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Abstract

Upcoming facilities in photon science offer entirely new research opportunities

for scientists. For example, it will be possible to create three-dimensional images

of objects at the nano scale. Although the amount of data taken by the detector

devices will increase drastically, only a fraction of the data can be used in sub-

sequent analyses. Inherent limitations in the experimental setup result in a huge

amount of empty or meaningless images being taken. The aim of this thesis is to

develop algorithms for selecting suitable data and thereby make such experiments

feasible in the first place.

Nanocrystallography explores the structure of macromolecular objects such as

proteins. X-rays are used to create diffraction images from crystallized samples.

Once diffraction images from many different orientations have been captured, it

is possible to reconstruct the spatial structure of an object. The samples are

transported by a liquid stream which crosses a laser beam generated by an X-ray

source. A detector is used to take images of the diffracted light. The X-ray source

generates flashes of light at a fixed rate. Due to technical limitations, it is not

possible to synchronize the stream of samples with the laser flashes. This results

in many useless images containing no information at all or the amount of signals

within an image is too small for further research.

At the Linac Coherent Light Source (LCLS) experiment, 120 images per second

are captured, all of which are stored offline and are analyzed later on concerning

their suitability for further analysis in photon science. However, this will not be an

option in the next generation of experiments. The ‘European XFEL’ experiment

for example will be able to take up to 27,000 images per second.

In this thesis, strategies for handling this large amount of images are explored.

We introduce a neural network, which is able to separate useless from useful

images successfully, provided the amount of noise in an image is not too high. In

addition, we propose an algorithm able to detect diffraction information within

images. We are able to identify most of the signals within an image compared to

the software currently in use. This is done by noise removal and edge detection

followed by signal localization. We also indicate why current state of the art noise

removal algorithms cannot be used in nanocrystallography.

The algorithms presented in this thesis are designed to be executable in parallel.

We discuss the impact of parallel execution on reducing the data stream in photon

science as close to the detector as possible.

To explore our algorithms they are implemented as a prototype. Different

quantities such as efficiency and runtime behavior are studied.
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Zusammenfassung

Kommende Einrichtungen für Photon Science eröffnen Forschern neue Mö-

glichkeiten. Es wird möglich sein, dreidimensionale Bilder im Nano-Bereich zu

erstellen. Obwohl die Menge der erfassten Daten rapide steigen wird, kann durch

prinzipielle Einschränkungen nur ein Bruchteil dieser für Analysen verwendet

werden. Durch diese Einschränkungen werden eine große Menge nutzloser Bil-

der aufgenommen. Ziel dieser Arbeit ist es, Algorithmen zu entwickeln, um die

verwertbaren Daten auszuwählen und somit die Datenflut einzudämmen.

Nano-Kristallographie erforscht den Aufbau makromolekularer Objekte wie

Proteine. Röntgenstrahlen werden verwendet, um Beugungsmuster von kristal-

lisierten Proben zu erzeugen. Mit Hilfe von vielen Aufnahmen mit verschiedenen

Ausrichtungen des Kristalls ist es möglich, die räumliche Struktur des Objekts zu

rekonstruieren. Die Proben werden mit Hilfe einer Flüssigkeit transportiert. Diese

Flüssigkeit führt die Proben durch einen Röntgenlaser. Dieser erzeugt Lichtblitze

mit einer festen Frequenz. Aus technischen Gründen ist es nicht möglich, diese

Lichtblitze mit dem Strom der Proben zu synchronisieren. Das führt dazu, dass

viele Bilder entweder gar keine Informationen, oder zu wenige für eine weiterge-

hende Untersuchung enthalten.

Am ‘Linac Coherent Light Source’ (LCLS) Experiment werden 120 Bilder pro

Sekunde erzeugt. Alle Bilder werden gespeichert und später auf ihre Eignung für

weitere Analysen untersucht. Dieses Vorgehen wird in der nächsten Generation

von Experimenten nicht mehr möglich sein. Das ‘European XFEL’ Experiment

ist beispielsweise in der Lage, 27.000 Bilder pro Sekunde aufzunehmen.

Im Rahmen dieser Arbeit werden Strategien zum Umgang mit diesen Daten-

mengen untersucht. Wir stellen ein neuronales Netz vor, das in der Lage ist,

verwertbare von nicht verwertbaren Bildern zu unterscheiden, sofern das Grund-

rauschen nicht zu groß ist. Außerdem stellen wir einen Algorithmus vor, der in

der Lage ist, Beugungsmuster innerhalb eines Bildes zu erkennen. Verglichen mit

der zur Zeit verwendeten Software, sind wir sind in der Lage, einen Großteil der

Signale innerhalb eines Bildes zu erkennen. Hierzu wird zunächst das Rauschen

verringert und eine Kantenerkennung durchgeführt. Im Anschluss werden Signale

lokalisiert. Wir zeigen außerdem, warum aktuelle Algorithmen zur Rauschentfer-

nung nicht in der Nano-Kristallographie verwendet werden können.

Die Algorithmen, die in dieser Arbeit vorgestellt werden, wurden entwickelt um

parallel ausgeführt zu werden. Wir diskutieren den Einfluss der Parallelität auf

die Reduktion des Datenstroms in der Photon Science nahe an der Datenquelle.

Um unsere Algorithmen zu untersuchen sind diese prototypisch implementiert.

Aspekte wie die Effizienz und das Laufzeitverhalten werden hier analysiert.
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Chapter 1

Introduction

The amount of data taken in industry as well as science is constantly increas-

ing. Even though the computational landscape is evolving, the handling of large

scale data produced by businesses or scientific experiments is still a challenge.

In recent years the term big data [63] has been established to describe this phe-

nomenon.

Kaisler et. al [54] describe big data as a constantly evolving object:

As little as 5 years ago, we were only thinking of tens to hundreds

of gigabytes of storage for our personal computers. Today, we are

thinking in tens to hundreds of terabytes. Thus, big data is a moving

target. Put in another way, it is that amount of data that is just

beyond our immediate grasp, e.g., we have to work hard to store it,

access it, manage it, and process it.

As a result of this definition, big data describes data that can not be processed

using traditional computer systems and software. In theory, it is possible to

process such data in any desired way, given a sufficient amount of time. However,

this is not feasible under real world circumstances, since scientific research or

business decisions depend on timely conclusions drawn from the analysis of these

data. Therefore, processing of the data needs to be done efficiently to provide

applicable results in a reasonable amount of time.

This problem is currently surfacing in the scientific community of photon sci-

ence. For a long time it was possible to carry research data around on a flash

drive and process it on a personal computer. But with new generations of ex-

periments and detectors able to take more data in shorter periods of time, this

is not feasible anymore. The next logical step is to move storage to data centers

and process data on local servers. However, eventually the software developed

to analyze the data does not scale well enough. This leads to new challenges,

residing in the big data domain.
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CHAPTER 1. INTRODUCTION

One approach to achieve the required scalability is parallel processing. Big

data frameworks such as Hadoop [93], or Spark [95] are used to distribute the

data over multiple servers. Each portion of the data may then be processed

in parallel using map reduce [39] or other applicable algorithms. However, this

method only speeds up the processing under specific conditions, since the data

analyzed has to be fully available and distributed beforehand [55]. In addition,

the computational resources to store and analyze the data scale at least linearly

with it. This limits the ability to quickly draw conclusions on new data. Finally,

having a large fraction of meaningless data increases processing times and storage

requirements.

Therefore, it is desirable to reduce the amount of unnecessary data as much

as possible in order to conserve storage space, network/disk bandwidth, and

computational resources.

This thesis has been made in affiliation within the ‘Large-Scale Data Manage-

ment and Analysis’ (LSDMA) project [89]. LSDMA bridges the gap between data

acquisition and analysis by combining community specific support with common

cross community development. The goal of LSDMA is to streamline community

specific tools for a more general scientific audience. The project is organized in

sub-projects. Five of them are called ‘Data Life Cycle Labs’ (DLCL) and aim

to support specific communities such as Climatology or Energy. The sixth sub-

project is called ’Data Services Integration Team’ (DSIT). An overview of the

structure of the project can be found in Figure 1.1.

DSIT provides “[...]generic technologies and services for multi-community use

based on research and development in the areas of data management, data access

and security, storage technologies and data preservation.” [89]. It is further

partitioned into six work packages. This thesis contributes to the DSIT work

package ‘Data-intensive computing’.

In specific, the work in this thesis is aimed at X-ray nanocrystallography

[65].

In X-ray nanocrystallography the atomic structure of macromolecules is ana-

lyzed. To gain insights into their structure, samples are crystallized and then

illuminated by X-rays. The diffracted light is then captured by a detector device.

This image represents a slice through the sample in Fourier space. See Chapter 2

for more details.

By combining many images with different orientations, a three-dimensional

model of the Fourier coefficients can be determined. With the coefficients, the

spatial structure of the macromolecule can be reconstructed [77]. It is important

that the raw data provided by the detector cannot be used directly for deter-

mining the spacial structure of objects. Instead, data need to be transformed

from Fourier space to real space. This particular aspect is important for noise

2
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Figure 1.1: Structure of the Large Scale Data Management and Analysis Project
(LSDMA) [89]. Community specific data lifecycle labs (DLCLs) doing joint re-
search and development. They are supported by the data services integration
team (DSIT), providing generic methods research and development, creating in-
terfaces between federated data infrastructures and individual communities [9].

reduction.

Due to limitations in the experimental setup, up to 95 % of the images captured

by the detector are either blank or inadequate for further analysis [25]. Currently,

all images taken are stored for later offline analysis. This is a waste of storage and

computational resources. For current experiments, such an approach is feasible

due to the low data rate of 525 MBps.

However, this approach is no longer feasible for new generations of experiments.

The European XFEL for example is designed to achieve up to 27,000 images

per second [56]. As of today, there are no solutions available to efficiently deal

with this volume of nanocrystallography images. However, taming the flood of

data already during the initial phases of the data taking seems to be feasible in

nanocrystallography by taking its characteristics properly into account. Solutions

have to be developed reducing the amount of data online and as close to the

detector as possible.

This leads to the main research question of this thesis: Is it possible to

design an algorithm capable of rejecting all images which are useless

for further research within the real-time-constraints of current as well

as next generation experiments?

3



CHAPTER 1. INTRODUCTION

1.1 Research Questions

The main research question can be further split into the following sub-questions:

1. How is it possible to determine if there is adequate data within

an image at all?

The most basic decision an algorithm has to make is the distinction between

images containing useful data and images not containing useful data. The

output of the computation should be a binary information whether an image

is useful or not.

2. Is the data within an image useful for further analysis?

Given an image does contain data, the next question is, whether the data

in the image is sufficient for more complex analysis. Experience has shown

that an image needs to contain at least 20 valid signals to be useful to

current algorithms in X-ray nanocrystallography [17].

3. Is it possible to solve the previous two questions within real-time

constraints?

Given enough time, it is easily possible to thoroughly analyze every im-

age for data. Nevertheless, this is not feasible given real-time constraints.

This means that algorithms suitable for online analysis have to meet time

constraints given by experiments.

4. Can existing algorithms be used or adapted to facilitate the image

optimization?

In traditional image processing, there are plenty of algorithms for remov-

ing noise in images. The methods whereupon these algorithms rely have

to be reevaluated critically with special attention to the particularities in

nanocrystallography.

1.2 Publications

Within the scope of this thesis, the following articles have been published:

1. Daniel Becker and Achim Streit: “A Neural Network Based Pre-Selection

of Big Data in Photon Science”. IEEE Fourth International Conference on

Big Data and Cloud Computing (BdCloud), 2014. IEEE, Pages: 71 - 76,

DOI: 10.1109/BDCloud.2014.42, 2014, 3.-5.12.2014, University of Technol-

ogy, Sydney

2. Daniel Becker and Achim Streit: “Localization of Signal Peaks in Pho-

ton Science Imaging.” UKSim-AMSS 17th International Conference on

Modeling and Simulation, 2015. (Best Paper Award), IEEE, Pages: 296 -
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301 DOI: 10.1109/UKSim.2015.35, 25.-27.3.2015, University of Cambridge

(Emmanuel College)

3. Daniel Becker and Achim Streit: “Real-time Signal Identification in Big

Data Streams Bragg – Spot Localization in Photon Science”. The Interna-

tional Conference on High Performance Computing & Simulation (HPCS

2015), Pages 611 - 616 DOI: 10.1109/HPCSim.2015.7237101, 20.-24.7.2015,

Amsterdam

4. Daniel Becker and Achim Streit: “Real-time Signal identification in Photon

Science Imaging”. International Journal of Simulation Systems, Science &

Technology, IJSSST Volume 16-3, DOI 10.5013/IJSSST.a.16.03.01

5. D. Becker, A. Streit, “Realtime-Processing of Nanocrystallography Im-

ages”, Proceedings of the 18th UKSIM-AMSS International Conference on

Modeling and Simulation,(Best Paper Award), IEEE, 2016, pp. 190-195,

DOI: 10.1109/UKSim.2016.20, 5..-8.4.2016, University of Cambridge (Em-

manuel College)

1.3 Scientific Contributions

In this section, previously listed publications are discussed in detail. Each con-

tribution is detailed and associated with the research question it answers. We first

introduce a neural network able to categorize images from nanocrystallography

efficiently. Then, an algorithm is shown able to identify individual signals within

images. We also show why it is not feasible to use most state of the art algorithms

for noise removal in photon science. Finally, a prototypical implementation of the

proposed algorithms is introduced.

1.3.1 A Neural Network Based Pre-Selection of Big Data in Pho-

ton Science

Neural networks are explored in terms of their applicability as a veto engine

in photon science. A small neural network is introduced able to categorize up to

93 % of the data correctly, given the signal-to-noise ratio is sufficiently high. To

improve the signal-to-noise ratio, two optimizations are introduced. Background

subtraction calculates an average photon background which is subtracted from

images before the analysis. In addition we identify the ‘transverse intensity’ as

a new quantity in nanocrystallography. It defines a compensation factor for the

loss of intensity at the outer areas of the detector. By applying the transverse

intensity, signals at the outer area of the detector are increased.
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This contribution addresses research question 1, discussed in the previous sec-

tion. It will be presented in detail in Chapter 5.

1.3.2 Localization of Signal Peaks in Photon Science Imaging

Individual signals within images from nanocrystallography are identified. An

algorithm composed of three steps is introduced. Firstly, single pixel noise is

removed using convolution. Secondly, edge detection is applied to enhance the

signals. Thirdly, signals above a given threshold are located. Up to 90 % of signals

within an image are identified compared to software currently in use.

Research question 2 is addressed by this contribution. It is presented in detail

in Chapter 6.

1.3.3 Real-time Signal Identification in Big Data Streams Bragg

– Spot Localization in Photon Science

In our previous work we identified noise as the main challenge for the correct

categorization of images as well as identification of signals. This article analyzes

the ‘Block-Matching 3D’ (BM3D) algorithm. It is a state of the art algorithm for

noise removal. In the article, its applicability for images from nanocrystallography

is discussed. It is shown, that these types of noise removal algorithms do not work

for this specific kind of images. This is due to the very similar shape of noise and

signal.

This contribution addresses research question 3 and will be presented in detail

in Chapter 6.

1.3.4 Realtime-Processing of Nanocrystallography Images

In this article, the algorithms introduced in Section 1.3.1 and 1.3.2 are im-

plemented as a prototype. First, the implementation is discussed. Then, the

prototype is explored in terms of its efficiency and runtime behaviour. The effi-

ciency is compared agains software currently used for identifying signals in images

and categorizing them. Finally, based on the benchmarked runtime, we extrapo-

late the results to propose a solution for handling the real-time demands of the

European XFEL experiment.

Research question 3 is addressed by this contribution. It will be presented in

detail in Chapter 7.
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1.4 Structure of the Thesis

The remaining part of the thesis is structured in the following way:

Chapter 2 (Data Capturing in Nanocrystallography) introduces the context of

research. First, nanocrystallography is introduced. Then, a typical experimental

setup is described, and, finally the data flow of this experiment is laid out.

Chapter 3 (State of the Art) discusses the current state of data analysis in nano-

crystallography. Technologies and algorithms used in this theses are introduced

here.

Chapter 4 (Problem Description) discusses the challenges introduced by a new

generation of experiments generating much more data. Furthermore, research

question 4 is dealt with here.

Chapter 5 (Neural Network as a veto engine) deals with research question 1.

A data categorization engine is introduced which is capable of classifying data

from nanocrystallography into ’useful’ and ’not-useful’.

Chapter 6 (Signal Identification) introduces a multi-step algorithm capable of

identifying signals within an image. This chapter deals with research question

2.

Chapter 7 (Performance Aspects) proposes a prototypical implementation of

the previously developed algorithms. The implementation is then discussed in

terms of its implementation details, recognition rate as well as runtime behavior.

Here, research question 3 is dealt with.

Finally, Chapter 8 draws a conclusion from the previous chapters and tries to

give an outlook on further research opportunities.
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Chapter 2

Data Capturing in

Nanocrystallography

In this chapter the scientific area of nanocrystallography is introduced. First,

Bragg diffraction is discussed, which represents the foundation of nanocrystal-

lography. Then, nanocrystallography itself is introduced. Finally, a typical ex-

perimental setup as well as the process of data acquisition and analysis is pre-

sented.

2.1 Bragg diffraction

In order to understand the research area of nanocrystallography, diffraction

must be understood first. The general principle of diffraction can be well illus-

trated by slit experiments.

Bragg diffraction describes the diffraction of light by a three-dimensional peri-

odic structure such as molecules in a crystal, and was discovered by Bragg et al.

[26]. Bragg diffraction uses X-rays, i.e. light of very short wavelength. Due to

the superposition property of light waves, sharp intense signals can be detected.

They are known as Bragg spots. Based on the distribution and intensities of the

Bragg spots, the spatial structure of the molecules can then be reconstructed,

essentially by a Fourier transform [14], the technical details are beyond the scope

of this thesis.

Due to the superposition property of waves, interference phenomena can be

observed when light propagates around an obstacle or through an opening. In

diffraction physics, the wavelength of the light is small compared to the dimen-

sions of the obstacles and openings. The right hand side of Figure 2.1 illustrates

how a plane wave passing through a slit is transformed into a circle wave. Similar
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Figure 2.1: Diffraction of waves by a single slit [2]. Green represents no change
in amplitude, red a positive amplitude and blue a negative one. Plane waves
passing the slit are transformed to circle waves. The change in the wave pattern
are a Fourier transform of the obstacle encountered by the waves.

effects can be observed when a pointlike obstacle is hit.

The superposition principle of waves is best illustrated in one dimension. Fig-

ure 2.2a shows the plots of two waves of different wavelengths. The second part of

the Figure shows the result of adding the amplitudes of both waves. Depending

on the amplitudes of both input signals, the resulting signal at x = 0.5 as well as

x = 1.25 is doubled whereas at x = 2 the signals are almost canceled.

Figure 2.3 shows plane waves hitting an obstacle containing two slits. As the

two resulting circle waves meet, they interfere with each other. Depending on the

distance of both slits to a certain point, the phases either cancel each other, in-

crease or, decrease. This creates a distinct diffraction pattern. From the resulting

diffraction pattern the widths of the slits and their distance can be reconstructed.

The reconstruction is in principle, what is done in nanocrystallography [84].

2.2 Nanocrystallography

X-ray light sources have been used for a long period of time in order to deter-

mine the inner structure of molecules [94]. The light sources have been evolving at

a very high pace since their discovery. Within only 121 years, the peak brilliance

[14] has been increased from 107 to 1034 (European XFEL [56]). X-ray light

sources have been utilized for many significant discoveries in biology [4]. The dis-

covery of the bulk of protein structures has been facilitated by these light sources.
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Figure 2.2: Plot of two signals and the sum of both signals (b). When the signals
are added, amplitudes are either increased or cancel each other.

Figure 2.3: Diffraction of waves by two slits [2]. Green represents no amplitude,
red a positive amplitude and blue a negative one. The waves form two cylindrical
patterns when passing the two slits. When those patterns overlap with each other,
the amplitudes (negative and positive) are either increase or canceled out.
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Figure 2.4: Three-dimensional view of the collected Fourier-coefficients [11]. For
each coordinate x, y, z the combined discrete diffraction intensities of many indi-
vidual images are shown. Spheres of different diameter represent the intensity of
a discrete coordinate in the Fourier space

However, the remaining structures are more challenging. This is due to different

attributes like their size and structure [30]. The common workflow here is to

illuminate a crystallized sample using an X-ray light source. The light diffracted

by certain planes in the crystal is then captured by a detector as an image. The

signals are also called ‘Bragg spots’ [26]. Images are taken with different orien-

tations of the sample. These images are then combined into a three-dimensional

model of average Fourier coefficients for each coordinate x, y, z. An example of

this model can be seen in Figure 2.4. Here, spheres of different diameter represent

the intensity of a discrete coordinate in the Fourier space.

Based on this model, the electron density of a sample can be reconstructed.

Figure 2.5 shows the spacial structure of the photosystem I protein complex

obtained from LCLS diffraction data [31].

The intensity of X-rays required to create a diffraction pattern destroys a sam-

ple within femtoseconds [51]. In order to be able to determine the inner structure

of these macromolecules, femtosecond X-ray nanocrystallography has been devel-

oped [31]. Femtosecond X-ray nanocrystallography uses multiple samples of the

same macromolecular type to capture diffraction images from various orienta-
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Figure 2.5: The electron density map of the photosystem I protein complex ob-
tained from LCLS diffraction data [31].

tions. The samples are transported through the interaction point with the X-ray

light source via an automated probe delivery system, which uses a transportation

liquid or gas to move the samples [90]. The light source works with a fixed repeti-

tion rate at which it generates very bright light flashes. The resulting diffraction

information of the sample is then captured by a detector right before the probe

is destroyed. A typical setup of such an experiment is shown in Figure 2.6.

Since a sample is floating freely in the transportation liquid, its orientation is

not known. Therefore, before the data can be combined into a three-dimensional

model, a process called indexing has to take place. The indexing process deter-

mines the orientation of the crystal by calculating the lattice coordinates and

comparing it to a geometrical construct (Ewald’s sphere, [44]). Using this de-

rived orientation, or index, the images are then grouped for use in next steps

of the analysis chain. The main challenge is the identification of valid Bragg

spots.

Firstly, due to the automated setup of the experiment, it is not possible to

synchronize the stream of probes with the X-ray flashes. Therefore, it is likely

that a probe will not be hit at its center, resulting in weak Bragg spots. It may

even happen, that no sample is hit at all, which will result in an empty image.

Secondly, noise is added to the images by diffracted light from the transportation

liquid.

The current generation of experiments, e.g. the ’Linac Coherent Light Source’

13
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Figure 2.6: Experimental setup for serial femtosecond crystallography [31]. An
X-ray light source produces bright flashes at a fixed rate. Probes are transported
through the interaction point by a liquid. The diffracted light is captured by two
detectors in different distances.

(LCLS), are able to generate 120 images per second [83]. However, the efficiency,

which we define as

efficiency =
indexable images

images taken
(2.1)

can be as low as 4.5 % due to the challenges just mentioned [25]. To reduce the

overhead of indexing all images, a pre-selection is carried out to limit the indexing

process to images containing sufficiently strong Bragg spots. The pre-selection

at the LCLS experiment for example is carried out using the Cheetah software

(see Section 3.1). The data is categorized in probably indexable (useful) and

probably non-indexable (useless) images.

2.2.1 Detector

The diffraction information generated within the experiments are captured by

specialized detectors. At the LCLS experiment, the ‘Cornell-SLAC Pixel Array

Detector’ (CSPad) is used [47]. For each experimental installation, the detector

has to be calibrated and tested, before it is able to consistently capture data [29]

[28]. An image of the detector surface can be seen in Figure 2.7.

The detector is composed of four quadrant plates, allowing the beam aperture

to change in order to align the beam as well as optimize the angle to capture as

many diffraction information as possible. On each quadrant eight basic elements
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Figure 2.7: CSPad detector used at the LCLS experiment [3]. It consists of 64
individual panels mounted on for quadrants. The quadrants can be slid towards
and away from the center in order to capture different diffraction angles.

called ’2x1’ are mounted. Each 2x1 module is composed of two ’Application-

specific integrated circuits’ (ASICs) connected to the sensory surface. For each

quadrant, the corresponding ASICs are connected to an analog board providing

adjustments to the sensitivity of the pixels. In addition, they contain a ’Field-

programmable gate array’ (FPGA), which takes care of controlling the ASICs

and sends the data to an aggregation system using a 625 Mbit link. The data

is aggregated by a custom data acquisition system, merging information of all

four quadrants and adding further information about the recorded image. It also

provides an online display of the data recorded. In this step, it is possible to plug

in modules to filter the data or carry out more sophisticated analysis.

The images taken by the detector are 14 bit greyscale. Its pixel values are

stored as a 1552× 1480 matrix in a proprietary format.

2.2.2 Detector Geometry

Since the detector is composed of many individual sensors, the data taken by

the individual panels are stored in a 8×8 matrix with one row and column of zero

values around each panel. As a result, the real world coordinates of individual

pixels of the detector are not static. They may vary for different experiments and
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Figure 2.8: Left pixels within a panel are shown. They are square and have a
size of 110 µm. On the right pixels at the boundaries between two panels on a
2x1 module are shown. They are larger, rectangular and 275 µm wide [47].

even for individual runs within the same experiment. To calculate the correct

position for each pixel, a geometry file is produced for each run, describing the

offset relative to the captured position.

Pixels within each panel are square and have a size of 110 µm. Pixels at bound-

aries between two ASICs on the same panel are larger, rectangular and have a

width of 275 µm. See Figure 2.8.

The stored geometry of the individual panels can be seen in Figure 2.9 in the

raw format as well as with the geometry file applied.

2.3 Dataflow

Currently, all data taken by the detector are stored offline for later analysis.

They are stored in a proprietary data format specific to the experiment. An

illustrated view of the flow of data can be seen in Figure 2.10. In a first analysis

step, all images are processed by the ’Cheetah’ software (see Section 3.1), which

identifies and locates Bragg spots within each image. All images for which Chee-

tah is able to identify a certain amount of Bragg spots are then exported to the

hdf5 file format along with a protocol of the Bragg spots found, their intensities,

and coordinates. Those pre-selected, most likely indexable images are then used

for the actual analysis process and the reconstruction of the electron density of

the sample using for example the CrystFEL software (see Section 3.2).
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(a) Panel order stored in file. (b) Geometry applied

Figure 2.9: An image captured by the detector is not stored in its physically
correct arrangement. Panels are stored as an 8× 8 matrix in the form shown in
(a). To rearrange the panels, the corresponding geometric information has to be
applied as done in (b).

Figure 2.10: Flow of the data taken at the LCLS experiment. First, all data
are stored offline. Then a data reduction is taking place, only exporting useful
images for further analysis.
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Chapter 3

State of the Art

In this Chapter the current state of the art is presented. In the beginning the

‘Cheetah’ and ‘CrystFEL’ software currently in use for processing nanocrystallo-

graphy images are introduced. Then, articles related to our work are discussed.

The Chapter is concluded by the introduction of algorithms and technologies used

in this thesis.

3.1 Cheetah

The Cheetah software has been developed for analysis and data reduction of

images from femtosecond X-ray nanocrystallography [17]. It was written at the

Center for Free-Electron Laser Science (CFEL) by experts in that field of research.

The software was developed as a universal library in C++. Since there is no

default data format for experiments taking diffraction images, Cheetah can be

imported into existing software, which is capable of reading the experiments

specific data format. Cheetah in turn outputs individual images as tables in

the Hierarchical Data Format 5 (HDF5, see [45]) container format. The main

functionality of Cheetah is the search for Bragg spots within an image. In order

to achieve the best recognition rate, a series of optimizations is performed.

• Broken or stuck pixels can be marked as faulty and will be ignored during

the analysis.

• Based on a separate file containing geometric information about the detec-

tor, panels are analyzed separately.

• On the basis of a series of empty images, an average is calculated for each

pixel of the detector. This average will be subtracted in the following

analysis process reducing the background noise.
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• For each element of the detector, a gain factor is calculated, which is sub-

tracted from each pixel of the image before the actual analysis.

After applying the optimizations, Cheetah starts with the actual analysis pro-

cess. The user has to supply an intensity threshold as the minimum intensity

for data to be considered a signal. During the analysis, Cheetah iterates over

each pixel, looking for those with an intensity above the specified threshold. In

case such a pixel is found, adjacent pixels are analyzed until no more adjacent

pixels with intensity above the set threshold are found. If the amount of pixels

in the spot found is within pre-defined margins and if the signal-to-noise ratio of

the number of those pixels and those in their surrounding is sufficiently high, the

signal found is recorded as a Bragg spot. In addition, a center as well as a total

intensity is calculated for that spot. Moreover, all pixels the spot is composed of

are marked as processed and will be ignored from that point on.

Based on the experience of the developers, an image is marked as useful for

further analysis if it contains at least 20 Bragg spots [17].

Cheetah has been successfully used to reduce the amount of data in the de-

termination process of many different structures. For example for determining

the ‘Structure of a photosynthetic reaction centre determined by serial femtosec-

ond crystallography’ [53] and ‘Serial femtosecond crystallography of G protein–

Coupled receptors’ [62].

3.2 CrystFEL

CrystFEL is a toolkit developed at CFEL [92]. Its purpose is to determine the

orientation of a crystal from its diffraction pattern. It is also able to combine

multiple diffraction patterns into a single three-dimensional model. In addition,

diffraction patterns can be simulated for testing purposes. CrystFEL uses HDF5

as the format for input data. Therefore, it is independent of proprietary data

formats generated by various detectors. Internally, CrystFEL uses a generic

model of a detector. Actual detector modules can be mapped to its abstract

internal detector by supplying a file containing the geometric information of the

detector used to take the data.

During the process of the analysis different components play a role. First the

module ‘indexmajiq’ is used to determine the orientation of a crystal based on the

diffraction pattern captured. This process is called indexing. Similar orientations

are grouped. In order to determine the orientation, multiple algorithms can be

chained and will be tried until one yields a reasonable orientation. If no algorithm

is able to find an orientation, the image is discarded as not-indexable. Once

indexmajiq has processed all images, ‘process hkl’ then combines all intensities

recorded into one three-dimensional model containing the intensities of all discrete
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coordinates x, y, z. This component is also able to scale possible variances of

the intensities to a normalized one to compensate for irregularities of detector

pixels.

CrystFEL is in active development. Features and fixes are constantly added.

The developers further promise to be able to handle the diffraction patterns

of multiple crystals within one image, which is currently not possible. If they

succeed, the concentration of crystals in the transport stream could be increased

and thus yield more useful data in a shorter period of time [92].

3.3 Application of a neural network in high-throughput

protein crystallography

In the article ‘Application of a neural network in high-throughput protein crys-

tallography’ [23], A. Berntson et al. explore the applicability of neural networks

to ensure the quality of crystal growth based on their diffraction patterns. The

article states that in order to produce good diffraction images containing intense

spots, the crystal has to be of high quality. Therefore, the researchers infer that

based on the spot intensity and the slow decrease of intensity towards the outer

areas of the detector, the crystal quality can be assessed. As a criterion for a

signal, its mean intensity has to be at least twice the standard deviation of the

image. The minimum acceptance size for a spot is 5 pixels. Using this criterion,

images are divided into 14 concentric rings relative to the center of the detector.

For each ring, spots are detected. Based on the number of spots, the distribution

within the rings and the intensity distribution, a neural network is trained. Once

the neural network is trained, it outputs a numerical value indicating the crystal

quality. Therefore, an expert has to be involved, defining a threshold above which

a result is considered useful. The findings were implemented in the open-source

software ‘CrySys’, which was developed in C++.

3.4 Automated diffraction image analysis and spot

searching for high-throughput crystal screening

The article ‘Automated diffraction image analysis and spot searching for high-

throughput crystal screening’ [96] by Zhang et al. presents a software package

called ‘DISTL’, able to rapidly analyze X-ray diffraction patterns. The goal is

to provide information to optimize growth and cryoprotection of the crystals,

freeing researchers from the need to manually inspect images except for those,

the software reports as deserving special attention. To achieve this, strong Bragg

spots are located. Here, a valid spot consists of a number of connected pixels
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with an intensity above a given threshold and is located outside of area with high

noise. The location of the spots found are validated against a model in order to

ensure they are valid. Finally, the quality of each spot is gauged by its size and

shape. In addition, the entire image is evaluated in terms of the overall noise,

quality and distribution of the Bragg spots. After all spots are found, the quality

of each is rated. The quality of a spot is quantified by its size, peak intensity,

shape, number of maxima and presence of nearby spots. The software package

is implemented as a library, which can be included in existing analysis software.

For each image passed to the library, a list of signals found is returned along

with the calculated quantities for each spot. Due to the thorough analysis of the

image, the authors state a typical response time for a 10 MB image of 2.5 s on a

2.8 GHz Intel CPU.

3.5 Crystalline object evaluation by image process-

ing

In the article ‘Crystalline object evaluation by image processing’ [24] the usage

of techniques from image processing is explored to verify the growth of crystals

in X-ray microscopy. To produce diffraction images of high quality, the crystals

grown for the analysis have to be of high quality. Attributes like temperature,

chemicals to be added as well as the type of protein affect the crystallization

process. Even though automatic crystallization systems exist, experts have to

verify the crystals grown by them. Only the presence or absence of crystals can

be measured automatically. The authors propose an algorithm to automatically

rate the growth of the crystal utilizing the camera built into the automatic crys-

tallization system. Firstly, the pictures taken by the system are converted to

greyscale. Secondly, the Sobel operator [85] is applied to the image to detect

edges. The image is then converted to a binary image, where all pixels with an

intensity above a given threshold are set to 1, and the rest is set to 0. Thirdly,

the actual features used for classification are extracted. The selected features are

the longest line segment and the number of line segments in an image. For the

decision process, a support vector machine (SVM) is used as a classifier. The

SVM is able to categorize 86.3 % of the images correctly compared to an expert.

The challenge remaining is the dynamic determination of a sensible threshold for

the binary image conversion. Currently, a reasonable value is found through trial

and error. This value is specific to the current crystallization system.
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3.6 OpenCL

The Open Computing Language (OpenCL) is a framework designed to unify

the development of software that is capable of running on a multitude of hard-

ware accelerators such as GPUs and FPGAs as well as CPUs. These are uniquely

treated as platforms [80]. OpenCL defines its own programming language based

on C99 as well as an API to control the execution of code on the actual platforms.

In order to achieve platform independency, OpenCL code has to be loaded and

compiled at runtime into so called ‘program kernels’. OpenCL provides task-

based as well as data-based parallelism. Different tasks can run in parallel on

heterogeneous hardware or the same task can run across multiple devices us-

ing different datasets. OpenCL defines a memory hierarchy for each computing

device.

It is composed of

• global memory – shared across the entire device, has high latency.

• read-only memory – shared across the device, low latency, writable by CPU,

readable by the computing device.

• local memory – smaller than global memory, shared by groups of processing

elements (compute units) on the computing device.

• per-element memory – exclusive to each processing element.

The hierarchical OpenCL model of a device can be seen in Figure 3.2.

Since each accelerator device uses its own memory, data have to be copied to

the device for processing and the results have to be copied back from the device.

This adds latency to the overall process, since moving data is magnitudes slower

than performing computations on these data [41]. In addition, accelerator devices

are specialized for crunching numbers in a fast and efficient way. Components are

specially designed for this purpose. However, it comes at the cost of execution

speed of more complex functions, jumps and unpredictable methods in general

(e.g. recursion). Loops for example increase overall execution time of processing

kernels. Therefore, these should be avoided by using work packages, unrolling or

vector datatypes instead.

Work packages are multiple, parallel running instances of the same execution

kernel. In order to achieve the high parallelism on the accelerator devices, the

work carried out by the device has to be split up into work packages. This

can be done by specifying work dimensions as well as work elements for each

dimension. Within the kernel executed on the accelerator, the current dimension

and element id can be retrieved and the appropriate data can be selected. In

addition, OpenCL introduces its own set of datatypes focused on parallelization.

Based on the well known datatypes like integer or double, OpenCL introduces
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Figure 3.1: OpenCL device model. Each device has global memory. It is com-
posed of one or more compute units. Each compute unit has its own local memory.
Tasks within each compute unit are grouped into work groups and have their own
private memory [87]. Generally speaking, the closer the memory is located to the
work item, the faster it can be accessed.

vectorized versions of them. Supported vector sizes are 2, 3, 4, 8 and 16. In

addition to the common sizes of 2n, 3 is introduced to describe the common case

of a vector containing three-dimensional coordinates. The size is limited to 16

to allow access to each component by a single hexadecimal digit. These vector

data types can then be used to carry out operations on each component in one

step.

The individual steps necessary for running an OpenCL program can be seen in

Figure 3.2.

1. The system has to be queried for available platforms and devices supporting

the OpenCL standard.

2. One platform can have multiple devices attached.

3. A context for a certain platform is created.

4. Within this context, a command queue is created, memory buffers are al-

located, and the OpenCL program code is loaded and compiled.

5. Once that is done, data can be transferred from the host to the device.

6. When the data is copied, the execution kernel can run.
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7. After the kernel execution, the data from the device is copied back to the

host.

OpenCL has been developed and is maintained by the Khronos Group [5].

3.7 Artificial Neural Networks

Artificial neural networks are an abstract representation of the human brain

in computer science [48]. Neural networks are composed of so called neurons

and connections between the neurons. A neuron calculates a sum of the input

data passed to them. On this sum, an ’activation function’ is applied. This

function determines, whether the the neuron passes on the information it received.

Commonly used activation functions are the Sigmoid function

S(x) =
1

1 + e−x
(3.1)

or the hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x
. (3.2)

Neural networks can be classified by the way the neurons are connected to

each other and whether the information is passed unidirectional or bidirectional

between the neurons.

Single Layer Feed Forward A network consists of only one layer, which is

the output layer. Here, input neurons are directly connected to output neurons.

Feed forward in this context means, that information are only passed from the

input neurons to the output neurons.
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Figure 3.2: Program flow of an OpenCL application [8]. First, the system is
queried for its capabilities and a platform and device are selected to run the
program kernel on. Then, an execution context and a command queue are created
and memory buffers are allocated. Data is transferred to the device and the
OpenCL kernel is executed. Finally, data is transferred back from the device to
the host.
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Figure 3.3: Example of a single layer feed forward network [6]. Each input neuron
is directly connected to each output neuron.

Multi Layer Feed Forward Networks in this category have one or many

hidden layers between the input and output layer. By utilizing hidden layers, a

neural network is able to approximate more complex problems. One example of

a more complex problem is the XOR-problem [66], which can not be solved using

one layer of real-valued neurons.

Figure 3.4: Example of a multi layer feed forward network with one hidden layer
[7]. Here, each input neuron is connected to each hidden neuron. The hidden
neurons are in turn connected to each output neuron.

Recurrent Network Recurrent neural networks have feedback loops allowing

information to be passed into the same neuron again or back up to previous layers.

This enables these types of networks to re-input earlier inputs by delaying the

information passed through the feedback loops. It can be compared to memory,

using previous calculations to affect later output. The recurrent connection is

time delayed in order to incorporate output into later calculations.
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Figure 3.6: The Sigmoid function from x = −10 to x = 10.

Figure 3.5: Example of a recurrent neural network [10]. In addition to the con-
nections between input and output layer, the output neurons are also connected
to themselves. Data is fed back to the same neuron after a time delay (D)

The connections between the neurons have weights attached. The weights

influence the value of the signal passed on to the connected neuron. They can

either increase, decrease or keep their original value.

For each neuron, the discrete inputs by all connected neurons are multiplied by

the weights of the respective connection. Then their sum is calculated and used

as the input for the activation function. The activation function itself acts as a

threshold. The actual cut approximated by the activation function assigned to

the neuron. The Sigmoid function for example (see Equation 3.1) returns 0.5 for

x = 0, 1 for large positive inputs x and -1 for large negative of x, see Figure 3.6.

The result of the activation function is the output of the neuron.

The weights of the connections between the neurons encode the knowledge

about a problem. To solve problems, these weights have to be defined, usually

through the process of training. The basis for training is a dataset for which the
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classification is known. This set should be as close to reality as possible to ensure

that the network is able to solve variations of the same problem. The dataset is

then split into three subsets: one for training (70 %) , one for validation (20 %)

and one for testing (10 %). The training and verification sets are used during

training. The testing set is used after training is completed to verify the networks

accuracy.

During training, the training set is processed and the difference between the

known and the classification by the network is calculated. The weights of the

network are then adjusted using a training algorithm. The validation set is used

to ensure the network is not overly fitted to the training set. While processing

the validation set, no weights are adjusted. This is repeated until the error of

the network is sufficiently small. It should not be too small, because this could

indicate an overtrained network, which may not be general enough to be applied

to new data. Since the true classification must be provided beforehand, this form

of training is called ’supervised training’. Many different algorithms exist for

supervised training. One of the most famous is the backpropagation algorithm

[50], see Section 3.7.1.

In addition to supervised training, a network can also be trained unsupervised

or by reinforcement. In unsupervised training, only unrelated and unlabeled input

data are provided. No feedback about the output is provided and the network

is supposed to find a categorization on its own. The goal here is to study the

changes of the neural network for different data provided. The outcome might

be the discovery of new factors or labels common across previously unrelated

data. The article ’Building High-level Features - Using Large Scale Unsupervised

Learning’ [58] for examples successfully explores the ability of face recognition by

neural networks using unsupervised training.

Another training alternative is reinforcement training. Here, no training data

are used at all. Instead, a task is given as an input for the network to solve.

After it has been solved, feedback is given about the cost efficiency of the so-

lution. The cost are usually determined by the influence of the solution to its

surroundings. This process is repeated several times aiming for the most efficient

solution, which can then be carried out. Reinforcement training is for example

used in autonomous navigation. Since for this task it is not feasible to pre-train

all possible routes and directions [70], they have to be calculated and weighed on

the go. Here, a neural network can propose different routes and a cost function

can then return a value based on speed limits, road quality and so on. Based

on previous decisions, patterns can be formed, enabling the network to come to

optimal decisions faster.

The input data for a neural network are commonly normalized to either [−1, 1]

or [0, 1]. This practice has several reasons. Firstly, input data may vary in their

unit or order of magnitude, making it hard to put them into relation to each other
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Figure 3.7: Example for a typical single layer feed forward neural network. The
input layer consists of three input neurons (I1, I2, I3), each one taking a discrete
input and one bias neuron (B1) which is set to 1. The output layer also consists
of two neurons, O1 and O2.

[86]. Secondly, the likelihood of getting stuck in local minima may be reduced

and a global minimum may be determined faster.

An example for a feed forward neural network is shown in Figure 3.7.

3.7.1 Backpropagation

Backpropagation in the context of neural networks is a commonly used training

algorithms for supervised learning and is short for ’backward propagation of er-

rors’ [91]. The goal of backpropagation is to determine a set of weights for a given

neural network, that best maps an input vector to a desired output vector. The

network itself can be seen as a complex mathematical function, which accepts
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numerical input and produces a numerical output. In the process of training, the

weights of the connections are adjusted until the actual output is close to the

ideal one.

The Backpropagation algorithm consists of two recurring phases. In the first

phase, the training data are fed to the network and the output is calculated. This

is done by gradually calculating the individual output values for each neuron.

Taking Fig 3.7 as an example, the output for the neurons O1 and O2 would be

calculated as

O1 = S(I1w1 + I2w2 + I3w3 + w4) (3.3)

and

O2 = S(I1w5 + I2w6 + I3w7 + w8) (3.4)

where S is the Sigmoid function (see Equation 3.1).

For each neuron, the ideal output O
(ideal)
i is then compared to the actual output

using the quadratic error function

Error1 =
1

2

(
O

(ideal)
1 −O1

)2
(3.5)

Error2 =
1

2

(
O

(ideal)
2 −O2

)2
. (3.6)

The calculated error for all output neurons is then summed up

Errortotal = Error1 + Error2 (3.7)

returning the total error of the network.

In the second phase, the weights of the connections are updated to reduce the

total error of the network. This is done by traversing the layers backwards.

Firstly, the new weights connected to the output neurons O1 and O2 are deter-

mined by calculating the impact of each connected weight on the error function.

The new weight w′i is calculated by

w′i = wi − η
∂Errortotal

∂wi
(3.8)

where η is the learning rate1. ∂/∂wi denotes the partial derivative with respect

to wi. By applying the chain rule we obtain

1
The higher the value of the learning rate, the faster the network is trained. The lower the value, the more accurate

the training is, in general. However, the general problems are well-known, if the learning rate is too small or too
large, respectively, the convergence may be slow or no minimum may be found as the algorithm may oscillate around a
minimum.
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∂Errortotal
∂wi

=
∂Errortotal

∂Ok

∂Ok
∂Inj

∂Inj

∂wi
(3.9)

where Einstein’s summation convention is adopted (implicit summation over re-

peated indices). Ok is the output of the k-th neuron, see Equations (3.3) and

(3.4), and

In1 = I1 w1 + I2 w2 + I3 w3 + w4 (3.10)

In2 = I1 w5 + I2 w6 + I3 w7 + w8 (3.11)

are weighted sums of the input neurons. Furthermore

∂Errortotal
∂Ok

= −
(
O

(ideal)
k −Ok

)
(3.12)

∂Ok
∂Inj

= Ok(1−Ok) δkj (3.13)

where δkj is the Kronecker symbol, since

Ok =
1

1 + e−Ink
(3.14)

Finally,

∂Inj

∂wi
= Ii δji (3.15)

provided the i-th weight is connected to the j-th input neuron.

Each w′n is calculated. Then all weights of the neural network are updated.

The algorithms is applied until the calculated error of the network is either suf-

ficiently low or not improving anymore, or the maximum amount of iterations is

reached.

Resilient Backpropagation

Resilient Backpropagation, or ’RPROP’ is an improved version of the Back-

propagation algorithm [27]. It introduces several optimizations compared to

backpropagation.

Backpropagation uses the magnitude of the partial derivative to determine the

change of weights. This is problematic in case of larger changes, since a narrow

optimum might be missed. To mitigate this, a small learning rate is commonly
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chosen. However, this heavily increases the time necessary to train the network,

since each iteration only slightly changes the network.

RPROP introduces two significant changes. Firstly, rather than using the cal-

culated magnitude, only the sign of the gradient is used. Secondly, instead of a

global learning rate, a dynamic learning rate for each weight is set and adapted

during training.

In each iteration, the previous and current signs are compared. If the sign

is the same, the weight is updated by adding the current learning rate and the

learning rate is increased. If the sign changes, the learning rate is decreased and

the previous weight remains unchanged.

Usually, the main advantage of RPROP compared to the traditional backprop-

agation is a shorter training period for a given precission. The learning rate is

determined dynamically [12], which reduces the chance to oscillate around nar-

row minima. One characteristic aspect of RPROP is that the learning rate is

determined and adjusted dynamically per weight.

Variants In addition to the original resilient backpropagation algorithm three

popular variations of the algorithm exist. For better distinction, they have been

assigned different names by Igel et al. [52]

The variants are

• RPROP+ – The first version of RPROP

• RPROP- – RPROP without backtracking

• iRPROP- – Simplified version for easier implementation [76]

• iRPROP+ – Robust and typically faster than the above [75]

In our work the RPROP+ algorithm is used, since it is the default implemen-

tation in the Encog framework (see Section 3.10).

3.8 Block-Matching 3D

One example of a sophisticated noise removal algorithm is ‘Block-Matching 3D’

(BM3D) [37], which is a further improvement of the work presented in the article

’Image denoising with block-matching and 3D filtering’ [38]. BM3D is considered

as a very effective state of the art algorithm and works in multiple steps in

order to remove noise from an image. The workflow of BM3D is illustrated in

Figure 3.8.

The work-flow is divided into two separate steps. In step one
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Figure 3.9: Image processing by Block-Matching 3D. Left, an image with noise.
In the center, the first step of BM3D has been applied, already removing most of
the noise. On the right, the final version of the image is shown after both steps
of BM3D are applied [59].

• similar sub-images are grouped by a block-matching algorithm using a ref-

erence image and a pre-defined distance for similar blocks,

• for each group, all images are transformed into the Fourier space,

• a hard cut is applied to separate signal from noise,

• each group is converted back using an inverse Fourier transformation,

• the groups are aggregated into one image,

• and estimates of smoothed images of each group are gathered for use in the

next step.

In step two the results are refined using a Wiener filter. Here,

• the already processed as well as the original groups of sub-images are used,

• both groups are independently transformed into the Fourier space,

• a Wiener filter is applied with the processed group as the desired signal and

the original groups as the signal to be filtered,

• the reverse Fourier transformation is applied to the result of the Wiener

filter,

• and the image is aggregated.

An example of a noisy image processed by BM3D can be seen in Figure 3.9.

On the left, the source image is shown. In the middle the first step of BM3D is

applied and on the right, both steps are applied.

It can be seen that most of the random noise is already removed after the first

step. An open source implementation of the algorithm is proposed by Lebrun
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in the article ‘An analysis and implementation of the BM3D image denoising

method’ [60].

3.9 Field Programmable Gate Array (FPGA)

Field-programmable gate arrays (FPGAs) are integrated circuits which can be

reprogrammed after they have been manufactured [64]. FPGAs are programmed

using a special ’Hardware Description Language’. Logic blocks can either per-

form simple Boolean operators like AND and OR, or can be configured to carry

out combinational functions. Combinational functions are implemented using

Boolean logic to express more complex functions. Some FPGAs also contain

memory units for temporary storage. They can also contain analog parts, e.g.,

for signal processing.

Each FPGA is composed of programmable logic blocks that are connected.

These blocks can be reprogrammed and reconnected. Since FPGA designs offer

very fast I/O components and data buses, they can be programmed to efficiently

manipulate and process data. Their main advantage are the millions of logic

gates built into them. These enable a massively parallel data processing, given

the algorithm can be implemented in a parallelizable way. One example is an

FPGA programmed to calculate the fast Fourier transformation used in many

areas of research. It has already been shown that the performance of fast Fourier

transformation improves significantly by using FPGAs [88]. Another example is

encryption such as AES [34] or hash algorithms such as SHA [13], increasing the

performance of the encryption whilst freeing CPU resources.

3.10 Encog Framework

Encog is a machine learning framework [49]. It is available in Java, C++, and

.Net. All implementations support multithreading to utilize multicore machines.

In addition, the C++ implementation of Encog supports OpenCL compatible

GPUs (see Section 3.6) to offload parts of its computation.

Encog supports many different machine learning algorithms. Some examples

are

• Support Vector Machines [36],

• Genetic Programming [16],

• Hidden Markov Models [42], and

• Artificial Neural Networks [48].
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In addition, there are multiple training algorithms available for each learning

algorithm. The framework also offers a GUI based ’workbench’, which can be

used to model and train machine learning algorithms.
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Chapter 4

Problem Description

New generations of experiments in photon science such as the European XFEL

[46] will be able to produce diffraction images at unpreceded volume and fre-

quency. Given an image repetition rate of 27,000 images per second [15] and the

resolution of the CSPad detector (see Section 2.2.1), roughly 400 TB of data will

be generated per hour. When taking into account the small efficiency in photon

science of 5 % [25] and less [62], approximately 380 TB of useless data would be

stored every hour.

With these preconditions, it is neither practical nor desirable to store all data

offline, in particular due to the sheer size of financial investments. Therefore,

solutions have to be developed to pre-select the data online and as close to the

detector as possible. In addition, a multi-level solution refining and possibly

adding extracted and generated information during pre-selection would be de-

sirable. This would enable indexing tools like CrystFEL(see Section 3.2) to use

the coordinates of the Bragg spots found directly rather than extracting them

again.

Since the amount of data is very high, possible solutions need to be paralleliz-

able. It should also be explored, whether accelerator devices like Intel Xeon Phi

[74] or General Purpose GPUs (GPGPUs) e.g. NVidia Tesla [61] are be able to

increase the processing speed for individual images.

4.1 Test Data

In order to test and verify our approaches several runs of three different nano-

crystallography experiments were provided by CFEL. Each run contains at least

a few hundred images. Each experiment explored a different macro molecular

structure.
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Figure 4.1: Examples for different shapes and intensities of signals. It can be
seen that the intensities of the spots in the first and third images are stronger
relative to the background vary. In addition, it can be seen that the spots can
be pointlike but might also be sheared as in the second example.

The samples are

• the enzyme Cathepsin B (CatB) [72]),

• the 5-Hydroxytryptamine receptor 2B (5HT-2B) [68],

• and the granulovirus polyhedron (GV) [33].

All images were exported from the Cheetah software and provided as individual

files in the HDF5 format. In addition, files describing the geometry of the de-

tector at experiment time were provided as well as a list of Bragg spots Cheetah

found within the images along with their coordinates and intensities to compare

our results to. The main difference between the samples is the intensity and

distribution of random noise as well as the shape of the Bragg spots within an

image. Background noise and shape of Bragg spots also vary within images of

the same sample. Examples for the different shapes of Bragg spots can be seen

in Figure 4.1. Figure 4.2 shows two examples of panels capturing multiple Bragg

Spots. It can be seen that the shape as well as the relative intensity between the

spots and the background varies.

4.2 Data Verification

Cheetah (see Section 3.1) is currently used to identify Bragg spots. It is known

that Cheetah is not able to identify all Bragg spots correctly. The article ‘Serial

Femtosecond Crystallography of G Protein-Coupled Receptors’ [62] for exam-

ple mentions a hit rate of 3.6 % according to Cheetah. Of these hits, Cheetah

identified, only 21.5 % were indexed successfully by CrystFEL (see Section 3.2).

However, there is no standard solution to compare spots found in an image to.

The only way to ensure that an identified signal is a Bragg spot is manual verifi-

cation by an expert. Also, indexing tools like CrystFEL (see Section 3.2) can be

used to verify the Bragg spots found in an image. However, these tools merely

test whether the possible Bragg spots allow reconstructing a molecule orientation.
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(a) Multiple Bragg spots. (b) Three Bragg spots.

Figure 4.2: Image of one detector panel containing multiple Bragg spots of varying
intensity (4.2a) and three Bragg spots of different shape and intensity (4.2b).

This does not imply the spots identified are valid and complete.

Since there is no reliable method besides an expert reviewing all Bragg spots

found, we compare our results to Cheetah.

4.3 Data Normalization

Due to broken or stuck pixels of the detector, the data taken might contain val-

ues outside of the physically possible reading of 14 bit unsigned integer (16,364).

Since these unwanted effects might interfere with our analysis, the intensities of

all pixels outside these limits are set to zero.

Let I
(raw)
i be the intensity readout of the i-th pixel of an analyzed image. The

quantity

Ii =
I
(raw)
i

16, 364
θ(I

(raw)
i ) θ(16, 384− I(raw)i ) (4.1)

is called the intensity of the i-th pixel. θ(p) is the step function: it is zero for

negative p, and one for non-negative p.

Data normalization is always applied before any further analysis is taking

place.
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4.4 Links to the research questions

If diffraction images were not affected by noise, a veto engine for selecting

images with sufficiently many Bragg spots could easily be created. In practice,

diffraction images show noise from different sources. An example of a blank

image (no Bragg spots) containing only noise is shown in Figure 4.3. Besides

random noise distributed throughout the image there is, in addition, a concentric

ring of intense noise, the so called ‘water halo’ due to diffracted light from the

transportation liquid. Around the center of the image, there is strong noise from

the X-ray beam.

The software tool Cheetah, see Section 3.1, is used to search for Bragg spots

offline. It is not designed to work under realtime conditions. Furthermore, its

ability to recognize Bragg spots correctly is limited as already mentioned.

These considerations indicate the following approach. Firstly, a veto engine

close to the detector should be developed which rejects all images which do not

contain diffraction information. This is reflected in research question ‘1. How

is it possible to determine if there is adequate data within an image

at all?’. Once only images that most likely contain data are passed on by the

veto engine, the next question is, whether the data within the image are suitable

for more sophisticated analysis. Here, the question is, whether it is possible to

create an alternative to Cheetah, able to identify most of the Bragg spots within

an image correctly while being able to process many images in parallel. This

relates to research question ‘2. Is the data within an image useful for

further analysis?’. Since noise and noise removal in images are a well known

problem in image processing, the question arises whether and to which degree

algorithms from image processing can be used to remove the noise beforehand.

This is reflected in research question ‘4. Can existing algorithms be used

or adapted to facilitate the image optimization?’. Given it is possible

to develop solutions categorizing images and identifying signals in parallel, it is

also important to meet the realtime constraints. These are currently dictated, as

mentioned previously, by the European XFEL experiment taking 27,000 images

per second. Therefore possible solutions need to be explored in terms of their

runtime behavior and ability to scale up to this data rate. This is considered in

research question ‘3. Is it possible to solve the previous two questions

within real-time constraints?’.
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Figure 4.3: Example of an empty image with geometry applied. Random noise is
distributed throughout the image. A concentric ring of intense noise (water halo)
originating from diffracted light by the transportation liquid is visible. Strong
noise around the center is caused by the X-ray beam.
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Chapter 5

Neural Network as a veto

engine

The following chapter discusses our research on neural networks used as a

veto engine for data taken in nanocrystallography. Here, we are addressing the

research question 1. How is it possible to determine if there are adequate

data within an image at all? The findings have been published in the article

[18]. The content of the paper is covered in full in this chapter.

5.1 From complex to basic data

Large neural networks are successfully used to recognize handwriting. For

example digits [35]. Here, all pixels of an image are used as an input vector. The

benchmarked networks also contained multiple hidden layers.

At the beginning of our analysis we created a very large neural network, con-

taining one input neuron for every pixel of an image. In addition, a hidden layer

containing the same amount of neurons was used as well as two output neurons,

indicating whether an image is suitable for further analysis or not. The resulting

network consists of 2,296,660 input neurons, and the same amount of hidden neu-

rons. In combination with the large number of input data, training and analysis

took a long time because of the many calculations that had to be performed for

each processing step of the network. In addition, the recognition rate was very

poor.

The data showed that the established approach of using all pixels as an input

is not feasible or might require even larger networks. Increasing the size and

thus complexity of the network would result in even longer execution time for

computations. Because of the realtime constraints, exploring even larger networks
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is not a feasible option. Therefore, a more thorough analysis of the data had to

be done in order to fully understand the data we were trying to categorize.

The article ‘Selection of radio pulsar candidates using artificial neural networks’

[43] shows the utilization neural networks to identify pulsar candidates. The

neural network is composed of 12 input and 12 hidden neurons, working on 12

features explicitly derived from data.

After a more thorough analysis of our data, we surprisingly found that three

quantities extracted from an image are sufficient to achieve a high recognition

rate.

We define an image as an ordered list of pixels

I = I1, . . . , In (5.1)

where

n = lm (5.2)

is the number of pixels and l,m are the height and width of an image, respec-

tively.

The extracted quantities are

• the maximum intensity of all pixels of an image, Imax,

• the average intensity of all pixels within an image, Imean,

• as well as the standard deviation of the average, ∆I.

The maximum intensity is defined as

Imax = max
i

(Ii) (5.3)

, the mean intensity is defined as

Imean =
1

n

n∑
i=1

Ii (5.4)

and the standard deviation as

∆I =

√√√√ 1

n

n∑
i=1

(Ii − Imean)2 (5.5)

or

∆I =

√√√√ 1

n

n∑
i=1

(I2i )−

(
1

n

n∑
i=1

Ii

)2

. (5.6)
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Figure 5.1: Layout of our neural network.

The second form is used later on to determine the standard deviation within one

iteration over the image.

5.2 Architecture of the Neural Network

Based on the three quantities, a single layer feed forward neural network

(see Section 3.7.1) has been developed using (Imax, Imean, ∆I, 1) as the input

vector. The fourth component results from the introduction of a bias neuron

to the input. It is used to improve the approximation. Two output neurons

are used, indicating whether an image is useful for further analysis or not. A

hidden layer is not introduced. Resilient backpropagation is used for training

(see Section 3.7.1). The layout of the network is shown in Figure 5.1.

5.3 Output Calculation

The output of the neuron Ogood is used to identify indexable images and is

given by

Ogood = S(w1Imax + w2∆I + w3Imean + w4) . (5.7)
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Similarly, the output of the neuron indicating the likelihood of an image being

non-indexable is given by

Obad = S(w5Imax + w6∆I + w7Imean + w8) (5.8)

after the network has been trained. An image is considered as indexable, if

Ogood > Obad.

5.4 Data Optimizations

During the analysis of the data we found that the recognition rates varied for

the three different experiments. The recognition rates for the 5HT-2B and GV

samples were lower compared to CatB. After a visual inspection of the images,

we found that the level of noise in the images taken from 5HT-2B and GV is

much higher than CatB. To address this, two optimization techniques have been

introduced, aiming either to reduce noise or enhance the signal within a given

image as much as possible in order to increase the signal-to-noise ratio.

5.4.1 Background Subtraction

Background subtraction estimates a default level of random per-pixel noise.

To correct for this estimated baseline, the average is subtracted from each im-

age.

Single pixel background noise within images varies for each experimental run

(each run contains at least a few hundred images each, see Section 4.1). In

addition, it slightly varies during the same run, as well. Therefore, it is not

feasible to use one pre-defined level of noise for the entire image. The contribution

of each pixel has to be considered individually to remove as much noise as possible

upfront.

The transportation liquid can change in different experimental runs and some-

times even within the same run [17]. This is reflected in changes in the background

noise. Therefore, the average background should be re-determined in these cir-

cumstances by a new set of blank images from time to time. In our experiments

we assumed a static background noise for the given data.

Prior to an analysis, K = 500 blank images were selected. Based on these

images, an average noise level per pixel is determined as

I
(noise)
i =

1

K

K∑
k=1

I
(blank)
k,i (5.9)
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where I
(blank)
k,i stands for the intensity of the i-th pixel in the k-th blank im-

age.

The noise reduced image Ĩ is defined as

Ĩi =
(
Ii − I(noise)i

)
θ
(
Ii − I(noise)i

)
. (5.10)

Consequently, the basic data with background subtraction are defined as

Ĩmax = max
i

(
Ĩi

)
(5.11)

Ĩmean =
1

n

n∑
i=1

Ĩi (5.12)

∆Ĩ =

√√√√ 1

n

n∑
i=1

(
Ĩi − Ĩmean

)2
. (5.13)

5.4.2 Transverse Intensity

In scattering experiments, a particle is usually more likely registered at smaller

than at larger scattering angles, see e.g. the well-known Rutherford formula.

The scattering angle is approximately equal to ratio of the transverse momentum

over the initial momentum. Diffraction and scattering are closely related topics.

Therefore, it can be expected that photons in nanocrystallography are more likely

registered around the center of the CSPad detector than farther away in the outer

areas.

We were able to show that similar effects apply to nanocrystallography as

well. In order to mimic the role of the transverse momentum we introduce the

‘transverse intensity’

IT =

n∑
i=1

Ĩi sinϑi (5.14)

where

ϑi = atan

√
xi2 + yi2

z
(5.15)

is the scattering angle between the i-th pixel, the interaction point between sam-

ple and laser and the beam axis. xi and yi are the coordinates of the i-th pixel

relative to the center of the detector surface and z is the distance between the

interaction point of the laser and sample and the detector plane at the beam hole.
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In case of the LCLS experiment, the distance z is set to 68 mm (see Figure 2.6),

since only the front panel is used in current experiments. The transverse intensity

is defined correspondingly

ITmax = max
i

(
Ĩi sinϑi

)
(5.16)

ITmean =
1

n

n∑
i=1

Ĩi (5.17)

∆IT =

√√√√ 1

n

n∑
i=1

(
Ĩi − ITmean

)2
. (5.18)

5.5 Signal-to-noise ratio

The signal-to-noise ratio is defined as

SNR =
Psignal

Pnoise
(5.19)

where P is the average power of signal and noise, respectively. However, in our

case the values for Psignal and Pnoise are not known. The smaller Pnoise compared

to Psignal, the larger is the quantity SNR, i.e. high values are an indicator of clear

signals. Therefore, we define signal-to-noise ratio by

SNR =
Imean

∆I
(5.20)

where Imean is the mean intensity of an image and ∆I is the associated standard

deviation of the image I. The smaller the standard deviation, i.e. the noise, the

larger the value for SNR, as expected intuitively.

To calculate the average signal-to-noise ratio for K images, we define

SNRaverage =
1

K

K∑
n=1

Imean
k

∆Ik
(5.21)

as the average signal-to-noise ratio.

5.6 Experimental setup

In order to test the proposed neural network, it has been implemented using

the ‘Encog Machine Learning Framework’ [49] (see Section 3.10) and is written

in Java. The architecture can be seen in Figure 5.1. The value of the bias
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w1 w2 w3 w4

CatB

w/o optimization 7.21 −3.96 −3.82 −1.9
average subtraction 6.28 −0.26 −0.3 −1.58
average subtraction & 7.14 −0.26 −0.17 −1.32
transverse intensity

5HT-2B

w/o optimization 0.45 −13,357 10,553.77 −1
average subtraction 0.97 −5082.37 2814.12 −2.44
average subtraction & 0.97 −5082.37 2814.12 −2.44
transverse intensity

GV

w/o optimization 3.15 −25,719.88 22,964.67 −3.09
average subtraction 2.26 −3177.03 3176.71 −5.74
average subtraction & 2.2 −2107.5 2097.33 −3.67
transverse intensity

Table 5.1: Calculated weights w1 to w4 of the trained neural network.

neuron is set to 1 and the Sigmoid function is used as the activation function of

the neurons. Due the smoothness of the function, it prevents individual neuron

output from overpowering the network [78]. As previously mentioned, no hidden

layer is used. The initial weights of the connections are randomized for each run.

Resilient backpropagation is used as the training algorithm [27] (see Section 3.7.1)

to determine the weights w1 . . . w8 without additional options. It is an improved

version of the iterative backpropagation algorithm.

5.7 Results

To verify our results, the neural network has been trained and tested for

all three different macromolecules (see Section 4.1). From each of the three

molecules, 200 indexable and 200 non-indexable images according to Cheetah

were randomly selected. The term ‘indexable’ means an image is suitable for

analysis and ‘non-indexable’ means the images does not contain sufficient Bragg

spots. 100 images were used for training and the other half was used for verifica-

tion.

In Table 5.2 the calculated weights for the neural network are shown. The

weights represent the impact of the input data on the rating by the output neu-

rons. The weights and input neurons are connected as follows, see Figure 5.1:

• Imax – w1, w5

• Imean – w2, w6

• ∆I – w3, w7
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w5 w6 w7 w8

CatB

w/o optimization −6.33 4.27 2.92 1.71
average subtraction −5.85 1.71 0.58 1.4
average subtraction & −6.25 0.94 −1.12 1.12
transverse intensity

5HT-2B

w/o optimization −0.45 13,351.74 −10,549.5 0.99
average subtraction −0.97 5082.34 −2814.1 2.44
average subtraction & −0.97 5082.34 −2814.1 2.44
transverse intensity

GV

w/o optimization −3.19 26,078.63 −23,283.5 3.11
average subtraction −2.26 3176.98 −3176.66 5.74
average subtraction & -2.2 2107.43 −2097.26 3.67
transverse intensity

Table 5.2: Calculated weights w5 to w8 of the trained neural network.

The weights w4 and w8 are associated to the bias neuron. In the case of CatB,

Imax has the largest impact, because its associated weights are the largest. For

the other two samples however, Imean and ∆I have the by far greatest influence

on the output of the network. This can be explained by the noise in the images.

In the case of CatB, the noise level is rather low and most signals stand our clearly

against the background. Therefore, the maximum intensity is a meaningful value.

The images of the other two samples contain much more noise. In addition, the

signals in the images of GV are very weak. This means that the maximum inten-

sity is no clear indicator in these cases. Here, especially the standard deviation

seems to be the most meaningful quantity.

Table 5.4 shows the recognition rates of the network for the different samples

and optimizations. The previously discussed optimizations affect CatB in a pos-

itive way, further increasing the recognition rate. In case of 5HT-2B and GV,

the recognition rate is affected negatively by the optimizations. This is probably

due to the weaker signals in combination with more noise in the images. Most

likely, by applying background subtraction, valid signals are dampened as well

and transverse intensity also increases remaining noise.

The poorer recognition rates for 5HT-2B and GV can be explained by looking

at the signal-to-noise ratio. Table 5.3 shows the calculated average signal-to-noise

ratio using Equation 5.5 for a separate set of 50 indexable and 50 non-indexable

images. In case of CatB, the average for signal-to-noise ratio of indexable is

lower than for non-indexable images, whereas this is not the case for 5HT-2B

and GV. An equally high signal-to-noise ratio for indexable and non-indexable

images means that signals do not stand out against the background noise at

all.
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SNR indexable SNR non-indexable ∆

images images

CatB 1.11 0.82 0.29

5HT-2B 0.75 0.74 0.01

GV 0.56 0.54 0.02

Table 5.3: Signal-to-noise ratio calculated using equation 5.21. The mean signal-
to-noise ratio has been calculated for 50 indexable and 50 non-indexable images
for each sample. In addition, the distance between the signal-to-noise ratio of
indexable and non-indexable images is shown.

w/o optimization background subtraction background subtraction

& transverse intensity

CatB 88 % 90 % 93 %

5HT-2B 63 % 62 % 61 %

GV 79 % 74 % 70 %

Table 5.4: Average recognition rate of the neural network. True positive and true
negative combined for each sample. Absolute recognition rates are shown with-
out optimizations, with background subtraction applied as well as background
subtraction and transverse intensity combined.

5.8 Summary

In this chapter we showed that three basic data extracted from an image are

sufficient to categorize up to 93% of the images correctly compared to Cheetah.

In order to perform the actual categorization, we introduced a simplistic neu-

ral network with only three input values and no hidden layer. We found that

the main challenge in categorizing the data correctly is noise within the images.

Categorization can be done reliably, given the signal-to-noise ratio is sufficiently

high. To improve the recognition rates, two optimization techniques have been

introduced. Firstly the background subtraction, which calculates an average

noise level for each individual pixel, given a series of blank images. And, sec-

ondly, the transverse intensity, which we introduced as a new quantity in photon

science.
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Chapter 6

Signal Identification

In this chapter, it is shown why it is not possible to use most state of the art

noise removal algorithms in nanocrystallography. Our findings have been pub-

lished in the article [20] and are fully covered in this chapter. In addition, a

combination of algorithms is introduced to remove the noise specific to nano-

crystallography images, enhance signals, and detect signals within images. This

research has been published in the articles [19] and [21]. This chapter addresses

the research question 2. Is the data within an image useful for further

analysis? and 4. Can existing algorithms be used or adapted to facili-

tate the image optimization?

Once an image has been found to contain data, the next step is to detect

individual signals within the image. The article [17] states that based on practical

experience, an image should contain at least 20 Bragg spots in order to be suitable

for indexing using current tools like CrystFEL (see Section 3.2).

We found the main challenge in detecting diffraction information within an

image to be random noise spread throughout the image. Therefore, it is desirable

to remove as much noise as possible before searching for signals within an image.

In the last Chapter, we introduced background subtraction as a basic tool for

noise reduction and transverse intensity for the enhancement of signals at the

outer areas of the detector. In this Chapter, these ideas are revisited by using

convolution to dampen noise even further and enhance Bragg spots as well as

unifying their shape to improve recognition. We also focus on the identification

of individual signals within an image rather than classifying an image.

There are plenty of noise removal algorithms known in image processing. So-

phisticated algorithms are able to achieve very good results for typical pho-

tographs. They rely on significant differences between the characteristics of the

information a user wants to keep and the noise that should be removed. Fig-

ure 6.1a shows an original picture without noise. In Figure 6.1b 20 % random
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(a) Picture without noise

(b) Picture with 20% random noise

Figure 6.1: Example of a picture before and after adding 20 % random noise.

per pixel noise is added. Structures such as grassland, sky, and trees are still

recognizable. The size of the objects is much larger than the noise spots. In

nanocrystallography, however, noise and signal are both spot-like and cannot be

separated that easily.

6.1 Separation of noise and signal in nanocrystallo-

graphy

An example for signals in nanocrystallography is shown in Figure 6.2. The

bright spots are the actual signals. As can be seen, they are only a few pixels

in size. Dark areas or isolated low intensity pixels are background noise. In

contrast to elements in photographies, the distinction between content and noise

is much less pronounced. Bragg spots may have the same size as noise, namely
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Figure 6.2: A typical image taken from the 5HT-2B sample (50x50 pixel). The
small bright spots are the Bragg spots.

individual pixels and vary in shape and size. Consequently, it is not feasible to

use most of the algorithms in photography for removing noise from images in

photon science.

This can be understood as a consequence of the uncertainty relation, according

to which the resolution power of a Fourier series expansion is limited if the series

is replaced by a finite sum. In other words, a function and its Fourier transform

cannot both have a finite support. This is due to the fundamental Paley-Wiener

theorem which is proven in textbooks on the theory of Fourier transformations,

see e.g. [73].

It is instructive to illustrate the essential point of the theorem and the situation

in photon science by simple examples. Let us consider a one-dimensional signal

of Gaussian shape on the interval 0 ≤ x ≤ 2π

s(x ) = s0 e
−(x−x0 )2

σ2 (6.1)

where s0 is the amplitude, x0 the center and σ the width of the signal, see

Figure 6.3. The noise is identified with a periodic signal

n(x ) = n0 sin(kx ) (6.2)

where n0 is the amplitude and k the wave number.
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Figure 6.3: Blue curve: Gaussian signal around x = π, of the width σ = 1, Yellow
curve: signal with added noise (n0 = 1

10 , k = 10).

The resulting additive noise signal

sn(x) = s(x) + n(x) (6.3)

, see the yellow curve in Figure 6.3, can be expanded into a Fourier series

sn(x) =
∞∑

m=−∞
fmeimx (6.4)

where the Fourier coefficients are given by

fm =
1

2π

∫ 2π

0
sn(x)e−imxdx (6.5)

The integral can be calculated explicitly and is given by

fm =
σ

4
√
π

(
erf
(x0

σ
+ ik

σ

2

)
+ erf

(x0

σ
− ik

σ

2

)
e−k(k

σ2

4
+ix0)

)
(6.6)

where

erf(x) =
2√
π

∫ x

0
e−t

2
dt (6.7)

is the error function.

The Fourier coefficients are shown in Figure 6.4. The two non-vanishing values

of the imaginary part at the wave numbers m = -10 and 10 correspond exactly
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Figure 6.4: Fourier coefficients of the signal s and additive noise n.
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Figure 6.5: Reconstructed signal after application of a low pass filter. There is
almost no difference between snlowpass and the original signal. The influence of
the noise is mostly removed.

to the Fourier coefficients of the noise.

Let us define a low-pass filter by

snlow−pass(x) =
5∑

m=−5
fmeimx (6.8)

i.e. only the wave numbers between -5 and 5 are taken into account.

Functions fluctuating strongly show large Fourier coefficients at large wave

numbers, i.e. a function can be smoothed by applying a low-pass filter. Figure 6.5

shows that noise can be removed if the signal is sufficiently broad in relation to

the noise. This corresponds to the typical situation in photography and many

noise reduction algorithms are developed for this scenario.

However, in nanocrystallography both signal and noise are pointlike. Let us

consider a narrow signal

s′(x) = s0e
−(x−x0)

2

σ′2 (6.9)

where σ′ � σ, see Figure 6.6 where the width of the signal is comparable to the

inverse of the noise’s wavenumber, σ′ ≈ 1
k .

The plot of the combined signal and noise can be seen in Figure 6.6, where the

blue curve represents the function s(x) and the modified function

sn′(x) = s′ + n(x) (6.10)
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Figure 6.6: Blue curve: signal, yellow curve: signal plus noise (s0 = 1, x0 = π,
σ′ = 1

8 , k = 10).

is plotted in yellow.

The Fourier coefficients for the combined functions can be found in Figure 6.7.

The narrow signal is considerably influenced by Fourier coefficients at wave num-

bers m beyond the Fourier coefficients at |m| = 10. A separation between noise

and signal by applying a threshold is not possible, see Figure 6.8 showing the

reconstructed signal after the same low-pass filter has been applied. The recon-

structed signal is wider than the original one and, in addition, not all noise has

been removed.

This example illustrates why standard approaches for noise removal are not

applicable in nanocrystallography. Thresholds in the Fourier space cannot be

applied as thereby signals are removed as well. However, this technique works

well for noise reduction in photographs and is used by modern noise removal

algorithms like Block-Matching 3D (see Section 3.8).

6.2 Clusterfinder

As explained in the previous section, it is not feasible to use most state of

the art algorithms for noise removal. However, this does not mean that basic

algorithms from image processing cannot be adapted.

The clusterfinder algorithm uses established techniques of convolution [67] and

edge detection for identifying signals in images.
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Figure 6.7: Fourier coefficients of the narrow signal s′(x) with noise.
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Figure 6.8: Reconstructed signal after the application of the low-pass filter
snlow−pass(x).

It is composed of the steps

1. Reduction of single pixel noise

2. Edge detection

3. Signal identification

and will be discussed in detail in the following sections.

An image of the 5HT-2B sample is used to illustrate the optimizations intro-

duced by each step. This sample had the worst recognition rate by the neural

network discussed in the previous Chapter. This was mainly due to the amount

of noise in the images. It is used as an example here to illustrate the efficient

elimination of noise by the algorithms discussed in this Chapter.

A version without any optimizations (except data normalization, see Section 4.3)

and with geometry applied (see Section 2.2.2) is shown in Figure 6.9. To help the

eye, the contrast and brightness have been increased. Around the center, some of

the light of the X-ray flash has been captured. The concentric dark circle mostly

consists of diffracted light from the transportation liquid (water halo). Between

the water halo and the center of the image, small black spots can be seen. These

are Bragg spots.

6.2.1 Reduction of single pixel noise

Convolution is used in image processing for manipulating images in the small.

A small matrix (a so called image kernel, typically 3 × 3 or 5 × 5) is is applied

to the area around the pixel. Using a symmetric kernel it is possible to blur
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Figure 6.9: Image taken from the 5HT-2B sample without any optimizations
applied (except for normalization, see Section 4.3). For better visualization, the
contrast and brightness are increased, the intensity is inverted, and the panels
are arranged in the correct physical geometry. At the center part of the laser
beam can be seen as well as the beam hole. The concentric dark circle is due to
light diffracted from the transportation liquid (water halo). Between the water
halo and the center, small black spots (Bragg spots) are visible.
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or sharpen images, for example. With a non-symmetric kernel, edges within an

image can be detected or the image can be obfuscated.

The convolution operator ∗ of the image I with the kernel K (of dimension

M ′ ×N ′)

I ′ = I ∗K (6.11)

is defined via

I ′x,y =

M ′∑
m=1

N ′∑
n=1

Ix−m+2,y−n+2Km,n, (6.12)

The image I is defined as a M ×N matrix. In our case, the dimension of the

image matrix I is either 1552×1480 (without geometry applied, see Section 2.2.2)

or 2000× 2000 with geometry applied.

There are several ways to deal with pixels at the border of images. In our case,

the border area of an image is very unlikely to contain any useful information.

Therefore, the limits 1 < x < M and 1 < y < N are applied.

Most of the random noise within the images is single pixel noise. In order to

dampen this kind of noise, the image kernel

K =
1

9

1 1 1

1 1 1

1 1 1

 . (6.13)

is used.

Since K is symmetric and the sum of its components is 1, no intensity is lost

and the intensity of each pixel is smeared across its neighbors, thereby dampening

bright single pixels. The prefactor of 1
9 is chosen to ensure that the total intensity

of an image is not changed.

In Figure 6.10 single pixel noise reduction has been applied. Almost all random

noise has been removed. Only the previously very noisy area around the beam

hole at the center still contains some noise which is due to the strength of noise in

that area. The Bragg spots now clearly stand out against the background.

6.2.2 Edge Detection

A challenge in identifying signals in images from nanocrystallography is their

variation in shape and size (see Section 4.1).
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Figure 6.10: Sample image with noise reduction applied. It can be seen that most
of the random noise throughout the image has been dampened. In addition, the
water halo and noise around the center are dampened as well. The dark black
Bragg spots now clearly stand out against the background.
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However, what the spots have in common is the sudden increase in intensity

from one pixel to another, which stays high for a couple of pixels and then sud-

denly drops down again. This characteristic can be exploited to extract the Bragg

spots by applying edge detection.

Edge detection is a process in which the image is convoluted using multiple

separate, non-symmetric kernels. The well-known Sobel operator [85] defined

as

Sx =

−1 0 1

−2 0 2

−1 0 1

 and Sy =

−1 −2 −1

0 0 0

1 2 1

 (6.14)

is used to identify intensity jumps in the x- and y-direction, respectively. We use

the quantity

∆Ix,y =
√

(I ′ ∗ Sh)2x,y + (I ′ ∗ Sv)2x,y (6.15)

as a measure for the strength of the change in intensity at the pixel coordinates

x, y.

Figure 6.11 shows the previously noise reduced image with edge detection ap-

plied. It can be seen that the black Bragg spots now stand out much more clearly.

Since edge detection has been applied to the whole image, panel edges are high-

lighted as well, since all pixels between panels are 0 which represents a severe

change in intensity due to the ambient noise of the panels. However, since the

coordinates of the panel edges are known, the respective coordinates can either

be ignored or removed (see Section 6.3.3).

6.2.3 Signal Identification

Once the noise within the image has been removed and the Bragg spots are

isolated, it is possible to detect them using a simple, iterative algorithm. We

define a Bragg spot as a cluster of bright pixels whose total intensity is above

threshold of 100. The pseudocode of the algorithm is shown in Figure 6.12.

The algorithm first creates a new matrix with the same dimensions as the input

image. All components of the new matrix are set to zero. Then, a maximum

distance and brightness threshold is defined. Next, two nested for-loops iterate

over the whole image in x- and y- direction. Within these loops, two additional

for-loops examine the pixels up to the maximum distance around the current

pixel. If the pixel analyzed is above the brightness threshold, the surrounding

pixels are updated. Given the distance between the surrounding pixel and the

current pixel is lower than the defined maximum, the corresponding coordinates
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Figure 6.11: Sample image with noise reduction, inverted intensity, and edge
detection applied. Now the shape of the Bragg spots is more similar and the
contrast has been increased further.
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1: procedure clusterDetection(image)
Input: The image matrix in which clusters should be detected.
Output: A matrix clusterMatrix containing all clusters found.
2: clusterMatrix← dim(image)
3: maxDistance← 10
4: brightnessThreshold← 100
5: for x = 0 + maxDistance; x < size(image) - maxDistance; x++ do
6: for y = 0 + maxDistance; y < size(image) - maxDistance; y++ do
7: for i = x - maxDistance; i + maxDistance; i++ do
8: for j = y - maxDistance; j + maxDistance; j++ do
9: if image[x][y] >brightnessThreshold

&& calculateDistance(image[x][y],clusterMatrix[x][y]) <maxDistance then
10: clusterMatrix[x][y]← clusterMatrix[x][y] + 1
11: end if
12: end for
13: end for
14: end for
15: end for
16: return clusterMatrix
17: end procedure

Figure 6.12: Cluster detection in pseudo–code

x, y of the new matrix is increased by 1. After iterating over each pixel of the

source image, the new matrix contains all clusters found in the input image.

Since the main factor for this algorithm is the image size, its complexity is

O(n2).

The spots detected by this algorithm can be seen in Figure 6.13a. Figure 6.13b

shows an overlay of the spots found with the original, normalized image (Fig-

ure 6.9).

6.3 Optimizations

6.3.1 Binary Edge Detection

After edge detection has been applied to an image, all subsequent steps in the

analysis depend on a constant intensity threshold. This reduces all comparisons

to a binary decision. Therefore, this threshold can directly be applied after edge

detection has been applied to a pixel. This can be done by introducing the step

function

θthreshold(Ii) =

{
0, Ii < threshold

1, Ii ≥ threshold
(6.16)

where Ii denotes the intensity of the i-th pixel.
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(a) Clusters only

(b) Merged with original image.

Figure 6.13: Bragg spots found (6.13a) and merged with the original image
(6.13b). Most of the spots have been found. Some weaker ones were not identified
due to a pessimistically set threshold.
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Figure 6.14: Example for single pixel noise. The top left black pixel can be
removed, whereas the three connected pixels represent a valid signal.

In subsequent steps, all pixels with the value 1 will always contain data and

no further check against a threshold is necessary. In addition, since the valid

spots are singled out already, there is no need for a separate cluster detection

step.

6.3.2 Single Pixel Removal

After all optimization steps have been applied, an isolated pixel can never

represent a valid signal. Therefore it is useful to remove single pixels with an

intensity above the set threshold. To achieve that, for each pixel above the

threshold, all adjacent pixels are checked for intensities above the threshold. If

none of the eight checks returns true, the pixel is removed. Figure 6.14 shows

an example for single pixel noise. Here, the top left black pixel can be removed,

whereas the three connected black pixels should be kept.

6.3.3 Handling of Panel Boundaries

Pixels at panel boundaries need a special handling. Usually they are not taken

into account in the analysis. When edge detection is applied to these areas, an

edge is recorded due to the high change in in intensity. This may result in a false

positive signals.

There are different options for dealing with this effect. A general solution

would consist of introducing a matrix of the same size as the image. All of its

components that should be ignored are set to 1. This matrix can then be used

after edge detection has been applied. Each pixel in the image for which the

corresponding matrix component equals 1 is set to 0 in the processed image.
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That effectively removes all detected edges at boundaries known not to record

useful data.

6.3.4 Alternative Edge Detection Operators

Within the scope of our research the well known Sobel operator is used for

edge detection. One advantage of the Sobel operator is the simple computation

necessary compared to more complex techniques like the Deriche edge detector

[40] which requires multiple steps to apply edge detection for an image.

There are many alternatives operators which apply a different set of image

kernels to an image. Some examples are Prewitt operator [71], Roberts cross

operator [57] and the Scharr operator [81]. It should be explored, if these alter-

native operators could be utilized to improve edge detection further in these kind

of images.

6.4 Results

In order to verify our clusterfinder algorithm, 25 random indexable (useful) and

non-indexable (not useful) images were selected for each sample (see Section 4.1).

For each image, Bragg spots are detected and their coordinates are recorded. The

coordinates are then compared against the list of Bragg spots Cheetah found

with a distance tolerance of 10 pixels. The tolerance of 10 pixels is chosen to

allow for small differences in the calculation of the coordinate of a Bragg spot.

This is because the calculation of the center of a spot directly depends on all

pixels belonging to one spot. In a second run, we also applied the background

subtraction technique, introduced in Section 5.4.1.

The results are shown in Table 6.1 and Table 6.2 without background subtrac-

tion and in Table 6.3 and Table 6.4 with background subtraction applied.

In general, it can be seen that with background subtraction applied the amount

of spots in common is increased. This is due to a better signal-to-noise ratio of

Bragg spots and their surroundings. In case of the CatB and 5HT-2B sample,

our algorithm is able to locate more Bragg spots than Cheetah. For GV however,

Cheetah identified more Bragg spots. The difference between GV and the other

two samples might be explained by the comparably low signal-to-noise ratio in

case of the GV sample. It is well-known in signal processing that signals are

hard to identify if the signal-to-noise ratio is small. Consequently, it cannot be

expected that an ‘optimal’ and ‘stable’ threshold can be specified which allows to

identify as many Bragg spots as possible while minimizing false positives.
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Total spots: Total spots: Spots in Spots: Spots:
Cheetah clusterfinder common1 Cheetah

only1
clusterfinder
only1

CatB 937 1532 89 % 11 % 48 %

5HT-2B 1400 2169 68 % 30 % 59 %

GV 1180 1603 42 % 57 % 60 %

Table 6.1: Spots identified in indexable images. 1Compared to Cheetah.

Total spots: Total spots: Spots in Spots: Spots:
Cheetah clusterfinder common1 Cheetah

only1
clusterfinder
only1

CatB 0 66 0 % 0 % 100 %

5HT-2B 827 1768 68 % 30 % 59 %

GV 2015 1287 45 % 54 % 53 %

Table 6.2: Spots found in non-indexable images. 1Compared to Cheetah.

Total spots: Total spots: Spots in Spots: Spots:
Cheetah clusterfinder common1 Cheetah

only1
clusterfinder
only1

CatB 937 1427 90 % 10 % 42 %

5HT-2B 1400 2169 72 % 27 % 58 %

GV 1180 1093 43 % 56 % 19 %

Table 6.3: Spots found in indexable images using background subtraction.
1Compared to Cheetah.

Total spots: Total spots: Spots in Spots: Spots:
Cheetah clusterfinder common1 Cheetah

only1
clusterfinder
only1

CatB 0 22 0 % 0 % 100 %

5HT-2B 827 1768 59 % 39 % 68 %

GV 2015 1204 33 % 67 % 14 %

Table 6.4: Spots found in non-indexable images using background subtraction.
1Compared to Cheetah.

6.5 Summary

In this chapter we tried to answer the question, why sophisticated state of the

art algorithms for noise removal can not be used to remove noise in images from

nanocrystallography.
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We also introduced a multi-step algorithm, able to identify Bragg spots within

an image. To achieve this, firstly, single pixel noise within the image is dampened

by distributing the intensity of single bright pixels to adjacent pixels. Secondly,

fluctuations in intensity over the area of a few pixels are enhanced using edge

detection. Thirdly, all connected pixels above a given threshold are marked by a

cluster finding algorithm.

Using our algorithm, we were able to identify up to 90 % of the signals Cheetah

found. Our clusterfinder algorithm also identified additional signals.

In addition we introduced several optimizations. Binary edge detection com-

bines the previously mentioned edge detection with thresholding, which can be

build upon in later steps, eliminating the need for a dedicated cluster detection

step. Single pixel noise removal as well as empty grid removal are introduced as

well, helping to reduce false positives. This is done by removing single bright

pixels after edge detection has been applied. In addition we proposed a han-

dling of panel boundaries by defining a matrix with information about pixels

that should be ignored since they do not record valid data and may contribute

to false positives.
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Performance Aspects

In this chapter, we address the research question 3. Is it possible to solve

the previous two questions within real-time constraints? We present

a prototypical implementation of our work discussed in Chapter 5 and 6. The

findings have been published in article [22].

Parts of the prototype are implemented in OpenCL utilizing a GPU as an

accelerator device. The prototype is discussed in terms of its implementation,

recognition rate, and runtime behavior. At the end, we draw conclusions on the

implication of our benchmarks in nanocrystallography.

7.1 Prototypical Implementation

To verify our findings, we implemented a prototype of our proposed algorithms.

Previously, the algorithms have been implemented independently in Java to ver-

ify their capabilities. To explore the performance and runtime behavior of our

algorithms, we implemented our prototype in C. It is composed of a combination

of a modified version of the neural network discussed in Section 5.2 as well as

our clusterfinder algorithm discussed in Chapter 6. We include several functions

to be carried out by an accelerator device such as a GPU. The prototype is im-

plemented in multiple steps as shown in Figure 7.1. In the following paragraphs,

each step is described in detail.

Normalize Image Due to technical defects, individual pixels may show a value

outside the range the detector is recording (14 bit). Therefore, all pixels outside

the range of 0 < Ii < 16,364 are set to 0.
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Figure 7.1: State diagram of the proposed prototype. Firstly, the prototype
normalizes and optimizes the image. Secondly, our neural network is used to
categorize an image. Provided an image is rated above 0.5, then, thirdly, it is
considered as containing data. Edge detection is applied and the coordinates of
the signals (Bragg spots) are determined.
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Remove Single Pixel Noise As discussed in Section 6.2.1, most of the noise

within images is composed of individual bright pixels. Therefore, all subsequent

steps in the analysis chain can profit from removing this noise as soon as possi-

ble.

Since the output for each pixel in this step only depends on the source image,

it can be efficiently parallelized on an accelerator device.

In order to exploit the parallel processing capabilities of accelerator devices

supported by OpenCL, as many independent work packages as possible should

be created (see Section 3.6). Therefore, the processing kernel to be run on the

GPU has been assigned two dimensions with 1552 and 1480 items respectively.

This represents the dimensions of the image processed and ensures that all exe-

cution units are utilized. To save execution time, jump instructions in GPU code

should be avoided. Therefore, the commonly used for-loop for calculating the

convolution of a pixel with an image kernel by processing all adjacent pixels has

been unrolled to improve processing speed. The image kernel used can be seen

in Listing 7.1.

1 k e r n e l void c o n v o l u t e u n r o l l e d (

2 const g l o b a l short ∗ image ,

3 g l o b a l short ∗output ,

4 const g l o b a l short ∗width ) {
5

6 // The p i x e l o f f s e t we are working on i s c a l c u l a t e d

7 int column = g e t g l o b a l i d (0 ) + 1 ;

8 int p i x e l = ( g e t g l o b a l i d (1 ) + 1) ∗ ∗width + column ;

9

10 // The k e r n e l i s s e t as one v a l u e s i n c e a l l e lements

11 // are the same

12 f loat ke rne l = 1 / 9 . 0 ;

13

14 // I n i t i a l i z e the accumulator wi th 0

15 f loat accumulator = 0 ;

16

17 // Unro l l ed for−l oop summing the 3x3 matrix wi th the

18 // current p i x e l a t i t s c e n t e r

19 accumulator += image [ p i x e l − 1 − ∗width ] ∗ ke rne l ;

20 accumulator += image [ p i x e l − ∗width ] ∗ ke rne l ;

21 accumulator += image [ p i x e l + 1 − ∗width ] ∗ ke rne l ;

22 accumulator += image [ p i x e l − 1 ] ∗ ke rne l ;

23 accumulator += image [ p i x e l ] ∗ ke rne l ;
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24 accumulator += image [ p i x e l + 1 ] ∗ ke rne l ;

25 accumulator += image [ p i x e l − 1 + ∗width ] ∗ ke rne l ;

26 accumulator += image [ p i x e l + ∗width ] ∗ ke rne l ;

27 accumulator += image [ p i x e l + 1 + ∗width ] ∗ ke rne l ;

28

29 // Set the output p i x e l to 1/9 o f the

30 // computed accumulator to avoid an o v e r f l o w

31 output [ p i x e l ] = ( short ) ( accumulator / 9 . 0 ) ;

32 }

Listing 7.1: Convolution carried out on the GPU

The parameters ‘image’, ‘output’ and ‘width’ are passed to the image kernel.

Since all of them are shared by all work items they have to be in global memory.

Image as well as width are read-only, which means they can be declared as con-

stant, improving the latency for accessing them. In line 6, the variable column

stores the current column of the processed image by retrieving the current value

for dimension 0. In the next line, the variable pixel is calculated. It represents

the actual coordinate of the pixel processed by this work item. It is derived by

retrieving the current value for dimension 1 multiplied by the passed width plus

the previously calculated column offset.

In line 12 the image kernel is defined. Since all elements are the same, it is

defined as the value of one component. It is the same image kernel proposed in

Section 6.2.1 for dampening single pixel noise. In the lines 19 to 27, the values for

the current pixel as well as all adjacent ones are calculated by multiplying their

value with the filter and calculating their sum. Since more complex logic like

loops are executed rather slowly on accelerator devices, the loop iterating over

the 9 values has been unrolled. The last line finally sets the output of the current

pixel to 1
9 of the calculated sum to avoid an overflow of the short variable.

Calculate Basic Data In order to classify the data after the convolution is

applied, we use a modified version of the neural network proposed in Chapter 5.

The quantities I ′max, I ′mean and ∆I ′ are calculated by iterating over the noise

reduced image once.

To improve the runtime, only one output neuron is used, which reduces the

necessary calculation to

Orating(I
′) = S(I ′maxw1 + I ′meanw2 + ∆I ′w3 + w4) (7.1)

where S is the Sigmoid function.

Due to our previous experience with the neural network design introduced in
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Chapter 5, which has shown that the rating is either close to 0 or close to 1, we

choose 0.5 as the threshold between indexable and non-indexable images. We

consider all images for which the network outputs a value ≥ 0.5 as indexable and

continue with the identification of Bragg spots within the image.

Apply Binary Edge Detection Our optimized binary edge detection is ap-

plied to the convoluted image I ′ (see Section 6.3.1).

Since edge detection also uses convolution, this step has been implemented in

OpenCL as well. Similar to the ’Remove Single Pixel Noise’ step, an unrolled

version of the convolution using the Sobel operator has been implemented as an

OpenCL kernel. In addition, an intensity threshold is applied. It is applied once

edge detection has been performed. Given an intensity above the threshold, the

output is set to 1, otherwise to 0. A listing of the binary edge detection kernel is

shown in Listing 7.2.

1 k e r n e l void b i n a r y s o b e l ( const g l o b a l short ∗ image ,

2 g l o b a l short ∗output , const g l o b a l short ∗ thresho ld ,

3 const g l o b a l short ∗width ) {
4 f loat aX , aY , r e s u l t ;

5

6 // Ca l cu l a t e the o f f s e t f o r the current p i x e l

7 int column = g e t g l o b a l i d (0 ) + 1 ;

8 int p i x e l = ( g e t g l o b a l i d (1 ) + 1) ∗ ∗width + column ;

9

10 // Define the Sobe l opera tor f o r x and y d i r e c t i o n

11 short s o b e l x [ 9 ] = {−1, 0 , 1 , −2 , 0 , 2 , −1, 0 , 1} ;

12 short s o b e l y [ 9 ] = {−1, −2, −1, 0 , 0 , 0 , 1 , 2 , 1} ;

13

14 // I n i t i a l i z e the accumulators f o r x and y d i r e c t i o n

15 aX = 0 . 0 ;

16 aY = 0 . 0 ;

17

18 // Unro l l ed for−l oop f o r summing both 3x3 matr ices wi th

19 // the curren t p i x e l a t i t s cen te r

20 aX += image [ p i x e l − 1 − ∗width ] ∗ s o b e l x [ 0 ] ;

21 aY += image [ p i x e l − 1 − ∗width ] ∗ s o b e l y [ 0 ] ;

22

23 aX += image [ p i x e l − ∗width ] ∗ s o b e l x [ 1 ] ;

24 aY += image [ p i x e l − ∗width ] ∗ s o b e l y [ 1 ] ;

25

26 aX += image [ p i x e l + 1 − ∗width ] ∗ s o b e l x [ 2 ] ;

27 aY += image [ p i x e l + 1 − ∗width ] ∗ s o b e l y [ 2 ] ;

28

29 aX += image [ p i x e l − 1 ] ∗ s o b e l x [ 3 ] ;

30 aY += image [ p i x e l − 1 ] ∗ s o b e l y [ 3 ] ;

31

32 aX += image [ p i x e l ] ∗ s o b e l x [ 4 ] ;

33 aY += image [ p i x e l ] ∗ s o b e l y [ 4 ] ;

34
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35 aX += image [ p i x e l + 1 ] ∗ s o b e l x [ 5 ] ;

36 aY += image [ p i x e l + 1 ] ∗ s o b e l y [ 5 ] ;

37

38 aX += image [ p i x e l − 1 + ∗width ] ∗ s o b e l x [ 6 ] ;

39 aY += image [ p i x e l − 1 + ∗width ] ∗ s o b e l y [ 6 ] ;

40

41 aX += image [ p i x e l + ∗width ] ∗ s o b e l x [ 7 ] ;

42 aY += image [ p i x e l + ∗width ] ∗ s o b e l y [ 7 ] ;

43

44 aX += image [ p i x e l + 1 + ∗width ] ∗ s o b e l x [ 8 ] ;

45 aY += image [ p i x e l + 1 + ∗width ] ∗ s o b e l y [ 8 ] ;

46

47 // Resu l t i s the combination o f both accumulators

48 r e s u l t = s q r t (pow(aX, 2) + pow(aY , 2 ) ) ;

49

50 // D i r e c t l y app ly t h r e s h o l d i n g to the data ,

51 // s e t 1 f o r > t h r e sho l d , 0 f o r <= th r e s h o l d

52 i f ( r e s u l t > ∗ th r e sho ld ){
53 r e s u l t = 1 ;

54 } else {
55 r e s u l t = 0 ;

56 }
57

58 output [ p i x e l ] = ( short ) r e s u l t ;

59 }

Listing 7.2: Binary Sobel carried out on the GPU

Various quantities are passed to the execution kernel: the image to be pro-

cessed, the destination image, the image width as well as an intensity threshold.

Except for the output all parameters are set to constant, since they are only

read. All variables are also stored in global device memory, since they need to

be accessed by all work items. In line 7 the current column is calculated by re-

trieving the id of the work package for the first dimension. Then, in line 8, the

current pixel index is calculated. First, the current id for the second dimension

is retrieved. It is then multiplied with the image width in order to retrieve the

first index of the current row. The column offset is then added to retrieve the

correct index for the current work package. In line 11 and 12 the Sobel operator

is defined. It has been introduced in Section 6.2.2.

The lines 20 to 45, the Sobel operator is applied to the current pixel as well

as all adjacent ones. For performance reasons, no loop is used. Line 48 then

calculates the result for the current pixel.

Line 52 to 56 apply thresholding to the value just calculated, as discussed in

Section 6.3.1.
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Handle Panel Boundaries To avoid false positives, a predefined matrix is

used to locate and remove pixels at boundaries not recording useful data. This

is described in Section 6.3.3. It also saves computational resources, since in the

next step, for the removed pixels no adjacent pixels have to be checked. Since,

at this stage of the processing, the image matrix only contains binary values, the

values of the empty grid matrix have to be binary as well, 1 meaning the pixel

should be removed, 0 meaning it should not change. Therefore, for each pixel of

the binary image, the corresponding pixel of the empty grid matrix is subtracted.

If the value of the source pixel is already 0, no subtraction is necessary.

Find Connected Pixels In the last step, connected pixels are detected using

a recursive algorithm. We iterate over each pixel of the image. If a pixel has

the value 1, all adjacent pixels are examined recursively until all connected pixels

are found. In case of a pixel having the value 1 and no adjacent pixels are set

to 1, the pixel is set to 0 and discarded immediately, since a single pixel is very

unlikely to be a valid Bragg spot after binary edge detection has been applied.

Once the coordinate and intensity of a pixel is recorded, its value is set to 0 to

prevent the algorithm from looking at it again. Given the worst case of each pixel

within the image is set to 1, the algorithm will perform recursion with a depth

of the largest dimension of the matrix. In our case, this would mean a recursion

depth of 1580. However, this is only a theoretical case, since a typical Bragg spot

is only the size of a few pixels, keeping the recursion rather low.

A listing of the relevant code can be seen in Listing 7.3.

1 void a d d s p o t r e c u r s i v e ( braggspot ∗ l a s t s p o t , int coord inate ,

2 short ∗ c l u s t e r s , short ∗data ){
3

4 a p p e n d p i x e l t o s p o t ( l a s t s p o t ,

5 c r e a t e n e w b r a g g s p o t p i x e l ( coord inate , data [ coo rd ina te ] ) ) ;

6

7 // Set processed p i x e l to 0

8 c l u s t e r s [ coo rd inate ] = 0 ;

9

10 // l e f t

11 i f ( c l u s t e r s [ coo rd inate − 1 ] > 0){
12 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

13 l a s t s p o t , coo rd inate − 1) )

14 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

15 coord ina te − 1 , c l u s t e r s , data ) ;

16 }
17 // r i g h t

18 i f ( c l u s t e r s [ coo rd inate + 1 ] > 0){
19 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

20 l a s t s p o t , coo rd inate + 1) )
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21 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

22 coord ina te + 1 , c l u s t e r s , data ) ;

23 }
24 // top

25 i f ( c l u s t e r s [ coo rd inate − DIM X] > 0){
26 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

27 l a s t s p o t , coo rd inate − DIM X) )

28 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

29 coord ina te − DIM X, c l u s t e r s , data ) ;

30 }
31 // bottom

32 i f ( c l u s t e r s [ coo rd inate + DIM X] > 0){
33 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

34 l a s t s p o t , coo rd inate + DIM X) )

35 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

36 coord ina te + DIM X, c l u s t e r s , data ) ;

37 }
38 // top l e f t

39 i f ( c l u s t e r s [ coo rd inate − DIM X − 1 ] > 0){
40 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

41 l a s t s p o t , coo rd inate − DIM X − 1) )

42 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

43 coord inate − DIM X − 1 , c l u s t e r s , data ) ;

44 }
45 // top r i g h t

46 i f ( c l u s t e r s [ coo rd inate − DIM X + 1 ] > 0){
47 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

48 l a s t s p o t , coo rd inate − DIM X + 1))

49 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

50 coord inate − DIM X + 1 , c l u s t e r s , data ) ;

51 }
52 // bottom l e f t

53 i f ( c l u s t e r s [ coo rd inate + DIM X − 1 ] > 0){
54 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

55 l a s t s p o t , coo rd inate + DIM X − 1) )

56 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

57 coord inate + DIM X − 1 , c l u s t e r s , data ) ;

58 }
59 // bottom r i g h t

60 i f ( c l u s t e r s [ coo rd inate + DIM X + 1 ] > 0){
61 i f ( ! s e a r c h f o r c o o r d i n a t e i n b r a g g s p o t (

62 l a s t s p o t , coo rd inate + DIM X + 1))

63 a d d s p o t r e c u r s i v e ( l a s t s p o t ,

64 coord inate + DIM X + 1 , c l u s t e r s , data ) ;

65 }
66 }

Listing 7.3: Recursive detection of Bragg spots in a binary image.

Firstly, the currently processed pixel is added to the spot currently processed.

Secondly, the pixel just processed is set to 0 in order to avoid handling it again.

Thirdly, all adjacent pixels are checked. In a first step, it is examined whether
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Total Spots Spots in Spots Spots

Found Common Cheetah Only Prototype Only

CatB 442 294 118 30

5HT-2B 465 190 207 68

GV 871 265 419 187

Table 7.1: Total spots found in indexable images

% Spots % Spots % Spots

in common Cheetah only Prototype only

CatB 67 % 27 % 7 %

5HT-2B 41 % 45 % 15 %

GV 30 % 48 % 21 %

Table 7.2: Percentage of spots found in indexable images

its value is above 0. If so, it is verified that the current coordinate has not

already been recorded. Given this is true as well, the function calls itself with

the coordinate it just checked in order to add it to the currently processed spot

as well.

7.2 Recognition Rates

To verify our prototype, 10 indexable and 10 non-indexable images of each of

the three samples (see Section 4.1) have been manually verified and selected. As

mentioned in Section 4.2, there is currently no solution capable of identifying

all of the signals correctly. To create an objective test set, the images were

inspected and categorized manually. In a first step, we categorized the images

as ’indexable’ or ’non-indexable’ based on the calculated output of the neural

network. All images for which we received an output value ≥ 0.5 are considered as

indexable. To all these images, the clusterfinder algorithm is applied to identify

all Bragg Spots, their coordinates and intensities. The spots found are then

compared to the ones found using Cheetah (see Section 3.1). The results can be

found in Table 7.1 and 7.2. The rather low amount of signals detected by our

proposed prototype is due to a conservative intensity threshold, ensuring as few

false positives as possible.

It can be seen that besides the signals both algorithms found, each algorithm

was also able to detect signals, the other one missed. To explore this behavior,
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Total Spots Spots in Spots Cheetah Spots Prototype

Found Common Only (valid) Only (valid)

CatB 36 20 (20) 35 (3) 0

5HT-2B 52 44 (44) 22(15) 11 (6)

GV 95 21 (21) 51(33) 23 (8)

Table 7.3: Bragg spots found in two indexable images for each sample. The
numbers in parentheses indicate the number of ‘valid’ Bragg spots that could be
uniquely identified by hand.

we took two images from each sample and verified the signals found by both

applications manually. The results for these two images per sample can be found

in Table 7.3. It can be seen that both algorithms find additional valid spots as

well as false positives. We found that the false positives in case of the prototype

are due to broken pixels within a panel and the high amount of noise around the

beam hole. Cheetah, on the other hand, identified the most false positives at

panel edges and within the water halo. In addition, we found that the valid spots

identified by neither algorithm were almost exclusively very weak. Therefore,

their identification depends on the optimizations used before searching for signals,

which differs between our prototype and Cheetah.

To summarize, Cheetah and our algorithm differ in their sensitivity in identi-

fying false positive signals. Although a more thorough exploration of the depen-

dence of our algorithm on the parameters is needed, a clear identification should

not be expected. Rather, if a signal changes its state from ‘signal’ to ‘non-signal’

(or vice versa) when a second run with a somewhat different intensity threshold

value is performed, the corresponding signal should be marked as critical and

may be investigated more carefully later on in an offline analysis step.

In comparison to the previous recognition rates in Chapter 6 the amount of

spots commonly found by Cheetah as well as our prototype is lower. In Table 7.3

it is shown that our prototype generally found less spots than Cheetah. This can

be explained by the rather conservatively set threshold. The threshold has been

selected to ensure as few false positives as possible. As can be seen in Table 7.3,

in case of the 5HT-2B and GV sample, there are still false positives. These are

all without exception results of defects of the detector that Cheetah was aware

of but our prototype was not.
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7.3 Runtime

Due to the high data rate of experiments to come, it is very important to be

able to process images in an efficient way. Therefore, it is necessary to process

images in parallel. To explore the capabilities of our prototype, its individual

steps have been applied to

• the whole image – 64 panels

• the top and bottom half of the image – 32 panels each

• four individual quarters of the image – 16 panels each

• sixteen individual parts of the image – 4 panels each.

The prototype has been compiled using Apple LLVM version 7.0.2 (clang-

700.1.81) on Mac OS 10.11.3. No compiler optimizations have been used. The

runtime of the prototype has been measured using the Instruments application

7.2.1 which is part of the Apple Xcode IDE [1]. In Instruments, the ’time profiler’

instrument has been used to determine the runtime for each step of the prototype.

For each run of the application, one image is processed. In total, 10 runs have

been performed for each part of the image. Before executing the benchmark, the

system has been rebooted. The default system services are enabled and the only

foreground application is Instruments.

The execution time is measured after an image has been loaded into memory.

For each step the resulting data, given there are any, are copied into a new matrix.

In steps involving the GPU, the data transfer to and from the GPU is included

in the measured time as well.

The runtime of all variations can be found in Figure 7.2. The values are taken

from Table 7.4 where, in addition, the standard deviation is indicated. For sim-

plicity, it is identified with the largest standard deviation of the partial mea-

surement. This is sufficient to show that the uncertainty of the mean values is

sufficiently small, i.e. qualitative conclusions can be drawn from them.

It can be seen that the runtime decreases the fewer panels are analyzed. The

decrease tends to saturate for ‘Remove Single Pixel Noise’ as well as ‘Binary Edge

Detection’. This is most likely due to the overhead of managing and moving data

in memory, since as of now, GPUs do not have access to system memory [80]. We

expect an even smaller improvement for the processing of one panel only, since

memory management still has to be done.

The speedup of the other partial measurements is increasing nearly linearly with

the inverse number of panels. It can also be seen that the average runtime of

the ’Rate using Neural Network’ step is rather high. The long runtime compared

to other steps might be explained by the fact, that in order to calculate the
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Figure 7.2: Runtime behavior of the prototype for different panel counts. The
error bars represent the standard deviation.
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Step 64 Panels 32 Panels 16 Panels 4 Panels

AVG SD AVG SD AVG SD AVG SD

Normalize 5.8 ms 0.1 ms 3.0 ms 0.2 ms 1.5 ms 0.1 ms 0.4 ms 0 ms

Image

Remove Single 15.3 ms 1.2 ms 12.8 ms 0.8 ms 11.8 ms 0.7 ms 11.2 ms 0.4 ms

Pixel Noise

Rate using 15.9 ms 0.8 ms 8.1 ms 0.5 ms 4.0 ms 0.2 ms 1.0 ms 0.1 ms

NN

Binary Edge 10.4 ms 1.4 ms 7.3 ms 0.8 ms 6.3 ms 0.5 ms 5.1 ms 0.4 ms

Detection

Find connected 8.1 ms 1.3 ms 5.6 ms 1.2 ms 2.9 ms 0.2 ms 2.3 ms 0.4 ms

Pixels

Total 55.5 ms 3.3 ms 37 ms 2.7 ms 26.5 ms 2.8 ms 20 ms 2.1 ms

Table 7.4: Average runtime (AVG) for 10 runs of each step including the standard
deviation (SD).

CPU Intel I7-4650U 1.7 GHz (TurboBoost 3.3 GHz), 2 Cores

GPU Intel HD Graphics 5000, 1.5 GB VRAM, 40 execution units

RAM 8 GB DDR 1600 MHz

Table 7.5: Technical specs of the system used for benchmarking

three basic quantities, it is necessary to iterate and sum over each pixel of the

image which, in turn, is compatible with the observed O(n2) behavior of the

runtime. The rather high standard deviation might be explained by the amount

of independent steps necessary to calculate the output of the network.

The benchmarks have been run a system whose specification is shown in Ta-

ble 7.5. The influence of the ‘Turbo Boost’ technology[32] has not been explored

in our research.

In the following we estimate how many images per second can be processed

using our algorithm in the realm of photon science on the available hardware.

Several options are taken into account. Since the runtime is not decreasing at

least linearly and given a constant stream of images it is faster to process a full

image (64 panels) in one process. However, we are proposing a solution very close

to the detector device. Here, only parts of the image are available. Therefore,

the following calculations are carried out using only parts of the full image.

Case 1 Given the measured runtimes and taking into account the hardware

specs, it would be feasible to run two processes on this system at the same time

in parallel where each process is analyzing one half-image each. According to our

87



CHAPTER 7. PERFORMANCE ASPECTS

benchmark from Table 7.4, a half-image is processed in 37 ms. This would result

in

1 half-image per CPU× 2 Cores =
1

2

1

37/1000
2

images

s
= 27.03

images

s
. (7.2)

Case 2 State of the art server hardware will be able to process many more

images per second. Let us take the system currently used for the analysis of

diffraction images in nanocrystallography at the Center for Free Electron Lasers

(CFEL) in Hamburg [82] as an example. It has 24 CPUs and 144 physical cores

in total. The detailed technical specs are shown in Table 7.6.

Let us further assume that each CPU core is capable of processing some part

of an image at least at the speed of our system used for benchmarking and that

a GPU with sufficient performance is present. Our benchmark showed that it is

possible to process 4 panels in 20 ms, see Figure 7.2. Therefore, 64
4 = 16 processes

are needed for processing a whole image. By utilizing all 144 cores in parallel,

450 diffraction images could be processed per second

1

16
image per core× 144 cores =

1

16

1

20/1000
144

images

s
= 450

images

s
(7.3)

Case 3 The previous case assumes an efficiency of 100 %, meaning that every

diffraction image is indexable.

In real-world experiments, the efficiency is often as low as 5 % or even less and

may increase to 50 % [25].

In our prototype for each image the steps

• Normalize Image

• Remove Single Pixel Noise

• Calculate Neural Network Output

are executed, which accumulate to 12.6 ms when 4 panels are analyzed, see Ta-

ble 7.4. However, the steps

• Apply Binary Edge Detection

• Handle Panel Boundaries

• Find connected Pixels
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Figure 7.3: Runtime behavior depending on the efficiency of the experiment.
The values for 0 % and 100 % have been measured and the steps in between are
interpolated. Given a 0 % efficiency, the processing of each image takes 13 ms on
average and 690 images can be processed per second. For a 100 % efficiency, the
average processing duration is 20 ms per image, leading to 450 images per second.

adding 7.4 ms processing time, are only executed if the image is rated as ‘index-

able’ by the neural network. This means that only the steps up to the point

of calculating a rating for the image need to be carried out for each image. In

Equation 7.4 it has been shown that 450 images per second could be processed

in the case of each image being indexable. If no image contains Bragg spots only

the steps up to the rating by the neural network have to be applied, i.e. more

images could be processed per second:

1

16
image per core× 144 cores =

1

16

1

12.6/1000
144

images

s
= 714.29

images

s
(7.4)

In Figure 7.3 the runtime as a function of the efficiency between 0 % and 100 %

is shown by interpolation between 12.6 and 20 ms. The red line shows the average

runtime per image in ms. The green line shows the amount of images the system

is capable of analyzing per second.

The diagram shows that at a 50 % efficiency, which represents the best real-

world case [17], it would be possible to process 545 images per second. In the

case of a 5 % efficiency, 696 images could be processed per second.
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Case 4 The processing speed could be improved even further by separating

the steps necessary for categorization of the data and the signal identification

and localization. As detailed in Section 2.2.1, each of the four quadrants of

the detector are connected to an FPGA aggregating the data from all panels

connected. The article ‘A high-performance fully reconfigurable FPGA-based

2D convolution processor’ [69] explores high performances implementations of

convolution on FPGAs. It shows that the process of image convolution can be

carried out efficiently by FPGAs.

If the categorization steps up to the rating by the neural network were to be

moved to the FPGAs already in place or to a second FPGA connected serially,

it would remove the need for performing these steps later on. Since the FPGAs

already add attributes to the data captured, a convoluted version of the image

as well as the rating by the neural network could be also added and directly used

for subsequent analysis.

This, in turn, would save 12.6 ms execution time of the total analysis duration,

as the steps ‘Normalize Image’, ‘Remove Single Pixel Noise’ and ‘Calculate Neu-

ral Network Output’ would not be performed on the machine. Only the steps

‘Apply Binary Edge Detection’, ‘Handle Panel Boundaries’ and ‘Find connected

Pixels’ would need to be carried out here, which takes 3.3 ms in total to process

4 panels.

1

16
image per core× 144 cores =

1

16

1

7.4/1000
144

images

s
= 1216.2

images

s
(7.5)

Since 1216.2
27,000 = 0.045, approximately 4.5 % of the diffraction images could be

processed at the European XFEL. This, in turn, means that it would be possi-

ble to process all indexable images in real-time provided the efficiency is below

4.5 %.

On the other hand, given a higher efficiency than 4.5 %, i.e. more than 4.5 %

of the diffraction images contain Bragg spots, the system would not be able to

handle the data rate. This would mean that more hardware would be needed in

order to balance the workload between multiple systems.

Buffering might also come to mind to compensate for temporarily higher effi-

ciencies. The size of one image taken by the CSPad detector is

2296960 Pixel× 14
Bit

Pixel
= 32157440 Bit (7.6)

which means 3.84 MByte per image. By multiplying this with the image repeti-

tion rate of the European XFEL, we get
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CPU 24x Intel(R) Xeon(R) CPU X7542 2.67 GHz 6 Cores

RAM 768 GB

Table 7.6: Technical specs of the system used for analyzing diffraction images at
CFEL Hamburg.

27, 000
Image

Second
× 3.84

MByte

Image
= 103,680

MByte

Second
(7.7)

or 103.7 GB per second of data. Given this amount of data, it is not possible to

buffer the data for more than a few seconds using state of the art hardware. This

leaves artificially throttling the image repetition rate or discarding some images

as the only option.

7.4 Summary

In this Chapter we introduced a prototypical implementation of our proposed

algorithms from Chapter 5 and 6. The prototype has been implemented in C.

The steps involving convolution of the image are implemented in OpenCL and

are carried out on a GPU. Section 7.1 describes the individual steps of the pro-

totype. Next we verified the recognition rate of the prototype by comparing the

identified Bragg spots with the ones Cheetah (see Section 3.1) found. We also

took two images from each of the three samples and verified each spot found by

the prototype as well as Cheetah manually. We found that our prototype as well

as Cheetah easily identify Bragg spots with a sufficiently higher photon count

compared to the direct surroundings of the spot. The spots exclusively identified

by neither our prototype nor Cheetah were only very weak ones, not clearly set

apart from their surrounding. Lastly we explored the real-time capabilities of

our prototype by measuring the execution time for each main step for the whole

image and parts of it. Based on measured execution time of our system bench-

marked we then extrapolated the results and laid out a possible analysis setup

able to process up to 1216.2 images per second.
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Chapter 8

Conclusion

This Chapter concludes this thesis by revisiting the research questions intro-

duced in Chapter 1. The results regarding each question are discussed and the

impact of our proposed solutions is evaluated. The main research question this

thesis has tried to answer was whether it is possible to design an algorithm capa-

ble of rejecting all those images which are useless for further research within the

real-time-constraints of current as well as next generation experiments. In the

following sections, we answer this question by discussing each research question

derived from the main question. This discussion will be followed by an outlook

of possible further research.

8.1 How is it possible to determine if there is data

within an image at all?

In Chapter 5 we introduced an approach for categorizing images in ’indexable’

and ’non-indexable’. The neural network is able to recognize up to 93 % of the

images the Cheetah software (see Section 3.1) identified as useful for further

research. In order to perform the categorization, only three basic quantities have

to be extracted from the image.

We also introduced background subtraction to reduce noise within the images

before the analysis. In addition, we introduced the ’transverse intensity’ as a new

quantity in nanocrystallography images. The transverse intensity can be used to

calculate a factor for the compensation of the loss of intensity towards the outer

areas of the detector and therefore increases the signals in that area.

In conclusion, it is possible to determine whether an image contains data in

a fast and efficient way with the limitation of a sufficiently high signal-to-noise

ratio.
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8.2 Is the data within an image useful for further

analysis?

Chapter 6 discusses an algorithm developed to detect Bragg spots within an

image. It consists of multiple steps to remove as much noise as possible before

valid signals are identified. Firstly, single bright pixels are dampened using con-

volution. Secondly, signals are enhanced using edge detection by applying the

Sobel operator to the image. And Thirdly, clusters are detected throughout the

image using an iterative approach marking all spots above a pre-defined thresh-

old.

The results have been compared against Cheetah as well. We found that we

were able to identify up to 90 % of the signals, Cheetah found as well as additional

ones.

To sum up this section, we were able to create an algorithm able to identify valid

data within the image along with their location. This can be used in steps further

down the analysis chain to verify the eligibility of the image for the indexing

process by tools like CrystFEL (see. Section 3.2).

8.3 Is it possible to achieve the prior two questions

with regards to the real-time demands?

In Chapter 7 we presented results obtained from a prototypical implementa-

tion of the proposed algorithms in Chapter 5 and 6. In order to increase the

performance, parts of the prototype are executed on a GPU rather than the

CPU. All major steps of the prototype are explained and the recognition rate

is determined. In addition benchmark tests are performed. Based on the num-

bers gained we estimate the potential of the algorithms to be used in realtime

or near-realtime. We found that it might be possible to analyze in realtime the

output of the European XFEL experiment, which is designed to produce 27,000

images per second, provided no more than 4.5 % of the images contain useful

data which is a typical efficiency value in current experiments. The statement

relies on a transfer of the image categorization process to dedicated accelerator

hardware. Furthermore, the statement is obtained by considering the computa-

tional power of a system currently in use to process diffraction images at CFEL

Hamburg. If more potent hardware were to be available the throughput could

even be increased further.

In summary it seems to be possible to achieve the categorization of images

and identification of signals within each image with regards to real-time demands

posed by the European XFEL experiment with certain limitations.
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8.4 Can existing algorithms be used to facilitate the

image optimization?

There are plenty of algorithms able to remove noise from images and optimize

their appearance. However, Bragg spots tend to have a very small extension in

diffraction images and are very similar to generic noise. In Chapter 6 we were able

to successfully use the technique of convolution to remove single pixel noise from

images. We have also shown in Section 6.1, that modern sophisticated algorithms

like Block-Matching 3D (see Section 3.8) are not capable of separating noise from

signals in diffraction images. This is due to their approach of converting the

image into the Fourier space and applying a hard threshold cut by which also

small signals are removed from the image. And this, in turn, would also remove

valid signals (Bragg spots) which have to be kept.

The outcome of this research question is a perfect illustration of a successful

cooperation between informatics and physics. An essential prerequisite was to

understand first of all the essence of the physical process (here, that the data in

photon science are essentially taken in the Fourier space) and then, in a second

step, to choose the right algorithms out of the pool of informatics.

8.5 Design Proposal

A feasible way to process the huge amount of data created by the European

XFEL is suggested in Figure 8.1. Given the CSPad detector will be used at the

European XFEL, we propose to attach an accelerator system to each panel of the

detector. They acquire the data from the panels and, firstly, normalize the data

(as described in Section 4.3) using a simple analog cut function before the input

is digitized. Secondly, a rating of the data is done by using the neural network

proposed in this thesis. Depending on the rating, the data for each panel are

either passed to the next level or discarded directly. On a per-quadrant level,

another set of accelerators could then remove noise by applying a convolution

and rate the data again in order to refine the selection process. As we have

shown, removing single pixel noise greatly improves the signal-to-noise ratio of

diffraction images. Therefore, a much higher recognition rate can be expected

from the neural network, leading to only a small fraction of false positives. All

quadrants containing actual data pass their output to the data acquisition module

which combines all quadrants to one connected image. This image is then be

passed on to a system carrying out the signal identification as well as storing the

data.

As an accelerator system, either GPUs or FPGAs might be used. The article

‘Image Convolution Processing: a GPU versus FPGA Comparison’ [79] shows
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Figure 8.1: Proposed setup for real-time signal identification at the European
XFEL.
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Figure 8.2: Comparison of the execution time of convolution for different image
sized and accelerator devices [79]. The red and green lines show implementations
on the CPU using C and Matlab. The purple line shows the execution time for
an FPGA accelerator and the blue lines shows the runtime for an implementation
using CUDA on an NVIDIA desktop class GPU.

a benchmark of convolutions carried out on CPUs, GPUs and FPGAs. The

authors show that using a desktop-class GPU with CUDA support, it is possible

to perform a convolution to a 1600 x 1200 pixel image in 0.684 ms.

The runtime behavior of convolution should scale almost linearly with the num-

ber of pixels. We assume that this behavior will continue for smaller image di-

mensions. Each panel of the CSPad detector (see Section 2.2.1) consists of 194 x

185 pixels.

Consequently, the time for performing a convolution is approximately given

by

194× 185 pixel

1600× 1200 pixel
0.684 ms = 0.0128 ms (8.1)

Phrased differently, 1
0.0128 = 77810 images per second can be convoluted which

is much more than experiments like the European XFEL are able to produce

(see Chapter 4). Furthermore, it should be noted that the rates obtained in our
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benchmarks may be improved further by using modern FPGAs in addition to

GPUs as accelerator devices.

8.6 Outlook

The rate at which the European XFEL experiment is able to take data is

very challenging. It puts high demands on the performance of possible solutions

separating useful data from useless. The algorithms and techniques proposed in

this theses can be a foundation for a framework or workflow dealing with this

challenge in an efficient way. In addition, newer generations of hardware will be

able to process and access data in memory even faster, thus, further increasing

the processing capabilities of our solutions. The prototype developed for the

context of this thesis could also be improved. As of now, memory is allocated

to store the outcome of each step in order to extract partial results. By using

only one dataset and only passing pointers, memory copy and allocation could

be mostly avoided.

It should also be investigated, whether alternative approaches to our veto en-

gine work in a more efficient way. Instead of using neural networks for classifying

diffraction images, different classification algorithms may be explored, for exam-

ple decision trees or support vector machines.

Our algorithm for detecting Bragg spots within an image might be optimized as

well. It could be possible, that an alternative operator for edge detection might

help to increase the signal-to-noise ratio of signals even further. In addition, the

removal of single pixel noise and edge detection could be carried out in one step,

saving execution time, since convolution is associative.

Furthermore, the runtime complexity of the signal identification might be re-

ducible from O(n2) to, perhaps, O(n log n) by employing a divide and conquer

approach. An image could be trimmed until a Bragg spot is reached at each side.

The image would then be split in half and the process repeated. This would be

done until each sub-image only contains a single Bragg spot, since it does not

make sense to go smaller than the magnitude of Bragg spots. Once this step

is done, the coordinates of each spot can be returned recursively. However, it

would have to be researched how exactly an image would have to be split into

sub-images, which might be hard for spots of different shape.

It might also be possible that a different order and combination of the opti-

mizations proposed in this thesis might yield better results. In order to verify

this, a test suite could be compiled, able to apply optimizations automatically

in any given order. This could be used to automatically find the ideal order and

types of optimization leading to the best possible results.
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All algorithms presented in this thesis rely heavily on the ability to deter-

mine and remove noise. We have only scratched the tip of the iceberg. A more

thorough understanding of noise needs a deeper understanding of the physics

of the samples under investigation. In order to move forward in this field, the

inspiring communication between physicists and computer scientists should be

continued.
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