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Abstract

We compute the value of effective photon mass mγ at one-loop level in QED in the background of small 
(1010 g � M � 1016 g) spherically symmetric black hole in asymptotically flat spacetime. This effect is 
associated with the modification of electron/positron propagator in presence of event horizon. Physical 
manifestations of black-hole environment are compared with those of hot neutral plasma. We estimate the 
distance to the nearest black hole from the upper bound on mγ obtained in the Coulomb-law test. We 
also find that corrections to electron mass me and fine structure constant α at one-loop level in QED are 
negligible in the weak gravity regime.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In Minkowski space the photon acquires an effective (thermal) mass if it propagates through 
a (neutral) plasma of electrons and positrons held at high enough temperature, i.e. T � me . The 
effective photon mass mγ turns out to be proportional to the temperature T of the electron–
positron plasma at one-loop level [1] (see also [2,3]). This effect is exponentially suppressed 
if the plasma is cold, i.e. T � me [4–6]. This occurs because most of electrons and positrons 
are in the ground state at low temperature. This leads in turn to suppression of photon–electron 
and photon–positron scattering events with respect to the photon–photon scattering which is the 
higher-loop effect [7]. In summary, we have
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m2
γ ≈ e2T 2

{
1/6 , T � me ,

4(meβ)
1
2 exp(−meβ)/(2π)

3
2 , T � me

(1)

at one-loop approximation in quantum electrodynamics (QED), where β ≡ 1/T is the inverse 
temperature.

There is a comparably recent idea of the assignment of readings of the macroscopic ther-
mometer with the so-called Wick squared operator [8,9]. This is also known as the local tem-
perature operator. Specifically, if one treats a scalar field model with the conformal coupling to 
gravity, then one can find that 〈�̂2(x)〉 = T 2/12 in a thermal state characterised by the tempera-
ture T . This was also generalized and treated in curved spacetimes [10–13]. Certain applications 
in flat space were studied in [14].

Considering a scalar non-interacting field model with mass m = me , one can obtain

〈�̂2(x)〉 ≈ 1

2
T 2

{
1/6 , T � me ,

2(meβ)
1
2 exp(−meβ)/(2π)

3
2 , T � me ,

(2)

for the renormalized value of the Wick squared operator in the thermal state described by the tem-
perature T . Thus, a quantitative discrepancy arises between the effective photon mass squared 
and 〈�̂2(x)〉 at low temperatures. In fact, these quantities are diverse both physically and mathe-
matically.

Nevertheless, it is tempting to conjecture that m2
γ ∝ 〈�̂2(x)〉 holds qualitatively at high 

temperatures at the α-order approximation in quantum electrodynamics. If one takes this re-
lation for granted, then one can predict that the photon acquires an effective mass, for instance, 
in the background of small Schwarzschild black holes, i.e. TH � me and M � MPl, where 
TH = M2

Pl/(8πM) is the Hawking temperature and MPl = (h̄c/G)
1
2 is the Planck mass. For 

these black holes, the size of the event horizon is rH = 2MG/c2 � 3×10−14 m.1

Indeed, if we consider eternal Schwarzschild geometry with a black hole of mass M , then 
physical vacuum corresponds to the Hartle–Hawking state. Far away from the black hole, i.e. 
r � rH , we have 〈�̂2(x)〉H ≈ T 2

H /12 for the scalar field model conformally coupled to grav-
ity [16]. If the black hole has formed through the gravitational collapse, then one might expect 
the photon possesses an effective mass decreasing with distance as 1/r , because 〈�̂2(x)〉U ∝
T 2

H (2M/r)2 in the Unruh state [16]. We have actually surmised recently this dependence of mγ

on the distance to the black hole from a different perspective [17].
In this paper we analytically derive the effective photon mass mγ at one-loop level in QED 

in asymptotically flat spacetime with a small spherically symmetric black hole (MPl � M �
1021MPl). We find that the above relation between the effective photon mass mγ and the expec-
tation value of the Wick squared operator 〈�̂2(x)〉 does qualitatively hold in the high-temperature 
limit, i.e. TH � me , for the Hartle–Hawking and Unruh state.

We shall also show that the analogy between the hot plasma and the environment of a small 
black hole formed through the gravitational collapse is incomplete in that the black-hole environ-
ment cannot support plasmon-like and plasmino-like excitations. However, a point-like electric 
charge can be partially screened due to the modification of the electric permittivity and the mag-
netic permeability of the vacuum in the black-hole background.

1 We assume such black holes exist in nature which were formed through gravitational collapse under extreme condi-
tions present in early universe [15].
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Throughout this paper the fundamental constants are set to unity, c = G = kB = h̄ = 1, unless 
stated otherwise.

2. Effective photon mass

To compute the photon self-energy at one-loop level in the background of evaporating 
Schwarzschild black hole, we need to have the free fermion propagator S(x, x ′). Since the Dirac 
equation 

(
i /∇ − me

)
ψ(x) = 0 can also be written as 

(� + m2
e

)
ψ(x) = 0, it is enough, however, 

to deduce the scalar propagator G(x, x′). Indeed, the propagator S(x, x′) can then be obtained 
by acting on G(x, x′) by the operator i /∇ + me (e.g., see [18]).

2.1. Scalar Wightman function

As pointed out above, we need to compute the scalar two-point function in spacetime with the 
Schwarzschild black hole of mass M . We start with a massive scalar field(� + m2

e

)
�(x) = 0 , (3)

and look for positive frequency modes in the following form

�kjm(x) = 1

(4πω)
1
2

e−iωt

r
Rkl(r)Ylm(θ,φ) , (4)

where ω = (k2 + m2
e)

1
2 and Ylm(θ, φ) are the spherical harmonics. Substituting (4) in the scalar 

field equation (3), we obtain

d2

dr2∗
Rkl(r) + f (r)

(
ω2

f (r)
− l(l + 1)

r2
− m2

e + f ′(r)
r

)
Rkl(r) = 0 , f (r) = 1 − rH

r
, (5)

where r∗ = r + rH ln(r/rH − 1) is the Regge–Wheeler radial coordinate and the prime stands 
for differentiation with respect to r . There are two types of radial modes, namely the ingoing 
and outgoing one. We denote these as �Rωl(r) for the ingoing modes and �Rωl(r) for the outgoing 
modes. The Wightman two-point function, e.g. in the Boulware (B) state, is then

〈�̂(x)�̂(x′)〉B =
∑
lm

∫
dω

4πω

e−iω�t

rr ′ Ylm(�)Y ∗
lm(�′)

( �Rωl(r) �R∗
ωl(r

′) + �Rωl(r) �R
∗
ωl(r

′)
)
,

(6)

where �t = t − t ′ by definition. The sum over m can be performed and yields

m=+l∑
m=−l

Ylm(�)Y ∗
lm(�′) = 2l + 1

4π
Pl(cos
) , (7)

where cos
 ≡ cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) and Pn(x) is the Legendre polynomial.
It is hardly possible to solve the radial mode equation (5) analytically, but one can always do 

that numerically. However, employing results of [16,19,20], we obtain in the limit of vanishing 
mass of the scalar field (me → 0) that
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�Kω(x,x′) ≡ 1

4πrr ′
+∞∑
l=0

(2l + 1) �Rωl(r) �R∗
ωl(r

′)Pl(cos
)

≈ �
1
2 (ρ) sin(ωρ)

4πωρ(f (r)f (r ′)) 1
2

⎧⎪⎨
⎪⎩

4ω2 − (f (r)f (r ′))
1
2

rr ′ �ω , r → 2M ,

(f (r)f (r ′))
1
2

rr ′ �ω , r � 2M ,

(8)

and

�Kω(x,x′) ≡ 1

4πrr ′
+∞∑
l=0

(2l + 1) �Rωl(r) �R
∗
ωl(r

′)Pl(cos
)

≈ �
1
2 (ρ) sin(ωρ)

4πωρ(f (r)f (r ′)) 1
2

⎧⎪⎨
⎪⎩

(f (r)f (r ′))
1
2

rr ′ �ω , r → 2M ,

4ω2 − (f (r)f (r ′))
1
2

rr ′ �ω , r � 2M ,

(9)

where ρ ≡ (2σ(x, x′)) 1
2 , σ(x, x′) is the three-dimensional geodetic interval for the ultrastatic or 

optical metric ḡμν = gμν/f (r), �(x, x′) is the Van Vleck determinant [21] and

�ω ≡
+∞∑
l=0

(2l + 1)|Bωl |2 ≈ 27ω2M2 (10)

in the DeWitt approximation [19].
The scalar two-point function in the case when the outgoing and ingoing modes are “heated 

up” to inverse temperatures β1 and β2, respectively, is

Wβ1,β2(x, x′) = �Wβ1(x, x′) + �Wβ2(x, x′) (11)

≈
+∞∫
0

dω

⎛
⎝cos

(
ω�t + i

ωβ1
2

)
4πω sinh

(
β1ω

2

) �Kω(x,x′) +
cos

(
ω�t + i

ωβ2
2

)
4πω sinh

(
β2ω

2

) �Kω(x,x′)

⎞
⎠ .

The Hartle–Hawking state corresponds to β1 = β2 = β = 2π/κ , where κ is a value of the surface 
gravity on the horizon r = rH [22]. The Boulware state follows from the Hartle–Hawking one if 
we set β1 = β2 = +∞ [23]. The physical state for the black holes formed through the gravita-
tional collapse is known as the Unruh state [24]. This corresponds to β1 = β and β2 = +∞.

We now define the commutator function

C(x, x′) = �C(x, x′) + �C(x, x′) (12)

which will be used below, where

�C(x, x′) = �Wβ1(x, x′) − �Wβ1(x
′, x) ≈

+∞∫
0

dω

4πω

(
e−iω�t − e+iω�t

) �Kω(x,x′) , (13a)

�C(x, x′) = �Wβ2(x, x′) − �Wβ2(x
′, x) ≈

+∞∫
dω

4πω

(
e−iω�t − e+iω�t

) �Kω(x,x′) . (13b)
0
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It is worth noting that the commutator functions defined in the above manner do not depend on the 
temperatures.2 In general, this occurs because the commutator of the field operators plays a role 
of the algebraic structure of the algebra of local field operators. This structure is independent of
Fock space representations of the algebra. Hence, it remains the same, for instance, independent 
of whether one treats the Boulware or Unruh state.

2.2. Spinor Feynman propagator

In general, fermion anti-commutation function Cf (x, x′) is related with the scalar commutator 
function as follows

Cf (x, x′) = �Cf (x, x′) + �Cf (x, x′) = (
i /∇ + me

)
C(x, x′) , (14)

where

�Cf (x, x′) = �Sβ1(x, x′) + �Sβ1(x
′, x) , (15a)

�Cf (x, x′) = �Sβ2(x, x′) + �Sβ2(x
′, x) . (15b)

To compute one-loop contribution to the photon self-energy, one needs to find the Feynman 
propagator S(x, x ′). This can be expressed through the anti-commutation function [25]. Specifi-
cally, we have

S(ω|x,x′) =
∫

dω′

2π

iCf (ω′|x,x′)
ω − ω′ + iε

− nβ1(ω) �Cf (ω|x,x′) − nβ2(ω) �Cf (ω|x,x′) , (16)

where ε → +0, the integral is over all ω′ lying in R,

nβ(ω) = 1

eβω + 1
, (17)

and Cf (ω|x, x′) is the Fourier transform over time of the anti-commutator function, i.e.

Cf (ω|x,x′) ≡
∫

d�t e+iω�tCf (x, x′) =
∫

d�t e+iω�t
(
i /∇x + me

)
C(x, x′) ,

where C(x, x′) is the scalar commutator given in (12).

2.3. Photon self-energy at one-loop level

In terms of the photon Feynman propagator, we have up to the α2-order in the perturbation 
theory

Gμν
α (x, x′) = Gμν(x, x′) − 4πα

∫
dx1dx2(g(x1)g(x2))

1
2

× Gμλ(x, x1) Tr
(
γλS(x1, x2)γρS(x2, x1)

)
Gρν(x2, x

′) + O
(
α2) , (18)

where we expect up to the α2-order that(�xδ
μ
λ + (

m2
γ

)μ

λ

)
Gλν

α (x, x′) = igμν(x)

(−g(x))
1
2

δ
(
x − x′) , (19)

2 This is true for non-interacting theories or in the leading order approximation of the perturbation theory.
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Fig. 1. One-loop vacuum polarization diagram.

and Gμν(x, x′) satisfies this equation at the zeroth order in the fine structure constant α. To find 
the effective photon mass squared, we thus need to compute

(
m2

γ

)μ

λ
Gλν(ω|x,x′) = −4πα

∫
dy

√−g(y)K
μ
λ (ω,x,y)Gλν(ω|y,x′) + O

(
α2) , (20)

where by definition

K
μ
λ (ω,x,y) =

∫
d�

2π
Tr

(
γ μS(�|x,y)γλS(� − ω|y,x)

)
. (21)

Since the black hole is small, we are working in the high-temperature limit. Consequently, one 
is allowed to use the hard thermal loop approximation [2,3]. In other words, we omit the electron 
mass me in the fermion correlation function as well as the frequency ω as being negligible with 
respect to the temperature parameter TH . Therefore, it is legitimate to employ the correlation 
function found above in the limit me → 0 to obtain the effective photon mass in the temperature 
regime TH � me and TH � ω.

Minkowski space One can employ the Feynman propagator given in (16) to compute the 
effective photon mass at one-loop level in the high-temperature limit. This is achieved through 
setting β1 = β2 = 1/T < ∞ and substituting M = 0 in (8) and (9). The vanishing mass of the 
black hole implies that �ω = 0, because �ω ≈ 27ω2M2 in the DeWitt approximation [19].

Our computation of the photon mass in the hot plasma will be non-standard if we work in 
the spherical coordinates. Nevertheless, we still have the result m2

γ = e2T 2/6 as the theory is 
covariant.

In Minkowski space we can express (20) and (21) through the Cartesian coordinates and then 
perform the standard evaluations of the integrals. However, we can do the same when M �= 0 far 
away from the event horizon r � rH . Comparing then the right-hand sides of (20) in Minkowski 
space and Schwarzschild space far from the black hole, we can immediately obtain the photon 
mass mγ due to the black hole in the weak gravity regime.

Schwarzschild space The scalar propagator can be computed exactly in Minkowski space. 
This is not the case in Schwarzschild space even in the limit of the vanishing electron mass me. 
Our expressions for �Kω(x, x′) and �Kω(x, x′) given in (8) and (9), respectively, are reliable when-
ever the points x and x′ are close to each other.

The physical idea now is to notice that although one must integrate in (20) over all values of y, 
the main contribution to the integral will be from the spacial region in the vicinity of the point x. 
In other words, the virtual electron–positron pair depicted in Fig. 1 is a short-time or local event 
in spacetime.

This can also be exemplified by the computation of the photon self-energy in-between con-
ducting plates in the Casimir set-up. The photon propagator in-between the conducting plates 
differs from that in Minkowski space due to the non-trivial boundary conditions satisfied by the 
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electromagnetic four-potential operator on the plates. The two-loop contribution to the photon 
self-energy after renormalization is then non-trivial, because of the internal photon propagator in 
the loops [26]. In the coordinate representation of the loop integrals, one would need to integrate 
over the whole spacetime. However, the main contribution will be when the vertices are close 
to each other. For instance, the result will be independent of the contributions from the points 
outside of the plates, where the photon propagator differs from that in-between the plates. This 
is fully consistent with computations based on the effective action of the electromagnetic field 
(fermion degrees of freedom are integrated out) at one-loop level in which one merely needs to 
have the propagator at space–time points being close to each other [27].

This argument can also be supported by the empirical observations in the particle physics. In-
deed, we have been successfully employing the Minkowski-space approximation in studying var-
ious processes in the particle colliders. However, the universe is non-flat at cosmological scales. 
According to the equivalence principle, nevertheless, there always exists a local Minkowski 
frame. Therefore, the description of the scattering processes in QFT is performed in the local 
Minkowski frame as if it is of the infinite extent. This is an adequate approximation whenever 
relevant physics is characterised by a length scale being much smaller than a characteristic curva-
ture scale. In our case, this length is lc = R(R/rH )1/2, where R is the distance to the black-hole 
centre.

Thus, we find that the (massless) scalar Feynman propagator in momentum space far away 
from the black-hole horizon is approximately given by

GU(k, k′) ≈
(

i

k2 + iε
+ 2π

(
27M2

4R2

)
nβ(ω)δ

(
k2)) δ

(
k − k′) (22)

at TH � me and TH � ω in the Unruh state, where k = (ω, k). It is worth noticing that GU(k, k′)
reduces to the ordinary scalar propagator in Minkowski space in the limit of the vanishing black-
hole mass M → 0 or R → ∞. This does not happen to be the case for the eternal black hole 
described by the Hartle–Hawking state.

Having derived the propagator (22), we can now obtain mγ at the one-loop approximation. 
For the black hole formed through the gravitational collapse, we find

m2
γ

∣∣∣electron–positron ≈ 27πα

24
T 2

H

( rH

R

)2 + O

(
TH r2

H

R3

)
(23)

far from the hole (R � rH ) in the high-temperature limit (TH � me and M � MPl).3 The for-
mula (23) is the main result of our paper. It is worth noticing that mγ does not directly depend 
on the black-hole mass M at one-loop level in the leading order of the weak gravity limit.4 This 
does not mean mγ �= 0 for M = 0, because Eq. (23) has been computed under the assumption 
M �= 0. Taking the limit M → 0 and evaluating the integral (21) are not commuting operations. 
It is worth reminding that the renormalised stress tensor depends on M as 1/M2R2, so that it is 
non-vanishing in the limit M → 0.

3 The leading-order correction to the first term in (23) is due to the action of /∇ on the prefactor r2
H

/R2. The next-to-

leading term is of the order of r3
H

/R4.
4 Note that we have taken into account only electron–positron virtual pair to the photon self-energy. For instance, the 

same result holds for the virtual muon–antimuon pair, but then the black hole should be smaller TH � mμ � me for not 
having exponentially suppressed contribution of this pair. If TH � mμ holds, then m2

γ is 2 times larger.



S. Emelyanov / Nuclear Physics B 919 (2017) 110–122 117
For the Hartle–Hawking state we obtain the standard result for mγ far away from the event 
horizon like in the hot physical plasma in Minkowski space. Hence, small eternal black holes 
would considerably influence photon kinematics. This is not a problem, because these black 
holes are not realizable through the gravitational collapse anyway.

In the Standard Model the electromagnetic field corresponds to the U(1) gauge group under 
which the vacuum is invariant. This group is a subgroup of the spontaneously broken electroweak 
symmetry SU(2)L × U(1)Y with the electroweak phase transition occurring at the electroweak 
energy scale MEW ≈ 102 GeV. The temperature parameter TH for the small black holes is greater 
than MEW if the black-hole mass M � 1015MPl. It is not obvious whether one can rely on (23)
when the black-hole mass is smaller than 1015MPl. However, we expect that (23) is still reliable 
at least far from the black hole, because all physical parameters are then small (see below). It 
is still not excluded that the phase transition may occur at the distance rew ≈ 10−19 m for black 
holes of mass M in the range MPl � M � 1016MPl. Note that the phase transition should occur 
far from the horizon as rH � rew . A similar observation was made long ago in [29,30].

We have focused on the black holes of mass M � 1016 g for which TH � me and implic-
itly presumed that the quasi-equilibrium approximation holds, i.e. spacetime is quasi-static. For 
sufficiently small black holes, this approximation does not hold, because of the black-hole evap-
oration. This implies that mγ given in Eq. (23) should be a reliable result for M in the range

1010 g � M � 1016 g , (24)

where we have chosen the lower bound on M by requiring that the smallest black hole has at least 
a one-day lifetime (assuming the evaporation lasts till the complete disappearance of the black 
hole). This range corresponds to 3×1014 g � M0 � 1016 g of the initial mass of the primordial 
black holes.

3. Concluding remarks

The space–time structure significantly modifies when a black hole forms. The algebraic struc-
ture of a set of the quantum field operators also modifies. As a consequence, propagators of 
quantum fields have a different form in comparison with that in Minkowski space. Far away 
from the black holes, one might expect that quantum field theory becomes almost indistinguish-
able from its formulation in Minkowski spacetime. Indeed, quantum field theory formulated 
in Minkowski space is well tested and verified in the particle colliders, although there are a 
lot of gravitational sources in our universe which make the geometry of spacetime be of non-
Minkowskian form at sufficiently large length scales.

Although it is legitimate to await of recovering Minkowskian quantum field theory far away 
from the black holes, there must be specific imprints of these gravitational sources in physical 
experiments performed on earth. In this paper, we have investigated these imprints of the small 
spherically symmetric black hole (1010 g � M � 1016 g) on the effective photon mass at the 
α-order approximation in QED. Physically, it might be a consequence of the event-horizon for-
mation which leads to the modification of the quantum field operators (as the field equations 
explicitly depend on the black-hole mass M). Assuming the process of the black-hole formation 
is unitary, the total quantum system (gravity and matter fields) evolves semi-classically if the 
backreaction of the quantum fields on the geometry is small. This is usually described by saying 
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that the quantum fields occupy the Unruh state [24]. It inevitably implies the presence of the 
thermal-like correction in Eq. (22) yielding mγ �= 0.5

The Wick squared operator cannot always be interpreted as a macroscopic temperature 
squared [12]. Moreover, the effective photon mass mγ for the Boulware state vanishes. However, 
the Wick squared 〈�̂2(x)〉B is non-zero and negative. Specifically, 〈�̂2(x)〉B ∝ −T 2

H (2M/r)4 as 
this can be shown employing the Page approximation [20]. Therefore, the qualitative validity of 
the relation between m2

γ and 〈�̂2(x)〉 is counter-intuitive for this state. It should be noted, how-
ever, that all divergencies in the evaluation of mγ has been subtracted, such that mγ vanishes in 
the Boulware state. The result of this renormalization is finite and depends on the parameter TH . 
This is completely analogous to that of how one proceeds in the hot plasma in flat space. The 
Wick squared operator in turn also depends on how one renormalizes it. One usually defines this 
operator as follows

�̂2(x) = lim
x′→x

(
�̂(x)�̂(x′) − H(x,x′)1̂

)
,

where H(x, x′) is the Hadamard parametrix. This definition is state-independent. It is worth 
noting that the Wick squared operator can also be written down as �̂2(x) = :�̂(x)�̂(x):, where 
colons refer to the normal order product.

We have recently found in [17] that the two-loop or, possibly, even higher-loop effect is dom-
inant far from the small black holes if the wave-length λγ of the electromagnetic radiation is in 
the range λe � λγ � α1/2λe(TH /me), where λe is the Compton length of the electron. However, 
the one-loop dominance occurs whenever α1/2λe(TH /me) � λγ � lc, where lc is a characteris-
tic curvature scale.

3.1. Plasma-like environment of black hole

Quantum fluctuations of the electromagnetic and fermion field around the black holes reveal 
plasma-like properties. This can be characterised by the modification of the electric permittivity 
ε(ω, k, R) and the magnetic permeability μ(ω, k, R) of the vacuum. This is analogous to a sim-
ilar phenomenon in the Casimir set-up [26,27]. Note that ε(ω, k, R) = 1/μ(ω, k, R) in the limit 
M → 0 as in the Minkowski vacuum, because the second term in (22) vanishes. The same holds 
for M �= 0, but in the spatial infinity, i.e. at R → ∞.

The normal hot plasma is characterised by two parameters, namely α and temperature TH . 
The black-hole plasma-like environment is described by one more parameter which is of the 
order of TH (2M/R). Although the temperature parameter TH is large with respect to me, the 
plasma-like environment is “cold” in the sense that the plasma-like frequency ωp is small for 
R � rH with respect to TH , i.e.

ωp ≈
(

27πα

36

) 1
2

TH

( rH

R

)
� TH . (25)

The photon propagator has the longitudinal and transverse part in the hot plasma [1]. The 
longitudinal part becomes a propagating degree of freedom (a collective mode mediated by the 

5 In a hot physical electron–positron plasma in Minkowski space, the thermal photon mass is a result of the photon 
interaction with the plasma particles. We could interpret mγ �= 0 as due to a hot plasma of Hawking electrons and 
Hawking positrons, but then we should accept a phase transition during black-hole formation. In fact, these particles are 
elements of the non-Minkowskian Fock space representation of the field operator algebra far away from the black hole, 
where one expects to have the ordinary representation [28].
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plasma particles) known as plasmon for frequencies ωl ∼ ωp , while the transverse part, photon, 
is dynamical for ωt ≥ ωp . In the black-hole background, it implies that there should exist a 
plasmon-like excitation. However, the plasmon wavelength λp ∼ 102 R is much bigger than R. 
In general, our approximation is only reliable for λγ � R as pointed out above. Thus, there are 
no plasmon-like waves in the black-hole background.6

The physical plasma is opaque for electromagnetic waves with frequency ω less than the 
plasma frequency. Thus, these electromagnetic waves are reflected due to the collective response 
of the plasma particles. The poles in the photon propagator also disappear at ω < ωp close to the 
black hole. For instance, we find that the region rH � R � 1 nm should be opaque for the light 
wave of length λγ = 500 nm. Therefore, we have λγ � R. In the hot plasma of the size R, one 
would expect merely a negligible damping of the wave amplitude. We expect the same effect for 
the small black holes due to the non-trivial manifestation of vacuum fluctuations. The reflection 
of the light waves from the plasma-like environment of the black hole should be an extremely 
rare event (if at all).

The plasma frequency in the normal plasma is a classical quantity, i.e. that does not explicitly 
depend on the Planck constant h̄. Indeed, one has ω2

p = 4πe2n/me in the cold plasma, where 
n is a density number of the particles [31,32]. In the hot physical plasma n ∼ T 3 and me ∼ T

resulting in ω2
p ∼ e2T 2. In particular, we have ω2

p = e2T 2/9 for the neutral electron–positron 
plasma (e.g., see [2]). However, our result (23) cannot be understood classically, because of the 
quantum nature of the parameter TH (∝ h̄).

Moreover, the plasma-like environment of small black holes far away from the horizon is 
effectively characterised by a new (local) temperature parameter

TL = 3
√

3

16π
MPl

LPl

R
(26)

which is much smaller than TH far from the hole (R � rH ), where LPl = (h̄G/c3)
1
2 is the Planck 

length. The numerical factor can deviate from its exact value as we have been working in the 
DeWitt approximation. The same scaling of the temperature from the distance has been recently 
found in [33] within a different framework.

3.2. Modified Coulomb law

One can employ our formula (23) to estimate the distance to the nearest small black hole 
from the upper bound on the photon mass. In the hot physical plasma, Coulomb’s potential 
of a point-like electric charge is exponentially suppressed far from the charge as exp(−r/rD), 
where rD = 1/mD = (

√
2mγ )−1 is the Debye radius. This phenomenon is known as the Debye 

screening (e.g., see [2,3] and [31,32] in the case of the hot and cold plasma, respectively). In our 
situation, the electromagnetic field effectively becomes a short range interaction.

We obtain from mγ � 10−14 eV [34] that the small black hole at that time could not be closer 
to the laboratory than R, where

R ≈ 8.6×105 R�
(

10−18 eV

mγ

)
� 250 km , (27)

6 It might be an effect of the absence of the plasmon’s mediators. This appears to be in agreement with [28].
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where R� ≈ 2.95 km is sun’s gravitational radius. Neglecting any other possible contributions 
to the effective photon mass, then the stronger upper bound on mγ , the farther small black hole 
should be from the laboratory.

It is worth emphasizing that the Debye screening of the charge due to the black hole can-
not be complete (within our approximation), because the Debye radius is much bigger than R, 
specifically rD � 8.8×104 km. The fact R � rD does not imply our approximation is unreliable. 
Indeed, the conducting shell used in [34] to test the Coulomb law has a size about 1 m which is 
much smaller than the distance to the black hole R.

In the physical plasma the Debye screening occurs due to the collective response of the plasma 
particles to the external electric charge. In our case, it is a vacuum polarization effect. In the 
absence of the black hole or very far away from it, the photon is almost massless at any order 
of the perturbation theory due to the gauge and Lorentz symmetry. Not too far from the black 
hole, spacetime isometry starts to significantly deviate from the Minkowskian one due to the 
black-hole horizon. As a consequence, the vacuum response to the electromagnetic field operator 
described by the electric permittivity and magnetic permeability modifies. This eventually results 
in the non-trivial photon dispersion relation. A similar effect occurs in-between the conducting 
plates, wherein, however, (low-energy) photons remain massless [26,27].

3.3. One-loop correction to electron mass me and fine structure constant α

The electron mass is also modified in the black-hole background. Following [35,36] (see 
also [2,3]), we obtain at one-loop level that

δme ≈
(

27πα

32

) 1
2

TH

( rH

R

)
. (28)

The correction to me is thus negligibly small with respect to me if R � 4.4×10−15 m. It is 
worth mentioning that classical estimate of the electron size is about 2.8×10−15 m. In the hot 
plasma, the thermal correction δme to the electron mass is much bigger than me. In our case, 
this correction to me is suppressed by the factor rH /R. Hence, we have me � δme , although 
TH � me. This implies there are no plasmino-like excitations in the background of the small 
evaporating black holes. This is fully consistent with of having no mediator due to which these 
collective modes could propagate.

The temperature-dependent correction to the fine structure constant α in the hot plasma has 
been derived in [37]. In the background of the small black hole we find

α(M) ≈ α

(
1 + 2α

3π

(
27r2

H

16R2

)
ln

(
M2

Pl

8πMme

))
. (29)

The effective fine structure constant α(M) approaches α in the limit M → 0. Its maximal value 
in the range MPl � M � 1021MPl slightly differs from α. Specifically, the deviation of α(M)

from α is much smaller than 10−8 for those values of the black-hole mass. At the distance 1 m
from the black hole, this deviation becomes 10−15 times smaller.

3.4. Black holes in analogue gravity

The effect we have derived in this paper is due to the interaction between photons and elec-
trons/positrons and the presence of the small black hole. In the λ�4-model, the massless scalar 
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particle acquires an effective mass m� in the background of the black holes as well. Follow-
ing [2], one can obtain

m2
� ≈ 27λ

384
T 2

H

( rH

R

)2
(30)

at one-loop level far away from the event horizon. We shall treat this theory in a forthcoming 
paper [38] near evaporating black holes, where one may expect a breakdown of the perturbation 
theory analogous to that observed in [17].

There is an analogue of black holes in a medium known as a dumb hole [39] (see also [40] for a 
comprehensive review of analogue gravity). Experimental evidences have been recently reported 
in favour of the dumb-hole evaporation which is supposed to be analogous to the black-hole 
evaporation [41,42].

For fluids in which phonons are self-interacting, one might expect a non-trivial dispersion 
relation for the phonon similar to that for the photon far from the small black hole. Specifically, 
an effective phonon mass might depend on the distance to the sonic horizon.
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