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1 Introduction

The discovery of the Higgs boson by the LHC experiments ATLAS [1] and CMS [2] not only

marked a milestone for elementary particle physics but also opened the possiblity to search

for new physics (NP) in the Higgs sector itself. Since, so far, a direct discovery of NP in the

form of new particles is missing, the Higgs sector plays an increasingly important role. The

manifestations of NP in the Higgs sector can be manifold [3]. An immediate direct signal

of NP acting in the Higgs sector would be the discovery of additional Higgs bosons, which

can be lighter or heavier than the currently known one that has a mass of 125.09 GeV [4].

Indirect signs may appear through modifications in the Higgs couplings to the Standard

Model (SM) particles and hence through the observables of the 125 GeV Higgs boson when

compared to the SM values. The modifications can be due to strong dynamics behind
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electroweak symmetry breaking (EWSB) like in composite Higgs models [5–16]. In the case

of weakly coupled models with extended Higgs sectors, the SM-like Higgs boson mixes with

the other Higgs bosons thus changing the couplings to the SM particles. Additionally, new

non-SM particles, like e.g. the superpartners in supersymmetric extensions, can contribute

to the loop-induced couplings to gluons or photons. Furthermore, the different particle

content and the modified couplings induce higher order corrections to the Higgs couplings

that can be substantially different from the SM case. Finally, the additional Higgs bosons

open the possibility of Higgs-to-Higgs decays. These, and possibly invisible decays due to

additional lighter Higgs or other particles that are stable, modify the total width and hence

the branching ratios of the SM-like Higgs boson.

With the observed Higgs boson behaving very SM-like [17–20] it is clear that any ex-

tension of the Higgs sector beyond the SM (BSM) has to provide at least one CP-even

Higgs boson with a mass of 125 GeV that reproduces the LHC rates. Additional Higgs

bosons predicted by the model have to be compatible with the LHC exclusion bounds.

A strong constraint on NP models is given by the ρ parameter. This singles out models

with singlet or doublet extended Higgs sectors when some simplicity is required.1 Doublet

extended models are particularly interesting due to their relation to supersymmetry. In

particular, the 2-Higgs-doublet model (2HDM) [21–23] has been extensively studied and

considered as a possible benchmark model in experimental analyses. The 2HDM features 5

physical Higgs bosons that, in the CP-conserving version of the model, are given by 2 CP-

even, 1 CP-odd and 2 charged Higgs bosons. Upon extending the model by a real scalar

singlet field with a Z2 parity symmetry, there is a symmetric phase containing a viable

Dark Matter (DM) candidate. This version of the Next-to-Minimal 2HDM (N2HDM) has

been subject to numerous investigations, see e.g. [24–37], while in [38] the phenomenol-

ogy of the N2HDM with non-vanishing vacuum expectation value (VEV) for the singlet

field (Z2 broken phase) has been discussed. In the Z2 broken phase, after EWSB the

N2HDM Higgs sector consists of 3 neutral CP-even scalars, 1 CP-odd and 2 charged Higgs

bosons. The Higgs mass eigenstates, which are now superpositions of the singlet and dou-

blet fields, have an interesting phenomenology that is not only governed by the mixing

properties of the doublet fields but also by the amount of singlet admixture to the Higgs

mass eigenstates. Thus, the couplings to SM particles can be diluted to such an extent

that light Higgs bosons are not excluded by Higgs boson searches at LEP, Tevatron and

the LHC in the low-mass range. Such light Higgs bosons then allow for Higgs decays of

the heavier Higgs bosons into a pair of light Higgs states. Higgs-to-Higgs decays provide

alternative production channels for the heavier Higgs bosons and give access to the trilin-

ear Higgs self-couplings. Their measurement is crucial for our understanding of the Higgs

mechanism [39–41]. Furthermore, the larger number of parameters, as compared e.g. to

the 2HDM, allows for more flexibility in the Higgs sector while being simultaneously in

accordance with the experimental and theoretical constraints. This is also the case for the

Next-to-Minimal Supersymmetric Model (NMSSM) [42–57] whose Higgs sector is based

1Also models with larger SU(2) multiplets or with triplets and a custodial SU(2) global symmetry satisfy

the ρ parameter constraint, but entail larger and more complex Higgs sectors.
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on two doublets and one complex singlet field. Through the SUSY sector the NMSSM

encounters even more parameters. The NMSSM Higgs potential, however, is subject to

supersymmetric relations. In particular, the Higgs potential parameters of the two Higgs

doublets in the NMSSM are given in terms of the gauge boson couplings, so that neither the

NMSSM Higgs masses nor the trilinear Higgs self-couplings can become arbitrarily large.

The larger Higgs spectrum of the NMSSM, with an additional pseudoscalar Higgs, and the

different Higgs self-couplings induce differences in Higgs-to-Higgs decays as compared to

the N2HDM. The supersymmetric relations furthermore lead to constraints in the Higgs

boson couplings to the SM particles. Therefore, differences in the Higgs rates and also in

the coupling patterns, namely in the coupling sum rules, are to be expected. The N2HDM,

on the other hand, does not have to respect supersymmetry relations among the masses

and couplings. This leads to much more freedom in the choice of parameters of the model

and to very different patterns in the couplings of the SM-like Higgs boson. Another class

of models that can also provide such extra freedom is given by the scalar singlet framework

where one adds hypyercharge-zero singlet scalar fields to the SM, i.e. without introducing

any extra doublets [58–74]. Though in some of these models [74] one can still obtain a rich

phenomenology of Higgs-to-Higgs decays with several Higgs bosons, the coupling structure

of the new Higgs bosons to other SM particles is typically controlled by only a global sup-

pression factor (relative to an SM-like Higgs boson). Thus, this provides still less structure

than the N2HDM. Finally, being a model with a 2HDM-like sector, the N2HDM also

contains a richer spectrum with a charged and a CP-odd Higgs boson that induce different

signatures when compared with scalar singlet models. The N2HDM therefore provides an

important benchmark model with a very distinct Higgs boson phenomenology as compared

to other commonly studied beyond the SM extensions. The potential of various observables

to distinguish between all these models requires a detailed comparison, which is beyond

the scope of this paper and deferred to future work.

The LHC Higgs data constrain possible deviations induced by NP to be close to the

SM case so that only precision measurements allow to reveal BSM signals in the Higgs

sector. This calls not only for advanced experimental techniques but also for very precise

predictions from the theory side. Thus parameters and observables have to be computed

including higher order corrections. Moreover the allowed parameter space of the model has

to be evaluated very carefully by checking for consistency with the relevant theoretical and

experimental constraints. Only for these parameter regions predictions become meaningful

and can be used as guidelines for the experiments. Constraints from the experimental

side arise from the Higgs data. The N2HDM has to provide at least one SM-like Higgs

boson with a mass of 125 GeV. The additional Higgs bosons must comply with the LHC

exclusion limits. Furthermore B-physics and low-energy physics constraints have to be

respected as well as the compatibility with the electroweak precision data. Finally, the

symmetric N2HDM, which features a Dark Matter (DM) candidate has to comply with

the measured value of the relic density.2 Theoretical constraints that have to be fulfilled

2It is also possible to have a Z2 symmetric scalar singlet model with two CP-even Higgs bosons and a

DM candidate [70, 73]. Such a model can be made compatible with DM observables and help to stabilise the

SM potential [73]. However, its coupling structure and spectrum are, again, simpler than in the N2HDM.
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are: that the Higgs potential is bounded from below, that the chosen vacuum is a global

minimum and that perturbative unitarity holds. In the N2HDM, the conditions for the first

two requirements can be derived from the literature. There exists, however, no analysis so

far of all the minima of the N2HDM.

In this work we will determine the allowed parameter space of the N2HDM in the bro-

ken phase without applying any approximations on the singlet admixture to the SM-like

Higgs boson. Besides taking into account the experimental constraints, we will, in partic-

ular, investigate for the first time in great detail the conditions on the N2HDM potential

that guarantee tree-level perturbative unitarity, that the vacuum is stable and that the

minimum is the global one. We will present the full analysis of the global minimum of

the N2HDM potential, which was performed for the first time in [75] where more details

can be found. We have implemented the N2HDM in HDECAY [76, 77]. This code, called

N2HDECAY, computes the N2HDM Higgs decay widths and branching ratios including the

state-of-the-art higher order QCD corrections and off-shell decays. Furthermore, the model

has been included in ScannerS [70, 78] along with the theoretical conditions and the avail-

able experimental constraints. Then, this allowed us to perform extensive scans in the

parameter space of this model taking into account the experimental and theoretical con-

straints. We will subsequently investigate the features of the surviving parameter space

and the implications for LHC phenomenology.

The outline of the paper is as follows. In section 2 we will introduce the N2HDM

together with our notation. Section 3 is dedicated to the description of the theoretical

constraints that will be applied here for the first time in full scrutiny without any approx-

imations on the N2HDM Higgs potential. Section 4 describes the parameter scan with

the applied constraints. Section 5 is dedicated to the phenomenological analysis. Our

conclusions are collected in section 6.

2 The N2HDM Higgs sector

The N2HDM is based on the CP-conserving (or real) 2HDM with a softly broken Z2

symmetry extended by a real singlet field ΦS . The extension of the 2HDM by a real scalar

singlet that does not acquire a VEV provides a viable DM candidate [24–31, 33–35, 37].

In [38] the phenomenology of the N2HDM with non-vanishing VEV for the singlet field

has been discussed by applying some approximations. In particular, the possibility of a

singlet admixture to the 125 GeV Higgs boson has been neglected. In the following no such

assumptions will be imposed on the N2HDM potential. In terms of the two SU(2)L Higgs

doublets Φ1 and Φ2 and the singlet field ΦS , the N2HDM potential is given by

V = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ

†
1Φ2 + h.c.) +

λ1
2

(Φ†1Φ1)
2 +

λ2
2

(Φ†2Φ2)
2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

λ5
2

[
(Φ†1Φ2)

2 + h.c.
]

+
1

2
m2
SΦ2

S +
λ6
8

Φ4
S +

λ7
2

(Φ†1Φ1)Φ
2
S +

λ8
2

(Φ†2Φ2)Φ
2
S . (2.1)

– 4 –



J
H
E
P
0
3
(
2
0
1
7
)
0
9
4

Φ1 Φ2 ΦS

Z2 (explicitly broken, softly) + − +

Z′2 (spontaneously broken) + + −

Table 1. Z2 and Z′2 assignments for the scalar fields in the model.

The first two lines describe the 2HDM part of the N2HDM while the last line contains

the contribution of the singlet field ΦS . This potential is obtained by imposing two Z2

symmetries on the scalar potential. The first one, called Z2,

Φ1 → Φ1 , Φ2 → −Φ2 , ΦS → ΦS (2.2)

is the trivial generalisation of the usual 2HDM Z2 symmetry to the N2HDM. It is softly

broken by the term involving m2
12 and can be extended to the Yukawa sector to guarantee

the absence of tree-level Flavour Changing Neutral Currents (FCNC). The second Z2

symmetry, Z′2, is

Φ1 → Φ1 , Φ2 → Φ2 , ΦS → −ΦS (2.3)

and is not explicitly broken. If ΦS does not acquire a VEV this Z′2 symmetry will give

rise to a conserved “darkness” quantum number and to the appearance of a dark matter

candidate. If ΦS acquires a VEV this quantum number is no longer conserved and there

is mixing among all CP-even neutral particles. This same behaviour is still possible if

m2
12 = 0, where both the Z2 and Z′2 symmetries in the potential are exact but need to be

spontaneously broken. We will not consider such model further in this study. The two Z2

and Z′2 quantum numbers assigned to the scalars in the model are shown in table 1.

After EWSB the two doublet fields acquire the real VEVs v1 and v2 and the singlet

field a real VEV vS . They can be parametrised as

Φ1 =

(
φ+1

1√
2
(v1 + ρ1 + iη1)

)
, Φ2 =

(
φ+2

1√
2
(v2 + ρ2 + iη2)

)
, ΦS = vS + ρS , (2.4)

in terms of the charged complex fields φ+i (i = 1, 2) and the real neutral CP-even and

CP-odd fields ρI (I = 1, 2, S) and ηi, respectively. Requiring the potential to be minimized

at the VEV leads to three minimum conditions given by

v2
v1
m2

12 −m2
11 =

1

2
(v21λ1 + v22λ345 + v2Sλ7) (2.5)

v1
v2
m2

12 −m2
22 =

1

2
(v21λ345 + v22λ2 + v2Sλ8) (2.6)

−m2
S =

1

2
(v21λ7 + v22λ8 + v2Sλ6) , (2.7)

with

λ345 ≡ λ3 + λ4 + λ5 . (2.8)

Replacing the doublet and singlet fields in the Higgs potential by the parametrisations (2.4)

the mass matrices in the gauge basis are obtained from the second derivatives with respect
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to the fields in the gauge basis. Due to charge and CP conservation the 7× 7 mass matrix

decomposes into three blocks: the 2 × 2 matrix for the charged Higgs bosons, the 2 × 2

matrix for the CP-odd fields and the 3 × 3 matrix for the CP-even states. Introducing a

real singlet field with a VEV, the charged and pseudoscalar sectors of the model remain

unchanged with respect to the 2HDM. Consequently, as in the 2HDM, the charged and

pseudoscalar mass matrices can be diagonalised by the rotation matrix

Rβ =

(
cβ sβ
−sβ cβ

)
, (2.9)

with tβ defined as

tβ =
v2
v1

(2.10)

and

v2 = v21 + v22 . (2.11)

We have introduced the SM VEV v ≈ 246 GeV and the abbreviations sin x ≡ sx, cosx ≡ cx
and tanx ≡ tx. This yields the massless charged and neutral would-be Goldstone bosons

G± andG0, the charged Higgs mass eigenstates H± and the pseudoscalar mass eigenstate A.

Due to the additional real singlet field, the CP-even neutral sector of the N2HDM is

changed with respect to the 2HDM. Instead of a 2 × 2 mass matrix we now have a 3 × 3

matrix. In the basis (ρ1, ρ2, ρS) it can be cast into the form

M2
scalar =

 λ1c
2
βv

2 + tβm
2
12 λ345cβsβv

2 −m2
12 λ7cβvvS

λ345cβsβv
2 −m2

12 λ2s
2
βv

2 +m2
12/tβ λ8sβvvS

λ7cβvvS λ8sβvvS λ6v
2
S

 . (2.12)

In eq. (2.12) we have used eqs. (2.5)–(2.7), to trade the mass parameters m2
11, m

2
22 and m2

S

for v, tβ and vS . The mass matrix can be diagonalised by an orthogonal matrix R which

we parametrise as

R =

 cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 −(cα1sα3 + sα1sα2cα3) cα2cα3

 (2.13)

in terms of the mixing angles α1 to α3. Without loss of generality the angles can be chosen

in the range

− π

2
≤ α1,2,3 <

π

2
. (2.14)

The matrix R rotates the interaction basis (ρ1, ρ2, ρS) into the physical mass eigenstates

H1, H2 and H3, H1

H2

H3

 = R

ρ1ρ2
ρS

 (2.15)

and diagonalises the mass matrix M2
scalar,

RM2
scalarR

T = diag(m2
H1
,m2

H2
,m2

H3
) . (2.16)
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c(HiV V )

H1 cα2cβ−α1

H2 −cβ−α1sα2sα3 + cα3sβ−α1

H3 −cα3
cβ−α1

sα2
− sα3

sβ−α1

Table 2. The effective couplings of the neutral CP-even N2HDM Higgs bosons Hi to the massive

gauge bosons V = W,Z.

We use a convention where the mass eigenstates are ordered by ascending mass as

mH1 < mH2 < mH3 . (2.17)

In total, the N2HDM is described by 12 independent real parameters. We choose as many

parameters with physical meaning as possible. We use the minimisation conditions to trade

m2
11, m

2
22 and m2

S for the SM VEV v, tβ and vS and replace the quartic couplings by the

physical masses and the mixing angles. The soft Z2 breaking parameter m2
12 is kept as an

independent parameter. Thus, we use the following set of input parameters

α1 , α2 , α3 , tβ , v , vS , mH1,2,3 , mA , mH± , m2
12 . (2.18)

In appendix A.1 we provide expressions for the quartic couplings in terms of these input

parameters.

The singlet field ρS does not directly couple to the SM particles. Therefore, any change

in the tree-level Higgs couplings compared to the 2HDM is due to the mixing of the three

neutral fields ρI . Any coupling not involving the CP-even neutral Higgs bosons remains

unchanged compared to the 2HDM and can be found e.g. in [23]. We now provide the

couplings of the N2HDM Higgs bosons Hi relevant for Higgs decays. We introduce the

Feynman rules for the Higgs couplings Hi to the massive gauge bosons V ≡W,Z as

i gµν c(HiV V ) gHSMV V , (2.19)

where gHSMV V denotes the SM Higgs coupling factor. In terms of the gauge boson masses

MW and MZ , the SU(2)L gauge coupling g and the Weinberg angle θW it is given by

gHSMV V =

{
gMW for V = W

gMZ/ cos θW for V = Z
. (2.20)

We obtain

c(HiV V ) = cβRi1 + sβRi2 (2.21)

for the effective couplings defined by eq. (2.19). Replacing the Rij by their parametrisation

in terms of the mixing angles yields the effective couplings in table 2.

In order to avoid tree-level FCNCs we extend the Z2 symmetry (2.2) to the Yukawa

sector. This leads to the same four types of doublet couplings to the fermions as in the

2HDM. We show these types in table 3. Consequently, the CP-even Hi Yukawa couplings

– 7 –
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u-type d-type leptons Q uR dR L lR

type I Φ2 Φ2 Φ2 + − − + −
type II Φ2 Φ1 Φ1 + − + + −

lepton-specific Φ2 Φ2 Φ1 + − + + −
flipped Φ2 Φ1 Φ2 + − − + +

Table 3. In the three leftmost columns, the four Yukawa types of the Z2-symmetric 2HDM are

defined by the Higgs doublet that couples to each kind of fermion. The five rightmost columns

show the corresponding Z2 parity assignments for the fermions. Q and L are the quark and lepton

doublets, respectively, uR is the up-type quark singlet, dR is the down-type quark singlet and lR is

the lepton singlet. Observe that, in addition, all gauge bosons are Z2-even for all types. The Z′2
parities are not included in the table because all fields, except for ΦS , are even.

u-type d-type leptons

type I Ri2
sβ

Ri2
sβ

Ri2
sβ

type II Ri2
sβ

Ri1
cβ

Ri1
cβ

lepton-specific Ri2
sβ

Ri2
sβ

Ri1
cβ

flipped Ri2
sβ

Ri1
cβ

Ri2
sβ

Table 4. Coupling coefficients c(Hiff) of the Yukawa couplings of the N2HDM Higgs bosons Hi

as defined in eq. (2.22).

take the same form as the Yukawa couplings of the 2HDM. With the N2HDM Yukawa

Lagrangian

LY = −
3∑
i=1

mf

v
c(Hiff) ψ̄fψfHi (2.22)

we obtain the effective coupling factors c(Hiff) in terms of the mixing matrix elements

Rij and the mixing angle β provided in table 4. Replacing the Rij by their parametrisation

in terms of the αi this results in the effective coupling expressions given for type I and II

in table 5.

The Feynman rule for the Hi coupling to the pseudoscalar A and the Z boson is

given by

λµ(HiZA) =

√
g2 + g′2

2
(pHi − pA)µ c̃(HiV H) , (2.23)

where g′ denotes the U(1)Y gauge coupling and pA and pHi , the four-momenta of the

pseudoscalar and the Hi, are both taken as incoming. The tilde over the coupling factor

indicates that it is not an effective coupling in the sense that it is not normalized to a

corresponding SM coupling, since there is no SM counterpart. The corresponding Feynman

rule for the Hi coupling to the charged pair H± and W∓ reads

λµ(HiW
∓H±) = ∓g

2
(pHi − pH±)µ c̃(HiV H) , (2.24)

where pH± denotes the four-momentum of H± and again all momenta are taken as incom-

ing. The coupling factors c̃(HiV H) are provided in table 6.

– 8 –
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Type I

c(Hiff) u d l

H1 (cα2sα1)/sβ (cα2sα1)/sβ (cα2sα1)/sβ

H2 (cα1
cα3
− sα1

sα2
sα3

)/sβ (cα1
cα3
− sα1

sα2
sα3

)/sβ (cα1
cα3
− sα1

sα2
sα3

)/sβ

H3 −(cα1
sα3

+ cα3
sα1

sα2
)/sβ −(cα1

sα3
+ cα3

sα1
sα2

)/sβ −(cα1
sα3

+ cα3
sα1

sα2
)/sβ

Type II

c(Hiff) u d l

H1 (cα2
sα1

)/sβ (cα1
cα2

)/cβ (cα1
cα2

)/cβ

H2 (cα1
cα3
− sα1

sα2
sα3

)/sβ −(cα3
sα1

+ cα1
sα2

sα3
)/cβ −(cα3

sα1
+ cα1

sα2
sα3

)/cβ

H3 −(cα1sα3 + cα3sα1sα2)/sβ (sα1sα3 − cα1cα3sα2)/cβ (sα1sα3 − cα1cα3sα2)/cβ

Table 5. The effective Yukawa couplings c(Hiff) of the N2HDM Higgs bosons Hi, as defined in

eq. (2.22), in type I and type II.

c̃(HiV H)

H1 −cα2
sβ−α1

H2 sβ−α1sα2sα3 + cα3cβ−α1

H3 cα3sβ−α1sα2 − sα3cβ−α1

Table 6. The coupling factors c̃(HiV H) as defined in the Feynman rules eqs. (2.23) and (2.24) for

the Hi couplings to a pair of Higgs and gauge bosons.

The trilinear Higgs self-couplings relevant for the Higgs decays into a pair of lighter

Higgs bosons are quite lengthy and deferred to appendix A.2. We have used these Feynman

rules to implement the N2HDM in HDECAY v6.51 [23]. The resulting code N2HDECAY calcu-

lates all N2HDM Higgs boson decay widths and branching ratios including state-of-the-art

higher order QCD corrections and off-shell decays. Electroweak corrections, which in con-

trast to the QCD corrections cannot be taken over from the SM, have been consistently

neglected. The program can be downloaded from the url:

http://itp.kit.edu/∼maggie/N2HDECAY/.

In appendix B a short description of the program with a sample input and output file is

provided.

We finally note that by letting α2,3 → 0 and α1 → α + π/2 the N2HDM approaches

the limit of a 2HDM with an added decoupled singlet. In the 2DHM, the mixing angle α

diagonalises the 2×2 mass matrix in the CP-even Higgs sector leading to the two CP-even

mass eigenstates h and H, respectively. The shift by π/2 in the limit is necessary to match

the usual 2HDM convention. Hence,

N2HDM → 2HDM ⇐⇒


α1 → α+ π

2

α2 → 0

α3 → 0

. (2.25)
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3 Theoretical constraints

In this section we investigate the conditions on the N2HDM imposed by theoretical consid-

erations. These are the requirements for tree-level perturbative unitarity, that the vacuum

is stable and that it is the global minimum of the scalar potential. For the first two re-

quirements the corresponding conditions in the N2HDM can be derived from the literature.

In the following we will summarize them before presenting the analysis of the stationary

points of the N2HDM (cf. also [75]). The model, along with the theoretical conditions, has

been implemented in ScannerS. This allows us to perform extensive scans in the param-

eter space of the N2HDM taking into account both the experimental and the theoretical

constraints, as will be described in detail in section 4.

3.1 Tree-level perturbative unitarity

Tree-level perturbative unitarity is ensured by requiring that the eigenvalues of the 2 → 2

scalar scattering matrix are below an absolute upper value given by 8π [79]. It can be useful

to impose a limit smaller than 8π at tree level to safeguard for possible large enhancements

of the scalar couplings through higher order corrections. Following the procedure and

notation of [79], we have calculated the full 2 → 2 scattering matrix of the fields in the

gauge basis,

H±1 , H
±
2 , ρ1 , ρ2 , ρS , η1 and η2 . (3.1)

The resulting matrix is block diagonal. The block matrices not containing ρS have the

eigenvalues

b± =
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ25

)
(3.2)

c± =
1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ24

)
(3.3)

e1 = λ3 + 4λ4 − 3λ5 (3.4)

e2 = λ3 − λ5 (3.5)

f+ = λ3 + 2λ4 + 3λ5 (3.6)

f− = λ3 + λ5 (3.7)

f1 = λ3 + λ4 (3.8)

p1 = λ3 − λ4 . (3.9)

These are the same eigenvalues as found in the 2HDM. The new contributions due to the

singlet field yield the eigenvalues

s1 = λ7 (3.10)

s2 = λ8 (3.11)

and the eigenvalues a1,2,3, which are the real roots of the cubic polynomial

4(−27λ1λ2λ6 + 12λ23λ6 + 12λ3λ4λ6 + 3λ24λ6 + 6λ2λ
2
7 − 8λ3λ7λ8 − 4λ4λ7λ8 + 6λ1λ

2
8)

+ x(36λ1λ2 − 16λ23 − 16λ3λ4 − 4λ24 + 18λ1λ6 + 18λ2λ6 − 4λ27 − 4λ28)

+ x2
(
− 6(λ1 + λ2 + λ6)

)
+ x3. (3.12)
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Not all of the above eigenvalues are independent. As noted in [79], we have

3f1 = p1 + e1 + f+ (3.13)

3e2 = 2p1 + e1 (3.14)

3f− = 2p1 + f+ . (3.15)

The conditions on f1, e2 and f− can therefore be dropped, as they follow from the conditions

on p1, e1 and f+. Since λ1, λ2 > 0 is necessary for the potential to be bounded from below

(see eqs. (3.25) and (3.26)) we obtain

|c+| > |c−| (3.16)

|b+| > |b−| . (3.17)

The resulting conditions for tree-level perturbative unitarity are thus given by

|λ3 − λ4| < 8π (3.18)

|λ3 + 2λ4 ± 3λ5| < 8π (3.19)∣∣∣∣12(λ1 + λ2 +
√

(λ1 − λ2)2 + 4λ24

)∣∣∣∣ < 8π (3.20)∣∣∣∣12(λ1 + λ2 +
√

(λ1 − λ2)2 + 4λ25

)∣∣∣∣ < 8π (3.21)

a1,2,3 < 8π , (3.22)

where a1,2,3 are the real roots of eq. (3.12).

3.2 Boundedness from below

We consider the potential to be bounded from below in the strong sense, which means

that the potential is required to be strictly positive as the fields approach infinitiy. The

corresponding necessary and sufficient conditions have been given in [80] and translated to

our notation in [75]. They depend on the discriminant

D =

{
λ4 − λ5 for λ4 > λ5

0 for λ4 ≤ λ5
. (3.23)

The allowed region is given by

Ω1 ∪ Ω2 (3.24)

with

Ω1 =

{
λ1, λ2, λ6 > 0;

√
λ1λ6 + λ7 > 0;

√
λ2λ6 + λ8 > 0;

√
λ1λ2 + λ3 +D > 0;λ7 +

√
λ1
λ2
λ8 ≥ 0

}
(3.25)

and

Ω2 =

{
λ1, λ2, λ6 > 0;

√
λ2λ6 ≥ λ8 > −

√
λ2λ6;

√
λ1λ6 > −λ7 ≥

√
λ1
λ2
λ8;√

(λ27 − λ1λ6)(λ28 − λ2λ6) > λ7λ8 − (D + λ3)λ6

}
. (3.26)

– 11 –
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3.3 Global minimum conditions for the N2HDM potential

In general, the minimum needs not be the global minimum, if the tunnelling time for the

vacuum to tunnel into the global minimum [81, 82] is larger than the age of universe. As the

calculation of the tunnelling time is beyond the scope of this work, we do not discuss such

metastable vacua and restrict to the stronger requirement that the vacuum is at the global

minimum. While for the 2HDM it has been proven [83] that the existence of a normal

minimum of the form eq. (2.4) precludes the existence of a deeper charge- or CP-breaking

minimum, this does not generalise to the N2HDM. Counter-examples that underline this

statement can be found in the appendix of [75]. For the analysis of the global N2HDM

minimum we therefore have to include the possibility of CP- and charge-breaking minima.

We consider the most general constant field configuration, where all fields are real,

〈Φ1〉 =

(
0

v1

)
, 〈Φ2〉 =

(
vcb

v2 + ivcp

)
, 〈ΦS〉 = vS . (3.27)

Here we have already exploited the SU(2)L × U(1)Y gauge symmetry to eliminate four

degrees of freedom. Any other possible constant field configuration of the N2HDM can

be projected onto this one through a gauge transformation. By vcb we denote the charge-

breaking and by vcp the CP-breaking constant fields. In the following we will refer to

the constant fields as VEVs although this is technically only correct if the configuration

describes a minimum of the scalar potential. By expanding the field configuration eq. (3.27)

in the potential one observes a set of Z2 symmetries for the real fields we are using, and

we can thus choose, without loss of generality, all VEVs except for v2 to be positive. We

then proceed to find all possible stationary points of the N2HDM. This detailed analysis

is presented in appendix C.

We want the minimum to conserve both electric charge and CP and to give rise to

three CP-even massive scalars. From the vacuum structure point of view this means that

v1 6= 0, v2 6= 0 and vS 6= 0 while vcb = 0 and vcp = 0 at the chosen minimum. In order to

ensure that this is the global minimum we proceed as follows:

• We choose the model parameters such that there is a minimum with v1 6= 0, v2 6= 0,

vS 6= 0, vcb = 0, vcp = 0 and 246 GeV = v =
√
v21 + v22.

• Using the stationarity conditions presented in appendix C we look for all other pos-

sible stationary points of the potential with this set of parameters.

• We discard all sets of parameters for which we find a stationary point below the

minimum.

This procedure leads to a global minimum that is CP-conserving, preserves electric charge

and allows for the singlet to mix with the CP-even scalars from the doublets. We note

here that, in the N2HDM, the classification of the possible types of minima, in terms of

preservation or breaking of electric charge or CP, follows that of the 2HDM regardless of

the value of vS — see also appendix C.
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4 The parameter scan

In order to perform phenomenological analyses we need viable parameter points, i.e. points

in agreement with theoretical and experimental constraints. To obtain these points we

use the program ScannerS to perform extensive scans in the N2HDM parameter space

and check for compatibility with the constraints. We denote the discovered SM-like Higgs

boson with a mass of [4]

mh125 = 125.09 GeV (4.1)

by h125. In the following, we exclude all parameter configurations where this Higgs signal

is built up by multiple resonances by demanding the mass window mh125 ± 5 GeV to be

free of any Higgs bosons except for h125. Furthermore, we do not include electroweak

corrections in the parameter scans nor in the analysis, as they are not (entirely) available

for all observables and cannot be taken over from the SM.

We check for the theoretical constraints on the N2HDM at tree level as described in

section 3. Tree-level perturbative unitarity is verified by using eqs. (3.18)–(3.22). This

method yields a shorter run-time than the model-independent numeric check implemented

in ScannerS. We checked that both methods lead to the same results. Equations (3.25)

and (3.26) are used to guarantee that the potential is bounded from below. The vacuum

state found by ScannerS is required to be the global minimum, otherwise it is rejected. As

described in 3.3, the check is performed by comparing the value of the scalar potential at

the ScannerS vacuum with the values at all of the stationary points.

Many of the experimental constraints applied on the 2HDM also hold for the N2HDM.

The constraints on Rb [84, 85] and B → Xsγ [85–88] are only sensitive to the charged

Higgs boson so that the 2HDM calculation and the resulting 2σ exclusion bounds in the

mH± − tβ plane can be taken over to the N2HDM. Note that the latest calculation [88]

enforces

mH± > 480 GeV (4.2)

in the type II and lepton specific 2HDM. In the type I model on the other hand the bound

is much weaker and more strongly dependent on tan β. The oblique parameters S, T and

U are calculated with the general formulae in [89, 90], and 2σ compatibility with the SM

fit [91] including the full correlations is demanded.

The N2HDM must comply with the LHC Higgs data. This requires one scalar state

to match the observed signal rates for a Higgs boson of about 125 GeV. Furthermore, the

remaining Higgs bosons must be consistent with the exclusion bounds from the collider

searches at Tevatron, LEP and LHC, where the strongest constraints arise from the LHC

Run 1 data. ScannerS provides an interface with HiggsBounds v4.3.1 [92–94] which we

use to check for agreement with all 2σ exclusion limits from LEP, Tevatron and LHC Higgs

searches. The required input for HiggsBounds are the cross section ratios (relative to a SM

Higgs boson of the same mass) of the different production modes, the branching ratios and

the total widths for all scalars. We compute the latter two with the program N2HDECAY.

The production cross sections through gluon fusion (ggF) and b-quark fusion (bbF) are

obtained at next-to-next-to-leading order (NNLO) QCD from SusHi v1.6.0 [95, 96] which
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is interfaced with ScannerS.3 The remaining cross section ratios at leading order (and also

at higher order in QCD) are given by the effective couplings squared. For example for the

production in association with a fermion pair it is c(Hiff̄)2 (table 4), and for the gauge

boson mediated cross sections (vector boson fusion and associated production with a vector

boson) it is c(HiV V )2 (eq. (2.21)).

Compatibility of the discovered Higgs signal with h125 is checked by using the individual

signal strengths fit of ref. [97]. The needed decay widths and branching ratios are taken

from N2HDECAY. The fermion initiated cross section normalized to the SM,

µF =
σN2HDM(ggF ) + σN2HDM(bbF )

σSM(ggF )
, (4.3)

is obtained with the NNLO QCD cross sections taken from SusHi. In the normalization

we neglect the bbF cross section, which in the SM is very small compared to gluon fusion.

The production through vector boson fusion (VBF) or through associated production with

a vector boson (VH) normalized to the SM, µV , is given by

µV =
σN2HDM(V BF )

σSM(V BF )
=
σN2HDM(V H)

σSM(V H)
= c2(HiV V ) , (4.4)

where Hi is identified with h125. The QCD corrections to massive gauge boson-mediated

production cross sections cancel upon normalization to the SM. The properties of the h125
are checked against the six fit values of

µF
µV

, µγγF , µZZF , µWW
F , µττF , µbbF , (4.5)

given in [97], with µxxF defined as

µxxF = µF
BRN2HDM(Hi → xx)

BRSM(Hi → xx)
. (4.6)

For Hi ≡ h125 we require agreement with the fit results of [97] at the 2× 1σ level.

In the numerical analysis we will show results for type I and type II N2HDM models.

For the scan with the input parameters from eq. (2.18) we fix v to the SM value and choose

tβ in the range

0.25 ≤ tβ ≤ 35 . (4.7)

As the lower bound on tβ from the Rb measurement is stronger than the lower bound in

eq. (4.7), the latter has no influence on the physical parameter points. We transform the

mixing matrix generated by ScannerS to the parametrisation of eq. (2.13) such that the

mixing angles are allowed to vary in the ranges

− π

2
≤ α1,2,3 <

π

2
. (4.8)

3SusHi computes the cross sections for the 2HDM. As the only change of the N2HDM with respect

to the 2HDM besides an additional CP-even Higgs boson are the values of the effective couplings to the

fermions SusHi can also be used to compute the cross sections for the N2HDM Higgs bosons.
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We identify one of the neutral Higgs bosons Hi with h125 and allow the remaining neutral

Higgs bosons to have masses within

30 GeV ≤ mHi 6=h125 , mA ≤ 1 TeV. (4.9)

In the type II model, the charged Higgs mass is chosen in the range

480 GeV ≤ mH± < 1 TeV, (4.10)

while we choose

80 GeV ≤ mH± < 1 TeV (4.11)

in type I. The singlet VEV vS is generated in the interval

1 GeV ≤ vS ≤ 1.5 TeV. (4.12)

The value of m2
12 is chosen as

0 GeV2 ≤ m2
12 < 500000 GeV2. (4.13)

The condition m2
12 > 0 is found to be necessary for the minimum to be the global minimum

of the scalar potential.

5 Phenomenological analysis

We start with the investigation of the parameter distributions and from now on denote the

lighter of the two non-h125 CP-even Higgs bosons by H↓ and the heavier one by H↑.

The inspection of the mass distributions resulting from our scan for type II shows that

the masses can take all values between 30 GeV and 1 TeV. Furthermore, we note that it is

possible that both H↓ and H↑ are lighter than h125 and also that H↓ and A have masses

below 125 GeV. Due to the lower bound mH± ≥ 480 GeV and the constraints from the

EWPT, which force at least one of the non-SM-like neutral Higgs bosons to have mass

close to the charged Higgs mass, there is no scenario with all non-SM-like neutral Higgs

masses below 125 GeV.

In type I, overall we have lighter Higgs spectra because of the much weaker lower

bound on the charged Higgs mass of mH± & 80 GeV. Consequently, here we can also have

situations where h125 is the heaviest Higgs boson in the spectrum.

5.1 The wrong-sign Yukawa coupling regime

The wrong-sign Yukawa couplings regime, which was discussed in [98–100] for the CP-

conserving 2HDM, is the parameter region where the coupling of the h125 to the massive

gauge bosons is of opposite sign with respect to the coupling to fermions, c(h125ff̄). This

region is in contrast to the SM case where both couplings have the same sign, which

can have interesting phenomenological consequences such as the non-decoupling of heavy

particles [98, 101]. This region is not excluded by the experimental data for a type II

model with an opposite sign Yukawa coupling to down-type fermions. For the coupling to
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Figure 1. The wrong sign limit in the N2HDM as a function of the singlet admixture. The SM-like

Higgs boson is given by h125 ≡ H1.

up-type fermions this wrong-sign scenario is only realized for tan β < 1 which is excluded.

In the type I N2HDM the Yukawa couplings to up- and down-type fermions are the same

so that the wrong-sign coupling regime cannot be realized for any of the quark types, as

it requires tan β < 1. We investigate the extent to which this scenario can be realized in

the N2HDM type II. In the 2HDM the wrong-sign regime is obtained for parameter values

where sinα > 0, while the correct-sign regime is realized in the opposite case. In order to

match the 2HDM description, cf. eq. (2.25), we use the condition

sgn
(
c(h125V V )

)
· sin

(
α1 −

π

2

)
> 0 (5.1)

for the wrong-sign limit. Figure 1 displays tan β versus sgn
(
c(h125V V )

)
· sin

(
α1 − π

2

)
for

all parameter points from our N2HDM type II scan that survive the imposed constraints

and where the SM-like Higgs is given by H1 = h125.
4 The colour code quantifies the singlet

admixture Σh125 of the SM-like Higgs boson h125. We define the singlet admixture Σh125

through

Σh125 ≡ |RhSM,3|2, (5.2)

i.e. the absolute value squared of the mixing matrix element describing the mixing of the

singlet field with the SM-like Higgs state. In the right plot we have inverted the colour

ordering. In the left panel of figure 1 we observe a large number of points in the 2HDM

limit, i.e. with small singlet admixture. Such points are distributed in two branches with

a shape that agrees with the 2HDM. This allows to verify the identification of the left

branch with the correct-sign regime and of the right branch with the wrong-sign regime.

4Quantities which explicitly involve the mixing angles αi are inherently dependent on the mass ordering.

For this reason we only consider the most frequent case h125 = H1 in figures 1 and 2.
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Figure 2. Constraining the N2HDM parameter space with h125 = H1; grey: all scan points

respecting the experimental and theoretical constraints; remaining colours: additional constraints

of 0.95 ≤ µV /µF ≤ 1.05 (blue) and 0.95 ≤ µXX ≤ 1.05 with X = γ (orange), X = V = Z (green),

X = τ (yellow) and for all µXX and µV /µF (black).

The inverted colour ordering in figure 1 (right) allows us to investigate the repartition of the

singlet admixture over the two limiting cases. Overall we see that the singlet admixture can

be considerable. In the wrong-sign regime it reaches up to about 30% while in the correct-

sign regime it can even be as large as 55%. The points with the largest singlet admixture

can be found for small values of tan β. In the following analysis we will comment further

on the interesting phenomenology of the wrong-sign regime.

Constraining the wrong-sign regime. An important question to ask is to which ex-

tent will the collection of more precise data, obtained at the LHC Run II and in the

high-luminosity phase, be able to constrain the N2HDM parameter space and in partic-

ular the wrong-sign regime. In figure 2 we show again the allowed region in the tan β

versus sgn
(
c(h125V V )

)
· sin(α1 − π/2) projection of the parameter space, where the grey

points respect all theoretical and experimental constraints, in particular the reduced signal

strengths from the six-parameter fit of ref. [97] for the SM-like Higgs (here H1 ≡ h125).

We then successively constrain the µ-values further, by assuming that future more precise

measurements are able to achieve a precision of 5%, with a central value of 1. Hence

0.95 ≤ µXX ≤ 1.05 for X = γ (orange), V = Z (green), τ (yellow)

0.95 ≤ µV /µF ≤ 1.05 (blue) (5.3)

0.95 ≤ all ≤ 1.05 (black)

The plot shows that the correct-sign regime given by the left branch is most strongly

constrained by the ττ final state. While the wrong-sign limit is also very sensitive to this

observable its compatibility with the data is fundamentally different as there are no black
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Figure 3. The correct-sign (yellow) and the wrong-sign regime (pink) in the µV /µF -µγγ plane for

the N2HDM (left) and the 2HDM (right). The h125 can be any of the Hi (N2HDM) and h125 ≡ h

or H (2HDM). The white triangle denotes the SM point. The dashed lines are the current limits

on the µ values

nor blue points in the right branch. This behaviour is represented in different form in

figure 3, in which we have plotted µV /µF versus µγγ . The depicted yellow areas show the

points from the parameter scan compatible with all constraints in the correct-sign regime,

for the N2HDM (left plot) and, for comparison, also for the 2HDM (right).5 The pink

points represent the wrong-sign regime. Here and from now on h125 can be any of the

CP-even, neutral Higgs bosons (i.e. any Hi in the N2HDM and h or H in the 2HDM).

The white triangle denotes the SM result. The yellow and pink regions completely overlap

in the N2HDM in contrast to the 2HDM. Here we have less parameters and hence less

freedom to reach compatibility with the constraints than in the N2HDM so that the yellow

area is more restricted.6 The allowed area of the wrong-sign regime, on the other hand, is

the same in both models. The reason is that in the N2HDM the singlet admixture can at

most reduce the Higgs couplings to SM particles and hence the µ-values. As the wrong-

sign regime in the 2HDM is already touching the lower bounds in the presented µ-values

the N2HDM cannot add anything new to this region. From these figures we immediately

infer that in the wrong-sign regime the ratio µV /µF cannot reach 1, which explains the

missing blue and black points in figure 2. The measurement of µV /µF is hence a powerful

observable to constrain the wrong-sign regime with values of µV /µF & 0.9, excluding this

scenario. We note that the pink region in figure 3 is rather insensitive to an increase in the

precision of µV V to 5% around 1.

5The constraints applied in the 2HDM are the same as for the N2HDM, as well as the scan ranges (which

are identical up to the additional mixing angles and masses in the N2HDM).
6The upper two limiting lines of the correct-sign regime in the 2HDM are due to the unitarity of the

mixing matrix, whose elements enter the Higgs couplings.
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Figure 4. The wrong-sign regime in the µγγ-µττ plane for the N2HDM (left) and the 2HDM

(right), where h125 can be any of the Hi (N2HDM) and h125 ≡ h (2HDM). The green points

restrict the allowed area (pink) further by imposing a higher precision in µV V , 0.95 ≤ µV V ≤ 1.05.

The dashed lines are the current limits on the µ-values.

In figure 4 the pink points show the wrong-sign regime in the µγγ versus µττ plane.

The left panel is for the N2HDM, with h125 being any of the Hi, whereas the right panel

is for the 2HDM, with7 h125 ≡ h. We show on top, in green, a further restriction of the

sample assuming that future measurements can constrain the µV V , V = Z, value to 5%

around the SM value. Again we observe that the 2HDM area, with a smaller number of

parameters, is more constrained than the N2HDM, with the upper bounds in both models

being about the same. More importantly, we note that the increase in the precision of

µV V forces the reduced photonic rate to be below about 0.9.8 Thus, the the wrong-sign

regime can be excluded by increasing the precision in the µV V measurement and observing

µγγ & 0.9. The outliers in figure 4 are points where h125 has a substantial decay width into

an (off-shell) pair of light Higgs bosons. The resulting increase of the total width reduces

the branching ratio into ττ and thus µττ . In the majority of the scenarios the light Higgs

boson is the pseudoscalar A. If, however, h125 is not the lightest CP-even neutral Higgs

boson, decay widths of h125 → H1H1 (h125 → hh in the 2HDM) can also be substantial.

5.2 Phenomenology of the h125 singlet admixture

Type II N2HDM. The large number of parameters in the N2HDM allows for con-

siderably non-standard properties in the phenomenology of the SM-like Higgs boson. In

particular, in type II, which we discuss first, significant singlet admixtures of up to 55%

are still compatible with the LHC Higgs data. This can be inferred from figures 5 and 6.

Figure 5 displays the correlation between pairs of the effective couplings squared of h125

7The plot for h125 ≡ H looks similar.
8This was already observed for the 2HDM in [98, 99].
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Figure 5. Type II: singlet admixture Σh125
as a function of the effective couplings squared. The

white triangle denotes the SM value. The dashed line respresents equal scaling of the couplings.

to the SM particles. The left plot shows the coupling to top quarks versus the coupling to

bottom quarks, and the right plot shows the coupling to the massive gauge bosons versus

the coupling to bottom quarks. We remind that h125 can be any of the neutral CP-even

Higgs bosons. The influence of the singlet admixture is quantified by the colour code. In

figure 6 (left) we show the reduced signal rate in τ final states, µττ , versus the one into

massive vector bosons, µV V . In figure 6 (right) we plot the ratio µV /µF of the vector bo-

son induced production over the fermionic production, each normalized to the SM, versus

the photon final state signal strength µγγ . The white triangle indicates the SM values of

the signal strengths. The dashed lines are the experimental limits on the respective signal

strengths. They show that the N2HDM parameter space is constrained by the upper and

lower limits on µV V and µγγ and the lower limits on µττ and µV /µF , respectively. As

can be inferred from figure 6 (left) enhanced rates in the τ final state are still allowed by

the experimental data where the largest enhancement is reached for small admixture, i.e.

in the 2HDM-like regions. The area of the enhanced µττ can be divided in three regions

that shall be explained separately. The largest enhancement of up to 40% is obtained for

simultaneously enhanced µV V . The enhancement is due to the production mechanism and

corresponds to the enhanced couplings to top quarks in figure 5 (left) while the involved

decays remain SM-like. This is confirmed by figure 7 (left), which shows the value of µττ
in the plane of the effective couplings squared, c2(h125tt) and c2(hh125bb), for parameter

points in the correct-sign regime. The largest µττ , given by the yellow points, are found

for large effective couplings to top quarks. The 2HDM-like region in figure 6, where we

have enhanced µττ values but reduced µV V , is due to enhanced effective couplings to τ
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Figure 6. Type II: singlet admixture Σh125
as a function of the most constraining signal strengths.

The white triangle denotes the SM value.

leptons and b quarks, i.e. the spikes in figure 5 and figure 7 (left), respectively, where µττ
reaches values of up to about 1.4. On the other hand, the effective coupling to gauge

bosons cannot exceed one, so that overall the branching ratio into gauge boson is reduced

in favor of BR(h125 → ττ). Finally, the points with µττ > 1 and µV V ≈ 1 are located in

the wrong-sign regime and have reduced couplings to the gauge bosons. In figure 5 (right)

these are the points below the dashed line and isolated from the bulk of the points. Figure 7

(right) shows the same coupling values squared, but now only for points in the wrong-sign

limit, where the area with enhanced µττ can easily be identified. It is the resulting reduced

decay width into V V that increases the branching ratio into ττ and thus µττ . Note that

in figure 5 (left) the sharp lines departing from the SM point to smaller and larger values

of c2(h125bb) are again due to the unitarity of the mixing matrix.

While the enhanced µττ is a feature of the 2HDM-like regions, singlet admixtures as

large as 55% can be compatible with the current data. Interestingly the best measured

quantities µV V and µγγ are not the ones with the highest constraining power on the singlet

admixtures. A value of µV V = 1 still allows for Σh125 of up to 50%, and a value of

µγγ = 1 can be compatible with Σh125 values of up to about 40%. A measurement of

µττ ≈ 1 on the other hand constrains Σh125 to be below about 25%. And a measurement

of µV /µF ≥ 1 enforces Σh125 . 20%. This behaviour can be understood by inspecting the

involved couplings individually. Overall, high singlet admixtures induce reduced couplings.

However, figure 5 shows that the effective coupling to b-quarks is reduced more strongly

than that to top-quarks, where the latter dominates gluon fusion production. Furthermore,

among the physical points, a large singlet admixture leads to the effective gauge coupling
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Figure 7. Type II: the ττ signal strength µττ as a function of the effective couplings squared. The

white triangle denotes the SM value. The left plot shows only points in the correct-sign regime, the

right plot only points in the wrong-sign regime. The dashed line respresents equal scaling of the

couplings.

being larger than the effective bottom coupling. This means that the total width is reduced

due to the strongly reduced Γ(h125 → bb̄), which dominates the total width in the SM

case. In turn, this increases the BR(h125 → V V ) and BR(h125 → γγ) strongly enough to

balance the reduced gluon fusion production cross section and the reduced partial widths

in these channels, so that overall SM-values of µV V and µγγ can be compatible with large

singlet admixtures. The decay width into τ leptons, in contrast, gets rescaled by the

same coupling as the bb̄ channel in the type II model, so that the µττ is reduced for large

singlet admixtures. Since with increasing singlet admixture c(h125V V ) is more strongly

reduced than c(h125tt) the value µV /µF is reduced for non-zero singlet admixtures. As

the coupling to gauge bosons reaches at most 1, an enhanced µV /µF can only be due to

a smaller coupling of h125 to tt. A value of c(h125V V ) close to 1 with a simultaneously

reduced c(h125tt) is only possible for small singlet admixtures. The corresponding bulge

in figure 6 (right) contains points for which all other µ-values are close to their lower

experimental boundaries. They are characterised by large couplings of the SM-like Higgs

to a charged Higgs pair, which enters the loop-induced Higgs decay into photons and keeps

µγγ above its lower experimental boundary.

We conclude our discussion of the type II N2HDM by displaying in figure 8 the al-

lowed N2HDM parameter region in the tan β versus Σh125 plane (grey points) and its

subsequent restriction by more precise measurements, with the same colour code as de-

fined in eq. (5.3). It reflects our findings that the singlet admixture is most powerfully
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Figure 8. Type II: singlet admixture Σh125 as a function of tan β and the precision in the µ-values.

Grey points: all N2HDM scan parameter points; the remaining colors denote the µ values measured

within 5% of the SM reference.

constrained by a precise measurement of µττ while being much less sensitive to the remain-

ing µ-values. The restriction power depends on the value of tan β. For medium values

of tanβ a singlet admixture of up to 20% is still compatible with a 5% measurement of

µττ whereas for small values of tan β even up to 37% is allowed. Only the simultaneous

measurement of all µ-values within 5% around the SM value restricts Σ to values below

about 8%.

Type I N2HDM. We now turn to the discussion of the N2HDM type I. In this case

the doublet Φ2 couples to both up- and down-type quarks. Consequently, any change in

the coupling to the top quark is induced also in the bottom quark coupling and vice versa.

This restricts the available freedom in the choice of the parameters of the N2HDM so that,

overall, less pronounced deviations from the SM or from the pure 2HDM are expected. This

can be inferred from figures 9 and 10, which show, respectively, the singlet admixture of

h125 as a function of the reduced signal strengths and the effective couplings. In constrast

to the type II N2HDM the singlet admixture can reach at most 25%. Figure 9 shows the

most constraining signal strenghts, i.e. µττ versus µV V in the left plot and µV /µF versus

µγγ in the right plot. From this figure it can be inferred that the allowed areas in these

two planes are more reduced than in type II. While µγγ is delimited by the present LHC

data, only the lower bound of µV V is restricted due to the LHC fit value, while the upper

µV V bound and the boundaries of µττ and µV /µF of the allowed areas are already well

below the restrictions set by the LHC data. The highest singlet admixtures come with

reduced signal strengths while the ratio µV /µF ≈ 1. This is in accordance with figure 10,

which shows the effective couplings squared, c(h125V V )2 versus c2(h125bb) (= c2(h125tt))

together with the singlet admixture. Both effective couplings are reduced almost in parallel
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Figure 9. Type I: singlet admixture Σh125 as a function of the most constraining signal strengths.

The white triangle denotes the SM value.

with rising Σh125 so that µV /µF ∼ c(h125V V )2/c(h125ff)2 is close to one for large singlet

admixtures.

The SM-like dark-blue boundary in figure 9 (left) with enhanced µττ corresponds to

the right boundary of the area in figure 10 where c2(h125bb) is enhanced and c2(h125V V ) is

reduced. The simultaneous enhancement of the Higgs coupling to the bottom quarks and

τ leptons leaves the branching ratio into τ ’s unchanged, but the enhanced Higgs couplings

to fermions enhance the main production mechanism so that overall µττ is enhanced.

Applying the same reasoning it is clear that the dark-blue boundary with reduced µττ values

corresponds to the left dark-blue boundary in figure 10. This is also the area in figure 9

(right) corresponding to enhanced µV /µF values for µγγ . 1.3 in the 2HDM-like region

(blue area). The reduced coupling to the bottom quarks reduces the dominating decay

into bb̄. The stronger reduction of c(h125bb) as compared to c(h125V V ) overcompensates

the reduced Γ(h125 → V V ) so that overall BR(h125 → V V ) is enhanced and makes up

for the reduction of the production cross section due to the smaller couplings to fermions.

Simultaneously, this also ensures that µV /µF is enhanced. An analogous reasoning allows

to identify the dark blue lower µV /µF values for µγγ . 1.3 with the right boundary in

figure 10.

Figure 11 allows to analyse by which measurement the singlet admixture can be most

effectively constrained. The colour code has been defined in eq. (5.3). As can already be

inferred from figure 9 the singlet admixture is mostly restricted by the precise measurement

of µZZ , down to about 7.5% for a 5% accuracy in µZZ . The simultaneous measurement of

all µ-values with a precision of 5% hardly improves on this constraint. When comparing
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Figure 10. Type I: singlet admixture Σh125 as a function of the effective couplings squared. The

white triangle denotes the SM value. The dashed line respresents equal scaling of the couplings.
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Figure 11. Type I: singlet admixture Σh125
as a function of tan β and the precision in the µ-values.

Grey points: all N2HDM scan parameter points; the remaining colors denote the µ values measured

within 5% of the SM reference.

with the type II case, we can conclude that the structure of the Yukawa couplings decides

which final state in the Higgs data is the most effective one in constraining the N2HDM,

i.e. its singlet admixture.
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6 Conclusions

In this paper we have investigated the N2HDM, which is based on the CP-conserving

2HDM extended by a real scalar singlet field. It combines a parameter space which is

larger than the 2HDM with a greater freedom in the choice of the parameters (compared

to singlet extended supersymmetric models as e.g. the next-to-minimal supersymmetric

model). This allows for an interesting phenomenology that is still compatible with the

experimental data. Thus the Higgs couplings can carry a substantial singlet admixture.

However, in order to be able to determine the allowed parameter space and thereby perform

meaningful phenomenological analyses, the investigation of the constraints on the model

had to be put on solid ground. In this paper we have performed a thorough analysis

of the theoretical constraints on the N2HDM Higgs potential. First, we have collected

from the literature the formulae for the N2HDM that test tree-level perturbative unitarity

and stability of the vacuum. Moreover, for the first time, we have presented a detailed

analysis of all the stationary points of the potential to obtain its global minimum. The

model, together with the theoretical constraints, has been implemented in ScannerS. For

the test of the experimental constraints the necessary branching ratios were obtained with

the new program N2HDECAY. We have written this code based on HDECAY to provide the

N2HDM branching ratios and total widths including the state-of-the-art higher order QCD

corrections and off-shell decays. With these preparatory works completed we were then in

the position to subject the N2HDM to critical theoretical and experimental scrutiny in the

second part of the article.

Taking into account the theoretical and experimental constraints in the N2HDM, we

performed a parameter space scan and analysed the properties of the allowed regions. In the

type II N2HDM substantial singlet admixtures of up to 55% were found to be compatible

with the data. It turned out that the most precisely measured quantities, µV V and µγγ ,

are not the most effective ones in constraining the singlet admixture, but instead it is the

µττ observable. In the type I N2HDM, on the other hand, the parameter space is more

constrained due to the universal fermion coupling to up- and down-type quarks and hence

the allowed singlet admixture remains below about 25%. In the future, in this case, the

singlet admixture will be most strongly constrained by the precise measurement of µZZ .

Like in the 2HDM we find a wrong-sign regime in the N2HDM. While overall the

allowed parameter space is larger in the N2HDM compared to the 2HDM, the wrong-

sign regimes in both models are comparable. In this regime µV /µF is found to be well

below 1, so that a measurement of a value near 1 excludes this scenario. Moreover, a future

measurement of µV V with a precision of 5% around the SM value and the observation

of µγγ & 0.9 eliminates the wrong-sign regime. These findings are consistent with the

observations in the 2HDM.

With the analysis tools provided in this study, the next natural step would be to

compare the N2HDM with other extended Higgs sectors with a similar theoretical structure

and Higgs spectrum, to investigate which observables allow to distinguish (or to exclude)

the models.
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A N2HDM parameters and self-couplings

In the following we give the transformation formulae between the N2HDM basis of the

Lagrangian parameters and the physical basis defined in eq. (2.18). In A.2 we give the

trilinear self-couplings in terms of the parameters of the physical basis.

A.1 Basis change

With the definition of

µ̃2 =
m2

12

sβcβ
(A.1)

the quartic couplings λi of the N2HDM potential can be written in terms of the parameters

of the physical basis as

λ1 =
1

v2c2β

(
− µ̃2s2β +

3∑
i=1

m2
Hi
R2
i1

)
(A.2)

λ2 =
1

v2s2β

(
− µ̃2c2β +

3∑
i=1

m2
Hi
R2
i2

)
(A.3)

λ3 =
1

v2

(
− µ̃2 +

1

sβcβ

3∑
i=1

m2
Hi
Ri1Ri2 + 2m2

H±

)
(A.4)

λ4 =
1

v2
(µ̃2 +m2

A − 2m2
H±) (A.5)

λ5 =
1

v2
(µ̃2 −m2

A) (A.6)

λ6 =
1

v2S

3∑
i=1

m2
Hi
R2
i3 (A.7)

λ7 =
1

vvScβ

3∑
i=1

m2
Hi
Ri1Ri3 (A.8)

λ8 =
1

vvSsβ

3∑
i=1

m2
Hi
Ri2Ri3 . (A.9)

The matrix elements Rij in terms of the mixing angles α1,2,3 have been defined in eq. (2.13).
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A.2 The trilinear Higgs self-couplings

The trilinear Higgs self-couplings are derived from the terms of the Higgs potential cubic in

the Higgs fields. After rotation to the mass basis and using the relations eqs. (A.2) to (A.9)

the Feynman rules for the trilinear Higgs self-couplings between the physical Higgs fields

modulo a factor i can be cast into the form

gHiAA =
1

v

(
−µ̃2

[
Ri1
cβ

+
Ri2
sβ

]
+m2

Hi

[
Ri1s

2
β

cβ
+
Ri2c

2
β

sβ

]
+ 2m2

A

[
Ri1cβ +Ri2sβ

])
(A.10)

gHiH±H∓ =
1

v

(
−µ̃2

[
Ri1
cβ

+
Ri2
sβ

]
+m2

Hi

[
Ri1s

2
β

cβ
+
Ri2c

2
β

sβ

]
+ 2m2

H±

[
Ri1cβ +Ri2sβ

])
(A.11)

gHiHiHi =
3

v

(
−µ̃2

[
R2
i2cβ

(
Ri2cβ
sβ

−Ri1
)

+R2
i1sβ

(
Ri1sβ
cβ

−Ri2
)]

+
m2
Hi

vS

[
R3
i3v +R3

i2

vS
sβ

+R3
i1

vS
cβ

])
(A.12)

gHiHiHj =
1

v

(
− 1

2
µ̃2

(
Ri2
sβ
− Ri1

cβ

)(
6Ri2Rj2 + 6Ri3Rj3s

2
β +

∑
k

εijkRk3s2β

)

+
2m2

Hi
+m2

Hj

vS

[
R2
i3Rj3v +R2

i2Rj2
vS
sβ

+R2
i1Rj1

vS
cβ

])
(A.13)

gH1H2H3
=

1

v

(
µ̃2

[
(2R12R13 +R32R33)cβ + (R31R33 − 3R12R23R33 −R21R23)sβ

+ 3R12R22

(
R31

cβ
− R32

sβ

)
+ 3R13R23R31

s2β
cβ

]
+

∑3
i=1m

2
Hi

vS

[
R13R23R33v +R12R22R32

vS
sβ
−R11(R22R32 +R23R33)

vS
cβ

])
(A.14)

where εijk denotes the totally antisymmetric tensor with ε123 = 1. Note, that in eqs. (A.10)

to (A.14) there is no summation over repeated indices. The sums of different powers of

Rij arise from simplifications that exploit the orthogonality of the mixing matrix. The

employed formula reads

Rij = (−1)i+j det(/Rij) . (A.15)

The matrix /Rij is the submatrix formed by deleting the i-th row and the j-th column from

R. The indices i and j take any values in {1, 2, 3}.

B The Fortran code N2HDECAY

The code N2HDECAY is the N2HDM implementation in the program HDECAY, written in

Fortran77. It is based on HDECAY v6.51. The code is completely self-contained. All changes

related to the N2HDM have been implemented in the main file n2hdecay.f. Further

linked routines have been taken over from the original HDECAY code. The implemented

decay widths include the most important state-of-the-art higher order QCD corrections

and the important off-shell decays. They can be taken over from the SM and the minimal
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supersymmetric extension (MSSM), respectively, for which HDECAY was originally designed.

The electroweak corrections have been consistently turned off as they cannot be taken over

from the available corrections in the SM and/or MSSM.

The N2HDM input parameters are specified in the input file n2hdecay.in. It is based

on the extension of the input file hdecay.in. By setting the input value N2HDM= 1 in

n2hdecay.in the user chooses to calculate the N2HDM branching ratios and total widths.

The N2HDM-specific input parameters in the physical basis are then set in the blocks ‘2

Higgs Doublet Model’ and ‘N2HDM’. In the first block the user has to set PARAM=1 and can

choose the TYPE of the fermion sector symmetry. Furthermore, the parameters tan β and

m2
12 and the pseudoscalar and charged Higgs masses are set here. In the N2HDM block the

neutral Higgs masses, the mixing angles and the VEV of the singlet are set. We display

part of an example input file relevant for the N2HDM. The gray lines contain parameters

not used in the N2HDM.

N2HDM = 1

...

************************** 2 Higgs Doublet Model *************************

TYPE: 1 (I), 2 (II), 3 (lepton-specific), 4 (flipped)

PARAM: 1 (masses), 2 (lambda i)

PARAM = 1

TYPE = 2

********************

TGBET2HDM = 1.17639226D0

M 12^2 = 3.28390121D5

******************** PARAM=1:

ALPHA H = 10.D0

MHL = 10.D0

MHH = 10.D0

MHA = 9.02919728D2

MH+- = 8.59398112D2

******************** PARAM=2:

LAMBDA1 = 0D0

LAMBDA2 = 0D0

LAMBDA3 = 0D0

LAMBDA4 = 0D0

LAMBDA5 = 0D0

**************************** N2HDM ***********************************

*** needs TYPE, TGBET2HDM, M122̂, MHA and MH+- from the 2HDM block ***

MH1 = 1.25090000D2

MH2 = 8.17422761D2

MH3 = 9.76339405D2

alpha1 = 0.79503834

alpha2 = 0.13549279

alpha3 = 1.46729273

V SING = 1.49629673D3

**************************************************************************

...

– 29 –



J
H
E
P
0
3
(
2
0
1
7
)
0
9
4

The code is compiled with the makefile by typing make. This produces an executable

file called run. Typing run executes the program, which calculates the branching ratios and

total widths that are written out together with the mass of the decaying Higgs boson. The

output files are called br.X N2HDM y. Here X=H1, H2, H3, A, H+ denotes the decaying

Higgs particle. Files with the suffix y=a contain the branching ratios into fermions, with

y=b the ones into gauge bosons and the ones with y=c, d the branching ratios into lighter

Higgs pairs or a Higgs-gauge boson final state. In the following we present the example

of an output file as obtained from the above input file. The produced output in the four

output files br.H3 N2HDM y for the heaviest neutral Higgs boson is given by

MH3 BB TAU TAU MU MU SS CC TT

---------------------------------------------------------------------------

976.339 0.3458E-03 0.5450E-04 0.1927E-06 0.1259E-06 0.1267E-04 0.8026

MH3 GG GAM GAM Z GAM WW ZZ

---------------------------------------------------------------------------

976.339 0.1326E-02 0.3417E-05 0.6717E-06 0.4762E-01 0.2350E-01

MH3 H1H1 H1H2 H2H2 AA ZA

---------------------------------------------------------------------------

976.339 0.6375E-01 0.2923E-03 0.000 0.9115E-13 0.7821E-04

MH3 W+- H-+ H+ H- WIDTH

---------------------------------------------------------------------------

976.339 0.6038E-01 0.000 43.40

All files necessary for the program can be downloaded at the url:

http://www.itp.kit.edu/∼maggie/N2HDECAY/.

The webpage contains a short explanation of the program and information on updates and

modifications of the program. Furthermore, sample output files can be found for a given

input.

C Global minimum conditions

We start by recalling that, up to gauge symmetries, the most general constant field config-

uration, where all fields are real, is

〈Φ1〉 =

(
0

v1

)
, 〈Φ2〉 =

(
vcb

v2 + ivcp

)
, 〈ΦS〉 = vS . (C.1)

The subscripts cp and cb refer to the case where CP or charge are spontaneously broken

in scenarios where also both v1 and v2 are non-zero. In the case where only vcp and/or vcb
are non-zero there is in fact no CP or charge breaking. One way to see this is by noting

that such a configuration is continuously connected by a gauge transformation to the case

where only v2 6= 0 (where it is more clear that there is no CP or charge breaking). Such a

gauge transformation amounts to a redefinition of the charge operator by a rotation.
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In order to find all possible minima we consider the stationarity conditions for

the VEVs,〈
∂V

∂v1

〉
= 0 ⇔ v2m

2
12− v1m2

11 =
1

2
v1(v

2
1λ1+ v22λ345 + v2cbλ3 + v2cpλ34−5 + v2Sλ7) (C.2)〈

∂V

∂v2

〉
= 0 ⇔ v1m

2
12− v2m2

22 =
1

2
v2(v

2
1λ345 + v22λ2 + v2cbλ2 + v2cpλ2 + v2Sλ8) (C.3)〈

∂V

∂vcb

〉
= 0 ⇔ −vcbm2

22 =
1

2
vcb(v21λ3 + v22λ2 + v2cbλ2 + v2cpλ2 + v2Sλ8) (C.4)〈

∂V

∂vcp

〉
= 0 ⇔ −vcpm2

22 =
1

2
vcp(v21λ34−5 + v22λ2 + v2cbλ2 + v2cpλ2 + v2Sλ8) (C.5)〈

∂V

∂vS

〉
= 0 ⇔ −vSm2

S =
1

2
vS(v21λ7 + v22λ8 + v2cbλ8 + v2cpλ8 + v2Sλ6) , (C.6)

where λ345 has been defined in eq. (2.8) and

λ34−5 ≡ λ3 + λ4 − λ5 . (C.7)

The derivatives with respect to the degrees of freedom, which have been removed through

a gauge transformation in eq. (C.1), contribute with three further conditions

0 = v1v2vcb(λ4 + λ5 − 2m2
12) (C.8)

0 = v1vcbvcp(λ4 − λ5) (C.9)

0 = v1v2vcp(λ5 −m2
12) . (C.10)

From eqs. (C.4) and (C.5) we infer that except for the special case

λ4 = λ5 (C.11)

the VEVs vcb and vcp cannot be simultaneously non-zero. Eq. (C.9) is therefore always

trivially satisfied. From eqs. (C.2) and (C.3) we conclude that

(v1 = 0 ⇔ v2 = 0) ∨ m2
12 = 0 . (C.12)

We further observe from eqs. (C.8) and (C.10) that

v1 = v2 = 0 ⇒ (vcb = vcp = 0 ∨ m2
12 = 0) . (C.13)

The configurations forbidden by non-vanishing m2
12 are inert stationary points where the

whole doublet VEV can be brought into one Higgs doublet through a basis transformation.

Models with inert Higgs doublets show a very different phenomenology and we only consider

points with

|m2
12| > 0 . (C.14)

In this case v1 and v2 are either both non-zero or vS is the only non-vanishing VEV. All

corresponding possible combinations of VEVs, i.e. all possible stationary points, are listed

in table 7. The global minimum is given by the stationary point that leads to the smallest
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Case I IIa IIb sI sIIa sIIb s

v1 1 1 1 1 1 1 0

v2 1 1 1 1 1 1 0

vcp 0 1 0 0 1 0 0

vcb 0 0 1 0 0 1 0

vS 0 0 0 1 1 1 1

Table 7. All possible cases of VEVs being zero (0) or non-zero (1). Cases that are allowed only

when specific parameter configurations hold, are not shown.

value for the scalar potential V . Since we have defined the field configurations eq. (C.1)

such that the VEVs v1, v2, vcp and vcb are real, only solutions of the stationarity conditions

with all VEVs squared positive are allowed. In the following we will provide the values of

the scalar potential at all the stationary points listed in table 7. These stationary points

need only be considered if the corresponding positivity conditions on the VEVs squared

are satisfied.

C.1 2HDM-like stationary points

The three cases of the 2HDM-like stationary points are obtained setting vS = 0. These

are the stationary points of a 2HDM potential with the same parameters m2
11, m

2
22, m

2
12

and λ1−5.

Case I. This case with a CP and charge conserving minimum is the most complicated

one. We start by rewriting the minimum conditions in terms of

v1 = v cos δ and v2 = v sin δ . (C.15)

Without loss of generality all VEVs except v2 can be chosen positive due to the Z2 sym-

metry. The convention v1 > 0 implies

− π

2
< δ <

π

2
. (C.16)

The resulting system of equations is used to eliminate v leading to a single quartic equation

for sin2 δ,

0 = (m2
12)

2λ21

+ sin2 δ
[
− (m2

11λ345 −m2
22λ1)

2 − 4(m2
12)

2λ21
]

+ (sin2 δ)2
[
3(m2

11λ345 −m2
22λ1)

2 + 2(m2
11λ345 −m2

22λ1)(m
2
22λ345 −m2

11λ2)

+ 2(m2
12)

2(3λ21 − λ1λ2)
]

+ (sin2 δ)3
[
− 3(m2

11λ345 −m2
22λ1)

2 + 4(m2
12)

2λ1(λ2 − λ1)
− (m2

22λ345 −m2
11λ2)

(
(4m2

11 +m2
22)λ345 − 4m2

22λ1 −m2
11λ2

)]
+ (sin2 δ)4

[(
m2

22(λ1 − λ345) +m2
11(λ2 − λ345)

)2
+ (m2

12)
2(λ1 − λ2)2

]
. (C.17)
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Among the four solutions of eq. (C.17) for sin2 δ, which can be obtained numerically, only

those are allowed that are real and in the open interval (0, 1). Reality for δ is required so

that v1 and v2 are real. Each of these solutions leads to two possible values for v2,

v2 =
2
(
m2

22 ∓m2
12

√
1

sin2 δ
− 1
)

λ345(sin
2 δ − 1)− λ2 sin2 δ

. (C.18)

The ∓ signs correspond to the two possible signs of sin δ in the interval eq. (C.16). The

values for v1 and v2 are then obtained from eq. (C.15) where both possible signs of v2 need

to be considered. Altogether this yields up to 16 possible solutions for v1 and v2 given by

the four solutions for sin2 δ times two for the sign of sin δ times two for the sign of v2. It

should be noted only two of these solutions are independent as shown in [102, 103].

Case II. The system of minimum conditions obtained here can be solved analytically

both for case IIa and IIb. The formula for the value of the potential at these points can

be cast into the form

V (II) =
(m2

11)
2λ2 − 2m2

11m
2
22x+ (m2

22)
2λ1

2Λxx12
− (m2

12)
2

λ345 − x
, (C.19)

where

x =

{
λ34−5 in case IIa

λ3 in case IIb
(C.20)

and

Λijkl ≡ λiλj − λkλl . (C.21)

Simultaneously the positivity conditions for the squared VEVs have to be fulfilled. They

read

0 < v2cb or v2cp =
2(m2

12)
2Λxx12

(λ345 − x)2(m2
22x−m2

11λ2)
+

2(m2
22λ1 −m2

11x)

Λxx12
(C.22)

0 < v21 =
2(m2

11λ2 −m2
22x)

Λxx12
. (C.23)

Positivity of v22 is guaranteed if v21 is positive.

Special case λ4 = λ5, vS = 0. In this special case vcb and vcp can be simultaneously

non-zero. This is only possible if v1 and v2 are also non-zero. The resulting stationary

value is

V (λ4 = λ5, vS = 0) = −(m2
12)

2

2λ4
+
m2

11λ2 +m2
22λ1 − 2m2

11m
2
22λ3

Λ33
12

. (C.24)

This value is obtained on a ring of constant v2cp + v2cb. The positivity conditions there-

fore read

0 < v2cb + v2cp = − (m2
12)

2Λ33
12

2(m2
11λ2 −m2

22λ3)λ
2
4

− 2(m2
11λ3 −m2

22λ1)

Λ33
12

(C.25)

0 < v21 =
2(m2

11λ2 −m2
22λ3)

Λ33
12

. (C.26)
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C.2 Stationary points with a singlet VEV

The stationary points for a non-vanishing singlet VEV vS 6= 0, as possible in the N2HDM,

are obtained analogously to the previous cases.

Case sI. Again the case with non-vanishing v1 and v2 but zero vcp and vcb is the most

complicated one and leads to a quartic equation for sin2 δ, with δ defined in eq. (C.15).

It reads

0 = (m2
12)

2(Λ77
16)

2

+ sin2 δ
[
−
(
(m2

11λ6 −m2
Sλ7)λ345 +m2

22Λ
77
16 + (m2

Sλ1 −m2
11λ7)λ8

)2 − 4(m2
12)

2(Λ77
16)

2
]

+ (sin2 δ)2
[(

(m2
11λ6 −m2

Sλ7)λ345 −m2
11λ7λ8 +m2

22Λ
77
16 +m2

Sλ1λ8
)

×
((

3m2
11λ6 + 2m2

22λ6 −m2
S(3λ7 + 2λ8)

)
λ345 +m2

11(2Λ88
26 − 3λ7λ8)

+m2
22(3Λ77

16 − 2λ7λ8) +m2
S(2λ2λ7 + 3λ1λ8)

)
+ 2(m2

12)
2Λ77

16(3Λ77
16 − Λ88

26)
]

+ (sin2 δ)3
[((

m2
S(3λ7 + λ8)− (3m2

11 +m2
22)λ6

)
λ345 +m2

11(3λ7λ8 − Λ88
26)

+m2
22(λ7λ8 − 3Λ77

16)−m2
S(λ2λ7 + 3λ1λ8)

)
×
((

(m2
11 +m2

22)λ6 −m2
S(λ7 + λ8)

)
λ345 +m2

11(Λ
88
26 − λ7λ8)

+m2
22(Λ

77
16 − λ7λ8) +m2

S(λ2λ7 + λ1λ8)
)

+ 4(m2
12)

2Λ77
16(Λ

88
26 − Λ77

16)
]

+ (sin2 δ)4
[((

(m2
11 +m2

22)λ6 −m2
S(λ7 + λ8)

)
λ345 +m2

11(Λ
88
26 − λ7λ8)

+m2
22(Λ

77
16 − λ7λ8) +m2

S(λ2λ7 + λ1λ8)
)2

+ (m2
12)

2(Λ88
26 − Λ77

16)
2
]
.

(C.27)

The real solutions for sin2 δ in the open interval (0, 1) imply two possible values for v2,

v2 =
2λ6

(
m2

22 ∓m2
12

√
1

sin2 δ
− 1
)
− 2m2

Sλ8

(sin2 δ − 1)(λ6λ345 − λ7λ8) + Λ88
26 sin2 δ

, (C.28)

depending on the sign of sin δ in the interval. For v2S we have

v2S = −λ7v
2
1 + λ8v

2
2 + 2m2

S

λ6
. (C.29)

Valid solutions are given for positive values of v2 and v2S . The sign of vS is irrelevant so

that also here we have up to 16 solutions and the corresponding values of the potential

that can be obtained numerically.

Case sII. Defining again for the two subcases

x =

{
λ34−5 in case sIIa

λ3 in case sIIb
, (C.30)
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we have the stationary values and positivity conditions for the case sII stationary point

given by

V (sII) = − (m2
12)

2

λ345 − x
+

(m2
11)

2Λ88
26 + (m2

22)
2Λ77

16 + (m2
S)2Λxx12

2(λ7Λx827 + xΛ78
x6 − λ1Λ88

26)

− m2
11m

2
22Λ

78
x6 +m2

11m
2
SΛx827 +m2

22m
2
SΛx718

λ7Λx827 + xΛ78
x6 − λ1Λ88

26

(C.31)

and

0 < v2cb or v2cp =
(m2

12)
2(λ7Λ

x8
27 + xΛ78

x6 − λ1Λ88
26)

2(λ345 − x)2(m2
SΛx827 +m2

22Λ
78
x6 −m2

11Λ
88
26)

+
2m2

22Λ
77
16 − 2m2

SΛx718 − 2m2
11Λ

78
x6

λ7Λx827 + xΛ78
x6 − λ1Λ88

26

(C.32)

0 < v2S =
2m2

SΛxx12 − 2m2
11Λ

x8
27 − 2m2

22Λ
x7
18

λ7Λx827 + xΛ78
x6 − λ1Λ88

26

(C.33)

0 < v21 =
−2m2

SΛx827 − 2m2
22Λ

78
x6 + 2m2

11Λ
88
26

λ7Λx827 + xΛ78
x6 − λ1Λ88

26

. (C.34)

Positivity of v22 is ensured if v21 is positive.

Case s. For the case denoted by s the value of the potential at the stationary point

simplifies to

V (s) = −(m2
S)2

2λ6
, (C.35)

which is a valid solution (v2S > 0) if

m2
S < 0 . (C.36)

Special case λ4 = λ5, vS 6= 0. If λ4 = λ5 all VEVs can be simultaneously non-zero.

In this case the scalar potential takes the stationary value

V (λ4 = λ5, vS 6= 0) = −(m2
12)

2

2λ4
+

(m2
11)

2Λ88
26 + (m2

22)
2Λ77

16 + (m2
S)2Λ33

12

2(λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26)

− m2
11m

2
22Λ

78
36 +m2

11m
2
SΛ38

27 +m2
22m

2
SΛ37

18

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

. (C.37)

This stationary value is again obtained on a ring of constant v2cb + v2cp. The corresponding

positivity conditions read

0 < v2cb + v2cp =
(m2

12)
2(λ7Λ

38
27 + λ3Λ

78
36 − λ1Λ88

26)

2λ24(m
2
SΛ38

27 +m2
22Λ

78
36 −m2

11Λ
88
26)

+
2(m2

22Λ
77
16 −m2

SΛ37
18 −m2

11Λ
78
36)

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

(C.38)

0 < v2S =
2(m2

SΛ33
12 −m2

11Λ
38
27 −m2

22Λ
37
18)

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

(C.39)

0 < v21 = −2(m2
SΛ38

27 +m2
22Λ

78
36 −m2

11Λ
88
26)

λ7Λ38
27 + λ3Λ78

36 − λ1Λ88
26

. (C.40)
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In order to check if our minimum is the global one we compare the value of the scalar

potential at our minimum with the values of the potential at all the stationary points

listed above. In practice this means that we need to compare with the up to five different

analytically known values of cases (s)II and case s and with the numerical solutions of

case (s)I.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[41] M.M. Mühlleitner, Higgs particles in the standard model and supersymmetric theories,

Ph.D. Thesis, Hamburg University (2000) [hep-ph/0008127] [INSPIRE].

[42] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the

electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

[43] R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local

supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

[44] M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a

harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

[45] H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by

supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].

[46] J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by

supergravity, Nucl. Phys. B 222 (1983) 11 INSPIRE].

[47] J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2)×U(1) breaking in

supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].

[48] J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a

nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].

[49] M. Drees, Supersymmetric models with extended Higgs sector,

Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].

[50] U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in

supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331

[hep-ph/9307322] [INSPIRE].

[51] U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the

supersymmetric model with a gauge singlet, Z. Phys. C 67 (1995) 665 [hep-ph/9502206]

[INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP11(2014)105
https://arxiv.org/abs/1408.2106
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2106
http://dx.doi.org/10.1103/PhysRevD.92.055031
https://arxiv.org/abs/1505.01793
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01793
http://dx.doi.org/10.1088/1475-7516/2016/10/040
https://arxiv.org/abs/1510.07053
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07053
http://dx.doi.org/10.1140/epjc/s10052-016-4435-8
https://arxiv.org/abs/1606.01674
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01674
http://dx.doi.org/10.1103/PhysRevD.89.075009
https://arxiv.org/abs/1312.3949
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3949
http://dx.doi.org/10.1007/s100529900082
https://arxiv.org/abs/hep-ph/9903229
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9903229
http://dx.doi.org/10.1007/s100529900083
https://arxiv.org/abs/hep-ph/9904287
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9904287
https://arxiv.org/abs/hep-ph/0008127
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0008127
http://dx.doi.org/10.1016/0550-3213(75)90636-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B90,104%22
http://dx.doi.org/10.1016/0370-2693(82)90685-2
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B119,343%22
http://dx.doi.org/10.1016/0370-2693(81)90590-6
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B104,199%22
http://dx.doi.org/10.1016/0370-2693(83)90460-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B120,346%22
http://dx.doi.org/10.1016/0550-3213(83)90606-5
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B222,11%22
http://dx.doi.org/10.1016/0550-3213(84)90162-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B237,307%22
http://dx.doi.org/10.1103/PhysRevD.39.844
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D39,844%22
http://dx.doi.org/10.1142/S0217751X89001448
http://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A4,3635%22
http://dx.doi.org/10.1016/0370-2693(93)91621-S
https://arxiv.org/abs/hep-ph/9307322
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9307322
http://dx.doi.org/10.1007/BF01553993
https://arxiv.org/abs/hep-ph/9502206
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9502206


J
H
E
P
0
3
(
2
0
1
7
)
0
9
4

[52] U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of

supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251]

[INSPIRE].

[53] T. Elliott, S.F. King and P.L. White, Unification constraints in the next-to-minimal

supersymmetric standard model, Phys. Lett. B 351 (1995) 213 [hep-ph/9406303] [INSPIRE].

[54] S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal

supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].

[55] F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal

supersymmetric standard model, Int. J. Mod. Phys. A 12 (1997) 479 [hep-ph/9512366]

[INSPIRE].

[56] M. Maniatis, The next-to-minimal supersymmetric extension of the standard model

reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].

[57] U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard

model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

[58] H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model,

Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].

[59] J.J. van der Bij, The minimal non-minimal standard model, Phys. Lett. B 636 (2006) 56

[hep-ph/0603082] [INSPIRE].

[60] A. Datta and A. Raychaudhuri, Next-to-minimal Higgs: mass bounds and search prospects,

Phys. Rev. D 57 (1998) 2940 [hep-ph/9708444] [INSPIRE].

[61] R.M. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its

impact on Higgs boson physics at the Large Hadron Collider,

Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].

[62] O. Bahat-Treidel, Y. Grossman and Y. Rozen, Hiding the Higgs at the LHC,

JHEP 05 (2007) 022 [hep-ph/0611162] [INSPIRE].

[63] T. Robens and T. Stefaniak, Status of the Higgs singlet extension of the standard model

after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].

[64] V. Barger, P. Langacker and G. Shaughnessy, Collider signatures of singlet extended Higgs

sectors, Phys. Rev. D 75 (2007) 055013 [hep-ph/0611239] [INSPIRE].

[65] V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC

phenomenology of an extended standard model with a real scalar singlet,

Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].

[66] V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex

singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393]

[INSPIRE].

[67] D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard

model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

[68] R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in

scalars, Phys. Lett. B 710 (2012) 154 [arXiv:1110.0824] [INSPIRE].

[69] A. Ahriche, A. Arhrib and S. Nasri, Higgs phenomenology in the two-singlet model,

JHEP 02 (2014) 042 [arXiv:1309.5615] [INSPIRE].

– 39 –

http://dx.doi.org/10.1016/S0550-3213(97)80026-0
https://arxiv.org/abs/hep-ph/9611251
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9611251
http://dx.doi.org/10.1016/0370-2693(95)00381-T
https://arxiv.org/abs/hep-ph/9406303
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9406303
http://dx.doi.org/10.1103/PhysRevD.52.4183
https://arxiv.org/abs/hep-ph/9505326
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9505326
http://dx.doi.org/10.1142/S0217751X97000529
https://arxiv.org/abs/hep-ph/9512366
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9512366
http://dx.doi.org/10.1142/S0217751X10049827
https://arxiv.org/abs/0906.0777
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0777
http://dx.doi.org/10.1016/j.physrep.2010.07.001
https://arxiv.org/abs/0910.1785
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1785
http://dx.doi.org/10.1016/j.physletb.2005.01.026
https://arxiv.org/abs/hep-ph/0405097
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B609,117%22
http://dx.doi.org/10.1016/j.physletb.2006.03.018
https://arxiv.org/abs/hep-ph/0603082
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B636,56%22
http://dx.doi.org/10.1103/PhysRevD.57.2940
https://arxiv.org/abs/hep-ph/9708444
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D57,2940%22
http://dx.doi.org/10.1103/PhysRevD.72.093007
https://arxiv.org/abs/hep-ph/0509209
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D72,093007%22
http://dx.doi.org/10.1088/1126-6708/2007/05/022
https://arxiv.org/abs/hep-ph/0611162
http://inspirehep.net/search?p=find+J+%22JHEP,0705,022%22
http://dx.doi.org/10.1140/epjc/s10052-015-3323-y
https://arxiv.org/abs/1501.02234
http://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C75,104%22
http://dx.doi.org/10.1103/PhysRevD.75.055013
https://arxiv.org/abs/hep-ph/0611239
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D75,055013%22
http://dx.doi.org/10.1103/PhysRevD.77.035005
https://arxiv.org/abs/0706.4311
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D77,035005%22
http://dx.doi.org/10.1103/PhysRevD.79.015018
https://arxiv.org/abs/0811.0393
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D79,015018%22
http://dx.doi.org/10.1103/PhysRevD.75.037701
https://arxiv.org/abs/hep-ph/0611014
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D75,037701%22
http://dx.doi.org/10.1016/j.physletb.2012.02.056
https://arxiv.org/abs/1110.0824
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B710,154%22
http://dx.doi.org/10.1007/JHEP02(2014)042
https://arxiv.org/abs/1309.5615
http://inspirehep.net/search?p=find+J+%22JHEP,1402,042%22


J
H
E
P
0
3
(
2
0
1
7
)
0
9
4

[70] R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: constraining the phase diagram of a

complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599]

[INSPIRE].

[71] C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the

Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].

[72] S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed

electroweak phase transitions and precision Higgs boson studies,

Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].

[73] R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex

singlet extended standard model, Phys. Rev. D 92 (2015) 025024 [arXiv:1411.4048]

[INSPIRE].
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