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Abstract. Using the recent first lattice results of the RBC-UKQCD collaboration forK → ππ
decays, we perform a phenomenological analysis of ϵ′K/ϵK and find a discrepancy between SM
prediction and experiments by ∼ 3σ. We discuss an explanation by new physics. The well-
understood value of ϵK , which quantifies indirect CP violation, however, typically prevents large
new physics contributions to ϵ′K/ϵK . In this talk, we show a solution of the ϵ′K/ϵK discrepancy
in the Minimal Supersymmetric Standard Model with squark masses above 3 TeV without
fine-tuning of CP phases. In this solution, the Trojan penguin diagram gives large isospin-
breaking contributions which enhance ϵ′K , while the contribution to ϵK is suppressed thanks to
the Majorana nature of gluinos.
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1. Introduction to ϵ′K/ϵK discrepancy
In K → ππ decays, one distinguishes between two types of charge-parity (CP ) violation: direct
and indirect CP violations which are parametrized by ϵ′K and ϵK , respectively. Both types
of CP violation have been quantified by many kaon experiments precisely. While ϵK is a per
mille effect in the Standard Model (SM), ϵ′K is smaller by another three orders of magnitude:
ϵ′K ∼ O(10−6). This strong suppression comes from the suppression of the isospin-3/2 amplitude
w.r.t. the isospin-1/2 amplitude (∆I = 1/2 rule) and an accidental cancellation of leading
contributions in the SM. In Fig. 1, the contributions of individual operators to ϵ′K/ϵK are shown.
Q3–Q6 are called QCD penguin operators, while Q7–Q10 are called EW penguin operators. The
leading contributions come from Q6 and Q8, having opposite sign, and thus a cancellation
emerges. Remarkably, this figure also shows that even if one includes sub-leading contributions,
the cancellation still exists with high precision.

The compilation of representative SM predictions and the experimental values for Re ϵ′K/ϵK
is given in Fig. 2. The SM predictions (colored bars) are taken from: Bertolini et al. (BEFL
’97) [1], Pallante et al. (PPS ’01) [2], Hambye et al. (HPR ’03) [3], Buras and Gérard (BG
’15) [4] with lattice result for I = 2 (BG ’15+Lat.), RBC-UKQCD lattice result [5], Buras et
al. (BGJJ ’15) [6], and Kitahara et al. (KNT ’16) [7]. The experimental values (black bars) are

∗ Speaker.
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Figure 1. The composition of ϵ′K/ϵK with respect to the operator basis. The right and left side
of the dashed lines represent positive and negative contributions to ϵ′K/ϵK , respectively. This
figure is based on the result of Ref. [7].

taken from: E371 [8], NA31 [9], NA48 [10] and KTeV [11] collaborations, and the black thick
one is the world average of the experimental values [12],

Re

(
ϵ′K
ϵK

)
= (16.6± 2.3)× 10−4 (PDG average). (1)

In order to predict ϵ′K in the SM, one has to calculate the hadronic matrix elements of
four-quark operators with nonperturbative methods. The magenta bars in Fig. 2 have utilized
analytic approaches to calculating them: chiral quark model (BEFL ’97), chiral perturbation
theory (PPS ’01) with minimal hadronic approximation (HPR ’03), and the dual QCD approach
(BG ’15). Note that the dual QCD approach predicts an upper bound on ϵ′K/ϵK . On the other
hand, a determination of all hadronic matrix elements from lattice QCD has been obtained only
recently by the RBC-UKQCD collaboration [5], and the blue bars are based on the lattice result:

ϵ′K
ϵK

=

{
(1.9± 4.5)× 10−4 (BGJJ ’15),

(1.06± 5.07)× 10−4 (KNT ’16).
(2)

These results are obtained by next-to-leading order (NLO) calculations exploiting CP -conserving
data to reduce hadronic uncertainties and include isospin-violating contributions [13] which
are not included in the lattice result. Furthermore, the latter result includes an additional
O(α2

EM/α2
s) correction, which appears only in this order, and also utilizes a new analytic solution

of the renormalization group (RG) equation which avoids the problem of singularities in the
NLO terms. The two numbers in Eq. (2) disagree with the experimental value in Eq. (1) by
2.9σ [6] and 2.8σ [7], respectively. The uncertainties are dominated by the lattice statistical and
systematic uncertainties for the I = 0 amplitude. Therefore, in the near future, the increasing
precision of lattice calculations will further sharpen the SM predictions in Eq. (2) and answer
the question about new physics (NP) in ϵ′K/ϵK .

The main difference between each result of analytic approaches and the lattice result is in

the hadronic parameter B
(1/2)
6 , which controls the largest positive contribution to ϵ′K/ϵK , the

y6Q6 component in the Fig. 1. In chiral perturbation theory, typically large values are obtained:

B
(1/2)
6 ∼ 1.6 (BEFL ’97), ∼ 1.6 (PPS ’01), and ∼ 3 (HPR ’03, [4]). On the other hand, the dual

QCD approach predicts a smaller number, B
(1/2)
6 ≤ B

(3/2)
8 ∼ 0.8 (BG ’15). The lattice result
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Figure 2. Compilation of representative SM predictions and the experimental values for
Re ϵ′K/ϵK . All error bars represent 1σ range. The SM predictions are taken from Bertolini
et al. (BEFL ’97) [1], Pallante et al. (PPS ’01) [2], Hambye et al. (HPR ’03) [3], Buras and
Gérard (BG ’15) [4], RBC-UKQCD lattice result [5], Buras et al. (BGJJ ’15) [6], and Kitahara
et al. (KNT ’16) [7], where magenta bars are based on analytic approaches to hadronic matrix
elements, while blue bars are based on lattice results. The black thick one is the world average
of the experimental values [12].

is consistent with the latter result: B
(1/2)
6 = 0.56± 0.20 [5, 7]. Note that the lattice calculation

includes final-state interaction of the two pions in accordance with Ref. [14].
We also should comment on the ∆I = 1/2 rule, which denotes the largeness of the ratio of

the CP -conserving amplitudes, (ReA0/ReA2)exp. = 22.45± 0.05. Although none of the analytic
approaches can explain such a large value, the first lattice calculation has found a consistent
value within 1σ, (ReA0/ReA2)Lat. = 31.0± 11.1 [5, 15].

2. ϵK in the MSSM
An explanation of the puzzle between Eq. (1) and Eq. (2) by physics beyond the SM requires a
NP contribution which is seemingly even larger than the SM contribution. However, it is known
that once constraints from the corresponding |∆S| = 2 transition are taken into account, one
expects that NP effects in a |∆S| = 1 four-quark process are highly suppressed. To explain
the NP hierarchy in |∆S| = 1 vs |∆S| = 2 transitions, we specify to ϵ′K and ϵK : The SM
contributions are governed by the combination τ = −VtdV

∗
ts/(VudV

∗
us) ∼ (1.5− i0.6)× 10−3 with

ϵ′ SMK ∝ Im τ/M2
W and ϵSMK ∝ Im τ2/M2

W . If the NP contribution enters through the ∆S = 1
parameter δ and is mediated by heavy particles of mass M , one obtains ϵ′NP

K ∝ Im δ/M2,
ϵNP
K ∝ Im δ2/M2, and therefore the experimental constraint |ϵNP

K | ≤ |ϵSMK | leads to∣∣∣∣ ϵ′NP
K

ϵ′SMK

∣∣∣∣ ≤
∣∣ϵ′NP

K /ϵ′ SMK

∣∣∣∣ϵNP
K /ϵSMK

∣∣ = O
(
Re τ

Re δ

)
. (3)

If NP enters through a loop with particles of mass M ∼> 1 TeV, the NP effects can be relevant
only for |δ| ≫ |τ |, and thus Eq. (3) seemingly forbids detectable NP contributions to ϵ′K .
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Figure 3. Trojan penguin contributions to ImA2 for mŪ ̸= mD̄.

In the Minimal Supersymmetric Standard Model (MSSM), there is a bypass to Eq. (3). The
Majorana nature of the gluino leads to a suppression of gluino-squark box contributions to ϵK .
This is so, because there are two such diagrams (crossed and uncrossed boxes) with opposite
signs. If the gluino mass mg̃ equals roughly 1.5 times the average down squark mass MS , both
contributions to ϵSUSY

K cancel [16]. For mg̃ > 1.5MS , the gluino-box contribution approximately
behaves as [m2

g̃ − (1.5MS)
2]/m4

g̃, and the 1/m2
g̃ decoupling sets in. Note that this suppression

appears only when a hierarchy ∆Q,12 ≫ ∆D̄,12 of ∆Q,12 ≪ ∆D̄,12 is satisfied, where the following

notation is used for the squark mass matrices: M2
X,ij = m2

X (δij +∆X,ij) , with X = Q, Ū , or D̄.

3. ϵ′K/ϵK in the MSSM
The master equation for ϵ′K is given by [6]

ϵ′K
ϵK

=
ω+√

2|ϵexpK |ReAexp
0

{
ImA2

ω+
−

(
1− Ω̂eff

)
ImA0

}
, (4)

with Ω̂eff = (14.8 ± 8.0) × 10−2, the measured |ϵexpK |, ω+ = (4.53 ± 0.02) × 10−2, and the

amplitudes AI = ⟨(ππ)I |H|∆S|=1|K0⟩ involving the effective |∆S| = 1 Hamiltonian H|∆S|.
I = 0, 2 represents the strong isospin of the final two-pion state.

The MSSM contributions to ϵ′K/ϵK have been widely studied in the past. However, the
supersymmetry-breaking scale MS was considered in the ballpark of the electroweak scale, so
that the suppression mechanism inferred from Eq. (3) is avoided. The low-energy Hamiltonian
in the case of small left-right squark mixing reads

H|∆S|=1
eff, SUSY =

GF√
2

∑
q

[
2∑

i=1

cqi (µ)Q
q
i (µ) +

4∑
i=1

[c′qi (µ)Q
′q
i (µ) + c̃′qi (µ)Q̃

′q
i (µ)]

]
+H.c., (5)

where GF is the Fermi constant and

Qq
1 = (s̄αqβ)

V −A
(q̄βdα)

V −A
, Qq

2 = (s̄q)
V −A

(q̄d)
V −A

,

Q′q
1 = (s̄d)

V −A
(q̄q)

V +A
, Q′q

2 = (s̄αdβ)
V −A

(q̄βqα)
V +A

,

Q′q
3 = (s̄d)

V −A
(q̄q)

V −A
, Q′q

4 = (s̄αdβ)
V −A

(q̄βqα)
V −A

. (6)

Here (s̄d)V−A(q̄q)V±A = [s̄γµ(1 − γ5)d][q̄γ
µ(1 ± γ5)q], α and β represent color indices, and

opposite-chirality operators Q̃′q
i are given by interchanging V −A ↔ V +A.

In our analysis [17] we found that the dominant supersymmetric contribution comes from a
certain gluino box diagrams#1, called a Trojan penguin in Ref. [19], which are shown in Fig. 3.
It contributes to ImA2 when mŪ ̸= mD̄. Because these contributions are governed by the strong

#1 The other supersymmetric solution focusing the chargino Z-penguin contribution has been studied in
Ref. [18].
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Figure 4. The black contour represents the supersymmetric contributions to ϵ′K/ϵK in units
of 10−4. The ϵ′K/ϵK discrepancy is resolved at 1σ (2σ) in the dark (light) green region. The
red shaded region (region between the blue dashed lines) is excluded (preferred) by ϵK with
inclusive (exclusive) |Vcb| at 95% C.L.

interaction and there is an enhancement factor 1/ω+ = 22.1 for the ImA2 term in (4), they easily
become the largest contribution to ϵ′K/ϵK [19]. In order to obtain the desired large effect in ϵ′K ,
one needs a contribution to the operators Q′

1,2 with (V − A)× (V + A) Dirac structure, whose

matrix elements are chirally enhanced by a factor (mK/ms)
2. Hence, the flavor mixing has to be

in the left-handed squark mass matrix. The opposite situation with right-handed flavor mixing
and ũL-d̃L mass splitting is not possible because of the SU(2)L invariance.

For the calculation of supersymmetric contributions to ϵ′K/ϵK , one has to use the RG
equations to evolve the Wilson coefficients calculated at the high scale MS down to the hadronic
scale µh = O(1 GeV) at which the hadronic matrix elements are calculated [5, 7]. To use the
well-known NLO 10× 10 anomalous dimensions for the SM four-fermion operator basis [20], we
switch from Eq. (5) to

H|∆S|=1
eff, SUSY =

GF√
2

10∑
i=1

[Ci(µ)Qi(µ) + C̃i(µ)Q̃i(µ)] + H.c., (7)

where Q1,...,10 are given in Ref. [20] and

C1,2(µ) = cu1,2(µ), C̃1,2(µ) = 0,

C3,4,5,6(µ) =
1

3
[c

′u
3,4,1,2(µ) + 2c

′d
3,4,1,2(µ)], C7,8,9,10(µ) =

2

3
[c

′u
1,2,3,4(µ)− c

′d
1,2,3,4(µ)], (8)

and the coefficients C̃3,...10 for the opposite-chirality operators can be obtained from C3,...10 by

replacing c
′q
i → c̃

′q
i . Note that the contribution of Fig. 3 is collected into the coefficients C7,8.

For the RG evolution of the coefficients, we use the new analytic solution of the RG equations
discussed in Ref. [7].

Our main result is given in Fig. 4, where the portion of the squark mass plane which
simultaneously explains ϵ′K/ϵK and ϵK is shown. As input, we take the grand-unified theory
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relation for gaugino masses, αs (MZ) = 0.1185, mg̃/MS = 1.5 for the suppressed ϵK , and
mQ = mD̄ = µSUSY = MS with varying mŪ . Furthermore, the trilinear supersymmetry-
breaking matrices Aq are set to zero, tanβ = 10, and the only nonzero off-diagonal elements of
the squark mass matrices are ∆Q,12,13,23 = 0.1 exp(−iπ/4) for the left-handed squark sectors.
We have calculated all relevant one-loop contributions to the coefficients in Eq. (5) in the squark
mass eigenbasis. The ϵ′K/ϵK discrepancy can be resolved at 1σ (2σ) in the dark (light) green
region. The red region is already excluded by the measurement of ϵK at 95% C.L. in combination
with the inclusive Vcb. On the other hand, the region between the blue dashed lines can explain
the ϵK discrepancy at 95% C.L. for the exclusive value of |Vcb|. The area in Fig. 4 labeled with
negative values of ϵ′K/ϵK becomes feasible by adding π to the phase of ∆Q,ij , which flips the
sign of ϵ′K while keeping ϵK unchanged.

4. Conclusions
In this talk, we have discussed the supersymmetric contributions to ϵ′K , and it is found that
the large contributions required to solve the discrepancy between Eq. (1) and Eq. (2) can be
obtained in the multi-TeV squark mass range thanks to the Trojan penguin diagrams. Using a
relatively heavy gluino, the severe constraint from ϵK can be fulfilled without fine-tuning.
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