw

)
.

(2) For τ = [τ1, . . . ,τk] we set

Ĝ(τ)(w) =
s

∑
i=1

bie(1−ci)hAg(k)
(
ecihAw

)[
Ĝi(τ1)(w), . . . , Ĝi(τk)(w)

]
,

Ĝi(τ)(w) =
i−1

∑
j=1

ai je(ci−c j)hAg(k)
(
ec jhAw

)[
Ĝ j(τ1)(w), . . . , Ĝ j(τk)(w)

]
.

As usual, the value of any empty sum is defined as zero.

This definition allows us to express the expansion (3.7) of the numerical solution in terms of ele-
mentary quadrature rules.

THEOREM 4.5 The numerical solution of (3.1) formally satisfies

u1 = ehAu0 + ∑
τ∈T

hρ(τ)
α(τ)Ĝ(τ)(u0)

with the same coefficients α(τ) as for the exact solution in Theorem 4.3. If g is sufficiently smooth, we
have

u1 = ehAu0 + ∑
τ∈T

ρ(τ)6k

hρ(τ)
α(τ)Ĝ(τ)(u0)+O(hk+1).
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Proof. The proof follows from the observation that the numerical solution (2.4) is of the same struc-
ture as the exact solution if one replaces all integrals in the iterated variation-of-constants formula by
quadrature formulas.

Hence we obtain an isomorphism

τ ' D(τ)' G(τ)' Ĝ(τ).

The truncated expansion follows by the assumption on the smoothness of g. �
As usual, we say that the Lawson method is of (stiff) order p if the local error satisfies

‖u(h)−u1‖6Chp+1

uniformly for all matrices of the family F , meaning that the constant C depends on the constant CF

defined in (3.2) but not on A itself.

THEOREM 4.6 The Lawson method (2.4) is of order p if

Ĝ(τ)(u0)−G(τ)(u0) = O(hp+1−ρ(τ)), for all τ ∈T , ρ(τ)6 p.

Proof. This follows immediately from Theorems 4.3 and 4.5. �

EXAMPLE 4.7 The above derivation can be easily generalized to exponential integrators using fixed
linearization

Ui = ecihAu0 +h
i−1

∑
j=1

ai j(hA)g(U j), i = 1, . . . ,s,

u1 = ehAu0 +h
s

∑
i=1

bi(hA)g(Ui),

cf. Hochbruck & Ostermann (2010). If one replaces bie(1−ci)hA by bi(hA) and ai je(ci−c j)hA by ai j(hA)
in Definition 4.4, Theorems 4.5 and 4.6 also hold for general exponential Runge–Kutta methods. If the
stiff order conditions derived in Hochbruck & Ostermann (2005a) and Luan & Ostermann (2013) are
satisfied up to order p, then Ĝ(τ)(u0)−G(τ)(u0) = O(hp+1−ρ(τ)) for all τ ∈T , ρ(τ)6 p.

EXAMPLE 4.8 For the exponential Euler method, where s = 1, c1 = 0, and b1(z) = ϕ1(z), we have

Ĝ(τ)(u)−G(τ)(u) =
∫ 1

0
e(1−σ)hA(g(u)−gσ

)
dσ .

The condition for order one requires that ‖g(u)−gσ (u)‖ 6 Ch. In the linear case, where g(w) = Bw,
this can be written as

h−1(g(u)−gσ (u)
)
= h−1B

(
I− eσhA)u =−Bϕ1(σhA)σAu. (4.3)

Hence the condition is fulfilled if Au is uniformly bounded and, in particular, independent of ‖A‖.
It might be interesting to compare (4.3) to the condition given in (Hochbruck & Ostermann, 2010,

Lemma 2.13) which was proved by a Taylor series expansion of g
(
u(t)

)
. For linear problems, it reads

‖B(Au+Bu)‖6C. (4.4)

Hence both results require the same regularity, namely that Au is uniformly bounded. Note, however,
that (4.4) does not involve the ϕ1 function. The latter decays like 1/z as z→ ∞ in the closed left half-
plane.
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The following theorem provides a sufficient condition for Lawson methods being of (stiff) order p.

THEOREM 4.9 Let

Ψ(τ)
(
·,u(t)

)
∈Cp−ρ(τ),1([0,1]ρ(τ),X) for all τ ∈T with ρ(τ)6 p, (4.5)

where u(t) ∈ X is the solution of (3.1), 06 t 6 T . If the underlying Runge–Kutta method is of (conven-
tional) order p, then the Lawson method (2.4) is of (stiff) order p.

Proof. Let ρ = ρ(τ). We expand Ψ(τ) into a Taylor polynomial of degree p+1−ρ . By assumption
on Ψ(τ), the coefficients and the remainder of this Taylor polynomial are bounded. The multivariate
quadrature formula Ĝ(τ) is exact for all polynomials of degree p + 1− ρ . This can be seen from
considering a non-stiff ordinary differential equation, for which it is known that the method is of order
p. This proves the theorem. �

This result now allows us to prove an error bound for Lawson methods which is uniform for all
problems (3.1) with A ∈F .

THEOREM 4.10 Let u be the solution of (3.1) and let the assumptions of Theorem 4.9 be satisfied. If
the underlying Runge–Kutta method is of (conventional) order p, then there exists h0 > 0 such that for
all 0 < h6 h0 sufficiently small,

‖u(tn)−un‖6Chp, tn = nh6 T,

where C and h0 are independent of n, h, and A.

Proof. We define a norm by

‖v‖? = sup
t∈R

∥∥etAv
∥∥ .

This norm is equivalent to ‖·‖ and we have∥∥etA∥∥6 1, for all t ∈ R. (4.6)

By assumption, g is locally Lipschitz continuous. Then (4.6) shows that the Lawson method is locally
Lipschitz with respect to the initial value with a Lipschitz constant of size 1+O(h). This implies the
required stability.

The error bound follows in a standard way using Lady Windermere’s fan. �

5. Regularity conditions and applications

It remains to discuss the regularity conditions (4.5) and to give some applications. We first examine
the conditions for orders one and two, respectively. The extension to higher orders is a tedious but
straightforward exercise. It turns out that these regularity conditions can all be expressed in terms of
commutators, very much like in the case of splitting methods.

In order to obtain simple sufficient conditions, we replace the space Ck,1(Ω ,X) in condition (4.5) by
the subspace of k+1 times partially differentiable functions with uniformly bounded partial derivatives
on Ω in the following discussion. This is also justified by the fact that Lipschitz continuous functions
are almost everywhere differentiable (Rademacher’s theorem).
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5.1 Condition for order one

Since p = ρ(τ) = 1, we only have to consider the tree τ = in (4.5). Differentiating

Ψ( )(σ ,w) = e(1−σ)hAgσ (w)

with respect to σ yields

∂σΨ( )(σ ,w) = he(1−σ)hA
(

g′σ (w)AeσhAw−Agσ (w)
)

= he(1−σ)hA[g,A]
(
eσhAw

)
,

(5.1)

where [g,A] denotes the Lie commutator of g and A, defined as

[g,A](w) = g′(w)Aw−Ag(w).

From this calculation, we conclude the following result. If the bound

sup
06σ61

sup
06t6T

∥∥∥e(1−σ)hA[g,A]
(
eσhAu(t)

)∥∥∥6C (5.2)

holds with a constant C that is allowed to depend on CF , but not on ‖A‖, then a Lawson method of
non-stiff order one has also stiff order one.

5.2 Conditions for order two

Stiff order two is achieved if we require the following two regularity conditions

Ψ( )(·,u(t)) ∈C1,1([0,1],X) and Ψ( )(·,u(t)) ∈C0,1([0,1]2,X).

Again, we work with a slightly stronger regularity assumption on Ψ . We commence with the first
condition. Differentiating (5.1) once more with respect to σ yields

∂
2
σΨ( )(σ ,w) = h2e(1−σ)hA

(
−2Ag′σ (w)AeσhAw+A2gσ (w)

+g′′σ (AeσhAw,eσhAAw)+g′σ (w)A
2eσhAw

)
,

which again can be expressed with the help of a commutator,

∂
2
σΨ( )(σ ,w) = h2e(1−σ)hA[A, [A,g]](eσhAw

)
.

This calculation shows that the bound

sup
06σ61

sup
06t6T

∥∥∥e(1−σ)hA[A, [A,g]](eσhAu(t)
)∥∥∥6C (5.3)

should hold with a constant C that is independent of ‖A‖.
Next, we move to the second condition. Differentiating

Ψ( )(σ1,σ2,w) = e(1−σ1)hAg′σ1
(w)e(σ1−σ2)hAgσ2(w)



11 of 15

with respect to σ1 and σ2 yields

∂σ1Ψ( )(σ1,σ2,w) = he(1−σ1)hA
(
−Ag′σ1

(w)e(σ1−σ2)hAgσ2(w)

+g′′σ1
(w)
(
eσ1hAAw,e(σ1−σ2)hAgσ2(w)

)
+g′σ1

(w)e(σ1−σ2)hAAgσ2(w)
)

= he(1−σ1)hA[g′,A]
(
eσ1hAw

)
· e(σ1−σ2)hAgσ2(w)

and
∂σ2Ψ( )(σ1,σ2,w) = he(1−σ1)hAg′σ1

(w)e(σ1−σ2)hA
(
−Agσ2(w)+g′σ2

Aeσ2hAw
)

= he(1−σ1)hAg′σ1
(w)e(σ1−σ2)hA[g,A]

(
eσ2hAw

)
,

respectively. From these two relations, we infer that the bounds

sup
06σ61

sup
06t6T

∥∥∥e(1−σ1)hA[g′,A]
(
eσ1hAu(t)

)
· e(σ1−σ2)hAgσ2(u(t))

∥∥∥6C, (5.4a)

sup
06σ61

sup
06t6T

∥∥∥e(1−σ1)hAg′σ1
(u(t))e(σ1−σ2)hA[g,A]

(
eσ2hAu(t)

)∥∥∥6C (5.4b)

should hold with a constant C that is independent of ‖A‖.
From the above calculations, we conclude the following result. If the conditions (5.2), (5.3), and

(5.4) hold with a constant C that does not depend on ‖A‖, then a Lawson method of non-stiff order two
has also stiff order two.

5.3 Specialisation to linear problems

For the linear evolution equation

u′ = Au+Bu, u(0) = u0

with bounded operator B on X , the above conditions (5.2), (5.3), and (5.4) simplify a bit. A first-order
Lawson method is of stiff order one if

sup
06σ61

sup
06t6T

∥∥∥e(1−σ)hA[B,A]eσhAu(t)
∥∥∥6C. (5.5a)

For second order, the conditions read

sup
06σ61

sup
06t6T

∥∥∥e(1−σ)hA[A, [A,B]]eσhAu(t)
∥∥∥6C, (5.5b)

sup
06σ26σ161

sup
06t6T

∥∥∥e(1−σ1)hA[B,A]e(σ1−σ2)hABeσ2hAu(t)
∥∥∥6C, (5.5c)

sup
06σ26σ161

sup
06t6T

∥∥∥e(1−σ1)hABe(σ1−σ2)hA[B,A]eσ2hAu(t)
∥∥∥6C. (5.5d)

We recall that such conditions also arise in the analysis of splitting methods, cf. Jahnke & Lubich (2000).
The above analysis can easily be generalized to higher order, since for linear problems, only long

trees have to be considered. For all other trees which start with at least two branches at the root, the
integrand Ψ vanishes.
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5.4 Nonlinear Schrödinger equations

For the time discretization of nonlinear Schrödinger equations

ut = i
(
∆u+ f (|u|2)u

)
, (5.6)

split-step methods are commonly viewed as the method of choice. In recent years, however, exponential
integrators have been considered as a viable alternative for the solution of (5.6). For instance, Besse et al.
(2015) studied exponential integrators in the context of Bose–Einstein condensates; Cano & González-
Pachón (2015) and Balac et al. (2016) reported favourable results for Lawson integrators of the form as
discussed in this paper. Rigorous convergence results, however, are still missing for these methods.

As an application of our analysis, we will use the above regularity conditions (5.2), (5.3), and (5.4) to
verify second-order convergence of Lawson methods. In contrast to the rest of the paper, we refrain from
any particular space discretization and argue in an abstract Hilbert space framework. Note, however, that
our reasoning carries over to spatial discretizations (by spectral methods, e.g.) without any difficulty.

For this purpose, we consider (5.6) with periodic boundary conditions on the d dimensional torus
and smooth potential. Then it is well known (see, e.g., (Kato, 1995, Thm. 4.1)) that the problem is well
posed in Hs for s > d/2. The regularity of an initial value u0 ∈ Hs is thus preserved along the solution.
Henceforth we choose s > d/2.

Second-order Strang splitting for (5.6) with f (u) = ±u was rigorously analysed in Lubich (2008).
There it was shown that commutator relations similar to our conditions (5.2), (5.3), and (5.4) play a
crucial role in the convergence proof for Strang splitting. The analysis given here shows that Lawson
methods converge under the same regularity assumptions as splitting schemes. This will be worked out
now in detail for first and second-order methods.

Let A = i∆ and g(u) = iβ |u|2u, i.e. f = β I. The first commutator [A,g] then takes the form

[A,g](u) = Ag(u)−g′(u)Au

=−β∇ ·
(
2uu∇u+u2

∇u
)
+2βuu∆u−βu2

∆u

=−2β
(
u∇u ·∇u+2u∇u ·∇u+u2

∆u
)
.

This explicit representation shows that the commutator is clearly bounded in Hs for u ∈Hs+2. For Law-
son methods, a first-order convergence bound in Hs thus requires Hs+2 regularity of the exact solution,
which is the same regularity as required for the first-order Lie splitting.

For second-order methods, one has to estimate the double commutator [A, [A,g]]. A simple calcula-
tion shows that a bound in Hs requires Hs+4 regularity of the exact solution. Up to here, the situation is
exactly the same as for second-order Strang splitting (see Lubich (2008)). The additional commutator
[A,g′] can be expressed as

[A,g′](u)w = Ag′(u)w−g′′(u)(Au,w).

A simple calculation shows that this commutator can again be bounded in Hs for u,w ∈ Hs+2. We
thus conclude that Lawson methods require the same regularity for second-order convergence as Strang
splitting.

5.5 Numerical examples

We consider the linear Schrödinger equation

ut = iuxx + i f (x)u, x ∈ [−π,π], u(0, ·) = u0, (5.7)
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FIG. 1. Illustration of discrete regularity: ‖Aµ u0‖ is plotted over the number N of Fourier modes, where u0 is chosen as in (5.9).

with periodic boundary conditions and discretize it using a Fourier spectral method on an equidistant
grid. In Fourier space, the matrix A is given by

A =−iD2, where D = diag(−N
2 +1,−N

2 +2, . . . , N
2 ).

For the function f we consider two different examples:

f (x) = sinx, (5.8a)

f (x) = (x/π)2. (5.8b)

Let us first explain what regularity means in the ODE context, where the operator stems from a spatial
discretization. For each N = 27, . . . ,212 we choose a vector r ∈ CN of Fourier coefficients such that
rN/2 = 0 and where the remaining N− 1 entries contain random numbers uniformly distributed in the
unit disc. Then we normalize r such that its inverse discrete Fourier transform has unit norm (in the
discrete L2-norm). As an initial value we then set

(u0)N/2 = 0, (u0) j = (D−2α r) j, j ∈ {1, . . . ,N}\{N/2}. (5.9)

We are interested in the case α > 0, since in the continuous case this resembles the situation of an initial
function u0 belonging to the Sobolev space H2α([−π,π]). Hence, larger values of |α| yield more regular
initial values.

In Figure 1 we plot
∥∥D2µ u0

∥∥ for different values of µ over the number of Fourier modes N. In
the continuous case this norm is bounded if u0 ∈ H2µ . The three graphs clearly show that

∥∥D2µ u0
∥∥ is

bounded independently of the number N of Fourier modes only for µ 6 α .
Now we fix the spatial discretization and set N = 2048. In Figure 2 we show the numerically

observed orders of the exponential Euler and the Lawson Euler method for the periodic potential (5.8a)
for different values of α such that the corresponding initial function is contained in H2α . We observe
an order reduction for α = 0 for both methods and (almost) order one for α > 0.5.
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FIG. 2. Discrete L∞((0,1),L2(Ω)) error of the numerical solution of (5.7) with periodic potential (5.8a) for the exponential Euler
method (top) and the Lawson Euler method (bottom) for different values of α . The values of p in the legend show the numerically
observed orders of the schemes.

For α = 0 the error of the exponential Euler method has an irregular behaviour for larger step sizes.
To better visualise the order, we added thin lines (blue in the colour version) to all curves related to
α = 0. The slopes of these lines are also given in the legends (blue in the colour version).

In Figure 3 we present the same experiment for the quadratic potential (5.8b). The situations differs
considerably for the exponential Euler methods while the Lawson Euler method still converges with
order one for α > 0.5. However, the exponential Euler methods suffers from order reduction for α < 1.5
due to the nonsmooth potential f .
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