KIT | KIT-Bibliothek | Impressum

An innovative approach for DEMO core fuelling by inboard injection of high-speed pellets [in press]

Frattolillo, A.; Bombarda, F.; Day, Christian; Lang, P.T.; Migliori, S.; Pégourié, B.

Core fuelling of DEMO tokamak fusion reactor is under investigation within the EUROfusion Work Package “Tritium, Fuelling and Vacuum”. An extensive analysis of fuelling requirements and technologies, suggests that pellet injection still represents, to date, the most realistic option. Modelling of both pellet penetration and fuel deposition profiles for different injection locations, assuming a specific plasma reference scenario and the ITER reference pellet mass (6 × 1021 atoms), indicates that: 1) Low Field Side (LFS) injection is inadequate; 2) Vertical injection may be effective only provided that pellets are injected at ∼ 10 km/s from a radial position ≤∼8 m; 3) effective core fuelling can be achieved launching pellets from the High Field Side (HFS) at ∼1 km/s. HFS injection was therefore selected as the reference scheme, though scenarios featuring less steep density and temperature gradients at the plasma edge could induce to reconsider vertical injection at speeds in the range of 4–5 km/s. To deliver intact pellets at 1 km/s from the HFS, the use of guide tubes with a bend radius ≥6 m is envisaged. The results of above simulat ... mehr

Zugehörige Institution(en) am KIT Institut für Technische Physik (ITEP)
Publikationstyp Zeitschriftenaufsatz
Jahr 2017
Sprache Englisch
Identifikator DOI: 10.1016/j.fusengdes.2017.03.067
ISSN: 0920-3796, 1873-7196
KITopen ID: 1000069103
HGF-Programm 31.03.01; LK 01
Erschienen in Fusion engineering and design
Schlagworte DEMO; Tokamak; Pellet fuelling
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page