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Tag der mündlichen Prüfung: 8. Februar 2017

Referentin: Prof. Dr. Claudia Kirch

Korreferent: Prof. Dr. Norbert Henze





Danksagung
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Introduction

In recent years, the analysis of data ordered in time becomes more and more popular due to the
increasing amount of automatically collected data over time in many different fields, for example
in economics, banks, medicine or engineering. Data collected over time are called time series,
and an important question is whether the structure of such data is changing over time or whether
the model still describe the data well enough. A change in the data structure means a change
in the unknown model parameter of the underlying data set. The most popular changes are
changes in the mean or in the variance. The points in time in which changes occur, regardless
of the special kind of change, are called the change-points. The main interests are to decide by
means of suitable change-point tests if there are changes in the collected data set as well as to
locate the changes as precisely as possible. The mathematical field of searching changes in a
data structure is called change-point analysis.

There are two different kinds of change point procedures, the sequential method and the
a-posteriori method. In the first case we collect data sequentially and test after each new
observation whether a change has occurred or not. The procedure stops if the test detects
a change. In case of the a-posteriori method a complete data set has been observed without
collecting new observations. Then we search for a change over time in the given data set. Using
this method we obtain estimators for the change-points. In case of the sequential method we
want to detect the change very fast after it has occurred. The procedure mostly stops with delay
after the change has happened, but sometimes it stops earlier as the change occurs. The latter
case is a false alarm, and this is discussed in detail in the simulation study in the first part of
this work. The time period of monitoring the data till the test stops is called the run length.

If the sequential procedure is used, there are the options to monitor new incoming observations
during a given time period, i.e. the time horizon is finite, or the time horizon is not restricted
in time, which means that the monitoring period is infinite. The first method is called the
closed-end procedure and the second one the open-end procedure.

The sequential procedure is useful in situations in which it is important to react as soon
as possible after a change has occurred. Examples are the monitoring of medical observations.
Here, it is important that the doctors intervene very fast after a change happened. Furthermore,
stock prices are collected permanently and the stockbroker has to adapt the purchase and sale
strategy immediately after the change in the stock prices.

If a statistical test is conducted, we want to decide whether the null hypothesis of no changes
should be rejected or whether the data still follow the proposed model. Therefore we first have
to calculate the statistic, and we need critical values that decide about rejection or acceptance
of the null hypothesis. Usually, change-point analysis employs asymptotic procedures. Here,
critical values are determined by the asymptotic distribution of the test statistic under the null
hypothesis. Further there is another way to obtain critical values, the bootstrap method. Here,
a new data set with the same length as the observed data set is created by sampling with replace-
ment from the observations. This proceeding is replicated very often to mimic the distribution
of the test statistic. The obtained time series are called the bootstrap series. Based on the
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Introduction

resulting bootstrap series the critical values are calculated. This procedure usually works better
with small sample sizes, and it is necessary in higher dimensions where the estimator of the
covariance matrix, involved in the test statistic, is not stable anymore.

This dissertation is divided in three parts. The first part studies the sequential procedure, and
the other two parts deal with the a-posteriori method whereat one of the last to parts focuses
on bootstrap methods.

In the first part we introduce a general setting of sequential testing of changes in possibly
multivariate time series. Contrary to the existing literature, we do not suppose a specific data
model, but we only propose some weak assumptions which are fulfilled by the data models
already discussed in the literature and actually extend the theory to many new data models
which have not yet been considered. Kirch and Kamgaing (2015) is the only publication that
has already introduced such a common setting by using the most popular CUSUM (cumulative
sum) statistic. We will extend it to the modified MOSUM (moving sum), Page-CUSUM and
standard MOSUM statistic which are useful in situations where the CUSUM does not work very
well, for example for late changes with respect to the time horizon. The different behaviour of
the statistics depending on the time point of change and some other parameters is illustrated
by simulations.

Afterwards we switch to the a-posteriori procedure and concentrate on different types of boot-
strap methods in a multivariate mean change model, namely the well-known block-bootstrap,
the wild-bootstrap and the AR-sieve-bootstrap. These procedures differ in the way of sampling
with replacement from the observed data set to obtain the bootstrap series. The block-bootstrap
has already been discussed in the literature but only in the univariate case. We develop the the-
ory that the bootstrap series provide useful critical values for the multivariate block-bootstrap.
In addition, there follows an extensive simulation study with the mentioned bootstrap methods
to compare them concerning the empirical size and power.

In the third part we again suppose the a-posteriori procedure for multivariate series but with
an epidemic mean change, which possibly occurs in the components, i.e. at some point in time
the mean of a component changes to a higher or lower level, and later returns back again. There
is some literature about epidemic changes even for multivariate time series. However, the pro-
cedures only allow the changes to occur in each component at the same time point. In our
approach the epidemic mean changes need not occur at the same time point in each component,
but there is a functional relationship between the changes in the different components. To locate
these changes we use the standard multivariate statistic and a projection statistic, for which the
multivariate data have to be projected first. An application of this change-point procedure is
locating sources of gas emissions. Somewhere under the ground is a gas source emitting gas
which is carried jointly with the wind and thus a gas plume arises. Then data are collected from
inside and outside of the gas plume along a flight path of a plane. The gas concentration inside is
higher than outside of the plume. So the observed data can be transformed into a multivariate
time series, in which the change-points are the points where the gas concentration jumps to
a higher level and decreases back when the plane flies out of the plume. The performance of
our procedure is discussed in a simulation study, and we apply our method to a real data example.

In the Appendix the assumptions and propositions under the null hypothesis used in the
first part about the sequential procedure are merged as an overview to ease the reading of the
corresponding sections. Moreover, we state some results of probability theory.

10



Part I.

Multivariate Sequential Procedures
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1. Introduction to the Sequential Setting

The procedure of observing data sequentially and stopping as soon as a change has been detected,
is clearly useful when we want to detect changes very quickly after they have occurred. An
example in economics is the fluctuation of prices at the stock market, which should be detected
quickly to conform the strategies for purchase and sale. It can also be helpful in medicine
where data of patients are collected automatically and the doctors have to act very fast after a
rapid change has occurred. But even in engineering it is a useful method for instance to detect
increases in exhaust gas values.

We use the approach of Chu et al. (1996), which uses the assumption of a historical data set
without a change to estimate the unknown parameter in the supposed model. Afterwards we
start monitoring and search for a change of this parameter. To develop the asymptotics under
the null hypothesis of no change as well as under the alternative of an existing change in the
unknown parameter, the length of the historical data set grows to infinity. We treat both the
closed-end and the open-end procedure. The first method has a finite time horizon in which the
change is searched and the second one has no time limit to monitor the new incoming data.

The asymptotic distribution under the null hypothesis is used to control the asymptotic type-
I-error, where the test stops and falsely detects a change. Under the alternative that there is a
change in the time series, the procedure should have asymptotic power one, i.e. the change is
asymptotically always detected.

The first statistic that was analysed in the sequential setup was the CUSUM statistic that
uses all observations after the historical data set for the summation. It has first been proposed
in a linear model in Horváth et al. (2004) with i.i.d. errors, then in Aue et al. (2006b) with
uncorrelated errors. In Schmitz and Steinebach (2010) the errors have other dependency struc-
tures like being strongly mixing or autoregressive. The CUSUM has already been considered
even in further data structures as in non-linear time series in Ciuperca (2013) and Kirch and
Kamgaing (2011) as well as in Kirch and Kamgaing (2015) in the same general setup, as we
will do in the next chapters. This means that the existing literature about several models and
dependency structures about the sequential CUSUM statistic is included in the setup, and these
authors extended it to many new examples.

However, the main disadvantage of the CUSUM is a potentially very long time between the
occurrence of the change and its detection by the procedure, the so-called run-length, in partic-
ular for late changes, since the CUSUM sums up all new incoming data. Consequently, a lot of
data after the change are necessary to override the already summed up observations before the
change, until the procedure will stop.

Hence, there arose the idea of statistics that do not use all data after the historical data set.
These are the modified MOSUM, Page-CUSUM and the MOSUM statistics which we will use
for testing in this work. They only differ in the number of observations that are included in the
statistic.

We will develop the asymptotics under the null hypothesis and the alternative hypothesis for
these statistics in a very general setup, thereby unifying and extending the existing literature.
The modified MOSUM and the Page-CUSUM procedures have only been considered in the linear
model in Chen and Tian (2010) and Fremdt (2014), respectively, the MOSUM even only in the
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1. Introduction to the Sequential Setting

location model in Horváth et al. (2012) and Aue et al. (2008). Our results include new examples
as diverse as the non-linear, the binary and the Poisson autoregressive model. Only the CUSUM
statistic has already been considered in such a general setup in Kirch and Kamgaing (2015) as
mentioned above. In a simulation study, we finally compare all types of statistics including the
CUSUM statistic in terms of empirical size, power and run length.

In Chapter 2 we will specify the sequential testing in the general setup and state some regular-
ity conditions which will be used in Chapter 3 and 4 to develop the asymptotics under the null
and the alternative hypothesis. In Chapter 5 we will apply the procedure to the models already
discussed in the existing literature, and we will give some new examples. The final Chapter
6 presents a detailed simulation study that compares the empirical behaviour of the different
types of statistics.
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2. Sequential Testing Problem based on
Estimating Functions

This chapter explains the general monitoring scheme and introduces the types of sequential
statistics which we analyse concerning their asymptotic behaviour under the null and alternative
hypothesis in the next chapters, as well as in a simulation study in Chapter 6.

Related to this chapter, the well-known CUSUM statistic has been proposed in this general
setup in Kirch and Kamgaing (2015). It will also be introduced in this chapter for the sake of a
comparison of the statistics in the simulation study.

First of all we require a historical data set or a so-called training period in which the time
series has no change in the unknown parameter. This assumption is often called the ”noncon-
tamination” assumption. Based on this initial observations, we estimate the unknown parameter
θ0 using an estimating function. Then we start monitoring and check after each new incoming
observation using a monitoring function whether the model with the estimated parameter de-
scribes the data still well enough. The observations Xt, t = 1, 2, . . . can be multivariate and
dependent. The choice of the null hypothesis H0 of no change against the alternative hypoth-
esis H1 of an existing change depends on the type of change for which is searching for, e.g. a
mean change or a variance change or a change in the linear regression parameter with random
regressors etc.

The unknown parameter θ0 has to be estimated based on the historical data set such that the
estimator fulfills the equation

m∑
t=1

G(Xt, θ̂m)
!

= 0, (2.1)

where Xt, t = 1, ...,m, is the training period and G is the estimating function and has values in
Rd.

In the classical non-sequential procedure the length of the data set grows to infinity. But this
does not work in the sequential case because we do not know the whole data set for an analysis.
Therefore the length m of the historical data set converges to infinity, which means that the

estimated parameter θ̂m becomes more and more precise, i.e. θ̂m
P−→ θ0, where θ0 is the true

parameter. In the correctly specified case, i.e. if the correct model is used, the true parameter
is the unique solution of E(G(Xt, θ0)) = 0, t = 1, ...,m. However we do not need the correct
model. In the misspecified case θ0 also fulfills the mentioned equation and can be interpreted as
the best approximating parameter.

For example in the mean change model if we use the least-square-estimator, the function G
is given by G(Xt, θ) = Xt − θ. In the linear regression model, if we want to search a change
in the unknown parameter θ, the least squares estimator is received by using the function
G(Xt, θ) = xt(Xt − θTxt), where xt are the regressors.

To control the new incoming data we use detectors based on a monitoring function H which
also has values in Rd, however not necessarily with the same dimension as the estimating function
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2. Sequential Testing Problem based on Estimating Functions

G but with dimension d̃ ≤ d. The following sums lead to the statistics:

CUSUM: S1(m, k) =
m+k∑
t=m+1

H(Xt, θ̂m);

modified MOSUM: S2(m, k, h) =
m+k∑

t=m+bkhc+1

H(Xt, θ̂m), h ∈ (0, 1);

MOSUM: S3(m, k, h) =

m+k∑
t=m+k−h+1

H(Xt, θ̂m),

where h is the so-called window size with 0 ≤ h ≤ m,h ∈ N

and h = h(m)
m→∞−→ ∞;

Page-CUSUM: S4(m, k, i) =

m+k∑
t=m+i+1

H(Xt, θ̂m),

where Sj , j = 1, 2, 3, 4, can be multivariate and θ̂m is the estimator satisfying equation (2.1).
By using the monitoring function, we test the null hypothesis of no change against the alter-

native hypothesis of a change at a time point k∗ later than m.
Already discussed in Kirch and Kamgaing (2015), the underlying idea is, that E(H(Xt, θ̂m)) ≈

E(H(Xt, θ0)) = 0 if there is no change in θ0 and E(H(Xt, θ̂m)) ≈ E(H(Xt, θ0)) 6= 0 for t > k∗,
where k∗ is the change-point. So a small value of Sj , j = 1, 2, 3, 4 gives evidence to the null
hypothesis and a value away from zero to the alternative.

Throughout this chapter ‖ · ‖A denotes the vector norm defined by

‖Y ‖2A = Y TAY , for any vector Y and for any positive definite matrix A.

Since Sj , j = 1, 2, 3, 4, may be multivariate, our monitoring schemes are in quadratic form, which
read

‖Sj(m, k)‖2A for j = 1,

‖Sj(m, k, h)‖2A for j = 2, 3,

max
1≤i≤k

‖Sj(m, k, i)‖2A for j = 4.

The positive definite matrix A can be replaced by a consistent estimator.
Note that the difference between the statistics is the upper and lower bound of the sums. The

CUSUM starts directly after the historical data set to add the monitoring function depending
on the observations and the estimated parameter θ̂m.

The modified MOSUM and Page-CUSUM start later, except for the case that the time point
k is close to m or the parameter h of the modified MOSUM is near by zero. The explanation
is, the sum S2 includes a bandwidth parameter h which influences the lower bound of the sum
and consequently the amount of added observations. If h is near to one, there are only few
observations in the sum and otherwise, if h is near to zero, we add almost all up to actually
the full set of observations after the training period, but it always depends on k. In the last
mentioned case the value of the modified MOSUM would be equal to the one received by the
CUSUM. Since the lower bound of the sum depends on k and h is a fixed value, the difference
between the lower and upper bound of the sum getting greater with k is growing. So the amount
of added observations is increasing.
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By usage of the Page-CUSUM the lower bound of the sum is attained by maximizing over all
possible points in time from m+1 to k. So according to the modified MOSUM, the lower bound
of the sum in case of the Page-CUSUM depends on k as well.

The MOSUM uses a monitoring window of fixed length h. Thus the bounds of the sum are
independent of k, and if we start monitoring and consequently k is small, the monitoring window
extends into the training period.

The null hypothesis of no change will be rejected at the first point in time, denoted by k, for
which holds

• for j = 1: w2(m, k)‖S1(m, k)‖2A ≥ c,

• for j = 2: w2(m, k)‖S2(m, k, h)‖2A ≥ c,

• for j = 3: w2
M (h, k)‖S3(m, k, h)‖2A ≥ c,

• for j = 4: w2(m, k) max
1≤i≤k

‖S4(m, k, i)‖2A ≥ c.

Here, c is the critical value which can be obtained by the limit distribution under the null hypoth-
esis. The functions w(m, k) respectively wM (m,h) are suitable so-called boundary functions or
weight functions. The left-hand sides of the conditions above are the test statistics. Otherwise,
if these conditions are not yet fulfilled, we continue monitoring and check the condition after the
next new incoming observation again. The procedure stops at the first point in time at which
the null hypothesis is rejected. So the stopping time of the sequential procedure is defined as

• for j = 1:

τm =

{
min{k : 1 ≤ k < N(m), w2(m, k)‖S1(m, k, h)‖2A ≥ c}
∞, w2(m, k)S1(m, k)TAS1(m, k) < c ∀ k ∈ [1, N(m))

,

• for j = 2:

τm =

{
min{k : 1 ≤ k < N(m), w2(m, k)‖S2(m, k, h)‖2A ≥ c}
∞, w2(m, k)‖S2(m, k, h)‖2A < c ∀ k ∈ [1, N(m))

,

• for j = 3:

τm =

{
min{k : 1 ≤ k < N(m), w2

M (h, k)‖S3(m, k, h)‖2A ≥ c}
∞, w2

M (h, k)‖S2(m, k, h)‖2A < c ∀ k ∈ [1, N(m))
,

• for j = 4:

τm =

min{k : 1 ≤ k < N(m), w2(m, k) max
1≤i≤k

‖S4(m, k, i)‖2A ≥ c}

∞, w2(m, k) max
1≤i≤k

‖S4(m, k, i)‖2A < c ∀ k ∈ [1, N(m)).

Since we distinguish between the open-end and closed-end procedure, the observation horizon is
N(m) = Nm+ 1, N > 0 in the closed-end and N(m) =∞ in the open-end case.

More precisely, the critical value c = c(α) has to be chosen to have

lim
m→∞

PH0(τm <∞) = α
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2. Sequential Testing Problem based on Estimating Functions

under the null hypothesis and
lim
m→∞

PH1(τm <∞) = 1

under the alternative hypothesis. The first equation controls the asymptotic type-I-error and
the second one ensures asymptotic power one or the procedure is consistent which means that
the change is asymptotically detected with probability one.
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3. Asymptotics under the Null Hypothesis

In the previous chapter we introduced an asymptotic level-α-test, so we need critical values such
that the probability of a false rejection of the null hypothesis converges to α. Thus the critical
values are the appropriate quantiles of the limit distribution depending on the level.

Hence in this chapter we develop the limit distributions under the null hypothesis for the
modified MOSUM, the Page-CUSUM and the MOSUM statistic.

The required assumptions are the same as needed for the CUSUM statistic analysed in Kirch
and Kamgaing (2015). Depending on the statistic some weaker assumptions are sufficient but
to unify them for all statistics under the null hypothesis, we propose the same assumptions as
in Kirch and Kamgaing (2015).

First, we need some regularity conditions for the boundary function specified in Assumption
3.1. With Assumption 3.1a) we could to start monitoring after am observations, where am has
to be relatively small compared to the length of the historical data set m. So we will see in this
chapter that it is allowed to start monitoring later. This can be useful in some situations, a
detailed explanation follows in the simulation study in Chapter 6.

Furthermore, by Assumption 3.1 we control the behaviour of the boundary function at zero
and infinity to ensure that the limit distributions are well-defined. For the closed-end procedure
it is adequate to control the behaviour at zero as in part a) of this assumption and for the open-
end case we additionally require the behaviour at infinity of the boundary function, as satisfied
in part b).

Assumption 3.1

a) The weight function has the form

w(m, k) = m−
1
2 w̃(m, k)

with

w̃(m, k) =

{
ρ
(
k
m

)
, k ≥ am

0, k < am

and am
m → 0 as m→∞. In addition, we assume that ρ is continuous and that

lim
t→0

tγρ(t) <∞ for some 0 ≤ γ < 1

2
.

b) For the open-end procedure we additionally assume

lim
t→∞

tρ(t) <∞.
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3. Asymptotics under the Null Hypothesis

Assumption 3.2 indicates that the monitoring function H, inserted with the estimated parameter
based on the training period, can be replaced asymptotically by the monitoring function, inserted
with the true parameter, adjusted by its fluctuation in the historical data set. The matrix B(·)
guarantees that the monitoring function H and the term B(·)G, including the estimating func-
tion of possibly higher dimension than H, have the same dimension.

Assumption 3.2

The following approximation holds under H0, where N(m) is the observation horizon and can
be infinite:

sup
1≤k<N(m)

1√
m

min

(
1

m−γkγ
,
m

k

)∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)

−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1),

for some θ0 and γ as in Assumption 3.1a).

The following assumption includes the required behaviour of the corresponding partial sum
process. More precisely, it has to fulfill a multivariate functional central limit theorem as stated
in Assumption 3.3a). Since the replacement mentioned above is allowed due to Assumption 3.2,
we need the Hájék-Rényi-type inequalities as denoted in b) and c), to control the behaviour of
the cumulative sum of the monitoring function, started after the training period, at zero and
infinity. Similar to the behaviour of the weight function, we merely need Assumption 3.3b) for
the closed-end procedure because we merely have to control the behaviour at zero. If there
is a infinite time horizon, the behaviour at infinity is also relevant, thus we additionally need
Assumption 3.3c).

Assumption 3.3

a) The partial sum process 1√
m

bmsc∑
t=1

(H(Xt, θ0),B(θ0)G(Xt, θ0)) : 1 ≤ s ≤ T


fulfills a functional limit theorem for any T > 0: 1√

m

bmsc∑
t=1

(H(Xt, θ0),B(θ0)G(Xt, θ0)) : 1 ≤ s ≤ T


D−→ {(W 1(s),W 2(s)) : 1 ≤ s ≤ T} ,

where (W 1(s),W 2(s)) is a multivariate Wiener process with covariance matrix Σ =
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3.1. Null Asymptotics of the Modified MOSUM

(
Σ1 C

CT Σ2

)
.

b) The following Hájék-Rényi-type inequality holds for all 0 < α < 1
2 :

max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1) (m→∞).

c) For the open-end procedure the following Hájék-Rényi-type inequality holds for any se-
quence km > 0

max
k≥km

√
km
k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1) (m→∞).

3.1. Null Asymptotics of the Modified MOSUM

We start with the modified MOSUM statistic, introduced in Chen and Tian (2010), to develop
the limit distribution under the null hypothesis.

In Proposition 3.1 we show that Assumption 3.2 implies a corresponding statement for the
modified MOSUM. Further, by Propositions 3.2 and 3.4, the Hájék-Rényi-type inequalities, as
stated in Assumption 3.3b) and c) for the CUSUM, also holds for the modified MOSUM. These
propositions are relevant for the development of the limit distribution as an auxiliary tool to
show the asymptotic neglibility of the observations before a time point τm with τ → 0 and
after a time point Tm, T → ∞, both converge uniformly in m. The equivalent statements for
the limiting processes are given in Propositions 3.3 and 3.5 to ease the proof so that only the
limiting process of a finite time horizon is relevant.

By the definition of the weight function in Assumption 3.1 it is allowed to start monitoring
after am observations with am

m → 0, m → ∞ and by Theorem 3.1 the limit distribution under
the null hypothesis still remains the same. Heuristically, it is useful to start monitoring after
am observations in view of the effect that the procedure gives an alarm and stops before the
changes occurs. This means that in the beginning of the monitoring time and especially if the
value of h is near to 1, the statistic consists of a few observations only. So, depending on certain
parameter constellations, the boundary function jumps randomly over the value of the statistic
and leads to a false alarm under the null hypothesis. The effect of too early detection will be
discussed in detail by the simulation study in Chapter 6

Proposition 3.1

Under the null hypothesis let Assumptions 3.1 and 3.2 hold. Then we obtain:

sup
1≤k<N(m)

w(m, k)

∥∥∥∥∥∥
m+k∑

i=m+bkhc+1

H(Xi, θ̂m)
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3. Asymptotics under the Null Hypothesis

−

 m+k∑
j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1).

Proof. By Assumption 3.1 and 3.2 we have

sup
1≤k<N(m)

w(m, k)

∥∥∥∥∥∥
m+k∑

i=m+bkhc+1

H(Xi, θ̂m)

−

 m+k∑
j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= sup

1≤k<N(m)
w(m, k)

∥∥∥∥∥∥
 m+k∑
i=m+1

H(Xi, θ̂m)−
m+bkhc∑
i=m+1

H(Xi, θ̂m)


−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)−

m+bkhc∑
j=m+1

H(Xj , θ0)− bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
≤ sup

1≤k<N(m)
w(m, k)

∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)
w(m, k)

∥∥∥∥∥∥
m+bkhc∑
i=m+1

H(Xi, θ̂m)−

m+bkhc∑
j=m+1

H(Xj , θ0)− bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
≤ sup

1≤k<N(m)

1√
m
ρ

(
k

m

)∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)

1√
m
ρ

(
k

m

)∥∥∥∥∥∥
m+bkhc∑
i=m+1

H(Xi, θ̂m)−

m+bkhc∑
j=m+1

H(Xj , θ0)− bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= sup

1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
∥∥∥∥∥∥
m+bkhc∑
i=m+1

H(Xi, θ̂m)−

m+bkhc∑
j=m+1

H(Xj , θ0)− bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
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3.1. Null Asymptotics of the Modified MOSUM

≤ sup
1≤k<N(m)

max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
(

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+bkhc∑
i=m+1

H(Xi, θ̂m)−

m+bkhc∑
j=m+1

H(Xj , θ0)− bkhc
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥


≤ sup
1≤k<N(m)

max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
(

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)

max
1≤i≤k

∥∥∥∥∥∥
m+i∑
i=m+1

H(Xi, θ̂m)−

 m+i∑
j=m+1

H(Xj , θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥


= sup
1≤k<N(m)

max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
(

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)
max
0≤i≤k

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥

m+i∑
i=m+1

H(Xi, θ̂m)−

 m+i∑
j=m+1

H(Xj , θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥


≤ 2 sup
1≤k<N(m)

max
0≤i≤k

1√
m

min

((
k

m

)−γ
,
m

k

)
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3. Asymptotics under the Null Hypothesis∥∥∥∥∥∥
m+i∑
i=m+1

H(Xi, θ̂m)−

 m+i∑
j=m+1

H(Xj , θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= 2 sup

1≤k<N(m)
max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= oP (1).

Proposition 3.2

If Assumption 3.3b) holds, then the following Hájék-Rényi-type inequality is valid for all
0 < α < 1

2 :

max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥∥
m+k∑

t=m+bkhc+1

H(Xt, θ0)

∥∥∥∥∥∥ = OP (1).

Proof. From Assumption 3.3b) we conclude

max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥ ≤ max
1≤k≤m

1

m
1
2
−αbkhcα

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
≤ max

1≤bkhc≤m

1

m
1
2
−αbkhcα

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥ = max
1≤l≤m

1

m
1
2
−αlα

∥∥∥∥∥
m+l∑

t=m+1

H(Xt, θ0)

∥∥∥∥∥
= OP (1).

Furthermore, by Assumption 3.3b) and the following inequality the assertion follows:

max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥∥
m+k∑

t=m+bkhc+1

H(Xt, θ0)

∥∥∥∥∥∥
≤ max

1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥+ max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
= OP (1)
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3.1. Null Asymptotics of the Modified MOSUM

Proposition 3.3

If {W 1(t) : t ≥ 0} is a Wiener process with covariance matrix Σ1 then

sup
0<t≤τ

1

tα
‖W 1(1 + t)−W 1(1 + th)‖ = oP (1), τ → 0,

where 0 < α < 1
2 .

Proof. Since√
2t log log 1

t

tα
= o(1), t→ 0 and

√
2th log log 1

th

(th)α
= o(1), t→ 0.

The law of iterated logarithm yields

sup
0<t≤τ

1

tα
‖W 1(1 + t)−W 1(1)−W 1(1 + th) +W 1(1)‖

≤ sup
0<t≤τ

1

tα
‖W 1(1 + t)−W 1(1)‖+ sup

0<t≤τ

1

tα
‖W 1(1 + th)−W 1(1)‖

D
= sup

0<t≤τ

1

tα
‖W 1(t)‖+ sup

0<t≤τ

1

tα
‖W 1(th)‖

≤ sup
0<t≤τ

√
2t log log 1

t

tα
‖W 1(t)‖√
2t log log 1

t

+ sup
0<t≤τ

√
2th log log 1

th

tα
‖W 1(th)‖√
2th log log 1

th

≤ sup
0<t≤τ

√
2t log log 1

t

tα
sup

0<t≤τ

‖W 1(t)‖√
2t log log 1

t

+ sup
0<t≤τ

√
2th log log 1

th

(th)α
sup

0<t≤τ

‖W 1(th)‖√
2th log log 1

th

= oP (1), τ → 0.

Proposition 3.4

Let Assumption 3.3c) hold, then a Hájék-Rényi-type inequality for the open-end procedure is
fulfilled for any sequence km > 0:

max
k≥km

√
km
k

∥∥∥∥∥∥
m+k∑

t=m+bkhc+1

H(Xt, θ0)

∥∥∥∥∥∥ = OP (1).

Proof. By Assumption 3.3c) we obtain

max
k≥km

√
km
k

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥ ≤ max
k≥km

h
√
km

bkhc

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
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≤ max
kh≥bkmhc

h
√
km

bkhc

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥ = max
kh≥bkmhc

√
h
kmh

bkmhc

√
bkmhc
bkhc

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
= max
bkhc≥bkmhc

√
h
kmh

bkmhc

√
bkmhc
bkhc

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
= max

`≥bkmhc

√
h
kmh

bkmhc

√
bkmhc
`

∥∥∥∥∥
m+∑̀
t=m+1

H(Xt, θ0)

∥∥∥∥∥
= OP (1).

Then we conclude

max
k≥km

√
km
k

∥∥∥∥∥∥
m+k∑

t=m+bkhc+1

H(Xt, θ0)

∥∥∥∥∥∥
≤ max

k≥km

√
km
k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥+ max
k≥km

√
km
k

∥∥∥∥∥∥
m+bkhc∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
= OP (1).

Proposition 3.5

If {W 1(t) : t ≥ 0} is a Wiener process with covariance matrix Σ1 then

max
t≥T

1

t
‖W 1(1 + t)−W 1(1 + th)‖ = oP (1), T →∞.

Proof. Notice that

max
t≥T

√
2t log log t

t
= o(1), T →∞

and

max
t≥T

√
2th log log(th)

t
≤ max

t≥T

√
2th log log th

th
= o(1), T →∞.

By the law of the iterated logarithm we have

max
t≥T

1

t
‖W 1(1 + t)−W 1(1 + th)‖

= max
t≥T

1

t
‖W 1(1 + t)−W 1(1)−W 1(1 + th) +W 1(1)‖

≤ max
t≥T

1

t
‖W 1(1 + t)−W 1(1)‖+ max

t≥T

1

t
‖W 1(1 + th)−W 1(1)‖

D
= max

t≥T

1

t
‖W 1(t)‖+ max

t≥T

1

t
‖W 1(th)‖
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≤ max
t≥T

√
2t log log t

t
max
t≥T

‖W 1(t)‖√
2t log log t

+ max
t≥T

√
2th log log th

t
max
t≥T

‖W 1(th)‖√
2th log log(th)

= oP (1), T →∞.

Now we are able to develop the asymptotics for the modified MOSUM under the null hypothesis
for the closed-end as well as the open-end procedure.

Theorem 3.1

Let Assumption 3.2 and the null hypothesis hold.

a) Closed-end procedure:
Suppose Assumptions 3.1a) and 3.3a) hold, and that the function ρ figuring in Assumption
3.1a) is bounded. Then for any symmetric positive semi-definite matrix A, we have

sup
1≤k≤Nm

w2(m, k) ‖S2(m, k, h)‖2A
D−→ sup

0<t≤N
ρ2(t) ‖W 1(t)−W 1(th)− t(1− h)W 2(1)‖2A ,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are independent Wiener processes with
covariance matrices Σ1 and Σ2 as in Assumption 3.3a).

The assertion is also true for a more general weight function as stated in Assumption 3.1a)
if additionally Assumption 3.3b) holds.

b) Open-end procedure:
If Assumptions 3.1a)-b) and 3.3a)-c) hold, then

sup
1≤k<∞

w2(m, k) ‖S2(m, k, h)‖2A
D−→ sup

t>0
ρ2(t) ‖W 1(t)−W 1(th)− t(1− h)W 2(1)‖2A ,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} retain their meanings from a).

The assertions remain true if we replace the matrix A by a consistent estimator.

Proof. Proposition 3.1 gives

sup
1≤k<N(m)

w2(m, k) ‖S2(m, k, h)‖2A

= sup
1≤k<N(m)

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

+ oP (1).

a) (i) If ρ is bounded:
By the functional limit theorem in Assumption 3.3a) we have for any N > 0

sup
1≤k≤Nm

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A
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= sup
1≤k≤Nm

sup
k
m
≤t< k+1

m

ρ2(t)

∥∥∥∥∥∥ 1√
m

m+bmtc∑
j=m+bbmtchc+1

H(Xj , θ0)

−bmtc − bbmtchc
m

1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

D−→ sup
0<t≤N

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)− (t− th)W 2(1)‖2A . (3.1)

Furthermore,

sup
0<t≤N

ρ2(t) ‖W 1(1 + t)−W 1(1)−W 1(1 + th) +W 1(1)− (t− th)W 2(1)‖2A

D
= sup

0<t≤N
ρ2(t)

∥∥∥W̃ 1(t)− W̃ 1(th)− (t− th)W 2(1)
∥∥∥2

A
, (3.2)

where {W̃ 1(t) = W 1(1 + t) −W 1(1) : t ≥ 0} has the covariance matrix Σ1 and is
independent of {W 2(1)}. So far we have

sup
1≤k≤Nm

w2(m, k) ‖S2(m, k, h)‖2A

= sup
1≤k≤Nm

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

+ oP (1),

and

sup
1≤k≤Nm

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

D−→ sup
0<t≤N

ρ2(t)
∥∥∥W̃ 1(t)− W̃ 1(th)− (t− th)W 2(1)

∥∥∥2

A
,

and the assertion follows.

(ii) For a more general weight function ρ:
On the limited time intervall [τm,Nm] of the observations the function ρ is also
bounded so we can show analogously to (3.1) for any τ > 0

sup
τm≤k≤Nm

w2(m, k) ‖S2(m, k, h)‖2A

D−→ sup
τ≤t≤N

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)− (t− th)W 2(1)‖2A . (3.3)

Now we look at the asymptotical behaviour of the first τm observations.
By Assumption 3.1a) and Proposition 3.2 we obtain for a constant C > 0 and
γ < α < 1

2

sup
1≤k<τm

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A
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≤ sup
1≤k<τm

1

m
w̃2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1≤k<τm

(k − bkhc)2

m3
w̃2(m, k)

∥∥∥∥∥∥B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
1
m
≤t<τ

1

m
ρ(t)

∥∥∥∥∥∥
m+bmtc∑

j=m+bmthc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1
m
≤t<τ

(t− bthc)2

m
ρ(t)

∥∥∥∥∥∥B(θ0)
m∑
j=1

G(Bj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
1
m
≤t<τ

t2αρ(t)
1

mt2α

∥∥∥∥∥∥
m+bmtc∑

j=m+bmthc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1
m
≤t<τ

t2αρ(t)
t2

mt2α

∥∥∥∥∥∥B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
1
m
≤t<τ

t2αρ(t)

 sup
1
m
≤t<τ

1

mt2α

∥∥∥∥∥∥
m+bmtc∑

j=m+bmthc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1
m
≤t<τ

t2

mt2α

∥∥∥∥∥∥B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A


≤ sup

0<t<τ
t2αρ2(t)

 sup
1
m
≤t<τ

1

mt2α

∥∥∥∥∥∥
m+bmtc∑

j=m+bmthc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+τ2−2α

∥∥∥∥∥∥ 1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A


= oP (1), τ → 0 uniformly in m. (3.4)

By Proposition 3.3 and Assumption 3.1a) we obtain an analogous assertion for the
limiting Wiener process:

sup
0<t<τ

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)− (t− th)W 2(1)‖2A

≤ sup
0<t<τ

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)‖2A + sup
0<t<τ

ρ2(t)(t− th)2 ‖W 2(1)‖2A

= sup
0<t<τ

t2αρ2(t)
1

t2α
‖W 1(1 + t)−W 1(1 + th)‖2A + sup

0<t<τ
t2αρ2(t)

(t− th)2

t2α
‖W 2(1)‖2A

≤ sup
0<t<τ

t2αρ2(t)

(
sup

0<t<τ

1

t2α
‖W 1(1 + t)−W 1(1 + th)‖2A + sup

0<t<τ

(t− th)2

t2α
‖W 2(1)‖2A

)
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≤ sup
0<t<τ

t2αρ2(t)

(
sup

0<t<τ

1

t2α
‖W 1(1 + t)−W 1(1 + th)‖2A + τ2−2α ‖W 2(1)‖2A

)
= oP (1), τ → 0 uniformly in m. (3.5)

Carefully putting together (3.3), (3.4), (3.5) and (3.2), the assertion follows. The way
of putting together the equations will be explained in the proof of part b).

b) We get by Assumptions 3.1b) and Proposition 3.4

sup
k≥Tm

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
k≥Tm

(
k

m

)2

ρ2

(
k

m

)
sup
k≥Tm

1

m
(
k
m

)2
∥∥∥∥∥∥

m+k∑
j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
t≥T

t2ρ2(t)
1

T
sup
t≥T

T

mt2

∥∥∥∥∥∥
m+bmtc∑

j=m+bmthc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= oP (1), T →∞ uniformly in m. (3.6)

An analogous assertion holds for the limiting Wiener process by Assumption 3.1b) and
Proposition 3.5, since

sup
t≥T

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)‖2A

≤ sup
t≥T

t2ρ2(t) sup
t≥T

1

t2
‖W 1(1 + t)−W 1(1 + th)‖2A

= oP (1), T →∞. (3.7)

Now we use again Assumptions 3.3a) and 3.1b) and we obtain for m→∞ and T fixed

sup
k≥τm

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+bmin((k,mT )h)c+1

H(Xj , θ0)− w(m, k)
k − bkhc

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

D−→ sup
t≥τ
‖ρ(min(t, T ))(W 1(1 + min(t, T ))−W 1(1 + min(t, T )h))− t(1− h)ρ(t)W 2(1)‖2A .

(3.8)

Invoking (3.6), the first term in (3.8), reads

sup
k≥τm

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,Tm)∑
j=m+bmin(k,Tm)hc+1

H(Xj , θ0)− w(m, k)
k − bkhc

m
B(θ0)

m∑
j=1

G(Xj , θ0)

−

w(m, k)

m+k∑
j=m+bkhc+1

H(Xj , θ0)− w(m, k)
k − bkhc

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A
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= sup
k≥τm

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,Tm)∑
j=m+bmin(k,Tm)hc+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
τm≤k<Tm

∥∥∥∥∥∥w(m, k)
m+k∑

j=m+bkhc+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm

∥∥∥∥∥∥w(m,mT )
m+Tm∑

j=m+bTmhc+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
k≥Tm

∥∥∥∥∥∥w(m,mT )
m+Tm∑

j=m+bmThc+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤

∥∥∥∥∥∥w(m,mT )

m+Tm∑
j=m+bmThc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm

∥∥∥∥∥∥w(m, k)

m+k∑
j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ 2 sup
k≥Tm

∥∥∥∥∥∥w(m, k)
m+k∑

j=m+bkhc+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= oP (1), T →∞ uniformly in m.

Analogously we proceed with the limiting process in equation (3.8) and obtain by equation
(3.7):

sup
t≥τ
‖ρ(min(t, T ))(W 1(1 + min(t, T ))−W 1(1 + min(t, T )h))− t(1− h)ρ(t)W 2(1)

− (ρ(t)(W 1(1 + t)−W 1(1 + th))− t(1− h)ρ(t)W 2(1))‖2A
= sup

t≥τ
‖ρ(min(t, T ))(W 1(1 + min(t, T ))−W 1(1 + min(t, T )h))

−ρ(t)(W 1(1 + t)−W 1(1 + th))‖2A
≤ sup

τ≤t<T
‖ρ(t)(W 1(1 + t)−W 1(1 + th))− ρ(t)(W 1(1 + t)−W 1(1 + th))‖2A

+ sup
t≥T
‖ρ(T )(W 1(1 + T )−W 1(1 + Th))− ρ(t)(W 1(1 + t)−W 1(1 + th))‖2A

= sup
t≥T
‖ρ(T )(W 1(1 + T )−W 1(1 + Th))− ρ(t)(W 1(1 + t)−W 1(1 + th))‖2A

≤ ‖ρ(T )(W 1(1 + T )−W 1(1 + Th))‖2A + sup
t≥T
‖ρ(t)(W 1(1 + t)−W 1(1 + th))‖2A

≤ 2 sup
t≥T
‖ρ(t)(W 1(1 + t)−W 1(1 + th))‖2A

= oP (1), T →∞.

We define

X̃(m,T, k) :=

∥∥∥∥∥∥w(m,min(k, Tm))

m+min(k,Tm)∑
j=m+bmin(k,Tm)hc+1

H(Xj , θ0)
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−w(m, k)
k − bkhc

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

,

X(m, k) := w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

,

Ỹ (t, T ) := ‖ρ(min(t, T ))(W 1(1 + min(t, T ))−W 1(1 + min(t, T )h))− t(1− h)ρ(t)W 2(1)‖2A

and

Y (t) := ρ2(t) ‖(W 1(1 + t)−W 1(1 + th))− t(1− h)W 2(1)‖2A .

Our results so far using these definitions are

sup
k≥τm

∣∣∣X̃(m,T, k)−X(m, k)
∣∣∣ = oP (1), T →∞ uniformly in m, (3.9)

and

sup
t≥τ

∣∣∣Ỹ (t, T )− Y (t)
∣∣∣ = oP (1), T →∞ (3.10)

and with (3.8) for m→∞ and T fixed

sup
k≥τm

X̃(m,T.k)
D−→ sup

t≥τ
Ỹ (t). (3.11)

In the proof of part a)ii) we also have shown

sup
1≤k≤τm

X(m, k) = oP (1) as τ → 0 uniformly in m (3.12)

and

sup
0<t≤τ

Y (t) = oP (1) as τ → 0. (3.13)

The following lines show the way how we obtain the assertion by the results so far. They
come from Christina Stöhr (University of Magdeburg, Institute of Mathematical Stochas-
tics).

Let ε > 0 be arbitrary but fixed.

By (3.9) and (3.10) we obtain for fixed τ, δ > 0 that there are integers T1 = T1(ε.δ, τ) and
T2 = T2(ε.δ, τ) such that

P

(
sup
k>τm

∣∣∣X̃(m,T, k)−X(m, k)
∣∣∣ > δ

)
< ε ∀ T ≥ T1, m ∈ N, (3.14)

P

(
sup
t>τ

∣∣∣Ỹ (t, T )− Y (t)
∣∣∣ > δ

)
< ε ∀ T ≥ T2, m ∈ N. (3.15)
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By (3.11) and the continuity of supt>τ Ỹ (t, T ) for all T ∈ N, τ > 0, we find for a fixed
integer T and τ ≥ 0 an integer M0 = M0(T, ε, τ) with

sup
z∈R

∣∣∣∣P ( sup
k>τm

X̃(m,T, k) ≤ z
)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z
)∣∣∣∣ < ε ∀ m ≥M0.

The inequalities (3.14) and (3.15) hold true for all m if we choose T ≥ max(T1, T2). Given
the continuity of supt>τ Ỹ (t, T ) for all T ∈ N, τ > 0, there exists a δ0 > 0 such that

sup
z∈R

∣∣∣∣P (sup
t>τ

Ỹ (t, T ) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣ < ε ∀ δ ≤ δ0.

For a fixed δ ≤ δ0 and T as above, there is an integer M0 such that∣∣∣∣P ( sup
k>τm

X̃(m,T, k) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

≤
∣∣∣∣P ( sup

k>τm
X̃(m,T, k) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)∣∣∣∣
+

∣∣∣∣P ( sup
k>τm

Y (t, T ) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

≤ 2ε ∀m ≥M0

and ∣∣∣∣P ( sup
k>τm

X̃(m,T, k) ≤ z − δ
)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)∣∣∣∣
≤
∣∣∣∣P ( sup

k>τm
X̃(m,T, k) ≤ z − δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

+

∣∣∣∣P ( sup
k>τm

Ỹ (t, T ) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

≤ 2ε ∀m ≥M0.

Then we get for each fixed m ≥M0∣∣∣∣P ( sup
k>τm

X(m, k) ≤ z
)
− P

(
sup
t>τ

Y (t) ≤ z
)∣∣∣∣ (3.16)

=

∣∣∣∣P ( sup
k>τm

X(m, k) ≤ z,
∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ ≤ δ)
+P

(
sup
k>τm

X(m, k) ≤ z,
∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
−P

(
sup
t>τ

Y (t) ≤ z,
∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ ≤ δ)
−P

(
sup
t>τ

Y (t) ≤ z,
∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

)∣∣∣∣
= max

(
P

(
sup
k>τm

X(m, k) ≤ z,
∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ ≤ δ)
+P

(
sup
k>τm

X(m, k) ≤ z,
∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
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3. Asymptotics under the Null Hypothesis

−P
(

sup
t>τ

Y (t) ≤ z,
∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ ≤ δ)
−P

(
sup
t>τ

Y (t) ≤ z,
∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

)
,

−P
(

sup
k>τm

X(m, k) ≤ z,
∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ ≤ δ)
−P

(
sup
k>τm

X(m, k) ≤ z,
∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
+P

(
sup
t>τ

Y (t) ≤ z,
∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ ≤ δ)
+P

(
sup
t>τ

Y (t) ≤ z,
∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

))
≤ max

(
P

(
sup
k>τm

X̃(m,T, k) ≤ z + δ

)
+ P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
−
(
P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)
− P

(∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

))
,

−
(
P

(
sup
k>τm

X̃(m,T, k) ≤ z − δ
)
− P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

))
+P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)
+ P

(∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

))
≤ max

(
P

(
sup
k>τm

X̃(m,T, k) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)

+P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
+ P

(∣∣∣∣sup
t>τ

Ỹ (t, T ) + sup
t>τ

Y (t)

∣∣∣∣ > δ

)
,

−P
(

sup
k>τm

X̃(m,T, k) ≤ z − δ
)

+ P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)
+P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
+ P

(∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

))
≤ 4ε.

By (3.12) and (3.13) there exist τ1(z, ε), τ2(z, ε) ∈ Q such that

P

(
sup

1≤k≤τm
X(m, k) > z

)
< ε ∀ τ ≤ τ1,m ∈ N,

and

P

(
sup

0<t≤τ
Y (t) > z

)
< ε ∀ τ ≤ τ2,m ∈ N.

Both inequalities hold for each m and each τ ≤ min(τ1, τ2). For this τ inequality (3.16)
holds for an M0 ∈ N. Finally we obtain∣∣∣∣∣P
(

sup
k≥1

X(m, k) ≤ z

)
− P

(
sup
t>0

Y (t) ≤ z
)∣∣∣∣∣
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3.1. Null Asymptotics of the Modified MOSUM

=

∣∣∣∣∣P
(

max

(
sup

1≤k≤τm
X(m, k), sup

k>τm
X(m, k)

)
≤ z

)
− P

(
max

(
sup

0<t≤τ
Y (t), sup

t>τ
Y (t)

)
≤ z
)∣∣∣∣∣

=

∣∣∣∣∣P
(

sup
1≤k≤τm

X(m, k) ≤ z, sup
k>τm

X(m, k) ≤ z

)
− P

(
sup

0<t≤τ
Y (t) ≤ z, sup

t>τ
Y (t) ≤ z

)∣∣∣∣∣
=

∣∣∣∣∣P
(

sup
k>τm

X(m, k) ≤ z
)
− P

(
sup

1≤k≤τm
X(m, k) > z, sup

k>τm
X(m, k) ≤ z

)

−P
(

sup
t>τ

Y (t) ≤ z
)

+ P

(
sup

0<t≤τ
Y (t) > z, sup

t>τ
Y (t) ≤ z

)∣∣∣∣
≤
∣∣∣∣P ( sup

k>τm
X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z
)∣∣∣∣

+ P

(
sup

1≤k≤τm
X(m, k) > z, sup

k>τm
X(m, k) ≤ z

)
+ P

(
sup

0<t≤τ
Y (t) > z, sup

t>τ
Y (t) ≤ z

)
≤
∣∣∣∣P ( sup

k>τm
X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z
)∣∣∣∣

+ P

(
sup

1≤k≤τm
X(m, k) > z

)
+ P

(
sup

0<t≤τ
Y (t) > z

)
≤ 6ε ∀ m ≥M0.

Consequently

sup
k≥1

w2(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

D−→ sup
t>0

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)− t(1− h)W 2(1)‖2A

and

ρ2(t) ‖W 1(1 + t)−W 1(1 + th)− t(1− h)W 2(1)‖2A
D
= ρ2(t)

∥∥∥W̃ 1(t)− W̃ 1(th)− t(1− h)W 2(1)
∥∥∥2

A
,

where {W̃ (·)} is defined as in the proof of part a)(i).

A consistent estimator Â of matrix A satisfies∣∣∣Â−A∣∣∣ = oP (1).

Then it follows∣∣∣∣∣ sup
1≤k≤Nm

w2(m, k) ‖S2(m, k, h)‖2
Â
− sup

1≤k≤Nm
w2(m, k) ‖S2(m, k, h)‖2A

∣∣∣∣∣
=

∣∣∣∣∣ sup
1≤k≤Nm

w2(m, k)

∥∥∥∥Â− 1
2S2(m, k, h)

∥∥∥∥2

− sup
1≤k≤Nm

w2(m, k)
∥∥∥A− 1

2S2(m, k, h)
∥∥∥2
∣∣∣∣∣
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3. Asymptotics under the Null Hypothesis

≤ sup
1≤k≤Nm

w2(m, k)

∥∥∥∥Â− 1
2S2(m, k, h)−A−

1
2S2(m, k, h)

∥∥∥∥2

= sup
1≤k≤Nm

w2(m, k)

∥∥∥∥(Â− 1
2A

1
2 − Id

)
A−

1
2S2(m, k, h)

∥∥∥∥2

≤
∥∥∥∥Â− 1

2A
1
2 − Id

∥∥∥∥2

sup
1≤k≤Nm

w2(m, k)
∥∥∥A− 1

2S2(m, k, h)
∥∥∥2

=

∥∥∥∥Â− 1
2A

1
2 − Id

∥∥∥∥2

sup
1≤k≤Nm

w2(m, k) ‖S2(m, k, h)‖2A = oP (1).

The choice

ρ

(
k

m

)
=

(
1 +

k

m

)−1( k

m+ k

)−γ
(3.17)

of the boundary function is very popular because we can simplify the limit distribution for the
open-end procedure as will be shown in the next theorem.

Theorem 3.2

If Σ1 = Σ2 is the covariance matrix of the independent Wiener processes {W 1(·)} and {W 2(·)},
then for any 0 ≤ γ < 1

2

sup
t>0

∥∥∥∥∥∥(W 1(t)−W 1(th)− t(1− h)W 2(1))

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

D
= sup

0<s<1

∥∥∥∥∥∥W (s)

sγ
− (1− (1− h)s)

W
(

hs
1−(1−h)s

)
sγ

∥∥∥∥∥∥
2

A

,

where {W (t) : 0 < t < 1} is a Wiener process with covariance matrix Σ1.

Proof. By Hušková and Koubková (2005), proof of Theorem 1 and

1 + th

1 + t
=

1 + th

t

t

1 + t
=

(
1

t
+ h

)
t

1 + t
=

1

1 + t
+h

t

1 + t
= 1− t

1 + t
+h

t

1 + t
= 1−(1−h)

t

1 + t
,

we obtain

sup
t>0

∥∥∥∥∥∥(W 1(t)−W 1(th)− t(1− h)W 2(1))

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

= sup
t>0

∥∥∥∥∥∥W 1(t)− tW 2(1)− (W 1(th)− thW 2(1))

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

D
= sup

t>0

∥∥∥∥∥∥
(1 + t)W

(
t

1+t

)
− (1 + th)W

(
th

1+th

)
(1 + t)

(
t

1+t

)γ
∥∥∥∥∥∥

2

A

D
= sup

0<s<1

∥∥∥∥∥∥W (s)

sγ
− (1− (1− h)s)

W
(

hs
1−(1−h)s

)
sγ

∥∥∥∥∥∥
2

A

,

where {W (t) : 0 < t < 1} is a Wiener process with covariance matrix Σ1. The last equality in
distribution holds since the mapping [0,∞) 3 t 7→ t

1+t ∈ [0, 1) is bijective.
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3.2. Null Asymptotics of the Page-CUSUM

In the situation of Theorem 3.2 and if we additionally choose the inverse of the covariance
matrix Σ1 = Σ2 of the Wiener processes {W 1(·)} and {W 2(·)} as matrix A, we receive a
pivotal limit, in the sense that the limit distribution does not depend on unknown parameters.

Corollary 3.1

If Σ1 = Σ2 is the covariance matrix of the independent Wiener processes {W 1(·)} and {W 2(·)}
and A = Σ−1

1 , then for any 0 ≤ γ < 1
2

sup
t>0

∥∥∥∥∥∥(W 1(t)−W 1(th)− t(1− h)W 2(1))

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

Σ1
−1

D
= sup

0<s<1

∥∥∥∥∥∥W (s)

sγ
− (1− (1− h)s)

W
(

hs
1−(1−h)s

)
sγ

∥∥∥∥∥∥
2

,

where {W (t) : 0 < t < 1} is a standard Wiener process and ‖ · ‖ is the l2- norm.

3.2. Null Asymptotics of the Page-CUSUM

The Page-CUSUM statistic is traced back to an idea of Page (1954), who gives its name.

The way to develop the asymptotic distribution under the null hypothesis of the Page-CUSUM
is analogous to the one of the modified MOSUM.

First we give an analogon to Assumption 3.2 for the Page-CUSUM, and in Proposition 3.7 we
prove a Hájék-Rényi-type inequality for the Page-CUSUM following from the one in Assumption
3.3b). Propositions 3.8 and 3.9 guarantee that the limiting process is well-defined. We do
not give a corresponding proposition to Proposition 3.3 for the Page-CUSUM because such a
proposition follows immediately by the assumptions, so we include it directly in the proof of the
main Theorem 3.3 of this section.

As well as by using the modified MOSUM statistic, it is possible to cut the first am observations
with am

m → 0, m → ∞ and still get the same asymptotics under the null hypothesis, by using
the Page-CUSUM statistic.

However to wait for am observations is not necessarily essential. The reason is the Page-
CUSUM maximizes over all possible time points till k, and chooses a very early time point for
the lower bound of the sum of the statistic if k is small. Hence false alarms in the beginning of
the monitoring time will occur less often. This effect is illustrated in Figures 6.3a)-b) and will
be explained in detail in the simulation study.

Proposition 3.6

Under the null hypothesis let Assumptions 3.1 and 3.2 hold. Then

sup
1≤k<N(m)

w(m, k)

∣∣∣∣∣max
0≤i≤k

∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ̂m)

∥∥∥∥∥
− max

0≤i≤k

∥∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ0)− k − i
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
∣∣∣∣∣∣ = oP (1).
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3. Asymptotics under the Null Hypothesis

Proof. By Assumptions 3.1 and 3.2 we have

sup
1≤k<N(m)

w(m, k)

∣∣∣∣∣max
0≤i≤k

∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ̂m)

∥∥∥∥∥
− max

0≤i≤k

∥∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
∣∣∣∣∣∣

= sup
1≤k<N(m)

w(m, k)

∣∣∣∣∣max
0≤i≤k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)−
m+i∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
− max

0≤i≤k

∥∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

−

 m+i∑
t=m+1

H(Xt, θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
∣∣∣∣∣∣

≤ sup
1≤k<N(m)

w(m, k) max
0≤i≤k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)−
m+i∑
t=m+1

H(Xt, θ̂m)

−

 m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)−

 m+i∑
t=m+1

H(Xt, θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
≤ sup

1≤k<N(m)
w(m, k) max

0≤i≤k

∥∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)−

 m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)
w(m, k) max

0≤i≤k

∥∥∥∥∥∥
m+i∑
t=m+1

H(Xt, θ̂m)−

 m+i∑
t=m+1

H(Xt, θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
≤ sup

1≤k<N(m)
max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
(

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)−

 m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
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3.2. Null Asymptotics of the Page-CUSUM

max
1≤i≤k

∥∥∥∥∥∥
m+i∑
t=m+1

H(Xt, θ̂m)−

 m+i∑
t=m+1

H(Xt, θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥


= sup
1≤k<N(m)

max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)
(

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)−

 m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)
max
1≤i≤k

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥

m+i∑
t=m+1

H(Xt, θ̂m)−

 m+i∑
t=m+1

H(Xt, θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥


= 2 sup
1≤k<N(m)

max

((
k

m

)γ
,
k

m

)
ρ

(
k

m

)

sup
1≤k<N(m)

1√
m

min

((
k

m

)−γ
,
m

k

)
∥∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)−

 m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= oP (1).

Proposition 3.7

If Assumptions 3.3b) and c) hold, we have the Hájék-Rényi-type inequality

sup
k≥Tm

√
Tm

k
max
1≤i≤k

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥ = OP (1).

Proof. With Assumptions 3.3b) and c) we conclude

sup
k≥Tm

√
Tm

k
max
1≤i≤k

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
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≤ sup
k≥Tm

√
Tm

k

 max
1≤i≤m

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥+ max
m<i<Tm

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+ max
k≥i≥Tm

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥


≤ sup
k≥Tm

√
Tm

k
max

1≤i≤m

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥+ sup
k≥Tm

√
Tm

k
max

m<i<Tm

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+ sup
k≥Tm

√
Tm

k
max

k≥i≥Tm

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
≤ sup

k≥Tm

√
Tm

k
max

1≤i≤m
m

1
2
−αiα

1

m
1
2
−αiα

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+ sup
k≥Tm

√
Tm

k
max

1≤i≤Tm
(Tm)

1
2
−αiα

1

(Tm)
1
2
−αiα

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+ max
i≥Tm

√
Tm

i

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
≤ sup

k≥Tm

√
Tm

k
max

1≤i≤m
m

1
2
−αiα max

1≤l≤m

1

m
1
2
−αlα

∥∥∥∥∥∥
m+l∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+ sup
k≥Tm

√
Tm

k
max

1≤i≤Tm
(Tm)

1
2
−αiα max

1≤l≤Tm

1

(Tm)
1
2
−αlα

∥∥∥∥∥∥
m+l∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+ max
i≥Tm

√
Tm

i

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
≤
√
Tm

Tm
m

1
2
−αmαOP (1) +

√
Tm

Tm
(Tm)

1
2
−α(Tm)αOP (1) +OP (1)

=
1√
T
OP (1) +OP (1) +OP (1) = OP (1).

Proposition 3.8

For a Wiener process {W 1(·)} with covariance matrix Σ1 and 0 < α < 1
2 , we have

sup
0<t≤τ

1

tα
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖ = oP (1), τ → 0.
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Proof. The law of iterated logarithm (confer Theorem 1.3.1 in Csörgő and Révész (1981)) gives

sup
0<t≤τ

1

tα
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖

= sup
0<t≤τ

1

tα
max
0≤s≤t

‖W 1(1 + t)−W 1(1)−W 1(1 + s) +W 1(1)‖

≤ sup
0<t≤τ

1

tα
max
0≤s≤t

‖W 1(1 + t)−W 1(1)‖+ sup
0<t≤τ

1

tα
max
0≤s≤t

‖W 1(1 + s)−W 1(1)‖

D
= sup

0<t≤τ

1

tα
‖W 1(t)‖+ sup

0<t≤τ

1

tα
max
0≤s≤t

‖W 1(s)‖

≤ sup
0<t≤τ

1

tα
‖W 1(t)‖+ sup

0<t≤τ
max
0≤s≤t

1

sα
‖W 1(s)‖

= 2 sup
0<t≤τ

1

tα
‖W 1(t)‖

= 2 sup
0<t≤τ

√
2t log log 1

t

tα
sup

0<t≤τ

‖W 1(t)‖√
2t log log 1

t

= oP (1), τ → 0,

where 0 < α < 1
2 .

Proposition 3.9

For a Wiener process {W 1(·)} with covariance matrix Σ1, we have

sup
t≥T

1

t
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖ = oP (1), T →∞.

Proof. Applying the law of iterated logarithm (confer Theorem 1.3.1 in Csörgő and Révész
(1981)), we obtain

sup
t≥T

1

t
‖W 1(t)‖ = oP (1), T →∞.

Invoking Theorem 1.3.1∗ in Csörgő and Révész (1981), we have

sup
t≥T

1

t
max
0≤s≤t

‖W 1(s)‖ ≤ sup
t≥T

√
2t log log t

t
sup
t≥T

max
0≤s≤t

‖W 1(s)‖√
2t log log t

= oP (1), T →∞.

Analogously to the proof of Proposition 3.5 in case of the modified MOSUM statistic we obtain

sup
t≥T

1

t
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖

= sup
t≥T

1

t
max
0≤s≤t

‖W 1(1 + t)−W 1(1)−W 1(1 + s) +W 1(1)‖

D
= sup

t≥T

1

t
max
0≤s≤t

‖W 1(t)−W 1(s)‖
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≤ sup
t≥T

1

t
‖W 1(t)‖+ sup

t≥T

1

t
max
0≤s≤t

‖W 1(s)‖

= oP (1), T →∞.

Theorem 3.3

Let Assumption 3.2 and the null hypothesis hold.

a) Closed-end procedure:
If Assumptions 3.1a) and 3.3a) hold and the function ρ figuring in Assumption 3.1a) is
bounded, then for any symmetric positive semi-definite matrix A, we get

sup
1≤k≤Nm

w2(m, k) max
0≤i≤k

‖S4(m, k)‖2A

D−→ sup
0<t≤N

ρ2(t) max
0≤s≤t

‖W 1(t)−W 1(s)− (t− s)W 2(1)‖2A ,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are independent Wiener processes with
covariance matrices Σ1 and Σ2 as in Assumption 3.3a).

The assertion is also true for a more general weight function as denoted in Assumption
3.1a) if additionally Assumption 3.3b) holds.

b) Open-end procedure:
If Assumptions 3.1a)-b) and 3.3a)-c) hold, then

sup
1≤k<∞

w2(m, k) max
0≤i≤k

‖S4(m, k)‖2A

D−→ sup
t>0

ρ2(t) max
0≤s≤t

‖W 1(t)−W 1(s)− (t− s)W 2(1)‖2A ,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are given in a).

The assertions still holds true if we replace the matrix A by a consistent estimator.

Proof. Proposition 3.6 yields

sup
1≤k<N(m)

w2(m, k) max
0≤i≤k

‖S4(m, k)‖2A

= sup
1≤k<N(m)

w2(m, k) max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

+ oP (1).

a) i) If ρ is bounded:
By the functional limit theorem in Assumption 3.3a), we have for any N > 0

sup
1≤k≤Nm

w2(m, k) max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A
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= sup
1
m
≤t≤N

ρ2(t) max
0≤s≤t

∥∥∥∥∥∥ 1√
m

m+bmtc∑
j=m+bmsc+1

H(Xj , θ0)

−bmtc − bmsc
m

1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

D−→ sup
0<t≤N

ρ2(t) max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)− (t− s)W 2(1)‖2A (3.18)

and furthermore

sup
0<t≤N

ρ2(t) max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)− (t− s)W 2(1)‖2A

= sup
0<t≤N

ρ2(t) max
0≤s≤t

‖W 1(1 + t)−W 1(1)−W 1(1 + s) +W 1(1)− (t− s)W 2(1)‖2A

D
= sup

0<t≤N
ρ2(t) max

0≤s≤t

∥∥∥W̃ 1(t)− W̃ 1(s)− (t− s)W 2(1)
∥∥∥2

A
,

where {W̃ 1 : t ≥ 0} and {W 2 : t ≥ 0} are independent and have the covariance
matrices Σ1 and Σ2. The assertion follows.

ii) For a more general weight function ρ:
On the limited time interval [τm,Nm] the function ρ is also bounded so we can show
analogously to (3.18) for any τ > 0

sup
τm≤k≤Nm

w2(m, k) ‖S4(m, k)‖2A

D−→ sup
τ≤t≤N

ρ2(t) ‖W 1(1 + t)−W 1(1 + s)− (t− s)W 2(1)‖2A . (3.19)

Now we look at the asymptotical behaviour of the first τm observations.
By Assumptions 3.1a) and 3.3b) we obtain

sup
1≤k<τm

w2(m, k) max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)− k − i
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
1≤k<τm

w̃2(m, k) max
0≤i≤k

1

m

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1≤k<τm

w̃2(m, k) max
0≤i≤k

(k − i)2

m2

∥∥∥∥∥∥B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
1≤k<τm

(
k

m

)2γ

ρ2

(
k

m

) sup
1≤k<τm

1(
k
m

)2γ max
0≤i≤k

1

m

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+

∥∥∥∥∥∥B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

sup
1≤k<τm

1(
k
m

)2γ max
0≤i≤k

(k − i)2

m3
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≤ sup
1≤k<τm

(
k

m

)2γ

ρ2

(
k

m

) sup
1≤k<τm

1

m
(
k
m

)2γ
∥∥∥∥∥∥

m+k∑
j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1≤k<τm

1

m
(
k
m

)2γ max
0≤i≤k

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+

∥∥∥∥∥∥ 1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

sup
1≤k<τm

(
k

m

)2−2γ


≤ sup
1≤k<τm

(
k

m

)2γ

ρ2

(
k

m

) sup
1≤k<τm

1

m
(
k
m

)2γ
∥∥∥∥∥∥

m+k∑
j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
1≤k<τm

max
0≤i≤k

1

m
(
i
m

)2γ
∥∥∥∥∥∥

m+i∑
j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+

∥∥∥∥∥∥ 1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

sup
1≤k<τm

(
k

m

)2−2γ


≤ sup
1≤k<τm

(
k

m

)2γ

ρ2

(
k

m

)2 sup
1≤k<τm

1

m
(
k
m

)2γ
∥∥∥∥∥∥

m+k∑
j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+

∥∥∥∥∥∥ 1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

sup
1≤k<τm

(
k

m

)2−2γ


≤ sup
1
m
≤t<τ

t2γρ2(t)

OP (1) + τ2−2γ

∥∥∥∥∥∥ 1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A


= oP (1), τ → 0 uniformly in m. (3.20)

For the limiting Wiener process we also obtain that the first τm observations are
asymptotically negligible. Therefore we need Assumption 3.1a) and Proposition 3.8
to conclude

sup
0<t<τ

ρ2(t) max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)− (t− s)W 2(1)‖2A

= sup
0<t<τ

t2γρ2(t)
1

t2γ
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)− (t− s)W 2(1)‖2A

≤ sup
0<t<τ

t2γρ2(t)

(
sup

0<t<τ

1

t2γ
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖2A

+ sup
0<t<τ

1

t2γ
max
0≤s≤t

(t− s)2‖W 2(1)‖2A
)

≤ sup
0<t<τ

t2γρ2(t)

(
sup

0<t<τ

1

t2γ
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖2A + sup
0<t<τ

t2−2γ‖W 2(1)‖2A
)
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≤ sup
0<t<τ

t2γρ2(t)

(
sup

0<t<τ

1

t2γ
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖2A + τ2−2γ‖W 2(1)‖2A
)

= oP (1), τ → 0. (3.21)

With (3.19), (3.20) und (3.21) we get the assertion in the same way as in the proof
of Theorem 3.1 in the section on the modified MOSUM.

b) By Assumptions 3.1b), 3.3c) and Proposition 3.7, it follows that

sup
k≥Tm

w2(m, k) max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
k≥Tm

(
k

m

)2

ρ2

(
k

m

)
sup
k≥Tm

1

m
(
k
m

)2 max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
k≥Tm

(
k

m

)2

ρ2

(
k

m

)
sup
k≥Tm

m

k2
max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
k≥Tm

(
k

m

)2

ρ2

(
k

m

)
1

T

 sup
k≥Tm

Tm

k2

∥∥∥∥∥∥
m+k∑
j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm

Tm

k2
max
1≤i≤k

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A


= O(1)o(1)(OP (1) +OP (1))

= oP (1), T →∞ uniformly in m. (3.22)

Analogously, for the limiting process Proposition 3.9 yields

sup
t≥T

ρ2(t) max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖2A

≤ sup
t≥T

t2ρ2(t) sup
t≥T

1

t2
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖2A

= oP (1) T →∞. (3.23)

Now we want to combine the previous results to complete the proof. But first we need the
following two statements:

sup
1≤k≤N(m)

w(m, k)2 max
0≤i≤k

∥∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
1≤k≤N(m)

max
0≤i≤k

∥∥∥∥∥∥w(m, k)
m+k∑

t=m+i+1

H(Xt, θ0)− w(m, k)
k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

and

sup
k≥τm

max
0≤i≤k

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+min(i,mT )+1

H(Xj , θ0)− w(m, k)
k − i
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A
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D−→ sup
t≥τ

max
0≤s≤t

‖ρ(min(t, T ))(W 1(1 + min(t, T ))−W 1(1 + min(s, T )))− (t− s)ρ(t)W 2(1)‖2A

Then we conclude with (3.22)

sup
k≥τm

max
0≤i≤k

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+min(i,mT )+1

H(Xj , θ0)− w(m, k)
k − i
m

B(θ0)
m∑
j=1

G(Xj , θ0)

−

w(m, k)
m+k∑

j=m+i+1

H(Xj , θ0)− w(m, k)
k − i
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
k≥τm

max
0≤i≤k

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+min(i,mT )+1

H(Xj , θ0)− w(m, k)

m+k∑
j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
τm≤k<Tm

max
0≤i≤k

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+min(i,mT )+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm

max
0≤i≤k

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+min(i,mT )+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
k≥Tm

max
0≤i≤k

∥∥∥∥∥∥w(m,mT )
m+mT∑

j=m+min(i,mT )+1

H(Xj , θ0)− w(m, k)
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
k≥Tm

max
0≤i≤k

∥∥∥∥∥∥w(m,mT )

m+mT∑
j=m+min(i,mT )+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm

max
0≤i≤k

∥∥∥∥∥∥w(m, k)
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ w2(m,mT ) max
0≤i≤mT

∥∥∥∥∥∥
m+mT∑
j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm

w2(m, k) max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ 2 sup
k≥Tm

w2(m, k) max
0≤i≤k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= oP (1), T →∞ uniformly in m by(3.22).
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3.2. Null Asymptotics of the Page-CUSUM

In an analogous way, by using (3.23), we obtain for the limiting Wiener process

sup
t≥τ

max
0≤s≤t

‖ρ(min(t, T )(W 1(1 + min(t, T ))−W 1(1 + min(s, T )))− (t− s)ρ(t)W 2(1)

−ρ(t)(W 1(1 + t)−W 1(1 + s))− (t− s)ρ(t)W 2(1)‖2A
= oP (1), T →∞.

Finally we combine the approximations in the same way as in part b) of the proof of
Theorem 3.1 to get the assertion.

As we see in the next Theorem the boundary function stated in (3.17) is also useful to simplify
the limit process of the Page-CUSUM statistic. Fremdt (2014) also used this weight function to
simplify the limit process.

Theorem 3.4

If Σ1 = Σ2 is the covariance matrix of independent Wiener processes {W 1(·)} and {W 2(·)},
then for 0 ≤ γ < 1

2

sup
t>0

max
0≤s≤t

∥∥∥∥∥∥W 1(t)−W 1(s)− (t− s)W 2(1)

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

D
= sup

0<t<1
max
0≤s≤t

1

t2γ

∥∥∥∥W (t)− t− 1

s− 1
W (s)

∥∥∥∥2

A

,

where {W (·)} is a Wiener process with covariance matrix Σ1.

Proof. Since the independent Wiener processes W 1(·) and W 2(·) have covariance matrix Σ1

and
1 + s

1 + t
=

1 + s

s

s

t

t

1 + t
=

1 + s

s

t+1
t − 1

s+1
s − 1

t

1 + t
=

1− t
1+t

1− s
1+s

=
t

1+t − 1
s

1+s − 1
,

we have

sup
t>0

max
0≤s≤t

∥∥∥∥∥∥W 1(t)−W 1(s)− (t− s)W 2(1)

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

= sup
t>0

max
0≤s≤t

∥∥∥∥∥∥W 1(t)− tW 2(1)− (W 1(s)− sW 2(1))

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

D
= sup

t>0
max
0≤s≤t

∥∥∥∥∥∥
(1 + t)W

(
t

1+t

)
− (1 + s)W

(
s

1+s

)
(1 + t)

(
t

1+t

)γ
∥∥∥∥∥∥

2

A

= sup
t>0

max
0≤s≤t

∥∥∥∥∥∥
W
(

t
1+t

)
(

t
1+t

)γ − (1 + s)

(1 + t)

W
(

s
1+s

)
(

t
1+t

)γ
∥∥∥∥∥∥

2

A

D
= sup

0<t<1
max
0≤s≤t

1

t2γ

∥∥∥∥W (t)− t− 1

s− 1
W (s)

∥∥∥∥2

A

,

where {W (·)} is a Wiener process with covariance matrix Σ1. And the last equality in distri-
bution holds since the mapping [0,∞) 3 t 7→ t

1+t ∈ [0, 1) is bijective and increasing.
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3. Asymptotics under the Null Hypothesis

Like with the modified MOSUM, a further simplification arises by using the inverse of the
covariance matrix Σ1 of a Wiener process {W 1(·)} as matrix A, still under the condition that
the Wiener processes {W 1(·)} and {W 2(·)} have the same covariance matrix. The further
simplification results again in a pivotal limit, i.e. there are no unknowns in the limit behaviour.

Corollary 3.2

If Σ1 = Σ2 is the covariance matrix of {W 1(·)} and {W 2(·)} andA = Σ1
−1, then, for 0 ≤ γ < 1

2 ,
we have

sup
t>0

max
0≤s≤t

∥∥∥∥∥∥W 1(t)−W 1(s)− (t− s)W 2(1)

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥

2

Σ1

D
= sup

0<t<1
max
0≤s≤t

1

t2γ

∥∥∥∥W (t)− t− 1

s− 1
W (s)

∥∥∥∥2

,

where {W (·)} is a standard Wiener process and ‖ · ‖ is the l2-norm.

3.3. Null Asymptotics of the MOSUM

The MOSUM uses a constant bandwidth h to monitor the new incoming data. More precisely,
the statistic always sums up a fixed number of observations independent of the actual time
point k, in contrast to the modified MOSUM and Page-CUSUM, where the number of added
observations depends on k. Thus the boundary function jumping randomly over the value of
the statistic mentioned in the context of using the modified MOSUM statistic caused by a few
data points included in the statistic. However, if we use the MOSUM statistic, in the beginning
of the monitoring time where k is small, the window width extends into the training period. So
the effect of too early detection still only exists in less extent.

We distinguish between two cases. In the first case, the bandwidth has the same order as the
length of the historical data set, so h

m
m→∞−→ β, β ∈ (0, 1], where h depends on m and converges

to infinity while m is growing to infinity. The second case is that h
m

m→∞−→ 0, i.e. the bandwidth
h is very small relatively to the length m of the training period.

Since the MOSUM uses a fixed window width and accordingly it is not necessary to start
monitoring later than m + 1, we need a bounded weight function ρ as denoted in Assumption
3.4a). The behaviour of ρ(t) if t goes to infinity is the same as in case of the modified MOSUM
and Page-CUSUM statistic, but only if h

m
m→∞−→ β. If h

m
m→∞−→ 0 we need a somewhat weaker

condition as stated in Assumption 3.4c).
We will see in Assumption 3.4a) that we can replace m to h in comparison to the weight

function of the previous statistics, so wM (h, k) = 1√
h
ρM
(
k
h

)
. If we suppose a similar boundary

function as in case of the modified MOSUM and Page-CUSUM with wM (m, k) = 1√
m
ρM
(
k
m

)
,

we would obtain a reasonable limiting process in case of h
m

m→∞−→ β specified in Theorem 2.1 in

Horváth et al. (2012). However, if h
m

m→∞−→ 0, the limit distribution would be identically to zero
as shown for the mean change model in Theorem 2.2 in Horváth et al. (2012), which is useless
to calculate critical values. Hence we assume the weight function as in Assumption 3.4a).

In this section, the case h
m

m→∞−→ β is studied first, followed by the case h
m

m→∞−→ 0.

If h
m

m→∞−→ β, Proposition 3.10 is an analogon to Propositions 3.1 and 3.6 for the previous
statistics. Since we propose a bounded weight function, we do not need a Hájék-Rényi-type
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3.3. Null Asymptotics of the MOSUM

inequality controlling the behaviour at zero of the MOSUM, but we have to control its behaviour
at infinity by a Hájék-Rényi- type inequality as stated in Proposition 3.11 as well as the behaviour
at infinity of its limiting process, as we will show in Proposition 3.12.

Assumption 3.4

Using the MOSUM statistic to test for a structural change in a time series,

a) the weight function has the form

wM (h, k) = h−
1
2 ρM

(
k

h

)
,

where ρM is bounded and continuous and h = h(m)→∞, as m→∞.

b) In the open-end procedure if h
m → β, as m→∞, for some β ∈ (0, 1], suppose that

lim
t→∞

tρM (t) <∞.

c) If h
m → 0, as m→∞, we need the following weaker condition:

lim sup
t→∞

t
1
ν ρM (t) <∞, for some ν > 2.

Assumptions 3.4b) and c) are equivalent to Assumption 3.1b) on the boundary function of the
modified MOSUM and the Page-CUSUM statistics.

Proposition 3.10

Let the null hypothesis hold as well as h(m)
m→∞−→ ∞ and h

m
m→∞−→ β, β ∈ (0, 1]. The boundary

function ρ satisfies Assumption 3.2 with γ = 0 and Assumption 3.4a)-b). Then we have

sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xt, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xt, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1).

Proof. Analogously to the proof of Proposition 3.1 as well as Proposition 3.6, by Assumption
3.1 with γ = 0 and Assumption 3.4a)-b) it follows that

sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xj , θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
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3. Asymptotics under the Null Hypothesis

= sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
(

m+k∑
i=m+1

H(Xi, θ̂m)−
m+k−h∑
i=m+1

H(Xi, θ̂m)

)

−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)−

m+k−h∑
j=m+1

H(Xj , θ0)− k − h
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
≤ sup

1≤k<N(m)

1√
h
ρM

(
k

h

)∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)

1√
h
ρM

(
k

h

)∥∥∥∥∥∥
m+k−h∑
i=m+1

H(Xi, θ̂m)−

m+k−h∑
j=m+1

H(Xj , θ0)− k − h
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
≤ sup

1≤k<N(m)
max

(√
m,

k√
m

)
1√
h
ρM

(
k

h

)
(

sup
1≤k<N(m)

min

(
1√
m
,

√
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
+ sup

1≤k<N(m)
max
0≤i≤k

min

(
1√
m
,

√
m

k

)
∥∥∥∥∥∥

m+i∑
i=m+1

H(Xi, θ̂m)−

 m+i∑
j=m+1

H(Xj , θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥


= 2 sup
1≤k<N(m)

max

(√
m,

k√
m

)
1√
h
ρM

(
k

h

)
sup

1≤k<N(m)
min

(
1√
m
,

√
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= 2 sup

1≤k<N(m)
max

(√
m

h
,
k

h

√
h

m

)
ρM

(
k

h

)
sup

1≤k<N(m)
min

(
1√
m
,

√
m

k

)
∥∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= oP (1).
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3.3. Null Asymptotics of the MOSUM

Proposition 3.11

Under Assumption 3.3c) hold, we have a Hájék-Rényi-type inequality in the open-end procedure,
namely

max
k≥km+h

√
km
k

∥∥∥∥∥
m+k∑

t=m+k−h+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1) for any sequence km ≥ 0.

Proof. By Assumption 3.3c),

max
k≥km+h

√
km
k

∥∥∥∥∥
m+k−h∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ ≤ max
k≥km+h

√
km

k − h

∥∥∥∥∥
m+k−h∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥
= max

k−h≥km

√
km

k − h

∥∥∥∥∥
m+k−h∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = max
l≥km

√
km
l

∥∥∥∥∥
m+l∑

t=m+1

H(Xt, θ0)

∥∥∥∥∥
= OP (1),

and the assertion follows from

max
k≥km+h

√
km
k

∥∥∥∥∥
m+k∑

t=m+k−h+1

H(Xt, θ0)

∥∥∥∥∥
≤ max

k≥km+h

√
km
k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥+ max
k≥km+h

√
km
k

∥∥∥∥∥
m+k−h∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥
= OP (1).

Proposition 3.12

Let {W (·)} be a Wiener process with covariance matrix Σ1. Then

sup
t≥T

1

t

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)∥∥∥∥ = oP (1), T →∞.

Proof. Analogously to the proof of Proposition 3.5 and 3.9 we get

sup
t≥T

1

t

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)∥∥∥∥
= sup

t≥T

1

t

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β

)
−W 1

(
1

β
+ t− 1

)
+W 1

(
1

β

)∥∥∥∥
≤ sup

t≥T

1

t

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β

)∥∥∥∥+ sup
t≥T

1

t

∥∥∥∥W 1

(
1

β
+ t− 1

)
+W 1

(
1

β

)∥∥∥∥
51



3. Asymptotics under the Null Hypothesis

D
= sup

t≥T

1

t
‖W 1(t)‖+ sup

t≥T

1

t
‖W 1(t− 1)‖

= oP (1), T →∞.

To obtain the last equality we use the law of iterated logarithm analogously to Proposition
3.5.

Theorem 3.5

Assume h→∞ as m→∞ and h
m → β for some β ∈ (0, 1].

Furthermore, let Assumption 3.2 with γ = 0, Assumptions 3.3a) and 3.4a) hold under the null
hypothesis. Then, for any symmetric positive semi-definite matrix A, we have:

a) in the closed-end procedure

sup
1≤k≤Nm

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
0<t≤N

β

ρ2
M (t)

∥∥∥∥(W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)
− βW 2

(
1

β

))∥∥∥∥2

A

,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are Wiener processes defined in Assumption
3.3a),

b) in the open-end procedure, if additionally Assumption 3.3c) holds,

sup
1≤k<∞

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
0<t<∞

ρ2
M (t)

∥∥∥∥(W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)
− βW 2

(
1

β

))∥∥∥∥2

A

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are given in a).

The assertions remain true if we replace the matrix A by a consistent estimator.

Proof. First note with Proposition 3.10

sup
1≤k<N(m)

w2
M (h, k) ‖S3(m, k, h)‖2A

= sup
1≤k<N(m)

w2
M (h, k)

∥∥∥∥∥∥
m+k∑

j=m+k−h+1

H(Xj , θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

+ oP (1).

a) If h
m

m→∞−→ β, β ∈ (0, 1] and Assumption 3.3a) holds, then

sup
1≤k≤Nm

w2
M (h, k)

∥∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A
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3.3. Null Asymptotics of the MOSUM

= sup
1
h
≤t≤Nm

h

ρ2
M (t)

∥∥∥∥∥∥∥
1√
h

bh(mh +t)c∑
i=bh(mh +t−1)c+1

H(Xi, θ0)− h

m

1√
h
B(θ0)

hm
h∑

j=1

G(Xj , θ0)

∥∥∥∥∥∥∥
2

A

D−→ sup
0<t≤N

β

ρ2
M (t)

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)
− βW 2

(
1

β

)∥∥∥∥2

A

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are dependent Wiener processes with covari-
ance matrices Σ1 and Σ2 as in Assumption 3.3a).

b) First we get by Assumption 3.3a)

sup
k≥1

∥∥∥∥∥∥wM (h,min(k,mT + h))

m+min(k,mT+h)∑
j=m+bmin(k,mT+h)c−h+1

H(Xj , θ0)− wM (h, k)
h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

D−→ sup
t>0

∥∥∥∥ρM (min

(
t,
T

β
+ 1

))(
W 1

(
1

β
+ min

(
t,
T

β
+ 1

))
−W 1

(
1

β
+ min

(
t,
T

β
+ 1

)
− 1

))

−βρM (t)W 2(1)‖2A .

Then we can bound the first term of the previous statement according to

sup
k≥1

∥∥∥∥∥∥wM (h,min(k,mT + h))

m+min(k,mT+h)∑
j=m+bmin(k,mT+h)c−h+1

H(Xj , θ0)− wM (h, k)
h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

−

wM (h, k)

m+k∑
j=m+k−h+1

H(Xj , θ0)− wM (h, k)
h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ sup
1≤k<Tm+h

∥∥∥∥∥∥wM (h, k)

m+k∑
j=m+k−h+1

H(Xj , θ0)− wM (h, k)

m+k∑
j=m+k−h+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm+h

∥∥∥∥∥∥wM (h,mT + h)
m+mT+h∑
j=m+mT+1

H(Xj , θ0)− wM (h, k)
m+k∑

j=m+k−h+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤

∥∥∥∥∥∥wM (h,mT + h)

m+mT+h∑
j=m+mT+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

+ sup
k≥Tm+h

∥∥∥∥∥∥wM (h, k)

m+k∑
j=m+k−h+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

≤ 2 sup
k≥Tm+h

∥∥∥∥∥∥wM (h, k)

m+k∑
j=m+k−h+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A
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= 2 sup
t≥Tm

h
+1

t2ρ2(t)
h

Tm
sup

t≥Tm
h

+1

Tm
h

ht2

∥∥∥∥∥∥
m+bhtc∑

j=m+bhtc−h+1

H(Xj , θ0)

∥∥∥∥∥∥
2

A

= oP (1) as T →∞, uniformly in m by Assumption 3.4b) and Proposition 3.11.

And we obtain the same result for the limiting Wiener process with Proposition 3.12:

sup
t>0

∥∥∥∥ρM (min

(
t,
T

β
+ 1

))(
W 1

(
1

β
+ min

(
t,
T

β
+ 1

))
−W 1

(
1

β
+ min

(
t,
T

β
+ 1

)
− 1

))

−βρM (t)W 2(1)−
(
ρM (t)

(
W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))
− βρM (t)W 2(1)

)∥∥∥∥2

A

= sup
t>0

∥∥∥∥ρM (min

(
t,
T

β
+ 1

))(
W 1

(
1

β
+ min

(
t,
T

β
+ 1

))
−W 1

(
1

β
+ min

(
t,
T

β
+ 1

)
− 1

))
− ρM (t)

(
W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))∥∥∥∥2

A

≤ sup
t≥T

β
+1

∥∥∥∥ρM (Tβ + 1

)(
W 1

(
1

β
+
T

β
+ 1

)
−W 1

(
1

β
+
T

β

))

−ρM (t)

(
W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))∥∥∥∥2

A

≤
∥∥∥∥ρM (Tβ + 1

)(
W 1

(
1

β
+
T

β
+ 1

)
−W 1

(
1

β
+
T

β

))∥∥∥∥2

A

+ sup
t≥T

β
+1

∥∥∥∥ρM (t)

(
W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))∥∥∥∥2

A

≤ 2 sup
t≥T

β
+1

∥∥∥∥ρM (t)

(
W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))∥∥∥∥2

A

= 2 sup
t≥T

β
+1

t2ρ2
M (t) sup

t≥T
β

+1

1

t2

∥∥∥∥(W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))∥∥∥∥2

A

≤ 2 sup
t≥T

β
+1

t2ρ2
M (t) sup

t≥T

1

t2

∥∥∥∥(W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

))∥∥∥∥2

A

= oP (1), T →∞.

Consequently the assertion follows analogously to the proof of Theorem 3.1.

Corollary 3.3

Assume h→∞ as m→∞ and h
m → β for some β ∈ (0, 1].

If the supremum of the statistic is only taken over k ≥ h (which is equivalent to ρ(t) = 0 for
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3.3. Null Asymptotics of the MOSUM

t < 1), then the limit distribution for a possibly infinite time horizon simplifies to

sup
h≤k<N(m)

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
1≤t<N(m)

h

ρ2
M (t)

∥∥∥∥W 1(t)−W 1(t− 1)− βW 2

(
1

β

)∥∥∥∥2

A

,

where {W 1(·)} and {W 2(·)} are independent Wiener processes with covariance matrices Σ1

and Σ2, respectively.

Proof. Let {W 1(·)} and {W 1(·)} be Wiener processes as defined in Assumption 3.3a). Then
we obtain

sup
1≤t<N(m)

ρ2
M (t)

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)
− βW 2

(
1

β

)∥∥∥∥2

A

= sup
1≤t<N(m)

ρ2
M (t)

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β

)
−
(
W 1

(
1

β
+ t− 1

)
−W 1

(
1

β

))
− βW 2

(
1

β

)∥∥∥∥2

A

D
= sup

1≤t<N(m)
ρ2
M (t)

∥∥∥∥W̃ 1(t)− W̃ 1(t− 1)− βW 2

(
1

β

)∥∥∥∥2

A

,

where {W̃ 1(·)} and {W 2(·)} are independent Wiener processes with covariance matrices Σ1

and Σ2, respectively.

If the block length h is much smaller than the length of the training period, i.e. if h
m

m→∞−→ 0, we
need some further assumptions. First the rate of convergence of the weight function specified
in condition 3.4b) can be weaken to a lower rate of convergence for the boundary function as in
Assumption 3.4c). So instead of Assumption 3.2 with γ = 0, we require Assumption 3.5 below.

As we see in Theorem 3.6, which states the limit distribution of the MOSUM for the case
h
m → 0, the limiting process is the same for the closed-end and the open-end procedure. More
precisely, the supremum in the limit distribution is taken over all positive integers even in the
closed-end method. Thus the statistic maximizing over the time points after Nm, is negligible if
the time horizon grows to infinity. Therefore, we need the strong invariance principle as stated in
Assumption 3.6. The details are shown in the proof of Theorem 3.6.

Assumption 3.5

The following approximation holds under H0, where the observation horizon N(m) can be
infinite:

sup
1≤k<N(m)

1√
h

min

(
1,

(
h

k

) 1
ν

)∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xt, θ̂m)
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3. Asymptotics under the Null Hypothesis

−

 m+k∑
i=m+k−h+1

H(Xt, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1),

for some θ0 and ν as in Assumption 3.4c).

Assumption 3.6

There is a Wiener process {W (t), 0 ≤ t <∞} with covariance matrix Σ1 such that, as k →∞

k∑
t=1

H(Xt, θ0)−W (k) = O
(
k

1
ν

)
a.s., with ν as in Assumption 3.4c).

Proposition 3.13

Under the Assumptions 3.4a) and c) and Assumption 3.5, we have

sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xt, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xt, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1).

Proof. By the Assumptions 3.4a) and c) as well as 3.5, it follows that

sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xj , θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= sup

1≤k<N(m)

1√
h
ρM

(
k

h

)∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xj , θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= sup

1≤k<N(m)

1√
h

min

(
1,

(
h

k

) 1
ν

)
max

(
1,

(
k

h

) 1
ν

)
ρM

(
k

h

)
∥∥∥∥∥∥

m+k∑
i=m+k−h+1

H(Xi, θ̂m)−

 m+k∑
j=m+k−h+1

H(Xj , θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
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3.3. Null Asymptotics of the MOSUM

≤ sup
1≤k<N(m)

max

(
1,

(
k

h

) 1
ν

)
ρM

(
k

h

)

sup
1≤k<N(m)

1√
h

min

(
1,

(
h

k

) 1
ν

)∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xj , θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= oP (1).

Theorem 3.6

Assume h→∞ as m→∞ and h
m → 0.

Let Assumptions 3.3a), 3.4a), 3.5, 3.4c) and 3.6 hold. Then, under the null hypothesis and a
possibly infinite time horizon N(m), we have

sup
1≤k<N(m)

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
0<t<∞

ρ2
M (t) ‖(W (t+ 1)−W (t))‖2A ,

where {W (t) : t ≥ 0} is a Wiener process with covariance matrix Σ1.
If we replace the matrix A by a consistent estimator, the assertion still holds true.

Proof. Proposition 3.13 gives

sup
1≤k<N(m)

w2
M (h, k) ‖S3(m, k, h)‖2A

= sup
1≤k<N(m)

w2
M (h, k)

∥∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

+ oP (1).

If h
m

m→∞−→ 0, ρ is bounded and Assumption 3.3a) holds, then the stationarity of Xt under H0

gives

sup
1≤k≤Th

w2
M (h, k)

∥∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xi, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
1
h
≤t≤T

ρ2
M (t)

∥∥∥∥∥∥ 1√
h

m+bhtc∑
i=m+bhtc−h+1

H(Xi, θ0)−
√
h

m

1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
2

A

= sup
1
h
≤t≤T

ρ2
M (t)

∥∥∥∥∥∥ 1√
h

m+bhtc∑
i=m+bhtc−h+1

H(Xi, θ0)

∥∥∥∥∥∥
2

A

+ oP (1)

D
= sup

1
h
≤t≤T

ρ2
M (t)

∥∥∥∥∥∥ 1√
h

bhtc+h∑
i=bhtc+1

H(Xi, θ0)

∥∥∥∥∥∥
2

A

+ oP (1)
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3. Asymptotics under the Null Hypothesis

= sup
1
h
≤t≤T

ρ2
M (t)

∥∥∥∥∥∥ 1√
h

bh(t+1)c∑
i=bhtc+1

H(Xi, θ0)

∥∥∥∥∥∥
2

A

+ oP (1),

and

sup
1≤k≤Th

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
0<t≤T

ρ2
M (t) ‖W (t+ 1)−W (t)‖2A , (3.24)

where {W (t) : t ≥ 0} is a Wiener process with covariance matrix Σ1.
Furthermore, we obtain that the limit distribution after time point T is negligible if T →∞,

since

sup
t≥T

ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

≤ sup
t≥T

t
2
ν ρ2

M (t) sup
t≥T

t−
2
ν ‖W (t+ 1)−W (t)‖2A . (3.25)

By Assumption 3.4c) the first term is bounded. And by Theorem 1.2.1 in Csörgő and Révész
(1981) the second term is asymptotically negligible, since

sup
t≥T
‖W 1(t+ 1)−W 1(t)‖ t−

1
ν ≤ sup

t≥T
sup

0≤s≤1
‖W 1(t+ s)−W 1(t)‖ t−

1
ν

≤ sup
t≥T

sup
0≤s≤1

‖W 1(t+ s)−W 1(t)‖√
2(log(t) + log log(t))

sup
t≥T

√
2(log(t) + log log(t))

t
1
ν

= oP (1), T →∞, (3.26)

because of

sup
t≥T

sup
0≤s≤1

‖W 1(t+ s)−W 1(t)‖√
2(log(t) + log log(t))

T→∞−→ 1 a.s.

and

sup
t≥T

√
2(log(t) + log log(t))

t
1
ν

= o(1), T →∞.

Next we have to prove that the statistic with using the data after Th are asymptotically
ignored. Therefore we use Assumption 3.6, to obtain

sup
k>Th

ρ2
M

(
k

h

)∥∥∥∥∥ 1√
h

k+h∑
i=k+1

H(Xi, θ0)

∥∥∥∥∥
2

A

= sup
k>Th

ρ2
M

(
k

h

)∥∥∥∥∥ 1√
h

(
k+h∑
i=1

H(Xi, θ0)−
k∑
i=1

H(Xi, θ0)

)∥∥∥∥∥
2

A

= sup
k>Th

ρ2
M

(
k

h

)(∥∥∥∥ 1√
h

(W 1(k + h)−W 1(k))

∥∥∥∥2

A

+OP

(
(k + h)

2
ν

h
+
k

2
ν

h

))

≤ sup
k>Th

ρ2
M

(
k

h

)∥∥∥∥W 1

(
k

h
+ 1

)
−W 1

(
k

h

)∥∥∥∥2

A
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+OP (1) sup
k>Th

ρ2
M

(
k

h

)(
(k + h)

2
ν

h
+
k

2
ν

h

)
. (3.27)

The first term is in oP (1) by (3.25) and (3.26). For the second term, Assumptions 3.4a) and c)
yield

OP (1) sup
k>Th

(
k

h

) 2
ν

ρ2
M

(
k

h

)
sup
k>Tm

(
k

h

)− 2
ν

(
(k + h)

2
ν

h
+
k

2
ν

h

)

= OP (1)O(1) sup
k>Th

1

h1− 2
ν

((
k + h

k

) 2
ν

+ 1

)

= OP (1)O(1)
1

h1− 2
ν

sup
k>Th

((
1 +

h

k

) 2
ν

+ 1

)

≤ OP (1)O(1)
1

h1− 2
ν

((
1 +

1

T

) 2
ν

+ 1

)
= OP (1)O(1)o(1)O(1) = oP (1) as T →∞ uniformly in m. (3.28)

Consequently for the open-end procedure the assertion follows in the same way as in the proof
of Theorem 3.1. For the closed-end procedure with time horizon Nm we can finish the proof
with (3.24)-(3.28) from which we obtain∣∣∣∣∣ sup

1≤k≤Nm
w2
M (h, k) ‖S3(m, k, h)‖2A − sup

0<t<∞
ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

∣∣∣∣∣
=

∣∣∣∣∣ sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2A + sup

Nh<k≤Nm
w2
M (h, k) ‖S3(m, k, h)‖2A

− sup
0<t≤N

ρ2
M (t) ‖W (t+ 1)−W (t)‖2A − sup

N<t<∞
ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

∣∣∣∣∣
≤

∣∣∣∣∣ sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2A − sup

0<t≤N
ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

∣∣∣∣∣
+

∣∣∣∣∣ sup
Nh<k≤Nm

w2
M (h, k) ‖S3(m, k, h)‖2A − sup

N<t<∞
ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

∣∣∣∣∣
≤

∣∣∣∣∣ sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2A − sup

0<t≤N
ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

∣∣∣∣∣
+ sup
Nh<k≤Nm

w2
M (h, k) ‖S3(m, k, h)‖2A + sup

N<t<∞
ρ2
M (t) ‖W (t+ 1)−W (t)‖2A

= oP (1).

To calculate critical values more precisely we can use another stopping time such that we obtain
a limit distribution with a supremum over a finite interval such as in the closed-end procedure.

The new stopping time is

τNhm =

{
min{k : 1 ≤ k ≤ Nh, w2

M (h, k)‖S3(m, k, h)‖2A ≥ c},
∞, w2

M (h, k)‖S2(m, k, h)‖2A < c ∀ k ∈ [1, Nh].
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3. Asymptotics under the Null Hypothesis

Then we obtain the following limit distributions:

Corollary 3.4

Suppose that Assumptions 3.3a) and 3.4a) hold. Then under the null hypothesis with time
horizon Nh and for any symmetric positive semi-definite matrix A

a) if h
m

m→∞−→ β, β ∈ (0, 1]
and additionally Assumption 3.2 with γ = 0 with time horizon Nh is fulfilled, we obtain

sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
0<t≤N

ρ2
M (t)

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)
− βW 2

(
1

β

)∥∥∥∥2

A

,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are dependent Wiener processes defined as in
Assumption 3.3a).

In the situation of starting to search for a change after h observations, so k ≥ h, the limit
distribution simplifies analogous to Corollary 3.3 to

sup
h≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
1≤t≤N

ρ2
M (t)

∥∥∥∥W 1 (t)−W 1 (t− 1)− βW 2

(
1

β

)∥∥∥∥2

A

. (3.29)

b) If h
m

m→∞−→ 0
and additionally Assumption 3.5 with N(m) = Nh is fulfilled, we obtain

sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2A

D−→ sup
0<t≤N

ρ2
M (t) ‖W (t+ 1)−W (t)‖2A , (3.30)

where {W (t) : t ≥ 0} is a Wiener process with covariance matrix Σ1.

The matrix A can be replaced by a consistent estimator.

If h
m

m→∞−→ β, β ∈ (0, 1] and A = Σ−1
1 = Σ−1

2 as well as W 1(·) and W 2(·) are independent, then
we obtain a pivotal limit.

As well as if h
m

m→∞−→ 0, we obtain a pivotal limit by choosing the matrix A = Σ1
−1.

Corollary 3.5

Let the assumptions of Corollary 3.4 hold and additionally A = Σ−1
1 = Σ−1

2 be the covariance
matrix of the independent Wiener processes W 1(·) and W 2(·), then
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3.3. Null Asymptotics of the MOSUM

a) if h
m

m→∞−→ β, β ∈ (0, 1]

sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2

Σ−1
1

D−→ sup
0<t≤N

ρ2
M (t) ‖W 1 (t+ 1)−W 1 (t)−W 2 (β)‖2 ,

where {W 1(t) : t ≥ 0} and {W 2(t) : t ≥ 0} are independent standard Wiener processes.

In the situation of starting to search for a change after m+ h observations, so k ≥ h, the
limit distribution simplifies analogously to Corollary 3.3 to

sup
h≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2

Σ−1
1

D−→ sup
1≤t≤N

ρ2
M (t) ‖W 1 (t)−W 1 (t− 1)−W 2 (β)‖2 ,

where the Wiener processes are defined as above.

b) If h
m

m→∞−→ 0 then

sup
1≤k≤Nh

w2
M (h, k) ‖S3(m, k, h)‖2

Σ−1
1

D−→ sup
0<t≤N

ρ2
M (t) ‖W (t+ 1)−W (t)‖2 ,

where {W (t) : t ≥ 0} is a standard Wiener process.

The norm ‖ · ‖ is the l2-norm, and the matrix A can be replaced by a consistent estimator.

Proof. a) First the following simple calculation holds for independent Wiener processesW 1(·)
and W 2(·)

sup
0<t≤N

ρ2
M (t)

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)
− βW 2

(
1

β

)∥∥∥∥2

Σ−1
1

D
= sup

0<t≤N
ρ2
M (t)

∥∥∥∥Σ 1
2
1

(
W̃ 1

(
1

β
+ t

)
− W̃ 1

(
1

β
+ t− 1

)
− βW̃ 2

(
1

β

))∥∥∥∥2

Σ−1
1

= sup
0<t≤N

ρ2
M (t)

∥∥∥∥W̃ 1

(
1

β
+ t

)
− W̃ 1

(
1

β
+ t− 1

)
− βW̃ 2

(
1

β

)∥∥∥∥2

D
= sup

0<t≤N
ρ2
M (t)

∥∥∥W̃ 1 (t+ 1)− W̃ 1 (t)− W̃ 2 (β)
∥∥∥2
.

Here, W̃ 1(·) and W̃ 2(·) are independent standard Wiener processes. If we start monitoring
after h observations, the proof is analogous.

b) If h
m converges to zero, we get with Σ1 being the covariance matrix of W (·)

sup
0<t≤N

ρ2
M (t) ‖W (t+ 1)−W (t)‖2

Σ−1
1

D
= sup

0<t≤N
ρ2
M (t)

∥∥∥∥Σ− 1
2

1

(
W̃ (t+ 1)− W̃ (t)

)∥∥∥∥2

Σ−1
1
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3. Asymptotics under the Null Hypothesis

= sup
0<t≤N

ρ2
M (t)

∥∥∥W̃ (t+ 1)− W̃ (t)
∥∥∥2
,

where W̃ (·) is a standard Wiener process.
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4. Asymptotics under the Alternative
Hypothesis

In this chapter we will show that under some mild conditions all monitoring schemes have
asymptotic power one if the length m of the historical data set converges to infinity. This
means, if a change occurs within the time series the procedure will stop at a finite point in time
with probability approaching one. If a procedure has asymptotic power one, it is often called
consistent.

The null hypothesis holds for the time series as long as no change occurs, so the time series
before the change has to fulfill the assumptions under the null hypothesis which are stated for
each statistic in part a) of the following assumptions. Since m converges to infinity the change
point which is at some point in time after m, also converges to infinity. Thus we distinguish
between the cases that the change-point k∗ is of the same or lower order as m or the change-point
grows faster to infinity than m. Note that the second case can only take place in the open-end
procedure. Since in case of the MOSUM statistic the constant bandwidth h converges to infinity
with m growing to infinity, m is replaced by h in Assumptions 4.3 about the MOSUM. The
required assumptions under the alternative for the two mentioned cases of the behaviour of k∗

are denoted in part b) respectively c) in the assumptions for each statistic.

4.1. Consistency of the Modified MOSUM

Assumption 4.1

a) The time series before the change fulfills the assumptions under the null hypothesis.

b) The change-point is of the form k∗ ≤ bmνc for some 0 < ν < N (in case of the open-end
procedure N = ∞). Furthermore, there exists a ball U(x0) around x0 with N > x0 > ν
and ρ(x) ≥ c > 0 for x ∈ U(x0) as well as

1

m

∥∥∥∥∥∥
m+bx0mc∑

j=m+max(k∗,bbx0mchc)+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1)

for some EH .

c) In the open-end procedure for an arbitrarily late change k∗ and if lim inf
x→∞

xρ(x) > 0, then
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4. Asymptotics under the Alternative Hypothesis

we have for l→∞

1

l

∥∥∥∥∥∥∥
m+

⌊⌈
k∗
h

⌉
h
⌋
+l∑

j=m+bd k∗h ehc+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥∥ = oP (1),

for some EH .

The EH , used in the previous assumption as well as in the following assumptions in this sec-
tion concerning the other statistics, is usually equal to E(H(Xt, θ0)), t > k∗ which is not
zero. By the assumptions, the monitoring function inserted with the time series after the
change and the estimated parameter can be asymptotically replaced by EH . So EH influ-
ences the alternatives which are asymptotically always detected by the method. More precisely,

if A
1
2EH 6= 0 the procedure has asymptotic power one (see the next Theorem about the consis-

tency).

Theorem 4.1

Let the alternative hypothesis hold.

Under Assumptions 4.1a)-b) andA
1
2EH 6= 0, the procedure with a possibly infinite time horizon

has asymptotic power one:

sup
1≤k<N(m)

w2(m, k)S2(m, k, h)TAS2(m, k, h)
P−→∞ (4.1)

If N(m) = ∞ and the change-point is arbitrarily late, we require the additional Assumption
4.1c). The matrix A can be replaced by a consistent estimator.

Proof. Since we have to show equation (4.1) it is enough to prove

w2(m, k̃)S2(m, k̃, h)TAS2(m, k̃, h)
P−→∞

for a point k̃ in time later than the change-point k∗. However, in the closed-end procedure k̃
has to be earlier than the end of the observation horizon.

a) Closend-end procedure:
The change-point is k∗ = bνmc and we choose k̃ = bx0mc. So by x0 > ν we have k̃ > k∗.
But then the time point bk̃hc, including in the lower bound of the sum of the modified
MOSUM, can be earlier or later than the change-point k∗. So we have to distinguish the
following two cases:

(i) If k∗ > bk̃hc:
We split the time series into the observations before and after the change-point. First
we look at the observations prior to the change. Assumption 4.1a) and an application
of Theorem 3.1 in Kirch and Kamgaing (2015) implies

1

m

m+k∗∑
t=m+bk̃hc+1

H(Xt, θ̂m) = oP (1).
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4.1. Consistency of the Modified MOSUM

The explanation for the previous equality is that first of all

1

m

m+k∗∑
t=m+bk̃hc+1

H(Xt, θ̂m)

=
1

m

 m+k∗∑
t=m+1

H(Xt, θ̂m)−
m+bk̃hc∑
t=m+1

H(Xt, θ̂m)

 . (4.2)

Then Theorem 3.1 in Kirch and Kamgaing (2015) implies

OP (1) = sup
1≤k≤k∗

w2(m, k)

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

≥ 1

m
ρ2

(
k∗

m

)∥∥∥∥∥
m+k∗∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

.

Since ρ is bounded due to the fact that k∗ and m have the same order, we know

1

m

∥∥∥∥∥
m+k∗∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

= OP (1)

and hence

1

m2

∥∥∥∥∥
m+k∗∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

=

∥∥∥∥∥ 1

m

m+k∗∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

= o(1)OP (1) = oP (1).

The second sum figuring in equation (4.2) can be treated in the same way.

Next we focus on the observations between the change-point k∗ and k̃. By Assumption
4.1b) we obtain

1

m

m+bmx0c∑
t=m+k∗+1

H(Xt, θ̂m) =
1

m
(bmx0c − k∗)EH + oP (1) =

(
x0 −

k∗

m

)
EH + oP (1).

Further we combine

m+k̃∑
t=m+bk̃hc+1

H(Xt, θ̂m) =
m+k∗∑

t=m+bk̃hc+1

H(Xt, θ̂m) +
m+k̃∑

t=m+k∗+1

H(Xt, θ̂m)

= m

((
x0 −

k∗

m

)
EH + oP (1)

)
.

Finally we get with A
1
2EH 6= 0

w2(m, k̃)
∥∥∥S2(m, k̃, h)

∥∥∥2

A
=

1

m
ρ2

(
k̃

m

)∥∥∥∥m((x0 −
k∗

m
)EH + oP (1))

∥∥∥∥2

A

= mρ2

(
bx0mc
m

)(
x0 −

k∗

m

)2 (
‖EH‖2A + oP (1)

)
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4. Asymptotics under the Alternative Hypothesis

= mρ2 (x0 + o(1))

(
x0 −

k∗

m

)2 (
‖EH‖2A + oP (1)

)
≥ mρ2 (x0 + o(1))

(
x0 −

bmνc
m

)2 (
‖EH‖2A + oP (1)

)
≥ mρ2 (x0 + o(1)) (x0 − ν)2

(
‖EH‖2A + oP (1)

)
P−→∞.

(ii) If k∗ ≤ bk̃hc:
In this case Assumption 4.1b) implies

1

m

∥∥∥∥∥∥
m+bx0mc∑

j=m+bbx0mchc+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1)

and consequently

1

m

m+bx0mc∑
j=m+bbx0mchc+1

H(Xj , θ̂m) =
1

m
(bmx0c − bbx0mchc)EH + oP (1)

= x0(1− h)EH + oP (1).

Finishing the proof we obtain from A
1
2EH 6= 0

w2(m, k̃)
∥∥∥S2(m, k̃, h)

∥∥∥2

A
=

1

m
ρ2

(
k̃

m

)
‖m(x0(1− h)EH + oP (1))‖2A

= mρ2

(
bx0mc
m

)
x2

0(1− h)2
(
‖EH‖2A + oP (1)

)
= mρ2 (x0 + o(1))x2

0(1− h)2
(
‖EH‖2A + oP (1)

)
P−→∞.

b) Open-end procedure:

• k∗ ≤ bmνc with N > ν < x0:
The proof is analogous to the closed-end case.

• k∗/m→∞:
In this case we choose k̃ =

⌈
k∗

h

⌉
. This choice automatically results in the second case

of part a), where k∗ ≤ bk̃hc.
From Assumption 4.1c) it follows that

1⌈
k∗

h

⌉
−
⌊⌈

k∗

h

⌉
h
⌋ m+

⌈
k∗
h

⌉∑
m+bd k∗h ehc+1

H(Xt, θ̂m) = EH + oP (1).

Further we obtain

sup
k≥1

w2(m, k)

∥∥∥∥∥∥
m+k∑

m+bkhc+1

H(Xt, θ̂m)

∥∥∥∥∥∥
2

A

≥ w2(m, k̃)

∥∥∥∥∥∥
m+k̃∑

m+bk̃hc+1

H(Xt, θ̂m)

∥∥∥∥∥∥
2

A
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4.2. Consistency of the Page-CUSUM

=
1

m
ρ2

(
k̃

m

)∥∥∥∥(⌈k∗h
⌉
−
⌊⌈
k∗

h

⌉
h

⌋)
(EH + oP (1))

∥∥∥∥2

A

= ρ2

(
k̃

m

)((⌈
k∗

h

⌉
−
⌊⌈

k∗

h

⌉
h
⌋)2

m

)(
‖EH‖2A + oP (1)

)
.

Eventually, using A
1
2EH 6= 0 and(⌈

k∗

h

⌉
−
⌊⌈

k∗

h

⌉
h
⌋)2

m
≥
(⌈

k∗

h

⌉
(1− h)

)2
m

=

(
k̃

m

)2

(1− h)2m

together with lim inf
x→∞

xρ(x) > 0, the assertion follows.

4.2. Consistency of the Page-CUSUM

To guarantee asymptotic power one of the monitoring procedure that uses the Page-CUSUM, we
need the same assumption as in the case of employing the standard CUSUM statistic. The reason
is that the Page-CUSUM can be traced back to the CUSUM statistic for proving consistency.
Details are shown in the appropriate Theorem 4.2.

Since the CUSUM statistic has already been considered in Kirch and Kamgaing (2015), As-
sumption 4.2 is equivalent to Assumption A.4 in this publication.

Assumption 4.2

a) The time series before the change fulfills the assumptions under the null hypothesis.

b) The change-point is of the form k∗ ≤ bmνc for some 0 < ν < N (in case of the open-end
procedure N = ∞). Furthermore, there exists a ball U(x0) around x0 with N > x0 > ν
and ρ(x) ≥ c > 0 for x ∈ U(x0) as well as

1

m

∥∥∥∥∥∥
m+bx0mc∑
j=m+k∗+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1).

c) In the open-end procedure for an arbitrarily late change k∗ and if lim inf
x→∞

xρ(x) > 0 as well

as for l→∞, we have

1

l

∥∥∥∥∥∥
m+k∗+l∑

j=m+k∗+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1),

for some EH .
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4. Asymptotics under the Alternative Hypothesis

Theorem 4.2

Let the alternative hypothesis hold.

Under Assumptions 4.2a)-b) andA
1
2EH 6= 0, the procedure with a possibly infinite time horizon

has asymptotic power one:

sup
1≤k≤Nm

w2(m, k) max
0≤i≤k

S4(m, k, i)TAS4(m, k, i)
P−→∞

If N(m) = ∞ and the change-point is arbitrarily late, the additional Assumption 4.2c) is
required. The matrix A can be replaced by a consistent estimator.

Proof. First we have

sup
1≤k<N(m)

w2(m, k) max
0≤i≤k

S4(m, k, i)TAS4(m, k, i)

= sup
1≤k<N(m)

w2(m, k) max
0≤i≤k

∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

≥ sup
1≤k<N(m)

w2(m, k)

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

This term is equal to the standard CUSUM-statistic. So to finish the proof of showing that
the Page-CUSUM has asymptotic power one, we refer to Theorem 4.1 in Kirch and Kamgaing
(2015).

4.3. Consistency of the MOSUM

As explained in the beginning of the chapter, we distinguish between the cases that the change-
point k∗ and h are of the same or lower order and k∗ grows faster than h to prove the consistency
for the MOSUM statistic.

However in Assumption 4.3c) for the open-end procedure we need a rate for the speed of
convergence to infinity if k∗/h approaches infinity.

Assumption 4.3

a) The time series before the change fulfills the assumptions under the null hypothesis.

b) The change point is of the form k∗ ≤ bhνc for some 0 < ν < N m
h (in case of the open-end

procedure N = ∞). Furthermore, there exists a ball U(x0) around x0 with N m
h − 1 >

x0 > ν and ρ(x+ 1) ≥ c > 0 for x ∈ U(x0) as well as

1

h

∥∥∥∥∥∥
m+bx0hc+h∑
j=m+bx0hc+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1).
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4.3. Consistency of the MOSUM

c) In the open-end procedure and if the change point fulfills k∗ = o
(
h1+ ν

2

)
, ν > 0 as well as

if lim inf
x→∞

x
1
ν ρ(x) > 0, ν > 2, then for h→∞ we have

1

h

∥∥∥∥∥∥
m+k∗+h∑
j=m+k∗+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1),

for some EH .

Theorem 4.3

Let the alternative hypothesis hold.

Under Assumptions 4.3a)-b) and A
1
2EH 6= 0, the procedure has asymptotic power one:

sup
1≤k<N(m)

w2
M (h, k)S3(m, k, h)TAS3(m, k, h)

P−→∞ (4.3)

If N(m) = ∞ and the change-point is arbitrarily late, then Assumption 4.3c) is additionally
needed. The matrix A can be replaced by a consistent estimator.

Proof. The proof is analogous to the one that shows the consistency of the modified MOSUM.
Since we have to show (4.3) it is enough to prove

w2
M (h, k̃)S3(m, k̃, h)TAS3(m, k̃, h)

P−→∞

for a point in time k̃ later than the change-point k∗ and prior to the time horizon in the closed-end
case.

a) Closed-end procedure:
It holds k∗ ≤ bνhc and we choose k̃ = bx0hc + h. Then it holds k∗ ≤ k̃ − h. With
k̃ = bhx0c+ h and Assumption 4.3b) we know

1

h

∥∥∥∥∥∥
m+bx0hc+h∑
j=m+bx0hc+1

(
H(Xj , θ̂m)−EH

)∥∥∥∥∥∥ = oP (1)

and conclude

1

h

m+bx0hc+h∑
j=m+bx0hc+1

H(Xj , θ̂m) =
1

h
(bx0hc+ h− bx0hc)EH + oP (1)

= EH + oP (1).

Now, A
1
2EH 6= 0 entails

w2(h, k̃)
∥∥∥S3(m, k̃, h)

∥∥∥2

A
=

1

h
ρ2
M

(
k̃

h

)
‖h (EH + oP (1))‖2A
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= hρ2
M

(
bx0hc
h

)(
‖EH‖2A + oP (1)

)
= hρ2

M (x0 + 1 + o(1))
(
‖EH‖2A + oP (1)

)
P−→∞.

b) Open-end procedure:

• k∗ ≤ bhνc with Nm/h > x0 > ν:
The proof is analogous to that of the closed-end case.

• For k∗/h→∞ and k∗ = o
(
h1+ ν

2

)
:

We choose k̃ = k∗ + h which means k∗ = k̃ − h.

From Assumption 4.3c) it follows that

1

h

m+k̃∑
m+k̃−h+1

H(Xt, θ̂m) =
1

h

m+k∗+h∑
m+k∗+1

H(Xt, θ̂m) = EH + oP (1).

We further have

sup
k≥1

w2
M (h, k)

∥∥∥∥∥
m+k∑

m+k−h+1

H(Xt, θ̂m)

∥∥∥∥∥
2

A

≥ w2
M (h, k̃)

∥∥∥∥∥∥
m+k̃∑

m+k̃−h+1

H(Xt, θ̂m)

∥∥∥∥∥∥
2

A

=
1

h
ρ2
M

(
k̃

h

)
‖h(EH + oP (1))‖2A

= ρ2

(
k̃

h

)
h
(
‖EH‖2A + oP (1)

)

=

(
k̃

h

) 2
ν

ρ2

(
k̃

h

)
h1+ 2

ν k̃−
2
ν

(
‖EH‖2A + oP (1)

)
and finally

h1+ 2
ν k̃−

2
ν = h

(
h

k̃

) 2
ν

= h

(
h

k∗ + h

) 2
ν

= h

(
1

k∗

h + 1

) 2
ν

= h

(
h

k∗ + h

) 2
ν

= h

( h

h1+
ν
2

k∗

h1+
ν
2

+ h−
ν
2

) 2
ν

= h

(
h−

ν
2

k∗

h1+
ν
2

+ h−
ν
2

) 2
ν

=

(
1

k∗

h1+
ν
2

+ h−
ν
2

) 2
ν

=

(
1

o(1) + h−
ν
2

) 2
ν

=
1

o(1)
→∞.

Since lim inf
x→∞

x
1
ν ρ(x) > 0 and A

1
2EH 6= 0, the assertion follows.
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5. Examples

In this chapter we give an overview of the models in which the discussed methods have already
been considered in the literature. Moreover, we extend these models to new examples which are
included in our very general setup.

5.1. Overview

In the sequential procedure, the modified MOSUM and the Page-CUSUM statistics have, to the
best of our knowledge, only been considered in the linear model in Chen and Tian (2010) and
Fremdt (2014), respectively. The MOSUM statistic has even only been analysed in the location
model in Horváth et al. (2012) and Aue et al. (2008).

In Chen and Tian (2010) the limit distribution and the consistency under the alternative of
the modified MOSUM are developed. However, due to an error in their proof of the asymptotics
under the null hypothesis, their limit distribution is incorrect.

In the mentioned publication of Kirch and Kamgaing (2015), the theory is developed for the
CUSUM statistic in an equivalently general setting. To unify the assumptions for all statistics
under the null hypothesis we used the same assumptions as for the CUSUM statistic to prove
the corresponding limit distributions for the different types of statistics. Under the alternative
there are modified assumptions for each statistic discussed in this work. However, Assumption
A.4c) for the CUSUM statistic in Kirch and Kamgaing (2015) is stricter than necessary for our
statistics but unifies the assumptions for the CUSUM as well as our statistics.

Therefore, in the mentioned publication about the CUSUM there are many new examples
for our statistics, in which the assumptions are fulfilled and have not yet been considered in
the literature, i.e. binary models, poisson-autoregressive models and non-linear models. These
models will be studied in detail in the next paragraphs where we will give the estimating and
monitoring functions to clarify the generality of our method.

Since the statistics dealt with in this work have only been examined in the location model or
linear model, these models will be considered in detail in the next two paragraphs, to see how
the general setting applies to specified models of time series.

Note that the MOSUM in case of h/m→ 0, m→∞, discussed in Section 3.3, needs a different
assumption under H0 compared to the other statistics as stated in Assumption 3.5. Therefore,
in the next paragraphs, we will point out the required conditions on the regressors to fulfill this
assumption.

5.2. Linear regression model

The data set has the form

Xt = xTt βt + εt, 0 ≤ t <∞,

where βt = (βt,1, . . . , βt,p)
T is the unknown parameter and x = (1, xt,2, . . . , xt,p) are the random

regressors. Moreover, εt are the errors with mean zero and variance σ2. The regressors and the
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5. Examples

error sequence have to be independent. In the literature the residuals are often supposed to be
i.i.d. or uncorrelated with some moment conditions, but the minimal requirement is a functional
central limit theorem which follows from an invariance principle as in Assumption 3.6. In the
case of i.i.d residuals this follows immediately from Komlós et al. (1975).

The testing procedure is established by

the null hypothesis H0 : βt = β0 0 ≤ t <∞ against

the alternative hypothesis HA : βt = β0 m+ 1 ≤ t ≤ k∗,
βt = βA k∗ + 1 ≤ t <∞.

Here, k∗ is the change point, and m denotes the length of the historical data set.
Assuming the data follows the linear model, the modified MOSUM is considered in Chen and

Tian (2010) and the Page-CUSUM in Fremdt (2014). Both use the least square estimator to
obtain an approximation for the unknown parameter β0 based on the historical data set. So the
estimating function is

G(Xt,β) = xt(Xt − βTxt).

And the least squares estimator is obtained as solution of the equation

m∑
t=1

G(Xt, β̂m) = 0.

If we adopt another estimator we would have to modify the estimating function in a suitable
way.

The monitoring function for parameter changes is given by the sequence of the estimated
residuals, which can be expressed by

H(Xt,β) = Xt − βTxt.

Since H is the first row of G, B(θ0) = (1, 0, . . . , 0)T to garantee that the functions B(θ0)G and
H have the same dimension.

If we want to search for a change in the variance, the monitoring function is given by

H(Xt,β) = (Xt − βTxt)2 − 1

m

m∑
t=1

(Xt − βTxt)2.

To justify Assumption 3.2, Chen and Tian (2010) assumed a law of large numbers for the
regressors: There exist a positive definite matrix C and τ > 0 such that

1

n

n∑
t=1

xtx
T
t −C = O(n−τ ), a.s. (5.1)

Fremdt (2014) uses a slightly stronger assumption to get Assumption 3.2. The regressors are a
stationary series, and there is a vector d = (d1, . . . , dp)

T and constants K > 0, τ > 0 such that

E

(∣∣∣∣∣
k∑
i=1

(xi,j − dj)

∣∣∣∣∣
ν)
≤ Kk

ν
2 , 1 ≤ j ≤ p, ν > 2,

see Lemma 1 in Fremdt (2014). However, Assumption (5.1) is sufficient.
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5.2. Linear regression model

Since H(Xt,β0) = εt, 0 ≤ t < ∞, Assumption 3.3 are accordingly simplified. The existing
literature often uses a much stronger assumption on the error process, the residuals should
satisfy a strong invariance principle, namely as in Assumption 3.6 or in Assumption A.3c) in
Kirch and Kamgaing (2015), in order to obtain a pivotal limit in an easy way (see Chen and
Tian (2010) for the modified MOSUM, Fremdt (2014) for the Page-CUSUM and i.e. Aue et al.
(2006b) and Horváth et al. (2004) as well as Kirch and Kamgaing (2015) for the CUSUM
statistic). In a dependent setting, this strong invariance principle is harder to obtain than
Assumption 3.3 because the sums of the historical residuals and the subsequent residuals have
to be asymptotically independent. This strong invariance principle is fulfilled for i.i.d. errors
(Komlós et al. (1975), Komlós et al. (1976)). However they are also satisfied for certain weak
dependent processes (Schmitz and Steinebach (2010)) as well as for certain martingale differences
(Aue et al. (2006a)).

Under the alternative Assumption A4c) in Kirch and Kamgaing (2015), which is the unifying
condition for all statistics, is obtained in case of a parameter change with EH = E(H(Xt, β0)) =
cT1 (β0 − βA) 6= 0, t > k∗, where c1 is the first column of the matrix C in (5.1).

As mentioned, so far the MOSUM procedure has not been considered in linear regression.
However if h/m = O(1) the needed assumptions are identical to those of the CUSUM method,
so they are also satisfied with the same conditions on the regressors.

But if h/m → 0, m → ∞, we need Assumption 3.5. So we have to check the necessary
conditions to fulfill this assumption.

Lemma 5.1 In case of a parameter change

Let h
m → 0 and the errors {ei} be uncorrelated as well as the errors and the regressors {xi} be

independent. Furthermore, let xi be stationary and satisfy (5.1). As estimator for β is used
the least squares estimator. Then Assumption 3.5 holds for the closed-end procedure with time
horizon Nh.

Proof. In the linear model, Assumption 3.5 simplifies to

sup
1≤k<N(m)

min

(
1√
h
,

1

h
1
2
− 1
ν k

1
ν

) ∣∣∣∣∣
m+k∑

i=m+k−h+1

ε̂i −

(
m+k∑

i=m+k−h+1

εi −
h

m

m∑
i=1

εi

)∣∣∣∣∣ = oP (1).

First of all the least squares estimator is

β̂m =

(
m∑
i=1

xTi xi

)−1 m∑
i=1

xiXi.

Furthermore, it holds

β̂m − β0 =

(
m∑
i=1

xTi xi

)−1 m∑
i=1

xiXi − β0 = C−1
m

1

m

m∑
i=1

xi(x
T
i β0 + εi)− β0

= C−1
m

1

m

m∑
i=1

xix
T
i β0 +C−1

m

1

m

m∑
i=1

xiεi − β0

= C−1
m Cmβ0 +C−1

m

1

m

m∑
i=1

xiεi − β0 = C−1
m

1

m

m∑
i=1

xiεi.
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The estimated residuals are defined as

ε̂i = Xi − xTi β̂m

and consequently we have

m+k∑
i=m+k−h+1

ε̂i =
m+k∑

i=m+k−h+1

(
yi − xTi β̂m

)
=

m+k∑
i=m+k−h+1

(
εi − xTi (β̂m − β0)

)

=
m+k∑

i=m+k−h+1

εi −

(
m+k∑

i=m+k−h+1

xi

)T
C−1
m

1

m

m∑
i=1

xiεi.

Accordingly, it is sufficient by cT1C
−1∑m

i=1 xiεi =
∑m

i=1 εi to show

sup
1≤k<N(m)
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(
1√
h
,
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h
1
2
− 1
ν k

1
ν

)
∣∣∣∣∣∣ 1

m
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i=m+k−h+1

xi

)T
C−1
m − hcT1C−1

 m∑
i=1

xiεi

∣∣∣∣∣∣ = oP (1), (5.2)

where Cm = 1
m

m∑
i=1
xix

T
i . Equation (5.2) can be rewritten as
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xiεi

∣∣∣∣∣∣ . (5.3)

Notice that, because {εi, 1 ≤ i <∞} and {xi, 1 ≤ i <∞} are independent, then

m∑
i=1

xiεi = OP (
√
m). (5.4)

Next we show that the last term in brackets figuring in (5.3) is asymptotically negligible by (5.1)
and h

m → 0. To this end, observe that

sup
1≤k<N(m)
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(
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h
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)
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≤
√
h

m
cT1
(
C−1
m −C−1

)
= oP (1).

Consequently, by (5.1) and (5.4) it is sufficient that the random regressors xi satisfy

sup
1≤k<N(m)
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∣∣∣∣∣ = oP (1). (5.5)

Since the time horizon is Nh and the assumption that the regressors xi satisfy a law of large
numbers as in (5.1), we have
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By the stationarity of the regressors xi we obtain

sup
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However if we use, besides stationarity and the law of large numbers in (5.1), a strong invariance
principle analogous to Assumption 3.6 for the regressors xi, we are able to show condition (5.5)
in the open-end case.
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Lemma 5.2

Let the assumptions of Lemma 5.1 be satisfied and the regressors {xi} fulfill a strong invariance
principle

k∑
i=1

(xt − c1)−W (k) = O(k
1
ν ) a.s., ν > 2,

where W is a Wiener process with some covariance matrix Σ and c1 the first column of the
matrix C in (5.1). Then Assumption 3.5 holds for the open-end procedure.

Proof. As we saw in the proof of the previous lemma, it is sufficient to show equation (5.5).

By analogy with the reasoning leading to (3.27) in the proof of Theorem 3.6, we have
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The first term is in oP (1) by (3.26). For the second term, Assumptions 3.4a) and c) yield
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5.3. Mean change model

= OP (1)o(1)O(1) = oP (1) as N →∞ uniformly in m.

Then condition (5.5) follows
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In summary, for the closed-end procedure condition (5.5) is fulfilled for ergodic regressors, and
in case of an infinite time horizon we additionally need a strong invariance principle.

5.3. Mean change model

The observations have the form

Xt = µ+ ∆1{t>k∗} + εt, 0 ≤ t <∞,

where k∗ is the change point, µ ∈ R is the mean prior the change, ∆ 6= 0, and εt is the error
sequence with mean zero and variance σ2. The multivariate mean change model is also included
in the general setup but for simplicity we concentrate on the univariate model.

If we choose p = 1 in the linear regression model, then β0 = µ and βA = µ+ ∆. So the mean
change model, also called location model, is included in the linear model.

The function G to determine an estimator for the unknown mean µ calculated by the historical
data set simplifies to

G(Xt, µ) = Xt − µ.

Thus we obtain the arithmetic mean as estimator. Since the monitoring function H is based on
the estimated residuals, H simplifies to

H(Xt, µ̂) = Xt −Xm, Xm =
1

m

m∑
i=1

Xi.

B(θ0) = 1 because the function G and H have both dimension 1. Assumption 3.2 holds exactly
in the mean change model as shown in the following calculation:

m+k∑
i=m+1

H(Xi, θ̂m)−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)


=

m+k∑
j=m+1

Xj − kXm −

 m+k∑
j=m+1

Xj − kµ−
k

m

m∑
j=1

(Xj − µ)

 = 0. (5.6)
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In Horváth et al. (2012) which considers the location model for the MOSUM statistic but only
in the closed-end procedure, the lines in (5.6) are shown in (A.1). In the mentioned publication
and in Aue et al. (2008), they use a general continuous weight function satisfying

inf
0≤t≤T

g(t) > 0,

and this condition matches with Assumption 3.4a). The conditions in Assumptions 3.4b) and
c) are not necessary because there is only a focus on the closed-end procedure. So they used the
weight functions

ρ1(t) =
(

max
(

1, t
1
3

))−1
,

ρ2(t) = (max (1, log(1 + t)))−
1
2

in their simulation study. These functions fulfill Assumption 3.4a) which controls the behaviour
at zero and is necessary for the closed-end procedure. However, the conditions which have to
hold for the open-end case are not satisfied. Precisely, ρ1 satisfies Assumption 3.4c), but does
not conform to Assumption 3.4b). The function ρ2 does not conform to both assumptions.

We recall the fact that in the linear model a parameter change can be detected if cT1 (βA−β0) 6=
0. Hence in case of the location model the consistency can be shown as long as there is a mean
change in the time series, so ∆ 6= 0.

5.4. Non-linear model

Aue et al. (2006a) suppose a GARCH-sequence and search for changes in its parameters with the
CUSUM statistic. They use the log likelihood score function as estimating as well as monitoring
function. To obtain the limit distributions for our statistics we need their Lemma 6.4, in which
they establish Assumption 3.2 as well as Lemma 3.3, in which Assumption 3.3 is shown.

Ciupera (2013) considers a non-linear regression model

Xt = f(xt,β0) + εt,

where the residuals are assumed to be i.i.d. and the function f is known.
To estimate the unknown parameter β0 based on the historical data set, they use the least

squares estimator. Thus the estimating function is

G(Xt,β) = ∇f(xt,β)(Xt − f(xt,β)),

and the monitoring function is defined as the estimated errors

H(Xt,β) = Xt − f(xt,β).

Assumption 3.2 is shown in their Lemma A.1. Under the alternative Assumption, A.4c) in Kirch
and Kamgaing (2015) is proven in their Theorem 3.2 with EH = E(f(xt,β0)) − E(f(xt,β1)),
where β1 is the parameter after the change has occurred. Since for our statistics Assumptions
4.1c), 4.2c) and 4.3c) follow from the Assumption A.4c) in Kirch and Kamgaing (2015), these
assumptions are also fulfilled. Furthermore, Kirch and Kamgaing (2011) proposed a similar
approach for non-linear autoregressive time series, but in a nonparametric setup, where they
search for a change in the autoregression function g that determines the observation structure

Xt = g(Xt−1, . . . , Xt−p) + εt.
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5.5. Binary model

Typically, a binary model is defined as

Xt|Xt−1, Xt−2, . . . , Zt−1, Zt−2, · · · ∼ Bern(πt(β)), g(πt(β)) = βTZt−1,

where Zt−1 = (Zt−1, . . . , Zt−p) is a regressor.
There are a lot of examples for binary time series, i.e. Wilks and Wilby (1999) test whether

it has been raining on a specified day. Kauppi and Saikkonen (2008) and Startz (2008) in-
vestigate whether a recession has occurred in a specific month. The canonical link function
g(x) = log(x/(1 − x)) is usually used as function g, and the monitoring function is typically
G((Xt,Zt−1),β) = Zt−1(Xt − πt(β)), which comes from the partial likelihood scores.

Kirch and Kamgaing (2015) gives a simulation example as well as a real data example about
US recession data for the monitoring scheme with the CUSUM statistic, where the monitoring
function H is chosen equal to the estimating function G.

5.6. Poisson autoregressive model

The Poisson autoregressive model is defined as

Xt|Xt−1, . . . , Xt−p ∼ Pois(λt), λt = fθ(Xt−1),Xt−1 = (Xt−1, . . . , Xt−p)
T .

There exists a stationary and ergodic solution which is β-mixing with exponential rate (see
Neumann (2011)) if fθ(x) is Lipschitz-continuous in x for all θ ∈ Θ with a Lipschitz constant
smaller than 1. For the mentioned solution we obtain Assumption 3.3.

The monitoring function G is again obtained by the partial log likelihood scores and the moni-
toring function H is often chosen equal to G as in the simulation study for Poisson autoregressive
time series in Kirch and Kamgaing (2015).

We refer to Kirch and Kamgaing (2015) for more details about these models.
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In this chapter we compare our monitoring schemes including the standard CUSUM statistic in
terms of empirical size, power and run length. The run length is the time period from m+ 1 till
the procedure stops, so till the stopping time point.

Particularly, we use the size-adjusted power and the normalized density estimation of the
size-adjusted run-length for a better comparison of the monitoring schemes. More precisely,
a higher empirical size leads to a better power and shorter run-length. Hence we can only
compare the statistics in a meaningful way if we fix the empirical size before determining the
power and run-length which are the so-called size-adjusted power and size-adjusted run-length.
However if we compare the size-adjusted run length of the procedures with the help of the density
estimation, we should also take into account the size-adjusted power. The reason is, if there are
two procedures with similar run length but one of them has a better size-adjusted power, this
advantage for one of the methods has to be visible in the density estimation for comparison.
Thus we use the normalized density estimation of the run length where the area under the
estimated density function is equal to the size-adjusted power of each procedure rather than to
the standard density estimations where the area under the curve is always equal to 1.

We suppose the mean-change model Xt = µ + ∆1{t>k∗} + εt, t = 1, · · · , N , with µ = 0 and
∆ 6= 0. If there is a mean change, we have k∗ < N . Otherwise, k∗ = N . So the observations
first have mean zero and at time k∗ + 1 the mean possibly jumps up or down to the level ∆.
The errors are supposed to be i.i.d. standard normally distributed. The estimating function is
G(Xt, µ) = Xt − µ, and the monitoring function H(Xt, µ̂) = ε̂t = Xt −Xm.

The empirical results are based on a training period of length m = 100, a monitoring period
of N = 200, and 2500 repetitions. The simulations of the limit processes for each statistic are
based on 10000 repetitions.

We put 1/σ in front of the sum of the monitoring function and use the true variance of the
errors σ = 1 for the simulations as well as we use for the CUSUM, Page-CUSUM and modified
MOSUM statistic the most popular boundary function

w(m, k) = m−
1
2

(
1 +

k

m

)−1( k

k +m

)−γ
.

Then we get a pivotal limit, i.e. the limit process does not include any unknowns, as stated in
the Corollaries 3.1 and 3.2. For the MOSUM we use the weight function

wM (h, k) =

(
2 max

(
1, log

(
1 +

k

h

)))− 1
2

.

As window size width we choose 10 and 20. So the bandwidth is relatively small compared to
m = 100. Consequently we simulate the pivotal limit in Corollary 3.5b) with a chosen rescaled
time horizon N ′(h) depending on the used window size width h such that N ′(h)h = Nm = 200.

In Table 6.1 the empirical size is stated for all statistics. We notice that the empirical size of
the CUSUM, Page-CUSUM and modified MOSUM statistics increases in γ, and the modified
MOSUM method additionally in the bandwidth parameter h. The increase in γ comes from its

81



6. Simulation Study

influence on the behaviour of the boundary function especially at the beginning of the monitoring
time. More precisely, the higher γ the lower is the boundary function for small k (see Figure 6.1).
Thus for γ near to 1

2 , the procedure stops more often already after a few observations than for a γ
near to zero. The reason is that at the beginning of the monitoring, and consequently k is small,
only a few observations are used for summation, which increases the risk of a false alarm. We see
this effect in Figure 6.1. In the left plot the procedure does not stop under the null hypothesis
but on the right side it does after a few observations. The empirical size of the MOSUM statistic
also increases with the bandwidth h caused by the similar behaviour of the used weight function.
It has lower values at the beginning of the monitoring time for greater window size and the other
way around. However the nominal level is maintained for all parameter constellations except in
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Figure 6.1.: CUSUM under the null hypothesis

case of the modified MOSUM procedure, where γ and h have simultaneously very high values,
i.e γ near to 1

2 and h near to 1. There the mentioned effect is huge as we see in the Table 6.1
by the red numbers. If h is near to 1 there are extremely few observations used to calculate the
statistic, because the lower and upper bound of the corresponding sum are very close to each
other, particularly if k is small, i.e at the beginning of the monitoring time.

To solve this problem of the modified MOSUM statistic we can wait for am observations with
am/m → 0, m → ∞ and then start monitoring. The null asymptotics still remain the same
showed in the proof of Theorem 3.1. In Table 6.2 we use am =

√
m and see that the empirical

size is lower or equal for all values of h as before. For γ = 0 the empirical sizes are unaltered so
there is no consequence of waiting for am observations. For γ = 0.25 or 0.45 and h = 0.1 or 0.4
the empirical size is somewhat lower than before, however the procedures have already hold the
nominal level before. But if h = 0.9 and γ = 0.25 the values are also only slightly lower but now
the level is hold. The focus is on the empirical size if the values of h and γ are simultaneously
very high, actually the empirical size is much lower than without waiting for am observations
(see the green numbers in Table 6.2). So we conclude that the major part of the false alarms
occurs at the beginning of the monitoring time.

By the comparison of the size-adjusted power in Table 6.3, first notice that the use of γ = 0
is best in all situations. Furthermore early changes are detected best by the modified MOSUM
statistic with h = 0.1 and changes in the middle of the monitoring time with h = 0.4 and late
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γγγ 0 0.25 0.45

ααα 5 10 5 10 5 10

CUSUM

1.12 2.96 2.32 5.92 3.36 5.96

Page-CUSUM

0.96 2.76 1.8 5.32 2.16 3.84

mod. MOSUM

h = 0.1 :h = 0.1 :h = 0.1 : 0.88 3 1.92 4.48 3.04 6.88

h = 0.4 :h = 0.4 :h = 0.4 : 1.76 3.68 2.88 6.08 4.08 8.84

h = 0.9 :h = 0.9 :h = 0.9 : 4.4 7.76 8.76 14.24 38.04 44.8

MOSUM hhh 10 20

4.24 8.4 5.04 10.56

Table 6.1.: Empirical size (in %)

γγγ 0 0.25 0.45

ααα 5 10 5 10 5 10

h = 0.1 :h = 0.1 :h = 0.1 : 0.88 3 1.92 4.48 2.32 5.08

h = 0.4 :h = 0.4 :h = 0.4 : 1.76 3.68 2.88 6.08 2.2 5.04

h = 0.9 :h = 0.9 :h = 0.9 : 4.4 7.76 4.76 8.84 3.6 6.36

Table 6.2.: Empirical size modified MOSUM statistic with am =
√
m (in %)
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6. Simulation Study

changes with h = 0.9 highlighted by the green numbers in the table. Further note that the very
high empirical size for high values of γ and h ruins the power such that it is equal to the nominal
level of 5 % (in Table 6.3 the red numbers). But if we start monitoring again after am =

√
m

observations, the power increases particularly for h = 0.9 (the bold numbers in Table 6.3).
Finally we compare our procedures concerning the size-adjusted run length using the normal-

ized density estimation plots. The MOSUM procedure is very stable at the beginning of the
monitoring time because the window width reaches into the training period and does not only
use a few observations for the summation, in contrast to the other schemes. This is reflected in
Figure 6.2(a) where the MOSUM statistic is the quickest procedure to detect an early change.
For a late change the modified MOSUM method with h near to 1 is the quickest procedure (see
Figure 6.2(b)). This is due to the fact that the modified MOSUM statistic with a high value for
h and in case of a late change includes only some observations in the statistic but not all. With
including all observations after the training period as in case of the CUSUM statistic, it would
take a longer time to reach the boundary function. On the other, hand the modified MOSUM
statistic does not use too few observations where the risk for a false alarm is high. Figure 6.3(a)-

Figure 6.2.: Normalized density estimation of the run length (change=0.5, γ = 0)
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(a) k∗ = 10

0 50 100 150 200

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Monitoring Time

cusum
page_cusum
mod. mosum h0.1
mod. mosum h0.4
mod. mosum h0.9
mosum h10T20
mosum h20T10

(b) k∗ = 150

(b) shows the effect of too early detection in case of the modified MOSUM statistic with a high
value of h and even already if γ = 0.25. Directly after starting monitoring there are peaks which
means that the procedure gives false alarms and stops before the change has occurred.

However if we wait for am observations, the peaks disappear as we see in Figure 6.3(c)-(d).
If we choose γ = 0.45, the effect of too early detection would already appear for h = 0.4

for the modified MOSUM statistic as well as for the Page-CUSUM and CUSUM statistic to
a less extent. The effect also slightly appears for the MOSUM statistic as we see in Figure
6.3(a)-(d). But in case of the Page-CUSUM and CUSUM procedures we could also wait for am
observations and the limit processes would remain the same as noted in the proofs of Theorem
3.3 and Theorem 3.1 in Kirch and Kamgaing (2015). In case of the MOSUM procedure we could
start monitoring after the duration of one bandwidth and use the corresponding limit process
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γγγ 0 0.25 0.45

CUSUM k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 95.84 95.24 92.4
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 86.36 84.48 76.24
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 45.32 42.76 31.16
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 13.24 11.76 8.68

Page-CUSUM k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 97.08 96.64 94.8
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 92.16 90.76 85.36
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 55.36 50.32 39.76
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 14.96 12.52 9.72

mod. MOSUM
h = 0.1 :h = 0.1 :h = 0.1 :

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 97.32 96.88 93.76
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 91.92 89.72 82.08
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 51.48 46.28 34.4
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 15.04 12.28 9.24

h = 0.4 :h = 0.4 :h = 0.4 :

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 96 95.28 87.64
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 94.84 93.16 82.36
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 74 67.08 46.68
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 21 16.28 9.12

h = 0.9 :h = 0.9 :h = 0.9 :

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 69.52 50.36 5.04
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 68.8 47.08 5.04
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 57.6 32.64 5.04
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 37.36 18.48 5.04

mod. MOSUM with
am =

√
m = 10am =
√
m = 10am =
√
m = 10

h = 0.1 :h = 0.1 :h = 0.1 :

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 97.32 96.88 95.16
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 91.92 89.72 84.2
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 51.48 46.24 37.08
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 15 12.28 9.52

h = 0.4 :h = 0.4 :h = 0.4 :

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 96 95.28 91.44
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 94.84 93.12 86.6
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 74 67.04 52.6
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 21 16.24 10.6

h = 0.9 :h = 0.9 :h = 0.9 :

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 69.52 62.68 38.28
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 68.8 59.2 28.76
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 57.56 42.48 14.92
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 37.32 24.4 8.32

MOSUM hhh 10 20

k∗ − 1=0.05qk∗ − 1=0.05qk∗ − 1=0.05q 45.92 75.68
k∗ − 1=0.2qk∗ − 1=0.2qk∗ − 1=0.2q 24.12 56.96
k∗ − 1=0.5qk∗ − 1=0.5qk∗ − 1=0.5q 10.4 30
k∗ − 1=0.75qk∗ − 1=0.75qk∗ − 1=0.75q 6.68 15

Table 6.3.: Size-adjusted power (in %)
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6. Simulation Study

as stated in (3.29) or (3.30), where the supremum is only taken from the time points 1 to N .

Figure 6.3.: Normalized density estimation of the run length: Effect of too early detection
(change=1, γ = 0.25)
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(a) k∗ = 40
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(b) k∗ = 150

Waiting for am =
√
m = 10 observations
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(c) k∗ = 40
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(d) k∗ = 150
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Multivariate Bootstrap Methods
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7. Introduction and Motivation

We consider the offline change-point procedure where we observe a data set of length N and
search for a change in the parameter of the assumed model.

The multivariate observations X(t) = (X1(t), X2(t), ..., Xd(t))
T , t = 1, ..., N , have possibly a

change in the mean and thus follow the model

Xi(t) = µi + ∆i1{t>k∗} + εi(t). (7.1)

Here, µ = (µ1, ..., µd)
T is the mean vector (before the change), ∆ = (∆1, ...,∆d)

T the change
vector, and k∗ the change point. Further, let ε(t) = (ε1, ..., εd)

T be a centered stationary time
series with existing second moments. Additionally, we assume the validity of the functional
central limit theorem:  1√

N

bNtc∑
j=1

ε(j) : 0 ≤ t ≤ 1

 D[0,1]−→ {Σ
1
2W (t)}, (7.2)

where {W (t) : t ≥ 0} is a standard multivariate Wiener process, and Σ is the long-run covariance
matrix of the multivariate error sequence ε(t), which is defined as

Σi,j =
∑
h∈Z

Cov(εi(0), εj(h)), i, j = 1, · · · , d.

To test the null hypothesis H0 of no change in the mean µ against the alternative H1 that there
exists a mean change in the time series at a time point k∗, we use the offline CUSUM statistic

SN := max
1≤t≤N

1

N

 t∑
j=1

(X(j)−XN )

T

Σ−1

 t∑
j=1

(X(j)−XN )

 .

To compute the statistic SN , the long-run covariance matrix Σ must be estimated. A suitable
estimator of Σ is the flat-top-kernel estimator introduced in Politis (2011). However, if the
data are strongly dependent or the dimension d is large, the estimator is not suitable, especially
because we need its inverse. The problem is that the estimation error of Σ increases with the
dimension d and if the inverse is needed, the numerical error of the calculation of the inverse
comes on top. Even if the dimension is too high, the inverse can not be calculated. Alternatively,
there is a statistic which does not take all dependencies into account. It only respects the
dependence in time, but not between the components, by merely using the diagonal elements of
Σ. Consequently, the statistic is defined as

TN := max
1≤t≤N

1

N

 t∑
j=1

(X(j)−XN )

T

Λ−1

 t∑
j=1

(X(j)−XN )

 ,

where Λ = diag(Σ1,1, · · · ,Σd,d).
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7. Introduction and Motivation

If we want to test for a change in a time series with a relatively low dimension d such as d ≤ 4,
the estimator of the long-run covariance matrix Σ performs still well enough, and so we can
apply the statistic SN for testing. We can either do bootstrapping, which often provides better
approximations for the critical values if the sample size is small, or we use an asymptotic test
where the limit process of the statistic is required for approximating the critical values. If we
observe a time series of higher order, the estimator of Σ is not stable, thus we have to use the
statistic TN , where we only take some dependencies into account.

In the next Theorem we develop the limit distributions for both statistics under H0.

Theorem 7.1

Let the observations X(t) = (X1(t), X2(t), ..., Xd(t))
T , t = 1, ..., N , follow the model in (7.1)

and the error sequence fulfills (7.2). Then under H0, we have

a)

SN
D−→ sup

0≤t≤1
BT (t)B(t) = sup

0≤t≤1

d∑
i=1

B2
i (t) as N →∞,

where {B(t)} is a d-dimensional standard Brownian bridge and Bi, i = 1, · · · , d, are
independent univariate Brownian bridges.

b)

TN
D−→ sup

0≤t≤1
BT (t)Σ

1
2 Λ−1Σ

1
2B(t) = sup

0≤t≤1

d∑
i=1

B̃2
i (t) as N →∞.

where {B(t)} is a d-dimensional standard Brownian bridge and B̃i(t), i = 1, · · · , d, are

univariate Brownian bridges with covariance matrix Λ−
1
2 ΣΛ−

1
2 .

The assertions continue to hold true if we replace Σ and Λ by consistent estimators.

Proof. Under H0 we have

t∑
j=1

(X(j)−XN ) =

t∑
j=1

(ε(j)− εN ), where εN =
1

N

N∑
i=1

εi.

a) Let Σ̂ be a consistent estimator of Σ. Then from (7.2) it follows that

max
1≤t≤N

1

N

 t∑
j=1

(X(j)−XN )

T

Σ̂
−1

 t∑
j=1

(X(j)−XN )


= max

1≤t≤N

1

N

 t∑
j=1

(ε(j)− εN )

T

Σ̂
−1

 t∑
j=1

(ε(j)− εN )


= max

1
N
≤s≤1

1

N

bNsc∑
j=1

(ε(j)− εN )

T

Σ̂
−1

bNsc∑
j=1

(ε(j)− εN )
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D−→ sup
0<s≤1

(
Σ

1
2 (W (s)− sW (1))

)T
Σ−1Σ

1
2 (W (s)− sW (1))

= sup
0<s≤1

BT (s)B(s) = sup
0≤s≤1

d∑
i=1

B2
i (s).

b) The proof is analogous to the proof of a).

By the previous theorem we conclude that the limit process of SN is distribution-free and can be
used to compute asymptotic critical values. However, the limit distribution of TN does not have
this property, hence it is not suitable for asymptotic testing. For TN we definitely need bootstrap
methods. More precisely, for data in higher dimensions we cannot use SN and consequently no
asymptotic test. Instead, we have to use TN with bootstrapping. In this part of the work we
focus on higher-dimensional data, thus we use the statistic TN with bootstrapping.

The bootstrap methods we will use are based on the estimated errors. Notice that we have
collected data following the mean change model specified in (7.1) and first have to estimate the
unknown errors. Subsequently, the estimated errors can be bootstrapped.

In general, bootstrapping means that many new sequences are generated from a given sequence
by sampling with replacement in some way. Bootstrap methods in the change-point analysis
are methods where the critical values are not approximated by quantiles of the asymptotic
distribution under the null hypothesis, but calculated by bootstrapping the series with the hope
of a better approximation of the true distribution of the test statistic. Hence, the critical values
are approximated by the quantiles of the bootstrapped sequences. Thus the bootstrap method is
valid if the probability function of the statistic based on the bootstrapped sequence conditioned
by the real data set still converges in probability or even almost surely to the limit process under
H0 of the statistic based on the original data set, no matter whether the null hypothesis or the
alternative holds, while the sample size N grows to infinity.

The first bootstrap considered is the Efron-Bootstrap introduced in Efron (1979). The Efron-
Bootstrap is suitable for independent observations, due to the sampling of each single data point
with replacement. Every dependency structure in the data would be destroyed by this way of
bootstrapping. Then the Efron-Boostrap is advanced for dependent data, where no longer every
single data point is sampled with replacement, but the sequence is splitted into blocks which
are sampled with replacement. The idea is to preserve the existing dependency structure in the
data set within the blocks. This bootstrap method is called the block-bootstrap first suggested
in Hall (1985) and Carlstein (1986).

Later, several modifications of the block-bootstrap have been developed. First, there is the
so-called moving-block-bootstrap (Künsch (1989) and Liu and Singh (1992)), there the blocks
are allowed to be overlapping. To avoid the problem of underrepresented data points at the
beginning and the end of the time series, the circular overlapping block-bootstrap was considered
by Politis et al. (1992), where the data set is periodically extended and the bootstrapped data
points are centered around the sample mean.

Furthermore there are the dependent wild-bootstrap and the AR-sieve-bootstrap developed
for dependent series. The first one, proposed by Shao (2010), does not use blocks for bootstrap-
ping, but instead a suitable kernel function with a bandwidth l. The AR-sieve-bootstrap is a
parametric bootstrap based on an AR-assumption on the error sequence, which was first intro-
duced by Kreiss (1988). However, these two bootstrap methods have not yet been transformed
into the change-point context.
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7. Introduction and Motivation

In the next chapter we will introduce the mentioned bootstrap methods in more detail and
then focus on the circular overlapping block-bootstrap, where we develop its validity. To show
the validity of a bootstrap method, first it has to be shown, that the limit process of the
statistic based on scores fulfilling some moment conditions, is the same than that of the original
statistic under H0. Then the scores can be replaced by the estimated residuals, which satisfy
the requirements of the scores P -stochastically or almost surely.

In contrast to the other methods, the circular overlapping block-bootstrap has already been
analysed in the change-point context by Kirch (2006), but only in the univariate mean change
model and with the help of an invariance principle satisfied by the scores as stated in Corollary
D.2 in the Appendix of Kirch (2006).

However, we will derive functional central limit theorems for scores in Chapters 9 and 10,
which are sufficient to obtain the correct limit behaviour of the bootstrapped series given a
data set following either H0 or H1. First we develop such a theorem in the simplest case,
namely the univariate Efron-Bootstrap, and extend it to the univariate circular overlapping
block-bootstrap in order to obtain the limit theorems in the multivariate Efron-case and finally
for the multivariate circular overlapping block-bootstrap.

In Chapter 11 we compare the mentioned bootstrap methods in a detailed simulation study.
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8. Bootstrap Methods

As explained in the previous chapter we definitely require bootstrap methods in combination
with the statistic TN , which we have to use for higher-dimensional data. The investigated
bootstrap methods are the circular overlapping block-bootstrap, the dependent wild-bootstrap
and the AR-sieve-bootstrap. In this chapter we will introduce these methods in detail, where
all bootstrap methods are based on the estimated residuals. They are defined as follows:

êi(t) = Xi(t)− µ̂i − ∆̂i1(t>k̂∗i )
, i = 1, . . . , d; t = 1, . . . , N ;

where

k̂∗i = arg max

1 ≤ t ≤ N :
t∑

j=1

(
Xi(j)−Xi,N

) , Xi,N =
N∑
j=1

Xi(j),

µ̂i =
1

k̂∗i

k̂∗i∑
t=1

Xi(t), ∆̂i =
1

N − k̂∗i

N∑
t=k̂∗i +1

(Xi(t)− µ̂i).

8.1. Circular Overlapping Block-Bootstrap

Before using the circular overlapping block-bootstrap we first have to prepare the time series by
extending it periodically. Afterwards, the blocks are built and sampled with replacement in the
way explained in the following lines.

The block length is defined as K and the number of blocks as L. We construct a bootstrap
sequence X∗b(1), . . . ,X∗b(N) with X∗b(t) = (X∗b,1(t), . . . , X∗b,d(t)) from the observations X(t) =
(X1(t), . . . , Xd(t)), t = 1, . . . , N , by putting

X∗b,i(Kl + j) = êi(UN (l) + j), l = 0, . . . , L =

⌊
N

K

⌋
, j = 1, . . . ,K.

Here, êi(t), t = 1, . . . , N , are the estimated residuals, and {UN (l)}, l = 0, . . . , L, are i.i.d. uni-
formly distributed in 0, . . . , N −1 and independent of {X(t)}. Consequently, the starting points
for the blocks are 0, . . . , N − 1. Thus we need the above-mentioned periodic extension of the
time series X(t) from which we estimate the error sequence according as

êi(t) = êi(t−N), t > N.

The statistic based on the bootstrapped sequence is:

T ∗N = max
1≤t≤N

1

N

 t∑
j=1

(X∗b(j)−X∗b,N )

T

Λ̂∗
−1

 t∑
j=1

(X∗b(j)−X∗b,N )

 ,

where Λ̂∗ is a diagonal matrix with

Λ̂∗i,i =
1

N

L∑
l=0

(
K∑
k=1

(X∗b,i(Kl + k)−X∗b,i,N )

)2

, i = 1, . . . , d. (8.1)
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8. Bootstrap Methods

8.2. Dependent Wild-Bootstrap

The dependent wild-bootstrap does not use blocks. Instead, it produces the bootstrapped series
by using a kernel function. The sequence X∗w(1), . . . ,X∗w(N) is generated as follows:

X∗w(t) = (X∗w,1(t), . . . , X∗w,d(t)), with X∗w,1(t) = êi(t)Z(t),

where Z(t), t = 1, . . . , N , are centered, have variance 1 and are independent of X(t), t =
1, . . . , N . The covariance of Z(t) is k((t − s)/l), 0 ≤ t ≤ N, 0 ≤ s ≤ N with a suitable kernel
and bandwidth l. Later we will use the Bartlett kernel for simulations

k(x) =

{
1− |x|, |x| < 1

0, otherwise.

The statistic based on the bootstrapped sequence with the dependent wild-bootstrap is calcu-
lated equivalently on the block-bootstrap according to

T ∗N = max
1≤t≤N

1

N

 t∑
j=1

(X∗w(j)−X∗w,N )

T

Λ̂∗
−1

 t∑
j=1

(X∗w(j)−X∗w,N )

 .

Here, Λ̂∗ is the flat-top kernel estimator as proposed in Politis (2011), only with diagonal ele-
ments. In the simulation study we will explain the flat-top kernel estimator in detail.

8.3. Vector-AR-Sieve-Bootstrap

The AR-sieve-bootstrap is a parametric bootstrap with an AR(∞)-assumption on the multivari-
ate errors. The order p of the fitted AR-model of the errors depends on the sample size N and
it is assumed that p(N)→∞ as N →∞. The bootstrap method can be described as follows:

First calculate the multivariate Yule-Walker estimators Â1, . . . , Âp for a given order p of the
AR(p)-errors by the equation(

Â1, . . . , Âp

)(
Γ̂r,s=1,...,p

)
=
(
Γ̂(1), . . . , Γ̂(p)

)
,

where Γ̂(h) is the empirical autocovariance matrix of the estimated errors ê(t), t = 1, · · · , N .
According to the assumption on the errors, they are an AR(p)-sequence. Hence they have the

form e(t) = ε(t)+
∑p

i=1Aje(t− i), where ε(t) is the noise term and Aj is the parameter matrix.
To calculate the bootstrap sequence we first need the estimated noise term of the AR(p)-sequence

r(t) = ê(t)−
p∑
j=1

Âj ê(i− j)

which we have to center up according to

r̃(t) = r(t)− rN .

Then the bootstrap sequence is constructed according to

X∗s(t) =

p∑
j=1

ÂjX
∗(i− j) + r∗(t), r∗(t) = r̃(Ul),
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8.3. Vector-AR-Sieve-Bootstrap

where Ul is independent uniformly distributed in 1, . . . , N . Then we obtain the bootstrapped
sequence X∗s(1), . . . ,X∗s(N). The statistic is calculated like in the dependent wild-bootstrap
case, i.e.,

T ∗N = max
1≤t≤N

1

N

 t∑
j=1

(X∗s(j)−X∗s,N )

T

Λ̂∗
−1

 t∑
j=1

(X∗s(j)−X∗s,N )

 ,

where Λ̂∗ is the flat-top kernel estimator.
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In this chapter we prove the validity of the univariate Efron bootstrap and the circular overlap-
ping block-bootstrap.

To investigate the validity of a bootstrap method, we have to ensure that the critical values
calculated by the bootstrapped sequences are good approximations for the critical values based
on the null asymptotics, which means that the bootstrap test asymptotically hold a given level.

Precisely, we must show that, given the observed data set no matter whether it follows H0 or
H1, the statistic based on the bootstrapped series has the same limit behaviour as the original
statistic under H0.

As seen in Theorem 7.1 in the previous chapter, if a functional central limit theorem holds
for the bootstrapped series under H0 as well as under H1, then we easily obtain the same limit
process.

The way to get the validity of the bootstrap methods is to show a functional central limit
theorem for scores sampled with replacement in the desired way and afterwards replace them
by the estimated residuals of the actually observed data, if they satisfy the required conditions
of the scores P -stochastically under H0 and H1.

To prove a functional central limit theorem, we have to prove the convergence of the finite-
dimensional distributions and the tightness of the corresponding partial sum process.

To finally obtain the asymptotics for the multivariate bootstrap methods, we first deal with
the univariate methods.

9.1. Univariate Efron-Bootstrap

We first focus on the Efron-bootstrap where the bootstrapped sequences are created by sampling
the observed data points of a time series with replacement.

A univariate data set X(t), t = 1, . . . , N is given. The Efron-bootstrap sequence is defined as

X∗(t) = ê(UN (t)), t = 1, . . . , N,

where ê(t), t = 1, . . . , N , are the estimated residuals{UN (t)}, t = 1, . . . , N , are i.i.d. uniformly
distributed in 1, . . . , N and independent of {X(t)}.

Theorem 9.1

Functional Central Limit Theorem (FCLT) for univariate Scores by using the Efron-
Bootstrap:
Let aN (i), i = 1, ..., N , be scores and UN (i), i = 1, ..., N , independent uniformly distributed
random variables in {1, 2, ..., N} and independent of {X(·)}. Suppose there are a δ > 0 and
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constants D1, D2 > 0 such that

1

N

N∑
i=1

|aN (i)− aN |2+δ ≤ D1 (9.1)

and

σ2
N (a) = Var(aN (UN (1))) =

1

N

N∑
i=1

|aN (i)− aN |2 ≥ D2. (9.2)

Then, as N →∞ 1√
NσN (a)

bNtc∑
i=1

(aN (UN (i))− aN ) : 0 ≤ t ≤ 1

 D[0,1]−→ {W (t) : 0 ≤ t ≤ 1} ,

where {W (t)} is a standard Wiener process.

Proof. According to Billingsley (1968) Theorem 15.1, it is sufficient to show the tightness and
the convergence of the finite-dimensional distributions to get the FCLT.

First of all we have E(aN (UN (i))) = aN .

1. The convergence of the finite-dimensional distributions:
For a single time point 0 ≤ s ≤ 1 we have

1√
NσN (a)

bNsc∑
i=1

(aN (UN (i))− aN )
D−→W (s),

because the Ljapunov-Condition holds due to the conditions (9.1) and (9.2):

1(
Nσ2

N (a))
)1+ δ

2

bNsc∑
i=1

E
(
|aN (UN (i))− E(aN (UN (i)))|2+δ

)

=
bNsc
N

N∑
i=1
|aN (i)− aN |2+δ

(
N∑
i=1
|aN (i)− aN |2

) 2+δ
2

=
bNsc
N

N

N1+ δ
2

1
N

N∑
i=1
|aN (i)− aN |2+δ

(
1
N

N∑
i=1
|aN (i)− aN |2

) 2+δ
2

= o(1).

By the central limit theorem we then get

1√
NσN (a)

bNsc∑
i=1

(aN (UN (i))− aN )

=
1

σN (a)

√
bNsc
N

1√
bNsc

bNsc∑
i=1

(aN (UN (i))− aN )
D−→W (s).

For two time points 0 ≤ s < t ≤ 1:

First we define XN (s) := 1√
NσN (a)

bNsc∑
i=1

(aN (UN (i))− aN ).
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With the independence of XN (s) and XN (t)−XN (s) and by the central limit theorem

c1XN (s) + c2 (XN (t)−XN (s)))
D−→ c1W (s) + c2(W (t)−W (s)), c1, c2 ∈ R.

By the Cramér-Wold device, it thus follows that

(XN (s), XN (t)−XN (s))
D−→ (W (s),W (t)−W (s)) .

By the continuous mapping theorem we obtain the convergence of the 2-dimensional dis-
tributions

(XN (s), XN (t)))
D−→ (W (s),W (t)) .

The proof is analogous with more than two time points.

2. Tightness:
We define again

Sk :=
k∑
i=1

(aN (UN (i))− aN ), XN (s) := 1
σN (a)

√
N
SbNsc,

From condition (9.1) we get

E |aN (UN (i))− aN |2+δ =
1

N

N∑
i=1

|aN (i)− aN |2+δ ≤ D1

and, using Theorem B.2 for the 2 + δ-moment of SN , we conclude

E|SN |2+δ ≤ DN
2+δ
2 .

To show tightness we use Theorem B.1. But we first apply Lemma B.1 and the Markov
inequality. For each ε > 0 there is a λ > 1 such that

P

(
max
i≤N
|Sk+i − Sk| ≥ λσN (a)

√
N

)
= P

(
max
i≤N
|Si| ≥ λσN (a)

√
N

)
= 2P

(
|SN | ≥ (λ−

√
2)σN (a)

√
N
)
≤ 2P

(
|SN | ≥

1

2
λσN (a)

√
N

)

≤ 2
E|SN |2+δ(

1
2σN (a)λ

√
N
)2+δ

= 2

(
1

1
2σN (a)λ

)2+δ
E|SN |2+δ

N
2+δ
2

≤ ε

λ2
.

The assertion follows from Theorem B.1.

Corollary 9.1

Let the assumption of Theorem 9.1 hold. Then the univariate score statistic has the same limit
process as the original statistic under the null hypothesis, i.e., we have

max
1≤t≤N

1

σN (a)
√
N

∣∣∣∣∣
t∑
i=1

(aN (UN (i))− aN,U )

∣∣∣∣∣ D−→ sup
0<s≤1

|B(s)| ,
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where B(s) is a standard Brownian bridge.

Proof. By Theorem 9.1 we conclude that the score statistic has the same limit process as the
original statistic under the null hypothesis, because of

max
1≤t≤N

1

σN (a)
√
N

∣∣∣∣∣
t∑
i=1

(aN (UN (i))− aN,U )

∣∣∣∣∣
= max

1≤t≤N

1

σN (a)
√
N

∣∣∣∣∣
t∑
i=1

(aN (UN (i))− aN − (aN,U − aN ))

∣∣∣∣∣
= max

1≤t≤N

1

σN (a)
√
N

∣∣∣∣∣
t∑
i=1

(aN (UN (i))− aN )− t

(
1

N

N∑
i=1

(aN (Un(i))− aN )

)∣∣∣∣∣
= max

1
N
≤s≤1

1

σN (a)
√
N

∣∣∣∣∣∣
bNsc∑
i=1

(aN (UN (i))− aN )− bNsc
N

(
1

N

N∑
i=1

(aN (UN (i))− aN )

)∣∣∣∣∣∣
D−→ sup

0<s≤1
|W (s)− sW (1)| = sup

0<s≤1
|B(s)| (9.3)

Furthermore, if we can replace the scores by the estimated residuals, we obtain the bootstrapped
series. If the estimated residuals satisfy the required conditions for the scores P -stochastically,
then the validity of the bootstrap method is demonstrated. The reason is that the critical
values, obtained by the bootstrapping and conditioned on the observed time series, would be
asymptotically correct no matter whether H0 or H1 holds. Thus now the question is, which
conditions the estimated residuals replacing the scores and consequently the time series has to
fulfill. The answer is stated in the next theorem.

Theorem 9.2

Let e(t), t = 1, ..., N , be centered random variables with existing second moments andE(e(i))2+δ <
∞ for some δ > 0. Additionally, let e(t) obey a law of large numbers, and under the alternative,
let the change ∆ be fixed.

Then, under the null hypothesis as well as under the alternative of k∗ = bνNc, 0 < ν < 1, we
have

P

(
max

1≤t≤N

1

σN
√
N

∣∣∣∣∣
t∑
i=1

(
X∗(i)−X∗N

)∣∣∣∣∣ ≤ x|X1, ..., XN

)
P−→ P

(
sup

0<s≤1
|B(s)| ≤ x

)
,

where B(s) is a standard Brownian bridge and

σ2
N =

1

N

N∑
i=1

∣∣X∗(i)−X∗N ∣∣2 .
Proof. First we define µ1 := µ+ ∆ and µ̂1 := µ̂+ ∆̂.
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Under H0, we have µ = µ1, then

ê(i) = X(i)− µ̂1
[1,k̂∗]

(i)− µ̂11[k̂∗+1,N ]
(i)

= e(i) + (µ− µ̂)1
[1,k̂∗]

(i) + (µ− µ̂1)1
[k̂∗+1,N ]

(i)

= e(i) + (µ− µ̂)1
[1,k̂∗]

(i) + (µ1 − µ̂1)1
[k̂∗+1,N ]

(i).

Furthermore under H0

ê(i)− êN

= e(i)− eN + (µ− µ̂)

1
[1,k̂∗]

(i)− 1

N

N∑
j=1

1
[1,k̂∗]

(j)

+ (µ1 − µ̂1)

1
[k̂∗+1,N ]

(i)− 1

N

N∑
j=1

1
[k̂∗+1,N ]

(j)



= e(i)− eN + (µ− µ̂)

(
1

[1,k̂∗]
(i)− k̂∗

N

)
+ (µ1 − µ̂1)

(
1

[k̂∗+1,N ]
(i)− N − k̂∗

N

)

≤ e(i)− eN + |µ− µ̂|

∣∣∣∣∣1[1,k̂∗]
(i)− k̂∗

N

∣∣∣∣∣+ |µ1 − µ̂1|

∣∣∣∣∣1[k̂∗+1,N ]
(i)− N − k̂∗

N

∣∣∣∣∣
= (e(i)− eN ) +

1√
N
OP (1)

= e(i)− eN + oP (1). (9.4)

The equality in (9.4) follows from

|µ− µ̂| = OP

(
1√
N

)
and |µ1 − µ̂1| = OP

(
1√
N

)
, (9.5)

and it follows

k̂∗

N
|µ− µ̂| = OP

(
1√
N

)
and

(
1− k̂∗

N

)
|µ1 − µ̂1|1k̂∗<N = OP

(
1√
N

)
.

Under H1 we have

ê(i) = X(i)− µ̂1
[1,k̂∗]

(i)− µ̂11[k̂∗+1,N ]
(i)

= e(i) + µ1[1,k∗](i) + µ11[k∗+1,N ](i)− µ̂1[1,k̂∗]
(i)− µ̂11[k̂∗+1,N ]

(i)

= e(i) + (µ− µ̂)1
[1,min(k∗,k̂∗)]

(i) + (µ1 − µ̂1)1
(max(k∗,k̂∗),N ]

(i)

+ (µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i)

and thus

ê(i)− êN
= e(i)− eN

+ (µ− µ̂)

(
1

[1,min(k∗,k̂∗)]
(i)− 1

N

N∑
i=1

1
[1,min(k∗,k̂∗)]

(i)

)
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+ (µ1 − µ̂1)

(
1

(max(k∗,k̂∗),N ]
(i)− 1

N

N∑
i=1

1
(max(k∗,k̂∗),N ]

(i)

)

+ (µ− µ̂1)

(
1

(k̂∗,k∗]
(i)− 1

N

N∑
i=1

1
(k̂∗,k∗]

(i)

)
+ (µ1 − µ̂)

(
1

(k∗,k̂∗]
(i)− 1

N

N∑
i=1

1
(k∗,k̂∗]

(i)

)
= e(i)− eN

+ (µ− µ̂)

(
1

[1,min(k∗,k̂∗)]
(i)− min(k∗, k̂∗)

N

)

+ (µ1 − µ̂1)

(
1

(max(k∗,k̂∗),N ]
(i)− N −max(k∗, k̂∗)

N

)

+ (µ− µ̂1)

(
1

(k̂∗,k∗]
(i)− k∗ − k̂∗

N

)
+ (µ1 − µ̂)

(
1

(k∗,k̂∗]
(i)− k̂∗ − k∗

N

)
= e(i)− eN

+ (µ− µ̂)1
[1,min(k∗,k̂∗)]

(i) + (µ1 − µ̂1)1
(max(k∗,k̂∗),N ]

(i) + (µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i)

−

(
(µ− µ̂)

min(k∗, k̂∗)

N
+ (µ1 − µ̂1)

N −max(k∗, k̂∗)

N
+ (µ− µ̂1)

k∗ − k̂∗
N

+ (µ1 − µ̂)
k̂∗ − k∗

N

)

= e(i)− eN

+
1√
N
OP (1) + (µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1) uniformly in i. (9.6)

The last equality is established by the fact that the term in bracket is in oP (1), which is shown
in Kirch (2006) in (4.6.23).

Then we are ready to show that the relevant conditions mentioned above based on the esti-
mated residuals, can be simplified to the same conditions plugged in the original error plus an
oP (1) term. We will show this simplification under H1, because under H0 it runs analogously if
we set the additional term of H1 equal to zero. By (9.5) and |k̂∗ − k∗|/N = oP (1), which holds
with Lemma 4.6.1(iii) in Kirch (2006), and together with δ > 0 we obtain

1

N

N∑
i=1

∣∣∣êi − êN ∣∣∣2+δ
≤ 1

N

N∑
i=1

∣∣∣e(i)− eN + (µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2+δ

≤ 22+δ 1

N

N∑
i=1

|e(i)− eN |2+δ + 22+δ 1

N

N∑
i=1

∣∣∣(µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2+δ

≤ 22+δ 1

N

N∑
i=1

|e(i)− eN |2+δ + 22(2+δ) 1

N

N∑
i=1

∣∣∣(µ− µ̂1)1
(k̂∗,k∗]

(i)
∣∣∣2+δ

+ 22(2+δ) 1

N

N∑
i=1

∣∣∣(µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2+δ
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≤ 22+δ 1

N

N∑
i=1

|e(i)− eN |2+δ + 22(2+δ) |k̂∗ − k∗|
N

|µ− µ̂1|2+δ + 22(2+δ) |k̂∗ − k∗|
N

|µ1 − µ̂+ oP (1)|2+δ

≤ 22+δ 1

N

N∑
i=1

|e(i)− eN |2+δ + oP (1).

Condition (9.2) holds, since we have by (9.5), |k̂∗−k∗|/N = oP (1) and Cauchy-Schwarz inequality

1

N

N∑
i=1

∣∣∣ê(i)− êN ∣∣∣2
=

1

N

N∑
i=1

∣∣∣e(i)− eN + (µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2

=
1

N

N∑
i=1

|e(i)− eN |2 +
1

N

N∑
i=1

∣∣∣(µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2

+ 2
1

N

N∑
i=1

(e(i)− eN )
(

(µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
)

≥ 1

N

N∑
i=1

|e(i)− eN |2 +
1

N

N∑
i=1

∣∣∣(µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2

− 2
1

N

N∑
i=1

|e(i)− eN |
∣∣∣(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

∣∣∣
≥ 1

N

N∑
i=1

|e(i)− eN |2 +
1

N

N∑
i=1

∣∣∣(µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2

− 2
1

N

(
N∑
i=1

|e(i)− eN |2
N∑
i=1

∣∣∣(µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣2)

1
2

=
1

N

N∑
i=1

|e(i)− eN |2 + oP (1)

= Var(e(i)) + oP (1). (9.7)

The last equality follows by the law of large numbers. Using this law again gives

1

N

N∑
i=1

|e(i)− eN |2+δ ≤ 22+δ 1

N

N∑
i=1

(
|e(i)|2+δ + |eN |2+δ

)
= 22+δ 1

N

N∑
i=1

|e(i)|2+δ + oP (1) = 22+δE |e(i)|2+δ + oP (1) ≤ C, C > 0.

Theorem 9.1 yields the assertion by an application of the subsequent principle.
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9.2. Univariate circular overlapping Block-Bootstrap

Furthermore we have to deal with the univariate block-bootstrap to be able to prove the asymp-
totics of the multivariate block-bootstrap. The circular overlapping block-bootstrap involves a
periodic extension of the time series, which is portioned into overlapping blocks. By sampling
these blocks with replacement, we obtain the bootstrapped sequence, which can be obviously
longer that the time horizon N , so the remaining bootstrapped observations are not considered
such that the bootstrapped series has the correct length.

The idea of proving the asymptotics of the score statistic using the block-bootstrap is to split
the bootstrapped series into independent blocks and the remaining observations caused by the
circular overlapping blocks. Then it can be shown that the remainder term is asymptotically
irrelevant, and the blocks can be treated analogously to the Efron-bootstrap, see the details in
the next theorem.

Theorem 9.3

FCLT for univariate Scores using the Circular Overlapping Block-Bootstrap:
Let aN (i), i = 1, ..., N−1+K, with aN (i) = aN (i−N), i > N , be scores and UN (i), i = 1, 2, 3, ...L
be independent uniformly distributed random variables in {0, 1, 2, ..., N − 1} and independent
of {X(·)}. L is the number of blocks and K is the block length such that N = KL+ k̃, where
0 ≤ k̃ < K and K

L = o(1). If there exists a δ > 0 and C,D1, D2 > 0 such that

1

N

N∑
i=1

|aN (i)− aN | ≤ C, (9.8)

1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(aN (i+ j)− aN )

∣∣∣∣∣∣
2+δ

≤ D1 (9.9)

and

τ2
N (a) = Var

 1√
K

K∑
j=1

aN (UN (1) + j)

 =
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(aN (i+ j)− aN )

∣∣∣∣∣∣
2

≥ D2. (9.10)

Then, as N →∞,  1√
NτN (a)

bNtc∑
i=1

(a∗N (i)− aN )

 D[0,1]−→ {W (t)} ,

where a∗N (i) = aN (U(l)+k), l = 1, . . . , L, k = 1, . . . ,K and W (·) is a standard Wiener process.

Proof. The idea of the proof as mentioned above is to separate the bootstrap term into whole
blocks, which can be treated like the Efron-Bootstrap because they are independent, and the
remaining bootstrap observations, which are asymptotically negligible.

First we note

1√
NτN (a)

bNtc∑
i=1

(a∗N (i)− aN )
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=
1√

NτN (a)

KbLtc∑
i=1

(a∗N (i)− aN ) +

bNtc∑
i=KbLtc+1

(a∗N (i)− aN )

 .

Then we show that the second term converges stochastically to zero by using condition (9.8):

E

∣∣∣∣∣∣ 1√
NτN (a)

bNtc∑
i=KbLtc+1

(a∗N (i)− aN )

∣∣∣∣∣∣
≤ 1√

NτN (a)

bNtc∑
i=KbLtc+1

E |a∗N (i)− aN |

=
1√

NτN (a)

bNtc−KbLtc∑
j=1

E |a∗N (K bLtc+ j)− aN |

=
1√

NτN (a)

bNtc−KbLtc∑
j=1

E |aN (UN (bLtc) + j)− aN |

=
1√

NτN (a)

bNtc−KbLtc∑
j=1

1

N

N−1∑
i=0

|aN (i+ j)− aN |

=
1√

NτN (a)
(bNtc −K bLtc) 1

N

N∑
i=1

|aN (i)− aN |

≤ 1√
NτN (a)

(Nt+ 1−K(Lt− 1))
1

N

N∑
i=1

|aN (i)− aN |

≤ 1√
NτN (a)

(
k̃t+ 1 +K

) 1

N

N∑
i=1

|aN (i)− aN |

≤ 1√
NτN (a)

2K
1

N

N∑
i=1

|aN (i)− aN | ≤ 2
K√
N

C√
D2

= 2
K√

KL+ k̃

C√
D2
≤ 2

K√
KL

C√
D2

= 2

√
K

L

C√
D2

= 2o(1)O(1) = o(1).

Consequently we only have to consider the term composed of the blocks, while the second term
is asymptotically negligible. We rewrite the relevant term as follows:

1√
NτN (a)

KbLtc∑
i=1

(a∗N (i)− aN )

=
1√

LτN (a)

bLtc∑
l=0

1√
K

K∑
j=1

(a∗N (Kl + j)− aN )

=
1√

LτN (a)

bLtc∑
l=0

1√
K

K∑
j=1

(aN (UN (l) + j)− aN ) . (9.11)

Since the blocks are independent, we can use Theorem 9.1 on the Efron-bootstrap for the term
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in (9.11). So the scores in Theorem 9.1 are now set to be the blocks:

aN (i)9.1 :=
1√
K

K∑
j=1

aN (i+ j), i = 1, . . . , L.

The scores aN (i)9.1 satisfy the conditions (9.1) and (9.2) because they fulfill the conditions (9.9)
and (9.10).

Consequently Theorem 9.1 gives a functional central limit theorem for the independent blocks:

1√
LτN (a)

bLtc∑
l=0

1√
K

K∑
j=1

(a∗N (Kl + j)− aN )
D[0,1]−→ W (t) (9.12)

The calculations above yields

1√
NτN (a)

bNtc∑
i=1

(a∗N (i)− aN )

=
1√

LτN (a)

bLtc∑
l=0

1√
K

K∑
j=1

(a∗N (Kl + j)− aN ) +
1√

NτN (a)

KbLtc+K
(
Lt+ k̃

K
−bLtc

)∑
i=KbLtc+1

(a∗N (i)− aN )

=
1√

LτN (a)

bLtc∑
l=0

1√
K

K∑
j=1

(a∗N (Kl + j)− aN ) + oP (1). (9.13)

Finally, by (9.12) and (9.13), the assertion follows.

Analogous to the Efron case in (9.3), with the help of the previous theorem we obtain the same
limit distribution of the score statistic as for the original statistic under H0, where a∗N (i) is the
block-bootstrapped sequence.

Corollary 9.2

Let the assumptions of Theorem 9.3 hold. If a∗N (i) is the block-bootstrapped sequence, then

max
1≤t≤N

1

τN (a)
√
N

∣∣∣∣∣
t∑
i=1

(
a∗N (i)− a∗N,U

)∣∣∣∣∣ D−→ sup
0<s≤1

|B(s)| ,

where B(s) is a standard Brownian bridge.

Proof. By Theorem 9.3 we obtain

max
1≤t≤N

1

τN (a)
√
N

∣∣∣∣∣
t∑
i=1

(
a∗N (i)− a∗N,U

)∣∣∣∣∣ = max
1≤t≤N

1

τN (a)
√
N

∣∣∣∣∣
t∑
i=1

(
a∗N (i)− aN −

(
a∗N,U − aN

))∣∣∣∣∣
= max

1≤t≤N

1

τN (a)
√
N

∣∣∣∣∣
t∑
i=1

(a∗N (i)− aN )− t

(
1

N

N∑
i=1

(a∗N (i)− aN )

)∣∣∣∣∣
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= max
1
N
≤s≤1

1

τN (a)
√
N

∣∣∣∣∣∣
bNsc∑
i=1

(a∗N (i)− aN )− bNsc
N

(
1

N

N∑
i=1

(a∗N (i)− aN )

)∣∣∣∣∣∣
D−→ sup

0<s≤1
|W (s)− sW (1)| = sup

0<s≤1
|B(s)| .

In the next theorem, we prove the asymptotic correctness of the critical values obtained by the
block-bootstrap. Therefore, we replace the scores by the estimated residuals, whereby the origi-
nal error sequence has to fulfill some moment and mixing conditions.

Theorem 9.4

Let e(t), t = 1, ..., N , fulfill the assumptions of Theorem 3.5.1 in Kirch (2006), and under the
alternative of k∗ = bNνc, 0 < ν < 1, let the change ∆ be fixed.

Then under the null hypothesis as well as under the alternative we have

P

(
max

1≤t≤N

1

τN
√
N

∣∣∣∣∣
t∑
i=1

(
X∗(i)−X∗N

)∣∣∣∣∣ ≤ x|X1, ..., XN

)
P−→ P

(
sup

0<l≤1
|B(l)| ≤ x

)
,

where

τ2
N =

1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
X∗N (i+ j)−X∗N

)∣∣∣∣∣∣
2

.

Proof. We have to verify conditions (9.8), (9.9) and (9.10) for the bootstrapped sequence. There-
fore we use the transformation in (9.6) for the estimated residuals under the alternative. Under
the null hypothesis the simplification runs correspondingly with (9.4).

So first we define again µ1 := µ+ ∆ and µ̂1 := µ̂+ ∆̂.

Then we show (9.8) by the help of (9.5) and |k̂∗ − k∗|/N = oP (1), which holds with Lemma
4.6.1(iii) in Kirch (2006). Indeed, we have

1

N

N∑
i=1

∣∣∣ê(i)− êN ∣∣∣
≤ 1

N

N∑
i=1

∣∣∣e(i)− eN + (µ− µ̂1)1
(k̂∗,k∗]

(i) + (µ1 − µ̂)1
(k∗,k̂∗]

(i) + oP (1)
∣∣∣

≤ 1

N

N∑
i=1

|e(i)− eN |+ |µ− µ̂1|
1

N

N∑
i=1

1
(k̂∗,k∗]

(i) + |µ1 − µ̂|
1

N

N∑
i=1

1
(k∗,k̂∗]

(i) +
1

N

N∑
i=1

oP (1)

=
1

N

N∑
i=1

|e(i)− eN |+ |µ− µ̂1|
k∗ − k̂∗
N

+ |µ1 − µ̂|
k̂∗ − k∗

N
+ oP (1)

=
1

N

N∑
i=1

|e(i)− eN |+ oP (1)

= E|e(1)− Ee(1)|+ oP (1)
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= oP (1).

The last equality follows from Theorem B.8. in Kirch (2006).
Further by (9.5) and |k∗ − k̂∗| = OP (1) and with δ > 0 we get

1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
ê(i+ j)− êN

)∣∣∣∣∣∣
2+δ

=
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
e(i+ j)− eN + (µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
2+δ

≤ O(1)

 1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2+δ

+
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(µ− µ̂1)1
(k̂∗,k∗]

(i+ j)

∣∣∣∣∣∣
2+δ

+
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(µ1 − µ̂)1
(k∗,k̂∗]

(i+ j)

∣∣∣∣∣∣
2+δ

+
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

oP (1)

∣∣∣∣∣∣
2+δ


≤ O(1)

 1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2+δ

+ |µ− µ̂1|

(
(k∗ − k̂∗)√

K

)2+δ

+ |µ1 − µ̂|

(
(k̂∗ − k∗)√

K

)2+δ

+

(√
K

N

)2+δ


≤ O(1)
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2+δ

+ oP (1).

That the first term is bounded by a constant greater than zero has already been shown in
Theorem 3.5.1. in Kirch (2006). To prove the second condition (9.10), we do an analogous
transformation as in (9.7) for the Efron-bootstrap and obtain

1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
ê(i+ j)− êN

)∣∣∣∣∣∣
2

=
1

N

N∑
i=1

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
e(i+ j)− eN + (µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
2

=
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2

+
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
2
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+ 2
1

N

N−1∑
i=0

 1√
K

K∑
j=1

(e(i+ j)− eN )


 1√

K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)
≥ 1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2

+
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
2

− 2
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣∣∣∣∣∣∣ 1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
≥ 1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2

+
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
2

− 2
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i+ j) + (µ1 − µ̂)1

(k∗,k̂∗]
(i+ j) + oP (1)

)∣∣∣∣∣∣
2

1
2

=
1

N

N−1∑
i=0

∣∣∣∣∣∣ 1√
K

K∑
j=1

(e(i+ j)− eN )

∣∣∣∣∣∣
2

+ oP (1) (9.14)

To show that the term in (9.14) is greater than a constant has already been done in Theorem
3.5.1. in Kirch (2006).

Then by Theorem 9.3 we obtain the assertion.
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We are now able to prove the validity of the multivariate bootstrap methods. Analogously to
the univariate setting, we first attend to the corresponding FCLT theorems for the scores in
case of the Efron-bootstrap and then to the block-bootstrap. Then we replace the scores by
the estimated residuals and specify their requirements to fulfill the necessary conditions for the
FCLT of the scores P -stochastically.

As usual the proofs of the FCLT theorems are composed of two steps. First we show the
convergence of the finite-dimensional distributions and then the tightness of the partial sum
process which, however, is now multivariate. To verify these properties we make use of the
FCLT’s of the univariate scores.

10.1. Multivariate Efron-Bootstrap

Theorem 10.1

FCLT for Multivariate Scores using the Efron-Bootstrap:
Let aN (i), i = 1, ..., N , be d-dimensional score-vectors and UN (i), i = 1, ..., N , be independent
uniformly distributed random variables in {1, 2, ..., N} and independent of {X(·)}. Suppose
there is a δ > 0 and a constant DM

1 > 0 such that the scores fulfill

1

N

N∑
i=1

‖Σ−
1
2

a (aN (i)− aN ) ‖2+δ ≤ DM
1 . (10.1)

Then, as N →∞, 1√
N

Σ
− 1

2
a

bNtc∑
i=1

(aN (UN (i))− aN ) : 0 ≤ t ≤ 1

 D[0,1]d−→ {W (t) : 0 ≤ t ≤ 1} ,

where {W (t)} is a d-dimensional standard Wiener Process and

Σa =
1

N

N∑
i=1

(aN (i)− aN ) (aN (i)− aN )T .

Proof. Again we have to show the convergence of the finite-dimensional distributions and the
tightness of the partial sum process, which is now multivariate.

1. The convergence of the finite-dimensional distributions:
First we define

XN (t) :=
1√
N

Σ
− 1

2
a

bNtc∑
i=1

(aN (UN (i))− aN ) .
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By condition (10.1) the univariate scores λTΣ
− 1

2
a aN with λTλ > 0 fulfill (9.1) and (9.2):

There are constants δ,D1 > 0 such that

1

N

N∑
i=1

∣∣∣∣λTΣ
− 1

2
a (aN (i)− aN )

∣∣∣∣2+δ

≤ 1

N

N∑
i=1

‖λ‖2+δ‖Σ−
1
2

a (aN (i)− aN ) ‖2+δ

= ‖λ‖2+δ 1

N

N∑
i=1

‖Σ−
1
2

a (aN (i)− aN ) ‖2+δ ≤ D1.

Moreover, there is a constant D2 > 0 such that

1

N

N∑
i=1

∣∣∣∣λTΣ
− 1

2
a (aN (i)− aN )

∣∣∣∣2

=
1

N

N∑
i=1

(
λTΣ

− 1
2

a (aN (i)− aN ) (aN (i)− aN )T Σ
− 1

2
a λ

)

= λTΣ
− 1

2
a

(
1

N

N∑
i=1

(aN (i)− aN ) (aN (i)− aN )T
)

Σ
− 1

2
a λ

= λTΣ
− 1

2
a ΣaΣ

− 1
2

a λ

= λTλ ≥ D2.

Then, for an arbitrary linear combination λTXN (t), the FCLT for the univariate Efron-
bootstrap gives

λTXN (t)
D−→ V (t),

where V (t) is a univariate Wiener Process with variance λTλ.

Now, for an arbitrary λ with λTλ > 0, we can rewrite V (t) = λTW (t), where W (t) is

a multivariate standard Wiener process. Then we deduce λTXN (t)
D−→ λTW (t) and the

Cramér-Wold-device yields XN (t)
D−→W (t).

For two time points s < t we analogously obtain with the univariate FCLT in the Efron
case and by the independence of XN (s) and XN (t)−XN (s)

λTXN (s) + λT (XN (t)−XN (s))
D−→ λTW (s) + λT (W (t)−W (s))

The Cramér-Wold-device implies (XN (s),XN (t)−XN (s))
D−→ (W (s),W (t)−W (s)),

and the continuous mapping theorem entails (XN (s),XN (t))
D−→ (W (s),W (t)).

For more than two time points the proof runs analogously.

2. Tightness:
SinceXN (t) is multivariate, it is a random element of the product spaceD[0, 1]d = D[0, 1]×
· · · × D[0, 1], and each component is in D[0, 1]. With Lemma B.2 we have to show that
the sequence of the component random elements XN,i, i = 1, . . . , d of XN , are tight.
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We write XN,i = uTi XN (t), i = 1, ..., d, where ui = (0, ..., 0, 1, 0, ..., 0) is the i-th unit
vector. As shown above, the component random elements XN,i converge in distribution to
univariate Wiener processes.

Thus, by Proposition B.1, XN,i is relatively compact for fixed i. Since D[0, 1] is complete
and separable under the Skorohod metric, we deduce with Theorem B.3 that the sequence
of component random elements XN,i is tight. Lemma B.2 then yields the tightness of XN .

The next corollary, shows that the multivariate score statistic when using the Efron-bootstrap
has the same limit process as the original multivariate statistic underH0.

Corollary 10.1

If the assumptions of Theorem 10.1 are satisfied, then

max
1≤k≤N

1√
N

(
k∑
i=1

(aN (UN (i))− aN,U )

)T
Σ−1

a

(
k∑
i=1

(aN (UN (i))− aN,U )

)
D−→ sup

0<s≤1
BT (s)B(s),

where B(s) is a multivariate standard Brownian bridge.

Proof. By Theorem 10.1 we have

max
1≤k≤N

1√
N

(
k∑
i=1

(aN (UN (i))− aN,U )

)T
Σ−1

a

(
k∑
i=1

(aN (UN (i))− aN,U )

)

= max
1≤k≤N

1√
N

(
k∑
i=1

(aN (UN (i))− aN − (aN,U − aN ))

)T
Σ−1

a

(
k∑
i=1

(aN (UN (i))− aN − (aN,U − aN ))

)

= max
1≤k≤N

1√
N

(
k∑
i=1

(aN (UN (i))− aN )− k

(
1

N

N∑
i=1

(aN (UN (i))− aN )

))T
Σ−1

a(
k∑
i=1

(aN (UN (i))− aN )− k

(
1

N

T∑
i=1

(aN (UN (i))− aN )

))
D−→ sup

0<s≤1

∣∣∣∣∣
(

Σ
1
2
a (W (s)− sW (1))

)T
Σ−1

a

(
Σ

1
2
a (W (s)− sW (1))

)∣∣∣∣∣ = sup
0<s≤1

∣∣BT (s)B(s)
∣∣ .

10.2. Multivariate Block-Bootstrap

The proof of the FCLT for scores by using the multivariate block-bootstrap runs along with the
same strategy as in the univariate case. We split the bootstrapped sequence into independent
blocks and a remainder term which is asymptotically negligible.
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Theorem 10.2

FCLT for Multivariate Scores using the Circular Overlapping Block-Bootstrap
Let aN (i), i = 1, ..., N , be d-dimensional score-vectors, with aN (i) = aN (i − N), i > N , and
UN (i), i = 1, 2, 3, ...L, be i.i.d. uniformly distributed random variables in {0, 1, 2, ..., N − 1}. L
is the number of blocks and K is the block length. Put N = KL + k̃, where 0 ≤ k̃ < K, and
K
L = o(1). Suppose there exist CM , DM

1 > 0 such that

1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥ ≤ CM (10.2)

and

1

N

N−1∑
i=0

∥∥∥∥∥∥Σ−
1
2

a
1√
K

K∑
j=1

(aN (i+ j)− aN )

∥∥∥∥∥∥
2+δ

≤ DM
1 , (10.3)

where a∗N (t) = aN (UN (l) + k) with l = 1, ..., L and k = 1, ...,K. Then, as N →∞, 1√
N

Σ
− 1

2
a

bNtc∑
i=1

(a∗N (i)− aN ) : 0 ≤ t ≤ 1

 D[0,1]d−→ {W (t) : 0 ≤ t ≤ 1} ,

where {W (t)} is a d-dimensional Standard-Wiener Process and

Σa = 1
N

N−1∑
i=0

( 1√
K

K∑
j=1

(aN (i+ j)− aN )

)(
1√
K

K∑
j=1

(aN (i+ j)− aN )

)T.

Proof. The proof follows the same reasoning as the one for the univariate block-bootstrap.

1. Convergence of the finite-dimensional distributions:
First we define

XN (t) :=
1√
N

Σ
− 1

2
a

bNtc∑
i=1

(a∗N (i)− aN )

and split XN (t) in the same way as in the univariate case: The first part is the sum of
the entire blocks

XN (t) =
1√
N

Σ
− 1

2
a

KbLtc∑
i=1

(a∗N (i)− aN ) +

bNtc∑
i=KbLtc+1

(a∗N (i)− aN )

 .

Then, analogously to Assumption (10.2), we have

E

∥∥∥∥∥∥ 1√
N

Σ
− 1

2
a

bNtc∑
i=KbLtc+1

(a∗N (i)− aN )

∥∥∥∥∥∥
= E

∥∥∥∥∥∥ 1√
N

bNtc∑
i=KbLtc+1

Σ
− 1

2
a (a∗N (i)− aN )

∥∥∥∥∥∥
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≤ 1√
N

bNtc∑
i=KbLtc+1

E

∥∥∥∥Σ− 1
2

a (a∗N (i)− aN )

∥∥∥∥
=

1√
N

bNtc−KbLtc∑
j=1

E

∥∥∥∥Σ− 1
2

a (a∗N (K bLtc+ j)− aN )

∥∥∥∥
=

1√
N

bNtc−KbLtc∑
j=1

E

∥∥∥∥Σ− 1
2

a (aN (UN (bLtc) + j)− aN )

∥∥∥∥
=

1√
N

bNtc−KbLtc∑
j=1

1

N

N−1∑
i=0

∥∥∥∥Σ− 1
2

a (aN (i+ j)− aN )

∥∥∥∥
≤ 1√

N
(bNtc −KbLtc) 1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥
≤ 1√

N
(Nt+ 1−K(Lt− 1))

1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥
=

1√
N

(k̃t+ 1 +K)
1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥
≤ 1√

N
2K

1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥ ≤ 2
K√
N
CM

= 2
K√

KL+ k̃
CM ≤ 2

K√
KL

CM = 2

√
K

L
CM = 2o(1)O(1) = o(1).

Hence we obtain the part consisting of (bLtc+ 1) independent blocks, which we define as

X̃N (t) :=
1√
L

Σ
− 1

2
a

bLtc∑
l=0

1√
K

K∑
j=1

(a∗N (Kl + j)− aN )

and a remainder term that is asymptotically negligible.

Analogously to the proof of the Efron-bootstrap we get by conditions (10.2) and (10.3)
that the univariate scores {λTXN (t) : 0 ≤ t ≤ 1} fulfill the required conditions (9.8) and
(9.9) of the univariate block-bootstrap:
First we assume λTλ > 0.

By (10.2) there is a constant C such that

1

N

N∑
i=1

∥∥∥∥λTΣ
− 1

2
a (aN (i)− aN )

∥∥∥∥
≤ ‖λ‖ 1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥
≤ C.
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By (10.3) there are constants δ,D1 > 0 such that

1

N

N−1∑
i=0

∣∣∣∣∣∣λTΣ
− 1

2
a

1√
K

K∑
j=1

(aN (i+ j)− aN )

∣∣∣∣∣∣
2+δ

≤ ‖λ‖2+δ 1

N

N−1∑
i=0

∥∥∥∥∥∥Σ−
1
2

a
1√
K

K∑
j=1

(aN (i+ j)− aN )

∥∥∥∥∥∥
2+δ

≤ D1.

Additionally, there exists a constant D2 > 0 with

1

N

N−1∑
i=0

∣∣∣∣∣∣λTΣ
− 1

2
a

1√
K

K∑
j=1

(aN (i+ j)− aN )

∣∣∣∣∣∣
2

=
1

N

N−1∑
i=0

λTΣ
− 1

2
a

 1√
K

K∑
j=1

(aN (i+ j)− aN )

 1√
K

K∑
j=1

(aN (i+ j)− aN )

T

Σ
− 1

2
a λ



= λTΣ
− 1

2
a

 1

N

N−1∑
i=0

 1√
K

K∑
j=1

(aN (i+ j)− aN )

 1√
K

K∑
j=1

(aN (i+ j)− aN )

T
Σ

− 1
2

a λ

= λTΣ
− 1

2
a ΣaΣ

− 1
2

a λ = λTλ ≥ D2.

Then the proof runs analogously to the lines of the proof on the multivariate Efron-
bootstrap by replacing XN with X̃N .

2. Tightness:
This proof is equivalent to the proof of tightness for the Efron-bootsrap again by replacing
XN with X̃N .

We know that the independent blocks satisfy a multivariate functional central limit theorem and
the remaining term converges stochastically to zero. Then the assertion follows in the same way
as in the univariate case.

We finally ask, which conditions a time series must satisfy in order to obtain asymptotically cor-
rect critical values under the null and alternative hypothesis by using the multivariate bootstrap
methods.

The answer is as follows. If the univariate conditions in the theorems about the Efron-
and block-bootstrap hold, then there is only one condition missing, such that the multivariate
conditions are also satisfied. We show this claim in the next lines for the necessary multivariate
conditions 10.1, 10.2 and 10.3:

Let the multivariate scores satisfy conditions (9.1),(9.2) and (9.8),(9.9) in every component

and there is a constant D > 0 such that ‖Σ−
1
2

a ‖F ≤ D < ∞. Then there are constants
CM , DM

1,efron, D
M
1,block > 0 such that

1

N

N∑
i=1

∥∥∥∥Σ− 1
2

a (aN (i)− aN )

∥∥∥∥ ≤ ‖Σ− 1
2

a ‖F
1

N

N∑
i=1

‖aN (i)− aN‖ ≤ CM ,
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1

N

N∑
i=1

‖Σa
− 1

2 (aN (i)− aN ) ‖2+δ ≤ ‖Σa
− 1

2 ‖F
1

N

N∑
i=1

‖aN (i)− aN‖2+δ ≤ DM
1,efron,

and

1

N

N−1∑
i=0

∥∥∥∥∥∥Σ−
1
2

a
1√
K

K∑
j=1

(aN (i+ j)− aN )

∥∥∥∥∥∥
2+δ

≤ ‖Σ−
1
2

a ‖F
1

N

N−1∑
i=0

∥∥∥∥∥∥ 1√
K

K∑
j=1

(aN (i+ j)− aN )

∥∥∥∥∥∥
2+δ

≤ DM
1,block,

where ‖ · ‖F is the Frobenius norm, which is submultiplicative by Banerjee and Roy (2014).

Corollary 10.2

Consequently we get the correct limit behaviour of the bootstrap statistic, given the observed
data set for multivariate time series X(t) fulfill the same conditions in every component, which
are necessary for the validity of the univariate Efron- and block-bootstrap and if the long-run
covariance matrix Σ of the multivariate errors e(t) is positive definite.

Proof. First with the Cauchy-Schwarz inequality we obtain

1

N

N−1∑
i=0

 1√
K

K∑
j=1

(
ê(i+ j)− êN

) 1√
K

K∑
j=1

(
ê(i+ j)− êN

)T
=

1

N

N−1∑
i=0

 1√
K

K∑
j=1

(
e(i+ j)− eN + (µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)
 1√

K

K∑
j=1

(
e(i+ j)− eN + (µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)T
=

1

N

N−1∑
i=0

 1√
K

K∑
j=1

(e(i+ j)− eN ) +
1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)
 1√

K

K∑
j=1

(e(i+ j)− eN )T +
1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)T

=
1

N

N−1∑
i=0

 1√
K

K∑
j=1

(e(i+ j)− eN )
1√
K

K∑
j=1

(e(i+ j)− eN )T

+
1√
K

K∑
j=1

(e(i+ j)− eN )
1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)T
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+
1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

) 1√
K

K∑
j=1

(e(i+ j)− eN )T

+
1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)
1√
K

K∑
j=1

(
(µ− µ̂1)1

(k̂∗,k∗]
(i) + (µ1 − µ̂)1

(k∗,k̂∗]
(i) + oP (1)

)T
=

1

N

N−1∑
i=0

1√
K

K∑
j=1

(e(i+ j)− eN )
1√
K

K∑
j=1

(e(i+ j)− eN )T + oP (1)

= Var

 1√
K

K∑
j=1

(e(i+ j)− eN )

+ oP (1)

=
1

K
Var

 K∑
j=1

(e(i+ j)− eN )

+ oP (1)

= Σ + oP (1).

By the assumption the long-run covariance matrix Σ of the errors e(t) is positive definite.
Consequently its inverse is it too and the square root of the inverse also. So now we have

A := Σ−
1
2 is positive definite.

It holds ‖A‖F ≤
√
λmax, where λmax is the maximum of the eigenvalues of the matrix ATA. If

the matrix A has the eigenvalues
√
λ1, . . . ,

√
λd, then the matrix ATA has the strictly positive

eigenvalues λ1, . . . , λd. Then it follows that there is a constant D such that ‖A‖F ≤ D and

1

N

N−1∑
i=0

 1√
K

K∑
j=1

(
ê(i+ j)− êN

) 1√
K

K∑
j=1

(
ê(i+ j)− êN

)T ≤ D + oP (1).
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11. Comparison of the Bootstrap Methods in
Simulations

In this chapter we compare the bootstrap methods concerning the empirical size and size-
adjusted power. The last one is already explained in Chapter 6.

We still focus on the statistic which only takes into account the dependence in time, so we
focus on the bootstrap statistic T ∗N . This version can be used for higher dimensions because the
long-run covariance matrix is a diagonal matrix and the corresponding estimator for the inverse
is stable. But we also want to compare the bootstrap methods in lower dimensions and check
the behaviour compared with the asymptotic method because, if the dimension is small, the
inverse of the estimator for the whole long-run covariance matrix can still be calculated. Thus
the simulation study is done with dimensions 2, 3 and dimensions 10 and 20.

We use the multivariate mean change model with mean zero

Xt = ∆1{t>k∗} + εt,

where εt is a AR(1)-sequence with parameter −0.5 and standard normal distributed innovations,
as well as the multivariate error sequence is either independent or dependent between their
components. If the errors have dependent components, the covariance matrix is

1 0.3 · · · · · · 0.3
0.3 1 0.3 · · · 0.3
...

. . .
. . .

. . .
...

0.3 · · · 0.3 1 0.3
0.3 · · · 0.3 0.3 1

 .

The simulations are based on 2500 repetitions and 1000 bootstrap replications. The length of
the time series is N = 300. For the unknown change point we choose an early, a middle and a
late time point, set to 0.05N , 0.5N and 0.75N , respectively. The size of the change depending
on the dimension is given by:

Dimension 2 : ∆ := ∆2,1 = 0.3 · (1, 0)T

∆ := ∆2,2 = 0.3 · (1, 1)T

Dimension 3 : ∆ := ∆3,1 = 0.3 · (1, 0, 0)T

∆ := ∆3,2 = 0.3 · (1, 1, 0)T

∆ := ∆3,3 = 0.3 · (1, 1, 1)T

Dimension 10 : ∆ := ∆10,1 = 0.15 · (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T

∆ := ∆10,2 = 0.15 · (1, 1, 1, 1, 1, 1, 1, 0, 0, 0)T

∆ := ∆10,3 = 0.15 · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

Dimension 20 : ∆ := ∆20,1 = 0.1 · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

∆ := ∆20,2 = 0.1 · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T
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11. Comparison of the Bootstrap Methods in Simulations

∆ := ∆20,3 = 0.1 · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T .

The long-run covariance matrix Σ, which is used for the asymptotic method, and the diagonal
matrix Λ consisting of the long-run variances used for the bootstrap methods are estimated
with the flat-top kernel estimator as introduced in Politis (2011). Except in case of the block-
bootstrap the long-run covariance matrix can be calculated as stated in (8.1).

The matrix Σ can be estimated by the flat top kernel estimator

Σ̂j,k =
N−1∑

m=−(N−1)

λ

(
m

Sj,k

)
Γ̂j,k(m), j, k = 1, . . . , d.

Here, Γ̂(·) is an estimator for the autocovariance matrix, given by

Γ̂(j) =
1

N

N−j∑
t=1

ete
T
t+j , 0 ≤ j ≤ N − 1 and Γ̂(j) = Γ̂(−j), N − 1 ≤ j ≤ 0.

As flat-top kernel we use a trapezoidal function

λ(t) =


1, |t| ≤ 1

2 ,

2(1− |t|), 1
2 < |t| < 1,

0, |t| ≥ 1.

Since we need the inverse of the estimator for the long-run covariance matrix, we have to adapt
the matrix estimator. In particular, this is of high interest in case of an estimator for the
complete matrix Σ. There exist an orthogonal matrix Û and a diagonal matrix D̂ such that

Σ̂ = ÛD̂Û
T

. To get a positive definite matrix as estimator, we can take a sequence bN and

determine the diagonal matrix D̂
b

= diag(λ̂a1, . . . , λ̂
b
d), λ̂

b
j = max(λ̂j , bN ). We choose bN = 1

N .
The bandwidth Sj,k, j, k = 1, . . . , d, is estimated by

Ŝj,k = max

(⌈
q̂j,k
cef

⌉
, 1

)
,

where q̂j,k is the smallest nonnegative integer such that

|ρ̂j,k(q̂j,k +m)| < C0

√
log10N

N
, m = 0, 1, . . . ,KN .

The function q̂j,k is the autocorrelation function

q̂j,k = Γ̂j,k(m)/

√
Γ̂j,j(0)Γ̂k,k(0).

The constant cef is defined as the largest number satisfying

λ(t) ≥ 1− ε ∀ t ∈ [−cef , cef ].

If j = k, then

Ŝj,k = max

(⌈
q̂k,k
cef

⌉
, 1

)
,
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and if j 6= k, then

Ŝj,k = Ŝk,j = max

(⌈
q̂

cef

⌉
, 1

)
, q̂ = max(q̂j,k, q̂k,j).

We choose the parameters as suggested in Politis (2011), hence C0 = 2,KN = max
(
5,
√

log10N
)

and ε = 0.01.
In case of the block-bootstrap we use the method where we choose the block length manually

equal to 5, 10 and 30. Furthermore, we use an automatic block length calculation and a tapered
block bootstrap, where the bootstrap observations at the margins in a block get lesser weight
than the ones in the middle. This yields a less biased estimator for the asymptotic variance of
the sample mean than without the weighting, see Paparoditis and Politis (2001) for more details.

The automatic bandwidth is calculated as in Politis and White (2004), and therefore we
use the function ”b.star” included in the package ”np” from the statistical software R. More
precisely, the automatic bandwidth of the multivariate time series is calculated as the maximum
of the automatic bandwidths of the univariate time series, which are calculated by the function
”b.star”.

LetX1, . . . ,XN be multivariate observations. Then the tapered bootstrap sequence is defined
as

X∗mb+j = w

(
j

b+ 1

)
b(

b∑
t=1

w2
(

t
b+1

)) 1
2

Xim+j−1, j = 1, . . . , b; m = 0, 1, . . . , k − 1,

where b is the block length and k =
⌊
N
b

⌋
is the number of blocks. Moreover, i0, i1, . . . , ik−1 are

i.i.d. uniformly distributed on {1, 2, . . . , N − b + 1}. The weight function w(t) determines the
weights for each observation number in a block. We use a trapezoidal function

w(t) =


t
c , t ∈ [0, c]

1, t ∈ [c, 1− c]
1−t
c , t ∈ [1− c, 1],

with c = 0.43 as suggested in Paparoditis and Politis (2001) and with c = 0.5, where the weight
function is then triangular. We additionally choose the triangular weight function for reasons of
comparison with the dependent wild-bootstrap. For the wild-bootstrap method we choose the
bartlett kernel

k(x) =

{
1− |x|, |x| < 1

0, otherwise,

which also has a triangular shape. The kernel function determines the covariance of the random
variable Z(t) by k((t− s)/l), 0 ≤ t ≤ N, 0 ≤ s ≤ N multiplied with the estimated errors in each
component. The parameter l > 0 is the chosen bandwidth, we use the bandwidth 3, 10 and 30.

By using the AR-sieve bootstrap we first choose the correct order of the AR(1)-error sequence
which is p equal to 1. Furthermore, we use the AIC information criteria to choose the order
which is relevant in practice where we do not know the correct order. However, we set the upper
bound for the order equal to 4.

In the following figures the empirical size as well as the size-adjusted power are illustrated,
first in case of the independent errors and then for dependent errors with covariance matrix
stated above. In Tabular 11.1 the legend of the following figures are explained in detail.
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Asymp Asymptotic method
Blockbootstrap K5 Block-bootstrap with K = 5

Blockbootstrap K5 trapez tapered tapered Block-bootstrap with K = 5 and c = 0.43
Blockbootstrap K5 triangular tapered Block-bootstrap with K = 5 and c = 0.5

Blockbootstrap K10 Block-bootstrap with K = 10
Blockbootstrap K10 trapez tapered Block-bootstrap with K = 10 and c = 0.43

Blockbootstrap K10 triangular tapered Block-bootstrap with K = 10 and c = 0.5
Blockbootstrap K30 Block-bootstrap with K = 30

Blockbootstrap K30 trapez tapered tapered Block-bootstrap with K = 30 and c = 0.43
Blockbootstrap K30 triangular tapered Block-bootstrap with K = 30 and c = 0.5

Blockbootstrap Kauto Block-bootstrap with automatic block length choice
Blockbootstrap Kauto trapez tapered Block-bootstrap with automatic block length choice, c = 0.43

Blockbootstrap Kauto triangular tapered Block-bootstrap with automatic block length choice, c = 0.5
Wildbootstrap l3 Wild-bootstrap with l = 3

Wildbootstrap l10 Wild-bootstrap with l = 10
Wildbootstrap l30 Wild-bootstrap with l = 30

ARSiebbootstrap p1 AR-Sieve-bootstrap with order p = 2 of the AR-sequence
ARSiebbootstrap paic AR-Sieve-bootstrap with AIC-criterion for order p

Table 11.1.: Explanation of the legend of the following figures

First we look at the case of independent components concerning the empirical size in Figure
11.1. In dimensions 2, 3 and 4 the asymptotic method is also illustrated, because the long-run
covariance matrix is still calculable. As we see in Figures 11.1(a)-(c), the empirical size of the
asymptotic method increases rapidly with growing dimensions. In dimension 2 the empirical size
of the asymptotic procedure is still acceptable but already in dimension 3 and 4 the asymptotic
method is unfeasible due to the extremely high empirical size. Furthermore, the empirical
size of the block-bootstrap with a short block length equal to 5 is higher than the empirical
size of the asymptotic method if d = 2 and only somewhat lower if d ∈ {3, 4}. Even the
empirical size of the block-bootstrap with block size 10 is very high for the lower dimensions
d ∈ {2, 3, 4}. Additionally, the block-bootstrap with block length 5 and 10 performs extremely
bad if the dimension is high (see Figures 11.1(d)-(e)), and even with tapering the performance
is extremely bad. The bad performance of the block-bootstrap with a short block length is an
evidence that the dependence structure of the AR(1)-sequence cannot be represented by blocks
of such a short length. The block-bootstrap with automatic choice of the block length has a very
high empirical size if the dimension is high, namely d ∈ {10, 20} (Figures 11.1(d)-(e)), however
with using tapering the empirical size is getting much better. The other bootstrap methods
are very robust against the increasing dimension concerning the empirical size, and they either
maintain or almost maintain the nominal level even in high dimensions. The empirical size of the
tapered bootstrap method using a trapezoidal and a triangular weight function is very similar,
but lower compared with the corresponding bootstrap method without tapering. This also holds
for the bootstrap methods where the blocks length is chosen automatically. We suppose that
the block length is always chosen between 10 and 30 because the empirical size with automatic
bandwidth choice is between the empirical size of the corresponding bootstrap methods with
block length 10 and 30 in Figures 11.1(a)-(e).

By using the wild-bootstrap the empirical size decreases with the bandwidth which is equal
to 3, 10, 30 and is getting higher with growing dimension.
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In case of the AR-Sieve-bootstrap there is almost no difference in the empirical size between
using the correct order of the AR(1)-sequence or using the AIC criterion for choosing the order
of the AR-sequence where we define the maximum order equal to 4. Moreover, this method has
the lowest empirical size for all dimensions.

Regrading the empirical size, the methods with using dependencies between the components
besides the dependence in time perform similar as without the components dependencies, except
that the empirical size is lower in general as without the component dependencies for all methods
(see Figure 11.2). Particularly the tapered block-bootstrap with a short block size equal to 5 or
10 has now an acceptable performance concerning the empirical size, even in higher dimensions.
Next we compare the size-adjusted power of the procedures, which is shown in Figures 11.3-11.6

for the different dimensions. First of all the size-adjusted power is best for the change in the
middle of the time horizon for all dimensions. For a later change the size-adjusted power is
still good, but for a early change the procedures perform very bad concerning the size-adjusted
power, particularly for higher dimensions where the power is equal to the nominal level. The
last mentioned effect is probably caused by the generally lower power for all time points of the
changes, because the changes in each dimension are slightly lower than in case of the lower
dimensions.

The asymptotic method is included in the comparison for dimension 2 and 3. In case of
dimension 2 the size-adjusted power is still similar to the power of the bootstrap methods,
except for an early change, where the size-adjusted power of the asymptotic method is very bad,
namely equal to the nominal level and this is the same in dimension 3.

However, already for dimension 3, the asymptotic method is getting worse, and the bootstrap
procedures have all similar higher size-adjusted power. In dimension 10 and 20 the size-adjusted
power is also very similar for all bootstrap methods in all considered scenarios except for one
case. In dimension 10 the change point is late and the mean only changes in 5 dimensions of
10., there the Wild-bootstrap and the AR-Sieve-bootstrap are worse than the other methods.

If the components are dependent, the size-adjusted power is only illustrated for the change
point in the middle of the time horizon and for the cases that mean changes occur only in 1
component if d ∈ {2, 3} and in 5 components if d = 10 and in 10 components if d = 20 (see
Figure 11.7). The reason is that the behaviour between the different methods still remains the
same as with independent components.

As we see in Figure 11.7 the asymptotic methods are still better than the bootstrap methods
for dimension 2, but already for dimension 3 it is getting worse and the bootstrap methods
perform better concerning the size-adjusted power. In all dimensions the bootstrap methods
have similar size-adjusted power.
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11. Comparison of the Bootstrap Methods in Simulations

Figure 11.1.: Empirical size of the bootstrap methods with independent components.
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Figure 11.2.: Empirical size of the bootstrap methods with covariance of the components of 0.3.
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11. Comparison of the Bootstrap Methods in Simulations

Figure 11.3.: Size-adjusted power of the bootstrap methods for dimension 2 with independent
components
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Figure 11.4.: Size-adjusted power of the bootstrap methods for dimension 3 with independent
components
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11. Comparison of the Bootstrap Methods in Simulations
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Figure 11.5.: Size-adjusted power of the bootstrap methods for dimension 10 with independent
components
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(f) k∗ = 0.75N and ∆ = ∆10,2

129



11. Comparison of the Bootstrap Methods in Simulations

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Blockbootstrap_K5
Blockbootstrap_K5_trapez_tapered
Blockbootstrap_K5_triangular_tapered
Blockbootstrap_K10
Blockbootstrap_K10_trapez_tapered
Blockbootstrap_K10_triangular_tapered
Blockbootstrap_K30
Blockbootstrap_K30_trapez_tapered
Blockbootstrap_K30_triangular_tapered
Blockbootstrap_Kauto
Blockbootstrap_Kauto_trapez_tapered
Blockbootstrap_Kauto_triangular_tapered
Wildbootstrap_l3
Wildbootstrap_l10
Wildbootstrap_l30
ARSiebbootstrap_p1
ARSiebbootstrap_paic

(g) k∗ = 0.05N and ∆ = ∆10,3

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Blockbootstrap_K5
Blockbootstrap_K5_trapez_tapered
Blockbootstrap_K5_triangular_tapered
Blockbootstrap_K10
Blockbootstrap_K10_trapez_tapered
Blockbootstrap_K10_triangular_tapered
Blockbootstrap_K30
Blockbootstrap_K30_trapez_tapered
Blockbootstrap_K30_triangular_tapered
Blockbootstrap_Kauto
Blockbootstrap_Kauto_trapez_tapered
Blockbootstrap_Kauto_triangular_tapered
Wildbootstrap_l3
Wildbootstrap_l10
Wildbootstrap_l30
ARSiebbootstrap_p1
ARSiebbootstrap_paic

(h) k∗ = 0.5N and ∆ = ∆10,3

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Blockbootstrap_K5
Blockbootstrap_K5_trapez_tapered
Blockbootstrap_K5_triangular_tapered
Blockbootstrap_K10
Blockbootstrap_K10_trapez_tapered
Blockbootstrap_K10_triangular_tapered
Blockbootstrap_K30
Blockbootstrap_K30_trapez_tapered
Blockbootstrap_K30_triangular_tapered
Blockbootstrap_Kauto
Blockbootstrap_Kauto_trapez_tapered
Blockbootstrap_Kauto_triangular_tapered
Wildbootstrap_l3
Wildbootstrap_l10
Wildbootstrap_l30
ARSiebbootstrap_p1
ARSiebbootstrap_paic

(i) k∗ = 0.75N and ∆ = ∆10,3

130



Figure 11.6.: Size-adjusted power of the bootstrap methods for dimension 20 with independent
components
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(e) k∗ = 0.75N and ∆ = ∆20,1
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(f) k∗ = 0.75N and ∆ = ∆20,2
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(g) k∗ = 0.05N and ∆ = ∆20,3
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(h) k∗ = 0.5N and ∆ = ∆20,3
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(i) k∗ = 0.75N and ∆ = ∆20,3
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Figure 11.7.: Size-adjusted power of the bootstrap methods with covariance of the components
of 0.3 and k∗ = 0.5N
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(a) k∗ = 0.5N and ∆ = ∆2,1
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(b) k∗ = 0.5N and ∆ = ∆3,1
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(c) k∗ = 0.5N and ∆ = ∆10,1
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(d) k∗ = 0.5N and ∆ = ∆20,1
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Part III.

Testing in a Multivariate Epidemic
Mean Change Model
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12. Introduction and an Example of Application

In the third part of this thesis we deal again with the offline change point procedure. We consider
a multivariate epidemic mean change model with dependent errors where the mean can change
abruptly in each component at a time point t1 and returns back at a time point t2. The change
points can occur at different time points in each component, however they are not arbitrary but
follow a particular pattern generated by the data set.

There is already some literature about time series with epidemic mean changes even in case
of multivariate sequences e.g. Aston and Kirch (2012), Muhsal (2013) and Kirch et al. (2015).
The first publication is about epidemic changes in functional data, where the observations are
represented as functions of compact sets instead of discrete time points. The other publications
deal with epidemic mean changes in autoregressive time series. But all of them only allow that
the epidemic changes occur at the same time points in all components.

To find the changes in each component by our procedure, the knowledge of the functional
relation of the changes depending on the components is necessary. We use the standard multi-
variate statistic based on the observed multivariate time series which is related to the statistic
introduced in Horváth et al. (1999) for the ’at most one change (AMOC)’ model as well as to
the statistic discussed in Horváth and Hušková (2012) for panel data, where the dimension can
be larger than the length of the data set, but only considered in the AMOC model, too. Fur-
thermore, we use the projection statistic where we first project the data to obtain a univariate
data set. A detailed introduction of the statistics will follow in the next chapter.

Projected multivariate time series are proposed by Aston and Kirch (2016). They supposed
a mean change model, where the shape of the mean changes in each component is generally
defined by a function g(t) which is Riemann-integrable. However, the function is independent
of the components. Thus the changes occur at the same time points in all components of the
multivariate time series. The supposed model includes the usual used change point alternatives
as the ’at most one change (AMOC)’ model and the epidemic mean change model.

By supposing our model where the changes are allowed to occur at different time points in each
component, we consequently obtain a univariate series with a stepwise gradual change in the
mean after projecting. The projection statistic, we will use, is related to the statistic introduced
in Hušková and Steinebach (2000), who suppose a gradual non-epidemic change and obtained
their statistic as likelihood ratio statistic. They developed the extreme-value distribution of the
statistic with a given polynomial slope of the change, and in the continuing paper Hušková and
Steinebach (2002) derived the limit process of the same statistic.

An application of our setup is to locate a source of gas emission in a huge area. We expect a
source of gas emission under the ground of an area, and the aim is to locate the source as near
as possible. The source exclaims methane gas in the air in form of a gas plume. Inside the gas
plume the methane gas concentration is higher than outside the plume.

We collect the methane gas concentration along a flight path of a plane which flies approxi-
mately in constant height during the measurement procedure. If there is a source, the plane flies
through the gas plume, and the change points of the methane gas concentration in the collected
sequence occur when the plane flies inside and outside the plume. First we have to transform the
collected data into a multivariate time series. The detailed transformation method is explained
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12. Introduction and an Example of Application

in the real data example in Chapter 18. If we know the shape of the gas plume and the location
of the change points, we are able to locate the source. Thus, to locate the source precisely, we
first have to detect the changes in each component of the multivariate sequence as precisely as
possible. The focus lies in locating the source not on the question if changes have occurred.

Other examples with the focus on locating the change-points, e.g. if it is known that a change
has occurred, are data in neoroscience Kirch et al. (2015) or monitoring sports activity Haynes
et al. (2016).

Hirst et al. (2013) used a Bayesian inference to locate a source of gas emission. But we will
introduce a novel approach to solve this location problem. We will use the same data set for our
real data example in Chapter 18 as analysed in Hirst et al. (2013), to compare our results with
the results obtained by their method.

In Figure 12.1 the situation is illustrated. The different lines are interpreted as different
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Figure 12.1.: The linear plume.

components, thus we have a multivariate time series. The black lines constitute the gas plume
in which we have a higher gas concentration than outside. The change points are the interfaces
where the left and right boundary functions of the plume cross the flight path (red points in the
figure). In the figure the black lines specify the functional relation between the change points in
each component. If we know this functional relationship and identify the change points we can
conclude the location of the source (black point, namely ϑ0, in the figure).

This part of the work is arranged as follows. First, we introduce the testing procedure with
the supposed model of the data and a detailed explanation about the statistics.

Then, we develop the limit distributions under the null and the alternative hypothesis for
both statistics. Furthermore, we will show the consistency of the estimators resulting from the
statistics.

Finally we compare the statistics in a detailed simulation study concerning the empirical size
and power where we vary the parameter β, which influences the weight functions (see in the next
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chapter), the height of the changes and the real location of the source. Especially, we compare
the performance of the estimators based on both statistics.

To show that our approach also works well in case of a real data set, we will apply our
procedure to the landfill data set which has already been analysed in Hirst et al. (2013).
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13. Testing Procedure

13.1. Model of Data

We consider a multivariate data set X(t) = (X1(t), . . . , Xd(t))
T , where

Xi(t) = µi + ∆̃i1

{
Fϑ0(i) <

t

N
≤ Gϑ0(i)

}
+ ei(t), i = 1, . . . , d; t = 1, . . . , N. (13.1)

The change-points in every component are determined by the tuple (Fϑ0(i), Gϑ0(i)), i = 1 . . . , d
(in rescaled time). The tuple is not arbitrary, but the change-points in the components follow
a functional relationship which is parametrized by ϑ0 and are influenced by given parameters,
such as the wind direction and the wind strength as well as the unknown location of the source.
Note that the model (13.1) includes the case of a standard multivariate epidemic mean change
where the changes occur at the same time point in all components.

We define F ϑ = (Fϑ(1), . . . , Fϑ(d)) and Gϑ = (Gϑ(1), . . . , Gϑ(d)), where ϑ comes from a
parameter space Θ and ϑ0 ∈ Θ is unknown. The mean vector before the changes is defined as µ =
(µ1, . . . , µd)

T , and ∆̃ = (∆̃1, . . . , ∆̃d)
T is the change vector. The errors e(t) = (e1(t), . . . , ed(d))T

are centered and have variances σ2
i , i = 1, . . . , d. They may be dependent but have to satisfy

a multivariate functional central limit theorem (FCLT). This is a very weak assumption on the
error sequence. For independent errors it follows directly by Donsker’s Theorem (see Theorem
16.1 in Billingsley (1968)), e.g. there is literature for weak dependent random variables including
mixing sequences Herrndorf (1984a),Herrndorf (1984b) as well as for strongly mixing sequences
Doukhan et al. (1994).

In the application of locating the source of gas emission outside of the plume we have the mean
µi, i = 1, . . . , d, and inside the plume there is a higher level of concentration µi+ ∆̃i (see Figure
13.1). The functions Fϑ(·) and Gϑ(·) constitute the shape of the plume. Thus they depend
only on the known parameters like the components and the wind speed determining the opening
angle of the plume. A strong wind leads to a small opening angle, and a weak wind leads to a
big opening angle. The unknown location of the source is represented by the parameter ϑ0. If
the opening angle is also unknown, it is also included in the unknown parameter ϑ0.

We want to test the null hypothesis of no epidemic change in all components against the
alternative hypothesis of an epidemic change in at least one component.

The null hypothesis H0 is ∆̃i = 0 ∀i = 1, . . . , d.

The alternative hypothesis H1 is ∆̃i 6= 0 for at least one i = 1, . . . , d.

13.2. Statistics

For testing we use two different types of statistics which we will introduce in this section.
The standard multivariate test statistic where we maximize over all possible functional relations
between the changes in the components and we sum up the observations between the two possible
changes in each component. To use the projection statistic the observed multivariate series is
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Figure 13.1.: Abrupt epidemic mean change in each component.

first of all projected into a direction not orthogonal to the direction of the change. Hence, we
obtain a univariate time series for calculating the test statistic.

13.2.1. Multivariate Statistic

The multivariate test statistic is defined as

TM := max
ϑ∈Θ

1

N
STϑΣ−1Sϑ, (13.2)

where

Sϑ = (Sϑ(1), · · · , Sϑ(d))T , Sϑ(i) =

bNGϑ(i)c∑
t=bNFϑ(i)c+1

Xi(t)−
1

N

N∑
j=1

Xj(t)

 ,

and
Σ =

∑
h∈Z

Γ(h), Γ(h) = Ee(0)e(h)T , h ≥ 0, Γ(h) = −Γ(h)T , h < 0,

is the long-run covariance matrix of the errors.
The weighted multivariate test statistic is defined as

TM := max
ϑ∈Θ

1

N
SwTϑ Σ−1Swϑ ,

where

Swϑ = (Swϑ (1), · · · , Swϑ (d)), Swϑ (i) =

bNGϑ(i)c∑
t=bNFϑ(i)c+1

wM,i

(
bNFϑ(i)c

N
,
bNGϑ(i)c

N

)Xi(t)−
1

N

N∑
j=1

Xj(t)

 ,
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13.2. Statistics

wM,i(k1(i), k2(i)) :=

(
1

(k2(i)− k1(i))(1− (k2(i)− k1(i)))

)β
, (13.3)

where 0 ≤ k1(i) < k2(i) ≤ 1, i = 1, · · · , d and β ∈
[
0, 1

2

]
. Note that if β = 0, we receive the

statistic in (13.2).

13.2.2. Projection Statistic

The data set is first projected into the direction of a vector ∆P which is not the null vector.
But initially we have to standardize the multivariate observations X(t) and the vector ∆P to

achieve the best signal-to-noise ratio. Thus with a vector ∆P satisfying
〈
Σ−

1
2 ∆̃,Σ−

1
2 ∆P

〉
6= 0

we obtain a univariate time series Y (t) =
〈
Σ−

1
2X(t),Σ−

1
2 ∆P

〉
, where ∆P = (∆P,1, · · · ,∆P,d).

The best power gives the projection into the direction of the true change, i.e. if ∆P = c∆̃, c 6=
0, even under misspecification of Σ (see more details in Aston and Kirch (2016)).

The structure of the change vector ∆̃ in the example of a source of gas emission, which will
be used for simulations, is determined by

∆̃i = δh(i), i = 1, . . . , d,

where δ depends on the strength of the source as well as on the distance between the source
and i = 1. The function h, which is standardized like ‖ (h(1), ..., h(d))T ‖2 = 1, gives the decay
rate of the gas concentration, depending on the distance to the source, which is expressed by
the argument i as the component in the function h.

Note that the plume is in reality a 3-D object, and the jump of the gas concentration to a
higher level inside the plume is rather a gradual increase. So if the plane only flies into the plume
at some distance behind the source, the concentration of the gas first increases and afterwards
decreases with the increasing distance to the source. Thus we choose the standard log-normal
distribution for the function h. More precisely, the first component is weighted by the value
of the log-normal distribution at the x-value 0.09 and the last component at 1.5 , because its
values of the log-normal distribution are almost equal. The components between the first and
the last one are weighted accordingly to their distance to the source. After standardization we
obtain the function h as in the Figure 17.1.

Define ∆ = (∆1, · · · ,∆d)
T := (h(1), ..., h(d)). Since δ is a constant it is unimportant for the

projection, we project the multivariate observations into the direction of the change direction

∆, thus getting the univariate observations Y∆(t) =
〈
Σ−

1
2X(t),Σ−

1
2 ∆
〉

= X(t)TΣ−1∆. This

specified structure of the change vector ∆̃ is important for the simulation study in Chapter 17.

For the theory we will use the projection vector ∆P . The projected univariate observations
under the alternative hypothesis have the form

Y (t) =
〈
Σ−

1
2e(t),Σ−

1
2 ∆P

〉
+

〈
Σ−

1
2 ∆̃1

{
Fϑ0(·) < t

N
≤ Gϑ0(·)

}
,Σ−

1
2 ∆P

〉
+
〈
Σ−

1
2µ,Σ−

1
2 ∆P

〉

and under the null hypothesis

Y (t) =
〈
Σ−

1
2e(t),Σ−

1
2 ∆P

〉
+
〈
Σ−

1
2µ,Σ−

1
2 ∆P

〉
.
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We define

DF ϑ,Gϑ
(s) :=

〈
Σ−

1
2 ∆P1{Fϑ(·) < s ≤ Gϑ(·)},Σ−

1
2 ∆P

〉
= (∆P1{Fϑ(·) < s ≤ Gϑ(·)})T Σ−1∆P ,

where 1{Fϑ(·) < s ≤ Gϑ(·)} = (1{Fϑ(1) < s ≤ Gϑ(1)}, . . . ,1{Fϑ(d) < s ≤ Gϑ(d)})T . The func-
tion ϑ 7→ DF ϑ,Gϑ

(·) is continuous and s 7→ DF ϑ,Gϑ
(s) is left-continuous.

The projected errors are

eP (t) =
〈
Σ−

1
2e(t),Σ−

1
2 ∆P

〉
= e(t)TΣ−1∆P .

If we set Σ equal to the unit matrix which means that the components are uncorrelated and the
long-run variances are 1 then

DF ϑ,Gϑ
(s) = 〈∆P1{Fϑ(·) < s ≤ Gϑ(·)},∆P 〉 =

d∑
i=1

c2∆̃2
i1{Fϑ(i) < s ≤ Gϑ(i)}.

Now it is obvious that there is no abrupt epidemic mean change anymore, the projected data
set Y (t) has a gradual epidemic mean change (see Figure 13.2).
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Figure 13.2.: Gradual epidemic mean change.

In case of using the projection statistic, we first have to project the standardized data into the
direction of the standardized change vector ∆P , then we calculate the statistic which is defined
as

TP :=
1√
N

1

σ
max
ϑ∈Θ


∣∣∣∣ N∑
t=1

(
DF ϑ,Gϑ

(
t
N

)
− 1

N

N∑
l=1

DF ϑ,Gϑ

(
l
N

))
Y (t)

∣∣∣∣
wP (F ϑ,Gϑ)
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=
1√
N

1

σ
max
ϑ∈Θ


∣∣∣∣ N∑
t=1

DF ϑ,Gϑ

(
t
N

) (
Y (t)− Y N

)∣∣∣∣
wP (F ϑ,Gϑ)

 ,

where

wP (F ϑ,Gϑ) =

 1

N

N∑
t=1

(
DF ϑ,Gϑ

(
t

N

)
− 1

N

N∑
l=1

DF ϑ,Gϑ

(
l

N

))2
β

. (13.4)

where β ∈
[
0, 1

2

]
and σ2 is the long-run variance with σ2 =

∑
h∈Z

Cov (eP (0), eP (h)).

The parameter β figuring in the weight function influences which region of the searching area
(the area in which we search for a source) is preferred by the testing method. The details will
be discussed in the extensive simulation study in Chapter 17.

Particularly, sources on the upper bound of the searching area can be found most easily because
the plume is relatively wide, which results in a long period of change in each component.

13.3. Estimators

We introduce the estimators based on the mentioned statistics. In Chapter 16 we will prove the
consistency of the estimators based on both statistics.

The estimator of the unknown parameter ϑ0 based on the multivariate statistic is defined as

ϑ̂M = arg max
ϑ∈Θ

SwTϑ Σ−1Swϑ .

For the estimator based on the projection statistic we have to choose β equal to 1
2 because

only then the estimator is consistent, which will be shown in Theorem 16.2 of Chapter 16.
Consequently, the estimator is defined as

ϑ̂P = arg max
ϑ∈Θ

∣∣∣∣ N∑
t=1

DF ϑ,Gϑ

(
t
N

) (
Y (t)− Y N

)∣∣∣∣(
1
N

N∑
t=1

(
DF ϑ,Gϑ

(
t
N

)
− 1

N

N∑
l=1

DF ϑ,Gϑ

(
l
N

))2
) 1

2

.
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14. Asymptotics under the Null Hypothesis

To decide between rejection or acceptance of the null hypothesis we need the limit distribution
of the statistics to use its quantiles as critical values for controlling the type-I-error.

14.1. Null Asymptotics of the Multivariate Statistic

In the following theorem we develop the limit process of the multivariate statistic. Each compo-
nent of Sϑ sums up the observations between two time points. Usually if one uses an epidemic
mean change model, where the changes occur at the same time points in all components, one
could directly use the given FCLT of the errors by building the difference between the cumula-
tive sum till the later and the earlier time point. Caused by the different change points in each
component, we cannot use the FCLT of the errors directly, but the statistic can be built by a
suitable function using the partial sum process of the errors as argument. Afterwards we are
able to use the FCLT in combination with proving that this suitable function is continuous and
conclude the proof using the continuous mapping theorem.

Theorem 14.1

Let the errors e(t) = (e1(t), . . . , ed(t))
T , t = 1, . . . , N , be a time series which fulfills a multivariate

functional central limit theorem towards a Wiener process with covariance matrix Σ. Then,
under the null hypothesis,

max
ϑ∈Θ

1

N
STϑΣ−1Sϑ

D−→ sup
ϑ∈Θ

d∑
i=1

(Bi(Gϑ(i))−Bi(Fϑ(i)))2,

where Bi, i = 1, . . . , d, are independent standard Brownian bridges. The assertion still holds if
we replace Σ by a consistent estimator.

Proof. In the following lines let ||x||2Σ = xTΣ−1x.

Under the null hypothesis the test statistic can be written as

max
ϑ∈Θ

1

N
STϑΣ−1Sϑ = max

ϑ∈Θ

1

N

∥∥∥∥∥∥∥∥∥∥∥∥



bNGϑ(1)c∑
t=bNFϑ(1)c+1

(e1(t)− e1)

...
bNGϑ(d)c∑

t=bNFϑ(d)c+1

(ed(t)− ed)



∥∥∥∥∥∥∥∥∥∥∥∥

2

Σ

.
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14. Asymptotics under the Null Hypothesis

We do a further transformation in order to easily understand the main idea of the proof later

bNGϑ(1)c∑
t=bNFϑ(1)c+1

(e1(t)− e1)

...
bNGϑ(1)c∑

t=bNFϑ(d)c+1

(ed(t)− ed)

 =



bNGϑ(1)c∑
t=1

(e1(t)− e1)

...
bNGϑ(d)c∑

t=1
(ed(t)− e1)

−


bNFϑ(1)c∑
t=1

(e1(t)− e1)

...
bNFϑ(d)c∑

t=1
(ed(t)− e1)

 .(14.1)

First we define the projection

Pj,t : Dd[0, 1]→ Rd, Pj,t(x(·)) =



0
...
0

xj(t)
0
...
0


,

where x(·) = (x1(·), . . . , xd(·)). With the help of this projection we construct another projec-
tion Pt1,...,td which gives a vector of the components of the vector x(·) for different arguments
t1, . . . , td. For the projection

Pt1,...,td := P1,t1 + P2,t2 + · · ·+ Pd,td ,

we have

Pt1,...,td : Dd[0, 1]→ Rd,

Pt1,...,td(x(·)) = P1,t1(x(·)) + P2,t2(x(·)) + · · ·+ Pd,td(x(·)) =


x1(t1)
x2(t2)

...
xd(td)

 .

Now we define a function H̃ from Dd[0, 1] to Rd and a function H from Dd[0, 1] to R using the
projection Pt1,...,td :

H̃(x(·)) := PGϑ(1),...,Gϑ(d)(x(·))− PFϑ(1),...,Fϑ(d)(x(·)),

H(x(·)) := max
ϑ∈Θ

∥∥∥H̃(x(·))− H̃(id(·))P1,...,1(x(·))
∥∥∥2

Σ
,

where H̃(id(·)) and P1,...,1(x(·)) are multiplied componentwise.
If we choose the partial sum process of the errors as x(·), i.e.

x

(
bNtc
N

)
=

1√
N

bNtc∑
i=1

 e1(i)
...

ed(i)

 ,
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14.1. Null Asymptotics of the Multivariate Statistic

which is a function in Dd[0, 1], then we obtain H(x(·)) = max
ϑ∈Θ

1
NS

T
ϑΣ−1Sϑ (compare equation

(14.1)).

The last step of the proof is to show that the function H is continuous because then the
assertion follows from the continuous mapping theorem and the multivariate functional central
limit theorem, since

H

 1√
N

bNtc∑
i=1

 e1(i)
...

ed(i)


 D−→ H

Σ
1
2

 W1(t)
...

Wd(t)




= max
ϑ∈Θ

∥∥∥∥∥∥∥PGϑ(1),...,Gϑ(d)

Σ
1
2

 W1(t)
...

Wd(t)


− PFϑ(1),...,Fϑ(d)

Σ
1
2

 W1(t)
...

Wd(t)




−

PGϑ(1),...,Gϑ(d)

Σ
1
2

 t
...
t


− PFϑ(1),...,Fϑ(d)

Σ
1
2

 t
...
t



P1,...,1

Σ
1
2

 W1(t)
...

Wd(t)



∥∥∥∥∥∥∥

2

Σ

= max
ϑ∈Θ

∥∥∥∥∥∥∥Σ
1
2

 W1(Gϑ(1))−W1(Fϑ(1))− (Gϑ(1)− Fϑ(1))W1(1))
...

Wd(Gϑ(d))−Wd(Fϑ(d))− (Gϑ(d)− Fϑ(d))Wd(1))


∥∥∥∥∥∥∥

2

Σ

= max
ϑ∈Θ

∥∥∥∥∥∥∥Σ
1
2

 W1(Gϑ(1))−Gϑ(1)W1(1)− (W1(Fϑ(1))− Fϑ(1)W1(1))
...

Wd(Gϑ(d))−Gϑ(d)Wd(1)− (Wd(Fϑ(d))− Fϑ(d)Wd(1))


∥∥∥∥∥∥∥

2

Σ

= max
ϑ∈Θ

∥∥∥∥∥∥∥Σ
1
2

 B1(Gϑ(1))−B1(Fϑ(1))
...

Bd(Gϑ(d))−Bd(Fϑ(d))


∥∥∥∥∥∥∥

2

Σ

= max
ϑ∈Θ

∥∥∥∥∥∥∥
 B1(Gϑ(1))−B1(Fϑ(1))

...
Bd(Gϑ(d))−Bd(Fϑ(d))


∥∥∥∥∥∥∥

2

= sup
ϑ∈Θ

d∑
i=1

(Bi(Gϑ(i))−Bi(Fϑ(i)))2.

To prove the continuity of H we define the vectors

x(t) =

 x1(t)
...

xd(t)

 , y(t) =

 y1(t)
...

yd(t)

 , t ∈ [0, 1].

For an arbitrary ε > 0 we have

|H(x(t))−H(y(t))|

=

∣∣∣∣max
ϑ∈Θ

∥∥PGϑ(1),...,Gϑ(d)(x(t))− PFϑ(1),...,Fϑ(d)(x(t))

−
(
PGϑ(1),...,Gϑ(d)(id(t))− PFϑ(1),...,Fϑ(d)(id(t))

)
P1,...,1(x(t))

∥∥2

Σ

−max
ϑ∈Θ

∥∥PGϑ(1),...,Gϑ(d)(y(t))− PFϑ(1),...,Fϑ(d)(y(t))
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14. Asymptotics under the Null Hypothesis

−
(
PGϑ(1),...,Gϑ(d)(id(t))− PFϑ(1),...,Fϑ(d)(id(t))

)
P1,...,1(y(t))

∥∥2

Σ

∣∣∣
≤ max

ϑ∈Θ

∥∥PGϑ(1),...,Gϑ(d)(x(t))− PFϑ(1),...,Fϑ(d)(x(t))

−
(
PGϑ(1),...,Gϑ(d)(id(t))− PFϑ(1),...,Fϑ(d)(id(t))

)
P1,...,1(x(t))

−
(
PGϑ(1),...,Gϑ(d)(y(t))− PFϑ(1),...,Fϑ(d)(y(t))

−
(
PGϑ(1),...,Gϑ(d)(id(t))− PFϑ(1),...,Fϑ(d)(id(t))

)
P1,...,1(y(t))

)∥∥2

Σ

≤ max
ϑ∈Θ

∥∥PGϑ(1),...,Gϑ(d)(x(t))− PGϑ(1),...,Gϑ(d)(y(t))
∥∥2

Σ

+ max
ϑ∈Θ

∥∥(PFϑ(1),...,Fϑ(d)(x(t))− PFϑ(1),...,Fϑ(d)(y(t))
)∥∥2

Σ

+ max
ϑ∈Θ

∥∥(PGϑ(1),...,Gϑ(d)(id(t))− PFϑ(1),...,Fϑ(d)(id(t))
)

(P1,...,1(x(t))− P1,...,1(y(t)))
∥∥2

Σ

= max
ϑ∈Θ

∥∥∥∥∥∥∥
 x1(Gϑ(1))− y1(Gϑ(1))

...
xd(Gϑ(d))− yd(Gϑ(d))


∥∥∥∥∥∥∥

2

Σ

+ max
ϑ∈Θ

∥∥∥∥∥∥∥
 x1(Fϑ(1))− y1(Fϑ(1))

...
xd(Fϑ(d))− yd(Fϑ(d))


∥∥∥∥∥∥∥

2

Σ

+ max
ϑ∈Θ

∥∥∥∥∥∥∥
 Gϑ(1)− Fϑ(1)

...
Gϑ(d)− Fϑ(d)


 x1(1)− y1(1)

...
xd(1)− yd(1)


∥∥∥∥∥∥∥

2

Σ

≤ ε,

if there is a δ = δ(ε) with ||x(t)− y(t)||∞ = max
i=1,...,d
0≤t≤1

|xi(t)− yi(t)| < δ(ε), since |Gϑ(i)| ≤ 1 and

|Fϑ(i)| ≤ 1.

We can replace Σ by an consistent estimator Σ̂N because of∣∣∣Σ̂N −Σ
∣∣∣ = oP (1).

Hence it holds∣∣∣∣ 1

N
max
ϑ∈θ
‖Sϑ‖2Σ̂ −

1

N
max
ϑ∈θ
‖Sϑ‖2Σ

∣∣∣∣ =

∣∣∣∣∣ 1

N
max
ϑ∈θ

∥∥∥∥Σ̂− 1
2Sϑ

∥∥∥∥2

− 1

N
max
ϑ∈θ

∥∥∥Σ− 1
2Sϑ

∥∥∥2
∣∣∣∣∣

≤ 1

N
max
ϑ∈θ

∥∥∥∥Σ̂− 1
2Sϑ −Σ−

1
2Sϑ

∥∥∥∥2

=
1

N
max
ϑ∈θ

∥∥∥∥(Σ̂
− 1

2 Σ
1
2 − Id

)
Σ−

1
2Sϑ

∥∥∥∥2

≤
∥∥∥∥Σ̂− 1

2 Σ
1
2 − Id

∥∥∥∥2 1

N
max
ϑ∈θ

∥∥∥Σ− 1
2Sϑ

∥∥∥2
=

∥∥∥∥Σ̂− 1
2 Σ

1
2 − Id

∥∥∥∥2

max
ϑ∈θ

1

N
STϑΣ−1Sϑ = oP (1).

Remark 14.1. If we use an estimator Σ̂N for the long-run covariance matrix satisfying Σ̂N
P−→

ΣA, where ΣA is a positive definite matrix, then we obtain the following limit distribution for
the multivariate statistic

max
ϑ∈Θ

 B1(Gϑ(1))−B1(Fϑ(1))
...

Bd(Gϑ(d))−Bd(Fϑ(d))


T

Σ
1
2 Σ−1

A Σ
1
2

 B1(Gϑ(1))−B1(Fϑ(1))
...

Bd(Gϑ(d))−Bd(Fϑ(d))

 .

It depends on the true long-run covariance matrix, thus in this case we need Bootstrap methods.

150



14.2. Null Asymptotics of the Projection Statistic

Remark 14.2. Note that in Theorem 14.1 we use the weight function in (13.3) with β = 0.
We suppose the assumptions of Theorem 14.1 and use the weight function with 0 < β ≤ 1

2 .
Additionally this weight function is assumed to be bounded on Θ, which means that there is a
ε > 0 such that ε < Gϑ(i)− Fϑ(i) < 1− ε, ∀i,∀ϑ. Then if Σ is a diagonal matrix, we get

max
ϑ∈Θ

1

N
SwTϑ Σ−1Swϑ

D−→ sup
ϑ∈Θ

d∑
i=1

w2
M,i(Fϑ(i), Gϑ(i))(Bi(Gϑ(i))−Bi(Fϑ(i)))2. (14.2)

The way to prove the result is analogous to the way of the case if β = 0. Therefore we choose
the function x(·) as

x(t) =
1√
N


wM,1

(
bNFϑ(1)c

N , bNGϑ(1)c
N

)
...

wM,d

(
bNFϑ(d)c

N , bNGϑ(d)c
N

)

bNtc∑
i=1

 e1(i)
...

ed(i)

 .

Then we also obtain with the same function H as in the proof of Theorem 14.1 and by its
continuity and a continuous transformation of the FCLT for the errors

H

 1√
N


wM,1

(
bNFϑ(1)c

N , bNGϑ(1)c
N

)
...

wM,d

(
bNFϑ(d)c

N , bNGϑ(d)c
N

)

bNtc∑
i=1

 e1(i)
...

ed(i)


 (14.3)

D−→ H

 1√
N

 wM,1 (Fϑ(1), Gϑ(1))
...

wM,d (Fϑ(d), Gϑ(d))

 bNtc∑
i=1

 e1(i)
...

ed(i)


 . (14.4)

Note that by choosing the function H as in the proof of Theorem 14.1 the term in (14.3) is equal
to the weighted multivariate statistic and the term in (14.4) is equal to the sum of the weighted
Brownian bridges. So we get (14.2).

If we use a linear plume where the opening angle is known as in the first part of the simulation
study in Chapter 17, the weight function is bounded on Θ, if the opening angle is chosen such
that ε < Gϑ(i)− Fϑ(i) < 1− ε, ∀i = 1, . . . , d, ∀ϑ ∈ Θ.

Additionally maximizing over the opening angle as in the second part of the simulations
Chapter 17 and in the data example in Chapter 18, leads to the weight function being bounded
on Θ only if there is a minimum and maximum bound on the opening angle. The minimum
bound could be for example 1◦ and the maximum bound 89◦. Only the condition above has to
be satisfied for every opening angle between the upper and lower bound.

Particularly, plumes of which only a part is inside the flight path can also be allowed.

14.2. Null Asymptotics of the Projection Statistic

The next Theorem gives the limit process of the projection statistic.
Since the projection statistic consists the projected errors, which are equal to the projected

sequence Y (t) under H0, we first have to develop a FCLT for the projected errors. Then
the statistic can be represented as a function of the partial sum process of the projected er-
rors. And then we can conclude in the same way as in case of the multivariate statistic.
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14. Asymptotics under the Null Hypothesis

Theorem 14.2

Let the errors e(t) = (e1(t), . . . , ed(t))
T , t = 1, . . . , N , be a time series which fulfills a multivariate

functional central limit theorem towards a Wiener process with covariance matrix Σ. Then,
under the null hypothesis, we have

1√
N

1

σ
max
ϑ∈Θ

∣∣∣∣∣
N∑
t=1

DF ϑ,Gϑ

(
t

N

)(
Y (t)− Y N

)∣∣∣∣∣ D−→ sup
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s−))B(s)

∣∣∣∣∣∣ ,

where F ϑ = (Fϑ(1), . . . , Fϑ(d)) andGϑ = (Gϑ(1), . . . , Gϑ(d)),Mϑ = {0 < s < 1 : DF ϑ,Gϑ
(s+)−

DF ϑ,Gϑ
(s) 6= 0} and {B(·)} is a standard Brownian bridge.

The assertion still holds true if we replace σ and Σ by consistent estimators σ̂N and Σ̂N .

Proof. With partial summation (confer Knopp (1996)) we derive the equality

1√
N

N∑
i=1

DF ϑ,Gϑ

(
i

N

)(
Y (i)− Y N

)
= −

N−1∑
i=1

(
DF ϑ,Gϑ

(
i+ 1

N

)
−DF ϑ,Gϑ

(
i

N

))
1√
N

i∑
j=1

(
Y (j)− Y N

)
. (14.5)

First notice that DF ϑ,Gϑ
(·) is step-wise constant and has a finite number of points of disconti-

nuity, namely the elements of Mϑ. Thus with the left-continuity of DF ϑ,Gϑ
(·), we have

−
N−1∑
i=1

(
DF ϑ,Gϑ

(
i+ 1

N

)
−DF ϑ,Gϑ

(
i

N

))
g

(
i

N

)
= −

∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s)) g

(
bNsc
N

)
,

for all functions g : [0, 1]→ R and Mϑ = {0 < s < 1 : DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s) 6= 0}.
Consequently, equation (14.5) can be rewritten as follows:

−
N−1∑
i=1

(
DF ϑ,Gϑ

(
i+ 1

N

)
−DF ϑ,Gϑ

(
i

N

))
1√
N

i∑
j=1

(
Y (j)− Y N

)
= −

∑
s∈Mϑ

(Dϑ(s+)−Dϑ(s))
1√
N

bNsc∑
j=1

(
Y (j)− Y N

)
. (14.6)

Next we have a look at the term including the univariate observations Y (t) which can be
replaced by the projected errors under H0, thus it yields

1√
N

bNsc∑
j=1

(
Y (j)− Y N

)
=

1√
N

bNsc∑
j=1

(eP (j)− eP,N ) .

Thus if a functional central limit theorem holds for the projected error sequence, we can conclude
the proof.
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14.2. Null Asymptotics of the Projection Statistic

A simple calculation gives

1

σ

1√
N

bNsc∑
j=1

eP (j) =
1

σ

1√
N

bNsc∑
j=1

〈
Σ−

1
2e(j),Σ−

1
2 ∆P

〉

=
1

σ

〈
Σ−

1
2

1√
N

bNsc∑
j=1

e(j),Σ−
1
2 ∆P

〉
=

1

σ

 1√
N

bNsc∑
j=1

e(j)

T

Σ−1∆P .

We define a vector x(t) = (x1(t), . . . , xd(t))
T which is a function from D[0, 1] to Rd and a function

H : D[0, 1]→ R with H(x(·)) = 1
σx

T (·)Σ−1∆P . It is easy to see that

1

σ

1√
N

bNsc∑
j=1

eP (j) = H

 1√
N

bNsc∑
j=1

e(j)

 .

For an arbitrary ε > 0 as well as x(t) = (x1(t), . . . , xd(t))
T and y(t) = (y1(t), . . . , yd(t))

T we
have

|H(x(t))−H(y(t))| =
∣∣∣∣ 1σxT (t)Σ−1∆P −

1

σ
yT (t)Σ−1∆P

∣∣∣∣ =

∣∣∣∣ 1σ (xT (t)− yT (t)
)
Σ−1∆P

∣∣∣∣ < ε,

if there is a δ = δ(ε) with ‖x(t)− y(t)‖∞ = max
i=1,...,d
0≤t≤1

|xi(t)− yi(t)| < δ(ε).

Since the function H is continuous and the multivariate errors fulfill a FCLT, it holds a FCLT
for the univariate projected errors by applying the continuous mapping theorem

1

σ

1√
N

bNsc∑
j=1

eP (j) = H

 1√
N

bNsc∑
j=1

e(j)

 D[0,1]−→ H(Σ
1
2W (s)) =

1

σ
W T (s)Σ−

1
2 ∆P ,

whereW (s) is a multivariate standard Wiener process. Now we check the variance ofW (s)TΣ−
1
2 ∆P :

Var(W (s)TΣ−
1
2 ∆P ) = Var

(
(∆T

PΣ−
1
2W (s))T

)
= s∆T

PΣ−
1
2 (∆T

PΣ−
1
2 )T = s∆T

PΣ−
1
2 Σ−

1
2 ∆P

= s∆T
PΣ−1∆P = sσ2,

with

σ2 =
∑
h∈Z

Cov (eP (0), eP (h)) (14.7)

=
∑
h∈Z

Cov
(〈

Σ−
1
2e(0),Σ−

1
2 ∆P

〉
,
〈
Σ−

1
2e(h),Σ−

1
2 ∆P

〉)
=
∑
h∈Z

Cov
(
e(0)Σ−1∆P , e(h)Σ−1∆P

)
= ∆T

PΣ−1 Cov (e(0), e(h)) Σ−1∆P

= ∆T
PΣ−1ΣΣ−1∆P

= ∆T
PΣ−1∆P .
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14. Asymptotics under the Null Hypothesis

We conclude that the variance of 1
σW

T (s)Σ−
1
2 ∆P is s. So we get{

1

σ
W T (s)Σ−

1
2 ∆P : 0 ≤ s ≤ 1

}
D
= {W (s) : 0 ≤ s ≤ 1},

where W (s) is a standard Wiener process, and thus a functional central limit theorem also holds
for the projected errors:{

1

σ

1√
N

bNsc∑
j=1

eP (j) : 0 ≤ s ≤ 1

}
D[0,1]−→ {W (s) : 0 ≤ s ≤ 1}.

Hence the pointwise convergence in distribution follows

1

σ

1√
N

bNsc∑
j=1

eP (j)
D−→W (s) ∀ 0 ≤ s ≤ 1.

To finish we define the function V : R→ R and x : [0, 1]→ R according to

V

(
x

(
bNsc
N

))
= max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))

(
x

(
bNsc
N

)
− id

(
bNsc
N

)
x(1)

)∣∣∣∣∣∣ .

If x(s) = 1
σ

1√
N

bNsc∑
j=1

eP (j), 0 ≤ s ≤ 1, then V (x(s)) is equal to equation (14.6). Let x(t) and

y(t) be functions from [0, 1] to R, then the function V (·) is continuous because of we have for

an arbitrary ε > 0 and with t = bNsc
N

|V (x(t))− V (y(t))|

=

∣∣∣∣∣∣max
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s)) (x(t)− id(t)x(1))

∣∣∣∣∣∣
−max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s)) (y(t)− id(t)y(1))

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ max
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s)) (x(t)− id(t)x(1))

−
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s)) (y(t)− id(t)y(1))

∣∣∣∣∣∣
= max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s)) (x(t)− y(t)− id(t)(x(1)− y(1)))

∣∣∣∣∣∣ < ε,

if there is a δ = δ(ε) with ||x(t)− y(t)||∞ = max
i=1,...,d
0≤t≤1

|xi(t)− yi(t)| < δ(ε).

154



14.2. Null Asymptotics of the Projection Statistic

Consequently we get

max
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s−))
1

σ

1√
N

bNsc∑
j=1

(eP (j)− eP,N )

∣∣∣∣∣∣
D−→ max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s−))B(s)

∣∣∣∣∣∣ , N →∞,

where {B(s)} is a standard Brownian bridge. For consistent estimators σ̂ of σ and Σ̂ of Σ and
with the functional limit theorem, we have∣∣∣∣∣∣max
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))
1

σ

1√
N

bNsc∑
j=1

(eP (j)− eP,N )

∣∣∣∣∣∣
−max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(
DΣ̂

F ϑ,Gϑ
(s+)−DΣ̂

F ϑ,Gϑ
(s)
) 1

σ̂

1√
N

bNsc∑
j=1

(
eT (j)Σ̂

−1
∆P −

1

N

N∑
i=1

eT (j)Σ̂
−1

∆P

)∣∣∣∣∣∣
∣∣∣∣∣∣

≤ max
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))
1

σ

1√
N

bNsc∑
j=1

(eP (j)− eP,N )

−
∑
s∈Mϑ

(
DΣ̂

F ϑ,Gϑ
(s+)−DΣ̂

F ϑ,Gϑ
(s)
) 1

σ̂

1√
N

bNsc∑
j=1

(
eT (j)Σ̂

−1
∆P −

1

N

N∑
i=1

eT (j)Σ̂
−1

∆P

)∣∣∣∣∣∣
= max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))
1

σ

1√
N

bNsc∑
j=1

(
eT (j)Σ−1∆P −

1

N

N∑
i=1

eT (j)Σ−1∆P

)

−
∑
s∈Mϑ

(
DΣ̂

F ϑ,Gϑ
(s+)−DΣ̂

F ϑ,Gϑ
(s)
) 1

σ̂

1√
N

bNsc∑
j=1

(
eT (j)Σ̂

−1
∆P −

1

N

N∑
i=1

eT (j)Σ̂
−1

∆P

)∣∣∣∣∣∣
= max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))
1

σ

1√
N

bNsc∑
j=1

(
eT (j)Σ−1∆P −

1

N

N∑
i=1

eT (j)Σ−1∆P

)

−
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s) + oP (1))
1

σ̂

1√
N

bNsc∑
j=1

(
eT (j)Σ̂

−1
∆P −

1

N

N∑
i=1

eT (j)Σ̂
−1

∆P

)∣∣∣∣∣∣
= max

ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))

 1√
N

bNsc∑
j=1

(
1

σ
eT (j)Σ−1∆P −

1

σ̂
eT (j)Σ̂

−1
∆P

)

−bNsc
N

N∑
i=1

(
1

σ
eT (j)Σ−1∆P −

1

σ̂
eT (j)Σ̂

−1
∆P

))∣∣∣∣∣+OP (1)
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= max
ϑ∈Θ

∣∣∣∣∣∣
∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s))

 1√
N

bNsc∑
j=1

eT (j)Σ−1

(
1

σ
Id− 1

σ̂
ΣΣ̂

−1
)

∆P −
bNsc
N

N∑
j=1

eT (j)Σ−1

(
1

σ
Id− 1

σ̂
ΣΣ̂

−1
)

∆P

∣∣∣∣∣∣
= OP (1) (OP (1)oP (1)OP (1)−OP (1)OP (1)oP (1)OP (1)) = oP (1), (14.8)

where

DΣ̂
F ϑ,Gϑ

(s) := (∆P1{Fϑ(·) < s ≤ Gϑ(·)})T Σ̂
−1

∆P

and

DΣA
F ϑ,Gϑ

(s) := (∆P1{Fϑ(·) < s ≤ Gϑ(·)})T Σ−1
A ∆P .

Remark 14.3. Note that DF ϑ,Gϑ
(·) still depends on the long-run covariance matrix Σ. Conse-

quently, the limit process is not pivotal and we have to calculate the critical value for each data
set separately.

Remark 14.4. The calculation in (14.7) shows that the long-run variance of the projected errors
σ is influenced by the long-run covariance matrix Σ of the errors e(t). This means that if we
use an estimator Σ̂N for the true long-run covariance matrix Σ, then we use simultaneously an
estimator σ̂N for the long-run variance of the projected errors. However, the long-run variance
of the projected errors is more easily to estimate.

If we use an estimator Σ̂N
P→ ΣA, which is a positive definite matrix and possibly different

from Σ, and a consistent estimator σ̂N of σ with σ̂N
P→ σ0 6= 0, possibly different from σ, but

σ0 is the true long-run variance of the projected errors standardized by ΣA. Then we are able
to develop the limit process under H0:

First we define Y Σ(t) =
〈
Σ−

1
2X(t),Σ−

1
2 ∆P

〉
and Y

Σ
N = 1

N

∑N
t=1

〈
Σ−

1
2Y (t),Σ−

1
2 ∆P

〉
.

Analogously, we define eΣP (t) =
〈
Σ−

1
2e(t),Σ−

1
2 ∆P

〉
and eΣP,N = 1

N

∑N
t=1

〈
Σ−

1
2e(t),Σ−

1
2 ∆P

〉
and further

DΣ
F ϑ,Gϑ

(
t

N

)
:=

(
∆P1

{
Fϑ(·) < t

N
≤ Gϑ(·)

})T
Σ−1∆P , t = 1, . . . , N,

and

MΣ
ϑ := {0 < s < 1 : DΣ

F ϑ,Gϑ
(s+)−DΣ

F ϑ,Gϑ
(s−) 6= 0}.

Note that by analogy with the proof of Theorem 14.2, there is a functional central limit theorem
for the projected errors standardized by ΣA: 1

σ0

1√
N

bNsc∑
i=1

eΣA
P (i) : 0 ≤ s ≤ 1

 D[0,1]−→ {W (s) : 0 ≤ s ≤ 1}.
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Furthermore, we obtain in the same way as in the lines (14.8)

1√
N

1

σ̂N
max
ϑ∈Θ

∣∣∣∣∣
N∑
t=1

DΣ̂N
F ϑ,Gϑ

(
t

N

)(
Y Σ̂N (t)− Y Σ̂N

N

)∣∣∣∣∣
= max

ϑ∈Θ

∣∣∣∣∣∣∣
∑

s∈MΣ̂N
ϑ

(
DΣ̂N

F ϑ,Gϑ
(s+)−DΣ̂N

F ϑ,Gϑ
(s−)

) 1

σ̂N

1√
N

bNsc∑
j=1

(
eΣ̂N
P (j)− eΣ̂N

P,N

)∣∣∣∣∣∣∣
D−→ max

ϑ∈Θ

∣∣∣∣∣∣∣
∑

s∈MΣA
ϑ

(
DΣA

F ϑ,Gϑ
(s+)−DΣA

F ϑ,Gϑ
(s)
)
B(s)

∣∣∣∣∣∣∣ , N →∞. (14.9)

Remark 14.5. Note, that Theorem 14.2 uses the weight function from (13.4) with β = 0.
For 0 < β ≤ 1

2 , suppose that the assumptions of Theorem 14.2 hold and

sup
ϑ∈Θ

 1∫
0

DF ϑ,Gϑ
(z)−

1∫
0

DF ϑ,Gϑ
(ω)dω

2

dz


−β

<∞,

then we get

1√
N

1

σ
max
ϑ∈Θ

∣∣∣∣ N∑
t=1

DF ϑ,Gϑ

(
t
N

) (
Y (t)− Y N

)∣∣∣∣
wP
(
t
N

) D→ sup
ϑ∈Θ

∣∣∣∣∣∣∣∣∣∣∣

∑
s∈Mϑ

(DF ϑ,Gϑ
(s+)−DF ϑ,Gϑ

(s−))B(s)(
1∫
0

(
DF ϑ,Gϑ

(z)−
1∫
0

DF ϑ,Gϑ
(ω)dω

)2

dz

)β
∣∣∣∣∣∣∣∣∣∣∣
,

where {B(·)} is a Brownian bridge.
It is sufficient that condition 14.5 is satisfied, because then the asymptotic weight function in

the denominator of the limit distribution is away from zero. Then the asymptotic distribution
is well-defined.

In the example of the gas emission source, condition 14.5 is fullfilled if DF ϑ,Gϑ
(·) is not

constant, e.g. if we choose a minimum and maximum opening angle for the gas plume such that
ε < Gϑ(i) − Fϑ(i) < 1 − ε for at least one i = 1, . . . , d, ∀ϑ ∈ Θ. Particularly, the condition is
weaker than in case of the multivariate statistic because the mentioned condition has only to
be fulfilled for at least one component. Furthermore, plumes on the boundaries of the x-values
of the searching area are also allowed, even a lot more plumes compared to the usage of the
multivariate statistic. It also holds true if we replace σ and Σ by consistent estimators as in
Remark 14.4.

Remark 14.6. Note that the gradual change of the projected data set is step-wise constant
and has a finite number of points of discontinuity .

If we would have a differentiable function determining the slope of the gradual change, we get
an integral of the Brownian bridge weighted by the derivative of that function, analogously to
Hušková and Steinebach (2002).
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15. Asymptotics under the Alternative

In this chapter we show the consistency of the test based on the multivariate statistic and on
the projection statistic. In fact, we have to prove that under the alternative hypothesis of the
existence of an epidemic mean change in at least one component, the test statistic converges
to infinity in probability. This fact ensures the convergence to one of the probability that
the procedure actually finds the changes under the alternative hypothesis, which is called the
asymptotic power one or consistency of the test.

15.1. Consistency: Test based on the Multivariate Statistic

To show the consistency of the test based on the multivariate statistic, we first need a statement
that allows to replace Sϑ(i) by its asymptotic signal part in asymptotical considerations in a
stochastic sense under the alternative hypothesis.

Lemma 15.1

Under the assumptions on the errors of Theorem 14.1, we have under the alternative hypothesis

sup
i=1,··· ,d

sup
ϑ∈Θ

∣∣∣∣∣∣ 1

N

bNG̃ϑ(i)c∑
t=bNF̃ϑ(i)c+1

(
Xi(t)−

1

N

N∑
l=1

Xi(l)

)

−∆̃i(gFϑ0 (i),Gϑ0 (i)(G̃ϑ(i))− gFϑ0 (i),Gϑ0 (i)(F̃ϑ(i)))
∣∣∣ = oP (1).

Here, F̃ϑ and G̃ϑ are arbitrary but fixed functions that are possibly different from the true
function Fϑ and Gϑ, and

gt0,t1(s) =


−s(t1 − t0), s ≤ t0
s(1− (t1 − t0))− t0, t0 < s ≤ t1,
(1− s)(t1 − t0), s > t1

where 0 ≤ t0 < t1 ≤ 1, 0 ≤ s ≤ 1.

Proof. First, notice that for i = 1, . . . , d

1

N

bNG̃ϑ(i)c∑
t=NF̃ϑ(i)+1

(
Xi(t)−

1

N

N∑
l=1

Xi(l)

)

=
1

N

bNG̃ϑ(i)c∑
t=1

(
Xi(t)−

1

N

N∑
l=1

Xi(l)

)
− 1

N

bNF̃ϑ(i)c∑
t=1

(
Xi(t)−

1

N

N∑
l=1

Xi(l)

)
.
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So for 0 < G̃ϑ(i) ≤ 1 and i = 1, . . . , d we derive

sup
i=1,··· ,d

sup
ϑ∈Θ

∣∣∣∣∣∣ 1

N

bNG̃ϑ(i)c∑
t=1

(
Xi(t)−

1

N

N∑
l=1

Xi(l)

)

−∆̃i

 1

N

bNG̃ϑ(i)c∑
t=1

1

{
Fϑ0(i) <

t

N
≤ Gϑ0(i)

}
− bNG̃ϑ(i)c

N2

N∑
l=1

1

{
Fϑ0(i) <

l

N
≤ Gϑ0(i)

}∣∣∣∣∣∣
=

1√
N

sup
i=1,··· ,d

sup
ϑ∈Θ

∣∣∣∣∣∣ 1√
N

bNG̃ϑ(i)c∑
t=1

(ei(t)− ei)

∣∣∣∣∣∣ = oP (1)OP (1) = oP (1),

by the fact that the errors satisfy a functional central limit theorem. This lines are analogous
for F̃ϑ. Finally we get

∆̃i

 1

N

bNG̃ϑ(i)c∑
t=1

1

{
Fϑ0(i) <

t

N
≤ Gϑ0(i)

}
− bNG̃ϑ(i)c

N2

N∑
l=1

1

{
Fϑ0(i) <

l

N
≤ Gϑ0(i)

}
= ∆̃igFϑ0 ,Gϑ0 (G̃ϑ(i)) + oP (1),

where function gt0,t1 , i = 1, . . . , d, is defined as stated above and the same holds if we replace

G̃ϑ by F̃ϑ.

Now we are able to prove the consistency of the test based on the multivariate statistic by using
the previous lemma.

Theorem 15.1

Let the errors fulfill the assumptions of Theorem 14.1. Then, under the alternative hypothesis,

max
ϑ∈Θ

1

N
STϑΣ−1Sϑ

P−→∞.

The assertion is even true if we replace Σ by an estimator Σ̂N satisfying Σ̂N
P−→ ΣA, where

ΣA is a positive definite matrix possibly different to Σ.

Proof. First, note that

max
ϑ∈Θ

1

N
STϑΣ−1Sϑ ≥

1

N
STϑ0Σ

−1Sϑ0 .

Then, by Lemma 15.1 we conclude

1

N
STϑ0Σ

−1Sϑ0 = N

(
1

N2
STϑ0Σ

−1Sϑ0

)
= N

(
DTΣ−1D + oP (1)

)
,

where D = (D1, . . . , Dd)
T with Di = ∆̃i(gFϑ0 (i),Gϑ0 (i)(Gϑ0(i)) − gFϑ0 (i),Gϑ0 (i)(Fϑ0(i))). The

function gt0,t1 is defined as in Lemma 15.1. Due to ∆̃i 6= 0 for at least one i = 1, . . . , d under
the alternative hypothesis, we obtain for at least one i = 1, . . . , d

gFϑ0 (i),Gϑ0 (i)(Gϑ0(i))− gFϑ0 (i),Gϑ0 (i)(Fϑ0(i))

160



15.1. Consistency: Test based on the Multivariate Statistic

= Gϑ0(i)(1− (Gϑ0(i)− Fϑ0(i)))− Fϑ0(i) + Fϑ0(i)(Gϑ0(i)− Fϑ0(i))

= (Gϑ0(i)− Fϑ0(i))−Gϑ0(i)(Gϑ0(i)− Fϑ0(i)) + Fϑ0(i)(Gϑ0(i)− Fϑ0(i))

= (Gϑ0(i)− Fϑ0(i)) (1− (Gϑ0(i)− Fϑ0(i))) > 0.

Hence, since Σ is positive definite, it follows that

N
(
DTΣ−1D + oP (1)

) P−→∞ (N →∞).

If we use an estimator Σ̂N of Σ with Σ̂N
P−→ ΣA, where ΣA is positive definite, then we

complete the proof again with Lemma 15.1, because of

1

N
STϑ0Σ̂

−1

N Sϑ0 = N

(
1

N2
STϑ0Σ̂

−1

N Sϑ0

)
= N

(
DTΣ−1

A D + oP (1)
) P−→∞ (N →∞).

Remark 15.1. Let the assumptions of Remark 14.2 hold. Then due to the boundedness on Θ
of the weight function wM (·, ·) with 0 < β ≤ 1

2 , we have

sup
i=1,··· ,d

sup
ϑ∈Θ

∣∣∣∣∣∣wM,i

(
bNFϑ(i)c

N
,
bNGϑ(i)c

N

)
1

N

NGϑ(i)∑
t=NFϑ(i)+1

(
Xi(t)−

1

N

N∑
l=1

Xi(l)

)

−wM,i (Fϑ(i), Gϑ(i)) ∆̃i(gFϑ0 (i),Gϑ0 (i)(Gϑ(i))− gFϑ0 (i),Gϑ0 (i)(Fϑ(i)))
∣∣∣ = oP (1), (15.1)

where gt0,t1(s) =


−s(t1 − t0), s ≤ t0
s(1− (t1 − t0)− t0, t0 < s ≤ t1
(1− s)(t1 − t0), s > t1

, i = 1, . . . , d with 0 ≤ t0 < t1 ≤ 1.

We know that replacing wM,i

(
bNFϑ0 (i)c

N ,
bNGϑ0 (i)c

N

)
with wM,i (Fϑ0(i), Gϑ0(i)) is asymptotically

negligible. The second term in (15.1) is greater than zero for at least one i = 1, . . . , d. Hence,
the consistency of the test based on the weighted multivariate statistic follows.

Remark 15.2. Let us use the functions F̃ϑ(i) and G̃ϑ(i), i = 1, . . . , d, which are possibly differ-
ent from the true functions Fϑ(i) and Gϑ(i), i = 1, . . . , d. Further, suppose the assumptions of
Lemma 15.1, where β = 0, and the assumptions of Remark 15.1, where β ∈

(
0, 1

2

]
. Additionally

we suppose that there is a θ0 ∈ Θ such that

∆i

(
gFϑ0 (i),Gϑ0 (i)(G̃θ0(i))− gFϑ0 (i),Gϑ0 (i)(F̃θ0(i))

)
6= 0 for at least one i (15.2)

where

gs1,s2(t1)− gs1,s2(t0)

=



(s1 − s2)(t1 − t0), s1 < s2 ≤ t0
s2 − t0 + (t1 − t0)(s1 − s2), s1 ≤ t0, t0 < s2 ≤ t1
(t1 − t0)(s1 − s2) + (t1 − t0), s1 ≤ t0, s2 > t1

(s2 − s1)(1− (t1 − t0)), t0 < s1 < s2 ≤ t1
(t1 − t0)(s1 − s2 + 1) + t0 − s1, t0 < s1 ≤ t1, s2 > t1

(t1 − t0)(s1 − s2), s2 > s1 > t1

, with 0 ≤ t0 < t1 ≤ 1.
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Then the consistency of the test based on the multivariate statistic still holds true.
Hence, we obtain

max
ϑ∈Θ

1

N

(
wM,i

(
bN F̃ ϑc
N

,
bNG̃ϑc
N

)
S̃ϑ

)T
Σ−1

(
wM,i

(
bN F̃ ϑc
N

,
bNG̃ϑc
N

)
S̃ϑ

)
P−→∞,

where

S̃ϑ =



bNG̃ϑ(1)c∑
t=bNF̃ϑ(1)c+1

(
X1(t)−X1

)
...

bNG̃ϑ(d)c∑
t=bNF̃ϑ(d)c+1

(
Xd(t)−Xd

)


.

The key reason is that Lemma 15.1 and equation (15.1) hold true for arbitrary but fixed functions
F̃ϑ(·) and G̃ϑ(·) which do not have to be necessarily correct.

With the help of equation (15.2), the proof is analogous to the proof of Theorem 15.1.

15.2. Consistency: Test based on the Projection Statistic

Analogous to the multivariate statistic the first step to prove consistency of the test based on
the projection statistic is to show the asymptotic equivalency of the statistic and its asymptotic
signal part in a stochastic sense. But note, that the function Dt0,t1(·), 0 < t0 ≤ t1 ≤ 1, depends
on the long-run covariance matrix Σ.

Lemma 15.2

Let the errors fulfill the assumptions of Theorem 14.2. Then, under the alternative hypothesis,
we get

sup
ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
(Y (t)− Y N )− g(F̃ϑ(1), . . . , F̃ϑ(d), G̃ϑ(1), . . . , G̃ϑ(d))

∣∣∣∣∣ = oP (1),

where F̃ϑ(·) and G̃ϑ(·) are arbitrary but fixed functions, not necessarily equal to the true func-
tions Fϑ and Gϑ, and

g(F̃ϑ(1), . . . , F̃ϑ(d), G̃ϑ(1), . . . , G̃ϑ(d)) =

1∫
0

D
F̃ ϑ,G̃ϑ

(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 dz.

The assertion holds true if we replace the long-run covariance matrix Σ by an estimator Σ̂N

satisfying Σ̂N
P−→ ΣA, where ΣA is positive definite and possibly different from Σ, thus we
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have

sup
ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

DΣ̂N

F̃ ϑ,G̃ϑ

(
t

N

)
(Y Σ̂N (t)− Y Σ̂N

N )− gΣA(F̃ϑ(1), . . . , F̃ϑ(d), G̃ϑ(1), . . . , G̃ϑ(d))

∣∣∣∣∣ = oP (1),

and

gΣA(F̃ϑ(1), . . . , F̃ϑ(d), G̃ϑ(1), . . . , G̃ϑ(d)) =

1∫
0

DΣA

F̃ ϑ,G̃ϑ
(z)

DΣA
F ϑ0 ,Gϑ0

(z)−
1∫

0

DΣA
F ϑ0 ,Gϑ0

(ω)dω

 dz,

where DΣA
F ϑ0 ,Gϑ0

and Y Σ̂N (t) and Y
Σ̂N

N are defined in Remark (14.4).

Proof. First we write out the projected observations

1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
(Y (t)− Y N )

=
1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)(
DF ϑ0 ,Gϑ0

(
t

N

)
−DF ϑ0 ,Gϑ0

+ eP (t)− eP
)

=
1

N

N∑
t=1

(
D

F̃ ϑ,G̃ϑ

(
t

N

)(
DF ϑ0 ,Gϑ0

(
t

N

)
−DF ϑ0 ,Gϑ0

)
+D

F̃ ϑ,G̃ϑ

(
t

N

)
(eP (t)− eP )

)
.

Consequently, we have

sup
ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

(
D

F̃ ϑ,G̃ϑ

(
t

N

)(
DF ϑ0 ,Gϑ0

(
t

N

)
−DF ϑ0 ,Gϑ0

)
+D

F̃ ϑ,G̃ϑ

(
t

N

)
(eP (t)− eP )

)

−
1∫

0

D
F̃ ϑ,G̃ϑ

(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 dz

∣∣∣∣∣∣
≤ sup

ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

(
D

F̃ ϑ,G̃ϑ

(
t

N

)(
DF ϑ0 ,Gϑ0

(
t

N

)
−DF ϑ0 ,Gϑ0

))

−
1∫

0

D
F̃ ϑ,G̃ϑ

(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 dz

∣∣∣∣∣∣
+ sup
ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
(eP (t)− eP )

∣∣∣∣∣ .
The last term is in oP (1) by Theorem 14.2 because the projected time series Y (t) under the null
hypothesis is equal to the projected errors.

We approximate the other term as follows:

sup
ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

(
D

F̃ ϑ,G̃ϑ

(
t

N

)(
DF ϑ0 ,Gϑ0

(
t

N

)
−DF ϑ0 ,Gϑ0

))
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−
1∫

0

D
F̃ ϑ,G̃ϑ

(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 dz

∣∣∣∣∣∣
= sup

ϑ∈Θ

∣∣∣∣∣ 1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
DF ϑ0 ,Gϑ0

(
t

N

)
− 1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
DF ϑ0 ,Gϑ0

−

 1∫
0

D
F̃ ϑ,G̃ϑ

(z)DF ϑ0 ,Gϑ0
(z)dz −

1∫
0

D
F̃ ϑ,G̃ϑ

(z)dz

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

∣∣∣∣∣∣
≤ sup

ϑ∈Θ

∣∣∣∣∣∣ 1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
DF ϑ0 ,Gϑ0

(
t

N

)
−

1∫
0

D
F̃ ϑ,G̃ϑ

(z)DF ϑ0 ,Gϑ0
(z)dz

∣∣∣∣∣∣
+ sup
ϑ∈Θ

∣∣∣∣∣∣ 1

N

N∑
t=1

D
F̃ ϑ,G̃ϑ

(
t

N

)
DF ϑ0 ,Gϑ0

−
1∫

0

D
F̃ ϑ,G̃ϑ

(z)dz

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

∣∣∣∣∣∣
= oP (1).

If we use an estimator Σ̂N satisfying Σ̂N
P−→ ΣA, where ΣA is positive definite, for proving

we have to use equation (14.9) and

max
x

∣∣∣DΣ̂N
t0,t1

(x)−DΣN
t0,t1

(x)
∣∣∣

= max
x

∣∣∣(∆P1{Fϑ(·) < x ≤ Gϑ(·)})T Σ̂
−1

N ∆P − (∆P1{Fϑ(·) < x ≤ Gϑ(·)})T ΣA
−1∆P

∣∣∣
= max

x

∣∣∣(∆P1{Fϑ(·) < x ≤ Gϑ(·)})T
(
Σ̂
−1

N −ΣA
−1
)

∆P

∣∣∣
≤ max

x
‖(∆P1{Fϑ(·) < x ≤ Gϑ(·)})‖2

∥∥∥(Σ̂
−1

N −ΣA
−1
)

∆P

∥∥∥2

= max
x
‖(∆P1{Fϑ(·) < x ≤ Gϑ(·)})‖2

∥∥∥Σ̂−1

N −ΣA
−1
∥∥∥2
‖∆P ‖2

= OP (1)oP (1)OP (1) = oP (1).

Next we are able to prove the consistency of the projection statistic.

Theorem 15.2

Let the errors fulfill the assumptions of Theorem 14.2. Then, under the alternative hypothesis,
we get

1√
N

1

σ
max
ϑ∈Θ

∣∣∣∣∣
N∑
t=1

DF ϑ,Gϑ

(
t

N

)(
Y (t)− Y N

)∣∣∣∣∣ P−→∞.

This assertion holds true if we replace Σ by Σ̂N with Σ̂N
P→ ΣA where ΣA is positive definite,

and if we replace σ by an estimator σ̂N satisfying σ̂N
P→ σA, where σA =

∑
h∈Z

Cov(ep(0), eP (h)) 6=

0.
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Proof. A simple approximation and Lemma 15.2 yield

1√
N

1

σ
max
ϑ∈Θ

∣∣∣∣∣
N∑
t=1

DF ϑ,Gϑ

(
t

N

)(
Y (t)− Y N

)∣∣∣∣∣ ≥ 1√
N

1

σ

∣∣∣∣∣
N∑
t=1

DF ϑ0 ,Gϑ0

(
t

N

)(
Y (t)− Y N

)∣∣∣∣∣
=
√
N

1

N

1

σ

∣∣∣∣∣
N∑
t=1

DF ϑ0 ,Gϑ0

(
t

N

)(
Y (t)− Y N

)∣∣∣∣∣
=
√
N

1

σ
(|g(Gϑ0(1), . . . , Gϑ0(d), Fϑ0(1), . . . , Fϑ0(d))|+ oP (1)) . (15.3)

Finally if the absolute value of the function g(·), plugged into the F ϑ0 and Gϑ0 , is not zero, the
assertion follows. Under the alternative we have with the Jensen inequality

g(Gϑ0(1), . . . , Gϑ0(d), Fϑ0(1), . . . , Fϑ0(d))

=

1∫
0

DF ϑ0 ,Gϑ0
(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 dz

=

1∫
0

D2
F ϑ0 ,Gϑ0

(z)dz −

 1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

2

dz ≥ 0,

and the equality only holds if DF ϑ0 ,Gϑ0
(·) is constant, which is not the case under the alternative

hypothesis because there is an epidemic mean change in at least one component. Then we
conclude

√
N |g(Gϑ0(1), . . . , Gϑ0(d), Fϑ0(1), . . . , Fϑ0(d))| P−→∞.

If an estimator σ̂N is used that satisfies σ̂N
P→ σA 6= 0 is used, the assertion still holds true

because σ is replaced by σA in equation (15.3) as well as g(·) is replaced by gΣA(·). The
proof is finished since gΣA(Gϑ0(1), . . . , Gϑ0(d), Fϑ0(1), . . . , Fϑ0(d)) 6= 0 under the alternative
hypothesis.

Remark 15.3. Let the assumptions of Remark 14.5 hold, then an analogon with the weight
function wP (·) with 0 < β ≤ 1

2 of Theorem 15.2 holds true.
First note, that we have an analogon to Lemma 15.2

sup
ϑ∈Θ

∣∣∣∣∣(wP (F ϑ,Gϑ))−1 1

N

N∑
t=1

DF ϑ,Gϑ

(
t

N

)
(Y (t)− Y N )

−

 1∫
0

DF ϑ,Gϑ
(z)−

1∫
0

DF ϑ,Gϑ
(ω)dω

2

dz


−β

g(Fϑ(1), . . . , Fϑ(d), Gϑ(1), . . . , Gϑ(d))

∣∣∣∣∣∣∣
= oP (1),

where g(·) is defined in Lemma 15.2.
Finally, the consistency of the test based on the projection statistic follows, due to the fact

that the asymptotic weight function, by plugging in the true parameter ϑ0, is not equal to zero
under the alternative hypothesis of an epidemic mean change in at least one component.

The assertion continues to hold if we use estimators Σ̂N and σ̂N that converge stochastically
to a positive definite matrix ΣA and σA 6= 0, respectively due to the fact that Lemma 15.2 also
holds using these estimators.
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15. Asymptotics under the Alternative

Remark 15.4. The consistency of the test based on the projection statistic still even holds if
the statistic uses functions F̃ϑ(·) and G̃ϑ(·) which are possibly different from the true functions
Fϑ(·) and Gϑ(·) as well as there is a θ0 ∈ Θ such that

1∫
0

D
F̃ θ0 ,G̃θ0

(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 6= 0. (15.4)

The explanation is that Lemma 15.2 still holds true for functions F̃ϑ(·) and G̃ϑ(·) which differ
from Fϑ(·) and Gϑ(·). Furthermore, with condition (15.4) we have

g(G̃θ0(1), . . . , G̃θ0(d), F̃θ0(1), . . . , F̃θ0(d))

=

1∫
0

D
F̃ θ0 ,G̃θ0

(z)

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 dz 6= 0

under the alternative hypothesis. Theorem 15.2 is proven with arbitrary functions F̃ϑ(·) and
G̃ϑ(·), thus the consistency follows in the misspecified case.

This holds also true for the test based on the weighted version of the projection statistic by
the condition (15.4) and because wM (·, ·) > 0.

The assertion still remains true even if we use estimators Σ̂N and σ̂N which converge stochas-
tically to a positive definite matrix ΣA and σA 6= 0, respectively.
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16. Consistency of the Estimators

In Section 13.3 we introduced the estimators based on both the multivariate and projection
statistic. In this chapter we prove the consistency of both estimators, i.e the estimators for
ϑ0 converges stochastically to the true parameter ϑ0. For the proofs of both estimators we
need identifiability conditions for all ϑ ∈ Θ which restrict the allowed functions determining the
relationship between the components.

In the application example of locating a source of a gas emission, a linear plume fulfills this
conditions. We will use such a plume in our simulation study and the real data example.

16.1. Consistency of the Estimator based on the Multivariate
Statistic

The estimator for ϑ0 based on the multivariate statistic is given by

ϑ̂M = arg max
ϑ∈Θ

SwTϑ Σ−1Swϑ .

The first theorem shows the consistency of this estimator for β = 0, then the estimator simplifies
to

ϑ̂M = arg max
ϑ∈Θ

STϑΣ−1Sϑ.

Theorem 16.1

Let β = 0 and the assumptions on the errors of Theorem 14.1 hold. In addition, let the following
condition be fulfilled:

arg max
ϑ∈Θ

‖Σ−
1
2Dϑ‖ = ϑ0, where ϑ0 is unique, (16.1)

where Dϑ(i) = ∆̃i

(
gFϑ0 (i),Gϑ0 (i)(Gϑ(i))− gFϑ0 (i),Gϑ0 (i)(Fϑ(i))

)
and Dϑ = (Dϑ(1), . . . , Dϑ(d))T ,

g is defined in Lemma 15.1.
Then under the alternative hypothesis H1 we get:

The estimator based on the multivariate statistic ϑ̂M is consistent, i.e. ϑ̂M
P−→ ϑ0.

The assertion even holds true if we replace Σ by an estimator Σ̂N satisfying Σ̂N
P−→ ΣA, where

ΣA is a positive definite matrix and fulfills condition (16.1). ΣA is possibly different from Σ.

Proof. The estimator ϑ̂M is also determined by

ϑ̂M = arg max
ϑ∈Θ

1

N2
STϑΣ−1Sϑ. (16.2)
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16. Consistency of the Estimators

First we take a look at the following approximations, in which we use Lemma 15.1 and the

assumption Σ̂N
P−→ ΣA as well as the fact that Dϑ(i), ϑ ∈ Θ, is bounded because gt0,t1(s), s ∈

[0, 1], 0 ≤ t0 < t1 ≤ 1, is also bounded and thus the same holds for ||Dϑ||, where ‖ · ‖ is the
l2-norm:

max
ϑ∈Θ

∣∣∣∣∣
(

1

N2
STϑ Σ̂

−1

N Sϑ

) 1
2

−
(
DT
ϑΣ−1

A Dϑ

) 1
2

∣∣∣∣∣ = max
ϑ∈Θ

∣∣∣∣∥∥∥∥ 1

N
Σ̂
− 1

2
N Sϑ

∥∥∥∥− ∥∥∥∥Σ− 1
2

A Dϑ

∥∥∥∥∣∣∣∣
= max

ϑ∈Θ

(∥∥∥∥ 1

N
Σ̂
− 1

2
N Sϑ

∥∥∥∥− ∥∥∥∥Σ̂− 1
2

N Dϑ

∥∥∥∥+

∥∥∥∥Σ̂− 1
2

N Dϑ

∥∥∥∥− ∥∥∥∥Σ− 1
2

A Dϑ

∥∥∥∥)
≤ max

ϑ∈Θ

(∥∥∥∥ 1

N
Σ̂
− 1

2
N Sϑ − Σ̂

− 1
2

N Dϑ

∥∥∥∥+

∥∥∥∥Σ̂− 1
2

N Dϑ −Σ
− 1

2
A Dϑ

∥∥∥∥)
≤ max

ϑ∈Θ

(∥∥∥∥Σ̂− 1
2

N

(
1

N
Sϑ −Dϑ

)∥∥∥∥+

∥∥∥∥(Σ̂
− 1

2
N −Σ

− 1
2

A

)
Dϑ

∥∥∥∥)
≤ max

ϑ∈Θ

(∥∥∥∥Σ̂− 1
2

N

∥∥∥∥
F

∥∥∥∥ 1

N
Sϑ −Dϑ

∥∥∥∥+

∥∥∥∥(Σ̂
− 1

2
N −Σ

− 1
2

A

)∥∥∥∥
F

‖Dϑ‖
)

=

(∥∥∥∥Σ− 1
2

A

∥∥∥∥
F

+ oP (1)

)
max
ϑ∈Θ

∥∥∥∥( 1

N
Sϑ

)
−Dϑ

∥∥∥∥+ oP (1) = oP (1).

The norm ‖ · ‖F is the Frobenius norm which is submultiplicative (see Banerjee and Roy (2014))
and by the continuous-mapping theorem and the continuity of the Frobenius norm, it holds∥∥∥∥(Σ̂

− 1
2

N −Σ
− 1

2
A

)∥∥∥∥
F

= oP (1).

If we want to show the consistency of the estimator using the true long-run covariance matrix
Σ, the approximations can be simplified to give

max
ϑ∈Θ

∣∣∣∣∣
(

1

N2
STϑΣ−1Sϑ

) 1
2

−
(
DT
ϑΣ−1Dϑ

) 1
2

∣∣∣∣∣ = max
ϑ∈Θ

∣∣∣∣∥∥∥∥ 1

N
Σ−

1
2Sϑ

∥∥∥∥− ∥∥∥Σ− 1
2Dϑ

∥∥∥∣∣∣∣
≤ max

ϑ∈Θ

∥∥∥∥Σ− 1
2

(
1

N
Sϑ −Dϑ

)∥∥∥∥ ≤ ∥∥∥Σ− 1
2

∥∥∥
F

max
ϑ∈Θ

∥∥∥∥( 1

N
Sϑ

)
−Dϑ

∥∥∥∥ = oP (1). (16.3)

In view of (16.2) and Theorem B.4, it is enough to show that the term
∥∥∥Σ− 1

2Dϑ

∥∥∥ and

∥∥∥∥Σ− 1
2

A Dϑ

∥∥∥∥,

respectively, has a unique maximum at ϑ = ϑ0 and is a continuous function of ϑ.
The continuity follows directly from the continuity of the function g. Furthermore, condition

(16.1) ensures that
∥∥∥Σ− 1

2Dϑ

∥∥∥ has a unique maximum at ϑ0. Since if we use an estimator Σ̂N

with Σ̂N
P→ ΣA, the condition (16.1) is satisfied for ΣA instead of Σ, it is also ensures that∥∥∥∥Σ− 1

2
A Dϑ

∥∥∥∥ has a unique maximum at ϑ0.

Corollary 16.1

Let the assumptions of Theorem 16.1 be fulfilled. In addition, let all ϑ ∈ Θ be identifiable, i.e.
if ϑ1, ϑ2 ∈ Θ and ϑ1 6= ϑ2 then Fϑ1(i) 6= Fϑ2(i) or Gϑ1(i) 6= Gϑ2(i) for at least one i ∈ {1, . . . , d}
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16.1. Consistency of the Estimator based on the Multivariate Statistic

with ∆̃i 6= 0. If Σ and ΣA, respectively, are diagonal matrices, then the estimator ϑ̂M is
consistent.

Proof. We have to establish that condition (16.1) holds for the diagonal matrices Σ and ΣA,
respectively. Note that the diagonal elements of Σ and ΣA are strictly positive.

The function gt0,t1(s), s ∈ [0, 1], 0 ≤ t0 < t1 ≤ 1, defined in Lemma 15.1, is piecewise constant,
and starts in zero, decreases till t0 then increases and crosses the x-axis, consequently goes from
negative to positive values, till it reaches t1 on the x-axis, and then again decreases till zero again.
Hence g(t0,t1) has a maximum at t1 and a minimum at t0 and both are unique. Furthermore, ϑ0

achieve the maximum in each component but not necessarily unique, thus we have

|Dϑ(i)| ≤ |Dϑ0(i)|, ∀ ϑ ∈ Θ, i = 1, . . . d.

However, due to the identifiability

for each ϑ ∈ Θ different from ϑ0, there exists an i with |Dϑ(i)| < |Dϑ0(i)|. (16.4)

Since ΣA = diag(s1, . . . , sd), si > 0 is a diagonal matrix, we finally get for all ϑ 6= ϑ0∥∥∥∥Σ− 1
2

A Dϑ

∥∥∥∥2

=
d∑
i=1

1

si
D2
ϑ(i) <

d∑
i=1

1

si
D2
ϑ0(i) =

∥∥∥∥Σ− 1
2

A Dϑ0

∥∥∥∥2

.

Consequently, condition (16.1) is satisfied and thus

∥∥∥∥Σ− 1
2

A Dϑ

∥∥∥∥ has a unique maximum at ϑ0.

Remark 16.1. Suppose that the assumptions of Theorem 16.1 and Remark 15.1 hold. Thus
the weight function wM (·, ·) is bounded on Θ. Furthermore, let

arg max
ϑ∈Θ

Σ
− 1

2
A (wM (F ϑ,Gϑ)Dϑ) = ϑ0, where ϑ0 is unique, (16.5)

wM (F ϑ,Gϑ) =


wM,1

(
bNFϑ(1)c

N , bNGϑ(1)c
N

)
...

wM,d

(
bNFϑ(d)c

N , bNGϑ(d)c
N

)
 and Dϑ is defined in Theorem 16.1. They are

multiplied component-wise.
Then the estimator based on the weighted multivariate statistic

ϑ̂M = arg max
ϑ∈Θ

SwTϑ Σ−1Swϑ

is also consistent.
The proof is analogous to the proof of the non-weighted version of the estimator. Using (15.1),

we have

max
ϑ∈Θ

∣∣∣∣∥∥∥∥ 1

N
Σ̂
− 1

2
N Swϑ

∥∥∥∥− ∥∥∥∥Σ− 1
2

A (wM (F ϑ,Gϑ)Dϑ)

∥∥∥∥∣∣∣∣
≤ max

ϑ∈Θ

∥∥∥∥Σ̂− 1
2

N

∥∥∥∥
F

∥∥∥∥ 1

N
Swϑ − (wM (F ϑ,Gϑ)Dϑ)

∥∥∥∥
+

∥∥∥∥(Σ̂
− 1

2
N −Σ

− 1
2

A

)∥∥∥∥
F

‖(wM (F ϑ,Gϑ)Dϑ)‖
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16. Consistency of the Estimators

=

(∥∥∥∥Σ− 1
2

A

∥∥∥∥
F

+ oP (1)

)
max
ϑ∈Θ

∥∥∥∥( 1

N
Swϑ

)
− (wM (F ϑ,Gϑ)Dϑ)

∥∥∥∥+ oP (1)

= oP (1),

where ‖ · ‖F is again the Frobenius norm. Now, since condition (16.5) holds, we can finish the
proof.

To show the consistency of the estimator using the true long-run covariance matrix Σ, the
reasoning is analogous to the lines in the proof of the non-weighted version in (16.3). By condition
(16.5), in which we have to replace ΣA by Σ, we finish the proof.

In the misspecified case, that arises if we use the functions F̃ϑ(·) and G̃ϑ(·), which are different
from the true functions Fϑ(·) and Gϑ(·), consistency cannot be shown. The reason is that
equation (16.4) does not hold anymore by plugging in the misspecified functions.

16.2. Consistency of the Estimator based on the Projection Statistic

The estimator for ϑ0 obtained by the projection statistic is defined as

ϑ̂P = arg max
ϑ∈Θ

∣∣∣∣ N∑
t=1

DF ϑ,Gϑ

(
t
N

) (
Y (t)− Y N

)∣∣∣∣(
N∑
t=1

(
DF ϑ,Gϑ

(
t
N

)
− 1

N

N∑
l=1

DF ϑ,Gϑ

(
l
N

))2
) 1

2

.

Note that the estimator depends on the long-run covariance matrix Σ, since DF ϑ,Gϑ
(·) depends

on Σ.

Theorem 16.2

Let the assumptions of Remark 14.5 hold. In addition, let all ϑ ∈ Θ identifiable, i.e. if ϑ1, ϑ2 ∈ Θ
and ϑ1 6= ϑ2 then DF ϑ1 ,Gϑ1

(·) 6= aDF ϑ2 ,Gϑ2
(·) + b with a 6= 0 and b ∈ R. Then under the

alternative hypothesis H1 we get:

The estimator ϑ̂P is consistent, i.e. ϑ̂P
P−→ ϑ0.

The assertion still holds true if we replace the long-run covariance matrix by an estimator Σ̂N

satisfying Σ̂N
P→ ΣA, where ΣA is a positive definite matrix, possibly different from Σ.

Proof. The estimator can also be written in the form

ϑ̂P = arg max
ϑ∈Θ

1

N
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Invoking Remark 15.3, we have∣∣∣∣∣∣∣∣∣∣∣
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− g(Fϑ(1), . . . , Fϑ(d), Gϑ(1), . . . , Gϑ(d))(
1∫
0

(
DF ϑ,Gϑ

(z)−
1∫
0

DF ϑ,Gϑ
(ω)dω

)2

dz

) 1
2

∣∣∣∣∣∣∣∣∣∣∣
= oP (1),

where g(·) is defined in Lemma 15.2. According to Theorem B.4 we have to show that the last
term has a unique maximum at ϑ = ϑ0 and is a continuous function of ϑ. To prove that the
maximum at ϑ = ϑ0 is unique, we need

arg max
ϑ∈Θ

g(Fϑ(1), . . . , Fϑ(d), Gϑ(1), . . . , Gϑ(d))(
1∫
0

(
DF ϑ,Gϑ

(z)−
1∫
0
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(ω)dω
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dz

) 1
2

(16.6)

= arg max
ϑ∈Θ
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0
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Hϑ(z)Hϑ0(z)dz(
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ϑ(z)dz

) 1
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, (16.7)

where Hϑ(z) = DF ϑ,Gϑ
(z)−

1∫
0

DF ϑ,Gϑ
(ω)dω, z ∈ (0, 1]. This function is continuous in ϑ because

DF ϑ,Gϑ
(·) is continuous in ϑ and thus also the function in (16.6). It remains to analyse the term
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in (16.7) concerning the unique maximum at ϑ = ϑ0. The Cauchy-Schwarz inequality gives

1∫
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The maximum value

(
1∫
0

H2
ϑ0

(z)dz

) 1
2

is achieved if Hϑ(z) = cHϑ0(z), ∀z ∈ [0, 1], c 6= 0. For this

condition, we have

Hϑ(z) = cHϑ0(z) ∀z ∈ [0, 1], c 6= 0

⇔ DF ϑ,Gϑ
(z)−

1∫
0

DF ϑ,Gϑ
(ω)dω = c

DF ϑ0 ,Gϑ0
(z)−

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω

 ∀z ∈ [0, 1], c 6= 0

⇔ DF ϑ,Gϑ
(z)− cDF ϑ0 ,Gϑ0

(z) =

1∫
0

DF ϑ,Gϑ
(ω)dω − c

1∫
0

DF ϑ0 ,Gϑ0
(ω)dω ∀z ∈ [0, 1], c 6= 0.

Thus there is a constant b ∈ R such that

DF ϑ,Gϑ
(z)− cDF ϑ0 ,Gϑ0

(z) = b ∀z ∈ [0, 1], c 6= 0.

This equation only holds if ϑ = ϑ0 by the identifiability condition. We conclude that the

maximum of

1∫
0

Hϑ(z)Hϑ0 (z)dz(
1∫
0

H2
ϑdz

) 1
2

is attained at ϑ = ϑ0. Finally, by Theorem B.4, we get ϑ̂P
P−→ ϑ0.

If we use Σ̂N satisfying Σ̂N
P→ ΣA, the proof runs analogously using Lemma 15.2.

Remark 16.2. If we use the projection statistic with misspecified functions F̃ϑ(·) and G̃ϑ(·),
then let the assumptions of Remark 14.5 hold with F̃ϑ(·) and G̃ϑ(·). And if ϑ̃0 is the unique

maximizer of
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P−→ ϑ̃0.

Thus the parameter ϑ̃0 is a best-approximating parameter.
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16.2. Consistency of the Estimator based on the Projection Statistic

The corresponding proof first uses the fact that Remark 15.3 holds true for arbitrary functions
F̃ϑ(·) and G̃ϑ(·) which have to satisfy that D

F̃ ϑ,G̃ϑ
(t), 0 < t ≤ 1 is not constant. These functions

are allowed to be different from the true functions Fϑ(·) and Gϑ(·). Then we have

arg max
ϑ∈Θ

g(F̃ϑ(1), . . . , F̃ϑ(d), G̃ϑ(1), . . . , G̃ϑ(d))(
1∫
0

(
D

F̃ ϑ,G̃ϑ
(z)−
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0

D
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(ω)dω

)2

dz

) 1
2

=
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0

H̃ϑ(z)Hϑ0(z)dz(
1∫
0

H̃2
ϑ(z)dz

) 1
2

,

where H̃ϑ(z) = D
F̃ ϑ,G̃ϑ

(z) −
1∫
0

D
F̃ ϑ,G̃ϑ

(ω)dω, z ∈ (0, 1] and function H(·) is defined as in the

proof of Theorem 16.2.

Since ϑ̃0 is the unique maximizer of 16.2, we conclude with Theorem B.4 that ϑ̂P
P−→ ϑ̃0.

If we use Σ̂N satisfying Σ̂N
P→ ΣA, the proof runs analogously using Lemma 15.2.
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17. Simulations

In this chapter, we compare the two statistics concerning the empirical size and the size-adjusted
power (see Chapter 6) by means of simulations. Furthermore, we compare the estimators based
on both statistics.

We use the setting of a source of gas emission, so we expect a source in an area and we want
to locate it as close as possible. The source spreads out gas into the air and the gas is carry away
by the wind in its direction. The concentration of the gas in the air can be measured by a plane
flying wiggly lines through the gas plume (see Figure 18.1). Inside the plume the concentration
of gas is higher than outside. Therefore, we suppose a multivariate epidemic mean change model
as in (13.1) with mean zero. The observation has the form X(t) = (X1(t), . . . , Xd(t))

T , where

Xi(t) = δ∆i1

{
Fϑ0(i) <

t

N
≤ Gϑ0(i)

}
+ ei(t), i = 1, . . . , d; t = 1, . . . , N,

and the parameter δ and ∆1, . . .∆d are introduced in Subsection 13.2.2. We choose d = 6
and N = 240 as well as i.i.d. standard normal distributed errors, and the shape of the plume
is assumed to be linear. Thus the covariance matrix Σ is equal to the unit matrix and the
variance of the projected errors σ2 is 1. We use this facts for the simulations. The change vector
consists of the function h which determines the decay of the concentration of gas with distance.
Therefore, as explained in Subsection 13.2.2, we use the log-normal distribution, see its density
in Figure 17.1. The first component is weighted by the value of the log-normal density in the
x-value 0.09 and the last component in 1.5 because its values of the log-normal density are
almost equal. We also project the multivariate data X(t) in direction of the vector resulting of
function h.
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Figure 17.1.: Function h of the decay of the concentration of gas depending on the distance to
source.
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The limit distributions are approximated by 10000 realisations of time series without changes
and the empirical size and size-adjusted power as well as the estimator based on 5000 realisations
of multivariate series. The opening angle of the plume is first chosen fixed as 10◦ and afterwards
we do some simulations where we vary the opening angle between a minimum and maximum
bound. The unknown parameter ϑ0 comprised the x- and y-coordinates of the location of
source and in addition the opening angle, respectively. The true location of the source has the
coordinates ys = 120 and xs = 70. The size of the changes in each component is controlled by
the parameter δ, and we choose δ = 0.7, δ = 1 and δ = 1.5. The parameter space Θ is the area
in which we search for a source. In the Figures 17.2 and 17.3, illustrating the simulated data set
under H0 and H1, this area is bounded in y-direction by two black lines with the y-coordinates
105 and 130 and the x-values are between 0 and 130. The parameter β which influences the
weight functions is chosen equal to 0, 0.25 and 0.45 except in case of the estimator based on
the projection statistic, where β is equal to 1

2 anyway caused by the reason of consistency (see
Theorem 16.2).

Figure 17.2 shows the time series under the null hypothesis, so there is no source of gas
emission in the searching area (the area in which we search for a change), and hence there are
no changes in the time series. In Figure 17.3 there is a source from which the gas spreads out
in form of a linear plume. Inside the plume the concentration of gas in the air increases and
decreases with the distance to source as a log-normal distribution, as shown in Figure 17.1. In
Figure 17.3 we used δ = 10 such that the changes are big enough to see them easily.
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Figure 17.2.: Data set under H0
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Figure 17.3.: Data set under H1 with δ = 10

For the procedure with the projection statistic we first suppose the correct specified case, i.e.
we use the function h to calculate the statistic which was used to generate the time series. Later
we analyse the effect in case of the projection statistic that occurs if we add an error to the
changes in the time series while we still use the same function h for the procedure.
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17.1. Analysis of empirical Size, Power and Estimators

The empirical size illustrated in Figure 17.4 is very good for both statistics and, no matter which
value of β we use, they almost maintain the nominal level. As expectable, the power is higher
the bigger the changes are in every component. Moreover, the projection statistic has better
power because we use the additional information of employing the correct function h (see Figure
17.5).

Figure 17.4.: Empirical size
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Figure 17.5.: Size-adjusted power with β = 0
and a source in the middle of the

searching area

As seen in Figure 17.6, the power increases from sources near to the lower bound of the
searching area to the middle and the upper bound. The reason is that the linear plume is wider
for sources located on the upper bound than for sources underneath due to the fixed opening
angle. This fact results in a longer period of mean changes in each component, which is more
easily to find by the procedure.

In Figure 17.7 to Figure 17.12 we plotted the estimated plumes of the realisations where the
source is detected. Therefore we use the level of 5%. In these figures the black lines and red
points correspond to the real plume and to the real location of the source , respectively, and the
green lines are the estimated plumes.

Notice that it is not significant to look at the estimated points for the source location, but
it is more meaningful to analyse the estimated plumes by using the estimated location of the
source. The reason is that a small variation of the plume implicates a relatively great variation
in the source location. So we expect that we cannot distinguish between different locations of
the sources in y-direction.

Figure 17.7 shows that the estimators based on the multivariate statistic spread over the whole
searching area for small δ. With increasing values of δ the estimators get more precise. Based
on the projection statistic the variation of estimators are almost the same, independently of the
value of δ (see Figure 17.8). In particular, the estimator based on the projection statistic is
extremely more precise for small values of δ than the estimator using the multivariate statistic.

The weight functions are influenced by the exponent β. For β near to zero the statistic prefers
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Figure 17.6.: Size-adjusted power for different source locations and δ = 1.
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(a) A source near to the lower
bound of the searching area.
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(b) A source in the middle of the
searching area.
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Figure 17.7.: Estimated plumes with multivariate statistic, β = 0

(a) δ = 0.7 (b) δ = 1 (c) δ = 1.5

Figure 17.8.: Estimated sources with projection statistic, β = 0.5

(a) δ = 0.7 (b) δ = 1 (c) δ = 1.5
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the locations near to the upper bound, because of the resulting wider plume as mentioned above.
For an increasing β the locations on the lower bound are preferred. Moreover, the points on the
upper region get more weight. However this does not mean that the estimator of the plume is
better, as we see in Figures 17.9, 17.10 and 17.11 where the estimators for the plume are best
for β = 0 no matter where the real source is located. Hence it follows that we can actually not
distinguish between upper and lower sources as we expected.

Figure 17.9.: Estimators of a source near to the upper bound of the searching area with
multivariate statistic (δ = 1)

(a) β = 0 (b) β = 0.25 (c) β = 0.45

Figure 17.10.: Estimators of a source near to the lower bound of the searching area with
multivariate statistic (δ = 1)

(a) β = 0 (b) β = 0.25 (c) β = 0.45

In case of the projection statistic it is reasonable to use β = 0.5, because then the estimator is
consistent. If we search a source near to the upper bound, the lower bound or in the middle of
the searching area, the variation of the estimators of the plume based on the projection statistic
is in all cases almost the same (see Figure 17.12).

In particular, the estimators of the plumes do not restrict the y-coordinates of the estimated

sources because the surface of STϑΣ−1Sϑ and wP (F ϑ,Gϑ)−1

∣∣∣∣ N∑
t=1

DF ϑ,Gϑ

(
t
N

) (
Y (t)− Y N

)∣∣∣∣ with

β = 1/2 is very flat along the y-axis as we see in the heatmaps in the Figures 18.18 and 18.19.
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Figure 17.11.: Estimators of a source in the middle of the searching area with multivariate
statistic (δ = 1)

(a) β = 0 (b) β = 0.25 (c) β = 0.45

Figure 17.12.: Source estimators with the projection statistic (δ = 1, β = 0.5)

(a) Source near to the lower bound
of the searching area

(b) Source in the middle of the
searching area

(c) Source near to the upper bound
of the searching area
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17.1. Analysis of empirical Size, Power and Estimators

The heatmaps are plotted from all possible estimators of the source location based on the landfill
data set, which will be discussed in the next chapter. This flat trend along the y-axis is due
to the fact that a slight modification of the plume in even only one component can implicate a
relatively great movement in the source location.

So far we analysed the procedure with a linear plume where the opening angle is fixed. But in
reality we maybe do not exactly know the opening angle, thus next we allow to vary the opening
angle of the plume between 1◦ and 89◦.

The limit distribution of the multivariate statistic is approximated by 5000 replications of
generated series without a source, the critical values of the projection statistic are based on
2000 replications. The simulations to calculate the empirical size and size-adjusted power of the
multivariate statistic are based on 5000 replications and of the projection statistic based on 1000
replications.

As we see in Figure 17.13(a), the empirical size of both statistics is somewhat worse than
without maximizing the opening angle but still very good. The size-adjusted power in Figure
17.13(b) is higher with a fixed opening angle than with maximizing over the angle because,
in the second case the method has to estimate an additional parameter. Since by using the
multivariate statistic the best choice for β is 0 with the above results, we illustrate the plume
estimators with this choice of β. In case of the projection statistic we use again β = 0.5 to
get a consistent estimator. The estimators of the plumes are worse in case of the multivariate
statistic with the same choices of δ than with fixed opening angle as we see in Figure 17.14. The
estimators based on the projection statistic are more precise but expectably worse than with
fixed opening angle, see Figure 17.15. Next we have a closer look at the projection statistic.

Figure 17.13.: Procedures with β = 0 and maximizing over the opening angle
(which is labelled with ”maxopeningangle” in the caption)
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(b) Size-adjusted power (”delta = c” means δ = c)

Till now we assumed that we know the function h, which gives the decay of the concentration
of gas in the air with distance. But in practice we maybe do not know the function h exactly.
Thus we want to clarify, how does the procedure using the projection statistic still performs
under misspecification of h. Therefore, we add a normally distributed error with mean zero and

181



17. Simulations

Figure 17.14.: Estimated plumes with multivariate statistic with β = 0 and maximizing over
the opening angle

(a) δ = 0.7 (b) δ = 1 (c) δ = 1.5

Figure 17.15.: Estimated plumes with projection statistic with β = 0.5 and maximizing over
the opening angle

(a) δ = 0.7 (b) δ = 1 (c) δ = 1.5
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17.1. Analysis of empirical Size, Power and Estimators

standard deviation 0.1, 0.2 and 0.3 to the true decay in each component in every simulated time
series and still use the function h in Figure 17.1 for the calculation of the projection statistic.
The power is illustrated in Figure 17.16. It decreases with growing deviation between the applied
function h for calculating the statistic and the true decay of concentration of the data. Till the
standard deviation of 0.2, the projection statistic has still higher power than the multivariate
statistic. The plume estimators are very stable with respect to the added error (see Figure
17.17). The deviation between the applied function h and the true decay of the concentration
has almost no effect on the estimators by comparing Figure 17.8 and Figure 17.17, even the
increasing standard deviation of the added error term remains without consequence (see Figure
17.17). In summary, the projection statistic performs better concerning the size-adjusted

Figure 17.16.: Size-adjusted power of the projection statistic with β = 0.5 and an added error
to the changes in each component (δ = 1)

(”sd(error h)” in the caption means the standard deviation of the added error)
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power and the estimators due to the use of additional information of knowing the decay of the
gas concentration with distance. However, it still performs quite well under misspecification of
the function h which determines the decay of the concentration of gas.
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Figure 17.17.: Estimated plumes with projection statistic with β = 0.5 and an added error to
the changes in each component (δ = 1)

(a) Standard deviation of the error
0.1

(b) Standard deviation of the error
0.2

(c) Standard deviation of the error
0.3
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18. Landfill Data

In this chapter we apply our methods to real data. The data set is composed of measured
concentrations of methane gas in the air along a flight path of a plane. The methane gas is
emitted by two landfills. The plane flies above the area where the sources of gas emission are
expected in wiggly lines vertical to the wind direction, as illustrated in Figure 18.1. So in the
situation of Figure 18.1 the wind comes from direction north-east. The concentration of methane
gas in the air is measured every second. Because of two existing landfills in the searching area
we first have to separate the complete trajectory into the blue trajectory and the red trajectory,
as in Figure 18.1, to apply our procedure. In Figure 18.2 we see the left-hand flight path and the
corresponding landfill as black pigmented area. Since there is not only a single point as a source
of gas emission but an area in which every point emits gas, we have to approximate the arising
gas plume such that the landfill area is tangented by the plume, as illustrated in Figure 18.2.
Thus the origin of the plume has a somewhat greater y-value than the landfill points themselves,
and hence we want to narrow down the area in which the landfill is contained.
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Figure 18.1.: Trajectory

Before we can apply our methods to the data set we have to transform the data of each flight
path in the following way in order to obtain a multivariate time series:

1. Only the coordinates of the points from the flight path in Figure 18.1 are available where
the wind direction comes from the north-east. Consequently the corresponding trajectory
to each landfill area is sloped. Thus we first rotate the trajectory such that the wind
direction is parallel to the y-axis.

185



18. Landfill Data
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Figure 18.2.: Left-hand trajectory with the landfill area and the corresponding approximated
plume

2. Next we split the flight path where the plane changes its course. The result are separate
lines in approximately horizontal direction.

3. Since these lines are only approximately horizontal, we have to average the y-values of
each resulting line (see Figure 18.3) which represent the components of the multivariate
time series.

4. In reality we do not have equidistant measurement points where we could easily connect
the points with the same x-values to a multivariate data point of the time series. We
have different lags between the measurement points in each component because the plane
measures the gas concentration every second and does not fly at a constant speed. Thus
we have to transform the x-values as well as the values of the concentration. Additionally,
as we see in Figure 18.3, the averaged horizontal lines have different length. Consequently
we create a new grid for the trajectory.

So we take the average lag from all measurement points of the whole trajectory as the
lag of the transformed x-values for the multivariate series. The starting point of the
multivariate time series is the smallest x-value of all measurement points. Then the next
new x-values are obtained by adding the average lag. In Figure 18.4 the black points are
the real measurement points, and the brown vertical lines are the transformed x-values of
the multivariate series. Note that, between any two vertical lines in the new grid, there
may be none, one, or more than one measurement points (see Figure 18.5). Hence the
next step is to assign the concentration values to the transformed x-values. We calculate
the mean of the points between two lines and allocate the averaged concentration to the
next transformed x-value on the right-hand side. If there are no points between the lines,
we fill up with the previous value.
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Since the horizontal lines, representing the different components of the multivariate series,
have different length we fill the missing values with zeros. However, by the zeros we
produce artificial changes in the multivariate time series, so we search for a source within
the region where the corresponding plumes have no missing values, in order to shorten the
run-time of the written code. A way of taking those plumes into account which, at least
in one component, includes zeroes due to the missing values, one can sum up the non-zero
values between the time points they exist.
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Figure 18.3.: The mean of the y-values of the horizontal lines of the left-hand trajectory

In Figure 18.6 we see the modified data of the left-hand trajectory after the transformation steps
explained above. Obviously, in the middle of each line there is a gradual epidemic change in
the structure of the gas concentration. We approximate the form of the gas plume as a linear
shape, where the concentration of gas increases inside the plume. Besides the coordinates of the
source, the opening angle is unknown. So equivalent to the second part of the simulation study
we have to maximize over all possible coordinates of the source location and, additionally, of the
opening angle.

To calculate the projection statistic we assume the decay of the gas concentration in the
air with distance to the source is equal to the function h as in Figure 17.1. Of course, this
is only an approximation for the reality which, however, is no problem because we have seen
in the simulation study that the method using the projection statistic is very stable against
approximation errors for the function h.

Our procedure focuses on an abrupt epidemic mean change in each component and we will
see that our procedure works very well, even if we assume an abrupt mean change instead of a
gradual mean change or some other kinds of changes like a variance change.

Since we have to estimate the long-run covariance matrix to calculate the statistics, we next
analyse the dependence structure of the modified data. In Figures 18.7,18.9,18.11 and 18.12
the estimated residuals and consequently the modified data seem to be independent in their
components but dependent in the x-direction (see Figures 18.8,18.10,18.13,18.14). Caused by
the dependence in the x-direction and independence in the components, we assume that the
long-run covariance matrix is a diagonal matrix and we only have to estimate the long-run

187



18. Landfill Data

Figure 18.4.: The created grid of the left-hand
trajectory.

The vertical equidistant lines are
the x-values of the created grid

and the points are received by the
steps 1.-3.

Figure 18.5.: Detail of the figure on the left
with x-values between 4000 and

6000
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Figure 18.6.: The modified landfill data of the left-hand trajectory
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18. Landfill Data

variances. Thus the long-run covariance matrix is Σ = diag(Σ1,1, . . . ,Σd,d), where

Σi,i =
∑
h∈Z

Cov (ei(0), ei(h)) , i = 1, . . . , d.

To estimate the long-run covariance matrix we need the estimated errors. They are calculated
as follows: (

f̂i, ĝi

)
= arg max


∣∣∣∣∣∣

gi∑
t=fi+1

(
Xi(t)−Xi,N

)∣∣∣∣∣∣ : 1 ≤ fi < gi ≤ N

 ,

where

µ̂i =
1

f̂i +N − ĝi

 f̂i∑
t=1

Xi(t) +
N∑

t=ĝi+1

Xi(t)


and

∆̂i =
1

ĝi − f̂i

ĝi∑
t=f̂i+1

(Xi(t)− µ̂i) .

The estimated errors are defined as

êi(t) = Xi(t)− µ̂i − ∆̂i1
{
f̂i < t ≤ ĝi

}
.

Then we apply our methods to the data set. The real wind direction is 33◦, which is important

Figure 18.7.: ACF’s of the columns of the estimated errors of the left-hand trajectory
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(a) Estimated errors column 1 of
the left-hand trajectory.
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(c) Estimated errors column 200 of
the left-hand trajectory

for the first step of the transformation where we rotate the coordinate system about 33◦.

First we consider the left-hand trajectory. In Figure 18.15(a) the multivariate statistic is used
and we see clearly that the estimator of the plume is very good because the procedure detects
the epidemic changes in each component very precisely. If we use the projection statistic the
epidemic changes are found well, especially in component 2 and 3 (see 18.15(b)). The reason
is that these components are most weighted by the function h, as we see in Figure 17.1. The
estimated source of the plume is somewhat too near at the lower bound of the searching area.
This effect arises because of the very flat structure of the statistic along the y-axis, as illustrated
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Figure 18.8.: ACF’s of the rows of the estimated errors of the left-hand trajectory.
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(a) Estimated errors row 1 of the
left-hand trajectory
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(b) Estimated errors row 2 of the
left-hand trajectory
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(c) Estimated errors row 3 of the
left-hand trajectory
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(e) Estimated errors row 5 of the
left-hand trajectory
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(f) Estimated errors row 6 of the
left-hand trajectory
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(g) Estimated errors row 7 of the
left-hand trajectory
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(h) Estimated errors row 8 of the
left-hand trajectory
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18. Landfill Data

Figure 18.9.: PACF’s of the columns of the estimated errors of the left-hand trajectory
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(a) Estimated errors column 1 of
the left-hand trajectory.
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(b) Estimated errors column 100 of
the left-hand trajectory
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(c) Estimated errors column 200 of
the left-hand trajectory

in Figure 18.18 and thus we cannot reasonably distinguish between the sources along the y-axis
as explained in the simulation study.

To estimate the corresponding plume of the right-hand trajectory is more complex. In Figure
18.16 first note that the right-hand trajectory is inclined to the other direction as before after
rotating about the degrees of 33◦ according to the wind direction. The reason is that the wind
direction has changed during the flight from the left-hand to the right-hand trajectory, as well
as even during the flight of the right-hand trajectory again. Consequently, the approximation
of the y-values by the averaged horizontal lines is very imprecise and the epidemic changes in
the different components are not one below each other. Thus there is no linear plume in wind
direction which can find all changes almost correctly. However, as we see in Figure 18.16, the
procedure locates the area in which the source is located quite well.

Hirst et al. (2013) apply a Bayesian inference to locate sources of gas emission, and they
estimate the emission rate of the sources. The same landfill data set is analysed in this paper.
With the Bayesian approach there are two sources found in the right-hand flight path, and the
wrongly located source has a higher estimated value for the emission rate. This happens due to
the change of the wind direction during the flight path. So even if we assume that Hirst et al.
(2013) know that there is only one possible source in the area, they would choose the source
with higher emission rate which, however, does not exist in reality.

Usually the rotation angle for the complete flight path corresponding to a certain source is
equal to the wind direction, measured in degrees. Due to the change in the wind direction while
the plane flies along the right-hand trajectory, we choose another rotation angle. We rotate the
first four components about 28◦ and the other components about 23◦. The approximation of the
averaged horizontal lines corresponding to the components of the time series are somewhat more
precise than before and now the epidemic changes are ordered among each other. Thus there
exists a linear plume which is capable to detect the changes in every component nearly correct.
The new rotated trajectory with the corresponding estimated plumes is illustrated in Figure
18.17. The data in the right-hand flight path has in addition two peaks during the epidemic
change period in the first four components, so both statistics concentrate on the higher peak.
The estimated location of the source by the projection statistic is near to the lower bound of
the searching area and by the multivariate statistic it is near to the upper bound due to the flat
structures of the values of the possible estimators in y-direction (see Figure 18.19).
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Figure 18.10.: PACF’s of the rows of the estimated errors of the left-hand trajectory.
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(a) Estimated errors row 1 of the
left-hand trajectory
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(b) Estimated errors row 2 of the
left-hand trajectory
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(c) Estimated errors row 3 of the
left-hand trajectory
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(d) Estimated errors row 4 of the
left-hand trajectory
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(e) Estimated errors row 5 of the
left-hand trajectory
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(f) Estimated errors row 6 of the
left-hand trajectory

0 50 100 150

−
0.

1
0.

0
0.

1
0.

2

Lag

P
ar

tia
l A

C
F

(g) Estimated errors row 7 of the
left-hand trajectory
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(h) Estimated errors row 8 of the
left-hand trajectory
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18. Landfill Data

Figure 18.11.: ACF’s of the columns of the estimated errors of the right-hand trajectory

0 1 2 3 4 5 6 7

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

(a) Estimated errors column 1 of
the right-hand trajectory.
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Figure 18.12.: PACF’s of the columns of the estimated errors of the right-hand trajectory
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(a) Estimated errors column 1 of
the left-hand trajectory.
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(b) Estimated errors column 100 of
the right-hand trajectory
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(c) Estimated errors column 200 of
the right-hand trajectory
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Figure 18.13.: ACF’s of the rows of the estimated errors of the right-hand trajectory.
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(a) Estimated errors row 1 of the
right-hand trajectory
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(b) Estimated errors row 2 of the
right-hand trajectory
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(c) Estimated errors row 3 of the
right-hand trajectory
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(d) Estimated errors row 4 of the
right-hand trajectory
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(e) Estimated errors row 5 of the
right-hand trajectory
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(f) Estimated errors row 6 of the
right-hand trajectory
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(g) Estimated errors row 7 of the
right-hand trajectory
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right-hand trajectory
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18. Landfill Data

Figure 18.14.: PACF’s of the rows of the estimated errors of the right-hand trajectory.
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(b) Estimated errors row 2 of the
right-hand trajectory
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(c) Estimated errors row 3 of the
right-hand trajectory
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(d) Estimated errors row 4 of the
right-hand trajectory
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(f) Estimated errors row 6 of the
right-hand trajectory
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(g) Estimated errors row 7 of the
right-hand trajectory
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Figure 18.15.: Left-hand trajectory with maximizing the opening angle.
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(a) The use of the multivariate statistic
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(b) The use of the projection test statistic

Figure 18.16.: Right-hand trajectory with maximizing the opening angle
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(a) The use of the multivariate test statistic.
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(b) The use of the projection test statistic
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18. Landfill Data

Figure 18.17.: Right-hand trajectory with maximizing the opening angle and rotation about
28◦ of the first four lines and the second four lines about 23◦
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(a) The use of the multivariate test statistic
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(b) The use of the projection test statistic

Figure 18.18.: Heatmaps of the left-hand trajectory with maximizing the opening angle
(in every point the value is illustrated, which is the maximum of all possible

estimators in this point by varying the opening angle)

(a) With the multivariate statistic

(b) With the projection statistic
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Figure 18.19.: Heatmaps of the right-hand trajectory with maximizing the opening angle and
rotation about 28◦ of the first four lines and the second four lines about 23◦

(in every point the value is illustrated, which is the maximum of all possible
estimators in this point by varying the opening angle)

(a) With the multivariate statistic

(b) With the projection statistic
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A. Assumptions and Propositions under the
Null Hypothesis of the Sequential Testing
Problem

A.1. Modified MOSUM

Assumption 3.1

a) The weight function has the form

w(m, k) = m−
1
2 w̃(m, k)

with

w̃(m, k) =

{
ρ
(
k
m

)
, k ≥ am

0, k < am

and am
m → 0 as m→∞. In addition, we assume that ρ is continuous and that

lim
t→0

tγρ(t) <∞ for some 0 ≤ γ < 1

2
.

b) For the open-end procedure we additionally assume

lim
t→∞

tρ(t) <∞.

Assumption 3.2
The following approximation holds under H0, where N(m) is the observation horizon and can
be infinite:

sup
1≤k<N(m)

1√
m

min

(
1

m−γkγ
,
m

k

)∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)

−

 m+k∑
j=m+1

H(Xj , θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1),

for some θ0 and γ as in Assumption 3.1a).
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A. Assumptions and Propositions under the Null Hypothesis of the Sequential Testing Problem

Assumption 3.3

a) The partial sum process 1√
m

bmsc∑
t=1

(H(Xt, θ0),B(θ0)G(Xt, θ0)) : 1 ≤ s ≤ T


fulfills a functional limit theorem for any T > 0: 1√

m

bmsc∑
t=1

(H(Xt, θ0),B(θ0)G(Xt, θ0)) : 1 ≤ s ≤ T


D−→ {(W 1(s),W 2(s)) : 1 ≤ s ≤ T} ,

where (W 1(s),W 2(s)) is a multivariate Wiener process with covariance matrix Σ =(
Σ1 C

CT Σ2

)
.

b) The following Hájék-Rényi-type inequality holds for all 0 < α < 1
2 :

max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1) (m→∞).

c) For the open-end procedure the following Hájék-Rényi-type inequality holds for any se-
quence km > 0

max
k≥km

√
km
k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1) (m→∞).

Proposition 3.1
Under the null hypothesis let Assumptions 3.1 and 3.2 hold. Then we obtain:

sup
1≤k<N(m)

w(m, k)

∥∥∥∥∥∥
m+k∑

i=m+bkhc+1

H(Xi, θ̂m)

−

 m+k∑
j=m+bkhc+1

H(Xj , θ0)− k − bkhc
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1).

Proposition 3.2
If Assumption 3.3b) holds, then the following Hájék-Rényi-type inequality is valid for all
0 < α < 1

2 :

max
1≤k≤m

1

m
1
2
−αkα

∥∥∥∥∥∥
m+k∑

t=m+bkhc+1

H(Xt, θ0)

∥∥∥∥∥∥ = OP (1).
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Proposition 3.3
If {W 1(t) : t ≥ 0} is a Wiener process with covariance matrix Σ1 then

sup
0<t≤τ

1

tα
‖W 1(1 + t)−W 1(1 + th)‖ = oP (1), τ → 0,

where 0 < α < 1
2 .

Proposition 3.4
Let Assumption 3.3c) hold, then a Hájék-Rényi-type inequality for the open-end procedure is
fulfilled for any sequence km > 0:

max
k≥km

√
km
k

∥∥∥∥∥∥
m+k∑

t=m+bkhc+1

H(Xt, θ0)

∥∥∥∥∥∥ = OP (1).

Proposition 3.5
If {W 1(t) : t ≥ 0} is a Wiener process with covariance matrix Σ1 then

max
t≥T

1

t
‖W 1(1 + t)−W 1(1 + th)‖ = oP (1), T →∞.

A.2. Page-CUSUM

Proposition 3.6
Under the null hypothesis let Assumptions 3.1 and 3.2 hold. Then

sup
1≤k<N(m)

w(m, k)

∣∣∣∣∣max
0≤i≤k

∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ̂m)

∥∥∥∥∥
− max

0≤i≤k

∥∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ0)− k − i
m

B(θ0)
m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
∣∣∣∣∣∣ = oP (1).

Proposition 3.7
If Assumptions 3.3b) and c) hold, we have the Hájék-Rényi-type inequality

sup
k≥Tm

√
Tm

k
max
1≤i≤k

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥ = OP (1).

Proposition 3.8
For a Wiener process {W 1(·)} with covariance matrix Σ1 and 0 < α < 1

2 , we have

sup
0<t≤τ

1

tα
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖ = oP (1), τ → 0.
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Proposition 3.9
For a Wiener process {W 1(·)} with covariance matrix Σ1, we have

sup
t≥T

1

t
max
0≤s≤t

‖W 1(1 + t)−W 1(1 + s)‖ = oP (1), T →∞.

A.3. MOSUM

Assumption 3.4
Using the MOSUM statistic to test for a structural change in a time series,

a) the weight function has the form

wM (h, k) = h−
1
2 ρM

(
k

h

)
,

where ρM is bounded and continuous and h = h(m)→∞, as m→∞.

b) In the open-end procedure if h
m → β, as m→∞, for some β ∈ (0, 1], suppose that

lim
t→∞

tρM (t) <∞.

c) If h
m → 0, as m→∞, we need the following weaker condition:

lim sup
t→∞

t
1
ν ρM (t) <∞, for some ν > 2

Assumptions 3.4b) and c) are equivalent to Assumption 3.1b) on the boundary function of the
modified MOSUM and the Page-CUSUM statistics.

Proposition 3.10
Let the null hypothesis hold as well as h(m)

m→∞−→ ∞ and h
m

m→∞−→ β, β ∈ (0, 1]. The boundary
function ρ satisfies Assumption 3.2 with γ = 0 and Assumption 3.4a)-b). Then we have

sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xt, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xt, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1).

Proposition 3.11
Under Assumption 3.3c) hold, we have a Hájék-Rényi-type inequality in the open-end procedure,
namely

max
k≥km+h

√
km
k

∥∥∥∥∥
m+k∑

t=m+k−h+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1) for any sequence km ≥ 0.
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Proposition 3.12
Let {W (·)} be a Wiener process with covariance matrix Σ1. Then

sup
t≥T

1

t

∥∥∥∥W 1

(
1

β
+ t

)
−W 1

(
1

β
+ t− 1

)∥∥∥∥ = oP (1), T →∞.

Assumption 3.5
The following approximation holds under H0, where the observation horizon N(m) can be infi-
nite:

sup
1≤k<N(m)

1√
h

min

(
1,

(
h

k

) 1
ν

)∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xt, θ̂m)

−

 m+k∑
i=m+k−h+1

H(Xt, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1),

for some θ0 and ν as in Assumption 3.4c).

Assumption 3.6
There is a Wiener process {W (t), 0 ≤ t <∞} with covariance matrix Σ1 such that, as k →∞

k∑
t=1

H(Xt, θ0)−W (k) = O
(
k

1
ν

)
a.s., with ν as in Assumption 3.4c).

Proposition 3.13
Under the Assumptions 3.4a) and c) and Assumption 3.5, we have

sup
1≤k<N(m)

wM (h, k)

∥∥∥∥∥
m+k∑

i=m+k−h+1

H(Xt, θ̂m)

−

 m+k∑
j=m+k−h+1

H(Xt, θ0)− h

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1).
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B. Theorems of Probability Theory

Theorem B.1

(Billingsley (1968) Theorem 8.4)
Let ξ1, ξ2, ... be random variables and ST = ξ1 + ...+ ξT and

XT (s) =
1

σ
√
T
SbTsc,

then {XT } is tight if ∀ε > 0 ∃λ > 1 and T0 ∈ N such that

P

(
max
i≤T
|Sk+i − Sk| ≥ λσ

√
T

)
≤ ε

λ2
, T ≥ T0

holds ∀k.

Lemma B.1

(Billingsley (1968) Lemma p.69)
Let ξ1, ξ2, ..., ξT be independent random variables with mean 0 and finite variances σ2

i and
Si = ξ1 + ξ2 + ...+ ξi, s

2
i = σ2

1 + σ2
2 + ...+ σ2

i . Then

P

(
max
i≤T
|Si| ≥ λsT

)
≤ 2P

(
|ST | ≥ (λ−

√
2)sT

)
.

Theorem B.2

(Kirch (2006) Theorem B.7)
Let {Y (i) : i ≥ 1} be a sequence of independent random variables with E(Y (i)) = 0, i ≥ 1,
satisfying E|Y (i)|2+δ ≤ C, i ≥ 1, for some δ > 0. Then there is a constant D such that

E

∣∣∣∣∣
n∑
i=1

Y (i)

∣∣∣∣∣
2+δ

≤ Dn
2+δ
2 .
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Lemma B.2

(Billingsley (1968), Problem 6, p.41)
Probability measures on a product space are tight if all the marginal probability measures are
tight on the component spaces.

Proposition B.1

(Billingsley (1968), p.35)
If the sequence {PT } converges weakly to P , then {PT } is relatively compact.

Theorem B.3

(Billingsley (1968), Theorem 6.2)
Let Π be a family of probability measures on (S,S ), where S is a metric space and S is a
σ-field of Borel-sets. Suppose S is separable and complete and Π is relatively compact, then it
is tight.

Theorem B.4

Let K ⊆ Rp, p ∈ N, be a compact set, f : K → R a continuous function and x0 a unique
maximizer of f , i.e. x0 = arg max

x∈S
f(x). Furthermore, let x̂n = arg max

x∈S
fn(x), where fn is a

sequence of stochastic functions with max
x∈S
|fn(x)− f(x)| P−→ 0. Then, x̂n

P−→ x0.

Proof. Suppose that x̂n does not converge stochastically to x0. Since S is compact, there is a

subsequence x̂kn with x̂kn
P−→ x1 for some x1 6= x0. Then

|fkn(x̂kn)− f(x1)| = |fkn(x̂kn)− f(x̂kn) + f(x̂kn)− f(x1)|
≤ |fkn(x̂kn)− f(x̂kn)|+ |f(x̂kn)− f(x1)|
≤ max

x∈S
|fkn(x)− f(x)|+ |f(x̂kn)− f(x1)| = oP (1).

Thus both terms are oP (1), the first one by assumption and the second one by the continuity of
the function f .

However we also obtain

|fn(x̂n)− f(x0)| =
∣∣∣∣max
x∈S

fn(x)−max
x∈S

f(x)

∣∣∣∣ ≤ max
x∈S
|fn(x)− f(x)| = oP (1),

by assumption. Since x0 is a unique maximizer of f we have f(x1) < f(x0), implying

0 < |f(x1)− f(x0)| = |f(x1)− fn(x̂kn) + fn(x̂kn)− f(x0)|

≤ |f(x1)− fn(x̂kn)|+ |fn(x̂kn)− f(x0)| P→ 0,

which is a contradiction.
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A. Aue, I. Berkes, and L. Horváth. Strong approximation for the sums of squares of augmented
garch sequences. Bernoulli, 12(4):583–608, 2006a.
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M. Hušková and J. Steinebach. Asymptotic tests for gradual changes. Statistics & Decisions,
20:137–151, 2002.

H. Kauppi and P. Saikkonen. Prediction us recessions with dynamic binary response. The Review
of Economics and Statistics, 90(4):777–791, 2008.

C. Kirch. Resampling Methods for the Change Analysis of Dependent Data. PhD thesis, Uni-
versity Cologne, 2006.

C. Kirch and J. Tadjuidje Kamgaing. An online approach to detecting changes in nonlinear
autoregressive models. Preprint, 2011.

C. Kirch and J. Tadjuidje Kamgaing. On the use of estimating functions in monitoring time
series for change points. Journal of Statistical Planning and Inference, 161:25–49, 2015.

C. Kirch, B. Muhsal, and H. Ombao. Detection of changes in multivariate time series with
application to eeg data. Journal of the American Statistical Association, 110:1197–1216, 2015.

K. Knopp. Theorie und Anwendung der unendlichen Reihen, page 322. Springer, 1996.

212



Bibliography
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H.R. Künsch. The jackknife and the bootstrap for general stationary observations. Annals of
Statistics, 17(3):1217–1241, 1989.

R.Y. Liu and K. Singh. Moving blocks jackknife and bootstrap capture weak dependence, pages
225–248. Wiley, 1992.

B. Muhsal. Change-Point Methods for multivariate autoregressive models and multiple structural
breaks in the mean. PhD thesis, Karlsruhe Institute of Technology (KIT), 2013.

M. Neumann. A central limit theorem for triangular arrays of weakly dependent random vari-
ables, with applications in statistics. ESAIM: Probability and Statistics, 17:120–134, 2013.

N.H. Neumann. Absolute regularity and ergodicity of poisson count processes. Bernoulli, 17(4):
1268–1284, 2011.

E. Paparoditis and D. Politis. Tapered block bootstrap. Biometrika, 88(4):1105–1119, 2001.

D. Politis. Higher-order accurate, positive semidefinite estimation of large-sample covariance
and spectral density matrices. Econometric Theory, 27:703–744, 2011.

D. Politis and H. White. Automatic block-length selection for the dependent bootstrap. Econo-
metric Reviews, 23(1):53–70, 2004.

D.N. Politis, J.P. Romano, and M. Wolf. A circular block-resampling procedure for stationary
data, pages 263–270. Wiley, 1992.

A. Schmitz and J. Steinebach. A note on the monitoring of changes in linear models with
dependent errors. Dependence in Probability and Statistics, Volume 200 of the series Lecture
Notes in Statistics:159–174, 2010.

X. Shao. The dependent wild bootstrap. Journal of the American Statistical Association,
105(489):218–235, 2010.

R. Startz. Binomial autoregressive moving average models with an application to us recession.
Journal of Business and Economic Statistics, 26(1):1–8, 2008.

D. Wilks and R. Wilby. The weather generation game: a review of stochastic weather models.
Progress in Physical Geography, 23(3):329–357, 1999.

213


	Introduction
	Multivariate Sequential Procedures
	Introduction to the Sequential Setting
	Sequential Testing Problem based on Estimating Functions
	Asymptotics under the Null Hypothesis
	Null Asymptotics of the Modified MOSUM
	Null Asymptotics of the Page-CUSUM
	Null Asymptotics of the MOSUM

	Asymptotics under the Alternative Hypothesis
	Consistency of the Modified MOSUM
	Consistency of the Page-CUSUM
	Consistency of the MOSUM

	Examples
	Overview
	Linear regression model
	Mean change model
	Non-linear model
	Binary model
	Poisson autoregressive model

	Simulation Study

	Multivariate Bootstrap Methods
	Introduction and Motivation
	Bootstrap Methods
	Circular Overlapping Block-Bootstrap
	Dependent Wild-Bootstrap
	Vector-AR-Sieve-Bootstrap

	Univariate Bootstrap Methods
	Univariate Efron-Bootstrap
	Univariate circular overlapping Block-Bootstrap

	Multivariate Bootstrap Methods
	Multivariate Efron-Bootstrap
	Multivariate Block-Bootstrap

	Comparison of the Bootstrap Methods in Simulations

	Testing in a Multivariate Epidemic Mean Change Model
	Introduction and an Example of Application
	Testing Procedure
	Model of Data
	Statistics
	Multivariate Statistic
	Projection Statistic

	Estimators

	Asymptotics under the Null Hypothesis
	Null Asymptotics of the Multivariate Statistic
	Null Asymptotics of the Projection Statistic

	Asymptotics under the Alternative
	Consistency: Test based on the Multivariate Statistic
	Consistency: Test based on the Projection Statistic

	Consistency of the Estimators
	Consistency of the Estimator based on the Multivariate Statistic
	Consistency of the Estimator based on the Projection Statistic

	Simulations
	Analysis of empirical Size, Power and Estimators

	Landfill Data

	Appendix
	Assumptions and Propositions under the Null Hypothesis of the Sequential Testing Problem
	Modified MOSUM
	Page-CUSUM
	MOSUM

	Theorems of Probability Theory


