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Abstract
In this thesis, we present three languages for the development of tools that keep di�erent

system representations consistent during software development.

When complex IT systems are developed, it is common practice to use several pro-
gramming and modelling languages. System parts are designed and represented using
di�erent languages in order to support various design and development tasks. The overall
structure of a system, for example, is often represented with an architectural description
language. To specify the detailed behavior of individual system parts, a state-based
modelling language or a general purpose programming language are, however, more ap-
propriate. As these system parts and development tasks are related, these representations
often also contain redundant information. Such partially redundant representations are
usually not used in a static way but evolve during system development, which can lead
to inconsistencies that yield faulty designs and implementations. Therefore, consistent
system representations are crucial for the development of such systems.

There are various approaches to achieve consistent system representations by avoiding

inconsistencies. It is possible, for example, to create a central, redundancy-free represen-
tation that encompasses all information so that all other representations can be projected
from it1. Creating such a redundancy-free representation and editable projections is, how-
ever, not always feasible, especially if existing languages and editors have to be supported.
Another possibility to evade inconsistencies is to only allow modi�cations for a piece of
information at a unique source representation so that all other representations can only
read this information. This makes it possible to always override such information in all
read-only representations, but it also makes it necessary to completely isolate all editable
regions of representations.

If inconsistent representations cannot be completely avoided during system develop-
ment, developers or tools have to actively preserve consistency when representations
are modi�ed. Manual consistency preservation is, however, a time-consuming and error-
prone task. Therefore, consistency preservation tools that semi-automatically update
models during system development are developed in academia and industry. Such spe-
cial software engineering tools can be developed with general purpose programming
languages and with dedicated languages for consistency preservation.

In this thesis, we have identi�ed four major challenges that are currently only insu�-
ciently addressed by languages for developing consistency preservation tools. First, these
languages do not combine speci�c consistency preservation support with the expressive
power and �exibility of established general purpose programming languages. Therefore,
developers are either restricted to designated use cases or have to repeatedly develop
solutions to generic consistency preservation problems. Second, these languages either
support solution- or problem-oriented programming paradigms, which forces developers
to also provide preservation instructions for cases in which consistency declarations
would be su�cient. Third, these languages do not abstract away from enough consis-
tency preservation details, which requires developers to explicitly consider, for example,
preservation directions, change types, or matching problems. Last, these languages yield
preservation behavior that often appears to be detached from the speci�c use case when
interpreters and compilers run or generate code that is not needed to realize a particular
consistency speci�cation.

1C. Atkinson et al. “Orthographic Software Modeling: A Practical Approach to View-Based Development”.
In: Evaluation of Novel Approaches to Software Engineering. Vol. 69. Communications in Computer and
Information Science. Berlin/Heidelberg: Springer, 2010, pp. 206–219.
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Abstract

To address these issues of current approaches, this thesis makes the following con-
tributions: First, we present a collection and classi�cation of consistency preservation
challenges and discuss, for example, which challenges should not be addressed when
consistency is speci�ed but only when it is enforced. Second, we introduce an approach
for preserving consistency according to abstract speci�cations and formalize it using
set theory. This formalization is independent of how consistency enforcement is �nally
realized. With the presented approach, consistency is always preserved according to
monitored edit operations in order to avoid well-known matching and di�ng problems.
Last, we contribute three new languages for the development of tools that follow this
speci�cation-driven approach and which we brie�y explain in the following.

We present an imperative language that can be used to precisely de�ne how models
have to be updated in reaction to speci�c changes in order to preserve consistency in
one direction. This reactions language provides solutions to common problems, such
as identifying and retrieving changed or corresponding model elements. Furthermore,
it achieves unlimited expressive power as it allows developers to fallback to a general
purpose programming language. A second, bidirectional language for abstract mappings
can be used for cases in which di�erent edit operations do not need to be distinguished and
preservation directions are not always relevant. With this mappings language, developers
can declare conditions for model elements that should be considered consistent without
bothering about details of checking and enforcing consistency. For this, the compiler
automatically derives enforcement code from checks and bidirectionalizes conditions that
are speci�ed for one consistency preservation direction. This bidirectionalization is based
on an extensible set of composable, operator-speci�c inverters that ful�ll common round-
trip requirements. As a result, developers can express common consistency requirements
concisely and do not need to repeat code for di�erent consistency preservation directions,
change types, or properties of model elements. A third, normative language can be
used to complete the previous ones with parameterized consistency invariants. This
invariants language adopts collection operators and iterators from the Object Constraint
Language (OCL). Furthermore, it relieves developers from writing code that searches for
invariant-violating elements as queries that perform this task are automatically derived
for invariant parameters. The three languages can be used in combination or individually.
They give developers the possibility to specify consistency using di�erent programming
paradigms and language abstractions. We also present prototypical compilers and editors
for the three consistency speci�cation languages based on the multi-view modelling
framework Vitruvius. With this framework, changes in textual and graphical editors
are automatically monitored to trigger reactions, to enforce mappings, and to check
invariants by executing the Java source code that is produced by our compilers.

For all languages presented in this thesis, we have evaluated theoretical completeness
and correctness as well as practical applicability and bene�ts. We show that the languages
completely cover the intended range of use and analyze their computational completeness.
Furthermore, we discuss correctness for each language individually and for speci�c lan-
guage features. The operator-speci�c inverters that we have developed to bidirectionalize
mapping conditions, for example, always ful�ll a new notion of best-possible behaved
round-trips. It is based on the established notion of well-behaved transformations2 and
guarantees that common round-trip laws are ful�lled whenever this is possible. We
demonstrate the practical applicability with case studies in which consistency was suc-
cessfully preserved with tools that were written using the presented languages. Finally,
we discuss potential bene�ts of the languages and compare, for example, consistency
preservation tools that were realized in two case studies. Those tools that were developed
using the reactions language have between 33% and 71% fewer source lines of code than
functionally equivalent tools that were written in Java or the Java dialect Xtend.

2J. N. Foster et al. “Combinators for Bidirectional Tree Transformations: A Linguistic Approach to the View-
update Problem”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 29.3 (May
2007).
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Zusammenfassung

In dieser Dissertation stellen wir drei Sprachen für die Entwicklung von Werkzeugen vor,

welche Systemrepräsentationen während der Softwareentwicklung konsistent halten.

Bei der Entwicklung komplexer informationstechnischer Systeme ist es üblich, mehrere
Programmiersprachen und Modellierungssprachen zu nutzen. Dabei werden Teile des
Systems mit unterschiedlichen Sprachen konstruiert und dargestellt, um verschiedene
Entwurfs- und Entwicklungstätigkeiten zu unterstützen. Die übergreifende Struktur
eines Systems wird beispielsweise oft mit Hilfe einer Architekturbeschreibungsspra-
che dargestellt. Für die Spezi�kation des detaillierten Verhaltens einzelner Systemteile
ist hingegen eine zustandsbasierte Modellierungssprache oder eine Allzweckprogram-
miersprache geeigneter. Da die Systemteile und Entwicklungstätigkeiten in Beziehung
zueinander stehen, enthalten diese Repräsentationen oftmals auch redundante Informa-
tionen. Solche partiell redundanten Repräsentationen werden meist nicht statisch genutzt,
sondern evolvieren während der Systementwicklung, was zu Inkonsistenzen und damit
zu fehlerhaften Entwürfen und Implementierungen führen kann. Daher sind konsistente
Systemrepräsentationen entscheidend für die Entwicklung solcher Systeme.

Es gibt verschiedene Ansätze, die konsistente Systemrepräsentationen dadurch er-
reichen, dass Inkonsistenzen vermieden werden. So ist es beispielsweise möglich, eine
zentrale, redundanzfreie Repräsentation zu erstellen, welche alle Informationen enthält,
um alle anderen Repräsentationen daraus projizieren zu können3. Es ist jedoch nicht
immer praktikabel solch eine redundanzfreie Repräsentation und editierbare Projektio-
nen zu erstellen, insbesondere wenn existierende Sprachen und Editoren unterstützt
werden müssen. Eine weitere Möglichkeit zur Umgehung von Inkonsistenzen besteht
darin Änderungen einzelner Informationen nur an einer eindeutigen Quellrepräsentation
zuzulassen, sodass alle anderen Repräsentationen diese Information nur lesen können. Da-
durch können solche Informationen in allen lesend zugreifenden Repräsentationen immer
überschrieben werden, jedoch müssen dazu alle editierbaren Repräsentationsbereiche
komplett voneinander getrennt werden.

Falls inkonsistente Repräsentationen während der Systementwicklung nicht völlig
vermieden werden können, müssen Entwickler oder Werkzeuge aktiv die Konsistenz
erhalten, wenn Repräsentationen modi�ziert werden. Die manuelle Konsistenthaltung ist
jedoch eine zeitaufwändige und fehleranfällige Tätigkeit. Daher werden in Forschungs-
einrichtungen und in der Industrie Konsistenthaltungswerkzeuge entwickelt, die teil-
automatisiert Modelle während der Systementwicklung aktualisieren. Solche speziellen
Software-Entwicklungswerkzeuge können mit Allzweckprogrammiersprachen und mit
dedizierten Konsistenthaltungssprachen entwickelt werden.

In dieser Dissertation haben wir vier bedeutende Herausforderungen identi�ziert,
die momentan nur unzureichend von Sprachen zur Entwicklung von Konsistenthal-
tungswerkzeugen adressiert werden. Erstens kombinieren diese Sprachen spezi�sche
Unterstützung zur Konsistenthaltung nicht mit der Ausdrucksmächtigkeit und Flexibi-
lität etablierter Allzweckprogrammiersprachen. Daher sind Entwickler entweder auf
ausgewiesene Anwendungsfälle beschränkt, oder sie müssen wiederholt Lösungen für ge-
nerische Konsistenthaltungsprobleme entwickeln. Zweitens unterstützen diese Sprachen
entweder lösungs- oder problemorientierte Programmierparadigmen, sodass Entwickler

3C. Atkinson u. a. “Orthographic Software Modeling: A Practical Approach to View-Based Development”.
In: Evaluation of Novel Approaches to Software Engineering. Bd. 69. Communications in Computer and
Information Science. Berlin/Heidelberg: Springer, 2010, S. 206–219.
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gezwungen sind, Erhaltungsinstruktionen auch in Fällen anzugeben, in denen Konsis-
tenzdeklarationen ausreichend wären. Drittens abstrahieren diese Sprachen nicht von
genügend Konsistenthaltungsdetails, wodurch Entwickler explizit beispielsweise Erhal-
tungsrichtungen, Änderungstypen oder Übereinstimmungsprobleme berücksichtigen
müssen. Viertens führen diese Sprachen zu Erhaltungsverhalten, das oft vom konkreten
Anwendungsfall losgelöst zu sein scheint, wenn Interpreter und Übersetzer Code ausfüh-
ren oder erzeugen, der zur Realisierung einer spezi�schen Konsistenzspezi�kation nicht
benötigt wird.

Um diese Probleme aktueller Ansätze zu adressieren, leistet diese Dissertation die
folgenden Beiträge: Erstens stellen wir eine Sammlung und Klassi�zierung von Heraus-
forderungen der Konsistenthaltung vor. Dabei diskutieren wir beispielsweise, welche
Herausforderungen nicht bereits adressiert werden sollten, wenn Konsistenz spezi�ziert
wird, sondern erst wenn sie durchgesetzt wird. Zweitens führen wir einen Ansatz zur
Erhaltung von Konsistenz gemäß abstrakter Spezi�kationen ein und formalisieren ihn
mengentheoretisch. Diese Formalisierung ist unabhängig davon wie Konsistenzdurch-
setzungen letztendlich realisiert werden. Mit dem vorgestellten Ansatz wird Konsistenz
immer anhand von beobachteten Editieroperationen bewahrt, um bekannte Probleme zur
Berechnung von Übereinstimmungen und Di�erenzen zu vermeiden. Schließlich stellen
wir drei neue Sprachen zur Entwicklung von Werkzeugen vor, die den vorgestellten,
spezi�kationsgeleiteten Ansatz verfolgen und welche wir im Folgenden kurz erläutern.

Wir präsentieren eine imperative Sprache, die verwendet werden kann, um präzise zu
spezi�zieren, wie Modelle in Reaktion auf spezi�sche Änderungen aktualisiert werden
müssen, um Konsistenz in eine Richtung zu erhalten. Diese Reaktionssprache stellt Lösun-
gen für häu�ge Probleme bereit, wie beispielsweise die Identi�zierung und das Abrufen
geänderter oder korrespondierender Modellelemente. Außerdem erreicht sie eine unein-
geschränkte Ausdrucksmächtigkeit, indem sie Entwicklern ermöglicht, auf eine Allzweck-
programmiersprache zurückzugreifen. Eine zweite, bidirektionale Sprache für abstrakte
Abbildungen kann für Fälle verwendet werden, in denen verschiedene Änderungsopera-
tionen nicht unterschieden werden müssen und außerdem die Erhaltungsrichtung nicht
immer eine Rolle spielt. Mit dieser Abbildungssprache können Entwickler Bedingungen
deklarieren, die ausdrücken, wann Modellelemente als konsistent zueinander angesehen
werden sollen, ohne sich um Details der Überprüfung oder Durchsetzung von Konsis-
tenz bemühen zu müssen. Dazu leitet der Übersetzer automatisch Durchsetzungscode
aus Überprüfungen ab und bidirektionalisiert Bedingungen, die für eine Richtung der
Konsistenthaltung spezi�ziert wurden. Diese Bidirektionalisierung basiert auf einer erwei-
terbaren Menge von komponierbaren, operatorspezi�schen Invertierern, die verbreitete
Round-trip-Anforderungen erfüllen. Infolgedessen können Entwickler häu�g vorkom-
mende Konsistenzanforderungen konzise ausdrücken und müssen keinen Quelltext für
verschiedene Konsistenthaltungsrichtungen, Änderungstypen oder Eigenschaften von
Modellelementen wiederholen. Eine dritte, normative Sprache kann verwendet werden,
um die vorherigen Sprachen mit parametrisierbaren Konsistenzinvarianten zu ergänzen.
Diese Invariantensprache übernimmt Operatoren und Iteratoren für Elementsammlungen
von der Object Constraint Language (OCL). Außerdem nimmt sie Entwicklern das Schrei-
ben von Quelltext zur Suche nach invariantenverletzenden Elementen ab, da Abfragen,
welche diese Aufgaben übernehmen, automatisch anhand von Invariantenparametern
abgeleitet werden. Die drei Sprachen können in Kombination und einzeln verwendet
werden. Sie ermöglichen es Entwicklern, Konsistenz unter Verwendung verschiedener
Programmierparadigmen und Sprachabstraktionen zu spezi�zieren. Wir stellen auch
prototypische Übersetzer und Editoren für die drei Konsistenzspezi�kationssprachen
vor, welche auf dem Vitruvius-Rahmenwerk für Multi-Sichten-Modellierung basieren.
Mit diesem Rahmenwerk werden Änderungen in textuellen und graphischen Editoren
automatisch beobachtet, um Reaktionen auszulösen, Abbildungen durchzusetzen und

iv
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Invarianten zu überprüfen. Dies geschieht indem der von unseren Übersetzern erzeugte
Java-Code ausgeführt wird.

Außerdem haben wir für alle Sprachen, die in dieser Dissertation vorgestellt werden,
folgende theoretischen und praktischen Eigenschaften evaluiert: Vollständigkeit, Korrekt-
heit, Anwendbarkeit, und Nutzen. So zeigen wir, dass die Sprachen ihre vorgesehenen
Einsatzbereiche vollständig abdecken und analysieren ihre Berechnungsvollständigkeit.
Außerdem diskutieren wir die Korrektheit jeder einzelnen Sprache sowie die Korrektheit
einzelner Sprachmerkmale. Die operatorspezi�schen Invertierer, die wir zur Bidirek-
tionalisierung von Abbildungsbedingungen entwickelt haben, erfüllen beispielsweise
immer das neu eingeführte Konzept bestmöglich erzogener Round-trips. Dieses basiert auf
dem bewährten Konzept wohlerzogener Transformationen4 und garantiert, dass übliche
Round-trip-Gesetze erfüllt werden, wann immer dies möglich ist. Wir veranschaulichen
die praktische Anwendbarkeit mit Fallstudien, in denen Konsistenz erfolgreich mit Hilfe
von Werkzeugen erhalten wurde, die in den von uns vorgestellten Sprachen geschrieben
wurden. Zum Schluss diskutieren wir den potenziellen Nutzen unserer Sprachen und
vergleichen beispielsweise Konsistenthaltungswerkzeuge die in zwei Fallstudien realisiert
wurden. Die Werkzeuge, die mit der Reaktionssprache entwickelt wurden, benötigen
zwischen 33% und 71% weniger Zeilen Quelltext als funktional gleichwertige Werkzeuge,
die mit in Java oder dem Java-Dialekt Xtend entwickelt wurden.

4J. N. Foster u. a. “Combinators for Bidirectional Tree Transformations: A Linguistic Approach to the View-
update Problem”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 29.3 (Mai 2007).
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1. Introduction

languages for developing
so�ware engineering tools

In this thesis, we present languages that can be used to develop software engineering
tools that keep models of di�erent languages consistent during development. Before we
explain which research goals and questions lead to the development of these languages,
we brie�y introduce the context of our research and explain how it is motivated.

1.1. Motivation

system representations as
models which can evolve
inconsistently

Complex IT systems are often developed using several programming and modelling
languages. In order to support various development tasks, di�erent languages can be
used to represent parts of the system under development from several perspectives. As
the system parts and the development tasks are usually not isolated but related, it cannot
be avoided that system information is redundantly represented. Such partially redundant
representations are not in themselves problematic, but they are usually not created one
after the other and then never changed again. Instead, these representations often evolve
during design and development and thus become inconsistent with other representations.
Such inconsistencies can lead to wrong design decisions and faulty implementations,
which may be costly to �x. For this problem of inconsistent redundancy in system
representations, it is not important whether the information is textually or graphically
represented and which other information is abstracted away. Instead, it is crucial which
parts of the representations are related and to which rules these relations have to comply
to achieve consistent representations. All representations—also those that describe the
precise runtime behavior and are often called code—can be regarded and treated as models

of the system. Therefore, the process of avoiding or repairing such inconsistencies
can also be described as the process of preserving consistency between models of di�erent

languages, which is the last and biggest part of the title of this dissertation.
avoiding inconsistencies
by avoiding redundancies

One possibility to avoid such inconsistencies between di�erent models is to create a
central model that encompasses all information so that all other models can be projected
from it [ATM15]. Such a redundancy-free system representation is also called a Single
Underlying Model (SUM) and used, for example, in the Orthographic Software Modeling
approach [ASB10]. Before inconsistencies can be completely avoided using a SUM, a mod-
elling language for this SUM has to be de�ned and transformations have to be developed
for projecting SUM information into views and vice versa. If changes in the projective
views are directly applied to the SUM, then such a SUM-based approach guarantees con-
sistency by construction. It can, however, be complex to develop the modelling language
for the SUM and the editable projections, especially if many di�erent perspectives are
needed. Furthermore, it is impossible to use editors without major modi�cations and
it can be costly to develop new editors for existing languages in order to apply editor
changes correctly to the SUM.

restricting modifications
to a unique information
source

If redundant models cannot be avoided because existing languages or editors have to
be used, then inconsistencies can still be evaded with strong editability restrictions for
redundant information [Bur14]. One possibility is to support modi�cations of redundant
information only in one model and to only allow reads but no writes for this information
in all other views. This way, changes can always be propagated from the unique source
to all other views by overriding the old version of the redundant information. It is,
however, very di�cult to decide which information may be modi�ed in which models
so that a piece of editable information is always completely isolated from other editable
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1. Introduction

parts. This problem of isolating editable regions is similar to the problem of �nding a
redundancy-free SUM and has the e�ect that this approach can also not be used in all
development contexts.

tools that mix consistency
specification, checking,

and enforcement

If neither projections from a redundancy-free SUM nor modi�cation restrictions to
unique information sources are feasible, then consistent models cannot be guaranteed,
and consistency needs to be actively preserved. As consistency preservation is a time-
consuming and error-prone task, special software engineering tools that update models
during system development are often developed and used. These tools are responsible
for keeping models of di�erent languages consistent and can be seen as a special form
of model transformations. If models become inconsistent or are at risk of becoming
inconsistent with other models, then these tools update model elements in order to
preserve consistency. When developers create such tools, they indirectly de�ne under
which conditions models are considered consistent, how consistency is checked, and
how it is enforced in case of inconsistencies. These three parts of specifying, checking,
and enforcing consistency are closely related, but they have very di�erent characteristics.
What is considered consistent is solely determined by the conceptual relations between
the domains that are modelled and by the notation that is prescribed by the used lan-
guages. How this consistency should be checked is, however, also in�uenced by many
technical concerns and not only by speci�cs of the used models and languages. Similarly,
consistency enforcement mechanisms often mix issues of the technical solution with
concerns of the modelling domain. Questions of when and how to enforce consistency
can, for example, also be in�uenced by the way in which users modify models in editors.

insu�icient support for
developing consistency

preservation tools

Current approaches and languages that can be used to develop consistency preserva-
tion tools consider the above-mentioned speci�c characteristics of specifying, checking,
and enforcing consistency insu�ciently. With current approaches, developers are, for
example, often forced to solve technical issues of realizing consistency checks and en-
forcement even if these issues are not related to the speci�c models and languages for
which consistency is to be preserved. Furthermore, many approaches only support declar-
ative consistency speci�cations for particular relations between model elements and are
therefore limited to suitable consistency preservation contexts. Finally, developers that
use such approaches cannot take all information on changes that were performed by
users into account, and cannot request user feedback in order to decide how consistency
has to be preserved.

challenges of languages
for developing consistency

preservation tools

In this thesis, we analyze challenges to consistency preservation and contribute new
consistency speci�cation languages for the development of tools that keep models of
di�erent languages consistent after changes. We identi�ed four Open Consistency Speci-

�cation Language Challenges (OCSLCs):

Speci�city Limits Expressive Power: Speci�c consistency preservation support can only
be used in certain contexts and for special consistency relations.

Either Solution- or Problem-Oriented Paradigms: This forces developers to realize all con-
sistency requirements from one perspective and to provide preservation instructions
where consistency declarations would be su�cient.

Missing Abstractions and Adaptations: Consistency preservation details often have to be
considered although they are not needed to preserve consistency for a particular
modelling language.

Detached Preservation Behavior: Interpreters with complex rules and compilers that pro-
duce much code that is not needed to realize a particular consistency speci�cation.

developing consistency
preservation tools using
reactions, mappings, and

invariants

The languages presented in this thesis address these open challenges and provide
solutions for problems that occur in many contexts of consistency preservation. In order
to explain how consistency can be preserved using the presented languages, we have
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formally de�ned fundamental concepts that describe consistency speci�cations and con-
sistency preservation in a realization-independent way. To adequately support all possible
contexts and requirements of consistency preservation for models of arbitrary languages,
the presented languages support di�erent programming paradigms and provide fallback
mechanisms. If it is necessary, developers can use the reactions language to precisely
de�ne how models have to be updated in reaction to speci�c changes in order to preserve
consistency in a certain direction. Common tasks, such as resolving corresponding ele-
ments, are supported with dedicated language constructs in order to relieve developers
from repeatedly solving such generic problems. For cases where consistency never needs
to be preserved in a change-speci�c way and not always in a direction-speci�c way, we
present the mappings language. With it, developers can specify consistency conditions
in a declarative way to abstract away from individual changes and details of checking
and enforcing consistency. This abstraction is possible because enforcements are auto-
matically derived from checks, and unidirectional enforcement code is automatically
bidirectionalized using program inversion techniques. Both the imperative reactions
language and the bidirectional mappings language are complemented by the normative
invariants language. Developers can use it to specify consistency invariants in a notation
that is closely aligned with the Object Constraint Language (OCL). To ease consistency
preservation after violations of such invariants, the compiler of the invariants language
automatically derives queries that return the model elements that violate an invariant.
All three languages give developers various possibilities to declare which cases are con-
sidered consistency problems without providing instructions on how these problems are
to be solved if this is not necessary.

evaluation of theoretical
completeness and
correctness as well as
practical applicability and
benefit

We have realized all languages with prototypical compilers and evaluated theoretical
and practical properties of the presented languages. For every language, we discuss
completeness with respect to the intended range of use and correctness, for example,
according to formal semantics or round-trip laws. For the inversion of mapping conditions,
for example, we show that code for both consistency enforcement directions always
ful�lls a new notion of best-possible behaved round-trips. It guarantees that common
round-trip laws are ful�lled whenever this is possible and is based on the established
notion of well-behaved transformations [Fos+07]. Furthermore, we demonstrate the
applicability of the languages using case studies in which consistency was successfully
preserved with tools that were written using the presented languages. Finally, we discuss
potential bene�ts of the presented languages. We discuss, for example, two case studies in
which consistency preservation tools that were realized using the reactions language have
between 33% and 71% fewer source lines of code than functionally equivalent realizations
in Java or a Java dialect.

1.2. Problem Statement

research gapTo summarize the problems that we already presented in the preceding motivation, we
formulate a problem statement in terms of a research gap: To our knowledge, all current
approaches provide

no realization-independent notion of how consistency can be speci�ed and preserved for
models of arbitrary modelling languages

no change-driven consistency preservation that is triggered by user changes, depends on
performed edit operations, and provides possibilities to interact with users in order to
disambiguate the intended e�ects of their changes

no comprehensive language for developing consistency preservation tools with support
for all potential contexts and requirements of consistency preservation

7
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1.3. Goals and Questions

The research presented in this thesis was guided by and is presented to achieve the
following goal:

Goal:the overall goal of this
thesis . . .

Identify recurring challenges of change-driven consistency preservation for models
of di�erent languages and provide support for specifying such consistency preservation.

As a �rst step towards operationalizing this goal, we rephrase it as a question. This will
give the reader the possibility to determine whether we reached our goal by analyzing
whether we provided a satisfactory answer to the question.

Question:. . . rephrased as a question What are recurring challenges of change-driven consistency preservation for
models of di�erent languages and how can we provide language support for specifying
such consistency preservation?

As both the goal and the question already consist of two distinct parts, we have
separated and re�ned these parts. For both parts we have formulated two more speci�c
research questions, and we have created subquestions that pinpoint further details.

1.3.1. Identify Challenges and Define Consistency

challenges and a
realization-independent

definition

For the �rst part of our overall goal, we formulated a research question, which does
not only ask about challenges to consistency preservation but also about a de�nition
that does not depend on how consistency is realized in the end. This research question is
mainly answered in Part II of this thesis and stated as follows:

Research Question 1: How to de�ne change-driven consistency preservation for models of
di�erent languages in a realization-independent way and what are recurring challenges
to it?

In order to further operationalize our research, we have formulated four subquestions
for this question:

Subquestion 1.1: What are recurring challenges of consistency preservation and how can
they be classi�ed, for example based on when they should be addressed?

Subquestion 1.2: Which of these challenges occur when consistency is speci�ed and which
challenges should be addressed by consistency speci�cation languages?

Subquestion 1.3: Can we formally de�ne how consistency can be speci�ed in a realization-
independent way and what are di�erences of such a speci�cation-driven notion of
consistency to other notions of consistency?

Subquestion 1.4: How to formally de�ne whether this speci�cation-driven notion of
consistency is preserved after changes and how can we check this in a realization-
independent way?

from conceptual support
to practical support

Answers to this question and its subquestions can help developers of consistency
preservation tools to better understand which of the challenges that they are facing
are not speci�c to their context and are therefore also addressed by other developers.
Furthermore, developers of consistency speci�cation languages or of other consistency
preservation approaches can use such answers to put their work into relation and to
embed it into an overall concept of consistency preservation. This kind of support is,
however, rather conceptual, and therefore we have also formulated a second research
question that asks for more practical consistency preservation support.
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1.3.2. Support through Specification Languages

support through
languages for specifying
consistency preservation

The second research question is concerned with the second part of the overall goal
and particularly asks for speci�cation languages that support developers by addressing
those challenges that should be addressed on this language level. This research question
is mainly answered in Part III of this thesis and states as follows:

Research Question 2: How to provide support for specifying change-driven consistency
preservation for models of di�erent languages with speci�cation languages that address
the challenges identi�ed in subquestion 1.2?

questions for challenges
identified for subquestion
1.2

For this question, we have also created four subquestions with further details. They
are the direct result of our answer to subquestion 1.2, which asked about challenges for
consistency speci�cation languages. Every subquestion is a pendant to an OCSLC, which
we will present in detail in section 3.5.

Subquestion 2.1: How to provide languages that combine speci�c consistency speci�cation
support with unrestricted expressive power and �exibility?

Subquestion 2.2: How to support solution-oriented and problem-oriented speci�cations of
change-driven consistency with such languages?

Subquestion 2.3: How to adapt this language support to speci�c needs and abstract away

from details that are not relevant for consistency preservation?

Subquestion 2.4: How to preserve consistency with such languages in a way that allows
developers to foresee how consistency is enforced according to their speci�cation?

1.4. Contributions

explicit answers and
language realizations

The contributions of this thesis are our answers to the previously presented two
research questions, which we provide in chapter 3–8. Our answers to the second research
question are not only textually described but also provided in terms of compilers and
editors that realize the presented languages. The two central parts of this thesis, the
research questions, the contribution chapters, and their relations are also illustrated in
Figure 1.1.

1.4.1. Consistency Challenges and Definitions

To answer the �rst research question, we provide a classi�cation of challenges to consis-
tency preservation and a formal language that de�nes how consistency can be speci�ed
and preserved after changes. More speci�cally, we contribute

a collection and classi�cation of challenges that can occur when consistency is to be pre-
served for models of di�erent languages. challenges to encounter

and where to address
them

Developers of consistency preservation
tools can encounter these challenges regardless of the used modelling languages and
preservation techniques. The classi�cation illustrates which consistency challenges
should be addressed, for example, already when modelling languages are designed and
which challenges should not be addressed when consistency is speci�ed but only when
it is enforced. Both, the collections of challenges and its classi�cation are presented in
chapter 3 as an answer to subquestion 1.1 and 1.2.

a formal language that introduces fundamental concepts of consistency preservation in
a realization-independent way using set theory. formal preservation

concept as a foundation
for other languages

It de�nes how consistency can be
speci�ed in such a way that it is possible to analyze whether consistency is preserved
after changes. These speci�cation-driven consistency concepts are also used to explain
the semantics of the languages that can be used to develop consistency preservation
tools. The formal language is presented in chapter 4 to answer subquestion 1.3 and 1.4

9



1. Introduction

Part II (research question 1):

Chapter 3: Challenges

Chapter 4: Formal Language

Part III (research question 2):

Chapter 5: Language Framework

Chapter 6: Reactions Language

Chapter 7: Mappings Language

Chapter 8: Invariants Language

explained using

realized with

address

adds to

use features of

complements

Figure 1.1.: Parts, research questions, and contribution chapters of this thesis

1.4.2. Specification Languages for Preserving Consistency

To answer the second research question, we present three new languages for developing
consistency preservation tools based on speci�cations, and a language framework that
integrates features that are provided by all three languages. These languages complement
each other, and together they answer subquestion 2.1–2.4. More speci�cally, we contribute

a framework for languages that can be used to specify consistency in such a way that
consistency according to a speci�cation is semi-automatically preserved after user
changes.generic change

representations and
expression extensions

These changes are monitored and can be universally processed by preser-
vation programs as they are represented as instances of a generic change modelling
language. The language framework provides a Java-based expression language that
also supports well-known collection operators and iterators of OCL. It is presented in
chapter 5 and especially answers subquestion 2.2 and 2.4.

an imperative language for universal consistency reactions that consist of preservation
actions which are triggered for particular changes.structured, restricted, and

reduced reactions code
To relieve developers from writing

repetitive code, the reactions language provides declarative constructs for common
consistency preservation tasks, such as resolving or creating corresponding elements.
Furthermore, the language supports developers in structuring their code along three
main steps of consistency preservation so that they develop manageable reactions
without unwanted side-e�ects. The reactions language is presented in chapter 6 and
especially answers subquestion 2.1 and 2.3.

a bidirectional language for abstract consistency mappings that complement the reac-
tions language as they can be used if consistency does not need to be preserved in
a change- or direction-speci�c way.automated

bidirectionalization and
unidirectional fallback

In order to relieve developers from specifying
symmetric consistency relations twice, the language automatically derives code that
enforces conditions from a check speci�cation and inverse enforcement code from
bidirectionalizable conditions for the opposite preservation direction. To support many
possible consistency relations, the mappings language gives developers the possibility
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to fallback to imperative, unidirectional code whenever this is necessary. It is presented
in chapter 7 and especially answers subquestion 2.1 and 2.3.

a normative language for parameterized consistency invariants that can be used in ad-
dition to the reactions and the mappings language whenever constraints should be
declared. derivation of queries for

invariant violating
elements

If such invariants are violated the model elements that are responsible for
the violation can be obtained using queries that are automatically derived for invariant
parameters. The invariants language is presented in chapter 8 and especially answers
subquestion 2.2.

1.5. Outline

structure of chapters and
parts

The remainder of this thesis is structured as follows: First, we brie�y introduce funda-
mental concepts and terms in chapter 2. This concludes the prelude part of this thesis.
Then, we present our collection and classi�cation of challenges to consistency preserva-
tion in chapter 3 and explain our formal language in chapter 4. Together, both chapters
form the second part corresponding to research question 1. Subsequently, we introduce
our language framework that also comprises the change modelling language and the
OCL-aligned expression extension in chapter 5. Then, we present the reactions, mappings,
and invariants language in chapter 6–8. This concludes the third part corresponding to
research question 2. Next, we discuss how we evaluated our contributions in chapter 9
and describe related work in chapter 10. These chapters form the fourth part of this thesis.
Finally, we conclude this dissertation and provide an outlook on possible directions for
future work in chapter 11.

suggestions for fast
reading

We suggest readers that cannot read the complete thesis to start with the framework
chapter 5 and to follow back references to the challenges of chapter 3 and to the formal
language of chapter 4 where necessary. As several parts of the chapters for the individual
languages rely on the features provided by the framework, we do not suggest to directly
start with one of these chapters. Apart from these features, each language chapter can
also be read in isolation.

11





2. Foundations

models, languages, views,
and formal definitions

In this chapter, we introduce fundamental concepts and terms that are used in the
subsequent chapters of this thesis. First, we explain what models are, how they are used
for software development, and how modelling languages can be built. Then, we brie�y
describe the multi-view modelling framework Vitruvius, which we have extended in this
thesis, refer to the approach that inspired it and introduce the fundamental problem of
multi-view consistency preservation. Finally, we formally de�ne all modelling concepts
on which our formal language for speci�cation-driven consistency preservation is built
(see chapter 4).

2.1. Models and Languages

In this thesis, we present programming languages that can be used to develop tools that
preserve consistency between models that conform to di�erent modelling languages.
Therefore, models and modelling languages are central concepts of this thesis, which we
will explain in the following.

2.1.1. Model Theory

general model theory
regardless of disciplines
and context

Models are used in many engineering disciplines and in several �elds of computer
science. These models share many common properties, but what is considered a model
can also be very di�erent depending on the context. Therefore, we brie�y introduce the
so-called general model theory of Stachowiak [Sta73] before we explain models in the
context of software development. Stachowiak de�nes the term model by postulating three
main characteristics of models: representation, reduction, and pragmatics Stachowiak
[Sta73, pp. 131–133]

representing originals and
their properties

According to Stachowiak, the representation characteristic is ful�lled if a model rep-
resents originals and their properties. These originals can be any “perceptiple” or “con-
structable” entities and they may be itself act as a model of another original [Sta73, p.
131]. We interpret the statement that “representation coincides with mapping properties
of models to properties of originals” [Sta73, p. 132] in such a way that it is required that
all properties of a model can be mapped to a property of an original. That is, a modelled
property has to represent a property of an original and may not add any properties.

reduction to relevant
properties

The reduction characteristic is ful�lled if not all but only those properties of an original
“that seem relevant to the creator or user of a model” are represented [Sta73, p. 132]. This
characteristic does not yet demand further requirements for those properties that are
represented or not. It only requires that some properties are selected and others are not.

pragmatic replacement of
originals

A model ful�lls the last main characteristic, called pragmatics, if it replaces an original
for certain subjects, for certain periods, and for certain functions to achieve a certain
purpose [Sta73, p. 132]. This means, a model is no absolute representation of an original
but a pragmatic replacement for a certain context and usage. The two other characteristics
of representation and reduction should be considered relative to the pragmatics of a
model. That is, how reduced properties of an original are represented and which other
properties are abstracted away is determined by the pragmatics of a model.
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2.1.2. Model-Driven So�ware Development

development automation
throughmodels

Model-Driven Software Development (MDSD) is a term that is not precisely de�ned
but in many contexts, in which it is used, it stands for a development paradigm in which
models are used in an automated way for all development tasks. Some of the goals
that are often pursued using this paradigm by means of automation are an increase in
development speed, improved software quality, and better productivity through reuse
[VS06, pp. 13]. The central goal of automation in MDSD is also what is often used to
distinguish MDSD from other software development approaches in which models are
used, for example, for documentation purposes but not processed automatically. To ease
the automation, many concepts and tools for model transformations are used in MDSD.

neither MDA nor UML are
necessary and code is also

a model

The Model-Driven Architecture (MDA) approach of the Object Management Group
(OMG) [OMG14] is a particular approach for developing software according to the MDSD
paradigm. Similarly, the Uni�ed Modeling Language (UML) [ISO12a] is a well-known
modelling language that can be used to create models of software systems. Both are two
prominent examples, but MDSD can also be realized according to other development
approaches and using other modelling languages. It is also important to note that
there is not always a clear border between concepts and tools that are used in compiler
construction and MDSD. On the contrary, code is often also regarded as a model of the
software and many MDSD tools use, for example, the parser generator ANTLR [PQ95].

Modelling Languages and Metamodels

specifying modelling
languages

To support model transformations, a modelling language has to specify which condi-
tions have to be ful�lled by models of this language and what e�ects this has. Such a
language speci�cation is often separated into four parts [VS06, pp. 57–58]:

the abstract syntax of a modelling language speci�es the represented concepts, their
properties, and their relations

the concrete syntax de�nes how concepts, properties, and relations are represented in a
textually or graphical way

the static semantics specify constraints that have to be ful�lled by all models but that
cannot be de�ned in the abstract syntax

the dynamic semantics de�ne the meaning of the models of the language for example by
mapping them to models of other languages or to code

metamodels and further
meta-levels

In MDSD the abstract syntax of a modelling language is often speci�ed in terms of a
metamodel. In this case all models of the modelling language are also called instances

of the metamodel. A metamodel is usually itself a model of a meta-modelling language
that is expressed as an instance of a meta-metamodel. A meta-modelling language can
be self-descriptive. This possibility to de�ne a meta-modelling language using its own
concepts is, however, not mandatory and in general there may be an arbitrary number of
meta-levels. The static semantics of a modelling language are often de�ned together with
a metamodel or even added to it in order to have all rules that are necessary validating a
model instance in one place.

Domain-Specific Languages

languages tailored for a
particular application

context

Standardized modelling languages, such as the UML, are well-supported and widely
used but sometimes they are not well-suited, for example, to be automatically processed
in a particular context. This can be the case if not all information that is needed to
transform the models to models of another language can be modelled in a suitable way.
An important concept of MDSD that can also be used to solve such problems is that of a
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Domain-Speci�c Language (DSL). Such a DSL can be tailored to represent the concepts
of a particular domain with the level of detail that is needed for a speci�c development
task. In this way, a DSL makes it possible to better achieve the model characteristics
postulated by Stachowiak by tailoring the structure of all models to make them �t the
pragmatics (see subsection 2.1.1).

domain-specificity is
independent of concrete
syntax and the level of
abstraction

The idea of tailoring a language to a speci�c context or domain can be used independent
of the concrete syntax of the language and independent of the level of abstraction.
Nevertheless, the term Domain-Speci�c Modelling Language (DSML) is often used to
emphasize that the artefacts that are created using such a language are models and
therefore support a particular abstraction. This term can, however, be misleading because
many software developers associate the term modelling to a graphical syntax which is
not characteristic for a model in contrast to, for example, a particular level of abstraction.
Furthermore, we want to emphasize that the notion of models and of a DSL can also
be used if the application domain is a particular area of software engineering, that is if
the represented originals are pieces of software. The term DSL can be used to describe,
for example, a language that is used to represent contracts of an insurance company.
In the same way, languages that are used to represent, for example, design elements of
mobile applications or rules for preserving consistency between development artefacts,
can be considered DSLs. Finally, the concept of a DSL is independent of the question
whether a concrete syntax of a host language is reused or whether a new concrete syntax
is provided. Therefore, a library that can be used in an existing language can also be
regarded as an internal DSL and distinguished from an external DSL.

goals of developing and
using DSLs

There can be di�erent reasons for using a DSL instead of a general language. We
already mentioned the goal of developing or using a DSL to ease automated transforma-
tions. Another goal that is often pursued with a DSL is to relieve domain experts and
software developers from performing certain tasks or to support them in performing
tasks according to their �eld of expertise. A DSL can be used, for example, to give do-
main experts the possibility to express their concerns in a way that abstracts away from
technical concerns that are encapsulated in the DSL. Furthermore, a DSL can be used to
give domain experts possibilities to express concerns that would have to be considered
by software developers if no DSL would be used.

Model-Driven So�ware Development Process

manual refinement and
automated enriched
through transformations

If several languages are used in a forward engineering process that follows the MDSD
paradigm, we can distinguish between two general actions: On the one hand, models
can be manually re�ned to lower the level of abstraction by adding additional details.
On the other hand, models can be enriched with information of other models in auto-
mated transformations. Such manual re�nements and automated transformations can
be combined arbitrarily and can be repeated for models of di�erent languages to �nally
obtain models that are detailed enough to serve their purpose. This purpose can be
di�erent depending on the usage context. One possibility is to directly execute models
in interpreters. Another possibility is to generate code that can be directly or indirectly
executed, for example, in a virtual machine.

developing DSLs according
to generic, repetetive, and
individual code

Völter and Stahl presented a process for the development of a DSL using a code base that
was developed without the DSL [VS06, pp. 14–16]. We illustrate this DSL development
process using Figure 2.1, which we adopted from [VS06, p. 15]. In the �rst step, the code
base is analyzed to identify three di�erent code parts:

generic code , which does not need to be adapted to individual applications that are
developed in the domain,

schematic repetitive code , which is not identical for all applications but can be adapted
in a systematic way, and
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Figure 2.1.: Process for the development of a DSL based on an application code that was developed
without the DSL, adapted from [VS06, p. 15]

individual code , which is speci�c for a particular application and does not need to be
generalized

During the development of the DSL these three parts of the code take di�erent roles:
Generic code becomes a single platform that can be used in all applications that are devel-
oped using the DSL. Schematic repetetive code is obtained by transforming application
models that are created using the DSL. Individual code is deployed together with the
code generated from the application models and both parts use each other as well as the
platform code.

Eclipse Modeling Framework (EMF)

framework for building
Eclipse-based MDSD tools

The Eclipse Modeling Framework (EMF) is a set of plug-ins for Eclipse, which is an
Integrated Development Environment (IDE). It is also the technological base for further
IDEs and for other software engineering tools in industry and academia. The EMF
combines several tools that can be used to create, edit, analyze, and transform Java-based
models that can be represented graphically and textually. It is mainly used to build
Eclipse-based software engineering tools that can be applied in software development
projects that follow the MDSD paradigm. It provides the meta-modelling language Ecore,
which is often regarded as the reference implementation of the Essential Meta Object
Facility (EMOF). We will brie�y introduce the meta-modelling languages Ecore and EMOF
later in this chapter.

Xtext Language Workbench

generate compilers and
Eclipse-based editors from

a grammar

A well-known example for a tool that is built on top of EMF is the Xtext language
workbench [EV06]. It is a set of Eclipse plug-ins that can be used to develop textual
DSLs. It provides a grammar language that uses a syntax that is similar to the Extended
Backus-Naur Form (EBNF) [Int96]. From a grammar that is created with this language a
complete compiler toolchain can be generated to obtain extensible implementations of a
lexer, a parser, a validator, and a code generator. Languages that are created with Xtext
are programming languages and modelling languages at the same time: For every Xtext
grammar a metamodel is created and the compiler creates instances of this metamodel.
These model instances can be processed in the same way as any other EMF model.
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The metamodel that is created for a grammar can be in�uenced using the grammar
language. It gives developers the possibility to specify, for example, which metaclass
is to be instantiated when a parser rule is processed. In addition to compilers, Eclipse-
based editors can also be generated for Xtext-based languages. These editors provide,
for example, possibilities to in�uence auto-completion or to add quick-�xes that are
suggested in case of common compilation errors.

the expression language
Xbase, and the general
purpose programming
language Xtend

To ease the development of DSLs that contain common expressions , the Xtext work-
bench provides the expression language Xbase [E�+12]. The syntax of Xbase expressions
is very similar to Java method body expressions and in large parts identical. Variable
assignments, method invocations, and most expression operators, for example, are identi-
cal. Furthermore, language features that are not provided by Java, such as type inference
for variable declarations, can be used when the Xbase grammar is integrated into the
grammar of a Xtext-based DSL. Xtend1 is an example of a language that was developed
using Xtext and Xbase. It is a general purpose programming language that is similar to
Java and it compiles to Java so that both languages are interoperable. Xtend provides, for
example, lambdas for functional programming, template expressions for code generation
and other features for working with EMF models. As Xtend is similar to Java but can
deviate from it, it is also called a Java dialect.

EBNF for representing
syntax definitions in terms
of grammar rules

We realized the compilers for the languages presented in this thesis using Xtext but
will not show the Xtext-speci�c parts of the grammar rules. Instead we will use plain
EBNF, which is a standardized notation for syntax de�nitions. In EBNF terminals are
given in quotes and rule parts are explicitly concatenated with commas for denoting
the concatenation operator. Therefore, it is possible to use spaces in identi�ers of non-
terminals and they do not have to be escaped. Furthermore, the following rules of EBNF
are adopted from the original Backus-Naur Form (BNF):

[] square brackets enclose optional rule parts,

| the pipe character separates alternatives,

{} rule parts in curly braces are repeated zero, one, or more times,

() parentheses group rule parts, and

; the semi-colon denotes the end of a rule.

In addition, the minus character (-) is used to de�ne exceptions as if symbol sequences
would be removed from a previous set of symbol sequences. Therefore, symbol sequences
that have to occur at least once can be achieved by removing the empty symbol sequence
from a repeated rule part.

2.1.3. Meta-Modelling Languages

meta-modelling languages
to build specific tools from
generic ones

To build MDSD tools it can be useful to have a common format for models of di�erent
modelling languages. One way to achieve this is to us a �xed meta-modelling language to
create metamodels for modelling languages, no matter whether they are domain-speci�c
or not. If such a meta-modelling language is used, tools, for example, for creating, editing,
or transforming models of a particular modelling language can be built by adapting and
extending generic tools that are based on the common meta-meta model. In the following,
we will brie�y present two meta-modelling languages. The consistency speci�cation
languages presented in this thesis can be used to preserve consistency between models
that conform to arbitrary metamodels that were created using these two languages.

1eclipse.org/xtend – A Java dialect based on Xtext and Xbase
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Element NamedElement

name:String
TypedElement

Type

type0..1
EClassi�erEnumerationLiteral

Enumeration

ownedLiteral 0..*

DataType Class
abstract:bool

/superClass0..*

AggregationKind
none
shared
composite

PrimitiveTypeMultiplicityElement

/lower:int
/upper:int
isOrdered:bool

Property
aggregation:AggregationKind
/isComposite:bool

ownedAttribute 1

Figure 2.2.: Simpli�ed class diagram showing central metaclasses of the EMOF metamodelling
language [ISO14, p.27] (dotted lines denote indirect inheritance)

Essential Meta Object Facility (EMOF)

model elements as
instances of metaclasses

with typed properties

The Essential Meta Object Facility (EMOF) is one of two variants of the standardized
meta-modelling language Meta Object Facility (MOF) [ISO14]. From a mathematical
point of view, EMOF is a language for representing metamodels and models in a way that
is equivalent to attributed, typed graphs with inheritance. MOF is a language of the OMG
and it was initially developed by generalizing concepts of object-oriented UML class
diagrams. It is self-descriptive as its concepts can be represented using a MOF-compliant
metamodel. We illustrated the central concepts of EMOF in terms of a simpli�ed class
diagram in Figure 2.2 and brie�y explain them in the following. Metamodels that are
de�ned using EMOF consist of metaclasses that are instantiated by model elements which
can also be called objects. Metaclasses have properties that are typed using metaclasses,
primitive types and enumerations. The number of values that can be added to instances
of a metaclass for a certain property can be restricted using lower and upper bounds for
the multiplicity. Furthermore, properties can have a so-called composite aggregation
kind. It denotes that the objects that are listed at an instance of the metaclass for the
property are contained by the instance, which is therefore also called a container.

Ecore Metamodelling

Areference implementation
of EMOF with some

refinements

central part of EMF is the meta-modelling language Ecore, which is often regarded
as the reference implementation of the EMOF standard. Some concepts of EMOF have,
however, been re�ned in Ecore. We will brie�y mention those re�nements that are
relevant for the languages presented in this thesis, but we ignore, for example, minor
naming di�erences and the fact that Ecore has a simpli�ed inheritance hierarchy. The
central metaclasses of Ecore are also illustrated as a simpli�ed class diagram in Figure 2.3.
To emphasize the commonalities of EMOF and Ecore, we used the same layout as in
Figure 2.2, where this was possible.
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EModelElement ENamedElement

name:String
ETypedElement

lowerBound:int
upperBound:int
ordered:bool

EClassi�er eType

0..1

EEnumLiteral

EEnum

eLiterals 0..*

EDataType EClass
abstract:bool

eSuperTypes0..*

EStructuralFeature

abstract:bool

eStructuralFeatures 0..*
EReference

containment:bool

/eReferenceType 1

EAttribute
id:bool

/eAttributeType 1

Figure 2.3.: Simpli�ed class diagram showing central metaclasses of the Ecore metamodelling
language according to [Ste+08, pp.97] and [Bur14, p.25]

For call properties features
and distinguish between
simple-typed attributes,
and complex-typed
references

this thesis, only the following di�erences between EMOF and Ecore are important:
In Ecore, properties of metaclasses are called structural features. Features that are typed
using a primitive type or using an enumeration are called attributes, whereas features
that are typed using a metaclass are called references. Instead of providing a composite
aggregation kind, Ecore distinguishes between references that are marked as containment

reference and non-containment references. In models conforming to an Ecore metamodel,
the links that realize such containment references build a containment hierarchy. In this
hierarchy every model element except for a root element is contained in exactly one
container using one link for a containment reference. EMOF requires, however, only that
all elements have at most one container [ISO14, pp. 31-32]. As with composite properties
in EMOF and UML, the semantics of containment references in Ecore are that the existence
of contained elements is bound to the existence of the container. Therefore, deletions
have transitive e�ects [ISO12a, p. 36,p. 38]. We realized the prototypical compilers for
the languages presented in this thesis using EMF so that they can be used for any models
that conform to Ecore-based metamodels. Ecore can be seen as a re�nement of EMOF,
at least with respect to the di�erences that are relevant for the presented languages.
Therefore, the concepts of the languages can also be used for any other EMOF-compliant
modelling language. If our compilers would be ported to support other EMOF-compliant
modelling languages the necessary modi�cations would mainly introduce additional
checks to correctly treat properties with di�erent types. Nevertheless, we use the Ecore
terminology throughout this thesis. That is we write about features, attributes, and
references instead of properties and call the container-containee relation containment
instead of composition.

2.2. Multi-View Modelling

In the last informal section on foundations for this thesis, we brie�y present two ap-
proaches for multi-view modelling. The �rst approach inspired our work on the second
approach, which we extended using the languages presented in this thesis.
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2.2.1. Orthographic So�ware Modeling

ortographic projections on
a central model without

redundancies

Orthographic Software Modeling (OSM) is an approach for the development of software
using multiple views and was presented by Atkinson et al. [ASB10]. It transferred the
principle of othrographic projections to software development. All views in OSM are
projections of a Single Underlying Model (SUM), which contains all information of the
system under development [ISO11]. In OSM, the views and the metamodel for the SUM
are created upfront by developers that take a special role called methodologist. Later on,
developers only access information of the SUM via the projective views so that only
these views have to be kept consistent with the SUM in a hub-and-spoke manner. To ease
this consistency preservation between the views and the SUM, it should not contain any
redundant information. In OSM views are dynamically generated using transformations.
Furthermore, views can be navigated in a dimension-based way.

2.2.2. The VITRUVIUS Framework

views and consistency for
reusing existing modelling

languages and tools

In this thesis, we present three DSLs for developing consistency preservation tools
based on the multi-view modelling framework Vitruvius [KBL13]. The development
of this framework was strongly in�uenced by OSM but follows a hybrid approach that
combines synthetic and projective elements (see also subsection 10.1.3). Instead of a SUM,
the Vitruvius framework uses a Virtual Single Underlying Model (VSUM) to uniformly
access models of di�erent modelling languages. As this VSUM reuses existing modelling
languages it usually contains redundant information. Vitruvius support developers
in creating views for these languages and in preserving consistency between models
of the VSUM in a change-driven way.. This way, they can reuse existing modelling
languages and tools, such as editors. The overall goal of Vitruvius is to decouple views,
modelling languages, and consistency preservation so that they can be reused in di�erent
combinations and for di�erent projects. Currently, the Vitruvius framework

• monitors changes that are applied in Eclipse-based editors to models or code in
order to trigger consistency preservation code [Lan17]

• processes these changes based on a generic change modelling language (see sub-
section 5.4.1)

• manages correspondences between models across languages based on temporarily
unique identi�ers (see section 5.5.1)

• supports the integration of code and models that were created without the frame-
work for later consistency preservation [Lan17]

• can be used to create new views that combine information from several models
using ModelJoin [Bur+14; Bur14]

2.2.3. The View-Update Problem

occurs in many areas and
was originally described

for database views

The need to preserve consistency between partially redundant information is not
particular to MDSD or multi-view modelling. It has been discussed as the view-update

problem in many publications and in di�erent areas of computer science, for example
databases [BS81]. We will only motivate this problem in a simpli�ed way and informally
introduce some desired properties for transformations between two models. A more
formal discussion of these properties can be found in subsection 7.4.2 and a review on
literature about the view-update problem is presented in subsection 10.1.1.

two transformations GET
and PUT to yield target
values for source values

and vice versa

Broadly speaking, the problem of consistency preservation between two models that
contain redundant pieces of information can be described in terms of the view-update
problem. A possibility to achieve this, is to transfer the notion of a view on a database to

20



2.3. Formal Foundations

the notion of two models that are related using two model transformations. Even if the
problem does not need to be asymmetric, we usually call one model the source model and
the other model the target model for a forward transformation from the source to the
target. Analogous, the other transformation is usually called a backward transformation
from the target to the source. In this asymmetric terminology, the roles of source and
target are usually chosen in a particular way. The forward transformation, which is
also called Get, only requires a new source value to compute a new target value. The
backward transformation, however, may have to obtain the old source value in addition
to the new target value in order to yield a desired new source value. Therefore, it is also
called Put.

round-trips should always
end up at the initial value

To preserve consistency between two models, common laws for round-trip transfor-
mations can be used. These laws are concerned with cases in which a model is updated
and Get and Put transformations are executed to obtain values for the other model with
partially redundant information. Foster et al. [Fos+07], for example, formulated a GetPut
law, and a PutGet law (see also subsection 7.4.2). The informal idea of both laws is that
roundtrips, in which no value was changed, should end up at the same value regardless
of whether they started at the source model or at the target model. More speci�cally, the
GetPut law demands that invoking Get for an arbitrary source value and then Put for
the obtained target value and the source value always yields the initially used source
value. Similarly, PutGet demands that invoking Put for arbitrary source and target
values and then Get for the obtained source value always yields the initial target value.

2.3. Formal Foundations

In this section, we de�ne fundamental concepts for a formal change-driven consistency
preservation language, which is presented in chapter 4

reusable reduction for
change-driven consistency

We reused parts of existing formalizations for models and consistency constraints
where this was possible, but had to create a speci�c notation in order to support the
three speci�cation languages appropriately. The formal language abstracts away from
properties that are not needed for the reactions, invariants, or mappings language. It
expresses only those properties that are central for the challenges tackled in this thesis.
This is especially important for the explanation of the semantics of the three languages,
which should not su�er from the accidental complexity of existing formalizations that
also deal with concerns that are irrelevant for the languages. Those properties that
are represented in our formal language are closely aligned to the implementation of
the languages in order to avoid unnecessary gaps between formal descriptions of the
semantics and implementation code. In this way, the formal language is itself a model for
our speci�cation languages with its own representation, reduction, and pragmatics (see
subsection 2.1.1). Nevertheless, this formal representation of change-driven consistency
is not entirely restricted to the three speci�cation languages and could be reused for
other approaches and languages for model consistency.

2.3.1. Notation, Conventions and Abstractions

Before we present the formal language that is the foundation for the three speci�cation
languages of this thesis, we explain the notation, conventions, abstractions and simpli-
�cations of it in this section. We also explain which formal descriptions of models or
consistency are related to our formal language and why they are di�erent.

Notation and Conventions

common set theory and
notation

The formal language is based on set theory and uses the common notation for sets,
elements, and operations, such as intersection. Therefore, we do not need to explain all
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these common notational elements. A notation that is worth mentioning is, however, the
use of P (S ) to denote the powerset of a set S , i.e. the set of all subsets of S . Furthermore,
we explicitly mention when a set is in�nite or a function is partial. Therefore, all sets
that are not called in�nite are �nite and all functions that are not called partial are total.

transitive closures on sets
and functions

Binary relations and their transitive closures on sets and functions are used in many
de�nitions of the formal language. In order not to explain these central concepts at every
usage, we brie�y discuss them in general upfront: For a set S , the transitive closure of a
binary relation R ⊆ S × S on a subset B ⊆ S is denoted by

BR := B ∪ {bn ∈ S | ∃ (b1,b2) ∈ B × S

∧ ∃ (b1,b2), (b2,b3), . . . , (bn−1,bn ) ∈ R ∧ n > 1}

In this way, the transitive closure of a relation on a subset yields all elements of the subset
and all elements of the superset that are directly or indirectly related to the elements of
the subset. For two sets D,S , the transitive closure of a binary relation R ⊆ S × S on a
function func: D → S is denoted by

funcR := d → {func(d )} ∪ {sn ∈ S |
∃ (func(d ),s1), (s1,s2), . . . , (sn−1,sn ) ∈ R ∧ n > 0}

In this way, the transitive closure of a relation on a function yields the function value and
all elements of the codomain that are directly or indirectly related to the function value.

conventions for variables
and fonts

To ease the reading of our de�nitions, we established some conventions regarding the
use of variables and fonts. All sets are denoted by a single character in upper case, e.g.
O . All elements are denoted by single characters in lower case, e.g. o ∈ O . All functions
and relations are denoted by a string in small capitals, e.g. foo: O → O . For all concepts
of the metamodel level, i.e. the level above model instances, which de�nes modelling
languages based on metamodels, metaclasses etc., a blackboard bold font is used, e.g.
c ∈ C. For all concepts that only pertain to speci�cations that de�ne consistency for
models using concepts of the metamodel level, a fraktur font is used, e.g. cr. To emphasize
that a set contains sets, a calligraphic font is used for the single character denoting the
set of sets, e.g. O. Finally, to emphasize that a variable denotes a tuple, angled brackets
surround the variable name, e.g. 〈c〉 or 〈o〉.

Abstractions and Simplifications

properties that are
abstracted away

There are several properties of EMOF-based models which are not relevant to formally
de�ne consistency and therefore not part of the formal language. These properties that
are completely abstracted away are:

I. names, e.g. of metaclasses, attributes, or references

II. operations of metaclasses

III. abstractness of metaclasses

IV. attribute and reference multiplicities, i.e. lower and upper bounds

rationale for abstractions The reasons why we chose these abstractions are di�erent: I.. Names are only de-
scriptive and are not used to identify or retrieve elements because this is not necessary
for sets. The membership relation between sets and elements is su�cient. II.. When
operations are executed on models, they can only perform the same modi�cations that
can be performed directly on the models. III.. It has to be ensured that abstract metaclasses
cannot be directly instantiated, but they have the same e�ect on models like metaclasses
that are not abstract. IV.. Restrictions on multiplicities of references are just a special
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form of restrictions and can be represented expressed with general invariant constraints
for model validity.

simplifications leading to
model limitations

In addition to properties that are not represented at all, there are also properties of
models that are only represented in a simpli�ed form in the formal language. These
simpli�cations can also be interpreted as limitations on models that can be represented
with the formal language. As long as the formal language is not extended to also support
these cases, only a subset of all possible EMOF-based models can be represented with it.
Our programming languages, which we describe using the formal language, do, however,
not have these limiations. The current limitations of our formal language are:

1. References only refer to metaclasses of the same metamodel.

2. Links only link to objects of the same model.

3. No subtype relation between attribute types is de�ned.

4. No attribute types like strings or integers are prede�ned.

5. No types of attribute types, such as enumerations are de�ned.

6. An object is only linked once per reference and linking object.

7. An attribute value is only labeled once per attribute and object.

8. Links and attribute labels have no order.

rationale for
simplifications

Again, the reasons why we decided to make these simpli�cations are diverse: The
simpli�cations 1 and 2 were made because the e�ect of dividing metamodels or models
into parts are only syntactical. All three attribute type simpli�cations (3–5) were made
because attribute values are always �xed in a metamodel. In contrast to reference
values, which are model elements, attribute values are not instantiated in models but just
referenced. Therefore, subtype relations, attribute types that are already prede�ned for
all metamodels, and di�erent types of attribute types like enums have no direct in�uence
on models. Finally, the simpli�cations 6 – 8 were made in order to avoid the complexity
of using tuples to express linked object and label values. Such multiplicities and the order
of linked objects and label values could be used to specify or enforce consistency, but
in our opinion the possible uses do not justify the added complexity for the presented
formal language.

limitations for specifying
consistency

Furthermore, our de�nitions of model consistency only allow the speci�cation and
enforcement of consistency for two models that conform to two metamodels. Neither
consistency for several models of two metamodels nor consistency for models of more
than two metamodels can be expressed. The �rst restriction on two models is technical
and does not limit the expressiveness of the formal language. We decided to accept this
limitation in order not to complicate all de�nitions for consistency and enforcements
without a conceptual bene�t. The formal language could be easily extended by de�ning
consistency for two sets of models for both metamodels instead of two models for both
metamodels. Boundaries of models are technical as it makes no semantic di�erence
whether an element is part of one or another model. Therefore, such an extension for
more than two models would not allow any consistency speci�cations or enforcements
that cannot be expressed with the presented formal language.

The second restriction that consistency can only be speci�ed and enforced for models
of two metamodels is, however, a major conceptual limitation. This limitation applies,
however, also to the programming languages presented in the subsequent chapters of this
thesis and to our approach to change-driven consistency in general . It will be targeted
in future work (see also section 3.9) and will be analyzed in future case studies.
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Foundations and Related Formalizations

formal OCL semantics as
basis

We used parts of the formal semantics of the Object Constraint Language (OCL) [ISO12c,
Annex A.1–A.3, pp. 193–201] as a basis for the de�nition of our formal language. As
OCL is based on the Meta-Object Facility (MOF) [Obj06] it formally de�nes MOF-based
metamodels and models2. An example of reuse is the general idea to de�ne separate
sets for attributes and associations of each metaclass. The majority of the formal MOF
semantics of the OCL Annex, however, was not appropriate for our formal language.
As the OCL supports all properties of MOF-based models the formal semantics of it
are too detailed for our purposes. Therefore, the rationale for the abstractions and
simpli�cations of the previous section are also rationale for our decision not to reuse the
formal OCL semantics. In the formal OCL semantics names are, for example, used to
identify elements instead of set-membership. This is necessary to precisely specify OCL
for implementations of the language but unnecessary for the languages of this thesis.

related formalizations of
models and consistency

Burger adapted the formal OCL semantics to speci�cs of the Ecore implementation
of the Essential Meta-Object Facility (EMOF) in his dissertation [Bur14]. He restricted,
for example, the MOF notion of associations with an arbitrary number of ends to the
Ecore notion of references with two ends. As the formal OCL semantics are only adapted
to Ecore but not simpli�ed, they are also too detailed to be reused for our purposes.
Rentschler used a formal de�nition of models as typed graphs with inheritance by Kleppe
in his disseration [Kle08; Ren15]. The core of our formal language can be seen as a set-
based alternative to attributed, typed graphs with inheritance, so the missing attributes or
labels make it impossible to reuse this formalization. There are further formal de�nitions
of models and consistency, such as those by Hettel and Macedo et al., but they were also
de�ned with di�erent reductions and pragmatics [Het10; MTC15].

2.3.2. Metamodels and Models

metamodels first, models
therea�er

Before we can precisely de�ne how consistency can be speci�ed and enforced for two
models, we have to de�ne what a model is. We are not concerned with models that were
created with a �xed modelling language. Instead, this thesis and the formal language of
this chapter are concerned with models that conform to metamodels.

Metamodels and Types

metamodels define
modelling languages

Metamodels are models that de�ne a modelling language, which can be used to create
other models. In this sense, metamodels are itself ordinary models but the meta-modelling
language, which is also often called meta-metamodel, is �xed. The formal language as
well as the programming languages presented in this thesis are de�ned for metamodels
that were created using the meta-modelling language EMOF. Therefore, we start by
formally de�ning EMOF-based metamodels:

De�nition 1 (Metamodel)
A metamodel m is a tuple (C,≺,R,A,V), where C is a set of metaclasses, ≺ ( C×C is

the partial order that represents the specialization hierarchy of metaclasses, R is a set

of references, A is a set of attributes, and V is a possibly in�nite set of attribute values.

direct access to references
and attributes of

metaclasses

These �ve elements of a metamodel are su�cient to completely specify which models
can be created using the metamodel. The references and attributes depend on metaclasses.
Thus, it would also be possible to de�ne that they are not directly a part of a metamodel
but only of a metaclass. This would, however, make it complicated to access references

2No relevant changes were performed in these parts of the new versions of OCL [Obj14] and MOF [ISO14]
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and attributes across several metaclasses, e.g. in order to obtain all references or attributes
that are de�ned for a metaclass or for its superclasses. Therefore, we directly de�ne these
second-class elements in a metamodel and not only in the metaclasses.

avoiding many-sorted
structures

It would also be possible to de�ne metamodels as many-sorted structures, which are a
common concept used in mathematical logics. Then it would be necessary to explicitly
de�ne the arity of functions in terms of tuples of the sorts in order to explain which
function has which domain. We decided to avoid this unnecessary complexity for the
de�nition of metamodels and many subsequent de�nitions because tuples are su�cient
for our formal language.

attribute values fixed at
the meta-level

Some readers might expect attribute values to be part of models instead of metamodels.
This is, however, misleading: A metamodel pre-de�nes which attribute values can be
used in model instances. This set of allowed attribute values can be in�nite but it is �xed
and no model can use any further attribute values. Therefore, it is more precise to directly
make these values part of the metamodel and not of models. Besides, the set of allowed
attribute values is often �nite in practice, e.g. because only numbers up to a certain size
and strings up to a certain length are supported.

step-by-step definitionsSo far, we only de�ned that metamodels consist of metaclasses with a partial special-
ization order, references, attributes, and attributes values. In the next steps, we de�ne
what these elements of metamodels are and start with the central concept of metamodels:
metaclasses.

De�nition 2 (Metaclass)
Let m := (C,≺,R,A,V) be a metamodel.
A metaclass c ∈ C of m is a tuple (Rc,Rc,♦,Ac) where Rc ⊆ R are the references

de�ned for c, Rc,♦ ⊆ Rc are the containment references de�ned for c, and Ac ⊆ A are

the attributes de�ned for c such that the references and attributes of m are partitioned

by C, i.e. ∀ ci ,cj ∈ C with i , j it holds that Rci ∪ Rcj = ∅ = Aic ∪ Ajc.s

containment reference as
a subset of all references

Note that the containment references, which are special references that are used to
serialize models, are a subset of the references of a metaclass. It would also be possible
to de�ne a set of non-containment and a set of containment reference with empty
intersection. This would, however, make it more complicated to reason about references
when it does not matter whether they are containment references or not.

De�nition 3 (Specialization Relation)
Let (C,≺,R,A,V) be a metamodel.
Two metaclasses c1,c2 ∈ C are related using the metaclass specialization relation

≺ such that c1 ≺ c2 i� c1 specializes c2. In such cases c1 is called a subclass of c2

and c2 is called a superclass of c1.

The transitive closure of ≺ is denoted by 4. For c1 ≺ c2, we also call c1 a direct
subclass of c2 and c2 a direct superclass of c1. For c1 4 c2 ∧ c1 6≺ c2, we call c1 an
indirect subclass of c2 and c2 an indirect superclass of c1.

specialization means
inheriting references and
attributes

The e�ect of a direct (≺) or indirect specialization relation (4) between two metaclasses
is well-known from object-oriented programming. Every property that is de�ned for a
superclass is also present in all its subclasses. For models this means that every reference
and attribute that is de�ned for a metaclass can be used in objects that instantiate the
metaclass or one of its subclasses in order to link to other objects and in order to label it
using attribute values. In other words a metaclass inherits all references and attributes of
its superclass.
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specialization is
generalization in opposite

direction

We call this relation between metaclasses a specialization relation and do not use the
name generalization relation of the formal OCL semantics. The reason is that for two
metaclasses c1,c2 the expression c1 ≺ c2 can be read from left to right as “c1 specializes
c2”. For sentences in English this is more intuitive than reading “c2 generalizes c1” from
right to left.

De�nition 4 (Transitive References and Attributes)
Let c := (Rc,Rc,♦,Ac) be a metaclass of a metamodel m.
The transitive references, transitive containment references, and transitive attributes

of c are the closures of metaclass specialization ≺ onRc, Rc,♦, and Ac. They are denoted

by R4c , R4c,♦, and A4c and contain all references, containment references, and attributes

that are de�ned for c or one of its superclasses.

The de�nition of a transitive closure on a subset of the set on which a binary relation
is de�ned was already given in section 2.3.1.

De�nition 5 (Reference)
Let c1 := (Rc1 ,Rc1,♦,Ac1 ) be a metaclass of a metamodel (C,≺,R,A,V).
A reference r ∈ Rc1 has a target metaclass type c2 ∈ C.

references define edge
types

References that are de�ned for a metaclass are used by objects that instantiate this
metaclass or a subclass of it in order to link to other objects. These links can be seen as
directed edges of a directed graph. We just call them links instead of edges to ease the
discussion of linked objects and incoming or outgoing links.

no indirection for
metaclass types

We do not distinguish between a metaclass and a reference type but directly use the set
of metaclasses as the codomain of rtype. Furthermore, metaclasses may de�ne re�exive
references, i.e. c1 = c2 may hold for De�nition 5.

from attribute values to
attribute types

So far, we de�ned that a metamodel pre-de�nes all possible attribute values but we
did not de�ne which attribute values can be used for which attribute. To this end, we
introduce attribute types before we de�ne attributes, as they have no further properties
than a type:

De�nition 6 (Attribute Type System)
Let m := (C,≺,R,A,V) be a metamodel.
An attribute type system for m is a tuple (T,PT

V,atype), where T := {t1, . . . ,t |T | }
is a set of attribute types, PT

V := {Vt1 , . . . ,Vt|T| } is a partition of V according to T, i.e.
∀ v,w ∈ V : ∃ ti ,tj ∈ T : v ∈ Vti ∧ w ∈ Vtj ∧ (i , j ⇒ (ti , tj ∧ Vti ∩ Vtj = ∅)),
and atype: A→ T is a function that yields the type of an attribute.

attributes define label
types

Attributes of metaclasses are used to label objects using attribute values that are pre-
de�ned by the metamodel. The metamodel de�nes which attribute values can be used
for models. The attribute types are used to de�ne which of these values can be used
for which attributes. To this end, an attribute type system simply partitions the set of
attribute values into a partition for each attribute type.

no subtype relations for
attributes

To keep the de�nitions as simple as possible for our goals, we do not depict subtype
relations as mentioned in section 2.3.1. This means that it cannot be expressed, for
example, that the attribute type representing all natural numbers is a subtype of the
attribute type representing all integers. An extension of De�nition 6 and all dependent
de�nitions would be straightforward but is not necessary for this thesis.
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one type, many valuesDi�erent attribute values may have the same type, but a single attribute value has—
as we discussed in the previous paragraph—only one type. Therefore, the expression
de�ning the partition of V does not require thatv andw are di�erent. It uses the condition
that i and j are di�erent only as a precondition for the empty intersection of Vti and Vtj .
The inclusion of v in Vti and w in Vtj has, however, no such precondition. Therefore, it
also holds for v = w , which leads to ti = tj because PT

V is a partition.
attribute types as
extensions for initial
definitions

Based on the de�nition of attribute types, we can now extend our de�nition of meta-
models to typed metamodels. We could have started directly with typed metamodels
without the need to de�ne a separate attribute type system. We decided, however, to
introduce attribute types after an initial de�nition of metamodels and metaclasses in
order keep the initial de�nitions small and simple.

De�nition 7 (Typed Metamodel)
Let m := (C,≺,R,A,V) be a metamodel and let s := (T,PT

V,atype) be an attribute
type system for m.
A typed metamodel m̃ is a tuple (C,≺,R,A,V,rtype,T,PT

V,atype), where rtype :
R→ C is a function that yields the target metaclass of a reference.

The transitive closure of metaclass specialization ≺ on rtype is denoted by rtype4.
It contains the target metaclass of a reference and all direct and indirect superclasses
of it. As V, T, and PT

V are often not directly needed when atype and rtype are given,
we brie�y write (C,≺,R,A,rtype,atype) for m̃.

eventually typed
metamodels andmodels

In contrast to metamodels, we do not list the set of attribute values V for typed
metamodels. It is indirectly given by⋃ti∈T Vti . To focus on important parts, we will keep
on using metamodels instead of typed metamodels where types are not necessary for
subsequent de�nitions, even if metamodels are usually not used without types.

De�nition 8 (Attribute)
Let c := (Rc,Rc,♦,Ac) be a metaclass of a typed metamodel m := (C,≺,R,A,V,rtype,
T,PT

V,atype).
An attribute a ∈ Ac has a type t, which can be obtained using the function atype :

A→ T.

attributes only have a type,
nothing else

An attribute of a typed metamodel only has one property: its type. It is unnecessary
to de�ne an attribute for an untyped metamodel because it would have no properties.
A metaclass may have several attributes of the same type or inherit attributes with the
same type from superclasses. Therefore, it is not possible to directly identify attributes
with their types and the attribute elements are needed to relate metaclasses and attribute
types.

Models and Objects

objects first, models
therea�er

We have de�ned all concepts of metamodels that are necessary to de�ne what a model
is and what it consists of. For our formal language, a model is just a container for objects
and it has no additional properties. Therefore, we �rst de�ne objects before we de�ne
models:

De�nition 9 (Object)
Let c := (Rc,Rc,♦,Ac) be a metaclass of a metamodel m := (C,≺,R,A,V).
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An object o that instantiates c has links to other objects for references of c and for

references of direct or indirect superclasses of c and label values for attributes of c and

for attributes of direct or indirect superclasses of c.

links and labels only in the
context of a model

We do not formally de�ne sets of linked objects and labelled values for an object,
because we only need them in combination with other objects of a model. Objects as
well as their links and labels are always part of a model, for which we de�ne functions to
obtain linked objects and labelled values in the next de�nition. Because objects always
depend on a model they are also called model elements.

De�nition 10 (Model)
Let m := (C,≺,R,A,V) be a metamodel with C := {c1, . . . ,c |C | }.
A model that instantiates m is a tuple (Oc1 , . . . ,Oc|C| ,link,label), where each Oci

contains all objects that directly instantiate ci , link: O ×R→ P (O ) is a function that
yields objects that are linked from an object for a reference, and label: O ×A→ P (V)
is a function that yields values that are labeled to an object for an attribute.

We brie�y use the set O := ⋃
c∈COc do denote the model

(Oc1 , . . . ,Oc|C| ,link,label). All objects that directly or indirectly instantiate
a metaclass c2 ∈ C are denoted by O4c2 := ⋃(c1,c2 )∈4Oc1 .

more restrictions to
enforce

De�nition 10 does not enforce all restrictions of the given metamodel. It uses the
metamodel to instantiate only objects of the given metaclasses but the domains and
co-domains of the functions link and label are not restrictive enough. link(o,r) or
label(o,a) can return objects or attribute values for r or a even if they are not de�ned
for the metaclasses that are directly or indirectly instantiated by o. Furthermore, link can
return objects that are not of the prescribed type. In order to keep our de�nitions simple,
we separate the instantiation of a metamodel from the conformance to a metamodel:

De�nition 11 (Model Conforming to a Metamodel)
Let O := (Oc1 , . . . ,Oc|C| ,link,label) be a model that instantiates a metamodel m :=
(C,≺,R,A,V)
The modelO conforms tom i� both link and label are de�ned exactly for references

and attributes that are de�ned for the metaclasses instantiated by the given object, i.e.

(∀ r ∈ R: link(o,r) = ⊥ ⇔ r < R4c )

∧ (∀ a ∈ A: label(o,a) = ⊥ ⇔ a < A4c )

instantiation,
conformance and typed

conformance

The three conditions of De�nition 11 ensure that the model adheres to all restrictions
that are speci�ed by the metamodel without attribute types. De�nition 10 only required
that every object of a model that instantiates a metamodel directly instantiates a single
metaclass of the metamodel. For models conforming to a metamodel De�nition 11 requires
that the links and labels adhere to the restrictions of the references and attributes of the
metamodel. In the �rst condition, we use rtype4 (r) to obtain all metaclasses that can be
instantiated by objects that can be linked using the reference r. Conformance to a typed
metamodel with its attribute types has an additional condition for the labels:
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De�nition 12 (Conforming to a Typed Metamodel)
Let O := (Oc1 , . . . ,Oc|C| ,link,label) be a model that conforms to a metamodel m :=
(C,≺,R,A,V) and let m̃ = (C,≺,R,A,V,rtype,T,PT

V,atype) be a typed metamodel.
The model O conforms to the typed metamodel m̃ i� it only links to objects that

instantiate the type of the reference or a subclass of it and only has label values of the

type of the attributes, i.e.

∀ c ∈ C: ∀ o ∈ Oc : (∀ r ∈ R4c : link(o,r) ⊆
⋃

d∈rtype4 (r)

Od)

∀ c ∈ C: ∀ o ∈ Oc : ∀ a ∈ A4c : label(o,a) ⊆ Vatype(a)

metamodel restrictions
too coarse-grained

This label condition for models conforming to typed metamodels is the last piece of our
general de�nitions for metamodels and models conforming to them. These de�nitions
precisely show how metamodels can be used to restrict the links and labels of objects
instantiating their metaclasses. These restrictions are, however, only very coarse-grained
and therefore not su�cient for de�ning consistency speci�cations and enforcement. It is
only possible to specify that objects instantiating certain metaclasses may link to any of
the objects instantiating another metaclass or may be labelled using any of the values
of certain attribute type. Before we can de�ne how consistency can be speci�ed and
ensured, we provide a possibility to specify more precise conditions for valid models in
the next section.

2.3.3. Conditions and Valid Models

additional validity
conditions

In this section, we de�ne how additional conditions can be speci�ed to de�ne which
models are valid models. Such conditions for validity can be used to complete the
restrictions of metamodels for all possible models conforming to them. In practice,
models that do not ful�ll such conditions are considered invalid and are therefore often
not supported by modeling tools and development environments. We will reuse the
following de�nitions for model conditions in the next section in order to specify additional
conditions that have to be ful�lled for models that are consistent to other models.

Serializability and Supporting Tuples

serializability as a
prerequisite

Before we de�ne concepts that allow the speci�cation of custom conditions, we pre-
de�ne a serializability condition that is a prerequisite for many practical applications of
EMOF-based models. It would be possible to support unserializable models for applica-
tions that do not need to serialize models because they only process them in memory. We
decided, however, to make serializability a precondition for validity so that serializability
does not need to be considered when consistency is checked or enforced on valid models.

De�nition 13 (Serializable Model)
Let O be a model (Oc1 , . . . ,Oc|C| ,link,label) that conforms to a typed metamodel
m := (C,≺,R,A,rtype,atype).
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The model O is serializable i� three conditions are full�lled:

1. O has no cyclic containment links, i.e.

∀ c1, . . . ,cn+1 ∈ C: ∀ o1 ∈ Oc1 , . . . ,on+1 ∈ Ocn+1 :

∀ r1 ∈ R4c1,♦, . . . ,rn ∈ R4cn,♦ :
(link(o1,r1) = o2 ∧ . . . ∧ link(on ,rn ) = on+1) ⇒ o1 , on

2. One object has no incoming containment link, i.e.

∃1 c ∈ C: ∃1 o ∈ Oc :

|
⋃

c2∈C

{(o2,r) ∈ Oc2 × R4c2,♦
| link(o2,r) = o}| = 0

3. All other objects have one incoming containment link, i.e.

∀ c1 ∈ C: ∀ o1 ∈ Oc1 \ {o} :

|
⋃

c2∈C

{(o2,r) ∈ Oc2 × R4c2,♦
| link(o2,r) = o1}| = 1

a rooted out-tree can
represent a serializable

model

The objects and links of a model can be represented as the nodes and edges of a directed
graph. If we only consider containment links, then the three serializability constraints
ensure that serializable models can be represented as a special form of a directed acyclic
graph, which is called a rooted out-tree. The �rst serializability constraint ensures that
the containment graph has no cycles. This means an object of a model can never directly
or indirectly contain itself. For this constraint, it is not necessary to directly require that
o1, . . . ,on+1 are pair-wise disjunct, because this is indirectly required for o1 and on+1 and
for any n. The second constraint ensures that there is a root node with an indegree of
0. It is for the object o without an incoming containment link of the model. The last
constraint ensures that all other nodes have an indegree of 1. This means all objects
except o have exactly one container, i.e. an object with a containment link pointing to
them. As a result, all nodes are connected to each other and for every non-root node
there is exactly one path from the root node to it. This makes it possible to easily serialize
and deserialize such models using the containment links.

metaclass and object
tuples for condition

definitions

As a last preparatory step for de�ning custom models conditions, we de�ne tuples of
metaclasses and tuples of objects that instantiate these metaclasses element-wise. We
use these two concepts in order to de�ne a condition in two-steps: 1. Which metaclasses
have to be instantiated by objects that could ful�ll the condition? 2. For which objects of
these metaclasses is the condition ful�lled?

De�nition 14 (Metaclass Tuple of Metamodel)
Let m := (C,≺,R,A,V) be a metamodel.
A tuple (ci1 , . . . ,cin ) such that ci1 , . . . ,cin ∈ C is called a metaclass tuple of m.

ordered multisets not
ordered sets

A metaclass tuple contains an arbitrary multiset of the metaclasses of a metamodel
in arbitrary order. We do not use an ordered set instead of a multiset because custom
conditions should be speci�able for objects that do not necessarily instantiate di�erent
metaclasses. Therefore, De�nition 14 uses a sequence of indices i1, . . . ,in , for which
i j = ik may hold for 1 ≤ j,k ≤ n.
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De�nition 15 (Universe of a Metamodel)
Let m be a metamodel.
The universe of the metamodel m is the in�nite set of all models that instantiate m

and denoted by Om. The in�nite set of all serializable models of m is called universe of

serializable models of m and denoted by O?
m ( Om.

finite models, infinite
universe of a metamodel

The concept of a universe of a metamodel makes subsequent de�nitions more compact.
Such a universe contains every model that instantiates the metamodel. Every model in
the universe is �nite because it has a �xed number of objects with a �xed number of
links and labels. The universe of the metamodel, however, is in�nite because it contains
every model that instantiates the metamodel and the size of a model is not limited.

De�nition 16 (Instance Tuple for Metaclass Tuple)
Let O be a model that instantiates a metamodel m and let 〈c〉 := (ci1 , . . . ,cin ) be a
metaclass tuple of m.
A tuple 〈o〉 := (oj1 , . . . ,ojn ) ∈ O

4
ci1
× . . . ×O4cin is an instance tuple for 〈c〉 in O .

The set of all instance tuples for 〈c〉 in O is denoted by O〈c〉 := {〈o〉 ∈ O4ci1 × . . . ×
O4cin }.

objects that instantiate a
metaclass tuple
element-wise

An instance tuple of a metaclass tuple in a model is nothing else than an ordered multiset
of objects of the model with the same length like the metaclass tuple and an additional
constraint: Every object of the instance tuple has to directly or indirectly instantiate
the metaclass at the same position in the metaclass tuple. We already mentioned for
De�nition 14 that metaclass tuples may list the same metaclass multiple times. Similarly,
an instance tuple may list the same object multiple times. Furthermore, the same object
may be listed for di�erent metaclasses of the metaclass tuple, i.e. ojk = ojl may hold for
1 ≤ jk , jl ≤ n even if ik , il as long as O4cik 3 ojk ∈ O

4
cil

.

De�nition 17 (Universe of a Metaclass Tuple)
Let 〈c〉 := (ci1 , . . . ,cin ) be a metaclass tuple of a metamodel m.
The universe of 〈c〉 is the in�nite set of all instance tuples for 〈c〉 in all models

that instantiate m. It is de�ned as O〈c〉 := ⋃O ∈Om
O〈c〉 using the universe Om of the

metamodel m.

finite instance tuples,
infinite universe of a
metaclass tuple

Every instance tuple in the universe of a metaclass tuple is �nite because the metaclass
tuple lists a �xed number of metaclasses that have to be instantiated by the objects of
every instance tuple. The universe of a metaclass tuple, however, is in�nite because the
universe of the metamodel, from which the instance tuples are created, is in�nite.

Conditions and Validity

With the support of serializability, metaclass tuples, and instance tuples we are now
able to take the next steps towards formal model consistency by de�ning conditions for
metamodels and when they are valid in a model.
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De�nition 18 (Condition for a Metaclass Tuple)
Let 〈c〉 be a metaclass tuple of a metamodel m and let Om be the universe of m.
A condition for 〈c〉 is a unary relation cond on the universe of 〈m〉, i.e. cond ⊆ O〈c〉.

conditions represented by
the objects for which they

hold

A condition is simply represented by a possibly in�nite set of tuples that list objects that
ful�ll the condition. The metaclass tuple for which a condition is de�ned, indicates which
metaclasses have to be instantiated by objects that can ful�ll the condition. Therefore,
the metaclass tuple represents a type restriction for the condition which makes it possible
to directly see which objects of a model are candidates that can ful�ll the condition and
which are not. The possibly in�nite set cond contains all instance tuples 〈o〉, which
list such candidate objects, for which the condition is ful�lled. For such instance tuples
〈o〉 ∈ cond, we say that cond is valid for 〈o〉.

De�nition 19 (Condition Valid in a Model)
Let O be a model that instantiates a metamodel m and let cond be a condition for a
metaclass tuple 〈c〉 of m.
The condition cond is valid in O i� the relation holds for all instance tuples of 〈c〉

in O , i.e. O〈c〉 ⊆ cond

condition validity for a
model is validity for all
element combinations

The simple idea of this de�nition is that a condition holds for a complete model i� it
holds for all possible combinations of objects in the model. More precisely, a condition
for a metaclass tuple is valid in a model if it is valid for all possible instance tuples
that can be created for the metaclass tuple of the condition in the model. This can also
be re-formulated as a constraint for every object of the model that could be part of a
combination of objects that ful�ll the condition: Every combination of such candidate
objects has to ful�ll the condition.

alternative: a weaker
notion of condition validity

With the above reformulation of the constraint for the validity of a condition in a
model, we can demonstrate that it would also be possible to de�ne a weaker notion
validity for complete models. It would be possible, for example, to require for every
of these candidate objects, which could be part of a ful�llment, that there is at least
one combination of objects for which the condition is ful�lled. More precisely, such
a weaker notion of validity would require for every object that is listed in a possible
instance tuple that there is at least one instance tuple for which the condition holds. Such
a weaker notion of validity for complete models would make consistency checks more
complex than with the strong notion of De�nition 19. For the weaker notion checks
would either not be stateless or would have at least quadratic complexity, because it
would be necessary to either keep track of the condition ful�lling instance tuples for
every object or to always iterate over all of them.

first use of conditions:
metamodel invariants

Based on these de�nitions, which codify how custom conditions can be speci�ed, we
can now de�ne how such conditions can be used. We begin with a usage that is not yet
speci�c for consistency checks or enforcement: General conditions that always have to
hold for every instance of a metamodel can be speci�ed in order to complete the implicit
constraints of the metamodel. Such additional metamodel conditions are also called
invariants.

De�nition 20 (Constrained Metamodel)
Let m := (C,≺,R,A,rtype,atype) be a typed metamodel.
A constrained metamodel is a tuple m̃ := (C,≺,R,A,rtype,atype, I) where I is a set

of conditions for metaclass tuples of m called invariants.

32



2.3. Formal Foundations
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Figure 2.4.: Hierarchy of models that instantiate a metamodel, conform to a metamodel, conform
to type restrictions, or ful�ll additional serializability constraints and invariants

A model conforms to m̃ if it conforms to (C,≺,R,A,rtype,atype).

invariants for all
metamodels?

Instead of extending the de�nition of metamodels to constrained metamodels, we
could have made the set of invariants I directly part of the metamodel de�nition. This
would not have changed which metamodels could be speci�ed, because I can always be
empty. We decided, however, not to do this in order not to distract the reader from the
more central concepts, such as metaclasses.

De�nition 21 (Valid Model)
Let O be a serializable model that conforms to a constrained metamodel m := (C,≺,
R,A,rtype,atype, I).
The model O is a valid model of m i� all invariant conditions in I are valid in O .

valid model i� all
invariants hold for all
object combinations

This de�nition of model validity concludes our preparatory de�nitions for model
consistency: A serializable model is valid i� all invariant conditions are valid, i.e. i�
all invariants hold for all possible object combinations. As we already mentioned in
the introduction of this section, we made serializability a prerequisite for validity. This
relieves us from the necessity to demand respectively check serializability whenever we
want to persist valid models.

conformance hierarchyThe most important de�nitions that we presented so far are also depicted in Figure 2.4.
It relates our �ve de�nitions for models to our three metamodel de�nitions and to
attribute type systems. At the very end of this conformance hierarchy are valid models,
which depend on all other de�nitions as they are serializable models that conform to a
constrained metamodel and ful�ll invariants.
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3. Challenges to Consistency Preservation

Before we provide reusable solutions to some recurring challenges to change-driven
consistency preservation, we present an analysis and classi�cation of challenges. With
this challenge classi�cation we provide answers to the �rst part of our research question
1 and to the subquestions 1.1 and 1.2, which we presented in section 1.3.

3.1. Classification and Terminology

We brie�y present how we have classi�ed the challenges that we identi�ed and introduce
general terms that are necessary to discuss the individual challenges.

3.1.1. Classification According to Origin and Abstraction

from conceptual to
implementation
challenges

We identi�ed �ve classes of challenges to consistency based on their origin. These
classes range from conceptual to implementation challenges and are sorted by the level
of abstraction at which the challenges arise. We start with the class of challenges at
the highest level of abstraction. It contains conceptual challenges to consistency, which
stem from the relationship between modelled originals regardless of how models and
consistency speci�cations are expressed. Our classi�cation continues with modelling
language challenges, which result from the way modelling languages are designed and
realized, often without a special focus on consistency with models of other languages.
Next, we discuss the most important class of consistency challenges for this thesis:
speci�cation challenges. These challenges arise when consistency shall be speci�ed for
models of given languages in a way that makes it possible to check and possibly also
enforce consistency but that does not �x how checking and enforcement are performed.
Then, we present a separate class of Open Consistency Speci�cation Language Challenges,
which we address with the languages that we present in thesis. After this, our classi�cation
continues along the abstraction dimension with enforcement challenges, which occur if
consistency according to a given speci�cation can be achieved in di�erent ways. The
last class of challenges deals with implementation issues, which are related to technical
properties of the languages and tools that are used to implement a given checking or
enforcement strategy. In addition to this �ve classes that correspond to di�erent levels of
abstractions and the class for speci�cation language challenges, we also discuss challenges
to bidirectionality as an orthogonal dimension. The �ve abstraction-related classes of
challenges and the orhogonal dimension of directionality are also depicted in Figure 3.1.
It also illustrates how the level of abstraction decreases with every class of challenges
and how the dependence on other classes increases.

challenges may reappear
at di�erent levels

Some challenges to consistency reappear in di�erent forms at di�erent levels of ab-
straction. We divide these challenges into individual challenges for each level and relate
them to their counterparts on the other levels. An alternative would be to describe bigger
challenges for which di�erent aspects are discussed at di�erent levels of abstraction.
Some challenges at one level are, however, related to several challenges at other levels,
which would be di�cult to describe in terms of level-spanning challenges. Therefore,
we take a more �ne-grained approach with challenges that are always assigned to a
single level of abstraction but that can be part of a bigger group of related challenges on
several levels. Many challenges at the speci�cation level, for example, can reappear at
the enforcement level if they are not completely addressed in consistency speci�cations.
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1. conceptual challenges

2. modelling language challenges
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Figure 3.1.: Classes of challenges to consistency preservation with their level of abstraction, their
dependence on challenges of other classes, and the orthogonal dimension of direction-
ality

general classes but
specific challenges

Our �ve challenge classes can be used for many other approaches for consistency
preservation, but the exemplary challenges that we present are in�uenced by the per-
spective on consistency that we describe in this thesis and realize with our approach.
More speci�cally, we only consider challenges to consistency between models of two
languages to which a sequence of changes is performed by a single user. Challenges of
circular change propagation and concurrent editing, for example, are not discussed.

3.1.2. Fundamental Terms of Consistency Preservation

general and informal
vocabulary

We introduce some central terms in order to have the necessary vocabulary to discuss
the challenges to change-driven consistency preservation that we identi�ed. In order to
keep the discussion general and as straightforward as possible, we introduce these terms
only informally and refer the reader to the next chapter for a more formal and precise
discussion of consistency.

specification-driven
consistency

The most important term for our perspective on consistency is consistency speci�cation.
It denotes a description of consistency for a given set of modelling languages in an
arbitrary format or representation that is precise enough for unambiguous consistency
checks or even enforcement. This means that for any given set of models of the concerned
languages a consistency check speci�cation always has to clearly specify whether the
models are consistent with each other. In analogy, a consistency enforcement speci�cation

always has to specify what has to be done to achieve consistency. The latter of these two
types of consistency speci�cations is a specialization of the �rst: Because an enforcement
speci�cation can always be used to check consistency, every consistency enforcement
speci�cation is also a consistency check speci�cation. Our notion of a consistency
speci�cation implies that it can be used as the only source for checking and enforcing
consistency in addition to the models to be kept consistent. We call an approach that
ful�ls this restriction speci�cation-driven. Note that consistency speci�cations have to
specify unambiguously what is consistent or which actions have to be performed in order
achieve consistency, but how consistency can be checked or enforced should be left open
as speci�cations should be more abstract than realizations of consistency mechanisms.

prescriptive and
descriptive nature of

specifications

A property of consistency speci�cations that should not be confused with the role that
speci�cations can play in consistency preservation approaches is its nature: The nature
of a consistency speci�cation can be prescriptive or descriptive. A prescriptive speci�ca-
tion dictates consistency that did not exists without it and does not exist alongside. A
descriptive speci�cation is an additional representation of consistency that already exists.
Therefore, speci�cations used in speci�cation-driven approaches can be prescriptive or
descriptive.

executive and analytic
usage of specifications

In analogy to the prescriptive and descriptive nature of consistency speci�cations, we
call those speci�cations that are used to enforce consistency executive and those that

38



3.1. Classi�cation and Terminology

are used to check consistency analytic. With these two terms we distinguish di�erent
usages of consistency speci�cations that is not bound to their type: Even a consistency
check speci�cation can not only be used in an analytic way but also in an executive way.
Examples for this are approaches that check consistency for many candidate models,
which are exhaustively derived by manipulating initial models.

consistency relations and
conditions

Consistency speci�cations describe a single consistency relationship that can be present
between models of two modelling languages by de�ning several consistency relations

between elements of these two languages. They relate language elements by implicitly or
explicitly specifying the conditions that have to hold if instances of these elements shall
be considered consistent. When consistency is checked on concrete models according to
a speci�cation, it is analyzed whether the consistency relations that are de�ned for the
language elements are realized by instances of these language elements according to the
conditions. For consistency it is not necessary that all possible combinations of language
element instances for every relation realize the relation by ful�lling the conditions. A
speci�cation can require that consistency relations only have to be realized for a subset
of combinations by specifying appropriate restrictions.

corresponding and
consistent elements

To denote consistency not only for complete models but also for their elements, we
introduce a correspondence relation between them. A set of elements of models of one
modelling language corresponds to another set of elements of models of another modelling
language with respect to a relation of a consistency speci�cation for these languages if the
relation is speci�ed for the instantiated language elements and if all conditions of it are
ful�lled. If several relations are de�ned for the same combination of language elements,
then it is also possible that two sets of model elements correspond to each other with
respect to more than one of these relations. In other words: several consistency relations
can be realized by the same sets of model elements. It is important that correspondence is
only determined by those relations of a consistency speci�cation that are de�ned exactly
for the combination of language elements that are instantiated. As a result, only those
sets of model elements for which consistency is explicitly speci�ed can correspond to
each other. This is di�erent from the notion of consistency for elements with respect to
a consistency speci�cation: Combinations of two sets of model elements for which no
conditions are speci�ed cannot be inconsistent because speci�cation conditions that do
not exist can also not be violated. Therefore, such sets of model elements are always
consistent but do not correspond to each other.

models and languages on
two sides

To increase the readability, we often do not write about a modelling language of a
consistency speci�cation or about a set of model elements of this language but simply
call such a language or such a set a side. Unless stated otherwise, we always discuss
consistency for both sides in a symmetric way where both sides are equally treated.
Nevertheless, we use the terms left side and right side in order to be able to refer to them
with distinct names even if the assignment could be initially swapped.

operations change model
states

To handle consistency for models that are changed we introduce the notions of model
state and change operations. A model that is changed is going from one state to another
as an e�ect of the change operations that are applied to it. If an approach for consistency
preservation requires several model states as input it is called state-based. If it requires a
description of the performed change operations it is called operation-based. We distin-
guish between two types of change operations: user change operations are performed by
individuals and may lead to enforcement change operations, which are performed in order
to preserve consistency.

consistency preservation
not restoration

For the act of performing change operations to enforce consistency after user change
operations, we use the term consistency preservation. Such enforcement operations can
also be performed if a user change did not yet violate the consistency relationship
between models, e.g. in order to prevent future inconsistencies. Therefore, we use the
term consistency preservation instead of consistency restoration, which implies that
consistency is only restored after it was destroyed. We consider this implication more

39



3. Challenges to Consistency Preservation

misleading than the fact that we use the term preservation even if consistency does
not need to be preserved at all times because there may be cases in which temporal
inconsistencies occur for a short period of time.

3.2. Conceptual Challenges

Our �rst class of challenges to consistency contains challenges that arise on the highest
level of abstraction. These challenges directly result from the properties of modelled
originals and the relations between them. Whether they arise and how they can be
addressed is not in�uenced by the way these originals are represented using a modelling
language. Therefore, understanding the reasons for these challenges and developing
potential solutions can be bene�cial for a variety of systems in which these elements are
modelled and processed.

3.2.1. Diverse Consistency

diverse definitions for
consistency

For many pairs of modelling languages, there is not a single notion of consistency
but diverse possibilities how models can be related in a way that can be deemed consis-
tent. This freedom to choose and de�ne consistency for two modelling languages can
be challenging already on a conceptual level regardless of issues, for example, on the
speci�cation or enforcement level.

canonical freedom to
define consistency

If two modelling languages describe properties of modelled originals in a way that
allows di�erent co-occurrences that are deemed consistent, then they do not induce
a canonical notion of consistency. In such cases, the decision to restrict the notion
of consistency to one or several possibilities and certain conditions can have a strong
impact. Therefore, the freedom to de�ne consistency for two modelling languages can be
indirectly restricted in several ways.

restrictions and impact of
diversity

For example, the way the modelling languages are used to develop systems in certain
project contexts can in�uence our de�nition of consistency. Furthermore, the bene�ts
of consistency preservation for the models of these languages—may it be automated or
not—can vary with the chosen notion of consistency. In addition, the way consistency
diversity is approached can in�uence whether and how it is possible to specify, check, or
enforce consistency.

3.2.2. Tolerating Inconsistency and Wanted Inconsistency

generally or conditionally
toleration

Consistency that can be described for models of a set of modelling languages does
not always need to be enforced immediately or at all. In some cases, it can be desired
to tolerate inconsistencies, for example, as long as they are restricted to certain model
elements, certain model regions, or certain intermediate model states. But, there are
also cases in which consistency should never be enforced. Inconsistencies are generally
tolerated, for example, in cases where inconsistencies were deliberately introduced and
these decisions shall be documented. This can be necessary if violations of consistency
speci�cations are not only allowed but also have an impact on system development or if
uncertainty cannot be expressed in a consistent way.

toleration opportunities
and limitations

Conditionally or generally tolerated inconsistencies are not only a question of con-
sistency enforcement, but have conceptual implications. On the one hand, tolerated
inconsistencies make it possible to apply strategies that cannot be used if consistency
always has to be achieved. Examples are postponed or delegated consistency checks and
enforcements. On the other hand, tolerated inconsistencies can also impede consistency
preservation: If some consistency conditions are not strict because their violation is
tolerated, then the checks and enforcement of all other conditions also have to deal
with these tolerated inconsistencies. We cannot pro�t from tolerated inconsistencies if
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checks and enforcement for a consistency condition assume that all other conditions
hold. Therefore, it has to be explicitly speci�ed for which conditions inconsistencies can
be tolerated and whether preconditions can deal with that. Such precautions have to be
taken when inconsistencies are tolerated in order not to turn analyses useless due to the
general rule in classical logic that anything can be deduced from contradictions.

tolerating or prohibiting
inconsistent changes

In some cases, inconsistencies only need to be tolerated if changes are performed on a
speci�c side, but not if the corresponding elements are changed on the other side. One
possibility to address such a requirement without tolerating inconsistencies would be to
only allow changes on the other side. The classical relation between code on the one
side and tests or contracts on the other side is an example for such a requirement for
tolerating inconsistencies or no changes: Let us consider a change to a test that makes
the code inconsistent with it, e.g. because a new method signature is prescribed by the
test. A strategy could be to repair consistency by adapting the method signature in the
code accordingly. If an analog change is performed in the code, e.g. a method signature
is modi�ed, it could be erroneous to adapt the tests if they �x the signatures that have to
be provided. In such a case, one could tolerate the inconsistency until somebody revokes
the change or modi�es the contractually speci�ed tests. Or, one could simply decide that
method signatures are prescribed by the tests and therefore can only be changed in the
tests. If all signature changes are propagated to the code, this would not reduce the power
of developers but would prescribe for some changes where they have to be performed.

literature on inconsistency
handling

The idea of “tolerating inconsistency” has been prominently discussed in an article
by Balzer [Bal91]. He has introduced an approach for inconsistency resolution by mark-
ing tolerated inconsistencies and storing the values leading to them. The principle of
explosion, which states that anything can be followed from contradictions, has also
been used to motivate an article by Finkelstein et al. [Fin+94]. They have presented an
approach in which inconsistencies in databases are not repaired but it is speci�ed with an
“action-based meta-language based on linear-time temporal logic” [Fin+94, p. 574] how to
act depending on the context. Two reasons that are similar to the reasons for generally
tolerated inconsistencies that we mentioned in the �rst paragraph of this section, have
been discussed in an article by Nuseibeh et al. [NER01]: They have stated that “inconsis-
tency may indicate deviations from a process model” and that “inconsistency can be used
to identify areas of uncertainty” Nuseibeh et al. [NER01, p. 173]. Furthermore, they have
presented a general framework for managing inconsistency based on a loop with four
steps of monitoring, diagnosing, and handling inconsistencies as well as monitoring the
consequences of this handling.

3.2.3. Evolving Consistency

specification and
modelling language
evolution

What is deemed consistent for a given pair of modelling languages is not always �xed
for all times, but can evolve on its own, and may need to be adapted to evolving modelling
languages. This evolution of consistency speci�cations and modelling languages is not
only di�cult to realize in practice, but can already be conceptually challenging.

parallel use of old and new
specification

We can decide, for example, to follow a backward compatible way of consistency
preservation. Then, we have to allow the coexistence of model elements that were
consistent according to an old speci�cation, and of elements that are consistent according
to a new speci�cation. On the one hand, this relieves us from solving problems like the
migration of old consistent models. On the other hand, it forces us to be explicit with
regards to preconditions and dependencies, if we do not separate the elements that are
consistent according to the old speci�cation from the remaining model elements.

language evolution
leading to specification
evolution

If a modelling language evolves, this always has technical implications for the coevolu-
tion of model of the language, but it can also in�uence consistency with models of another
modelling language in a conceptual way. Concepts or properties that are also represented
in the other language may be introduced, modi�ed, or removed so that consistency can
newly, di�erently, or no longer be checked or enforced. Therefore, all challenges that
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can occur initially may reappear when one of the modelling languages evolves. But,
such an evolution can also pose new challenges that do not need to be addressed, if
modelling languages are �xed. An example is the challenge to reuse or even adapt parts
of a consistency speci�cation for an old version of a modelling language in order to
obtain a speci�cation for a new version. Another example is the challenge to ensure
backward compatibility. For this compatibility, everything that can still be expressed
with a new language version and that was consistent according to the speci�cation for
an old language version is of interest. Such models should still be consistent according to
the speci�cation for the new language version.

3.2.4. Totality of Consistency

three types of consistence
totality

In the context of consistency for models of two modelling languages the notion of
totality can be discussed in three ways:

Totality of the relationship for the consistency relationship between models as de�ned
by a complete speci�cation,

Totality of relations for individual consistency relations speci�ed on the language level,
and

Totality of correspondences for the correspondence relations that realize them for model
elements on the instance level.

There may be other names for it, but this question whether there is a consistent counter-
part for every model, for every possible set of elements of a relation, or for every concrete
element has strong implications.

total consistency
relationship

The consistency relationship between models, which is de�ned by a consistency
speci�cation, is left-total respectively right-total, i� there is a consistent counterpart
for every possible left model respectively right model. If a relationship is not left-total,
for example, then there are changes that can be performed on a left model so that no
consistent right model exists. In such a case, it can be interesting to investigate whether
and how it is possible to avoid such dead ends if reverting changes on the left side is not
an accepted or desired option. One possibility for this is to analyze which changes lead
to a dead end and to disallow these exact changes on speci�c elements or even complete
change types for all elements. For this, a speci�cation that allows such analyses is needed.

total consistency relations A consistency relation for two sets of language elements of the two languages of its
consistency speci�cation is left-total respectively right-total, i� it relates every possible set
of instances of the left respectively right set of language elements for which its conditions
hold to a set of instances of the other set of language elements. If a consistency relation
is left-total, for example, then it is su�cient to check its conditions for the elements on
the left side to know whether it can be enforced by only modifying elements on the right
side. This can be important, for example, if consistency shall only be enforced on the
unchanged side, e.g. in order to avoid unexpected overrides of user changes.

total correspondence
relations

The correspondence relations for the consistency relations of a consistency speci�-
cation for two languages are left-total respectively right-total, i� every possible model
element of the left respectively right language corresponds to at least one element of
the other side. Therefore, left-total respectively right-total correspondence relations of
a consistency speci�cation indicate that no element on the left respectively right side
can be modi�ed independent of the other side. A consistency speci�cation between a
language and a superset language, for example, should always have left-total correspon-
dence relations to preserve consistency according to the superset relation between the
languages.
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3.2.5. Dependencies between Consistency Relations

defining consistency
relation dependency

It is often not only the case that the elements and conditions of several consistency
relations of a consistency speci�cation are related to each other, but that they depend
on each other. More speci�cally, a consistency relation depends on another consistency
relation if at least one of the conditions of the �rst relation can only hold for elements that
are related to consistent elements using the other relation. No matter if such a dependency
is made explicit in the speci�cation or not, it has an e�ect on how consistency can be
checked and enforced.

dependency
improvements and
obstacles

On the one hand, dependencies between consistency relations can be exploited to
improve the structure and execution of consistency enforcement and checking code.
On the other hand, such dependencies can make it more complex to understand or
process consistency speci�cations and can cause problems. Mutual exclusions or cyclic
dependencies, for example, can result in speci�cations that cannot be enforced. Therefore,
automated dependency analyses can be necessary to detect and avoid such cases.

minimal sets of dependent
relations

In order to work with dependencies between consistency relations, it is often bene�cial
to identify sets of relations that have dependencies within a set but no dependencies to
relations outside the set. One possibility is to search for sets of relations that are minimal
in the sense that every subset has at least one relation that depends on a relation that
is not in the set. This notion of minimalism can, however, only provide a lower bound
for sets of relations that should be speci�ed and processed together because it relies on
our strict notion of dependency: If some language elements, for example, are a�ected
by two relations but the satisfaction of the conditions of one of them is not always a
prerequisite for the satisfaction of a condition of the other, it can be very bene�cial to
treat them together even if they have no formal dependency.

3.2.6. Identification of Elements

A crucial requirement for consistency preservation is the possibility to identify model
elements. It is a prerequisite for determining and modifying corresponding elements
in order to preserve consistency. If elements cannot always be identi�ed, then it is
possible, for example, that a change operation on a model element leads to an enforcement
operation that is performed on a wrong element with the same identi�er.

consistency compliant
identification

Identi�ers can only be used to check and enforce consistency according to a spec-
i�cation, if the element identi�cation complies with the consistency conditions of it.
Let us consider, for example, two elements that have the same identi�er and appear in
one model of a certain metamodel. For another model of another metamodel, it has to
make no di�erence in terms of consistency to which of the two elements a consistency
is established. More speci�cally, speci�cation compliance means that two elements on
one model side that have the same identi�er do not need to have identical properties but
every condition of every consistency relation that is ful�lled by one of the elements also
has to be ful�lled by the other and vice-versa. As a result of the consistency compliance
requirement, it is possible that the identi�cation of elements of a single modelling lan-
guage has to be performed di�erently for two speci�cations that de�ne consistency to
elements of two di�erent modelling languages.

contextual robust
identification

Because user change and enforcement operations can always change properties that
are not used for identi�cation, it is necessary that the element identi�cation used for con-
sistency preservation is robust with respect to such contextual changes. More precisely,
contextual robustness means that every change or enforcement operation that results in
a change from an old to a new identi�er for a model element, for example, has to result
in the same identi�er change, if it is performed on an arbitrary element with the same
identi�er regardless of the context, i.e. properties that did not cause an initially di�erent
identi�er.
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Fortwo temporal relaxations
of uniqueness

practical consistency preservation, all identi�ers of model elements for consistency
preservation have to be temporally unique for any given model state but not globally
unique across all possible model states. That is, if two elements of a model state share
the same consistency identi�er, they can be treated as equivalent during consistency
checking and preservation. The temporal relaxation of uniqueness concerns individual
identi�ers and the set of all identi�ers in two ways: An identi�er for an individual element
can change during the lifetime of an element, and an individual identi�er may identify
di�erent elements throughout di�erent model states.

identifier dependencies The identi�cation of model elements for consistency preservation can also be challeng-
ing, because the identi�er of a single element may not only depend on the properties
of this element but also on properties of other elements. In such cases, user change
and enforcement operations on a single model element may lead to new identi�ers for
several dependent elements. Because of such identi�er dependencies and the consis-
tency compliance of identi�ers as discussed above, a single change can lead to many
enforcement operations. One reason, why this can be challenging, is that users may not
always anticipate such series of reactions. Another reason is that the management of
correspondence relations has to rely on identi�ers and has to process such series.

3.2.7. Information for Determining Corresponding Elements

have, obtain or abstain
from correspondence

information

The identi�cation of a model element is only the �rst step for determining which
elements correspond to it according to the consistency relations de�ned in a consistency
speci�cation. First, we have to know whether we have enough information to determine
corresponding elements. If this is not the case, we have to know how we can obtain the
necessary information or how we can deal with its lack.

derive or import required
information

If information that is required for determining corresponding elements is not directly
available in a model, then we have to derive it from the available information or have to
obtain it from additional sources. Both possibilities to obtain the required information
have implications on further consistency preservation. If the information that is required
for determining or enforcing correspondences can be derived from available information,
then we either have to recompute these derivations if the input changed or we also have
to preserve the consistency of the derivation results. The same applies to information
from additional sources: If such information is necessary for consistency preservation,
then it also has to be kept consistent just as models have to be kept consistent.

acquire information from
user or suppose defaults

In case the information required for determining corresponding elements cannot be
derived from available information nor be obtained from additional sources, it is possible
to acquire it from the user or to suppose default values for it. Asking the user to provide
such information has the advantage that we may obtain more suitable information for
speci�c cases. This is more di�cult to achieve with �xed or dynamically computed
default values, but it has the advantage that no interaction with the user is required,
which may disturb the work�ow or not be available after a change.

last resort: postpone
determination

If the information required for determining and preserving correspondences cannot
be derived, obtained, acquired, nor supposed, the only remaining option is to postpone
consistency preservation until the information is available. The di�culty with this is that
the correct point in time at which the information is available or can be obtained has
to be detected. Furthermore, there may be abortion criteria, which specify under which
conditions consistency cannot be enforced anymore so that postponing is no longer
possible.

3.3. Modelling Language Challenges

language challenges may
slip down to lower levels

The challenges to consistency of the second class, which we present in this section, arise
at the second but highest level of abstraction, which is the level of modelling languages.
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These challenges directly result from the way modelled originals and the relations between
them can be represented using a given modelling language. How a modelling language
is used and de�ned in terms of abstract syntax can have many implications on how
consistency to another modelling language can be checked or enforced. If it is possible
to shape a modelling language according to consistency preservation needs, it can be
bene�cial to directly address the following challenges during this language de�nition
process so that some consistency challenges on lower levels of abstractions are less
likely to occur. But, often it is necessary to preserve consistency for models of given
modelling languages which cannot be changed. In such cases, the challenges presented
in this section may only be addressed during consistency speci�cation, enforcement, or
implementation.

3.3.1. Consistency-Enabling Abstraction

di�erent languages,
di�erent abstractions

Modelling languages for which models shall be kept consistent with models of other
languages, have to provide abstractions that are detailed enough with respect to the
abstractions of the other languages. Di�erent modelling languages are often designed
for models that are used for di�erent tasks (see also pragmatics in subsection 2.1.1). To
support these tasks only with the required information, the languages can use di�erent
levels of abstraction. If the languages are used in combination and consistency between its
models shall be enforced automatically, it is often necessary to overcome such abstraction
di�erences.

implicit or explicit
augmentation

If a modelling language abstracts away from details that are necessary for consistency
preservation, these details can either be obtained from other models, from additional
sources or the user. The �rst case re�nes the conceptual challenge of the previous section
subsection 3.2.7 which does not take into account which modelling language is used for
the model that provides the required information. If the necessary details are available
in models of another modelling language, these models can be used to implicitly or
explicitly augment the models that abstracted away from the details. In case of an implicit

augmentation the model that abstracts away from the necessary details is left unchanged
and the details are always retrieved from the models of the other languages. To ease
this retrieval references from the elements missing the details to the elements providing
it are often stored in so called witness structures. An explicit augmentation adds the
necessary details to the models requiring them, so that they can be directly used without
following any references etc. As we already discussed above for conceptually determining
correspondences using explicitly added additional information, such solutions have the
disadvantage that the information that is added has to be kept consistent afterwards.

3.3.2. Di�erent Roles for Models

nature, rigidity, and originWhether models have a prescriptive or descriptive nature (see also page 38) and
which role they play during system development is often already given by the modelling
language and it has an in�uence on consistency preservation. The role played by a
model can, for example, be described with a level of rigidity. Models can be used in a
rigid way, e.g. in automated processes or with a catalogue of manually performed but
inevitable consequences, or in a �exible way where they are rather guidelines than rules.
Furthermore, models can have di�erent origins as they can be automatically derived
from existing development artifacts or manually created by developers. Models from
both origins can have faults depending on the regulation of the automated or manual
derivation or creation process.

consequences of
complementary or
incompatible roles

The nature, rigidity, and origin of models can in�uence consistency preservation,
especially in terms of precedence. For the enforcement of consistency it can be bene�cial if
the used modelling languages lead to models that play complementary roles. Prescriptive
models and models that are automatically implemented in a rigid way, e.g. using code
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generation or model execution techniques, may, for example, take precedence over
descriptive models or over models that are manually created to express additional but
uncertain information on a best-e�ort basis. Incompatible roles can, however, hinder
consistency enforcement. Consider, for example, a descriptive model that is automatically
derived and a prescriptive model that is manually created and rigidly used to generate
code. If these models are inconsistent, it can be argued that the descriptive model takes
precedence because the derivation process is assumed to be correct. But it can also
be argued that the prescriptive model should take precedence because the intent of
the developer should be preserved and it is assumed that no unintentional changes are
performed.

3.3.3. Di�erent Usage of Types and Identity

bridging di�erent type and
identity notions

If di�erent notions of types and identity are used in two modelling languages for which
models should be kept consistent, these di�erences have to be taken into account during
consistency preservation. Elements or values that are considered �xed or identifying
on the type level in one language, may be considered �exible or common in the other
language. In such cases, consistency preservation also has to preserve these notions
and has to translate �exible instances to the corresponding types. This can be especially
challenging, if both modelling languages do not �x the possible set of types on the
language level but postpone this to the instance level. These belatedly de�ned types
can be explicitly provided using hard-wired particular models that contain these types
or implicitly during their usage as a matter of modelling conventions. Some modelling
languages, such as the Uni�ed Modeling Language (UML) [ISO12a; ISO12b], even provide
distinct language constructs to support types on the instance level, e.g. stereotypes or
powertypes.

fixed types vs. flexible
instances

An example for di�erent notions of types is the combination of a modelling language
that has a �xed set of possible enumeration literals to represent a certain property of an
original with another modelling language that uses a metaclass with an unlimited number
of di�erent instances with an own identity to represent the same property. Preserving
consistency is straightforward if only the �rst modelling language is used to model this
property, because a unique instance of the metaclass of the second language can be
automatically created for every enumeration literal. But, if new instances of the metaclass
of the second language are manually created by developers, then we may have to map
several such instances of the second language to a single literal of the �rst language and
the correct instance has to be chosen when a literal is used in the �rst language.

unique values vs. multiple
occurrences

A similar problem occurs, if one modelling language uses a certain property value to
uniquely identify instances that represent an original but another modelling language
represents the same original using instances that have no identity so that the same
property value can be used several times. The challenge is to establish a notion of
identity for the combination of both languages, which may identify instances based
on the combination of their properties in both languages. This also means that it is
not always possible to determine the identity of elements by only taking one of both
languages into account, which can be di�cult for developers that only work on models
of one of the languages.

3.3.4. Other Representation Variations

usage canmake variations
semantical

Modelling languages can use many di�erent ways that in�uence consistency preserva-
tion to represent further properties of modelled originals in addition to types and identity.
Such variations can either di�er only in syntactic terms with restricted consequences
for consistency preservation, or they also represent semantic di�erences, which can be
more di�cult for consistency preservation. Whether modelling language variations have
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semantic consequences is not directly determined by the variations itself, but it depends
on the usage of the language and the semantics of it.

consistency of ordered
and unordered collections

A variation that may have semantic consequences is, for example, the representation of
several simple-typed attributes or references to model elements as an unordered collection
or as an ordered list. If one modelling language has an unordered collection and the other
has not, consistency preservation has to take the consequences of a change in order into
account. In models of the �rst language, di�erent orders of such a collection make no
di�erence or cannot even be represented. But the order of a corresponding collection in a
model of the second language may be interpreted by automated processes or developers.
Therefore, consistency preservation has to ensure that the correct order in the model of
the second language is used when changes are applied to models of the �rst language.

local or split
representation

Another possibility for variation that may have semantic consequences for consistency
preservation is whether a property of a modelled original is represented using a single
model element respectively attribute or several elements and attributes. Such variations
can be challenging during consistency preservation in terms of atomicity. If a single
element or attribute in a model of one language is kept consistent with several elements
or attributes in a model of another language, then changes to some but not all elements
of the second model can be di�cult to propagate to the single element of the �rst model.

syntactic: type-safety,
navigability, opposition

Purely syntactic variations in modelling languages present no challenges to consistency
preservation semantics but have to be addressed nevertheless. Type-safe enumerations
in one modelling language, for example, may have to be kept consistent with attributes
of model elements of another language that are not statically checked. In such a case,
attribute values that cannot be translated to one of the �xed enumeration literals have to
be avoided in models of the second language. Other syntactic variations can, for example,
occur if the navigability or opposition of references to other model elements is handled
di�erently. Limitations of navigability for references in one modelling language can
be technically overcome if consistency preservation with models of another modelling
language cannot be achieved without it. If model elements of one language always
have a reference to another element that references it but the corresponding elements
of another language only exhibit one of these opposite references or both but without
such a constraint, then consistency preservation has to ensure that references changes in
models of the second language can be correctly propagate to both references of the �rst
modelling language.

3.4. Specification Challenges

This section presents the third class of challenges to consistency after conceptual and
modelling language challenges. It contains challenges that may occur when consistency
for two �xed languages is speci�ed so that consistency can later be checked or enforced
according to this speci�cation. These challenges are still independent of the mechanisms
that are used to check or enforce consistency.

3.4.1. Unspecifiable Consistency

specifications are
unambiguous

Not all consistency relations that should exist between models of di�erent languages
can be speci�ed in such a way that it can be unambiguously decided for any given
input models whether they are consistent or how consistency can be achieved. For such
ambiguous cases, an imprecise consistency description can be provided in addition to a
speci�cation for the unambiguous cases. Such a description can be used as a guideline
even if it is too ambiguous to serve as a speci�cation for these cases. Whether and how
such cases occur can depend on the involved modelling languages and on the language
for specifying consistency.
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Twounavoidable and imposed
ambiguity

types of unspeci�able consistency relations can be distinguished based on the
expressivity of the speci�cation language. First, consistency relations that cannot be
expressed unambiguously with any speci�cation language because the ambiguity is
induced by the relation itself. Second, consistency relations that cannot be expressed
unambiguously with a given speci�cation language but with another one. Such cases
only have an in�uence on consistency, if the speci�cation language cannot be extended
or replaced. In practice both types of unspeci�able consistency relations are likely to be
ignored: If it cannot be speci�ed whether models have this relation or how they should
obtain it, then it is hard to imagine that parts of the developed system or of development
process are in�uenced by it.

3.4.2. Complex Consistency Relations

freedom and conflicting
goals

A major challenge for specifying consistency is the complexity of the consistency
relations that shall be checked or enforced. These relations do not always directly
map identical information, but may involve complex conditional computations and
conversions. On the one hand, such complex consistency relations have to be described in
a way that is precise enough to serve as speci�cation for all possible cases. On the other
hand, speci�cations only serve their purpose, if they are easy to write and understand
and do not describe more than is needed. Furthermore, the e�orts for both specifying
and checking or enforcing consistency should be kept minimal. For simple consistency
relations, there are not many di�erent ways of specifying and checking or enforcing
them. Complex relations, however, can be speci�ed in various ways and the con�icting
goals discussed above make it di�cult to decide on it.

example: conditions vs.
cases

Let us consider, for example, a consistency relation for two model elements of two
modelling languages that represent information in di�erent formats. There are several
possibilities for specifying the conversion of the representation formats and the condi-
tions for the overall relation and speci�c conversion steps. Di�erent cases, for example,
can be integrated into a single conversion description with conditional computations,
subroutines and intermediate results. This could reduce the speci�cation e�ort and later
maintenance because no statements have to be unnecessarily repeated. Checking and en-
forcing such a speci�cation could, however, be more complicated regardless of the degree
of automation. An alternative would be to specify independent and complete conversions
for each case. This could make it easier to understand and execute the speci�cation, but
it could increase the e�orts for maintaining the consistency speci�cation.

3.4.3. Consistency for a Flexible Number of Elements

exactly specifying
boundaries of flexible

consistency

Specifying consistency for a set of elements with a size that may vary from case to
case is challenging. One reason is, for example, that the number of model elements
and the number of references between them may vary independently. Therefore, such
consistency speci�cations have to de�ne precisely which model parts that are involved in
a consistency relation may have a �exible size and which parts have to be of a �xed size.
In this context, references between �exible and �xed parts are especially challenging, for
example, because cardinality constraints of a reference from a �xed element to �exible
elements may indirectly restrict the possible number of �exible elements.

literature on flexible
consistency

Flexible numbers of elements are also addressed by di�erent graph transformation
approaches. For example, using a collection operator for Triple Graph Grammars
(TGGs) [GKM11, pp.123f]. This operator matches an arbitrary number of subgraphs
that ful�ll optionally speci�ed cardinality constraints on the left side of a graph rule. The
changes that are speci�ed by the right side of the rule are applied to every subgraph that
was matched by the collection operator based on shared identi�ers. Another approach
for dealing with �exible numbers of elements is multi-amalgamation [Leb+15, pp.92�].
So-called multi-rules are applied to a kernel rule in a way that depends on the number of
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matches for the multi-rules. This makes it possible to de�ne multi-amalgamated rules for
which the number of involved elements is determined at transformation time.

3.4.4. Consistency for Specific Instances

distinguishing model
elements not types

Consistency relations are usually speci�ed on the language or type level, but there
may be cases in which speci�c element instances should be considered. A speci�cation
for a consistency relation on the language level de�ned conditions for consistency in
terms of properties that are de�ned for model elements of a certain type. This means,
such relations hold whenever the conditions are satis�ed by those elements and di�erent
elements with the same values for the relevant properties are treated identically. There
are, however, two cases in which such pre-de�ned consistency relations based on element
types may not be su�cient.

insu�icient modelsIn the �rst case, the properties de�ned for elements of a certain type do not allow a
precise identi�cation of the right element instances for consistency preservation. More
speci�cally, these properties de�ned in one language are not su�cient to always select
those element instances of the �rst language that shall correspond to element instances
of another language, which may have more information. This means more information
is necessary to automatically distinguishing these element instances of the �rst language.
If this information cannot be retrieved from other models or be derived and added to the
models, a possible solution is to ask the user to perform the distinction.

insu�icient specificationsIn the second case, it cannot be �xed upfront which property values shall be kept
consistent in which way. This means the problem in this case is not a limited amount of
information available in the models, but a limited amount of information available in the
consistency speci�cation. Therefore, the only way to address this lack of speci�cation
information is to let the user chose speci�c element instances at runtime. It is not
guaranteed that the information available at runtime while be su�cient to choose the
right instances, but it is strictly more information than at compile time.

3.4.5. Abstract Consistency Specifications

consistency-specific
abstractions

Consistency speci�cations should abstract away from model details that are not needed
to check or possibly enforce consistency (see OCSLC 3 in section 1.2). If speci�cations
contain such unnecessary details, they may be less concise and more di�cult to under-
stand, execute, and maintain than needed. Therefore, speci�cations should only mention
those attributes of model elements for which di�erent values may have a di�erent impact
on consistency preservation. Similarly, only references to elements that are relevant for
a consistency relation should be mentioned. This is, however, especially challenging
because there can be transitive relations that involve intermediate elements that are not
relevant. In such a case, the fact that there is a sequence of references and intermediate
elements that links two elements is relevant. All properties of the intermediate elements
are, however, irrelevant, except for the references forming the transitive relation. This
demonstrates that partial abstractions may be helpful for consistency speci�cations, but
can be di�cult to de�ne.

patterns and implicit
matching

Abstract consistency speci�cations may choose di�erent ways to deal with the infor-
mation that is abstracted away. One possibility is to specify abstract patterns of relevant
elements and implicitly match them to complete models. With this approach, everything
that is not speci�ed in a pattern can be present in di�erent ways or not. Therefore, we
call this pattern-based approach open-world abstraction. An example is the star operator
for TGGs [Lin+07, pp.3f], which is analog to the star operator in Kleene algebra [Koz94,
pp.369f]. This operator �nds an arbitrary number of matches of a subpattern between
two other subpatterns that are isomorph to each other.

queries and explicit
matching

Another possibility to achieve abstract consistency speci�cations is to de�ne abstract
queries and explicitly match requested elements. In this case, everything that is not
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speci�ed in a query cannot be present and we call this closed-world abstraction. The
advantage of this approach, is that unintentional implicit matchings can be excluded
and that the matching process can be in�uenced. A prominent example for this is the
query-based model transformation framework Viatra [Ber+11], which also uses patterns.
It also demonstrates that both abstraction possibilities, patterns and queries, can be
combined. Implicit abstraction and explicit matching instructions as well as no or full
control over the matching process are just the ends of a continuous range of abstraction
possibilities.

3.4.6. Redundancy in Specifications

some consistency
characteristics are prone

to redundancy

The amount of redundant information in consistency speci�cations—and in any other
development artifact—should be minimized in order to reduce the e�orts necessary for
evolving and maintaining them. This is especially challenging because two characteristics
of consistency preservation between models of two languages are inherently prone to
redundancies: the commonalities of checking or enforcing consistency and the symmetry
of preserving consistency after changes in forward or backward direction.

redundancies of checks
and enforcements

Every consistency enforcement speci�cation can also be used to check consistency.
Consistency check speci�cations, however, usually do not de�ne what has to be changed,
if a check is not successful (see also page 38). This one-way dependency means that
enforcement could theoretically be speci�ed by referring to a check speci�cation and
providing only redundancy-free enforcement details that are not necessary for checks.
In practice, this is not always the case. Those parts of a consistency speci�cation that
describe enforcements, can repeat information that is already given in parts that de�ne
consistency checks. A speci�cation may, for example, de�ne how a value for a property
that is declared for an abstract metaclass should be checked and may repeat this value in
another part that speci�es how consistency is enforced for concrete subclasses of this
metaclass. This redundancy could be avoided if the enforcement speci�cation only added
details for the subclasses and referred to the check for the value of the superclass as it
also implies that this value should be set during enforcement.

redundancies of forward
and backward direction

The symmetry of enforcing consistency in forward or backward direction is the second
consistency characteristic that is prone to redundancy. In this context, we use the term
forward direction for enforcement change operations that are performed on the right
side in reaction to user change operations on the left side. Likewise, the term backward

direction is used for changes on the left side in reaction to changes on the right side. These
directions are never completely isolated. More speci�cally, there is always a reaction to a
previous reaction to an initial change that has something to do with the initial change.
Therefore, redundancy cannot be avoided if both directions are speci�ed separately.
Even if both directions are speci�ed at once, it is challenging to �nd redundancy-free
de�nitions for all possible consistency relations.

3.4.7. Reuse in Specifications

reuse instead of
redundancy

The reuse of complete speci�cations and parts of it is a challenge that is closely related
to redundancy in speci�cations and also the Open Consistency Speci�cation Language
Challenge 1 (see section 1.2). Redundant parts in consistency speci�cations that are hard
or impossible to avoid are often due to the consistency relations itself and not due to
speci�cation de�cits. In these cases, a major challenge is to �nd ways to explicitly reuse
parts of speci�cations instead of repeating them. Such reuse mechanisms are mainly
constrained by two factors: the support of variability and the relation between initial
e�orts for introducing reusability and eliminated e�orts for maintaining redundant parts.

reuse variability and
specification e�orts

If speci�cation parts that are not identical but structurally similar should be expressed
together for reuse, then variations between these parts have to be expressible using
a reuse mechanism. For this, points of variability have to be de�ned in the reused
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speci�cation parts and bindings for these points have to be speci�ed where they are
reused. These de�nitions and usages of variation possibilities should be described in a
way that renders reusable speci�cations more bene�cial than alternatives with redundant
parts. If consistency speci�cations with reusable instead of redundant parts are not easier
to use or maintain, the reuse mechanisms should be put into question. Even more, the
bene�ts for the maintenance of reusable speci�cations should not be eliminated by the
initial e�ort to write a speci�cation with reusable parts.

3.4.8. Scope of Consistency Relations

only for parts of a
modelling language

Implicit and explicit restrictions on the sets of used modelling language elements and
property values are challenges for specifying consistency. Such restrictions limit the
scope of consistency relations, which is not always bad but often just necessary. If the
scope of a consistency relation is, however, unintentionally to narrow or to wide, this may
impede the reuse for several development projects or for speci�cations of consistency
with other modelling languages.

implicit and inherited
scope limitations

Consistency speci�cations can implicitly inherit the limited scope de�ned by the
development context and may implicitly further restrict it. In many software development
projects only some of the elements types and relations that are de�ned by a modelling
language are used in model instances. Large and standardized modelling languages can,
for example, be a reason for this. If consistency between two modelling languages is
speci�ed for such a project, it may be implicitly assumed that only certain element types
and relations are used. The speci�cation may implicitly inherit the limited scope and
may impose further restrictions, for example, by not mentioning irrelevant subclasses
etc. Such a speci�cation should not be used outside its scope for models with instances
of excluded element types to avoid unexpected results.

explicit scope limitations
and enforcement

It is di�cult to build mechanisms for de�ning explicit scope limitations that do not
only restrict relations but that can also be enforced to move elements into the scope.
Individual consistency relations often need to be restricted to certain parts of modelling
languages or to elements ful�lling special conditions. There are many di�erent ways to
directly or indirectly express such restrictions, which have an in�uence on how easy the
resulting scope limitation can be determined. For consistency enforcement speci�cations
it is, however, especially challenging to provide facilities for specifying limitations that
can also be enforced. A consistency relation may, for example, take the form that only
those elements that do not have a certain value correspond to other elements with a
certain value. The value of one of the later elements can be changed so that it should no
longer correspond to one of the former elements. It is clear that these two elements are
no longer in the scope, but it is unclear how the value of the former element should be
changed. The scope limitation that this element should not have a certain value is not
su�ciently described to be enforced.

3.4.9. Referring to Changes and States

using changes and states
in specifications

If a speci�cation is used to check or enforce consistency after a change, it can be
bene�cial to have the possibility to refer to the change or to the state of models before
or after the change. In this context it can be challenging to decide which information
about a change should be accessible in which way and which model information shall
be provided for which state. These decisions can in�uence the way speci�cations are
written and how they are checked and enforced.

change representation can
influence specifications

The possibility to refer to changes in consistency speci�cations is not always needed,
but if it is provided for change-driven speci�cations, then its representation and the access
to it in�uences speci�cations. Change representations can, for example, be designed in
a way that emphasizes the uniformity of di�erent change types by providing similar
types of information in the same way. Explicitly changing a value to an identity element,
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such as the empty string, can be represented in the same way like the removal of a value
in order to ease a uniform treatment of these two cases. But it can also be a goal to
allow as much di�erentiation between di�erent change types and contexts as possible
by distinguishing even very similar changes. The explicit removal of a model element
together with its only incoming reference, for example, can be represented in a di�erent
way than the removal of a last reference to such an element, if both changes require
di�erent consistency checks or enforcements although they can have the same initial
e�ect. The representation of model changes is also important for composite changes that
can be presented as a composition of atomic changes.

access to old and new
state

If a speci�cation is used to check or enforce consistency after a change, it is possible
to provide access to model information from the old state before the change happened
and from the new state after it happened. As long as complete information about a
change and about one of the two states is provided, it is theoretically possible to derive
all information about the other state. But in practice information about one state may
be more appropriate for specifying consistency than the other. If a new state can be
reached from several old states using the same change—or the other way round—, then
consistency speci�cations can be more complex or less precise than needed if the wrong
state is provided.

going forward, backward
or bothward

Together, a change and one or both model states can be used for change-driven
consistency speci�cations and complement each other. Information that is needed for
specifying consistency but not available from a change representation has to be obtained
from a model state and the other way round. If the old state is provided together with
a description of a change that can be executed on this old state, this is usually called a
forward change description. In analogy, the combination of the new state and a change
description that can be executed on it is usually called a backward change description. If
both states are provided together with a change description that can be executed on both
states, we call this a bothward change description.

3.5. Specification Language Challenges

challenges to be
addressed by specification

languages not by
individual specifications

In this section, we do not present challenges at another level of abstraction. Instead,
we introduce four special challenges of consistency speci�cation languages. This means,
that these challenges can occur when consistency is speci�ed—like the challenges of
the previous section—but instead of being readdressed for every individual speci�cation,
they should be addressed by languages for consistency speci�cations. Furthermore, these
challenges are not yet su�ciently addressed in current speci�cation languages. Therefore,
they are central to this thesis and we name themOpenConsistency Speci�cation Language
Challenges (OCSLCs). These challenges are the basis for the research subquestions of
research question 2, which we have presented in subsection 1.3.2. The goal of each of
these subquestions is to explore how the following open challenges can be addresses by
new speci�cation languages, which we will present in chapter 6–8.

The four OCSLCs that we identi�ed are:

1. Speci�city Limits Expressive Power :either support for many
cases or expressive power

for all cases

Current consistency speci�caton languages
hardly combine speci�c support for consistency preservation with full expressive
power. Instead, developers often have to decide whether the cases supported by
dedicated languages for consistency speci�cations are su�cient for their needs
or whether they have to use a general-purpose language to express their needs
with unlimited expressive power. That is, more speci�c support for important or
frequently occurring cases is often traded against limitations in terms of expressive
power. As a result, developers are either restricted to certain use cases or forced
to also apply general-purpose languages to cases in which full expressive power
would not be needed and speci�c languages could be applied.
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2. Either Solution- or Problem-Oriented Paradigms: one perspective for all
consistency problems and
relations

Many consistency relations can be
preserved based on speci�cations that only de�ne problems of consistency without
specifying how these problems can be solved or have to be solved. To preserve other
consistency relations, it is often necessary to specify exactly how inconsistencies
are to be resolved. Current languages often support programming paradigms that
either allow solution-oriented or problem-oriented consistency speci�cations but
not both. Therefore, developers are forced to address all consistency requirements
and problems for all modelling parts and relations from one perspective.

3. Missing Abstractions and Adaptations: specify consistency also
for irrelevant model parts
or preservation
possibilities

To preserve consistency between models
of two modelling languages, not all concerns and details that are represented
in the models are relevant. Di�erent variants of modelling related concepts, for
example, can often be treated uniformly when consistency to less detailed models
is speci�ed. Moreover, it is not always necessary to consider all possibilities of how
and where consistency can be preserved. Current languages, however, only provide
insu�cient means to abstract away from such modelling and preservation details
when consistency is speci�ed. If abstraction is achieved, the level of abstraction
can often not be adapted to specify consistency for di�erent model elements and
relations using di�erent abstractions. As a result, irrelevant details often have to
be considered so that it becomes unnecessarily complex for domain experts or
developers to specify consistency.

4. Detached Preservation Behaviour : hard to understand and
foresee the behavior of a
specification

Many consistency speci�cation languages make
it di�cult for developers to understand how consistency is going to be preserved
according to their speci�cation. It is often di�cult to foresee how di�erent speci�ca-
tion possibilities a�ect the resulting consistency preservation behaviour in di�erent
situations. Interpretative realizations of consistency speci�cations languages, for
example, burden developers with complex engines in which the behavior of many
routines can hardly be related to a particular part of a consistency speci�cation.
Similarly, many compilers generate a lot of code for which developers may �nd
it di�cult to trace the instructions back to consistency speci�cation parts. This
makes it di�cult to assess upfront whether a speci�cation will preserve consistency
as required.

3.6. Enforcement Challenges

enforcement time, space,
and automation

In this section, we present challenges to change-driven consistency preservation that
occur if a consistency speci�cation is enforced. The presented challenges are concerned
with general properties, such as the time, space, and automation of consistency enforce-
ment. They are independent of the implementation for a given consistency enforcement
technique.

3.6.1. Enforcement Time and Granularity

The �rst subclass of consistency enforcement challenges is concerned with the point of
time at which consistency enforcement takes place and the distance between these points
of time, which is also called granularity.

When to Enforce

identifying and selecting
enforcement times or
change groups

The identi�cation and selection of points of time at which consistency is enforced
is fundamental for change-driven consistency enforcement. First, we have to identify
times at which it is possible to enforce a consistency speci�cation, e.g. when all enforce-
ment pre-conditions are ful�lled. Second, if di�erent points of times were identi�ed as

53



3. Challenges to Consistency Preservation

candidates for enforcing consistency after a change, we have to select one. These two
steps for identifying and selecting enforcement times have equivalents in terms of change
grouping: First, we have to identify groups of changes with which consistency for a
given change can be enforced. These groups can also be considered change compositions.
Second, if di�erent groupings are possible, we have to select one to decide for which
changes consistency shall be enforced together. Both steps are closely related to the
conceptual challenge of deciding how much inconsistency shall be tolerated at the time
of enforcement, which we discussed in subsection 3.2.2. Furthermore, both steps do not
only depend on the modelling language of the changed elements but also on the language
of the models to which consistency is enforced. Consistency speci�cations for di�erent
target languages can lead to di�erent decisions on enforcement times and change groups.

What Information is Needed to Enforce

information required for
consistency enforcement

To enforce consistency after a change, it has to be determined which information is
necessary for the enforcement. For example, information about decisions on enforcement
times and change groups has to be provided if their results in�uence the enforcement
because di�erent times or groups would lead to di�erent enforcements. Like these
decisions on enforcement times and groups, the general challenge of determining the
information necessary for enforcement also depends on the target language. Therefore,
di�erent information may be provided for enforcing consistency to di�erent target
modelling languages.

additional context
information for
enforcement

An important group of information, which can be necessary for change-driven con-
sistency enforcement is all information that describes the context of a change and that
is not present in the changed models. Such additional context information may, for
example, convey who performed a change or how it was performed, if this is relevant for
consistency enforcement. Consistency after a change by a developer that was trained
in the subject of a special model part, for example, could be enforced di�erently than
after a change by a developer that was not trained accordingly. Furthermore, consistency
could be enforced di�erently after two di�erent change operations leading to the same
model state, if one operation copies a certain value from another model part and the
other sets the same value without such a relation. If such context information is not
obtained upfront and provided as an input to consistency enforcement, it may be di�cult
to restore it after consistency enforcement started.

possible solution for
change composition

information

A possible solution for the challenge of deciding which change grouping or composition
information should be provided is a greedy two-phased approach: When changes occur, all
available information about the composition of changes is preserved without any analysis
of its necessity. During enforcement of consistency after these changes to models of each
target language, this information is ignored or removed per default as if no composition
information would be available. Only for those languages and enforcement cases for
which such information is required, the available information is used to correctly enforce
consistency for these change compositions.

When and How to Undo Enforcement

fallible enforcement may
require undo

If consistency enforcement operations can fail, then mechanisms for detecting such
failures and undoing the enforcement change are necessary. A consistency speci�cation
may, for example, de�ne post-conditions that have to hold when consistency was enforced
after a user change operation. If they are violated, the speci�cation may require that only
the enforcement change operation or also the user change operation are undone in order
to reach a consistent state.

avoiding undo through
enforcement analyses or

simulations

Undoing enforcements is not necessary if a consistency speci�cation makes it possible
to determine for each user change whether consistency can be successfully enforced or
not. For this, the speci�cation may directly specify conditions for changes that can be
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enforced, which only have to be evaluated. If such conditions are not given, it is still
possible to analyze upfront if the result of an enforcement change operation and the
ful�llment of post-conditions can be determined. In cases where this analysis is not
possible, it may still be possible to simulate enforcement, e.g. on model copies, in order
to avoid undoing enforcements.

reversing changes or
restoring versions

Enforcements can be undone by executing reverse operations for each enforcement
change operation or by restoring an old version of the model state. Reverse operations
can be performed based on the user change operations and the enforcement change
operations. They can inspect both changes to indirectly obtain all old values. In this
way, the old model state can be reached again but no additional bookkeeping for this old
model state is necessary. Such bookkeeping is necessary if old versions should directly
be restored. The advantage is, however, that the complexity of enforcement change
operations and user change operations has no in�uence on version restoration. Restoring
and old model state and discarding the state after a failed enforcement can always be
performed the same way regardless of what happened. Both undo mechanisms of change
reversion and version restoration have to guarantee that enforcement that did not happen
cannot be distinguished from an enforcement that was undone.

change and enforcement
transactions

If di�erent ways of grouping user change operations in�uence consistency enforcement
as discussed above, then enforcement operations for such change groups may have to
be undone in a transactional manner. A consistency speci�cation may, for example,
require that consistency after two subsequent changes is either successfully enforced
for both changes or for none of them. If the �rst enforcement is successful but the
second enforcement fails, both enforcements have to be undone. A change reversion
mechanism has to perform reverse operations for both enforcements and a version
restoration mechanism has to go back to the version before both enforcements. This is,
however, only a simple example for transactional undoing of enforcements, which may
be much more challenging. It may, for example, be necessary that user change operations
are also undone or that users are requested to repeatedly disambiguate their changes with
a limited set of possibilities in order to �nd a way to successfully enforce consistency.

3.6.2. Enforcement Space and Boundaries

The second subclass of consistency enforcement challenges is related to the boundaries
of the model space in which enforcement takes place.

Enforce on One or Both Sides

preferable to enforce only
on unchanged side

An important question of enforcement is whether it is su�cient to enforce consistency
only on the side that was not changed with a user change operation. Such a strict boundary
between the side at which a change originated and the side at which consistency is
enforced is preferable because it avoids con�icts between user operations and enforcement
operations. The question whether such a boundary is possible is closely related to the
totality of consistency, which we discussed in subsection 3.2.4. It was also discussed in
a survey paper on bidirectional transformations [Ste08, p.413], but it is relevant for all
types of consistency transformations.

conflicts of enforcements
on both sides

If a consistency relation is not left- or not right-total, then there can be changes to a
consistent state that cannot be made consistent by only modifying one side. Either such
changes have to be undone as discussed before, or consistency enforcement operations
that modify both sides have to be performed. If enforcement operations can modify both
sides, then manually performed changes can con�ict with the e�ects of an enforcement
operation. Such con�icts of manual changes and automated consistency enforcement can
be avoided if enforcement operations modify only the other side. A simple approach, for
example, is to enforce consistency before changes are performed on the other side. That
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is, for a sequence of changes that individually occur on either of both sides, consistency
is enforced after every maximal subsequence of changes that modi�ed only one side.

Where to Enforce

enforcement locations
may have to be

determined

A consistency speci�cation may not always directly de�ne which model elements have
to modi�ed, created, or deleted in order to enforce consistency after a change. In such
cases, these locations at which consistency enforcement has to take place have to be
determined because enforcement change operations can be performed. This question of
identifying enforcement locations can be functionally relevant if di�erent locations would
yield di�erent enforcement results. If consistency has to be enforced at several locations,
then even the order in which enforcement operations are performed at these locations
may make a di�erence. Determining enforcement locations can also be relevant if non-
functional properties of the consistency preservation, such as performance, are important.
Consider, for example, a consistency speci�cation for which references to other elements
have to be checked on every model element of a certain type to determine enforcement
locations regardless of the user change. If these possible enforcement locations cannot
be restricted, then the worst-case runtime of consistency enforcement may be quadratic
in the number of model elements.

implicit specification of
locations

The locations at which consistency has to be enforced may be indirectly given by
the context of a change, e.g. by the correspondence of a changed model element. Such
indirect speci�cations of enforcement locations may result in consistency speci�cations
that are less verbose and complex than speci�cations that explicitly de�ne enforcement
locations. This requires mechanism that determine locations for consistency enforcement,
e.g. by analyzing correspondences of elements at which consistency conditions were
violated.

3.6.3. Automated Enforcement

automation degrees and
causes

The last subclass of consistency enforcement challenges deals with possibilities and
degrees of automated consistency enforcement. We already discussed the conceptual
challenge that models do not always contain all information that is necessary to decide
whether they are consistent in subsection 3.2.7. The automation challenges on the
enforcement level have a similar cause: How much automation can be performed and
how it can be performed depends on the amount and unambiguousness of information
contained in the models and in the consistency speci�cation.

HowMuch Automation

automation degrees for
enforcement approaches

The degree of consistency enforcement automation that is possible increases if the
ambiguity of the information in models and consistency speci�cations decreases. We
introduce six degrees of automation from no automation, over automated checking of
consistency, automated change impact analysis, automated enforcement suggestions, and
semi-automated repair with user interaction, to fully automated consistency repair. The
borders between these degrees are only precise for a consistency approach in general
but not for parts of it or for individual executions on speci�c models. If a user performs,
for example, a selection from a list of enforcement suggestions after a change but not
every suggestion can be executed automatically, this interaction can already be seen as
semi-automated repair. Furthermore, an enforcement process that is in general semi-
automated can be performed without a single user interaction for some input models
and changes. We will now brie�y present the six automation degrees, which are also
illustrated in Figure 3.2, and we will discuss three further automation challenges in the
next sections.
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1. no automation

2. automated checking

3. automated change impact analysis

4. automated enforcement suggestions

5. semi-automated interactive repair

6. fully-automated repair
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Figure 3.2.: Increasing degrees of achievable consistency enforcement automation with their relation
to a decreasing number of ambiguities in the consistency speci�cation

In degrees: check, analyze,
suggest, interact, repair

the worst case, no automation can be achieved at all because the information in
models and consistency speci�cations is not su�cient for automated checking of con-
sistency so that. This is the lowest degree of consistency enforcement automation. The
next possibility is that the information is su�cient for automated checking, but not for
automatically determining which model parts could need to be modi�ed to enforce con-
sistency after an inevitable change that breaks consistency. Such an automated change

impact analysis that only computes which elements could need to be modi�ed but not
how this could be done is the next degree of consistency enforcement automation. After
this, automated enforcement suggestions that describe which operations can be performed
to enforce consistency but cannot be automatically executed are the next degree. Theo-
retically, a way to automatically check consistency can always be used to analyse the
change impact or to obtain enforcement suggestions with brute force. Practically, we
suggest to de�ne upper bounds for the time neeed to perform a change impact analysis
and for the time needed to compute enforcement suggestions as well as for the number of
provided suggestions. This would ensure that these three degrees do not always coincide.
The remaining two degrees semi-automated interactive repair and fully automated repair

are the only two degrees of consistency enforcement automation that also automate the
execution of enforcement operations. On the second highest degree of semi-automation
all operations for enforcing consistency are performed automatically but the user can
still be prompted interactively to decide which operations are performed or to provide
values for parameters of the automated execution. This is not necessary for the highest
degree: a fully automated consistency enforcement approach can only be in�uenced with
a previously de�ned con�guration.

theory and practice of
enforcement automation

These degrees of consistency enforcement automation can be used to classify consis-
tency problems and solutions. If a certain degree of automation is theoretically achievable

for a given set of modelling languages to enforce consistency according to a given speci-
�cation, there can, however, be reasons why one may decide to realize a lower degree of
automation in practice. The e�ort for reaching a certain degree of automation may, for
example, not be in an appropriate or desired relation to the bene�ts resulting from it.

How to Obtain Enforcement Options

brute-force consistency
enforcement

If the models and the consistency speci�cation make it possible to automatically check
consistency but do not determine how it can be enforced, it can be challenging to compute
enforcement options. One possibility to use an automated consistency check to enforce
consistency is to perform arbitrary modi�cations until a model state that passes the
consistency check is found.
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Tocontrol model finding improve the performance of such a brute-force approach one can try to direct the
search for consistent models. One can control where modi�cations are performed e.g.
by starting at elements that were changed when consistency broke. Furthermore, one
can control which modi�cations are performed e.g. by inspecting which properties are
analyzed during the automated consistency check.

more than consistent Regardless of performance it can be challenging to �nd models that are not only
consistent according to a given speci�cation but also satisfy further requirements that
are not encoded in the speci�cation. Such requirements can, for example, state that
certain modi�cations are more desired than others e.g. to prefer additions over deletions.
Therefore, the applicability of an approach that enforces consistency by �nding consistent
models strongly depends on the restrictiveness of the modelling languages and of the
consistency speci�cation. A decreasing amount of freedom increases the chances and
speed for �nding not only any consistent models but the right ones.

three approaches in the
literature

In the literature, three approaches for deriving consistent models from constraints
and relational transformations using answer set programming [Era+12], satis�ability
solving [MC13; MGC13; CGR15], or abduction [HLR09; Het10] are described. With these
approaches consistent models are found by formulating search problems, checking the
satis�ability of relations, or by inferring modi�cations for which the given transformation
rules would induce the observed change.

manually or automatically
chose derived options

If several possible enforcement options are computed, one either has to ask the user to
manually choose, as discussed in the next section, or one has to choose automatically, as
discussed in the last automation challenge section.

When and How to Interact with the User

insu�icient information for
enforcement

A challenge that is closely related to the previous automation challenge is whether
and how users can be involved in order to provide information that is required to enforce
consistency. If the information in involved models and the consistency speci�cation is
not su�cient to determine how consistency should be enforced, then the user can be
asked for this information.

reasons for interaction The missing information that leads to a user interaction can have di�erent reasons.
Either the consistency speci�cation deliberately allows di�erent ways to enforce con-
sistency, or the speci�cation is faulty. Often, there are several valid ways to enforce
consistency because a modelling language forces a developer to choose from several
ways to represent information even if the choice has no in�uence on inter-language
consistency. Even in such cases, it can be bene�cial to let the user decide in order to avoid
that models contain many default values or elements for which it is unclear whether they
were created on purpose or not. If the choice of an enforcement option has an in�uence
on consistency, then user interaction can hardly be avoided.

interaction possibilities There are di�erent possibilities for interactive user in�uence on consistency enforce-
ment. We brie�y discuss di�erent points of time and types of interaction but avoid
discussing, for example, interface and design options.

time of interaction The information required for consistency enforcement can be provided by the user in
advance, when needed, or afterwards. The �rst case, in which the information is provided
in advance, can be seen as an interactive re-con�guration of consistency enforcement.
In the second case, consistency enforcement information is interactively provided by a
user. Such an interaction has to happen after a change made it necessary but before a
next change happens. This case can be seen as the highest level of interaction but it may
lead to requests for consistency enforcement information that could be avoided if the
interaction would be postponed. The last case of postponed interaction can avoid such
requests and makes it possible to delegate information requests to other users. This can
be bene�cial if di�erent users play di�erent roles during development, but it also bears
the risk of wasting e�orts if complex sequences of changes prove to be unnecessary after
they already have been performed.
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interaction typesInteractive request for information that is needed to enforce consistency can ask
users to choose an enforcement option or to provide values to complete or in�uence
enforcement. In the �rst type of interaction, a user is asked to choose from a �xed set
of di�erent enforcement operation where each speci�c operation in the set is always
performed in the same way. In the second type of interaction, a user can provide input
values that either only complete the result of a �xed enforcement operation or in�uence
a parameterized enforcement operation. Both, the set of options in the �rst case and the
input in the second case, can be realized in very di�erent ways so that it may be hard
to see whether the enforcement is �xed or not. Let us consider, for example, a request
for change disambiguation that is used to obtain a name for an element that was newly
created in a model of one language but has to be kept consistent with a list of names in a
model of another language. If the user simply enters a name it can be unclear whether
this will choose, complete, or in�uence an enforcement option. The set of allowed names
is usually �xed because the number of allowed characters and possibilities for each
character is usually �xed. But, it is not obvious, whether the enforcement result—apart
from the chosen name—is the same for every possible choice, or if the enforcement will,
for example, create additional elements in the model of the other language depending
on the name. The �rst case with a result that only di�ers by the chosen name can
theoretically be realized as interaction of both types, but in practice users will probably
not be forced to choose a name longer than a few characters from a complete list.

How to Choose from Enforcement Options

decide, measure, and
choose options

To decide how consistency should be enforced if the consistency speci�cation leaves
several options, it is also possible to automatically choose an enforcement option instead
of interacting with the user. In this case, a major challenge is to de�ne and implement
criteria according to which the selection is performed. First, one needs to decide which
properties of a consistent result should have an in�uence on the selection process. Then,
one has to de�ne metrics that analyze these properties so that di�erent results can be
automatically compared. Last, one has to develop an algorithm that determines which
comparisons are performed and how an enforcement option is chosen based on the
metrics results.

least change, surprise or
roundtrip di�erence

Several approaches address this challenge by measuring the di�erence before and
after an enforcement operation has been performed and by choosing the enforcement
result representing the least change [Mee98]. It is also possible to attempt to measure the
di�erence to concurrently performed modi�cations as least surprise [Che+15]. Another
possibility for bidirectional consistency would be to measure an inverse propagation
distance to minimize round-tripping di�erences. For a change on one side with several
enforcement possibilities on the other side, one could perform every enforcement option
as if it was a manual update to the second side and measure the distance between every
possible enforcement result on the �rst side and the state after the original update on
that side.

3.7. Implementation Challenges

The last class of challenges to consistency contains challenges that arise on the lowest
level of abstraction when consistency enforcement is implemented.

3.7.1. Consistency between Checks and Enforcements

inter-dependent check
and enforce

Checks and enforcement of consistency are inter-dependent: First, consistency checks
have to fail, if and only if consistency enforcement is needed. Second, all consistency
checks have to pass after executing all necessary consistency enforcement operations.
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These two constraints for consistency checks and enforcement either have to be guaran-
teed by the developer or by the consistency preservation tool.

make specification fit Whenever the tool obtains separate check and enforcement speci�cations from the
developer, these speci�cations have to �t together. The tool can support the developer by
verifying whether the speci�cations �t in order to issue error messages, or it can even
replace parts of the speci�cations to make them �t. If the tool is capable of �xing some
check and enforce speci�cations that do not �t, it should be investigated, whether check
and enforcement can be derived from a single speci�cation in some cases as described in
subsection 3.4.6.

realize correctly If the tool performs consistency checks and enforcement based on a single speci�cation,
the tool bears all responsibility to make them �t. It can be designed in such a way that
the two constraints for checks and enforcement hold for all possible input speci�cations
and models. If this is not the case, it can perform dynamic checks to avoid illegal
states, e.g. by evaluating and asserting that all consistency checks pass after every
successful enforcement. Both options for correctly realizing checks and enforcement
have advantages and disadvantages: Static guarantees for �tting checks and enforcement
can be di�cult to achieve or proof or may impose restrictions on how speci�cations can
be described. Dynamic checks, however, can be cheap to develop at design time but may
turn out to be costly in terms of execution at runtime.

3.7.2. Debugging Consistency Preservation

change construction,
interpreters, and
generated code

Several factors make it di�cult to debug implementations of change-driven consistency
preservation mechanisms. The construction of change descriptions, for example, may
have to be debugged both for state-based and operation-based preservation mechanisms.
Furthermore, debugging the enforcement itself can be di�cult, e.g. when speci�cations
are enforced using interpreters or using generated code that calls platform routines.

debugging di�erence or
operation descriptions

Change-driven consistency preservation begins with the computation of change-
representation that serve as input and that may also have to be debugged. For state-based
approaches the comparison of old and new model states and the computation of di�er-
ences may have to be debugged. This can be challenging, for example, because many
combinations of new and old properties of model elements are possible. If an operation-
based approach is used, then the monitoring of user change operations and construction
of appropriate operation descriptions may have to be debugged. The simulation of user
changes may, for example, present challenges to systematic debugging of this process.

debugging interpreters
and generated code

It can be di�cult to debug code that enforces consistency according to a speci�cation
if this code depends on a lot of other code that is not particular for this speci�cation. A
declarative consistency speci�cation, for example, may be interpreted so that the code of
an interpreter may also have to be debugged to analyze the e�ects of the speci�cation. In
such cases, it may be di�cult to identify those code parts of such general interpreters
that may be relevant for a given consistency speci�cation. If a speci�cation is not
interpreted but used as input for a generator, it is su�cient to analyze the code that was
particularly generated for the speci�cation. Such generated consistency enforcement
code can, however, call general platform routines (see section 2.1.2). These calls in
generated code may also be di�cult to debug if a lot of irrelevant code has to be inspected.
Altogether, the di�culty of debugging consistency preservation is an important part of
the Open Consistency Speci�cation Language Challenge 4, which is about the general
di�culty to relate observed enforcement behavior to a consistency speci�cations (see
section 1.2).

3.7.3. Keeping Associated Information

unintentionally lost
information

If a change is performed in one model but consistency is automatically enforced in
other models that are not in sight of the user, then it is possible that information in these
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models is removed but the user does not take note of it. This is one of the reasons why
facilities for rolling back changes and change propagations as described in section 3.6.1
can be desired. But, even in cases where an original change should not be undone and
the initial information removal is wanted, it can be desired to keep such information in
other models in the long run.

reasons and limits for
caching

A reason for keeping such information can be the dependency between information
containers that are deleted during consistency enforcement and contained information
that is not automatically re-created but indirectly destroyed during consistency enforce-
ment. If the initial deletion of such a consistency container is implicitly undone by
recreating the corresponding elements, then the same or an equivalent container may be
recreated during enforcement but the information that was initially removed can still be
lost. To keep this information it either has to be restored automatically or the user has to
be asked whether this should be done. Regardless of automated restoration decisions,
it is already challenging to decide which information shall be stored for restoration in
which cases and how long. It can be su�cient to only keep certain and not all removed
information for restoration and it can be adequate to keep it only for a certain time or
until a certain number of further changes were performed.

re-match elements to be
deleted

An example for an approach that strives to keep such information is the synchronization
technique for TGGs by Greenyer et al. [GPR11]. During a synchronization step, they
mark element for deletion instead of directly deleting them in one rule application in
order to reuse these elements in the matching process of subsequent rule applications.
Only those elements that are marked for deletion and not reused are deleted at the end
of the synchronization step. By this, it can be avoided that elements are deleted and
re-created in reaction to a single change but not in reaction to several changes.

3.7.4. Retrieving the Right Correspondence

identifying and retrieving
correspondences

If more than one correspondence may exist for a model element, mechanisms for re-
trieving the correct correspondence are necessary for successful consistency enforcement.
We already discussed in subsection 3.2.7 how the information that is required to identify
correspondences can be obtained. On the implementation level it can be challenging to
design mechanisms for retrieving correspondences based on this information.

distinguishing
correspondences

Consistency speci�cations may treat several correspondences between the same set
of model elements di�erently if these correspondences were established, for example,
under di�erent conditions or for separately speci�ed consistency relations. In such
cases, it is not su�cient to implement correspondence retrieval mechanisms that only
inspect the corresponding elements. They may also have to take into account which
conditions were ful�lled when the correspondence was established and with respect to
which consistency relation this happened. For this, there has to be a way to identify
relations of a consistency speci�cation and the conditions or subcases they de�ne. All
factors that distinguish correspondences on the speci�cation level have to be considered
when correspondences are established or retrieved in the implementation.

3.7.5. Partial Evaluation and Execution

incremental enforcement
for performance and
complexity

Change-driven consistency preservation can be implemented in an incremental way to
avoid unnecessary overhead in terms of runtime for the implementation and debugging
complexity for developers. Such incremental implementations have to determine which
parts of a consistency speci�cation are not relevant after a change. With such knowledge
it is possible to perform only partially evaluate consistency checks and only partially
execute enforcements.

partial condition
evaluation and
enforcement execution

Partial evaluation can be performed if it can be determined which conditions of which
consistency relations of a speci�cation might be no longer or newly ful�lled after a
change. Depending on the language that is used for the speci�cations of such conditions,
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it may be necessary to evaluate conditions for which it cannot be decided upfront whether
their ful�llment may change. Consistency enforcement speci�cations can be partially
enforced if it can be determined which executions cannot change the current model state.
Again, the computational power of the used languages may restrict the possibilities to
statically analyze which enforcement operations do not need to be executed.

3.8. Orthogonal Bidirectionality Challenges

bidirectionality is
orthogonal to abstraction

levels

In addition to the �ve classes of challenges to change-driven consistency, we present
challenges to bidirectionality, which are orthogonal to the levels of abstractions repre-
sented by the �ve previous classes. We describe these bidirectionality challenges for
the conceptual, speci�cation, and enforcement level, but they also in�uence other levels
such as the implementation. They are relevant for all consistency preservation mecha-
nisms that allow changes to model elements at both sides and require both preservation
directions to work appropriately together.

3.8.1. Bidirectionality without Bijectivity

many consistency
mappings are not

le�-unique

A major conceptual challenge to bidirectional consistency preservation is to achieve
bidirectionality without bijectivity. This is crucial because many consistency relations
cannot be speci�ed in terms of bijections even if the modelling languages can be adapted
accordingly. The reason is that many common mappings from values of an attribute of
a model element on one side to values of an attribute of a model element on the other
side are not left-unique (injective). Basic examples for such mappings are the string
concatenation or integer division, which are both fundamental parts of many consistency
relationships.

avoiding values or changes
that are not le�-unique

One possibility to achieve bidirectional consistency even for mappings that are not
bijective is to restrict the set of possible values or the changes that can be applied. The
goal of such techniques is to avoid exactly those cases that are not left-unique. Consider,
for example, a mapping that maps two values l1 and l2 of an attribute of a model element
on the left side to the same value r of an attribute of a model element on the right side. If
it is not possible to set the value r on the right side, but l1 and l2 can both be used on the
left side, then such a mapping can still be treated in a bidirectional way if the decision
for either l1 or l2 is correctly preserved.

3.8.2. Single or Double Specification

bidirectionality does not
mean directionless

specification

Another central challenge to bidirectionality is concerned with the advantages and
disadvantages of a single speci�cation for both directions (see also [Ste08, p. 412]).
Bidirectionality only requires that consistency can be enforced in both directions. It is not
necessary that the speci�cation used for this enforcement never distinguishes between
these directions.

single specifications for
guaranteed coherence

Single speci�cations can be written using languages with a special focus on bidirec-
tionality in order to statically guarantee that certain bidirectional properties are ful�lled.
This can make it easier to avoid incorrect speci�cations. It should, however, be ensured
that simple speci�cations are not more di�cult to de�ne than without such precautions.
Nevertheless, the fact that bidirectionality is guaranteed can be easier to detect with
single speci�cations. Therefore, the bene�ts of single speci�cations for bidirectional
consistency relations should take both the e�orts for writing and for using or maintaining
speci�cations into account.

double specifications for
reuse and flexibility

If both directions are speci�ed separately no special constructs for bidirectional speci�-
cations have to be used. In this way, it is possible to reuse speci�cation parts that already
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existed before and to use unidirectional languages. The available possibilities for auto-
matically checking and guaranteeing the coherence of both speci�cations are, however,
more restricted than with a single speci�cation with special bidirectional constructs and
prede�ned coherence checks. Therefore, the responsibility for achieving bidirectionality
as desired remains with the person writing the double speci�cation and not with the tool
that implements a single speci�cation in a bidirectional way. Furthermore, the coherence
of both directions has to be preserved during the maintenance of evolving speci�cations
for both directions. To achieve this additional requirement for double speci�cations there
are, however, techniques for automatically verifying the coherence of separate speci�ca-
tions for both directions. For example, additional constraints can be provided for two
sets of graph transformation rules [Pos+14]. Despite these disadvantages, double speci�-
cations provide the �exibility to deliberately deviate from bidirectionality requirements
when necessary.

3.8.3. Well-Behaved Roundtrip Enforcement

requirements for
well-behaved round-trips

Bidirectional enforcement should usually ful�ll requirements for well-behavedness in
order to avoid problems during roundtrip consistency preservation. Such requirements
may, for example, demand symmetry properties or avoid unexpected e�ects, such as
oscillations. Their ful�llment can guarantee that both sides may be treated and modi�ed
in the same way.

classical bidirectionality
requirements

Some classical requirements for so-called well-behaved bidirectional transformations

are the round-trip laws GetPut, PutGet, and PutPut [Fos+07] (see also subsection 2.2.3).
They can also be applied to bidirectional change-driven consistency preservation: All
three laws distinguish between a source side and a target side. Informally, they are
concerned with consistency enforcements on the target side that may retrieve views on
values from the source side (get), from which the change originated, and may update
source values according to target views (put). The GetPut law demands that every
roundtrip that �rst retrieves a target view on a source value and then updates the source
value according to the unmodi�ed target value, has to end at the original source value.
Similarly, the PutGet law demands that every roundtrip that �rst updates a source
value according to a target value and then retrieves a target view on the updated source
value, has to end at the original target value. The PutPut law is for so-called very

well-behavedness and demands that two updates of a source value according to the same
target value result in the same source value as a single update with this target value.

further enforcement
requirements

Further requirements for bidirectional transformations that can be applied to bidirec-
tional change-driven consistency preservation have been described in the literature. We
translate three such requirements to our consistency preservation terminology based on
the discussion by Xiong et al. [Xio+11]: First, consistency enforcement operations are
correct with respect to a consistency relation if they establish this relation [Ste10]. Second,
they are hippocratic if they leave consistent models consistent [Ste10]. Finally, they are
undoable if undoing a change on one side also undoes the e�ects of the enforcement
operations on the other side [Dis08]. The �rst and the second of these three requirements
also apply to unidirectional consistency enforcement.

3.9. Future Challenges

In this chapter’s last section, we present two exemplary challenges that are out of scope of
this thesis as they only occur if models cannot be kept consistent when pairs of modelling
languages are considered in isolation of other pairs. These challenges should be addressed
in future work as soon as this restriction is dropped.
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3.9.1. Propagating Propagations without Cycles

relation cycles may induce
propagation cycles

If more than two modelling languages are used, then it has to be ensured that transitive
e�ects do not lead to propagation cycles. Let us consider a general case in which three
models of three languages contain elements such that elements of the �rst model can
be in a consistency relation with the second model, elements of the second model can
be in a consistency relation with elements of the third model, and elements of the third
model can be in a consistency relation with elements of the �rst model. In such a case, a
change to the �rst model has to be propagated to the second model. Next, this change
in the second model has to be propagated to the third model. Finally, this change in
the third model has to be propagated back to the �rst model, where the change initially
occurred. This need to transitively propagate propagations is challenging in two ways:
First, enforcement change operations have to be monitored like user change operations
in order to propagate their e�ects, perhaps even using the same mechanisms as for
propagating e�ects of user change operations. Second, it must not be the case that a
transitive change in the �rst model leads again to the same propagation to the second
model or to any other type of propagation cycle.

specify relations between
isolated subsets

In some cases it may be su�cient to partition the set of element types of modelling
languages. More speci�cally, if the possible consistency relations between models of three
or more modelling languages can be speci�ed in such a way that they always concern
di�erent model elements, the problems can be avoided. It is, however, questionable how
often the consistency relationships between modelling languages induce such a partition.

3.9.2. Order of Multi-Directional Propagations

diamonds and users may
require order-aware

propagations

If a modelling language has more than one consistency relationships with other lan-
guages, the order in which changes to instances of this language are propagated to
instances of the other languages may make a di�erence. Let us consider a general case
in which three models of three languages contain elements such that elements of the
�rst model can be in a consistency relation with both other models. In such a case, a
change to the �rst model has to be propagated to both other models, but is in unclear in
which order these propagations should happen. This order is important if elements of
both propagation targets can be in turn in a direct consistency relation or in an indirect
consistency relationship that involves models of the �rst language or of other languages.
Thus, the elements and their consistency relations form a diamond. For such a diamond,
the �nal enforcement result may be di�erent if the enforcements for one of these direct
or indirect relationships were already per�rned or will be performed later. Even if no
further consistency relations exist, the order may have an e�ect on consistency if the
user is demanded for input during consistency enforcement but may behave di�erently
for di�erent orders.

3.10. Conclusions

challenges and a
classification to answers
subquestions 1.1 and 1.2

In this chapter, we have presented a collection and classi�cation of challenges that can
occur when consistency has to be preserved between models of di�erent modelling lan-
guages. We have informally introduced general terms of speci�cation-driven consistency
preservation to ease the discussion. Based on this, we have presented a collection of
challenges that occur in this context as an answer to subquestion 1.1, which we presented
in section 1.3. We have classi�ed these challenges according to the level of abstraction
at which they occur. These levels range from conceptual challenges that are even inde-
pendent of the used modelling languages to implementation challenges. We have also
presented a special class of open challenges that should be addressed by consistency
speci�cation languages. These Open Consistency Speci�cation Language Challenges are
our answer to subquestion 1.2 and the reason why we have developed the consistency
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preservation languages that we will present in Part III of this thesis. Many challenges
that we have presented are related to other challenges on the same or on di�erent levels
of abstraction. For such challenges, we have explained which parts should be addressed
on which level in order to relieve developers of consistency preservation tools. Many
concerns of general challenges to consistency enforcement, for example, should already
be addressed by preservation tools so that developers can choose from appropriate en-
forcement options when they specify consistency for particular modelling languages. We
have also presented challenges to bidirectional consistency preservation as a separate
class of challenges because the direction in which consistency is preserved is not related
to the level of abstraction. Finally, we have discussed challenges that occur if consistency
has to preserved for more than two languages. We have called them future challenges
because this thesis only discusses consistency preservation for models of two languages.
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4. A Formal Language for Change-Driven
Model Consistency

formal foundation and
support for specification
languages

In this chapter, we present a formal language for change-driven consistency preserva-
tion based on set theory and all the de�nitions that we have already provided in section 2.3
of the chapter on foundations for this thesis. This formal language is the foundation
for the change-driven languages for consistency preservation speci�cations, which we
present in the subsequent chapters. It was designed to enable precise explanations of
the semantics of the speci�cation languages, which are implemented by the compilers of
these languages. The formal language is a prerequisite for these explanations, which we
will provide in section 6.7 and 7.7, and therefore one of the ways in which we address
the Open Consistency Speci�cation Language Challenge 4. With this language, we pro-
vide answers to our research question 1 and to the subquestions 1.3 and 1.4, which we
presented in section 1.3.

In the foundations chapter of this thesis, we de�ned basic concepts for models that
ful�ll the restrictions of a metamodel and additional conditions called invariants (see
section 2.3). These conditions are added to a single metamodel in order to impose
further restrictions on all models that conform to it. In this chapter, we will de�ne
how consistency can be speci�ed and enforced for models of two metamodels based
on conditions that are speci�ed for such a pair of metamodels. All de�nitions together
provide the neccessary precision for our speci�cation-driven notion of consistency for
models of di�erent languages, which we introduced in subsection 3.1.2.

4.1. Consistency Rules and Specifications

In the �rst section of this chapter, we will de�ne how consistency can be speci�ed and
checked using rules, before we de�ne how consistency can be enforced in the second
section.

4.1.1. Rules and Correspondences

Before we can de�ne how consistency speci�cations can be checked for two complete
models, we have to de�ne individual consistency rules and correspondences for individual
combinations of objects.

De�nition 22 (Consistency Rule)
Let 〈cl 〉 and 〈cr 〉 be two metaclass tuples of two typed metamodels ml and mr , letO〈cl 〉
and O〈cr 〉 denote the universes of 〈cl 〉 and 〈cr 〉, let cond〈cl 〉 ⊆ O〈cl 〉 be a condition
for 〈cl 〉, and let cond〈cr 〉 ⊆ O〈cr 〉 be a condition for 〈cr 〉.
A consistency rule for the metaclass tuples 〈cl 〉 and 〈cr 〉 is a set Rcl ,cr ⊆

P (cond〈cl 〉 × cond〈cr 〉) which contains pairs of co-occuring instances tuples for 〈cl 〉
respectively 〈cr 〉 that ful�ll the conditions of cond〈cl 〉 respectively cond〈cr 〉.

To make this relationship between a rule and its condition sets explicit, we brie�y
write Rcl ,cr binds the conditions cond〈cl 〉 and cond〈cr 〉.
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pairs of condition fulfilling
instance tuples

A consistency rule for two metaclass tuples of two typed metamodels is a possibly
in�nite set of pairs of instance tuples for these metaclass tuples. Every instance tuple in
such a pair has to ful�ll an appropriate consistency condition. More speci�cally, every
pair consists of an instance tuple that ful�lls a condition for the left metaclass tuple and
of an instance tuple that ful�lls a condition for the right metaclass tuple. Note that there
is no need to de�ne explicit dependencies between consistency rules, because the same
e�ect can be achieved if a rule is directly restricted to pairs that are also listed in the set
of the other rule. To have a name for the relationship between the conditions and the
consistency rule, we say that a consistency rule binds the conditions.

requiring co-occurrence
but not necessarily

occurence

A consistency rule speci�es which instance tuples always have to occur together with
another instance tuple. It does, however, not specify that a certain instance tuple has
to be present in a model that is to be considered consistent. Consider, for example, a
consistency rule that expresses that the name of an instance of a left metaclass always has
to be identical to the name of an instance of right metaclass if some further constraints
are satis�ed. The set of the rule contains all pairs of objects that have the same name and
full�ll the further constraints. As a long as none of these objects occurs, the consistency
rule does not require anything, but if such an object occurs in a model then the other object
of the pair has to occur in another model of the other metamodel. To keep track of those
pairs of consistency rules that occur in two speci�c models, we introduce the concept
of so-called correspondences that witness consistency. Our notion of change-driven
consistency, which we introduce gradually in this chapter, is not absolute but always
de�ned relative to these correspondences. We will now de�ne these correspondences,
which are of central importance to the conceptual approach and to the three programming
languages of this thesis.

De�nition 23 (Correspondence for a Consistency Rule)
Let Rcl ,cr be a consistency rule that binds two conditions cond〈cl 〉 and cond〈cr 〉,
which are de�ned for two metaclass tuples 〈cl 〉 and 〈cr 〉 of two typed metamodels
ml and mr , and let Ol and Or be two serializable models of ml and mr .
A correspondence c for the consistency rule Rcl ,cr in Ol and Or is a pair of two

instance tuples for 〈cl 〉 and 〈cr 〉 in Ol and Or that adheres to the consistency rule

Rcl ,cr , i.e. O〈cl 〉 ×O〈cr 〉 ∈ c 3 Rcl ,cr .

correspondences as
witnesses of consistency

Correspondences are central to many subsequent de�nitions but simple: They only
list objects that instantiate metaclasses of one metamodel and ful�ll the condition of
a consistency rule for that metamodel. Additionaly, they list objects that instantiate
metaclasses of the other metamodel and ful�ll the other condition of the rule. As we
already mentioned above, the motivation for this de�nition of correspondence is that
we want to de�ne a relative notion of consistency. This relative consistency can only
be checked and enforced with respect to correspondences, which are meant to witness
consistency.

serializability as a
prerequisite for

consistency

Similar to the prerequisite of serializability for validity, we make serializability a prereq-
uisite for consistency. This relieves us from dealing with all cases in which serializability
may be ful�lled or not. To achieve this, we only de�ne correspondences in serializable
models, even if we do not directly use this precondition in the next de�nition.

4.1.2. Prescriptive Consistency

Based on our notion of individual consistency rules and correspondences, we will now
de�ne consistency according to a rule and consistency according to speci�cation, which
bundles rules and their correspondences. This notion of consistency and all subsequent
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de�nitions are intended for approaches with prescriptive consistency speci�cations (see
page 38 of subsection 3.1.2).

De�nition 24 (Consistency According to a Rule)
Let Rcl ,cr be a consistency rule that binds two conditions cond〈cl 〉 and cond〈cr 〉,
which are de�ned for two metaclass tuples 〈cl 〉 and 〈cr 〉 of two typed metamodels
ml and mr , let Ol and Or be two serializable models of ml and mr , and let C ⊆
O〈cl 〉 ∩ cond〈cl 〉 ×O〈cr 〉 ∩ cond〈cr 〉 be a set of correspondence candidates for R in Ol
and Or .
The models Ol and Or are consistent according to the consistency rule Rcl ,cr with

respect to C i� all elements in C are correspondences and there is at least one corre-

spondence for every instance tuple for which the condition is valid:

∀ 〈ol 〉 ∈ O〈cl 〉 ∩ cond〈cl 〉 : ∃ 〈or 〉 ∈ O〈cr 〉 : (〈ol 〉,〈or 〉) ∈ C

∧ ∀ 〈or 〉 ∈ O〈cr 〉 ∩ cond〈cr 〉 : ∃ 〈ol 〉 ∈ O〈cl 〉 : (〈ol 〉,〈or 〉) ∈ C

consistent if every
fulfillment is witnessed by
a correspondence

By De�nition 24, two models are consistent according to a consistency rule with
respect to a set of correspondence candidates if every ful�llment of the conditions of
the rule is witnessed by at least one correspondence. This witnessing is required for
every combination of objects in one of the two models that ful�lls the condition for the
instantiated metamodel of the consistency rule: The set of correspondences has to contain
at least one pair with these condition ful�lling objects and objects of the other model. It
is not necessary to impose any constraints on these pairs in addition to the requirement
that they are correspondences because De�nition 23 and De�nition 22 already require
that they ful�ll the other condition for the other metamodel, i.e. (〈ol 〉,〈or 〉) ∈ C (
cond〈cl 〉 × cond〈cr 〉.

neither only one nor all
possible correspondences
required

Our notion of consistency neither requires that only one correspondence exists for a
ful�llment of a condition, nor that every pair of ful�llments for both conditions of a rule
has to be witnessed. This means the role of a correspondence is more than just a pointer
to objects that ful�ll the conditions of a rule. Because of these �exible multiplicities, a
set of correspondences can also be seen as a selection of object combinations for which
consistency shall be documented. The goal of selecting correspondences from all possible
ful�llment combinations is to have a possibility to specify where consistency has to be
preserved after changes even if these changes may remove objects. Therefore, it is possible
to meet the requirements of our de�nition of consistency with a subset of all possible
correspondences, i.e. O〈cl 〉 ∩ cond〈cl 〉 ×O〈cr 〉 ∩ cond〈cr 〉 does not need to be a subset of
C. The reason is that it is not necessary that every left instance tuple for which the left
condition is valid has to correspond to every right instance tuple for which the right
condition is valid. If this is, however, the case, then C encompasses all pairs of instance
tuples in Ol and Or that full�ll the conditions, i.e. O〈cl 〉 ∩ cond〈cl 〉 ×O〈cr 〉 ∩ cond〈cr 〉 = C
because of De�nition 23 (see previous paragraph).

correspondences can be
missing but cannot
witness inconsistency

As correspondences ful�ll the conditions on both sides by de�nition they can only
witness consistency but not inconsistency. That is, if all correspondence candidates are
correspondences, then the two models can only be inconsistent according to the rule and
with respect to the correspondences if a correspondence is missing but not because a
correspondence lists two instance tuples for which one does not ful�ll the appropriate
condition. Therefore, we de�ne consistency not for a set of correspondences but for
a set of correspondence candidates. Consider, for example, a case in which a model is
changed in such a way that two instance tuples that formed a correspondence before
the change are no longer corresponding because one of both does no longer ful�ll the
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appropriate condition. To detect this inconsistency, we only have to check for all former
correspondence candidates whether they are (still) ful�lling the conditions.

De�nition 25 (Consistency Speci�cation)
Let Ol and Or be two serializable models of two typed metamodels ml and mr .
A consistency speci�cation cs forOl andOr is a tuple (Rc1,l ,c1,r ,C1, . . . ,Rn ,Rcn,l ,cn,r )

where Rc1,l ,c1,r , . . . ,Rcn,l ,cn,r are consistency rules for metaclass tuples of ml and mr ,

and where every Ci ⊆ O〈ci,l 〉∩cond〈ci,l 〉×O〈ci,r 〉∩cond〈ci,r 〉 is a set of correspondence
candidates in Ol and Or for the rule Rci,l ,ci,r .

rules and correspondences
specify consistency

A consistency speci�cation for two models lists consistency rules for the two metamod-
els of the models and a set of correspondences in the two models for each consistency
rule. It would also be possible to de�ne a notion of consistency speci�cation purely
on the metamodel level for two metamodels and without correspondences for concrete
models. Such a speci�cation term is, however, not necessary for our purposes and
could mislead the reader to a notion of absolute consistency instead of our concept of
correspondence-relative consistency.

De�nition 26 (Consistency According to a Speci�cation)
Let cs := (R1,C1, . . . ,Rn ,Cn ) be a consistency speci�cation for two serializable
models Ol and Or .
The modelsOl andOr are consistent according to the consistency speci�cation cs i�

Ol and Or are consistent according to every rule Ri with respect to Ci .

specification consistency
arising from rule

consistency

The notion of consistency according to a complete speci�cation is a straightforward
continuation of the notion of consistency for a single consistency rule with respect to
a set of correspondences: It is su�cient if two models are consistent with respect to
every consistency rule of a consistency speci�cation with respect to the according set of
correspondences. All rules and correspondences contribute independently and equally to
the notion of speci�cation consistency.

from checks to updates
and enforcement

So far, we de�ned how consistency can be speci�ed in terms of rules and correspon-
dences and de�ned under which conditions two models are considered consistent. In the
next section, we de�ne how models can be updated to enforce consistency and which
updates are consistency preserving.

4.2. Consistency Updates and Preservation

In the last part of our formal language for consistency preservation, we de�ne how
models can be updated to enforce consistency. We also de�ne which conditions have to
be ful�lled by updates that correctly preserve consistency.

4.2.1. Updates of Links, Labels, and Models

In order to preserve consistency it is necessary to update models. Therefore, we will now
de�ne link updates and label updates for objects as well as model updates.
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De�nition 27 (Link Update for an Object)
Let o ∈ Oc be an object that instantiates a metaclass c := (Rc,Rc,♦,Ac) of a typed
metamodel m in a serializable model O := (Oc1 , . . . ,Oc|C| ,link,label) of m.
A link update for the object o in the model O is a tuple (o,r,O−,O+), where r ∈

R4c is a reference of c or one of its superclasses, O− and O+ are sets of objects to be

removed and added from and to the links of o for r, i.e. O− ⊆ link(o,r) ∧ O+ ⊆⋃
d∈rtype4 (r) Od \ link(o,r).

remove linked objects,
add linkable objects

A link update only a�ects the set of objects that are linked by an object for a reference
that is de�ned for one of the metaclasses instantiated by the object. Links can be removed
by removing objects from this set and can be added by adding new objects to the set.
Such added objects have to directly or indirectly instantiate the metaclass of the type
that is speci�ed by the reference and have to be from the model to which the object for
which the links are updated belongs. This is necessary to ensure that a link update does
not break metamodel conformance.

De�nition 28 (Label Update for an Object)
Let o ∈ Oc be an object that instantiates a metaclass c := (Rc,Rc,♦,Ac) of a typed
metamodel m in a serializable model O := (Oc1 , . . . ,Oc|C| ,link,label) of m.
A label update for the object o in the modelO is a tuple (o,a,V−,V+), where a ∈ A4c

is an attribute of c or one of its superclasses, V− and V+ are sets of attribute values to
be removed and added from and to the labels of o for a, i.e. V− ⊆ label(o,a) ∧ V+ ⊆
Vatype(a) \ label(o,a).

remove labelled values,
add labelable values

Analog to a link update, a label update only a�ects the set of attribute values that are
labelled to an object for an attribute that is de�ned for one of the metaclasses instantiated
by the object. Labels can be removed by removing attribute values from this set and
can be added by adding new attribute values to the set. Such added attribute values
have to be of the type that is speci�ed by the attribute. The only structural di�erence to
De�nition 27 is that attribute types have no hierarchy and all attribute values are de�ned
for the metamodel so that no constraint for their origin is needed.

De�nition 29 (Object Update)
Let O := (Oc1 , . . . ,Oc|C| ,link,label) be a serializable model of a typed metamodel
m := (C,≺,R,A,rtype,atype).
An object update in the modelO is a tuple (o,ci ,k±), where o is an object that directly

instantiates the metaclass ci ∈ C and k± ∈ {k+,k−} is the update kind, which indicates
whether o will be added to O or removed from O , i.e. o ∈ Oci ⇔ k± = k−.

link and label update
counterpart

An object update in a model lists a single object to be removed from the model or to be
added to the model together with the metaclass that is directly instantiated by the object.
This de�nition is not intended to give the reader any further insights. It is a supporting
de�nition that gives us a counterpart of link updates and label updates, which is used in
later de�nitions of consistency preservation after an update.
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De�nition 30 (Model Update for a Consistency Rule)
Let C be a set of correspondences for a consistency rule R in two serializable models
Ol and Or := (Oc1 , . . . ,Oc|C| ,link,label) of two typed metamodels ml and mr .

A model update for the consistency rule R in the model Or based on the correspon-

dences C is a tuple (C−,C+,O,I,A), where C− and C+ are sets of correspondences to be
removed and added from and to C, whereO is a set of object updates inOr . where I is

a set of link updates, and where A is a set of label updates. The link and label updates

in I and A update objects of Or after the object removals and additions, i.e. objects in

(Or \
⋃
o∈O{o | o = (o,ci ,k−)}) ∪

⋃
o∈O{o | o = (o,ci ,k+)}.

A model update is called empty if all sets of it are empty. All model updates for R
in all serializable models of mr based on arbitrary correspondences for R are denoted
byUmr

R
. We call a model update for R in Or also brie�y an update in Or .

Updates in Ol are de�ned analogously by replacing the direction-speci�c occurrences
of Or with Ol and Cr with Cl in De�nition 30.

update in a model based
on correspondences with

another model

A model update brings several object updates, which remove and add objects from the
model, together with links and label updates for di�erent objects. It is only de�ned for
a speci�c consistency rule and lists correspondences to be removed and added for this
rule. Such correspondences require a second model of a second metamodel. Therefore, a
model update is indirectly based on both models of the correspondences, even if updates
are only performed in one of these two models.

only constraints on update
targets

De�nition 30 imposes no constraints on the linked objects and labelled attribute values
that are removed or added using link and label updates. The link and label updates of
a model update may, however, only update objects that are not removed. It would not
cause any problems to also allow link or label updates for objects to be removed. This
could, however, be misleading and the result of a model update would not be di�erent
if objects were updated before removal. This constraint on the targets of link and label
updates are best explained using the implied order of execution: Link and label updates
are performed after the object removals and additions.

metaclass tuples only
relevant in the background

The metaclass tuples for which the consistency rule R is de�ned, are irrelevant for our
de�nition of a model update. By De�nition 23 it is already given that the consistency rule
R is de�ned for two metaclass tuples of the correct metamodels ml and mr . Therefore,
we do not have to make this an additional requirement for De�nition 30. Furthermore,
it does not need to be mentioned in the de�nition which metaclasses are listed in these
metaclass tuples. The sets of correspondences to be removed and added, however, are
a�ected by them as they contain objects as required by them.

4.2.2. Results and Consistency Preservation

In this section, we de�ne results of model updates for consistency rules and conditions
for consistency-preserving updates.

De�nition 31 (Result of a Model Update)
Let →

ur := (C−,C+,O,I,A) be a model update for a consistency ruleR in a serializable
model Or := (Oc1 , . . . ,Oc|C| ,link,label) of a typed metamodel mr := (C,≺,R,A,
rtype,atype) based on correspondences C.
The result of the model update

→

ur is a tuple (C̃,Õr ), where C̃ := (C \ C−) ∪ C+ is
the resulting set of correspondence candidates and Õr := (Õc1 , . . . ,Õc|C| , l̃ink, l̃abel)
is the model conforming to mr resulting from the object removals and additions, i.e.

∀ c ∈ C: Õc := (Oc \
⋃
o∈O

{o | o = (o,c,k−)}) ∪
⋃
o∈O

{o | o = (o,c,k+)}
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with l̃ink: Õr × R4c → P (Õ ) and l̃abel: Õr × A4c → P (V) according to the link and
label updates, i.e.

l̃ink(o,r) :=



(link(o,r)\O−) ∪O+ if ∃ (o,r,O−,O+) ∈ I

link(o,r) else

l̃abel(o,a) :=



(label(o,a)\V−) ∪ V+ if ∃ (o,a,V−,V+) ∈ A

label(o,a) else

Results of updates ←

ul in the left model are de�ned analogously by replacing the direction-
speci�c occurrences of the index r with l and the forward arrow with the backward arrow
in De�nition 31.

result-defined update
semantics

A model update results in a new model, which is obtained by executing the link, label,
and object updates. It also results in a new set of correspondence candidates, which is
obtained by removing and adding the correspondences directly given by the model update.
The resulting model is completely de�ned by the given updates. No further constraints
are necessary and no degrees of freedom remain. The resulting model is identical to the
model in which the model update is performed, except for the modi�cations precisely
prescribed by the model update. In this sense, the de�nition of a result of model update
provides the semantics for a model update.

indirect influence of other
model

By De�nition 30 it is already given that the elements in C are correspondences for R in
a serializable model of a typed metamodel and in Or . This other model, which we usually
name Ol , and its metamodel are not needed in De�nition 31. They have, however, an
indirect in�uence on the result of a model update, as the old and new correspondences
are based on them.

De�nition 32 (Serializability-Preserving Model Update)
Let →

urr := (C̃,Õr ) be the result of a model update →

ur := (C−,C+,O,I,A) for a
consistency rule R in a serializable model Or of a typed metamodel mr := (C,≺,R,
A,rtype,atyper ) based on correspondences C.
The model update

→

ur is serializability preserving i� the resulting model Õr =

(Õc1 , . . . ,Õc|C| , l̃ink, l̃abel) is a serializable model of mr without correspondence can-

didate pairs that contain removed objects and without links to removed objects, i.e. for

O−r := ⋃o∈O{o | o = (o,cj ,k−)} :

∀ (〈ol 〉, (õr ,1, . . . ,õr ,m )) ∈ C̃ : ∀ 1 ≤ i ≤ m : õr ,i < O
−
r

∧ ∀ ci ∈ Cr : ∀ õ1 ∈ Õci ,r ∈ Rci : ∀ õ2 ∈ l̃ink(õ1,r) : õ2 < O
−
r

Serializability-preserving updates ←

ul in the left model are de�ned analogously by
replacing the direction-speci�c occurrences of the index r with l and the forward arrow
with the backward arrow in De�nition 32.

serializable models
without dangling
correspondences or links

Serializability-preserving model updates are updates which result in serializable models
and correspondence candidates such that no correspondence candidate pair contains a
removed object and no links to removed objects remain. This means that the model update
has to ensure that all correspondences and all links to removed objects are removed as
well. It also means that no cyclic containment references or multiple containers for an
object may be introduced by the model update. There are, however, no requirements for
the conditions of the consistency rule for which the model update is performed. Such a
requirement is added in the next de�nition which deals with consistency preservation.
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serializability preservation
of updates independent of

other side

As in De�nition 30, the correspondences in C are for the consistency rule R and they
are based on Or and another serializable model of a typed metamodel. Both, the other
model and metamodel are not directly relevant for De�nition 32 and therefore omitted.
In other words, whether a model update is serializability preserving or not cannot be
in�uenced by changing the other model or metamodel. It only depends on the updated
model and on those halves of the correspondences that are related to the updated model.

De�nition 33 (Consistency Rule Preserving)
Let →

urr := (C̃,Õr ) be the result of a serializability-preserving model update →

ur for
a consistency rule R in a serializable model Or based on correspondences C in a
serializable model Ol and in Or such that Ol and Or are consistent according to R
with respect to C.

The model update

→

ur is consistency preserving according to R with respect to C i�

Ol and the resulting serializable model Õr are consistent according to R with respect

to C̃.

Updates ←

ul in Ol that preserve consistency according to a rule are de�ned analogously
by replacing the direction-speci�c occurrences of the index r with l and the forward
arrow with the backward arrow in De�nition 33.

no further constraints than
consistency needed

A model update preserves consistency according to a consistency rule if the result-
ing model is consistent with the other model, for which correspondences were given,
according to the rule. This de�nition of consistency preservation demands only that the
resulting model has to be consistent with the other model with respect to the resulting
correspondences. It is not further restricted how this consistency is achieved. This
minimal de�nition of consistency preservation is only possible because the combination
of two other de�nitions imposes enough constraints. Our notion of consistency (see
De�nition 24) contains strong requirements for the correspondences, and a model update
(see De�nition 30) may only update one of both models. In particular, the instance tuples
of the correspondences from the model that is not updated are still present after an update
and still ful�ll the condition of the consistency rule. Thus, the de�nition of consistency re-
quires that there is at least one correspondence for these instance tuples, which witnesses
consistency with objects in the updated model. Therefore, a consistency-preserving
model update has to add new correspondences for all removed correspondences that
were not optional because there are several correspondences for the same instance tuples
of the other side.

preserving vs. establishing
or achieving

We only de�ne consistency preservation for updates of models that are already con-
sistent. A model update that results in consistent models when the initial models were
not consistent could be called consistency establishing. If the initial models can be consis-
tent or not, then a model update that results in consistent models could also be called
consistency achieving in order to emphasize that it is not speci�ed whether consistency
was preserved or newly established. For our change-driven approach it is, however, not
necessary to de�ne such concepts because we are always working based on a former
model state that was already consistent.

serializability and
metamodels indirectly

given

As before, there are some details that follow from other de�nitions but that are not
central to our de�nition of consistency preservation according to a rule. By De�nition 31
and De�nition 23, for example, it is already given that Or and Ol are serializable models
of typed metamodels. These metamodels, which we usually name ml and mr , are not
relevant for De�nition 33, so we do not mention them in the de�nition.
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4.3. Change-Driven Consistency Preservation

re-establishing
consistency a�er a
consistency-breaking
change

In order to keep two models consistent after changes, it is not su�cient to preserve
consistency for two models that are already consistent as in our last de�nition. A key
concept of the change-driven consistency preservation approach presented in this thesis,
is to re-establish consistency after a change that renders two previously consistent models
inconsistent. To this end, we will �rst de�ne what a model change is and when it is
considered consistency-breaking. Then, we introduce a change-relative notion of consis-
tency preservation. Note, however, that we will only de�ne consistency preservation for
changes that break consistency according to at most one rule at once.

4.3.1. Consistency-Breaking Model Changes

In this section, we de�ne model changes, explain the di�erence to model updates and
de�ne which changes are considered consistency-breaking.

De�nition 34 (Model Change)
Let O be a serializable model of a typed metamodel m.
A model change inO is either a link update for an object inO , a label update for an

object in O , or an object update in O .
We call a model change in O also brie�y a change in O .

single change,
independent of rules and
other models

A model change only a�ects a single object and changes exactly one part of the model:
It either adds or removes linked objects for a single reference, adds or removes labelled
values for a single attribute, or it adds or removes the object. Therefore, it is very
di�erent from a model update, which may combine several link, label, and object updates.
Furthermore, a model change is neither directly nor indirectly related to another model
or to a consistency rule. A model update, however, is only de�ned for a consistency rule
and based on correspondences with another model.

De�nition 35 (Result of a Model Change)
Let c be a change in a serializable model O of a typed metamodel m.
The result of a model change c is a model Õ , which conforms to m

and results from executing c in O analogous to De�nition 31, i.e. Õ :=
(Oc1 , . . . ,Oci−1 ,Õci ,Oci+1 , . . . ,Oc|C| , l̃ink, l̃abel) with

l̃ink(o,r) := (link(o,r) \O−) ∪O+ if c = (o,r,O−,O+)
l̃abel(o,a) := (label(o,a) \ V−) ∪ V+ if c = (o,a,V−,V+)
Õci := Oci ∪ {o} if c = (o,ci ,k+)
Õci := Oci \ {o} if c = (o,ci ,k−)

and unchanged Õci , l̃ink, and l̃abel in all other cases.

result-defined change
semantics analogous to
model updates

The result of a model change is the model that we obtain by executing the change on
the model for which it is de�ned: In case of a link or label update, the given objects or
attribute values are removed and added to the set of linked objects or labelled values. If
the model change is an object update, the given object is added or removed depending
on the given update kind. This de�nition provides the semantics for a model change and
is analogous to the de�nition of a result of a model update (De�nition 31).

consistency-breaking
changes as key to
consistency preservation

Our goal is to re-establish consistency directly after two models became inconsistent
through a model change. To achieve this, we want to distinguish such model changes
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from other changes. We are not interested in changes that preserve consistency for two
models that were already consistent, because no model update is necessary to preserve
consistency in such a case. Furthermore, we are not interested in changes that re-establish
consistency for two models that were inconsistent, because no model update is needed in
this case either. Finally, we are not interested in changes that preserve inconsistency for
two models that were already inconsistent, because we want to avoid such cases, which
can be di�cult to handle as nothing is known about the inconsistencies. We are only
interested in those changes that break consistency, because they can be considered as
witnesses of the reasons for inconsistency. Therefore, we de�ne which model changes
have this consistency-breaking property:

De�nition 36 (Consistency-Breaking Change)
LetOl andOr be two serializable models that are consistent according to a consistency
rule R with respect to a set of correspondences C and let cl be a change in Ol .
The model change cl inOl is consistency breaking forOr according toR with respect

to C i� the result Õl of cl and Or are not consistent according to R with respect to C

and Õl is serializable.

break-consistency but
preserve serializability

A consistency-breaking change renders two previously consistent models inconsistent
but preserves the serializability of the changed model. Therefore, all consisteny-breaking
changes are serializability-preserving changes. We could distinguish these changes
from changes that break not only consistency, but also serializability and we could
di�erentiate between changes that do or do not break validity if it was given before.
Such serializability-breaking or validity-preserving changes are, however, not necessary
for our approach to change-driven consistency. First, we do not support changes that
break serializability, because they should be avoided by the editors in which models are
changed. Second, we do not distinguish between validity-breaking, validity-preserving,
or invalidity-preserving changes, because we react with model updates in all cases.
These updates have to re-establish consistency with respect to consistency rules for both
metamodels and can only in�uence the validity of the unchanged model.

4.3.2. Model Updates A�er a Change

Based on the de�nition of a consistency-breaking change, we will now introduce a concept
for preserving consistency after such changes through model updates.

De�nition 37 (Consistency Preserving After Change)
Let Õl be the result of a model change cl in a serializable modelOl that is consistency-
breaking for a serializable model Or according to a consistency rule R with respect
to a set of correspondences C and let →

urr := (C̃,Õr ) be the result of a serializability-
preserving model update →

ur for R in Or based on C.
The model update

→

ur is consistency preserving after the model change cl according

to R with respect to C i� the models Õl and Õr resulting from the change cl and the

update

→

ur are consistent according to R with respect to C̃.

Consistency-preserving updates ←

ul in Ol after changes in Or are de�ned analogously
by replacing the direction-speci�c occurrences of the index r with l and the forward
arrow with the backward arrow in De�nition 37.

putting all central pieces
together

This re�ned notion of consistency preservation after a model change brings all cen-
tral concepts of our approach to change-driven consistency preservation together. It
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starts with two models that are consistent according to a rule with respect to certain
correspondences, which witness this consistency. Then, a single change occurrs in one
of the models, which renders both models inconsistent. We want to update only the
unchanged second model in order to preserve consistency after this change. Therefore,
we are interested in those updates of the second model that result in an updated second
model that is consistent with the changed �rst model. These updates are exactly those
that are de�ned as consistency preserving after a change by De�nition 37. Note, however,
that it does not de�ne a notion of consistency preservation if several changes occurr.

still no further constraints
than consistency needed

Similar to our de�nition of consistency preservation without a change (De�nition 24),
this de�nition of consistency preservation after a change imposes no additional con-
straints on the model update. Every model update, for which the models resulting from
the change and the update are consistent, is allowed. Again, this is only possible because
our de�nition of consistency (De�nition 24) makes strong requirements and the update
only a�ects the unchanged model: For every instance tuple of the changed �rst model
that was part of a correspondence before the change and is still present after the change,
there has to be at least one correspondence which involves objects of the updated second
model. Therefore, it is, for example, not possible that a model update that preserves
consistency after a change simply deletes all inconsistent elements in the second model
and removes all correspondences to them. The change may only have deleted a single
object. Thus, all objects of the �rst halves of the removed correspondences except for
at most one object are still present and still ful�ll the condition of the consistency rule.
Therefore, the de�nition of consistency requires that there are correspondences for these
objects of the changed �rst model that witness consistency with objects in the updated
second model.

consistency preservation
according to several rules

Of course, consistency according to a single consistency rule is not enough, because
several such rules may be necessary to specify consistency for two metamodels. Therefore,
we de�ne consistency preservation according to a complete consistency speci�cation, i.e.
according to several rules:

De�nition 38 (Consistency Speci�cation Preserving)
LetOl andOr be two serializable models that are consistent according to a consistency
speci�cation cs := (R1,C1, . . . ,Rn ,Cn ), let Õl be the result of a change cl inOl that is
consistency-breaking forOr according toRi with respect toCi , and let →

urr := (C̃i ,Õr )
be the result of a serializability-preserving model update →

ur for Ri in Or based on Ci .
The model update

→

ur is consistency preserving after cl according to cs i� the mod-

els Õl and Õr resulting from the change cl and the model update

→

ur are consistent

according to c̃s := (R1,C1, . . . ,Ri−1,Ci−1,Ri , C̃i ,Ri+1,Ci+1, . . . ,Rn ,Cn ).

Consistency speci�cation preserving updates ←

ul in Ol after changes in Or are de�ned
analogously by replacing the direction-speci�c occurrences of the index r with l and the
forward arrow with the backward arrow in De�nition 38.

further rules and
correspondences have no
influence

In De�nition 38, it can already be seen that an update in a model preserves consistency
after a change to another model according to a rule with respect to a set of correspondences
regardless of any additional consistency rules and correspondences. This is a direct
consequence of our de�nition of consistency according to a speci�cation (De�nition 26),
which deduces consistency according to several rules from independent consistency
according to a single rule. To demonstrate this independence, we present a corollary,
which shows that all other rules have no in�uence on the consistency preservation
property of an update for a single rule:
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Corollary 1 (Rule Preserving is Enough)
Let Ol and Or be two serializable models of two typed metamodels ml and mr ,

let →

urr := (C̃,Õr ) be the result of a model update →

ur in Or that is consistency
preserving after a change cl in Ol according to a consistency rule R with respect to
correspondences C, and let Õl be the result of the change cl .
The model update

→

ur is consistency preserving after the change cl according to every

consistency speci�cation cs := (R,C,R1,C1, . . . ,Rn ,Cn ) for ml and mr , with arbitrary

additional consistency rules Ri and arbitrary additional correspondences Ci , i� both

the original models Ol and Or as well as the models Õl and Õr , which result from the

change cl and the model update

→

ur , are consistent according to (R1,C1, . . . ,Rn ,Cn ).

Proof 1
“⇒”

Given:

→

ur consistency preserving after cl according to cs

with De�nition 38 this yields

Õl and Õr consistent according to (R, C̃,R1,C1, . . . ,Rn ,Cn )

and with De�nition 26 this yields

Õl and Õr consistent according to (R1,C1, . . . ,Rn ,Cn ).

From the given and De�nition 38 we obtain

Ol and Or consistent according to (R,C,R1,C1, . . . ,Rn ,Cn )

and with De�nition 26 this yields

Ol and Or consistent according to (R1,C1, . . . ,Rn ,Cn ).

“⇐”

Given:

Õl and Õr consistent according to (R1,C1, . . . ,Rn ,Cn )

Prerequisite of Corollary 1:

→

ur consistency preserving after cl acc. to R with respect to C

with De�nition 37 this yields

Õl and Õr consistent according to R with respect to C̃

with De�nition 26 and the given this yields

Õl and Õr consistent according to (R, C̃,R1,C1, . . . ,Rn ,Cn ) (1)
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Also given:

Ol and Or consistent according to (R1,C1, . . . ,Rn ,Cn ) (2)
with De�nition 38 the previous facts (1) and (2) yield

→

ur consistency preserving after cl according to cs

�

consistency for other rules
before and a�er change
required

This corollary shows that an update that is consistency preserving for a single rule
only has to ensure that it does not break consistency for any other rules in order to be
consistency preserving for them too. More speci�cally, every update that is consistency
preserving after a change for a single rule is consistency preserving after the change
for any consistency speci�cation that contains this rule i� the original models and the
models resulting from the change and the update are consistent according to all other
rules of the speci�cation. A key requirement is that the original models were already
consistent according the other rules. This means that a single update for a single rule is
enough to preserve consistency for a complete speci�cation after a change i� neither the
change nor the update breaks consistency for the other rules. Therefore, the corollary
demonstrates that consistency can be achieved in a way that deals with individual rules
in isolation by updating models directly after changes that only break consistency for an
individual rule.

4.3.3. Update Functions for Consistency Rules

towards updates for all
changes and all models

The goal of the formal language presented in this chapter is to represent a change-
driven approach to consistency preservation, which starts with empty—and thus trivially
consistent—models and always updates one of these models after a consistency-breaking
change in the other model. In order to reach this goal of automated consistency preserva-
tion it is not enough to only consider an update for two �xed models and a single change.
Therefore, we de�ne functions that yield an update that shall preserve consistency after
a change as output if we provide two models, a change, and correspondences for these
models as input:

De�nition 39 (Update Function for a Consistency Rule)
Let Rcl ,cr be a consistency rule for two metaclass tuples 〈cl 〉 and 〈cr 〉 of two typed
metamodels ml and mr and let O?

ml
and O?

mr
denote the universes of serializable

models of ml and mr .
An update function for the consistency rule Rcl ,cr is a function

→

uf〈cl 〉,〈cr 〉 : O?
ml
×

O?
mr
×Cml ×P (O〈cl 〉×O〈cr 〉) →U

mr
Rcl ,cr

, which takes two serializable models of ml and

mr , a change in a model ofml , and a set of correspondence candidates in O〈cl 〉×O〈cr 〉 as

input and yields a model update for Rcl ,cr in the given model of mr as output, i.e. C
ml

denotes the in�nite set of changes in all serializable models of ml andU
mr
Rcl ,cr

denotes

the in�nite set of updates for Rcl ,cr in all serializable models of mr based on arbitrary

correspondences for Rcl ,cr .

Backward update functions ←uf〈cl 〉,〈cr 〉 : O?
ml
× O?

mr
× Cmr × P (O〈cl 〉 × O〈cr 〉) →U

ml
Rcl ,cr

for Rcl ,cr are de�ned analogously by replacing the direction-speci�c occurrences of the
index r with l and the forward arrow with the backward arrow in De�nition 39.

larger domains and
co-domain than finally
needed

Update functions take two models, a change in the �rst model, and instance tuples
that could be correspondences for these models as input and output an update for the
second model. This de�nition is only the basis for subsequent de�nitions of special
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update functions that yield serializability-preserving or even consistency-preserving
updates for inputs that ful�ll certain constraints. We could have incorporated these
constraints in our de�nition of update functions, but refrained from it in order to avoid
additional complexity. The domain P (O〈cl 〉×O〈cr 〉) for the correspondence candidates, for
example, could have been restricted to those instance tuples that occur in the two models
that are provided as �rst and second input. This would, however, make De�nition 39
even more complex and would still not be enough as we are �nally only interested in
consistency-breaking changes and consistency-preserving updates. Therefore, we extend
our de�nition of update functions with additional constraints and guarantees in two
separate steps and de�ne serializability-preserving update functions before we de�ne
consistency-preserving update functions:

De�nition 40 (Serializability-Preserving Function)
Let →uf〈cl 〉,〈cr 〉 : O?

ml
× O?

mr
× Cml × P (O〈cl 〉 × O〈cr 〉) →U

mr
Rcl ,cr

be an update function
for a consistency rule Rcl ,cr for two metaclass tuples 〈cl 〉 := (ci1 , . . . ,cin ) and 〈cr 〉
of two typed metamodels ml and mr .
The update function

→

uf〈cl 〉,〈cr 〉 is serializability preserving i� it yields serializability-

preserving model updates forRcl ,cr in the given right model based on the given pairs of

instance tuples if these are correspondences forRcl ,cr in the given models and the given

change results in a serializable model, but is unde�ned otherwise, i.e. for U
Or
Rcl ,cr ?

(C)

denoting the in�nite set of serializability-preserving model updates for Rcl ,cr in Or
based on correspondences C := {(〈ol,1〉,〈or ,1〉), . . . , (〈ol,ni 〉,〈or ,ni 〉)} and C

ml
? denoting

the in�nite set of all changes in all serializable models of ml with serializable result

model:

→

uf〈cl 〉,〈cr 〉 (Ol ,Or ,cl ,C) :=



e ∈ U
Or
Rcl ,cr ?

(C) if cl ∈ C
ml
? ∧ ∀ 1 ≤ i ≤ n :

(〈ol,i 〉,〈or ,i 〉) ∈ cond〈cl 〉 × cond〈cr 〉

⊥ otherwise

Serializability-preserving backward update functions ←uf〈cl 〉,〈cr 〉 for Rcl ,cr are de�ned
analogously by replacing the direction-speci�c occurrences of the index r with l and the
forward arrow with the backward arrow in De�nition 40.

preserve serializability for
changed and updated

model

A serializability-preserving update function yields a serializability-preserving model
update as output if it is given a serializability-preserving change and correspondences for
the considered rule. It is unde�ned in all other cases, i.e. if the change results in a model
that is not serializable, or the given pairs of instance tuples are not correspondences for
the given models and the considered rule, or both. Furthermore, it is only required that
the provided instance tuples are correspondences for the considered rule in the given
models. By De�nition 23 this means that these tuples have to ful�ll the conditions of the
considered rule but no completeness as in our de�nition of consistency (see De�nition 24)
is required. Therefore, a serializability-preserving update function contains no constraints
and guarantees for consistency and consistency preservation. It only provides guarantees
regarding the serializability: If the function returns an update, then the provided change
preserves serializability from the model Ol to the changed model Õl . Every returned
update preserves serializability from the model Or to the updated model Õr . Altogether,
this means that for all cases for which a serializability-preserving update function is
de�ned, the change input preserves serializability for the changed model and the update
output preserves serializability for the updated model.
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De�nition 41 (Consistency-Preserving Function)
Let →uf〈cl 〉,〈cr 〉 : O?

ml
× O?

mr
× Cml × P (O〈cl 〉 × O〈cr 〉) → U

mr
Rcl ,cr

be a serializability-
preserving update function for a consistency rule Rcl ,cr .
The update function

→

uf〈cl 〉,〈cr 〉 is consistency preserving according to Rcl ,cr i�

→

uf〈cl 〉,〈cr 〉 (Ol ,Or ,cl ,C) yields updates for the given right modelOr that are consistency

preserving after cl according toRcl ,cr with respect to the given pairs of instance tuplesC

if these are correspondences forRcl ,cr in the given models and c is consistency-breaking

for the given models according to the considered Rcl ,cr with respect to the given C, but

is unde�ned otherwise.

Consistency-preserving backward update functions ←uf〈cl 〉,〈cr 〉 for Rcl ,cr are de�ned
analogously by replacing the direction-speci�c occurrences of the index r with l and the
forward arrow with the backward arrow in De�nition 41.

stronger requirements:
consistency-breaking and
consistency-witnessing

A consistency-preserving function yields a consistency-preserving update i� it is given
a consistency-breaking change and correspondences that witness the broken consistency.
Similar to a serializability-preserving function, it is unde�ned in all other cases. More
precisely, in addition to all cases for which a serializability-preserving function is unde-
�ned, a consistency-preserving function is also unde�ned in the following cases: If the
given change results in a serializable model that does not break consistency, or the set of
correspondences is incomplete because not all condition ful�llments are witnessed, or
both. This means a consistency-preserving function makes stronger requirements for
inputs for which it is de�ned than serializability-preserving functions.

stronger guarantees:
serializability-preserving
and
consistency-preserving

In the same way a consistency-preserving function also provides stronger guarantees
for its outputs than a serializability-preserving function. It preserves serializability for
both models individually and consistency for the combination of both models. There-
fore, a longer description for consistency-preserving functions, which emphasizes the
stronger requirements and guarantees would be as follow: Functions that yield updates
that preserve consistency, which also guarantees serializability, after changes that break
consistency but preserve serializability of the changed model if they obtain all correspon-
dences that witness the broken consistency.

4.3.4. Consistency-Preserving Update Specifications

As consistency speci�cations consist of several consistency rules, a single update function
for one of these rules is not enough to preserve consistency according to the speci�cation.
Therefore, we will de�ne consistency update speci�cations with several consistency
update functions in this section. Prior to that, we will show that update functions that
yield updates that preserve consistency for a single rule independent of other rules, are
su�cient to preserve consistency for all rules:

Corollary 2 (Rule Preserving is Still Enough)
Let Ol and Or be two serializable models of two typed metamodels ml and mr that
are consistent according to a consistency rule R with respect to correspondences C
and let →uf〈cl 〉,〈cr 〉 be an update function that is consistency preserving for R.
The update function

→

uf〈cl 〉,〈cr 〉 (Ol ,Or ,cl ,C) yields updates

→

ur that are con-

sistency preserving after cl according to every consistency speci�cation cs :=
(R,C,R1,C1, . . . ,Rn ,Cn ) for ml and mr , with arbitrary additional consistency rules

Ri and arbitrary additional correspondences Ci i� both the original modelsOl andOr
as well as the models Õl and Õr , which result from the change cl and the model update

→

ur , are consistent according to (R1,C1, . . . ,Rn ,Cn ), and is unde�ned in all other cases.
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Proof 2
“⇒”

Given:

→

ur consistency preserving after cl according to cs

with De�nition 38 this yields

Õl and Õr consistent according to (R, C̃,R1,C1, . . . ,Rn ,Cn )

with De�nition 26 this yields

Õl and Õr consistent according to (R1,C1, . . . ,Rn ,Cn ) (1)

From the given we also obtain with De�nition 38 and 36

Ol and Or consistent according to (R, C̃,R1,C1, . . . ,Rn ,Cn )

with De�nition 26 this yields

Ol and Or consistent according to (R1,C1, . . . ,Rn ,Cn ) (2)

Together, (1) and (2) show the required forward implication.

“⇐”

Given:

Ol and Or consistent according to (R1,C1, . . . ,Rn ,Cn ) (1)
and also given:

Õl and Õr consistent according to (R1,C1, . . . ,Rn ,Cn ). (2)

Prerequisite of Corollary 2:

→

uf〈cl 〉,〈cr 〉 consistency preserving for R

with
→

uf〈cl 〉,〈cr 〉 (Ol ,Or ,cl ,C) =
→

ur this yields

→

ur consistency preserving after cl acc. to R with respect to C (3)

With Corollary 1 the previous facts (1), (2), and (3) yield

→

ur consistency preserving after cl according to cs.

�

preservation in isolation
also possible without fixed

changes

This corollary demonstrates that we can consider update functions, which yield
consistency-preserving changes for every consistency-breaking change, instead of up-
dates for speci�c changes without losing the advantage that we can deal with individual
consistency rules in separation. It is still enough to preserve consistency for an individual
rule to preserve consistency according to a complete speci�cation i� the original models
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and the models resulting from the change and the update are consistent according to
all other rules of the speci�cation. As a result, it is su�cient to have a separate update
function for each rule of a consistency speci�cation:

De�nition 42 (Consistency Update Speci�cation)
Let cs := (Rc1,l ,c1,r ,C1, . . . ,Rn ,Rcn,l ,cn,r ) be a consistency speci�cation for two typed
metamodels ml and mr .
A consistency update speci�cation for cs is a tuple (

→

uf〈c1,l 〉,〈c1,r 〉, . . . ,
→

uf〈cn,l 〉,〈cn,r 〉),

where every
→

uf〈ci,l 〉,〈ci,r 〉 is an update function for Rci,l ,ci,r .

Backward update speci�cations are de�ned analogously.
a list of update functions
that fit the rules

A consistency update speci�cation is just a list that contains an update functions
for every consistency rule of a consistency speci�cation in the same order as the rules.
It only requires that the update functions are de�ned for models and changes of the
correct metamodels and for pairs of instance tuples that could be correspondences of the
considered rule.

De�nition 43 (Consistency Preserving Speci�cations)
Let us := (

→uf〈c1,l 〉,〈c1,r 〉, . . . ,
→uf〈cn,l 〉,〈cn,r 〉) be an update speci�cation for a consistency

speci�cation cs := (Rc1,l ,c1,r ,C1, . . . ,Rn ,Rcn,l ,cn,r ).
The update speci�cation us is consistency preserving i� every update function

→

uf〈ci,l 〉,〈ci,r 〉 is consistency preserving according to Rci,l ,ci,r .

Consistency-preserving backward update speci�cations are de�ned analogously.
consistency preservation
using a forward and a
backward update
specification

A complete consistency update speci�cation is consistency preserving i� every individ-
ual update function preserves consistency for its rule. Because of Corollary 2, this means
that it is possible to preserve consistency for any two serializable models that conform
to two metamodels using a consistency-preserving forward update speci�cation and a
consistency-preserving backward update speci�cation for both models. This can be done
by starting with two empty models, which are trivially consistent, and performing an up-
date in one of the two models after every consistency-breaking change in the other model.
These updates can be obtained by invoking the update function for the consistency rule
for which a condition is no longer ful�lled after the change. All de�nitions and corollaries
of this chapter were presented in order to guarantee that such a consistency-preservation
strategy always results in consistent models if no serializability-breaking updates are
performed and if no change breaks the conditions of more than one consistency rule
at once. But even in such a case, it could be possible that a subsequent execution of
several updates for a single change results in models that are consistent according to
the complete speci�cation. This can, however, not be guaranteed with the presented
formalization.

4.4. Conclusions

definitions for
specification-driven
consistency preservation
a�er changes

In this chapter, we have presented a formal language that de�nes realization-independent
concepts of speci�cation-driven consistency preservation using set theory. It is based on
de�nitions for fundamental concepts, such as metamodels, models, or conditions, which
we have presented in section 2.3. First, we have introduced concepts for consistency
rules and for correspondences, which are used as witness structures for the ful�llment of
consistency conditions. Then, we have de�ned how updates of model elements, links,
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and labels can be formally represented and we have explained their semantics in terms
of the results of such updates. Next, we have speci�ed which conditions have to be
ful�lled by an update to preserve consistency according to a rule or a set of rules. Sub-
sequently, we have introduced atomic changes and we have discussed the conditions
under which such changes break consistency. Based on this, we have presented a re�ned
de�nition of consistency preservation after a consistency-breaking change. Then, we
have introduced functions that output consistency-preserving updates when they obtain
two given models, a change, and correspondence candidates as input. Finally, we have
discussed circumstances in which it is su�cient to always preserve consistency after a
single change and according to a single rule in order to preserve consistency inductively
and for all rules. Altogether, the presented de�nitions and explanations represent answers
to subquestion 1.3 and 1.4, which we presented in section 1.3.
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5. A Language Framework for Consistency
Preservation Specifications

a framework for
specifications, changes,
and languages

In this chapter, we present and explain a language framework, which is the foundation
of the three languages for consistency preservation speci�cations, which we present in
the next chapters. First, we explain the key concept of preserving consistency based on
speci�cations that do not need to explicitly prescribe how consistency is to be preserved
but mainly what is considered consistent. Then, we present the concept of change-driven
consistency preservation and discuss why we decided to provide reusable solutions in
the form of purpose-built languages. Next, we explain how the language framework is
used by the three languages for reactions, invariants, and mappings. Then, we show how
languages for changes, expressions, and constraints are integrated into all languages
created with the framework. Finally, we describe how we realized the identi�cation of
elements, triggering of updates, and generation of code technically.

addressed problems and
answers to research
questions

Each of the previous two chapters on challenges and on our formal language answered
two subquestions of our �rst research question. This chapter and the next three chapters
presenting our three languages have, however, a more complex relation to our second
research question and its subquestions. We formulated each subquestion in order to �nd
answers to the Open Consistency Speci�cation Language Challenges that we identi�ed.
These problems are addressed in di�erent ways with several language constructs and
code generation techniques. In this chapter, we brie�y mention some of these constructs
and techniques. They will be presented and explained in a comprehensive and detailed
way in the next chapters. Therefore, this chapter mostly provides an outlook on how we
will answer subquestions 2.1 to 2.4 in the next chapters.

5.1. Consistency Preservation Specifications

presentation of
preservation concept
before preservation
languages

The framework described in this chapter is the basis for our three languages for devel-
oping tools that preserve consistency between models of di�erent modeling languages
by performing automated model updates in reaction to changes that were performed by
developers. Before we explain the common foundation of the three languages in the next
sections, we have to introduce the concepts of consistency preservation and consistency
speci�cations.

5.1.1. Preserving Consistency

avoid consistency
preservation and all
challenges?

We already discussed why it is challenging to preserve consistency between models of
di�erent languages in chapter 3. These challenges are an important motivation for the
languages presented in this thesis and the language framework described in this chapter.
In order to demonstrate the need for the languages and the framework, we have, however,
to brie�y repeat why we cannot achieve consistency di�erently in some development
contexts (see section 1.1).

projective inconsistency
avoidance o�en infeasible

Often consistency is needed for models that were created using modelling languages
for which existing editors or other tools have to be reused as black boxes. In such a
situation, projective views on central models of a single modelling language that combine
all information are often infeasible. Consistency cannot be achieved using editors that
directly perform changes in all models in the background because the editors cannot be
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altered. Therefore, it is necessary to develop a new modelling language that incorporates
all information of all used modelling languages. To completely avoid inconsistencies
with this new language while supporting existing languages, projective views have to be
created. These views have to output models for the existing tools and have to propagate
every change to the central models.

consistency preservation
means ongoing restoration

If projective approaches cannot be used because existing tools have to be supported,
then consistency has to be achieved in a synthetic way. This means, consistency has to be
achieved by directly checking and modifying the models of the di�erent languages. Often,
models with inconsistencies cannot be used for further development until consistency
is restored again. Therefore, consistency has to be achieved continuously while models
evolve during development. To highlight, that inconsistencies are only temporarily
tolerated in such a process, we call it consistency preservation (see also page 39).

5.1.2. Specifying Consistency

need for precise but
practical specifications

In chapter 4, we formally de�ned how consistency can be speci�ed, checked, and
updated according to consistency rules. The conditions for such rules are simply de�ned
by listing all combinations of elements of all possible models for which the conditions
hold. This is very precise, but only theoretically relevant because listing all elements
that are considered consistent is infeasible when consistency shall be speci�ed for two
realistic modelling languages. In order to allow automated consistency preservation,
a precise and practical speci�cation of what shall be considered consistent is needed.
The main goal of the language framework presented in this chapter is to support the
development of languages that allow such speci�cations.

specifying what is
consistent not how this is

achieved

A key concept of our approach to consistency preservation is to provide languages that
enable developers to specify consistency in a problem-oriented way if this is possible and
in a solution-oriented way if this is necessary. This means a developer can specify consis-
tency by de�ning in which cases consistency is a problem or not and only has to specify
how consistency is achieved by solving these problems if this cannot be avoided. To
make this possible, we created a language framework for consistency preservation speci-
�cations that supports declarative and imperative language constructs. For declarative
languages, which focus on the problem of de�ning consistency or identifying inconsisten-
cies, we rely on code generation. This makes it possible to realize complex control �ow
during code generation for language constructs that do not support direct control �ow
instructions. If imperative language constructs are needed for consistency preservation,
they can be newly de�ned or existing constructs of the imperative target language can
be reused. Such constructs are, however, not provided per default because the language
framework is intended for consistency speci�cation languages that are speci�c with re-
spect to what is de�ned as consistent but unspeci�c with respect to how consistency
is achieved. We introduced the Open Consistency Speci�cation Language Challenge 2
of supporting several programming paradigms in section 1.2 and we will explain the
paradigms supported by the three languages presented in this thesis in subsection 5.3.2.

5.2. Change-Driven Languages

key concepts: specify,
preserve, change-driven,

and languages

In the previous section, we explained what we mean by preserving and specifying
consistency and why these concepts are central to our approach and language frame-
work. We continue by describing two more central characteristics: The preservation of
consistency in reaction to changes performed by developers and the provision of reusable
and adaptable solutions to common problems in the form of a purpose-built language.
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speci�cation
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consistency
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Figure 5.1.: Process for writing consistency speci�cations using a language of the framework and
for updating models according to these speci�cations to preserve consistency

5.2.1. Change-Driven Consistency Preservation

changes drive and
structure consistency
preservation

Our language framework and therefore also the three languages realized with it pre-
serve consistency in reaction to and according to model changes that are performed by
developers during the design and implementation of an IT system. Such model changes
are not only used to trigger the consistency preservation process but they are also the cen-
tral input for it. The changes are the central driver for consistency preservation and the
language framework is built around them. It provides, for example, language constructs
to describe and analyze changes regardless of the used modelling language and editor.
Furthermore, the code generator of the language framework uses changes to structure
the control �ow of the generated code and to integrate it with the change monitoring
process. As a result, whether and how consistency is checked and enforced is mainly
in�uenced by what has changed or how a change was performed, and not, for example,
by the complete model or by a comparison of an old and a new model state. Therefore,
we use the term change-driven to emphasize that changes drive the preservation process
like tests drive the development process in test-driven development. In the literature,
the term change-driven [RVV09; Ber+12] is already used when changes are used as input
or output but nothing is stated about the role that these changes play, for example, if they
are used as the only input. Similarly, the term reactive programming [Bai+13] is used
to denote that developers can express reactions to changes but it is not stated whether
everything has to be expressed in reaction to changes.

specification, generation,
and update process

The change-driven consistency preservation process for an arbitrary consistency
speci�cation language created with our language framework is shown in Figure 5.1.
Before models are created and updated, a so-called methodologist writes a consistency
speci�cation using the language (step I) for models of two modelling languages. When
the code generator is executed (step II), it reads the speci�cation (step III) and produces a
consistency preservation program that contains updates for di�erent possible changes
(step IV). This concludes the general preparations that have to be performed before a
concrete system is developed. If a developer changes a model that was created with one
of the languages (step 1α ), the monitored editor, which records all changes, has to be used
(step 1a). This monitor triggers the previously generated consistency preservation update
that reacts to the performed change (step 2). It may update a model of the other modelling
language to restore consistency after the change according to the speci�cation (step 3).
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This process of recording changes and performing according updates is continuously
repeated during system development and starts with empty models, which are trivially
consistent.

5.2.2. Languages Providing Reusable Solutions

languages for adaptable
reuse instead of fixed

libraries

The last key characteristic of our approach is that we provide reusable and adaptable
solutions to common problems of consistency preservation in the form of languages.
These consistency speci�cation languages are built for change-driven consistency preser-
vation and are not suited for other purposes. In this sense, they are so-called external
domain-speci�c languages for the domain of change-driven consistency preservation.
Instead of creating such languages, we could also have provided, for example, a �xed
library with an advanced programming interface (API), which is sometimes also called
an internal domain-speci�c language (see section 2.1.2).

custom syntax for
abstractions, code
generation for clear

enforcement

We decided to create external languages with a custom syntax and code generation
step in order to address two Open Consistency Speci�cation Language Challenges. By
de�ning a custom syntax for a consistency speci�cation language we can abstract away
from details of models or changes that are not relevant for consistency preservation
(OCSLC 3). During code generation, the reused solutions, which are encapsulated in
language constructs, can be adapted to the current usage and to the modelling languages
for which consistency is speci�ed. It is possible to generate only those code snippets
that are necessary and to use, for example, usage-speci�c identi�ers for generic elements.
These techniques cannot be used if the code is �xed before use and we support them
in our language framework to ease the understanding and debugging of consistency
enforcement (OCSLC 4).

5.3. Usage of the Language Framework

a framework as
foundation for three
particular languages

We used the language framework to create three languages for specifying consistency
in terms of imperative reactions, bidirectional mappings, and normative invariants. The
primary reason for developing the language framework was not to support the creation of
arbitrary languages but to have a common foundation for these three particular languages.
In this section, we brie�y explain why we designed three separate languages and discuss
how they complement each other. Furthermore, we present the programming paradigms
supported by the languages and explain what can be expressed with which language.

5.3.1. Complementary Languages for Reactions, Invariants, and Mappings

complementing
imperative reactions with

constraints and
bidirectionalization

Di�erent modelling languages can be in very di�erent relationships and may therefore
bene�t from di�erent support for specifying what is deemed consistent and how con-
sistency can be preserved. It is, however, always possible to specify imperatively which
updates shall be performed in reaction to changes. Therefore, the reactions language
is the central language of this thesis. For many combinations of modelling languages,
consistency can also be speci�ed in terms of invariants. Such invariants declare which
constraints have to hold but do not specify how consistency shall be enforced. Therefore,
reactions can be triggered if an invariant is newly violated or no longer violated after a
change. In this way, the invariants language complements the reactions language with
constraint-based programming. Finally, some consistency relationships are symmetric so
that two unidirectional speci�cations would exhibit redundant parts that can be avoided
with bidirectional speci�cations. For such cases, the bidirectional mappings language
provides the possibility to declare in a direction-agnostic way how model elements, at-
tributes, and references shall correspond. Developers can specify such mappings without
considering whether updates shall be performed in one or the other direction. They
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do not need to convert checks to enforcements, or forward- to backward-assignments,
because this is done automatically when unidirectional reactions are generated from the
bidirectional mappings. In this way, the mappings language complements the reactions
language with bidirectionalization techniques.

su�iciently expressive
reactions but unnecessary
redundancy and details

The reactions language or any other Turing-complete language is expressive enough to
preserve consistency in a change-driven way. Constraints of invariants can be formulated
in terms of check and bidirectional consistency relationships can be formulated using two
unidirectional speci�cations. This forces, however, developers to specify redundantly
how invariants shall be checked and elements that violate them shall be retrieved or
how consistency shall be preservation in each direction. In such redundant speci�cation
parts, developers need to address challenges that are not speci�c for the modelling
languages for which consistency is speci�ed. The invariants language and mappings
language provide reusable solutions for such generic challenges of consistency checking
and bidirectionalization. With these two languages, developers can specify invariants
and mappings that complement reactions while abstracting away from details that are
only relevant if invariant violations are inspected manually or propagation directions
are made explicit. This is one of the ways in which we address the Open Consistency
Speci�cation Language Challenge 3, which is about missing abstractions (see section 1.2).

declarative reactions
language constructs also
abstract away from details

Abstractions that relieve developers from details of consistency preservation are not
only provided by the complementary invariants and mappings languages but also by
the reactions language. It o�ers constructs that make it possible to declare which model
elements and correspondences shall be retrieved, created, or deleted without specifying
how models and correspondences are navigated and �ltered. These constructs also ab-
stract away from technical details such as necessary clean-up steps to deleted model links
and correspondence links to deleted elements. Such steps always have to be performed
during consistency preservation regardless of the used modelling languages. Therefore,
we relieve developers from writing explicit calls to methods that perform such steps by
providing declarative language constructs for which we generate code that performs all
necessary steps.

5.3.2. Supported Programming Paradigms

choice of languages with
di�erent paradigms

The reactions, mappings, and invariants languages support several programming para-
digms to ease the development of consistency preservation tools. We already explained
in section 1.2 that languages that only support either solution- or problem-oriented pro-
gramming paradigms force developers to address challenges of consistency preservation
only from one perspective (OCSLC 2). We address this problem by supporting solution-
and problem-oriented programming paradigms in our three languages. This makes it
possible to adapt the way how consistency is speci�ed to the context in which models
are used and evolved.

imperative, reactive,
declarative, and constraint
programming

Together, the three languages provide constructs that support the imperative pro-
gramming paradigm, the reactive programming paradigm, the declarative programming
paradigm, and the constraint programming paradigm. In the following, we will brie�y
explain how these paradigms are supported by which constructs of the three languages.
Detailed presentations of all language constructs are given in the according chapters for
every language.

reactively-structured,
imperative reactions with
declarative constructs

The reactions language supports solution-oriented, imperative programming but is
in�uenced by ideas of reactive programming and also provides problem-oriented declara-
tive constructs: Routines for automatically updating models to restore consistency after
user changes are always de�ned in reaction to these changes. Some of the actions of
such routines can be de�ned using declarative language constructs as mentioned in the
previous section. Attribute values and links of model elements can, however, only be
updated with imperative code, which may contain variable de�nitions, calls to helper
methods etc.
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declarative, bidirectional
mappings with imperative,

unidirectional fallback

The mappings language supports problem-oriented declarative programming to pre-
serve bidirectional consistency relationships and provides a fallback to imperative code.
It provides constructs to declare how model elements, attributes and references shall be
mapped to other elements, attributes, and references. How these mappings are checked
and enforced cannot be speci�ed with imperative language constructs but is automatically
derived from the mappings. It is only possible to fall back to imperative code for specify-
ing checks or enforcements that involve attributes and references of one or both sides,
if the provided declarative language constructs are not su�cient. The code generator
of the language bidirectionalizes mapping speci�cations that are given in a direction-
agnostic way. An attribute mapping, for example, is speci�ed using the common syntax
of assignment statements with an equals-sign, which assign the value of an expression
at the right of the sign to an attribute at the left of a sign. Such an attribute mapping
looks like an imperative assignment but is in fact declarative because an assignment for
the direction opposing the notational direction is automatically derived using program
inversion techniques as explain in section 7.4.

just constraint
programming with the
invariants language

The normative invariants language supports the problem-oriented constraint program-
ming paradigm. It supports no further paradigms, and no other language supports this
paradigm. The invariants language can only be used to de�ne consistency constraints
that always have to hold for every instance of a given metaclass and are therefore called
invariants. The language is closely aligned to a subset of the Object Constraint Language
(OCL) and constraints only consist of a sequence of calls to methods that have no side-
e�ects and �nally return a boolean value. In contrast to OCL, we cannot only evaluate
whether an invariant holds but also provide a mechanism to automatically obtain those
model elements that are responsible for an invariant violation as explained in section 8.2.
These elements can be used in consistency preservation updates that are de�ned with
the reactions language which makes the invariants language a constraint programming

and not only a constraint checking language.

5.3.3. Expressive Power and Restrictions

combining limited and
unlimited language

constructs

Our three programming languages provide language constructs with limited expressive
power in order to enable code generation and static analyzes based on these limitations.
If these language constructs would not enforce these restrictions, it would not be possible
to generate code for all possible usages or to analyse them statically. In such cases, it is
necessary to limit the expressive power of a language part in order to provide consistency
preservation functionality that cannot be provided if everything can be expressed. It
is, however, not necessary to limit the expressive power of the complete speci�cation
language. On the contrary, it should be possible to specify arbitrary consistency rela-
tionships even if the language can only provide restricted support for some of them.
Therefore, we decided to make the reactions and the mappings language Turing-complete
by also providing language constructs with full expressive power but limited assistance.
In this way, we address the Open Consistency Speci�cation Language Challenge 1, which
describes the usual dilemma of either providing particular solutions with a restricted
language or supporting all cases with powerful but unspeci�c languages (see section 1.2).
We will show in chapter 10 that many languages that only provide constructs with lim-
ited expressivity provide solutions to many recurring problems but are also often too
restrictive to be used in all cases.

from Turing-complete to
primitive recursive

The expressive power of the three languages presented in this thesis ranges from
Turing-complete to primitive recursive. Our central reactions language is Turing-complete
because it is possible to de�ne reactions to arbitrary changes that do not match or retrieve
elements or correspondences and only contain an update block for the changed element
with arbitrary Java code. The declarative language constructs of the reactions language,
which we already presented in the previous section, have, however, a limited expressive
power. Consider, for example, trigger statements for selecting changes after which a
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reaction is to be executed or match statements for retrieving elements corresponding to
changed elements or related elements. In both statements declarative language constructs
can be used together with blocks of almost arbitrary code but expressions with side-e�ects
are not supported. This restriction to expressions without side-e�ects also applies to the
conditions that can be de�ned in the invariants language. Furthermore, it is not possible
to express while-programs with it, but loop-programs can be expressed with it. Therefore,
the invariants language can only be used to de�ne primitive recursive functions, which
will be shown in detail in subsection 9.2.6. Finally, the mappings language is also Turing-
complete because it can simulate every single-taped Turing machine using mappings
for all metaclasses in which we fall back to custom code for checking and enforcing
consistency. This code can be arbitrary Java code and therefore we are able to simulate any
Turing machine with it. The declarative language constructs for specifying bidirectional
relationships using direction-agnostic mappings are, however, much more limited in
terms of expressive in order to enable bidirectionalization.

5.4. Language Integration and Alignment

integrate existing
languages or align new to
existing languages

The language framework, which we created for the three consistency preservation
speci�cation languages presented in this thesis, supports the integration of existing
languages and alignment of new languages to existing languages. In this section, we
explain how we integrated a newly developed modelling language for representing model
changes into our reactions language. We also describe how we integrated an existing
language for Java-based method body expressions into all three languages presented in
this thesis. Finally, we explain how we extended this expression language to obtain a
side-e�ect free constraint language that is equivalent to a subset of OCL.

5.4.1. A Language for Representing Model Changes

abstract change
representations for users
of change-oriented
languages

In order to perform the correct model updates after a model was changed by a user,
the reactions and the mappings language need to process an abstract representation of
the changes that are recorded by the used model editor. These representations have to be
independent of the used modelling language and editor in order to make our languages
applicable to di�erent modelling languages and editors. Furthermore, the representations
have to express which edit operations where performed by a user because consistency
may need to be preserved di�erently for di�erent edit operations that result in the same
model state. In the literature, such representations are called edit-based [Wag14; JR16]
and contrasted to state-based and delta-based representations of changes. Therefore, we
developed a modelling language that ful�lls these requirements by supporting edit-based
change modelling in a generic way. This language is used to model changes that can be
processed by the code generated for reactions and mappings. It was necessary to design
a new change modelling language because existing representations were developed with
di�erent pragmatics and therefore do not provide exactly the edit operation information
that should be available in a change-oriented language.

only necessary
information with full
precision and type-safety

A developer that uses a change-oriented language to specify which model updates
have to be performed after a change needs appropriate possibilities to access all necessary
change information but no more. That is, technical details that are only relevant for the
editor monitoring a change or for the code generated for a speci�cation should not be
part of such a change model. Furthermore, information that is required for change-driven
consistency speci�cations does not only need to be available in any form. All change
information should be convenientely accessible but all precision and type-safety that is
provided by the modelling languages of the changed model has to be sustained. This
is necessary because we cannot know in advance whether it is necessary to perform
�ne-grained case distinctions to specify consistency correctly with our languages. It is, for
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example, possible that a developer does not only need to know whether a model element
was created and added to a model but has to distinguish di�erent possible insertion
targets. Such possible insertion targets can be distinguished by all properties of the
existing model element that links to the new element and by the all properties of the
reference de�ning this link.

Di�erent Requirements for EMOF- and Ecore-Based Models

refined change
information needs for

Ecore in contrast to EMOF

Di�erent information and case distinctions are necessary to describe all possible model
changes for modelling languages that follow the Essential Meta Object Facility (EMOF)
standard or the Ecore variant. Both meta-modelling languages and the di�erences between
them are described in section 2.1.3 and 2.1.3. Only two di�erences have a major e�ect on
our change modelling language and the speci�cations language that use them:

1. In EMOF, properties can be typed using metaclasses or using other data types, but
in Ecore these are distinguished as references and attributes.

2. Ecore requires that all elements except for a root element are contained in ex-
actly one container and EMOF only requires that all elements have at most one
container [ISO14, pp. 31-32].

If we only consider these two di�erences, then Ecore can be seen as a re�nement of EMOF,
which only adds a more �ne-grained distinction of properties and further containment
restrictions. Because of this re�nement relation, we will �rst describe which information
is necessary to represent model changes of EMOF-based models and then add further
information and distinctions for Ecore-based models. Finally, we brie�y explain how we
made all this information available in practice using a change modelling language.

Changes in EMOF-based Models

first distinction:
representable as

composition?

The generic change modelling language, which we use in our consistency speci�cation
languages, has to be able to represent all changes that can occur in models that conform
to EMOF-based metamodels. We already mentioned above, that di�erent information
of di�erent type has to be provided for di�erent cases of changes. The case distinctions
that are necessary to correctly represent changes in EMOF-based models are illustrated
using a feature model in Figure 5.2. Cases are only distinguished if di�erent informa-
tion is needed to represent a change or if di�erent types can be distinguished for this
information. First, we distinguish between atomic change representations and compound
change representations. This distinction is not imposed by EMOF but due to goal to
support representations of all possible changes in models that may conform to arbitrary
EMOF-based metamodels. As di�erent editors may use di�erent composition of changes
to modify models, we solely base our distinction on the change representation: A com-
pound change representation solely composes representations of other changes. Change
representations that are not compound according to this de�nition are atomic change
representations. A change in which a model element is moved from one container to
another, for example, is represented as a compound change that consists of two atomic
representations for subtracting and adding the moved element. Often several changes
can be represented both as several unrelated changes with atomic representations or as a
single change with composite representation. Our change modelling language provides
the possibility to choose between both representations in order to convey information on
how changes occurred and how they can be processed. This way we sustain information
not only on the result of a change but also on the edit operation that was performed to
obtain the result. If an editor monitored a single action that can be represented in both
ways, then it can choose a compound representation with several atomic representations
to sustain the information that these atomic changes occurred together. Let us consider,
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Change

Atomic

Operation

Content

Additive

Create

Subtractive

Delete

Order

Permute

Property

Cardinality

Single Multi

Compound

Unset Move Replace

constraints:

1. Permute ⇒ Multi

2. (Multi ∧ Content) ⇒ (Additive ⊕ Subtractive)

3. Single ⇒ (Additive ∧ Subtractive)

Figure 5.2.: Feature model for all changes in EMOF-based models that require di�erent information
or information of di�erent types

for example, a subtraction of an element from one container that precedes and addition
of the same element to another container in a representation of a move change. If consis-
tency has to be preserved di�erently depending on the type of the new container, then
the information that both changes occured together may ease the development of an
appropriate preservation routine. The current compiler of the reactions language does,
however, not yet directly support compound change representations but still handles the
composed atomic changes in isolation.

atomic: add, subtract
elements and property
values or permute
property values

All case distinctions that are necessary for atomic changes are directly given by EMOF.
EMOF only de�nes classes with properties which can be ordered and have a lower and
upper bound. Elements and property values can be added or subtracted but property
values can also be permuted if they may hold multiple values (constraint 1). A change
of a property that can only hold a single value always replaces a previous value even if
this previous value may be unde�ned. Therefore, it is not necessary to represent changes
that only add or only subtract a value of such a property. Thus, all changes of such
properties with single cardinality are additions and subtractions (constraint 2). Additions
and subtractions of values of properties that may hold multiple values, however, can occur
independent of each other. If they occur together, this is not an atomic change according
to our de�nition. Therefore the only atomic changes of such properties either add or
subtract a value (constraint 3). New elements can be created and existing elements can be
deleted. Because EMOF imposes no appropriate constraints on composite properties, such
creations and deletions may but do not need to coincide with a change of an appropriately
typed composite property. All elements can also just be added or subtracted directly from
the model. Therefore, creation or deletion is an optional feature of additive or subtractive
content changes.

discard changes without
e�ects

During change-driven consistency preservation it is only necessary to react to changes
that result in a model that di�ers from the model before the change. It would be possible
to represent changes that have no e�ect and leave a model unchanged with our change
modelling language. Such changes can, however, simply be discarded in the monitored
editor or during the conversion from an editor-speci�c change representation to our
modelling language.
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Change

Atomic

Operation

Content

Additive Subtractive

Order

Permute

Target

Root Feature

Type

Attribute Reference

Cardinality

Single Multi

Existential

Create Delete

Compound

Unset Move Replace

constraints:

1. Permute ⇒ Multi

2. (Multi ∧ Content) ⇒ (Additive ⊕ Subtractive)

3. Single ⇒ (Additive ∧ Subtractive)

4. Existential ⇒ (Root ⊕ Reference)

5. Create ⇒ (Additive ⊕ Root)

6. Delete ⇒ (Subtractive ⊕ Root)

7. Root ⇒ (Additive ⊕ Subtractive)

Figure 5.3.: Feature model for all changes in Ecore-based models that require di�erent information
or information of di�erent types

Changes in Ecore-based Models

distinguish root, attribute
and reference changes As we explained above, further cases have to be distinguished when changes in Ecore-

based models shall be represented with maximal type-safety based on descriptions of
changes for EMOF-based models. Consistency after a change for a simple-typed attribute,
for example, is usually preserved in a more local way than consistency after a change
for a reference. The reason is that such a changed link to another model element for a
reference may also indirectly in�uence additional elements that link to the same element.
The additional case distinctions that are necessary for Ecore-based models are illustrated
as a feature model together with those case distinctions that we already used for changes
of EMOF-based model in Figure 5.3. Changes of attributes and references have to be
distinguished because they have to represented using old and new values of the correct
complex or simple types. Ecore distinguishes between a single root element without an
incoming containment link and all other non-root elements with exactly one incoming
containment link. Therefore, changes in which a root element is added, replaced, or
removed cannot be handled like changes to containment references in which non-root
elements are added, replaced, or removed. Furthermore, attribute values have no mutable
properties and therefore do not need to be created nor deleted. Values of references,
however, are model elements with mutable properties so they need to be distinguished
from other elements with currently equivalent properties and can also be created and
deleted. Therefore, creations and deletions only occur when an appropriately typed
containment reference is changed but not when attribute values are added or subtracted
(constraint 4). If an element is created, a reference value or root element was added
(constraint 5). Similarly, if an element is deleted, a reference value or root element was
subtracted (constraint 6). Other root changes than additions or subtractions of elements
are not possible (constraint 7). Whether a containment or non-containment reference
was changed is not explicitly distinguished in Figure 5.3 because this information can be
obtained from the reference. If we would have displayed feature attributes such as new
values or a containment �ag for references, we would have needed to state in constraint
4 that existential changes can only be applied to containment references.
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Realizing the Change Modelling Language

not only case distinctions
but also provided
information

In the previous sections we described which cases have to be distinguished when
changes in EMOF- or Ecore-based models have to be represented. It is, however, more
complicated to explain which information of what type is necessary in which cases.
Therefore, we provide two class diagrams and a textual description that explain the
change modelling language from di�erent perspectives. The class diagrams are struc-
tured using the di�erent cases and list for each case which information is necessary.
Figure 5.4 shows all 12 metaclasses that are not abstract together with the information
they provide regardless of the hierarchy of abstract metaclasses that is used to introduce
this information using inheritance. The complete metamodel, which we provide in ?? in
the appendix, shows this hierarchy and therefore does not repeat inherited attributes,
references, and operations.

atomic information on
changes and cases in
which it is provided

The following textual description is not structured by the distinguished cases but by
the provided information. For all information carried by an attribute or a reference in
the metamodel, we list all cases that are represented as atomic changes in which the
information is provided. Operations are omitted for the sake of brevity. The element
and feature that are a�ected by a feature change, are provided in all atomic change
descriptions except for the two changes of inserting or removing a root element. A new
value is provided, if an attribute value or reference link is inserted in a list of multiple
values, or if a single attribute value or reference link is replaced. Similarly, the old value is
provided, if an attribute value or reference link is removed from a list of multiple values or
if a single attribute value or reference link is replaced. The information at which index an
attribute value or reference links were inserted or removed in a list, is provided in exactly
these cases. A new index for all items at every former place, is provided if lists of multiple
attribute values or reference links are changed. If a reference link is inserted in a list of
multiple values or if a single reference link is replaced, then a �ag isCreate is used to state
whether the newly linked element already existed before. Similarly, a �ag isDelete is used
to denote whether the removed element still exist afterwards. Both �ags are necessary
because a change of a containment references may be part of a compound change, such
as a move operation, and does not always need to imply a creation or deletion of an
element. Finally, a unique resource identi�er is provided if root elements are added or
removed.

di�erent information in
compound change
representations

For compound change representations, it is not bene�cial to structure the description
along the provided information because it is di�erent for each compound change except
for an operation that simply returns all atomic change descriptions. Therefore, we explain
the provided information for each change with compound representation. If a feature
of a model element is explicitly unset, then a change for every value that is subtracted
due to the unset change is provided. In case of a subsequent removal and insertion of
a value at the same position in a list, these two atomic changes are provided together
in a compound replace in list change. Finally, if a model element is moved, then four
atomic changes that represent which model element links no longer or newly to the
moved element using which reference are provided.

5.4.2. Reusing a Java-Based Expression Language

reuse of a familiar
expression syntax and
semantics

To relieve developers from learning completely new programming languages and to
keep our languages small, we reuse an existing Java-based expression language. This
reuse allows developers to write expressions using a syntax and semantics that they are
already familiar with. By embedding the reused expressions language into the grammars
for our consistency preservation languages the size of these grammars is reduced. This
also reduced the e�ort to realize the compilers for the languages.

a Java dialect with
identical, similar, and
additional parts

The reused expression language is called Xbase [EV06] as it can be used as a base
language for all languages that are created using the language development framework
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InsertEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
newValue:T
index:int

RemoveEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
index:int

ReplaceEAttributeValue
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
newValue:T
fromNonDefault:bool
toNonDefault:boolInsertEReference

a�ectedEObject:A
a�ectedEFeature:F
newValue:T
index:int
isCreate:bool
isContainment():bool

RemoveEReference
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
index:int
isDelete:bool
isContainment():bool

ReplaceEReference
a�ectedEObject:A
a�ectedEFeature:F
oldValue:T
newValue:T
fromNonDefault:bool
toNonDefault:bool
isCreate:bool
isDelete:bool
isContainment():bool

InsertRootEObject
newValue:T
isCreate:bool
uri:String

RemoveRootEObject
oldValue:T
isDelete:bool
uri:String

ExplicitUnsetEFeature
subtractiveChanges:

EChange[]
getAtomicChanges():

EChange[]

MoveEObject
subtractWhatChange:S
subtractWhereChange:T
addWhatChange:A
addWhereChange:B
getAtomicChanges():

EChange[]

ReplaceInEList
removeChange:R
insertChange:I
getAtomicChanges():

EChange[]

Figure 5.4.: Metaclasses of the change modelling language that are not abstract with all features
directly and indirectly declared for them (simpli�ed names and types, no permutation
changes)
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Xtext [E�+12]. We call it Java-based because the compiler directly produces Java code
and because the language syntax is based on the syntax of Java. Some parts of this reused
Xbase language, such as variable assignments or method invocations, are identical to
the statements and expression in Java methods. Other parts, such as variable or �eld
declarations, are almost identical. Additional language features without counterparts in
Java, such as type inference or null-safe �eld access and method invocations, are provided
in an optional way. This way, developers that learn to use the languages presented in this
thesis can start writing expressions that are almost identical to Java. When they become
more familiar with additional features of the reused expression language, they can start
to gradually use these features to write simpler expressions, e.g. without explicit types or
null checks. Because of the similarity to Java and the possibility for �exible deviation
from it, Xbase can also be seen as a dialect for Java method body expressions.

no statements and all
expressions except for
variable declarations
return values

The main di�erence between the reused Xbase language and Java is that it does
not distinguish between statements that do not return a value and expressions that do
return a value. Everything in the reused expression language Xbase is an expression
and all expressions except for variable declarations do return a value. The control �ow,
for example, is in�uenced using loops and conditional branches like in Java, but these
language constructs are also expressions that return the value that is returned by the last
expression in their block. Such blocks may also contain variable declarations, which do
not return a value as mentioned above. Therefore, the last expression of a block may not
be a variable declaration.

di�erent reasons for
reusing expressions and
expression blocks

We reuse single expressions and expression blocks of the Xbase language in two ways
in our languages. Single expressions, which may not be variable declarations, are used in
many places but expression blocks are only used to fallback to imperative code in special
places as mentioned in subsection 5.3.3. The reason is that the consistency preservation
speci�cations that are created with our languages should use declarative language con-
structs whenever this is possible in order not to repeat code that could be generated. Basic
expressions, such as value comparisons or assignments of variables, however, would
result in the same Java code regardless of the language constructs that we provide for
them. Therefore, we decided to reuse the Xbase language for such single expressions
in our languages because implementing particular language constructs with the same
functionality would not provide any bene�t. When we fall back to complete expression
blocks in the reactions and mappings language, the reason for reuse is, however, di�erent.
Developers can write such fallback blocks because we intentionally did not design declar-
ative language constructs for every possible way to achieve what is considered consistent
in a certain context. We reuse expression blocks when consistency speci�cations need
to be expressed in a way for which we did not design language constructs with di�erent

functionality and not because we did not implement single expressions with the same

functionality.
potential overuse of
fallback expression blocks

Because of these two di�erent ways of reusing expressions where it is possible and
expression blocks where it cannot be avoided, their usage in consistency speci�cations
can have di�erent meaning. Single expressions are no pointer to potential de�cits of
our languages and cannot be overused. Expression blocks, however, may be used in
situations where additional language features could be useful and they can be misused
when declarative language features are available.

5.4.3. An OCL-Aligned Expression Extension

OCL-aligned syntax and
OCL conversion but
Java-based compilation

We extended the expression language to provide possibilities for navigating and in-
specting models without side-e�ects similar to OCL. This extension was developed for
the invariants language, but it can be used in all three consistency speci�cation languages.
It provides the functionality of many OCL operation body expressions [ISO12c, pp.42]
and uses a similar concrete syntax. This way, developers that are already familiar with
OCL do not have to learn many di�erences. Furthermore existing OCL expressions are
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OCL Xbase Expression in extension method
= == -
<> != -
size size -
includes contains -
excludes - !coll.contains(elem)

includesAll containsAll -
excludesAll - coll2.forAll[!coll1.contains(it)]

isEmpty empty -
notEmpty - !coll.empty

max max -
min min -
product - coll1.forEach[e1|

coll2.forEach[result.put(e1,it)]

]

Table 5.1.: OCL collection operators and corresponding methods of the reused Xbase language and
our OCL-aligned extension

automatically converted to expressions of the extended language (see subsection 9.4.3). In
contrast to OCL, our OCL-aligned expression extension does not need to be interpreted
based on a given model instance. The compiler produces Java code for all OCL-aligned
extensions, which allows static analyses and direct debugging.

focus: equivalent
collection operators and

iterators

The main focus of our OCL-aligned extension was to create equivalent methods for
collection operators [ISO12c, pp.156–168] and iterators of OCL [ISO12c, pp. 168–174] and
make them available in all expressions. In the UML metamodel, more than 80% of the
OCL invariants consists of such collection operator expressions, iterator expressions, or
of feature access expressions that can be trivially expressed with the reused expression
language [Fis15, p.40][FKL16, p.201]. An overview of the provided collection operators
and iterators is given in Table 5.1 and Table 5.2 in the order in which they appear in
the OCL standard. For every OCL operator or iterator in these tables, we either provide
the equivalent method of the reused Xbase language or the expression with which we
implemented an extension method that provides the same functionality using the same
name. We do not show parameter declarations for collection parameters coll, coll1, or
coll2 and for element parameters elem. The only parameters that we make explicit are
predicates for a single element p, double predicates for two elements dp, and functions f.
Both tables list methods that we implemented using lambda expressions, which allow
in-line de�nitions of methods. In the reused Xbase language these lambda expressions are
enclosed in square brackets [...] in order to distinguish them from arguments of method
invocations, which are enclosed in parentheses as in Java. Lambda expression either have
an implicit parameter it or explicit parameters that are declared at the beginning of a
lambda expression and separated using a pipe character |.

extending collections with
operator and iterator

methods

We make the methods that are equivalent to collection operators and iterators of
OCL available using an syntactic extension mechanism of the reused Xbase expression
language. With this extension mechanism we can invoke a static utility method of another
class as if it was a non-static method that is available in the class of the �rst argument.
As a result, a developer does not need to distinguish between methods that are directly
available for �elds or variables of a certain type and methods that extend such a type using
this mechanism. Technically, the extension mechanism can be seen as the counterpart of
how non-static methods are invoked on the Java Virtual Machine (JVM) by passing the
object on which a method is invoked as the implicit �rst argument [Lin+14, p.52]. We
implicitly import the methods equivalent to collection operators and iterators whenever
one of our three languages is used. This way, it is possible to invoke these OCL-aligned
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OCL Xbase Expression in extension method
iterate fold -
exists exists -
exists(dp) - coll.product(coll).exists[dp]

forAll forAll -
forAll(dp) - coll.product(coll).forAll[dp]

isUnique(f) - coll.groupBy[f.apply(it)]

.values.forAll[it.size == 1]

any findFirst -
one(p) - coll.filter(p).size == 1

collect flatten ◦ map -
select filter -
reject(p) - coll.filter[!p.apply(it)]

collectNested map -
sortedBy sortBy -

Table 5.2.: OCL iterators and corresponding methods of of the reused Xbase language and our
OCL-aligned extension

methods on collections as if they were de�ned in the collections API of the Java language
or as if they were provided using special language constructs.

pure annotation and a
whitelist for methods that
have no side-e�ects

The collection operators and iterators provided in the OCL-aligned expressions exten-
sion can be used to write code that should have no side-e�ects just like OCL code would.
Although the reused expression language Xbase is not restricted in this way, it provides
an annotation @Pure that can be used to mark methods that have no side-e�ects. We are
using this annotation and a user-de�ned whitelist with methods that have no side-e�ects
but cannot be annotated with this annotation, for example, because they are part of a
library. Our current compiler prototypese produce warnings if it is not certain that code
that should not have any side-e�ects only calls such pure methods. Both, the static code
analysis and the inital whitelist entries of library methods will be improved in future
work to reduce the number of false alarms.

5.5. Technical Realization and Code Generation

In this section, we explain how we realized the identi�cation and retrieval of correspond-
ing elements as well as code generation for languages of our framework. These steps
are important because without our speci�cation languages developers often have to
implement their own retrieval mechanisms or have to understand a lot of generated code.

5.5.1. Retrieving Model Elements and Correspondences

To preserve consistency between elements of di�erent models and modelling languages,
they have to be accessed and corresponding elements have to be retrieved. For this, model
elements have to be uniquely identi�ed, which we will explain in the following.

Temporarily Unique Identifiers

element identifiers are
always necessary but not
always given

If consistency has to be preserved between model elements, it is necessary to keep track
of elements that are already consistent to each other. To this end, every model element
has to be uniquely identi�ed throughout consistency preservation independent of the
question whether and how models are persisted. Appropriate identi�ers are, however,
not always directly available for models of every modelling language. A common reason
is, for example, the use of a textual syntax for models or code. In such cases, additional
mechanisms are needed to identify model elements. If explicit identi�ers cannot be added
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to existing models or code, then implicit identi�ers have to be derived from properties of
model elements.

an example for derived
identifiers that evolve over

time

An identi�er for a java method, for example, can be derived from the identi�er of the
class that declares the method, the return type, the method name and the parameter types.
According to the Java language speci�cation this identi�er has to be unique1. If a method
is, for example, renamed, its identity has to be preserved if additional information in
other models that are kept consistent should not be lost [LK14]. The new identi�er of
the method has again to be unique, but it is di�erent from the old identi�er. Therefore,
it is not su�cient to derive the identi�er once from the current properties of a model
element. Instead, identi�ers have to be recomputed after changes that a�ect properties
that were used to derive the identi�er.

potentially e�ects for a
local identifier change

Often identi�ers are hierarchical, that is an identi�er of one element can in�uence
many identi�ers of elements that depend on it. A package in Java, for example, is used
when the identi�ers of all classi�ers in all direct and indirect subpackages are derived.
Even worse, a package identi�er indirectly in�uences the identi�ers of all �elds and
methods of these classi�ers. Therefore, a renamed package results in new identi�ers
for all these subpackages, classi�ers, �elds and methods. This demonstrates that a local
change of a single property that is used to derive an identi�er may change identi�ers of
many other elements if these identi�ers are hierarchically constructed.

limiting the need for
identifier recomputation

A common non-functional requirement for code that reacts to a model change is that
the performance of the code only depends on the size of the change and not on the size
of the model. As we explained above, the worst case for a single model change is that
the number of changed identi�ers is only limited by the total number of model elements.
Therefore, such requirements can only be ful�lled if several identi�ers can be changed in
a single computation step. One possibility to achieve this is to use a data structure that
links identi�er substrings to common predecessors and provides fast forward identi�er
resolution, for example, based on hashes. In our current prototype, we use such a data
structure to store all temporarily unique identi�ers of model elements.

Correspondences for Witnessing Consistency

transparent
correspondence

management using
identifier derivation and

resolution

The model element identi�ers described above are used to document which elements
are already consistent to which other elements. We call such a witness structure for
consistency correspondence and already formally introduced this term in De�nition 23
of subsection 4.1.1. In our prototype, such correspondences for model elements are
registered and persisted using identi�ers. This is used to retrieve corresponding model
elements, i.e. elements of models that were created using other modelling languages
and for which a correspondence is registered. For this, an identi�er is derived for the
given element and the identi�ers of corresponding elements are resolved to obtain these
elements. In most cases, developers that use the speci�cation languages of our framework
do not need to take into account when and how temporarily unique identi�ers are
derived, updated, or resolved. Furthermore, they do not need to ensure, for example,
that correspondences for deleted elements are deleted as well or how multiplicities of
corresponding elements and string tags that mark correspondences are handled.

Accessing Elements of Di�erent Models

abstract away frommodel
persistence issues

Another important are in which developers can be relieved from technical details
during consistency speci�cation is model persistence and model boundaries. To preserve
consistency between model elements technical details of model persistence are mostly
irrelevant. Of course, all model elements have to be persisted, but a developer that
speci�es which elements have to co-occurr should not need to consider where and how
these elements are persisted. Therefore, our prototype gives developers the possibility to

1see docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.2
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add elements a model by only specifying a �le path for the model and an identi�er for a
container element in the model. They do not need to consider whether the model already
exists at the given path, whether it is currently loaded, or when it is saved because this is
not relevant. Instead, all models are automatically created, loaded, and saved whenever
this is necessary for consistency preservation.

proposing a mechanism
for transparent model
boundaries

In the future, we also want to relieve developers from considering model boundaries
and �le paths. Model elements should only have global identi�ers and automatically
be added to models that are persisted at prede�ned paths. This should be realized with
rules for metaclasses for which instances may be root elements that de�ne how a �le
path is obtained for such a root element. Such a technique would be especially helpful
for modeling languages with model boundaries that have no semantics, e.g. compilation
units of textual languages. In Java, for example, a classi�er of a compilation unit refers
to other classi�ers in other compilation units. These compilation units act as model
boundaries and de�ne a �le path for the classi�ers. For consistency preservation, they
have, however, no semantics as developers only need to specify which classi�ers of which
packages should be kept consistent regardless of compilation units.

5.5.2. Generating and Executing Consistency Preservation Code

We already explained the process of change-driven consistency preservation from the
perspective of developers that specify consistency and users that change models in
subsection 5.2.1. In this section, we will brie�y describe important steps of code generation
and execution that are not noticed by developers until they start to debug their consistency
speci�cations.

from specific to generic
input and updates of
correspondences

So far, we only explained that changes that are performed by a user on a model are
monitored to trigger consistency preservation updates on a model of another modelling
language according to a speci�cation. This explanation skips, however, intermediate
steps of the consistency preservation process. Therefore, we provide and explain an
extended extract of Figure 5.1 in Figure 5.5. It re�nes how a monitored editor triggers
consistency preservation updates and that these updates do not only update a model
but also correspondences. The input for consistency preservation updates are generic
change models. These models are created from change descriptions that are speci�c for
monitored editors with di�erent technical realizations. Consistency preservation updates
have no explicit output but directly perform updates on models and correspondences.
These correspondences are created or updated between elements of models that were
created using the two modelling languages for which consistency is speci�ed. A single
change may lead to the execution of several consistency preservation updates, which may
alter several models with elements that directly or indirectly correspond to the originally
changed element. We will, however, not explain in this thesis how the updates to be
executed are technically selected for a given change.

generic platform code,
repetitive generated code,
and copied individual code

All code that is executed to preserve consistency according to speci�cations that were
created using a language of our framework can be separated into three parts according
to Völter and Stahl [VS06, p. 15].

1. Generic code, which is independent of the modelling languages for which con-
sistency is preserved and independent of the speci�cations according to which
consistency is preserved.

2. Repetitive code, which depends on the modelling languages and speci�cations but
can be generated from usages of declarative language constructs in the speci�ca-
tions.

3. Individual code, which is copied from expressions and fallback code blocks of
speci�cations during code generation.
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code generator

consistency
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updates
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model b

5α ) update

model a
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description

3) transformed to monitored
editor
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2) produces

legend:
III) speci�cation time 1)-3) development time
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refer to refer to
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Figure 5.5.: Process for executing consistency preservation updates based on change descriptions
and correspondences

To address Open Consistency Speci�cation Language Challenge 4 we strictly separated
these code parts during code generation. Individual code is directly copied with as few
modi�cations as possible so that developers can easily debug these code parts in the
way that they would expect from a general purpose programming language. During the
generation of repetitive code we try sustain type and naming information. The goal is
that developers can easily understand which parts of the consistency speci�cations they
develop result in which code and what a potential change in a speci�cation would mean
for the generated code. Finally, generic code is not generated for every speci�cation
but only realized once as part of the framework and called from generated code. This
gives developers the possibility to comprehend which consistency preservation behavior
is generic and can only be indirectly in�uenced when other calls to generic code are
generated for speci�cation alternatives.

5.6. Conclusions and Future Work

concepts, paradigms,
integration, and

realization

In this chapter, we have presented a framework for the consistency preservation lan-
guages of this thesis. We have introduced central concepts for preserving consistency in
reaction to changes and according to consistency speci�cations. To explain how we ad-
dress the Open Consistency Speci�cation Language Challenge 3 and 4, we have discussed
why we developed new languages instead of providing libraries for existing languages.
Furthermore, we have explained how the languages for consistency preservation spec-
i�cations complete each other in order to support several programming paradigms to
counter Open Consistency Speci�cation Language Challenge 2. We have also shown how
we extend an existing expression language and how we integrate this language and a
change modelling language into our framework. This way, we have demonstrated how to
combine the advantages of a powerful general purpose language and of speci�c solutions
for change-driven consistency preservation to counter Open Consistency Speci�cation
Language Challenge 1. Finally, we have explained how we realize the retrieval of cor-
responding elements and how code is generated and executed to preserve consistency
according to speci�cations.

a first step towards
answering research

question 2

Altogether, this chapter makes �rst contributions to answering our research question
2 and its subquestions 2.1–2.4 (see section 1.3). In the following three chapters, we
will present each language individually and we will discuss how we designed these
languages to address challenges of current consistency speci�cation languages. This way,
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we will complete and further explain the initial answers to research question 2, which
we presented in this chapter.

future support for
compound changes and
further validations

We suggest to put the focus of future work for the language framework especially on
two topics: compound changes and code validation. The current prototype handles an
individual change that is part of a compound change representation without considering
sibling changes, as we already mentioned above. In the future, we want to give developers
the possibility to specify consistency preservation for compound change representations
and for the atomic change representations they contain. We are planning to realize
further static code analyses in order to validate that restrictions on the usage of the
powerful expression language are respected. This way, we will support the developer
in avoiding unwanted side-e�ects even if no special language constructs but ordinary
expressions or helper methods are used.
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a language for consistency
preservation reactions
based on changes,
correspondences

In this chapter, we present our change-oriented language for consistency preservation
reactions, which is also the basis of the two other languages for invariants and mappings.
It can be used to specify reactions that preserve consistency by updating models of one
language after a user changed a model of another language. The reactions language
provides declarative elements for typical consistency preservation actions, such as the
management of corresponding elements. It also includes check expressions and imperative
model manipulations, which are based on the expression language Xbase [EV06] and our
OCL-aligned extension (see subsection 5.4.2 and 5.4.3). Therefore, the reactions language
is a universal language for unidirectional consistency preservation reactions. It can
be complemented with invariants and bidirectional mappings using the two languages
presented in the next chapters.

based on amaster’s thesis
supervised by the author

We designed the reactions language together with Heiko Klare, who also implemented
a compiler and generator for the language using the language development framework
Xtext [E�+12]. His master’s thesis [Kla16], which was supervised by the author of this
dissertation, provides further background information on how we realized the reactions
language and also additional rationale for fundamental design decisions.

6.1. Overview: Triggers, Retrievals, and Actions

partition reaction activites:
trigger, retrieve, act

The reactions language separates change-driven consistency preservation into three
main steps with di�erent objectives and restrictions:

1. Triggering reactions according to the type and properties of a user change

2. Retrieving model elements that correspond to elements of the changed model

3. Performing actions on retrieved elements and managing correspondences

For the �rst trigger step, the developer speci�es for which changes a reaction is responsible
by inspecting the occurred change. The models of the two modelling languages do not
need to be taken into account in this �rst step. If the reaction is responsible for the change
in a model of one language, then the retrieval step is used to obtain elements of models
of the other language, for which correspondences were established in previous reactions.
Actions are only performed if all elements that are necessary for a reaction and that ful�ll
the optional retrieval conditions were successfully retrieved. Only in this last step, the
retrieved model elements and all elements accessible through them may be modi�ed. The
model in which the change occurred and all other models of that language cannot be
modi�ed in any of these steps. This is necessary to prevent endless cycles of changes and
consistency preservation reactions. The individual language constructs for these three
steps are already sketched in Listing 6.1.

protection and guidance
without compromising the
expressive power

The goal of partitioning all activities of a reaction in this way, is to reduce the risk for
developers to develop reactions with unwanted side-e�ects or code that is unnecessarily
complex. We carefully designed the language in a way that imposes restrictions on exactly
these reaction activities that may be restricted without compromising the expressive
power of the complete language. These restrictions give developers the possibility to
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1 reactions ConsistentOOorADL

2 in reaction to changes in adl

3 execute actions in oo

4
5 reaction {

6 after // trigger definition ...

7 call aSpecificRoutine(...)

8 }

9
10 routine aSpecificRoutine(...) {

11 match {

12 // retrieve corresponding elements ...

13 }

14 action {

15 // perform actions and manage correspondences ...

16 }

17 }

Listing 6.1: Stub of a reaction illustrating the main language constructs and three steps of change-
driven consistency preservation

choose from a limited number of building blocks for each step of consistency preservation
reactions but also allow arbitrary actions in the last step. In this way, developers can
be guided through the process of specifying consistency preservation reactions without
restricting the language to certain use cases. The restrictions make it impossible to alter
models while checking the responsibility of a reaction or while checking conditions on
candidate elements for correspondence retrievals. In this sense, developers are protected
during the speci�cation of triggers and retrievals. The need for providing speci�c language
support and full expressive power was motivated as Open Consistency Speci�cation
Language Challenge 1 in section 1.2. Semi-formal sketches for proving that the constructs
of our reactions language cover all possible cases will be provided in subsection 9.2.4.

6.2. Running Example: Component Models and
Object-Oriented Design

simplified component
models and

object-oriented code

In this section, we introduce a scenario, in which component-based architecture models
are kept consistent with an object-oriented design, as a running example of consistency
preservation. This example is inspired from a case study, in which we preserved con-
sistency between models that are created using an Architectural Description Language
(ADL) and Java code (see section 9.4.4). We do, however, leave out details of the original
case study that are not necessary to explain the syntax and semantics of the reactions
language. Thus, the modelling languages and consistency requirements of our running
example represent a simpli�ed subset of the languages and requirements used in the case
study.

6.2.1. Component-Based Architecture Models

repositories of
architectural interfaces

and reusable components

In the running example, we represent component-based architecture models using an
ADL for which we present a metamodel in Figure 6.1. Such a model contains a repository,
which has a name. A repository contains component interfaces which declare service
signatures, and reusable components, which provide and require these services. Compo-
nents and component interfaces are both identi�ed using unique names. A component

interface groups services that are required or provided together. For each of these services,

108



6.2. Running Example: Component Models and OO Design

Repository
name:String

Component Interface
name:String

Service Signature
name:String

Component
name:String

Parameter
name:String

DataType

name:String
SimpleType ComplexType

CollectionType CompositionType

type 1
returnType

0..1

interfaces 1..*
repository1

components1..*

signatures 1..*

parameters
1..*

provided interfaces 1..*

required interfaces0..*

collectedType1composedTypes 1..*

Figure 6.1.: Class diagram showing a simpli�ed metamodel for models of component-based software
architectures

the component interface declares a signature. Such a service signature consists of an
optional return type, a service name and parameters that have a name and a type. These
return and parameter data types can either be simple types, such as integer types, or
complex types. A complex type either represents a collection of several values of the
same data type or a composition of values of di�erent data type. Apart from the name
and the signatures, a component interface contains no further information, for example,
on how a service shall be realized. A component references component interfaces to
denote which services are provided by the component and which services are required.
Two service signatures of two di�erent component interfaces can be identical and a
component interface can be provided or required by several components [Rhi07]. In
our running example a component has no further properties than its name and these
provides and requires relations. The reason for this simple component representation is
that we do not need, for example, components that are internally realized by composing
components. Information on the ADL used in the case study that inspired this running
example, is provided in section 9.4.4.

6.2.2. Object-Oriented Design

just packages, classes, and
interfaces with methods

The object-oriented design of a system is represented in our running example using
classes and interfaces as shown with a metamodel in Figure 6.2. These interfaces and
classes are two di�erent types of classi�ers and are always contained in a package. For the
running example it is irrelevant whether these classi�ers and packages are de�ned in text
�les using an object-oriented programming language, such as Java, or in models using
a modelling language, such as the Uni�ed Modeling Language (UML). A package has a
name and may have a parent package. In such a case the package is called a subpackage
of its parent package and this parent package references all its subpackages. An interface
in the object-oriented design declares methods with a method name, parameters, and an
optional return type, which is a classi�er. A parameter is typed using a classi�er and has
a name. Classes have a name and declare which interfaces they implement. They also
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Field
name:String

Classi�er
name:String

type
1

Package
name:String

package1content0..*

parent0..1subpackages 0..*

Class

declaredFields0..*

Parameter
name:String

Method
name:String

parameters0..*

type1

Interface

implementedInterfaces0..*

declaredMethods
1..*

returnType0..1

Figure 6.2.: Class diagram showing a metamodel for object-oriented designs that is simpli�ed as
needed for our running example

declare �elds, which have a name and are also typed using a classi�er. In our running
example, classes only de�ne methods that are declared in the interfaces implemented
by the class. Other methods and constructors as well as other essential concepts of
object-orientation, such as class inheritance or interface extension, are not necessary in
our running example. In section 9.4.4, we explain how we reused a special printer and
parser for Java in order to treat Java code like any other model.

6.2.3. Consistency Requirements

consistency requirements
for running example

The consistency requirements of our running example demand correspondences be-
tween repositories and packages, between components and packages, between compo-
nents and classes, and between component interfaces and interfaces of the object-oriented
design. A repository corresponds to a root package with the same name that has three
subpackages for component interfaces, data types, and components. Every component
corresponds to a subpackage in the components subpackage of its repository and to a
component-realization class. The component interfaces of a repository correspond to
an interface in the subpackage for component interfaces of the repository root package.
Service signatures in component interfaces correspond to method declarations in the
interfaces of the object-oriented design. Simple data types have equivalent counterparts
in the object-oriented design and complex data types correspond to classes in the data
types subpackage of the repository root package. A class corresponding to a collection
data type extends an existing collection class of the object-oriented language using the
class corresponding to the inner type of the collection data type as type parameter for the
extension. Classes that correspond to a composite data type declare a �eld for every inner
type of the composite data type that is types using the class corresponding to the inner
type. A provides relation between a component and a component interface corresponds
to a implements relation between the corresponding component-realization class and the
corresponding interface of the object-oriented design. Finally, every requires relation
between a component and a component interface corresponds to a �eld declaration in
the corresponding component-realization class that is typed using the corresponding
interface. The original consistency requirements for the case study, which inspired this
running example, were presented in a conference article [Kra+15]. They are explained in
more detail by Klare [Kla16] and Langhammer [Lan17].
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Action ReactionsSpec Reaction
name:Identi�er

Trigger

reactions
1..*

trigger1

RoutineCallRoutine
name:Identi�er

calls1..*
routines1..*

calledRoutine

0..*Retrieval

retrievals
0..*

actions
1..*

Metamodel
nsURI:String

1executionTarget 1 changeSource

Figure 6.3.: Simpli�ed class diagram with central metaclasses for representing consistency preser-
vation reactions in an AST

6.3. Reactions and Separate Reaction Routines

reactions with triggers and
calls, routines with
retrievals and actions

Before we introduce the features of our reactions language, we explain the overall
structure of consistency preservation speci�cations that are created with it. With our
reactions language, consistency preservation is speci�ed in terms of reactions that de�ne
a trigger and call reaction routines. In these reaction routines, elements are retrieved and
actions are performed in two subsequent routine parts. The main steps of consistency
preservation reactions, which we introduced in section 6.1, are expressed as triggers
of reactions and as retrieve and action parts of called reactions routines. This relation
between reactions, triggers, routines, retrievals, and actions is also depicted in Figure 6.3.
A reactions speci�cation de�nes reactions and routines that are executed in instances of
one metamodel in reaction to changes that occurred in instances of another metamodel.
The �rst of these metamodels is called execution target metamodel and the second is
called change source metamodel Metamodels are identi�ed using the unique resource
identi�er of their namespace and reaction routines are identi�ed using their unique
names. A reaction has a trigger and calls one or several reaction routines. These reactions
routines can but do not need to retrieve elements in instances of the execution target
metamodel that correspond to elements in instances of the change source metamodel.
Every reaction routine has to de�ne at least one action to be executed.

a reaction for the running
example calling a single
routine

For our running example, which we introduced in the previous section, we can create
a reaction to preserve consistency after a creation of a component in the architectural
model. This reaction only has to be triggered whenever a component is created. Apart
from this trigger de�nition it only contains a call to a reaction routine. This routine
speci�es the retrieval of a package for components which corresponds to the repository in
which the component was created. After this, it de�nes an action that has to be executed
to create the subpackage and component-realization class in the object-oriented design
as corresponding elements for the component of the architectural model.

rationale for separating
triggers from retrievals
and actions using routines

It is not necessary to separate triggers from retrievals and actions to support the
de�nition of arbitrary consistency preservation reactions. Reactions could also directly
contain triggers, retrievals, and actions. And it would be possible to support reactions
with calls to explicit routines and reactions with direct retrievals and actions that are
implicitly put into a nested routine that is implicitly called. We had initially chosen to
support these two reaction types with our language. Finally, we decided to only support
explicit routines in order to keep the reactions language simple and to always bene�t
from names and type restrictions of explicit routine parameters. Explicit reaction routines
give developers the possibility to declare parameters with names that are meaningful for
the speci�c reaction routine. In a reaction de�nition, all change information is available
and can be used to decide whether the reaction should be triggered and as arguments
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1 reactions ConsistentOOorADL

2 in reaction to changes in adl

3 execute actions in oo

4
5 reaction {

6 after element adl::Component created

7 call createSubpackageAndClass(change.newValue)

8 }

9
10 routine createSubpackageAndClass(adl::Component component) {

11 match {

12 val componentsPkg = retrieve oo::Package

13 corresponding to component.repository

14 tagged with "componentsPackage"

15 }

16 action {

17 val subPkg =

18 createSubpackage(componentsPkg, component, component.name, "")

19 call createClass(subPkg, component, "Impl")

20 }

21 }

Listing 6.2: Reaction to the creation of a component in an architecture model by creating a package
and a class in the object-oriented design

for calls to reaction routines. During the retrievals and actions of a reaction routine,
change information is only available if it was provided as an argument in the call of the
reaction routine. With implicit reaction routines, retrievals and actions have to obtain
direct access to all generic change information and developers do not need to provide
names and type restrictions for this information.

routine separation for
reaction to component
creation in the running

example

The reaction for our running example, which we described above, can also bene�t from
separated reaction routines. Exemplary code for the reaction to a component creation
is given in Listing 6.2. Instead of calling a single routine that retrieves the package for
components, creates a subpackage corresponding to the created component, and creates
a component-realization class, we call a separate routine that calls two further routines
named createSubpackage and createClass. For this, we have to obtain the created
element, which is a component, from the change for which we de�ne a reaction (line 7).
The �rst routine (line 10) has a parameter for this component and retrieves the package
for components that corresponds to the repository of the given component (line 11–15).
It passes this components package and the component to a call of a second routine (line
18) to create a subpackage corresponding to the created component. The called routine
returns the created subpackage (line 17). This subpackage is passed as an argument
to a call to a third routine that creates a component-realization class (line 19). Further
arguments of this call are the created component and a su�x “Impl” that is appended to
the name of component to obtain the name of the component-realization-class. As the
component is provided as an argument, the routine createSubpackageAndClass is not
concerned with the change that led to a call of this routine and which change properties
were used to yield this argument.

a general and a specific
routine to create packages

and classes

To demonstrate that routines can be called to achieve di�erent reactions for di�erent
changes, we also provide the code for the two called routines createSubpackage and
createClass in Listing 6.3. The �rst routine is a general routine for creating a package. It
does not only create the package but also initializes attributes and references of the new
package in order to add it as a subpackage to a given parent package and to set its name
a given string (line 4–7). Furthermore, it registers a new correspondence between a given
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1 routine createSubpackage(oo::Package parentPkg,

2 adl::Element correspElem, String name, String newTag) {

3 action {

4 val subPkg = create oo::Package and initialize {

5 subPkg.parent = parentPkg

6 subPkg.name = name

7 }

8 add correspondence between correspElem and subPkg

9 tag with newTag

10 }

11 return subPkg

12 }

13
14 routine createClass(oo::Package parentPkg,

15 adl::NamedElement namedElem, String nameSuffix) {

16 action {

17 val class = create oo::Class and initialize {

18 class.package = parentPkg

19 class.name = namedElem.name + nameSuffix

20 }

21 add correspondence between namedElem and class

22 }

23 }

Listing 6.3: Reaction routines that create a package and a class in the object-oriented design in
correspondence with a named element of the architectural model

element of an architectural model and the newly created subpackage for a given string
tag (line 8–9). The routine is even used to create the root package in the object oriented
design (see line 7 of Listing 6.4 on page 117). This is possible because the parent package
reference initialization has no e�ect if no parent package is provided (line 5). The second
routine is responsible for creating a component-realization class and for three additional
steps. First, it adds the class to a given package (line 18). Then, the routine sets the name
of the class to the string that results from appending a given su�x to the name of a given
element of an architectural model (line 19). Finally, it registers a new correspondence
between this architectural element and the new class (line 21).

6.4. Change Triggers, Restrictions, and Routine Calls

language constructs for
triggering reactions and
calling routines

So far, we explained that consistency preservation speci�cations that are created with
the reactions language contain reactions and reactions routines. In this section, we will
explain the language constructs for de�ning which reactions are triggered according to
the type and properties of a user change. Furthermore, we mention how reaction routines
can be called. The language constructs that are available in these routines for retrieving
corresponding model elements and for performing actions on them will be introduced in
the next section.

6.4.1. Triggering Reactions Based on Change Descriptions

After an optional reaction name, which is only used in the generated code to ease
debugging, the �rst element of every reaction de�nition is a trigger de�nition. Such a
trigger de�nition states in reaction to which changes the reaction is going to be executed
and whether this execution is going to happen before or after the change. In addition to
this trigger time, a trigger de�nition has two parts in which trigger restrictions can be
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de�ned based on change types and based on change properties. We will now describe all
three trigger parts in detail.

trigger execution time:
before or a�er a change

The de�nition of the time of execution in a trigger also determines whether we obtain
a state representing the changed model before or after the change happened. If a reaction
is triggered before a change, then the actions can inspect properties of the changed model
in the state before the change happened. Similarly, reactions after a change can inspect
the changed model in the state after the change happened. In both cases, it is also possible
to reconstruct the other state using the provided change information. The goal of this
language feature is, however, to relieve developers from performing change applications
or reversals by doing this in the background according to the given trigger time.

trigger restrictions using
change types

An important goal during the design of the reactions language was to provide an easy
and precise way of de�ning before or after which types of changes a reaction has to be
executed. Therefore, we created a special concrete syntax to denote types of changes in
the second part of a trigger de�nition. These types can be de�ned for changes that are rep-
resented using the change modelling language, which we introduced in subsection 5.4.1.
The concrete syntax for change types relieves developers from performing explicit type
checks on the obtained change model element. Without this syntax for change types,
even simple trigger de�nitions can be quite complex because type checks can refer to
thirteen concrete metaclasses as well as to the twentytwo abstract metaclasses. The
concrete syntax for de�ning a change type in the reactions language is illustrated as a
syntax diagram for the non-terminal change type in Figure 6.4. We provide �ve main
change type distinctions:

1. a replacement of a single attribute or reference value

2. list changes, that a�ect the whole list or a single entry

3. insertions and removal of root elements

4. creation or deletions of model elements

5. any change, which subsumes 1–4

Insertions respectively removals of list entries or root elements may go along with a
creation respectively deletion of a model element. Therefore, the change types 2 and 3 can
be combined with change type 4. Our implementation currently decomposes compound
change representations into atomic representations and we do not yet provide keywords
for all compound changes. Future work should provide a possibility to directly specify
updates in reaction to changes that are represented as compound changes by supporting
appropriate keywords for the change type of triggers. The semantics of such reactions
could be that compound change representations are only decomposed if no reaction
would be triggered before decomposition.

6.4.2. Restricting Reactions Based on Change Properties

change properties checks
without side-e�ects or

model access

In the third and last part of a trigger de�nition, it is possible to restrict a reaction based
on values of properties of the change description. Such restrictions are called change

properties checks and they are de�ned in terms of an expression which may inspect
change properties and call side-e�ect free methods. It is necessary that these checks
have no side-e�ects, because developers can only control whether a trigger condition is
evaluated by de�ning appropriate change type restrictions. The order in which change
properties checks are performed for several reactions if the change type checks passed,
for example, cannot be controlled. Therefore, it is important that models are not altered
while the responsibility of a reaction is checked. Furthermore, change properties checks
do not have access to elements of models of the execution target metamodel. They also
do not have access to elements of models of the change source metamodel that are not
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change type:

value replaced for metaclass name [ feature id ]

list entry created and inserted in

permuted

deleted and removed from

root created and inserted metaclass name

deleted and removed

element metaclass name created

deleted

any change

constraints:
1. feature has to have an upper bound < 1 after “value replaced for”
2. feature has to have an upper bound > 1 after “list”
3. “list”. . . “created”/“deleted”. . . to be followed by containment ref.

Figure 6.4.: Syntax diagram showing all possible change types that can be given in a trigger de�nition
and additional validation constraints

directly or indirectly accessible from the change information. The goal of restricting
change properties checks to information of the change was to reduce the number of
possibilities in which consistency preservation reactions can be speci�ed. It is su�cient
to perform checks on model elements during their retrieval after a successful evaluation
of the change type restrictions and change properties checks. With this restriction of
reaction de�nitions to change properties, we also enforce the partition of consistency
preservation reactions into three main steps as introduced in section 6.1.

leveraging type
information of changes
andmetamodels

The change type restrictions of a trigger de�nition determine which properties of a
change are available in a change properties check expression. In every change properties
check expression a variable change is available, but the type of this variable is adapted
according to the change type restrictions. As a result, a new value that was inserted
in a list, for example, can only be obtained from this change variable if the type was
restricted accordingly. The type of this new value depends in turn on the type of the
feature for which the value was inserted. This type information is available from the
change source metamodel to which the changed model is conforming. The usage of
the change type information of the trigger and of the type information in the change
source metamodel, relieves developers from explicitly performing type casts because all
necessary type checks and type casts are automatically performed in the generated code.
An overview on the properties that are available for di�erent change types was given in
Figure 5.4 on page 98.

triggers realize reactive
programming paradigm

Trigger de�nitions with their change type and change property restrictions represent
a part of the reactions language that follows the reactive programming paradigm (see
subsection 5.3.2). This paradigm was described by Bainomugisha et al. as a paradigm
that “facilitates the declarative development of event-driven applications by allowing
developers to express programs in terms of what to do, and let the language automatically
manage when to do it” [Bai+13, p.52:3]. In the reactions language, the management of
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when actions are executed according to a trigger de�nition is done in the code that is
generated for trigger de�nitions. This code obtains a representation of a change that
was monitored in an editor. The representation is an instance of a metaclass of our
change modeling language (see subsection 5.4.1). On this representation type checks
and methods are invoked according to the change type and change property check
of the trigger de�nition. If all type checks and the overall change property check is
successful, then all routine calls of the reaction are called and an appropriately typed
change description is passed as implicit argument. More details on how code is generated
and executed are provided in subsection 6.6.2.

6.4.3. Calling Reaction Routines

how to call reaction
routines, not why

The second and last part of every reaction de�nition contains calls to reactions routines,
which encapsulate element retrievals and actions. We already explained in section 6.3
why reactions call separated reaction routines. Therefore, we only have to provide
explanations of how reactions can be called.

single routine calls or
blocks with side-e�ect free

expressions

Every reaction de�nition either ends with a single reaction routine call or with a
code block for reaction routine calls. A single reaction routine call is performed like
a method call in Java: The name of the routine to be called is followed by an opening
parenthesis. Then, arguments for each parameter of the called routine have to be provided
and followed by a closing parenthesis. A code block for reaction routine calls can contain
several such reaction calls and arbitrary Xbase expressions that cause no side-e�ects.

rationale for additional
expressions in routine call

blocks

It would not be necessary to allow arbitrary side-e�ect free expressions in routine
call blocks in addition to routine calls. The reason is that it is always possible to call a
new routine that only contains a single call action with arbitrary code. In such a call
action for de�ning trigger decisions it would, however, also be possible to modify model
elements. This is problematic with respect to our partition of change-driven consistency
preservation into three main steps (see section 6.1). Developers that create such routines
for trigger decisions can cause unintentional side-e�ects in them. This means that they
can move from the �rst main step, which is about triggering reactions, to the third step of
performing actions without noticing it. Therefore, we decided to make it unnecessary to
de�ne trigger decisions in a separate routine with a powerful call action by providing the
possibility to de�ne such trigger decisions directly in the call block of a reaction. In many
cases, it is, however, not necessary to perform very complex trigger decisions. Often, it
is already su�cient to declare and assign �nal variables that can be used as arguments
for routine calls or to cast the type of such variables. We will explain these two frequent
types of helper expressions for routine call blocks in the following.

final variable declaration
and usage in routine call

blocks

If a �nal variable is declared in a routine call block, then it can be used in argument
expressions of subsequent reaction routine calls. This can make these routine calls more
readable because speci�c names can be used instead of generic names, such as newValue.
In our running example, we can call two di�erent routines in reaction to the creation of
a new component repository in the architectural model as shown in Listing 6.4. Before
these two routine calls, we declare a �nal variable for the created repository and assign
the appropriate value of the obtained change to it (line 5). Then, the value of this �nal
variable is used as an argument for a call to a routine that creates a root package for the
repository (line 7). The return value of this call is assigned to a new �nal variable that
stores the newly created root package. Both variables are then used as arguments in a
call to a routine that creates subpackages that will contain all elements that correspond
to component interfaces, data types, and components (line 8).

type casts in routine call
blocks

If the type of a value that is available from the change description was checked during
the trigger, it can be necessary to cast such a value before it can be correctly used as an
argument of routine call. In our running example, this is necessary to correctly react
to deletions of composite data types as shown in Listing 6.5. In the trigger, we require
that the data type that was deleted from a repository was a composite data type (line 3).
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1 reaction {

2 after element adl::Repository created

3 action {

4 call {

5 val repo = change.newValue

6 val rootPkg =

7 createSubpackage(null, repo, repo.name, "rootPackage")

8 createSubpackagesForRepository(repo, rootPkg)

9 }

10 }

11 }

Listing 6.4: Reaction to the creation of a repository in an architecture model by creating packages
in the object-oriented design

1 reaction {

2 after list entry removed from adl::Repository[dataTypes]

3 with change.oldValue instanceof CompositeDataType

4 action {

5 call {

6 val compositeDataType = change.oldValue as CompositeDataType

7 deleteClassifier(compositeDataType)

8 }

9 }

10 }

Listing 6.5: Reaction to the deletion of a composite data type in an architecture model by deleting
the corresponding class

In the routine call block, we cast this general data type to a composite data type (line
6). Then, we call a routine for deleting class that corresponds to the data type using the
correctly typed value as an argument (line 7).

The complete concrete syntax for reaction de�nitions will be provided in terms of a
grammar in Listing 6.6 in section 6.6.1 to complete the information provided in the class
diagram and the syntax diagram of this section.

6.5. Encapsulating Matching and Actions in Reaction Routines

routines have optional
retrievals but at least one
action

Apart from reaction de�nitions with triggers and routine calls, reactions speci�cations
also contain reaction routine de�nitions, which we present in this section. Every reaction
routine de�nition speci�es the name of the routine and optional parameters. Furthermore,
it may contain a match block in which retrieval expressions can be used to obtain elements
of models that conform to the execution target metamodel of the reactions speci�cation.
Additionally, the match block can also specify arbitrary match checks that may not have
any side-e�ects. After the optional match block, the routine de�nition lists the actions to
be performed in single action block that contains at least one action. These actions are
only performed if all retrievals and checks of a matcher are successful. Finally, a reaction
routine may end with a return statement in order to provide a value to the reactions and
reactions routines that call it.

signatures may have
parameters but no
modifiers

The signature of a reaction routine is speci�ed analogue to method signatures in Java
using a routine name and routine parameters. After the reaction de�nition keyword
reaction, the name of the routine to be de�ned is followed by an opening parenthesis.
Then, parameters can be de�ned by specifying pairs of parameter types and parameter
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names, which are separated by commas. The signature of a reaction routine de�nition is
ended by a closing parenthesis and followed by a reaction routine block that lists optional
retrievals and mandatory actions enclosed by curly braces. In contrast to Java, no access
modi�ers or keywords for �nal or static methods can be given for reaction routines.
Access modi�ers could be added in future work together with further infrastructure for
reusing reaction routines, e.g. through routine re�nement or parameterized types. Only
after such an extension to the reactions language, a �nal modi�er would make sense
to indicate which reactions cannot be overridden. Currently, all reaction routines are
static in the sense that there is no possibility to de�ne routine objects to keep and modify
values between di�erent routine invocations. Therefore, a keyword static for routines
would only make sense if such routine objects would be introduced. We have no plans
for such a language extension in the future, as we are convinced that this would make
routines for consistency preservation reactions unnecessarily complex.

6.5.1. Retrieving Corresponding Elements

required or optional
presence retrievals and

impossible absence
retrievals

In the �rst part of a reaction routine de�nition it can be speci�ed which elements and
conditions have to be matched before actions are executed. For this presence and absence
retrievals can be combined with arbitrary match checks. Both language constructs are
used in a block that is introduced with the keyword match. In a retrieval, it can be
declaratively speci�ed which elements of models that conform to the execution target
metamodel of the reactions speci�cation shall be retrieved based on correspondences.
This can be done in a retrieval block which may contain one or several retrievals. These
retrievals can have three di�erent types. Presence retrievals, on the one hand, de�ne
which elements have to be present. They have two subtypes for the retrieval of required
and optional elements. The �rst subtype is used to de�ne which elements have to be
retrieved before actions are performed and the second subtype is used to de�ne retrievals
that do not need to be successful but are attempted before actions are performed. Absence
retrievals, on the other hand, de�ne which elements have to be absent. This is done by
specifying which retrievals have to be impossible before actions can be performed. Such
an absence retrieval can be used, for example, to ensure that a container element, such as
a package, is not created twice as it is only needed once for all contained classi�ers. For
such cases, absence retrievals are a convenient means. They are, however, usually not
needed as often as presence retrievals. Required presence retrievals are the default in
the reactions language because they are the most frequent type of retrieval. Optional
presence retrievals are indicated using the keyword optional and absence retrievals are
denoted with require absence of.

target type and source
element expression of a

retrieval

All retrievals specify the type of the element to be retrieved and a source element

expression that returns an element for which the correspondences are inspected during
the retrieval. The purpose of a retrieval statement is to check whether an element of a
given type of the execution target metamodel corresponds to a given element of a model
that conforms to the change source metamodel. Therefore, the type of the element to be
retrieved has to be an abstract or concrete metaclass of the execution target metamodel.
The element to be retrieved needs to instantiate this metaclass directly or indirectly. In
addition to this target type, all retrievals also have to specify an expression that returns
an element of a model conforming to the change source metamodel. This source element
is used to retrieve the desired target element by inspecting the correspondences that
were created during the execution of previous consistency preservation reactions. For all
correspondences that exist for the given source element and an arbitrary target element,
it is evaluated whether these target elements instantiate the given target metaclass. We
call such an evaluation a retrieval condition evaluation and explain in the next paragraph
which consequences are possible for these evaluations.

success for di�erent
retrieval types and

consequences

Depending on the retrieval type the retrieval condition evaluations have di�erent
consequences. A presence retrieval is successful, if exactly one of the corresponding
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target elements ful�lls the retrieval condition. If all other retrievals are also successful,
then the retrieved element can be used during the execution of the actions of the reaction
routine. If none of the corresponding elements ful�lls this condition, then a presence
retrieval fails and no actions will be executed for the reaction routine. An absence
retrieval, however, is only successful in exactly this case, as it was impossible to retrieve
an element that ful�lls the speci�ed retrieval condition. Therefore, an absence retrieval
only in�uences whether the actions of the reaction routine will be executed, but it provides
no elements that could be used during this execution.

variables for results of
presence retrievals

In order to make the retrieved element accessible, optional and required presence
retrievals have to be combined with a variable declaration and assignment. This �nal
variable can be accessed in all actions of the reaction routine to obtain the retrieved
element. Altogether, the match keyword, the variable declaration and assignment, the
retrieve keyword, the type of the element to be retrieved, the correspondence keywords,
and the source element expression can almost be read like English sentences. We illustrate
this with the reaction to the creation of a component of our running example (see
Listing 6.2, line 11–15):

11 match {

12 val componentsPkg = retrieve oo::Package

13 corresponding to component.repository

14 tagged with "componentsPackage"

15 }

This can be read as “Match a repository package: retrieve the package corresponding to
the component’s repository.

declarative statements
abstract away from
retrieval details

We provide declarative retrieval statements in order to relieve developers from consid-
ering many technical details that have to be considered if correspondences are inspected
manually to obtain corresponding elements. With these retrieval statements we also
address the Open Consistency Speci�cation Language Challenge 3. The code generated
for retrievals contains type checks, type cast, variable declarations, assignments, and case
distinctions if several retrievals are combined. In this way, we can also abstract away
from multiplicities of corresponding elements. The generated code performs all necessary
operations if an element has one or more several corresponding elements before or after
type restrictions were applied. A retrieval statement, however, can always be formulated
in the same way as it does not need to di�erentiate between these cases.

6.5.2. Retrieval and Match Restrictions

restrictions for retrievals
or for a complete match

The conditions under which actions shall be executed are restricted by presence or
absence retrievals as their success or failure is a precondition for the execution of the
actions of a reaction routine. Whether actions are executed or not can also be restricted by
providing specifying check restrictions for retrievals or for the complete matching process.
It is not su�cient to only allow further restrictions for retrievals because conditions may
have to be formulated for combinations of several elements.

two types of further
retrieval restriction

The retrieval conditions, which are created for a given target type and a given source
element expression, can be further restricted in two ways. On the one hand, it is possible
to restrict the target elements that are to be retrieved using a retrieve properties check,
which has to be preceded by the keyword with. Such an expression can inspect any of the
properties of an element that is to be retrieved and may call any helper methods that have
no side-e�ects. This is necessary because neither successful nor failed retrieval attempts
should have an in�uence on other retrievals (see also subsection 6.4.2). On the other
hand, the correspondences of the elements returned by the source element expression
can be restricted with a tag expression, which has to be preceded by the keywords tagged
with. Such a tag expression speci�es which string tag had to be used to register the
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retrieval:

val identi�er = retrieve type

optional

require absence of

corresponding to source element

tagged with tag

with retrieve properties check

Figure 6.5.: Syntax diagram showing all possible correspondence retrievals that can be given in a
match block

correspondence in one of the previous executions of a reaction routine. To this end, any
expression that returns a string value and has no side-e�ect can be used.

independently added as
conjunction to retrieval

condition

The check expressions resulting from both possibilities to further restrict retrievals
are conjunctively added to the retrieval condition obtained for the target type and source
element expression. This means the de�nition of success and failure for a presence or
absence retrieval as well as the consequences of such a success or failure remain the same.
Only the retrieval condition evaluation that is performed for every retrieval statement
is extended. If a retrieve properties check is speci�ed, then it is conjunctively added to
the retrieval condition. Independent of this, a check for tag equivalence is conjunctively
added to the retrieval condition if a tag expression is provided.

concrete syntax for
retrievals

The concrete syntax for all three di�erent types of retrievals with their two additional
restriction possibilities is depicted in Figure 6.5 as a syntax diagram. It shows that the
optional keyword can only be speci�ed for presence retrievals and that both additional
retrieval restrictions can be speci�ed in all cases.

arbitrary match checks
without side-e�ects

If further retrieval restrictions based on tags or properties checks are not su�cient, then
developers can also specify arbitrary match checks. As for trigger de�nitions and retrieval
restrictions, match checks also have to be side-e�ect free in order to free developers from
considering when and in which order matching is performed. Both, retrievals and match
checks can be combined in any order in a match block and none of them is necessary for
a reaction routine.

6.5.3. Add and Remove Actions for Correspondences

action types for
correspondences,

elements, and calls

The second part of a reaction routine de�nition lists all actions that have to be per-
formed to preserve consistency. These actions can have three di�erent types, which are
illustrated in Figure 6.6 using classes that are used to build an Abstract Syntax Tree (AST).
The �rst type of actions register or de-register correspondences, which can be seen as
a witness structure or trace model for consistency (see section 5.5.1 and De�nition 23
in subsection 4.1.1). With the second type of actions, model elements can be created,
deleted, or updated. In third type of action, other reaction routines or arbitrary code can
be called.

ignorantly add or remove
unique correspondence for

two elements

An action for adding or removing a correspondence can be speci�ed by providing the
two model elements that should newly or no longer correspond. One of these elements
has to instantiate a metaclass of the change source metamodel and the other element
has to instantiate a metaclass of the execution target metamodel. To simplify the use of
these actions, the order in which the elements are given does not matter. That is, it does
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TypedExpr Tag CorrespondenceAction
�rstElem:Identi�er
secondElem:Identi�er
kind:ActionKind

tag
0..1

Action

�Enumeration�
ActionKind

add
remove

ElementAction
elem:Identi�er

CodeAction

CreateElement

initializationCode 1

DeleteElement UpdateElement

updateCode1

Figure 6.6.: Simpli�ed class diagram for metaclasses for representing actions of the consistency
preservation reactions language in an AST

not need to be the same order as in the reactions speci�cation header. The result of a
correspondence addition action is that a new correspondence is registered and persisted
for the two given elements. This happens regardless of any other correspondences
that may or may not already exist for one or both elements. Similarly, the result of
a correspondence removal action is that the registered correspondence for the given
elements is removed regardless of any other correspondences for one or both elements.
An exception is thrown if no correspondence for the given elements exists or if more than
one correspondence exists for this element combination when the action is executed.

tags to di�erentiate
between several
correspondences

For cases in which several correspondences shall be registered for a single element
and several other elements, it is possible to specify a string tag to identify di�erent
correspondences. This tag is used to identify the correspondence during addition, retrieval,
and removal. As we described in the previous section, the retrieval of corresponding
elements can be restricted to correspondences that were registered using a given tag. If a
tag is provided, a correspondence removal only leads to an exception if no correspondence
or several correspondences with the given tag are registered for the given elements. In our
running example, we use such tags to di�erentiate between the four di�erent packages
in the object-oriented design that correspond to a single component repository in the
architectural model. The correspondence to the root package for the repository, which
contains all subpackages, is tagged “rootPackage”. Its subpackages have correspondences
that are tagged “interfacesPackage”, “dataTypesPackage”, and “componentsPackage” to
denote the type of the elements for which they contain corresponding elements.

correspondences are
added and removed, not
created and deleted

A correspondence is identi�ed using the two elements for which it is registered and
optionally using the tag that was used during registration. It has no other properties
and thus no own identity. That is why it makes no sense to speak of a correspondence
creation or deletion. Therefore, we use the keywords add or remove to specify actions in
which correspondence are registered or de-registered. The keywords create and delete

are only used to specify the creation or deletion of model elements, which have an own
identity. We describe these actions and element update actions in the next section.

6.5.4. Create, Delete, and Update Element Actions

declarative actions to
structure and reduce
amount of code

With the second type of reaction routine actions instances of metaclasses of the
execution target metamodel can be created, deleted, or updated. This could also be done
with imperative code that navigates through the models, calls factory methods, and sets
reference or attribute values. We decided, however, to provide declarative language
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constructs for these actions in order to give developers a possibility to structure reaction
code and to reduce the amount of boilerplate code that has to be written.

element creation action
with optional initialization

code

An element creation action has to provide the metaclass that is to be instantiated and
may be combined with a variable declaration and assignment as well as with optional
initialization code. For such an element creation action, the code generator produces
a call to a factory method for the given metaclass of the execution target metamodel.
This factory method is always available because our consistency preservation prototype
is built on top of the Eclipse Modeling Framework (EMF), which requires metamodels
to provide appropriate factory classes. If a new variable shall be declared to hold the
created element, then the respective keyword val or val has to provided together with
an identi�er for the variable and an equals-sign to denote an assignment to this variable.
As in variable declarations in Xbase, val denotes a declaration of a �nal variable and var

denotes a declaration of a non-�nal variable. If an element creation action is combined
with such a variable declaration and assignment, then the code generator simply produces
an identical variable declaration in the Xtend code and an assignment from the result
of the factory method call to the variable. Finally, an element creation action may be
combined with a block of initialization code for the created element. In this initialization
code, values of attributes and references can be set for the newly created element. If
initialization code is provided, then the element creation action has to be combined with
a variable declaration and assignment. This is necessary in order to have a possibility
access the attributes and references of the newly created element. In the generated code
the initialization code is re-produced without any changes directly after the declaration
and assignment of the variable to the call to the factory method.

discarded alternatives for
element access in
initialization code

Instead of or in addition to the variable identi�er for a newly created element, we
could have provided other ways to access it in initialization code. It would have been
possible, for example, to provide a keyword such as this or it to refer to the newly
created element in initialization code even if no variable is created for it. The �rst solution
could, however, mislead developers to think that they also obtain access to private �elds
and methods in the initialization code. In order not to confuse developers, the second
solution would require an explicit lambda expression, which would add unnecessary
complexity to the reactions language.

recursive element deletion With an element deletion action, an existing element of a model that conforms to the
execution target metamodel can be deleted by simply listing its identi�er. The generated
code for such an action ensures that all incoming reference links to this element are
also deleted. This is necessary to ensure that no model contains dangling references.
Furthermore, all elements that are directly or indirectly contained by the element to be
deleted are also recursively deleted together with their incoming links.

updating attribute and
reference values of model

elements

Finally, an element update action provides the possibility to update values for attributes
and references of an existing model element. To this end, the identi�er for the existing
variable has to provided together with a block of update code. This syntax and semantics
of this code block is identical to the initialization code block of an element creation action.
The attributes and variables are again accessed using the element identi�er and the code is
also re-produced without any changes in the generated code. Both, the initialization code
of an element creation action and the code of an element update action give developers
a possibility to structure their code. If values for several attributes or references are
initially set or updated in a single reaction routine, then the code blocks of both actions
make it possible to group all code for an individual element. Other code, such as calls
to helper methods that may compute new attribute or reference values without any
changes on model elements, can be separated from these blocks. This can make it easier
for developers to identify how model elements are �nally initialized or updated in a
consistency preservation reaction.

possible restriction to
explicitly initialized or

updated elements

We are currently not restricting initialization code or update code to only call side-
e�ects on the given model elements, but we want to consider this option in future work.
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action:

add correspondence between identi�er and identi�er

remove

val identi�er = create metaclass name

and initialize

init or update blockupdate identi�er

delete identi�er

execute execute action block

call call action block

constraint:
1. “= create” to be followed by a metaclass that is not abstract

Figure 6.7.: Syntax diagram showing all possible actions that can be given in an action block of a
reaction routine de�nition

Such a restriction could provide developers an additional protection that ensures that
their initialization or update code only has the intended e�ects. Furthermore, it could
make it easier to understand code of other developers if it is guaranteed that every
updated element is explicitly mentioned. A possible drawback could, however, be that
syntactically di�erent model elements with a common consistency relation to elements
of an instance of the change source metamodel would have to be updated in separate
update actions.

concrete syntax for all
three action types

The concrete syntax for all correspondence and element actions is depicted as a syntax
diagram in Figure 6.7. We also added the non-terminals execute action block and call action
block to provide the complete syntax for all action types of reaction routine de�nitions.
Both are syntactically equivalent to a routine call block, for which we will present the
concrete syntax in Listing 6.6 on page 125 of subsection 6.4.3. The semantics and the
rationale behind these last two types of action are explained in the next section.

6.5.5. Executing Arbitrary Code and Calling Routines

execute side-e�ects or call
routines

The last two type of actions that can be speci�ed in routines for consistency preser-
vation reactions can be used to execute arbitrary code and to call other routines. Both
actions are speci�ed in blocks, which are called execute action blocks and call action blocks.
These blocks are syntactically identical to the routine call block of reaction de�nitions
(see subsection 6.4.3). The only semantic di�erence is that execute action blocks may
cause side-e�ects. The goal of providing this fallback in execute action blocks is to
equip the reactions language with unrestricted expressive power (see subsection 5.3.3). It
can be argued, that the initialization and update code blocks of the appropriate actions
already provide such a fallback. We are, however, convinced that developers should not
be forced to pollute initialization or update code blocks for individual elements with
complex computations and manipulations of arbitrary model elements, even if we do not
automatically enforce this.

a reaction routine
definition can be finished
with a return

After retrievals, and actions, the third and last part of a reaction routine is an optional
return statement. This return statement can be used, for example, in order to provide
callers of a reaction routine access to a model element that was newly created in the
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routine. In the generated code, this statement is directly re-produced and no additional
code, for example, to declare the return type of a reaction routine is necessary. This is
possible because we generate Xtend code, which does not require an explicit return types
for methods because it implicitly infers it by computing the type of the value that is
returned in the return statement.

6.5.6. User Change Disambiguation

developers can create
reactions that react to user

input

The reactions that should be performed to preserve consistency after a certain change
cannot always be completely �xed upfront. In order to also preserve consistency in
such cases, we give developers the possibility to de�ne that the user that performs
such a change is to be involved in the consistency preservation process in order to
resolve ambiguities [LK14]. The developer can, for example, decide to let the user select
from a given set of options or to require additional input. Further actions of a reaction
can then be based on the results of such interactions. We are currently not providing
any dedicated language constructs for user change disambiguation and directly call
appropriate API methods of the Vitruvius framework in call action blocks [Lan17]. In
our running example, users are asked to disambiguate their change after the creation of a
collection data type in the architectural model. They can select from di�erent collection
implementations, such as those of a hash set or an array list. The selected collection
implementation is used as a superclass for the class that is created in the object-oriented
design and registered as corresponding to the collection data type.

future language constructs
for disambiguation

In future work, we want to investigate whether calling API methods for user change
disambiguation is su�cient or if additional language constructs should be provided. Such
constructs could, for example, make it easier to de�ne which options should be possible
or which kind of interaction should be used. Currently, all options have to be explicitly
passed as arguments to the API calls. This could be simpli�ed in the future if some or all
possible options can be derived, for example, by analyzing the routines to be called and
the input they require. At the moment the supported kinds of interaction are blocking
dialogs, non-blocking dialogs, and additions to task lists for lazy interactions. The input
and return values for these interaction kinds could also be supported with dedicated
language constructs if necessary.

Further information on the concrete syntax of routine de�nitions with the reactions
language will be provided in terms of a grammar in Listing 6.7 in section 6.6.1 to complete
the information provided in the class diagram and syntax diagrams of this section.

6.6. Realizing a Compiler for the Reactions Language

We will now complete the information on the syntax of the reactions language that we
provided so far and brie�y explain how we realized it in terms of a prototypical compiler.

6.6.1. Reactions Language Syntax

complete abstract syntax
andmissing parts of

concrete syntax

In the previous sections, we have only presented parts of the syntax of the reactions
language using examples and in order to explain how it can be used by developers.
We have showed class diagrams that represent parts of the abstract syntax and syntax
diagrams to illustrate the concrete syntax. In the following, we will explain the complete
abstract syntax and provide grammar rules for parts that we have not yet presented in a
visual form.

Complete Abstract Syntax

Fromcomplete but simplified
metamodel for abstract

syntax trees

the explanations of the previous sections it would be possible to derive the abstract
syntax of the reactions language. This would, however, be cumbersome and error-prone.
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1 reaction = "reaction" , [xbase identifier] , "{" ,

2 execution time , change type , ["with" , change properties check] ,

3 "call" , (routine call | routine call block) ,

4 "}";

5 execution time = "before" | "after";

6 change properties check = xbase expression;

7 routine call = xbase identifier , "(" , [arguments] , ")";

8 arguments = argument expression , {"," , argument expression};

9 argument expression = xbase expression;

10 routine call block = "{" ,

11 {[routine call | routine call expression]} - ,

12 "}";

13 routine call expression = xbase expression;

Listing 6.6: Part of the grammar of the reactions language with rules for reaction de�nitions in
EBNF (without rules for change types)

Therefore, we present a class diagram that covers the complete syntax in Figure 6.8 to
explicitly summarize the language structure on one page. It shows metaclasses that can
be instantiated to represent any reactions code in terms of an AST. Such instances of
an AST metamodel are produced by the prototypical compiler of the reactions language
(see subsection 6.6.2). As this metamodel is generated from an enriched grammar, parts
of it do, however, not abstract away from all details of the concrete syntax. Therefore,
we decided to present a simpli�ed class diagram to represent the abstract syntax of the
language.

Concrete Syntax for Reactions and Routines

concrete syntax of
reactions definitions in
EBNF

To complete the information that we have provided in section 6.3 and subsection 6.4.1
we present grammar rules for the concrete syntax of reactions de�nitions. The rules are
complete except for the rules for change type expressions, which we already visualized
in Figure 6.4, and except for the reused rules from the Xbase expression language for
identi�ers, expressions, and type expressions. Three trivial rules simply de�ne change
properties checks, argument expressions, and routine call expressions as Xbase expres-
sions. These rules ease the validation that these expressions have no side-e�ects and
return values of the correct type. For this grammar listing, we use the Extended Backus-
Naur Form (EBNF) [Int96], which we have already introduced in section 2.1.2.

complete routine
definitions syntax

To complete the information on the concrete syntax reaction routine de�nitions, which
we have provided in section 6.5, we present simpli�ed grammar rules for this part of
the reactions language in Listing 6.7. We do not show the rules for actions because we
already visualized them in Figure 6.7 on page 123 of subsection 6.5.4. Again, trivial rules
simply de�ne tag expressions, source element expressions, retrieve properties checks, and
match checks as Xbase expressions. This makes it easier to validate that these expressions
return a value of the correct type and that they have no side-e�ects.

6.6.2. Editing, Compiling, and Executing Reactions

parts of the compiler
generated using a
language workbench

The prototypical compiler for the reactions language was developed using the Xtext
language workbench [E�+12]. With it, a lexer, parser, validator, editor, and code generator
were partly generated from a grammar de�nition. This grammar is speci�ed in an EBNF-
like syntax with additional information to in�uence the automated generation of a
metamodel for the grammar. For each parser rule in the grammar, it can be speci�ed
which metaclass is to be instantiated when the rule is processed by the parser. The result
of parsing is always a model that instantiates the metamodel for the grammar to represent
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ReactionsSpec Reaction
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Figure 6.8.: Simpli�ed class diagram with metaclasses for completely representing reactions in
terms of an AST
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1 routine definition = "routine" , xbase identifier , "(" ,

2 [parameters] , ")" , "{" ,

3 {["match" , match block] ,

4 "action" , "{" ,

5 {action} - ,

6 "}" ,

7 "}";

8 parameters = typed identifier , {"," , typed identifier};

9 typed identifier = type expression , xbase identifier;

10 type expression = xbase identifier , "::" , xbase identifier;

11 match block = "{" ,

12 {(retrieval | match check block)} - ,

13 "}";

14 retrieval = (["val" , xbase identifier , "="] , "retrieve" ,

15 ["optional"]) | ("require absence of") ,

16 type expression , "corresponding to" ,

17 source element expression ,

18 ["tagged with" tag expression] ,

19 ["with" retrieve properties check];

20 type expression = xbase identifier , "::" , xbase identifier;

21 tag expression = xbase expression;

22 source element expression = xbase expression;

23 retrieve properties check = xbase expression;

24 match check block = "check" , "{" ,

25 {match check} - ,

26 "}";

27 match check = xbase expression;

Listing 6.7: Part of the grammar of the reactions language with rules for routine de�nitions in
EBNF (without rules for
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an AST of the parsed code. Before code is generated for such an AST model of reactions
code, it is validated. Parts of the validation, scoping, linking and code generation are
realized by mapping models of the reactions code to Java code models. Other parts are
customized for the reactions language, for example, to realize special scoping rules that
restrict the features that can be used to de�ne a change trigger in terms of a list entry
change. In the prototype, the mapping to Java code is also used to realize auto-completion
in an editor for the Eclipse Integrated Development Environment (IDE) and to perform
type checks during the validation.

mapping reaction
constructs to Java classes,

methods, andmethod
calls

For each reaction and each reaction routine a separate Java class is generated. In these
classes methods are generated for triggers, checks, actions etc. Method parameters are
generated to realize the explicit routine parameters and, for example, to pass retrieved
model elements. Finally, mostly calls to platform methods are generated for element
matching and routine actions. This way, we separate the code and the preservation
behavior that results from a speci�c reaction from the code and behavior that is identical
for all reactions. The goal of this separation is to make it easier for developers to under-
stand and debug the generated code in order to address Open Consistency Speci�cation
Language Challenge 4. More details on code generation can be found in Heiko Klare’s
master’s thesis [Kla16, pp. 102–106]. The overall process for generating and executing
reactions code is explained in general in subsection 5.5.2.

6.7. Semantics of Consistency Preservation Reactions

constructing rules and
functions for reactions and

routines

In previous sections, we have informally explained the semantics of the reactions
language by describing the behavior of the code that is generated for individual language
constructs. To complete these descriptions from a formal perspective, we will sketch
how to map the reactions language to the formal language, which we have introduced in
chapter 4 based on section 2.3. We explain how consistency rules and update functions
can be created for reactions and routines in such a way that consistency is always
preserved by construction if the reactions are appropriately designed. This demonstrates
how the reactions language relates to our formal de�nitions.

6.7.1. An Explanatory On-Demand Construction

formal construction and
compiler with di�erent

goals

The construction process that we will describe in the following explains how and why
the reactions language can be used to preserve consistency. In the prototypical compiler,
a di�erent construction is, however, used. The reason is that the goal of the construction
presented in this chapter and the goal of implementing a compiler are di�erent. We
have already explained in section 2.3 that the formal language is a model that represents
concepts of our change-driven consistency preservation language. It was designed to
convey the central ideas in a precise way and not to support an implementation in which
the de�ned consistency preserving updates can directly be executed and debugged. Based
on this formal language, the goal of the construction presented in this chapter is to explain
the semantics of the reactions language in a way that abstracts away from many technical
concerns, for example by using appropriate sets instead of other data structures. Directly
implementing this set-based notation and the abstractions of the formal language in the
prototypical compiler would, however, introduce accidental complexity. Furthermore, it
would con�ict with the goal that developers shall obtain code that can easily be traced
back to the speci�c reactions they developed. Moreover, general consistency preservation
behavior shall not be explained or illustrated but encapsulated in calls to platform code.

on demand creation of
finite snapshots of
possibly infinite
representations

In general, it would be necessary to create a possible in�nite set of tuples of objects
that ful�ll a condition as required by De�nition 18. To avoid this and analogous problems
for rules and update functions, we will only create snapshots of conditions, rules, and
update functions on-demand after we obtained two given models and correspondences.
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The two models have to be consistent according to the speci�cation that is implied by a
set of reactions and reaction routines. In practice, this means the models either have to
be empty or they have to be the result of a previous consistency preservation step after a
single consistency-breaking change. The snapshots are �nite but su�ciently represent
the possibly in�nite counterparts. This on-demand snapshot creation has, however, to be
repeated for any two given models, for every possible update, and after every subsequent
change. A current snapshot only considers elements of the current models and of the
models that can be obtained by performing the actions of reaction routines. This is
su�cient, because elements of inconsistent models are not contained in the originals and
therefore also not in the snapshots. For correctness, it is only necessary that all tuples of
objects that have to be in the possibly in�nite originals are added to the �nite snapshots
before we check whether they are contained.

roadmap for our
construction of an update
specification

In the following three sections, we will describe how a consistency update speci�cation
can be created for a set of reactions and routines by creating consistency rules and
update functions for every reaction. First, we will explain how consistency rules can be
created for every reaction. These consistency rules express which conditions have to
be ful�lled in the right model if certain conditions are ful�lled in the left model before
or after a change depending on the time of execution that is speci�ed in the trigger of
the reaction. Then, we will describe how an update function can be created for every of
these consistency rules by simulating the execution of the reaction for every possible
change in the given left model. Finally, we will discuss why the resulting consistency
update speci�cation is consistency preserving by construction and which cases are not
covered by the according formal de�nition.

6.7.2. From Reactions to Consistency Rules

analyze all checks of
successful entries to
action blocks of routines

Consistency rules can be constructed for two consistent models and a reaction that was
expressed using the reactions language by analyzing which model elements are checked
in which cases. For every possible change in the left model, all model elements that would
be checked on a way to a successful entry in an action block of a reaction routine have to
be collected. Whether the action block performs any updates is not relevant because the
rules also have to cover cases in which a reaction only checks consistency but does not
need to enforce it. Otherwise the rule would wrongly consider models consistent that do
not ful�ll such conditions that are only checked. Therefore, it would not be su�cient to
perform a backward-construction of a rule by solely inspecting cases in which updates
are performed and capturing conditions for the model states before these update.

formal requirements for
defining a consistency
update specification

Before we can explain how consistency rules can be constructed for reactions, we
have to de�ne the context. With the reactions language, a set of reactions and reaction
routines is always speci�ed for a change source metamodel, which is denoted by ml ,
and an execution target metamodel, which is denoted by mr . Accordingly, the input
models for the on-demand construction are denoted by Ol and Or . The tuple with sets of
correspondences for these models is denoted by (C1, . . . ,Cn ). Altogether, our construction
process yields a snapshot for a consistency update speci�cation us := (

→uf〈c1,l 〉,〈c1,r 〉, . . . ,
→uf〈cn,l 〉,〈cn,r 〉) for the two metamodels ml and mr (see De�nition 42) which only captures
updates for Ol , Or based on (C1, . . . ,Cn ). The update functions of us are denoted by
→uf〈ci,l 〉,〈ci,r 〉 and constructed for consistency rules. These rules Rci,l ,ci,r are based on

metaclass tuples 〈cl 〉 and 〈cr 〉, which have to be created �rst.
analytical construction of
metaclass tuples for
conditions

To construct a consistency rule Rci,l ,ci,r according to De�nition 22 for a reaction, we
�rst have to construct appropriate metaclass tuples according to De�nition 14. The
metaclasses for the left metaclass tuple 〈ci,l 〉 are collected by determining all metaclasses
that are directly instantiated by the objects of the left model that would be checked
if the currently considered reaction would be executed for the currently considered
change. To obtain these metaclasses, we have to inspect the change properties check
and the routine call block of the reaction. Furthermore, we have to inspect all retrievals,
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match checks, and actions in all reaction routines that are directly or indirectly called in
the reaction. It is not su�cient to only inspect the parameters of the routines because
source element expressions and retrieve properties checks of retrievals may also check
properties of instances of other metaclasses. This can be done by navigating from one of
the objects that was provided as an argument for a parameter in the routine call. This
navigation to instances of metaclasses that are not provided as a parameter type is also
possible in several forms in the di�erent types of actions so they have to be inspected
as well. To obtain 〈ci,l 〉, we create a tuple that contains the collected metaclasses in a
�xed but arbitrary order. The right metaclass tuple 〈ci,r 〉 is created di�erently as it will
be used for the conditions that have to be ful�lled after the updates that are speci�ed
by a reaction were performed. All those metaclasses that are instantiated by the objects
that are retrieved from the right model have to be collected. Furthermore, all those
metaclasses are collected that are directly instantiated by the objects of the right model
that are directly or indirectly accessed in a match check or in an action. Finally, the same
step as for the left metaclass tuples is performed to obtain 〈ci,r 〉 with a �xed but arbitrary
order for the metaclasses that were collected for the right side.

construction of conditions
by simulating reaction

To construct the conditions for a consistency rule, we have to simulate the reaction
to every possible change in the given left model Ol . The resulting left model Õl for
such a change can be obtained by executing the change in the given left model Ol (see
De�nition 35). Depending on the time of execution that is speci�ed for the reaction, we
have to simulate the execution of the reaction based onOl (before) or Õl (after). To create
a consistency rule Rci,l ,ci,r for a reaction, we have to create pairs that contain instance
tuples (see De�nition 16) for the metaclass tuples that are constructed for the reaction as
described above. For all those objects that were inspected to obtain the metaclass tuples,
we have to check during every simulation for every change whether an execution of the
currently considered reaction would be aborted or not. This means, we have to determine
whether such an object is checked in at least one change properties check, routine call
block, retrieval, or match check during the simulation of an execution for a change for
which an action block would be successfully reached. If this is the case, then we have to
add the object to an instance tuple 〈ol 〉 for the change for which we currently simulate
the reaction. Similarly, we have to determine for every object that is retrieved or checked
in a match check whether the retrieval or match check would be part of an execution
that would lead to the execution of an action block. All those objects for which this is
the case and all objects of the right model that are directly or indirectly accessed in an
action that would be reached have to be added to an instance tuple 〈or 〉 for the change
for which we currently simulate the reaction. To decide whether, we have to add the
instance tuples 〈ol 〉 to the left condition cond〈cl 〉 and 〈or 〉 to the right condition cond〈cr 〉
we have to distinguish the following six cases:

1. If the current simulation for a change yields correspondence additions but no
correspondence removals, then a pair with 〈ol 〉 and 〈or 〉 is added to the consistency
rule to denote that the objects for which consistency was checked always have to
co-occurr with the objects for which consistency was enforced.

2. If the simulation yields no correspondence additions but correspondence removals,
then no pair with the tuples is added to the rule because no co-occurrence has to
be required.

3. If the simulation yields neither correspondence additions nor correspondence re-
movals but actions to be executed and at least one presence retrieval was simulated,
then a pair with the tuples is also added to the rule as in case 1.

4. If the simulation yields neither correspondence additions nor correspondence
removals but actions to be executed and at no presence retrieval was simulated,
then then the reaction has to be rejected and the developer has to be asked to add
a presence retrieval because our formal semantics cannot support this case.
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5. If the simulation yields neither correspondence additions, nor correspondence
removals, nor actions, then the right tuple is empty and no pair with the tuples is
added to the rule because nothing could be required as co-occurring on the right
side.

6. If the simulation yields correspondence additions and correspondence removals,
then the reaction has to be rejected and the developer has to be asked to split the
additions and removals into two separate reactions because our formal semantics
cannot support this case.

start with empty
correspondences, explain
construction later

The last part of the construction to formally represent reactions as consistency rules
deals with correspondences. We will only explain the construction of update functions
that also yield correspondence updates in the next section. Before this, we cannot explain
why the on-demand construction of correspondences will ful�ll the requirements of
De�nition 23. We can only argue that these requirements are initially ful�lled because
we start with empty input models and an empty tuple of correspondence sets for each
consistency rule. The initially empty correspondence sets for the empty models ful�ll
our de�nition of consistency according to a consistency rule (see De�nition 24). Corre-
spondences will always be added to or removed from these sets when the construction
is extended to represent the execution of a reaction after a single consistency-breaking
change.

construction shows that
reactions are prescriptive
consistency specifications

The construction that we described so far yields a consistency speci�cation cs :=
(R1,C1, . . . ,Rn ,Cn ). Its consistency rulesRci,l ,ci,r specify which instance tuples in the left
model and in the right model have to occur together. For those instance tuples that occur
in the left model before or after a change occurs there have to be corresponding instance
tuples in the right model after at least one action was taken by the reaction to restore
consistency if the change was consistency breaking. Together, all consistency rules with
their instance tuples for every reaction specify what should be considered consistent
because the reactions language is designed for prescriptive consistency speci�cations (see
also subsection 4.1.2 or page 38 of subsection 3.1.2). This means, by writing a reaction
a developer does not only implement consistency preservation but also prescribes that
those models that are obtained by executing the reactions are consistent.

6.7.3. Constructing an Update Function for a Reaction

from checking rules to
enforcement updates

So far, we explained how consistency rules can be constructed to describe formally how
consistency is checked using reactions. Now, we will extend the construction in order to
show formally in terms of update functions and update speci�cations how consistency is
enforced using reactions.

construct partial update
function for every
consistency rule

We describe how to construct a consistency update speci�cation us for a consistency
speci�cation cs := (R1,C1, . . . ,Rn ,Cn ) that was constructed for a set of reactions and
reaction routines. Our formal language composes the notion of consistency preservation
for a complete speci�cation from the notion of consistency preservation for an individual
rule (see Corollary 1 and 2). Therefore, it is su�cient to construct an update function
→uf〈ci,l 〉,〈ci,r 〉 (see De�nition 42) for every individual consistency rule Rci,l ,ci,r that was
constructed for a reaction. As before, we will only construct a snapshot of such an
update function and de�ne it exactly for those inputs that are relevant when two models
and correspondences in these models are given for the currently considered Rci,l ,ci,r . In
general, an update function takes four inputs: a left model, a right model, a change in the
left model, and a set of correspondence candidates, which are pairs of instance tuples
for the metaclass tuples of the conditions of the consistency rule (see De�nition 39). We
only have to consider the two given models Ol and Or and preserve consistency for the
consistency rule Rci,l ,ci,r with respect to the given Ci after a single change. Furthermore,
we have to de�ne updates exactly for those changes in Ol that are consistency breaking
according to Rci,l ,ci,r with respect to Ci (see De�nition 41). Therefore, it is su�cient
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to de�ne →uf〈ci,l 〉,〈ci,r 〉 only for inputs that provide exactly the two given models, an
arbitrary consistency-breaking change in the left model, and the given correspondences
as correspondence candidates. In this case, the e�ective domain of the partial function
→uf〈ci,l 〉,〈ci,r 〉 will be {Ol } × {Or } × C

 ,Ol
Rci,l ,ci,r

(Ci ) × {Ci }, where C ,Ol
Rci,l ,ci,r

(Ci ) is the set of all
changes inOl that are consistency-breaking according to Rci,l ,ci,r with respect to Ci . This
set of changes is �nite because we only have to check for every single change that is
possible in the �nite model Ol whether it breaks consistency by checking whether the
reaction would lead to the execution of an action. We could extend the update function
by repeating this construction for every set of correspondences for Rci,l ,ci,r in Ol and Or
in order to ful�ll the requirements of De�nition 41. As the update function will only be
evaluated for the given correspondences Ci , this is possible but not necessary.

obtain sets for model
updates to be output

during reaction simulation

Having explained the input to an update function →uf〈ci,l 〉,〈ci,r 〉, we will now explain
how to determine the outputs from the reaction for which the consistency rule Rci,l ,ci,r
was constructed. Such an output is always a model update (C−,C+,O,I,A) in Or , which
groups correspondences to be removed and added as well as updates of objects, links,
and labels (see De�nition 30). From now on, we have to distinguish informal and formal
correspondences. Informal correspondences are pairs of model elements with an optional
string tag for which retrievals, removals, and additions are speci�ed in reactions. Formal
correspondences are pairs in the condition sets of a consistency rule that contain two
instance tuples with all objects that were checked or updated in a simulated reaction
execution. In our construction, we can construct several formal correspondences for a
single informal correspondence. Furthermore, we register dependencies from formal
correspondences to informal correspondences in order to know which formal correspon-
dences have to be removed when a removal of an informal correspondence is speci�ed in a
reaction routine. To compute model updates, we extend the simulation that we described
in the previous section to construct conditions. During this simulation, we collect the
informal correspondences to be removed and added in the correspondence actions of
called reactions. As we simulate the execution of the reaction and called reaction routines
based on the inputs, we only inspect those actions that would �nally be executed after all
successful properties checks, retrievals, and match checks on the way. We also collect the
sets of object updates O, link updates I, and label updates A by inspecting the simulated
element actions and execute actions. These actions are the only potential source for such
updates because side-e�ects are not allowed anywhere else in the reactions language.

distinguish three cases for
correspondence additions

and removals

So far, we only described how some of the sets that are needed for a model update
(C−,C+,O,I,A) are constructed. Now, we will explain how the missing sets of formal
correspondences to be added and removed C− and C+ are constructed. For this, we
have to distinguish the �rst three of the cases that we described for the construction of
conditions for the consistency rule on page 130 of section 6.7.2. In case 1, we add a formal
correspondence to C+ and register a dependency from it to all informal correspondences
for which successful presence retrievals or correspondence addition actions were simu-
lated. The formal correspondence tuple can be constructed by selecting the appropriate
instance tuples that were created for the simulation of this change. In case 2, we mark
all formal correspondences that depend at least one of the informal correspondences for
which correspondence removal actions were simulated as to be removed by adding them
to C−. Finally, in case 3, we add a formal correspondence to C+ and register a dependency
from it to all informal correspondences for which successful presence retrievals were
simulated. Again, this formal correspondence only lists the appropriate instance tuples
that were already constructed. If the simulation shows that the reaction would not update
anything, then all �ve sets of the constructed model update are empty. In such a case,
the change for which we currently simulate the execution of the given reaction is not
consistency breaking and therefore →uf〈ci,l 〉,〈ci,r 〉 has to be unde�ned for this change (see
De�nition 41). In all other cases, we extend the de�nition of →uf〈ci,l 〉,〈ci,r 〉 to return the
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model update (C−,C+,O,I,A) for the given models, correspondences, and the currently
simulated change.

composable updates and
correspondences

The correspondences in C− and C+, which are collected during the simulation, are
only to be removed from Ci or added to it. All other sets of correspondences can remain
unchanged because of the above mentioned notion of consistency for a speci�cation that
composes consistency for each rule. If this construction is performed to obtain an update
function for every reaction, then correspondences are always added to the right set of
correspondences in the tuple of the consistency speci�cation. The question whether the
correspondence additions and removals ful�ll the requirements for consistency according
to a rule (see De�nition 24) is discussed in the next section.

6.7.4. Consistency Preserving by Construction

reactions not restrictive
enough to always
guarantee consistency
preservation

To conclude the explanatory mapping from reactions to our formal language, we discuss
which requirements have to be ful�lled by reactions if they should formally preserve
consistency. The goal for the development of the reactions language was not to have a
restricted language for which it can be formally proven that consistency is preserved.
Instead, we wanted to provide a language for specifying consistency preservations that
is restrictive enough to yield semantics that can be precisely explained but powerful
and general enough to be applicable in many cases (see also OCSLC 1 in section 1.2).
Therefore, we have to require that some possibilities of the reactions language are not
used for reactions for which it shall be formally explained why they preserve consistency.

technical requirements for
formally supported
reactions

Let us brie�y recap the two requirements that we indirectly described on page 130 of
section 6.7.2 in terms of two cases of simulations for which a reaction has to be rejected.
The �rst requirement is that every execution of an action in reaction to a change has to
be preceded by at least one presence retrieval of a correspondence (case 4) The second
requirement is that no execution of a reaction may combine correspondence additions
and correspondence removals (case 6). Both requirements are only technical and not
di�cult to ful�ll for a developer. To avoid case 4, a presence retrieval for a correspondence
has to be added, which should be no problem as the executed actions clearly show that
consistency is preserved and could be witnessed. Case 6, can be avoided by de�ning two
reactions such that one reaction performs all necessary additions and the other reaction
performs all necessary removals. The combination of correspondence additions and
removals shows that some consistency for certain elements is replaced by some other
consistency. In such a case, it should be no problem to de�ne separate reactions and most
redundant checks can easily be avoided if both reactions call some common reaction
routines.

developer responsible for
fundamental reactions
properties

In addition to these two technical requirements, developers have the responsibility to
ful�ll three fundamental properties when specifying reactions. These fundamental prop-
erties are concerned with conditions that are ful�lled when an informal correspondence
is successfully retrieved before an action is executed or when an informal correspondence
is added.

I. Such conditions have to be rechecked after every change that could lead to a new
ful�llment of them.

II. Informal correspondences for such conditions have to be removed whenever the
conditions are no longer ful�lled.

III. Such conditions may only check whether an object has a certain attribute value or
a certain reference link if this is necessary for the ful�llment of the condition.

assume fundamental
properties are fulfilled and
explain preservation in
three steps

We have to assume that the two technical requirements and the three fundamental
properties are ful�lled to explain that our construction yields a consistency-preserving
update speci�cation (see De�nition 43). For this, three steps are necessary for an arbitrary
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update function because our construction is identical for all update functions. First, we
have to explain that the update function is only de�ned for changes that are consistency
breaking (see De�nition 36 and 41). Then, we have to argue why the update function
yields for a consistency-breaking change a model update that is consistency preserving
after the change (see De�nition 37). This is achieved by discussing why the models after
the update is performed are consistent according to the consistency rule for which the
update function is de�ned (see De�nition 24).

update function only
defined for

consistency-breaking
changes

By the construction of the conditions for a consistency rule of a reaction and the cases
in which we add or remove formal correspondences, actions are only executed in the
reaction if conditions are newly or no longer ful�lled. More speci�cally, the left condition
is ful�lled after a change that leads to a correctly witnessed consistency preservation and
the right condition is ful�lled after all the consistency preservation actions are executed.
If consistency was broken before actions were executed, then the right condition may
not have been already ful�lled before the actions were executed. In theory, such a case
would mean the update function would not be consistency preserving. In practice, the
requirement that a reaction should only react to consistency-breaking changes can be
relaxed. It is also su�cient if the reaction only performs modi�cations that leave the right
model in the same state as before, for example, because values are set to the same value
as before. We could easily modify our de�nitions of consistency preservation to formally
tolerate such cases in which an update after a consistent state is executed but does not
change anything. This is, however, not necessary because we can simply remove such
updates that have no e�ect in our construction. Therefore, consistency is always broken
after every change that leads to the execution of actions in a reaction as long as these
actions are not yet executed. As we only de�ne the update function for these changes it
is de�ned exactly for consistency-breaking changes and we are done with the �rst step.

resulting models
consistent if fundamental

properties are fulfilled

So far, we have explained that the constructed update function only yields updates when
they are necessary. Now, we demonstrate why these updates preserve consistency by
explaining why the resulting models are consistent. For this, the formal correspondences
have to ful�ll the conditions of the consistency rule (see De�nition 23) and such formal
correspondences have to be present i� the conditions are ful�lled (see De�nition 24).
The �rst part is given by construction as we add formal correspondences by selecting
tuples from the condition sets. For the second part, we need the fundamental properties I.
and II. from page 133. If developers only create reactions that adhere to these properties,
then formal correspondences are present i� the conditions are ful�lled. Altogether, we
explained that the constructed update function outputs a model update i� a change is
consistency-breaking and the result of the update is consistent to the changed left model.

consistency only
preserved when broken for

a single rule

We want to repeat that ful�llment of the technical requirements and fundamental
properties only guarantees consistency preservation after a single change that breaks
exactly one consistency rule. As we have already mentioned in the last section of chapter 4,
we neither de�ne consistency preservation if several changes break consistency or if
consistency is broken for more than one consistency rule. The �rst problem is solved by
executing reactions after every single change, but the second problem has to be addressed
by the developers of reactions. They have to make sure that reactions do not interfere
with each other, i.e. that the subsequent execution of all reactions for a change results in
a consistent model because no action undoes or overwrites an action of another reaction.

6.8. Conclusions and Future Work

triggers, correspondences,
actions, syntax and

semantics

In this chapter, we have presented an imperative language for consistency preservation
reactions. First, we have introduced three main steps of consistency preservation and
explained how the structure of the reactions language re�ects these steps and the order
in which the are performed. Then, we have introduced language constructs for triggering
reactions, retrieving elements and performing actions and have explained why they are
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available in separate reactions and reaction routines. Furthermore, we have described
how change triggers and retrievals of corresponding elements can be restricted and how
we address OCSLC 3 with such language constructs. After these possibilities to specify
when and where consistency is preserved, we have explained the use of actions to specify
how consistency is preserved. We have described how correspondences can be added or
removed, how elements can be created, updated, or deleted, and how arbitrary update
code can be speci�ed in order to address OCSLC 1. Additionally, we have explained
the syntax and how we address OCSLC 4 with our prototypical compiler for reactions.
Finally, we have illustrated the semantics of the reactions language using the formal
language from the previous chapters.

answers to three
subquestions of research
question 2

With this chapter, we have provided answers to the subquestions 2.1, 2.3, and 2.4 of
research question 2. These subquestions also correspond to the addressed Open Consis-
tency Speci�cation Language Challenges 1, 3, and 4. The reactions language demonstrates
how speci�c language constructs for change-driven consistency preservation can be com-
bined with unrestricted expressive power. Furthermore, it shows how developers can use
constructs of the reactions language in a way that matches the preservation context and
abstracts away from irrelevant details. Last but not least, the reactions language illustrates
how consistency preservation behavior can be realized with generated code in such a
way that developers can foresee the consequences of their consistency speci�cations.

future reuse, restriction,
and user disambiguation

We are planning to conduct future work to provide further possibilities for reusing
reaction parts, to further restrict side-e�ects, and to ease the development of reactions
in which user changes are disambiguated. To further ease the reuse of reactions parts
for di�erent modelling languages, we will investigate whether well-known concepts
such as access modi�ers or parameterized types should also be provided by the reactions
language or whether special concepts such as reaction re�nement are necessary (see also
section 6.5). Furthermore, we are planning to improve the validation part of our compiler
in order to further restrict side-e�ects, for example, in element initialization or update
code to the created or updated model element (see also subsection 6.5.4). Moreover, we
will explore how user change disambiguation can be better integrated into reactions, for
example with more convenient ways for de�ning dialogs and disambiguation options
(see also subsection 6.5.6).
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complementing
unidirectional reactions
with bidirectionalized
mappings

In this chapter, we present a language that can be used by developers to complement the
reactions language in symmetric cases, where the direction of consistency preservation
between two metamodels does not matter. In such cases, the presented mappings language
relieves developers from specifying symmetric reactions that are partly redundant for
both preservation directions. Instead of pairs of reactions for both directions, a developer
can specify mappings that abstract away from details of preserving consistency in both
directions. With these mappings, it is possible to declare under which conditions instances
of metaclasses of both metamodels should correspond to each other. It is, however, not
necessary to specify after which changes these conditions have to be checked or how
they have to be enforced. Instead, unidirectional reactions that consider these details
are automatically generated for both preservation directions by bidirectionalizing the
mappings. This is possible because the mappings language only supports symmetric
consistency relations. This means that enforcing a mapping on one side because of a
successful check on the other side is always equivalent to checking and enforcing it
the other way round. The generated reactions are triggered whenever instances of the
speci�ed metaclasses are created, deleted, or updated. They ensure that the speci�ed
mapping conditions always hold for instances of one metamodel i� they hold for instances
of the other metamodel.

in parts based on a
master’s thesis supervised
by the author

We designed the constructs of the mappings language except for the inverters together
with Dominik Werle, who also developed a compiler and generator for the language.
Further background information on the realization of the mappings language and addi-
tional rationale can be found in his master’s thesis [Wer16], which was supervised by
the author of this dissertation.

7.1. Overview: Mappings, Conditions, Enforcements

mappings for metaclasses
and conditions to be
fulfilled by their instances

Before we explain the individual language constructs in detail, we provide an overview
on the mappings language. Apart from a header that lists the two metamodels for
which consistency is preserved, the language only provides two �rst level constructs for
mappings and bootstrap mappings (see Listing 7.1). A mapping contains two parameter
lists in which metaclasses of both metamodels are speci�ed together with identi�ers for
their instances. For every parameter list, developers can specify which conditions have to
be ful�lled by the instances of the list whenever they are mapped to instances of the other
parameter list. These conditions refer, however, to the metamodel of the parameters in
isolation and cannot make any statements about properties of instances of the other side.
Therefore, they are called single-sided conditions. They can either be de�ned in a way
that makes it possible to check and to enforce them, or they are de�ned with separate
checking and enforcement code in order to address the Open Consistency Speci�cation
Language Challenge 1. For statements that relate elements of both sides, the language
provides two possibilities, which are called bidirectional enforcement speci�cations and
are both optional: The �rst possibility is a single block of bidirectionalizable conditions. It
supports only certain operators but relieves developers from considering the consistency
preservation direction as it is enforced in both directions. The second possibility is a
pair of forward and backward enforcement blocks with arbitrary code. The forward
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1 mappings ConsistentADLForOO for adl and oo

2
3 mapping Repository<->Packages {

4 map (...)

5 and (...)

6 // mapping conditions for adl and oo ...

7 }

8
9 bootstrap mapping CreateSimpleDatatypes {

10 create (...)

11 // bootstrap conditions only for adl ...

12 }

Listing 7.1: Sketch of a mapping that illustrates the two �rst class concepts: mappings for both
sides and bootstrap mappings for a single side

Mapping Speci�cation

name:Identi�er
Metamodel

nsURI:Identi�er

leftMetamodel

1

rightMetamodel

1
Bootstrap Mapping

name:Identi�er

bootstrapMappings0..*

mappedMetamodel

1

Mapping

name:Identi�er

mappings1..* 0..*
dependsOn

Parameter
name:Identi�er

leftParameters

1..*

rightParameters

1..*

parameters1..*
Typetype

1

Bidirectionalizable
Condition

bidirectionalizableConditions0..*
Fallback Execution Code

fallbackExecutionCode0..1
Single-Sided

Condition

leftConditions

0..*

rightConditions

0..*
conditions

0..*

Figure 7.1.: Simpli�ed class diagram with central metaclasses for representing mappings as an AST

enforcement code is executed if all mapping conditions for the left metamodel hold after
a change in an instance of the left metamodel. Analogously, the backward enforcement
code is executed if all mapping conditions for the right metamodel hold after a change in
an instance of the right metamodel. Regardless of the direction in which a mapping was
enforced and regardless of what was enforced, the result is always that the instances of
the metaclasses of both parameter lists are mapped to each other. In this case, we say that
the mapping is instantiated for these model elements. Finally, bootstrap mappings are
very similar to ordinary mappings, but they map an empty set of instances of metaclasses
of one metamodel to instances of metaclasses of the other metamodel. Therefore, these
mappings are bootstrapped for empty models before consistency has to be preserved after
any changes. The central concepts of the mappings language and their relations are also
depicted in Figure 7.1 using a simpli�ed class diagram with metaclasses for representing
mappings in terms of an AST.

7.1.1. Example Mapping for Repositories and Packages

reuse of the running
example for the reactions

language

Let us reconsider the consistency preservation example for component-based architec-
tures and object-oriented design, which was introduced in section 6.3. To explain the
general idea of our mappings language, we present mappings for some of the consistency
requirements, for which we already presented change-driven consistency preservation
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1 mappings ConsistentADLForOO for adl and oo

2
3 mapping Repository<->Packages {

4 map (adl::Repository repository)

5 and (oo::Package rootPkg, oo::Package pkg4interfaces,

6 oo::Package pkg4datatypes, oo:Package pkg4components) with {

7 null equals rootPkg.parent

8 pkg4interfaces in rootPkg.subpackages

9 pkg4datatypes in rootPkg.subpackages

10 pkg4components in rootPkg.subpackages

11 "interfaces" equals pkg4interfaces.name

12 "datatypes" equals pkg4datatypes.name

13 "components" equals pkg4components.name

14 }

15 such that { rootPkg.name = repository.name }

16 }

Listing 7.2: Mapping between a repository of an architectural model, a root package, and three
subpackages for interfaces, datatypes, and components in an object-oriented design

reactions. We begin with a mapping that preserves consistency between the component
repository and packages in the object-oriented design. Based on this, we show a map-
ping that preserves consistency between components and packages and classes in the
object-oriented design.

mapping a component
repository to four
packages in the
object-oriented design

In subsection 6.2.3, we introduced consistency requirements for component repositories
and packages in the object-oriented design. Listing 7.2 shows how these requirements
can be realized using the mappings language. First, it is declared that mappings will
be de�ned for the two metamodels adl and oo (line 1), which are also called left and
right side. Then, a mapping between a component repository (line 4) on the left side and
four packages (line 5–6) on the right side is de�ned. No conditions for the repository
but several conditions for the packages (line 7–13) are speci�ed. These conditions state
that the root package has to have no parent package, that all other packages have to
be in the list of subpackages that are contained by the root package, and that these
subpackages have to be appropriatedly named. These single-sided conditions for the
packages are checked to decide whether a repository has to be created after a change in
the object-oriented design and enforced when a repository is created in the architectural
model. Finally, the mapping contains a bidirectionalizable condition (line 15), which
states that the name of the repository has to be equal to the name of the root package.

semantics of mappings
with single-sided
conditions

We will now explain a �rst part of the semantics of this exemplary mapping by initially
ignoring the bidirectionalizable condition, which will be explained in the next paragraph.
If a repository or package is created, deleted, or updated, the reactions generated for the
declared mapping ensure that corresponding elements are created, deleted, or updated
if the single-sided mapping conditions for the side that was changed hold. These are
the general semantics of mappings, and we will explain them more speci�cally for our
example by discussing every possible case. If a repository is created or updated, no single-
sided conditions have to be checked, so four corresponding packages are always created
or updated, and the single-sided conditions for them are enforced. Similarly, nothing has
to be checked if a repository is deleted and the four corresponding packages are directly
deleted as well. If a package is created or updated, all seven single-sided conditions are
checked. Only if all these single-sided conditions are ful�lled by the created or updated
package and three other packages, this has an e�ect on the other side. In these cases a
corresponding repository is created or updated for the four packages. If a package is
deleted, it is checked whether all single-sided conditions were ful�lled by the deleted
package and three other packages before the deletion happened. In such a case, the
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repository is deleted as well but the three other packages remain unchanged. The reason
is that a mapping declares that a certain combination of elements on one side always has
to co-occur with a certain combination of elements on the other side. A mapping does,
however, not make any statement about the co-occurrence of the elements on a single
side. Therefore, our example declares that a repository always has to co-occur with four
packages but it does not declare that some of these packages always have to co-occur
with the other packages regardless of occurences of repositories in architectural models.

only enforcement
semantics for

bidirectionalizable
conditions

Bidirectionalizable mapping conditions only add further enforcement semantics but do
not in�uence how and which conditions are checked to determine whether elements are
currently mapped or have to be mapped. More speci�cally, bidirectionalizable conditions
are never checked but always enforced in one or the other direction if all single-sided
conditions of one side are ful�lled after a change on that side. This is again the general
explanation of the semantics of bidirectionalizable mapping conditions. To illustrate
these semantics, we will explain them for the example condition demanding equality for
the names of the repository and the root package. If a repository is created, then this
condition is enforced in forward direction by setting the name of the root package, which
is created to realize the mapping, to the name of the repository. Similarly, if the name of
a repository is changed, then the name of the root package is also changed to preserve
consistency according to the mapping. In backward direction the condition for the name
of the repository and the name of the root package is enforced in two similar cases that
are slightly more complex because the single-sided conditions for the packages also have
to be ful�lled. If one of the subpackages of the root package is changed in such a way that
the single-sided conditions are newly ful�lled, then a repository is created and the name
of it is set to the name of the root package. The only cases in which this can happen are
the following: Either a name of one of the subpackages is newly set respectively updated,
or one of the subpackages is newly added as a subpackage to the root package.

7.1.2. Comparison of Mappings and Reactions

advantages of mappings:
direction- and

change-agnostic

The example mapping for a component repository and four packages in the object-
oriented design already illustrates the two main advantages of the mappings language
compared to the reactions language:

1. With mappings, developers only specify once in a mostly1
direction-agnostic way

which elements have to correspond, but the mappings are automatically enforced
in both directions.

2. Developers declare which mapping conditions have to hold in a completely change-

agnostic way, but if a change can lead to the ful�llment of these conditions or require
that they are ful�lled, this is automatically checked or enforced.

We designed the mappings language to provide these advantages in order to address
the Open Consistency Speci�cation Language Challenge 3. As a result, developers can
specify mappings that abstract away from direction- and change-speci�c details. To adapt
the level of abstraction for the consistency preservation directions, they can also consider
the direction where this is necessary. This adaptation can be achieved in two ways by
specifying separate check and enforce code for single-sided conditions or by directly
specifying enforcement code for both directions if the abstractions of bidirectionalizable
conditions are not precise enough.

further reactions
necessary for small
mapping example

The advantages become even more evident if we compare the example mapping with
the reaction to a creation of a component repository, which was given as Listing 6.4 on
page 117 of subsection 6.4.3. To achieve the same functionality as the mapping, but using
reactions, we would need to specify two types of further reactions. One the one hand, we

1the mappings language provides fallback constructs for separately specifying consistency preservation for
both directions
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would need to specify reactions to further changes in the architecture model. That is, the
reaction to a change in which a repository is created would have to be completed with
reactions to changes in which a repository is renamed or deleted. On the other hand,
we would need to specify reactions for the opposite direction to preserve consistency
after changes in the object-oriented design. That is, we would have to react to changes in
which packages are initially named, renamed, or moved.

limitation: less control in
terms of direction and
changes

On the one hand, the fact that developers are in large parts relieved from considering
directions and completely relieved from considering changes is an advantage. On the
other hand, this is also a limitation of mappings compared to reactions. The reason is that
developers have less in�uence on how consistency is preserved in a certain direction and
no in�uence on how consistency is preserved after certain changes. Having restricted
possibilities of specifying how consistency is preserved for a certain direction, can be a
disadvantage, for example, if we want to check weaker conditions in one direction, but
enforce stronger conditions in the other direction. In our running example, we could
create all four packages in the object-oriented design if a repository is created, but only
require that a single package is created before we automatically create a repository with
the same name. For more complex consistency preservation scenarios, such cases with an
asymmetric relation between checks and enforcements can be inevitable and much more
complex. In our case study for automotive software engineering, for example, modules
and classes in one model are both represented as blocks in another model. Therefore, users
have to decide whether a module or a class is to be created when they create a block but
when consistency is checked it is su�cient if either a module or a class exists. Furthermore,
no user change disambiguation is necessary when consistency is preserved in the opposite
direction because all information to create a block is available (see section 9.4.4). To have
no possibility to specify di�erent ways to preserve consistency after di�erent changes,
can be a disadvantage, for example, if we want to support di�erent ways of achieving
consistency for di�erent changes. In our running example, this could be the case for the
consistency relation between components in the architectural model and component-
realization classes in the object-oriented design (see page 110 and subsection 6.2.3). If a
component is created, we could create a subpackage with the same name in the package
for components and a component-realization class in the subpackage for which we
compute the name by appendix the su�x “Impl” to the name of the component. If a class
is, however, renamed so that it has exactly the same name as the package in which it is
contained, and this package is a direct subpackage of the package for components, we
could react with a slightly di�erent notion of consistency. To demand less discipline from
developers, we could decide that the class should be considered a component-realization
class even if the su�x “Impl” is missing. The mappings language provides, however, only
restricted possibilities to take the preservation direction into account, and no possibilities
to take changes into account. This is in stark contrast to the reactions language, which
provides unlimited control in terms of propagation direction and changes.

7.1.3. Mapping Dependencies and Bidirectionalization

an example for a mapping
that depends on another
mapping

The example mapping for component repositories and packages provided a �rst im-
pression of the mappings language. It contained, however, only a single mapping with
a single bidirectional condition that used the equality operator, which can be trivially
bidirectionalized. To show that mappings can depend on other mappings and that more
complex conditions can also be bidirectionalized, we provide two more small mappings.
The �rst mapping is for our running example and relates a component to a package and
a package-realization class as shown in Listing 7.3. It depends on the mapping between
a repository and corresponding packages, which was shown in Listing 7.2, and maps
a component to a package and a class in the object-oriented design. This dependency
to the repository mapping is used in two conditions which are speci�ed for the com-
ponent and the package. For the component, a condition speci�es that it has to be in
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1 mapping Component<->PackageAndClass

2 depends on (Repository<->Packages repoPkgs) {

3 map (adl::Component component) with {

4 component in repoPkgs.repository.components

5 }

6 and (oo::Package componentPkg, oo::Class class) with {

7 componentPkg in repoPkgs.pkg4components.subpackages

8 class in componentPkg.classifiers

9 }

10 such that {

11 component.name = componentPkg.name

12 component.name + "Impl" = class.name

13 }

14 }

Listing 7.3: Mapping between a component of an architectural model and a package with a
component-realization class in an object-oriented design

the list of components that are contained in the repository that was mapped using the
repository mapping. For the newly mapped package, a condition speci�es that it has to
be a subpackage of the package for components that was mapped using the repository
mapping. These two conditions illustrate that mappings that depend on other mappings
do not need to explicitly refer to correspondences that are established when the other
mapping applies. They only refer to the elements that were mapped. In addition to
the two single-sided conditions that use the dependency to the repository mapping, the
component mapping also contains a third single-sided condition. This last single-sided
condition of the mapping speci�es that the mapped class has to be in the list of classi�ers
contained by the mapped package.

bidirectionalizable
conditions cannot always

be enforced

The mapping between a component, a package, and a package-realization class also
contains two bidirectionalizable conditions to relate the component and the packages as
well as the component and the class. Similar to the bidirectionalizable condition in the
repository mapping, the �rst bidirectionalizable condition of the component mapping
simply requires that the name of the mapped component and the name of the mapped
package are equal. The second bidirectionalizable condition, however, is slightly more
complex as it requires that the sequence that is obtained by appending the su�x “Impl”
to the name of the mapped component and name of the class are equal. Enforcing this
constraint when the name of the component is newly set or updated is straightforward
as the su�x only needs to be appended to obtain the name for the class. If the constraint
needs to be enforced in the opposite direction, two cases have to be distinguished. Either
the new name of the class ends with the su�x “Impl” and the remaining pre�x is used as
new component name. Or the new name does not have such a su�x and consistency
cannot be preserved according to the mapping. This bidirectionalization of the string
concatenation operator and of other operators is explained in more detail in section 7.4.
The partly equivalent reaction to a creation of component was presented in Listing 6.2.

7.2. Mapping Signatures and Conditions

In this section, we present the language constructs for mappings in detail and explain
the rationale behind them. We discuss all possibilities for specifying a single mapping
but skip language constructs for relating mappings to each other. These inter-mapping
dependencies will be explained later (see section 7.5).
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1 mapping = "mapping" , xbase identifier ,

2 ["depends on (" , mapping dependency, ")"] , "{" ,

3 "map (" , parameters , ")" ,

4 ["with" , "{" , {single-sided condition} - , "}"] ,

5 "and (" , parameters , ")" ,

6 ["with" , "{" , {single-sided condition} - , "}"] ,

7 ["such that" , "{" , {bidirectionalizable condition} - , "}"] ,

8 ["forward execute {" , {xbase expression} - , "}" ,

9 "backward execute {" , {xbase expression} - , "}"] ,

10 "}";

11
12 bootstrap mapping = "bootstrap mapping" , xbase identifier , "{" ,

13 "create (" , parameters , ")" ,

14 ["with" , "{" , {single-sided condition} - , "}"] ,

15 "}";

Listing 7.4: Main rules for ordinary and bootstrap mappings of the grammar of the mappings
language

7.2.1. Ordinary Mappings and Bootstrap Mappings

two first level constructs
for two types of mappings

As we already mentioned above, the mappings language provides only two �rst-level
constructs apart from a header that only lists the metamodels for which consistency is
to be preserved. These two �rst level constructs are two types of mappings. The �rst
construct are ordinary mappings, for which we showed two examples in the previous
section. The second construct are bootstrap mappings, which can be used to create
metaclass instances that ful�ll certain conditions in a bootstrapping step before any
changes.

mappings are just
signatures and conditions

Both types of mappings consist of a mapping signature and of conditions. For ordinary
mappings, the signature consists of the name of the mapping and of a parameter list for
both metamodels. The signature of bootstrap mappings, however, only consists of the
name of the mapping and a single parameter list for one of the two metamodels. Ordinary
mappings can contain single-sided expressions for the instances of both metamodels that
are given in the two parameter lists. These conditions are called single-sided because
they only refer to elements of one side, i.e. they are speci�ed in isolation from the other
metamodel. Bootstrap mappings only have one parameter list and so they can only
contain single-sided conditions for that list. The single-sided conditions of ordinary
mappings are checked if a change occured on the side for which they are de�ned. They
are enforced if a change occurred on the other side and all single-sided conditions for this
changed side are ful�lled after the change. Single-sided conditions of bootstrap mappings,
however, are never checked but always enforced. In addition to single-sided conditions,
ordinary mappings can also contain bidirectionalizable conditions which relate instances
of both metamodels. These conditions are never checked. They are enforced in direction
from one side to another side together with single-sided conditions for the other side if all
single-sided conditions for the �rst side were successfully checked. A part of the concrete
syntax of ordinary mappings and bootstrap mappings is given in Listing 7.4. It contains
the two main rules of the grammar in Extended Backus-Naur Form (EBNF) [Int96], which
we have introduced in section 2.1.2. The complete grammar of the mappings language
will be given in Listing 7.10 on page 179 of section 7.6.1.

7.2.2. Single-Sided and Bidirectionalizable Conditions

background for di�erences
between single-sided and
bidirectionalizable
conditions

In the following, we will brie�y explain the di�erences between single-sided conditions
and bidirectionalizable conditions and the rationale behind this solution. With a mapping,
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a developer speci�es consistency by declaring which elements always have to exist in
models of one metamodel when certain elements exist in models of another metamodel.
To automatically ensure that this holds for a speci�c mapping after any change in one of
the models, we have to distinguish di�erent condition sets for this mapping. We have to
preserve consistency on one side after changes on the other side and the other way round.
For each of these two preservation directions, a developer can specify conditions that
need to be checked and conditions that need to be enforced. The conditions to be checked
specify whether consistency has to be preserved for the mapping and the conditions to
be enforced de�ne how consistency has to be preserved in such cases. This means that
we can have four condition sets for a single mapping:

CheckLeft Pre-conditions to be checked on the left side after a change on that side

EnforceRight Post-conditions to be enforced on the right side if all conditions in PreLeft
are ful�lled

CheckRight Pre-conditions to be checked on the right side after a change on that side

EnforceLeft Post-conditions to be enforced on the left side if all conditions in PreRight
are ful�lled

In the following, we will show how these four condition sets relate to the single-sided
conditions and bidirectionalizable conditions of the mappings language. For this, we �rst
present three insights into the relations between the four condition sets. Then, we explain
why the single-sided and bidirectionalizable conditions respect these three insights.

no need to check
properties that can be

enforced

The �rst insight is about the need to check properties that could also be enforced
instead of checked. The condition sets CheckLeft and CheckRight are used to determine
whether model elements with certain properties have to exists on the other side. To ensure
that these model elements exist, we preserve consistency on the other side by creating,
deleting, and updating model elements according to the condition sets EnforceRight or
EnforceLeft. During this preservation we can enforce whatever needs to be enforced.
This means that everything that can be checked on the other side in CheckLeft or
CheckRight can be enforced in EnforceRight or EnforceLeft. Therefore, it is not
necessary to check anything for the other side in CheckLeft and CheckRight. Let us
illustrate this using the mapping between a repository and four packages of our running
example. Because of the above, a pre-condition for executing this mapping after a change
on the repository should not check whether the root package that is updated has no
parent package because this can also be enforced.

infeasible to enforce
independent of other side

The second insight into the relation between the condition sets is about the practical
dependency between enforcements of one side and properties of the other side. In many
cases, we want to enforce consistency on one side in a way that depends on properties of
model elements on the other side. Theoretically, it would not be necessary to have such a
possibility to de�ne post-conditions for enforcements in a way that depends on properties
of the side at which pre-conditions were checked. Practically, it is, however, infeasible to
de�ne a separate mapping for every relevant attribute value or model element on one
side just to de�ne an appropriate enforcement on the other side. Therefore, we allow
EnforceRight to refer to properties of model elements on the left side and EnforceLeft
to refer to properties of model elements on the right side. This can be illustrated using our
example mapping between a repository and four packages. Instead of having di�erent
mappings for every possible name of a repository, we want to de�ne a single mapping
that enforces in its post-condition for the object-oriented design that the name of the
root package corresponding to the repository has the same name as the repository.

symmetric equivalence of
pre- and post-conditions

for same side

The last insight is about the symmetry of pre- and post-conditions in all cases that
are supported by the mappings language. The mappings language is not only mostly
direction-agnostic it is also only intended for completely symmetric consistency relations.
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As we already mentioned above, it is possible to separately de�ne checking code and
enforcement code for single-sided conditions or to de�ne separate forward and backward
enforcement code instead of bidirectionalizable conditions. Nevertheless, these fallback
constructs, which are not direction-agnostic, can only be used to specify symmetric
consistency relations, i.e. symmetric co-occurrences of model elements that ful�ll certain
conditions. This means, that it is only possible to specify mappings for which it is
impossible to say whether elements with certain properties exist on one side because
some other elements with some other properties exists on the other side or the other
way round. For the notion of consistency supported by the mappings language, it is
only relevant that these elements always occur together. Therefore, the condition set
CheckLeft has to be equivalent to the condition set EnforceLeft and the condition set
EnforceRight has to be equivalent to the condition set CheckRight. For the mapping
between a repository and four packages of our running example this means that we
cannot know whether a repository was created because four packages were created or
the other way round.

brief versions of all three
insights

Together, the insights from the previous two paragraphs state that

I. Pre-conditions do not need to check properties of elements on the other side.

II. Post-conditions should be able to refer to properties of elements on the other side.

III. Pre- and post-conditions of the same side have to be equivalent.

solution: two sets of
single-sided and a set of
bidirectionalizable
conditions

We will now use the four general condition sets and the three insights to explain the
rationale for single-sided and bidirectionalizable conditions in the mappings language.
If we ignored insight I. and still allowed pre-conditions to check properties of the other
side, we would only need a single condition set for each side which contains conditions
that serve as pre- and post-conditions for consistency. It would, however, be complex
to check and enforce such combined pre- and post-conditions because of insight II.. For
every statement about a property of a model element, we would need to know whether
we have to enforce it or whether it is only used for enforcements of elements on the other
side. To avoid this unnecessary complexity, we designed a solution that respects insight I.
and II. as well as insight III., which has to be respected. This solution is the separation
of single-sided conditions and bidirectionalizable conditions that we already presented
above. A single-sided condition for the left side pertains to the condition sets CheckLeft
and EnforceLeft. By only providing access to elements of the left side, we account
for I.. By using it to check and to enforce consistency, we account for III.. The same
holds for single-sided conditions for the right side and the condition sets EnforceRight
and CheckRight. To account for II. we also support bidirectionalizable conditions. In
order not to run into the problems described above we require that bidirectionalizable
conditions always refer to both sides and only use them in two ways. Either the attribute
values or model elements for the properties on the left side are used to enforce consistency
on the right side or the other way round. Other semantics for such bidirectionalizable
conditions are not necessary because of III..

7.3. Checking and Enforcing Single-Sided Conditions

pre-defined enforceable
condition operators or
custom code

A key concept of the mappings language is to relieve developers from always specifying
how a single-sided condition is to be checked and how it is to be enforced. This is achieved
by providing a library of condition operators for which enforcement code is automatically
derived. In the future, we want to equip the mappings language with further enforceable
condition operators and with a mechanism that allows developer to reuse their own
enforceable condition operators. Currently, it is only possible to either use pre-de�ned
enforceable condition operators or to specify how a set of conditions is to be checked
and enforced with two code blocks that cannot be reused. In Figure 7.2, we illustrate how
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Single-Sided Condition

Resource Condition Check and
Enforce Code

Feature Condition

Empty List
Condition

Default Containment
Condition

Single Value

Condition

Multi Value

Condition

negated:bool

Equals
Condition In List Condition At Index

Condition
negated:bool

Num Compare
Condition

Figure 7.2.: Simpli�ed class diagram with metaclasses for representing single-sided conditions of
mappings as an AST

di�erent types of single-sided conditions can be represented by instantiating metaclasses
for an AST but do not show individual metaclasses for di�erent conditions operators.

di�erent operators for
attributes and references

Before we explain the enforceable condition operators of the mappings language
individually, we brie�y provide an overview on the operators and the cases in which they
can be used. Most operators can be used to formulate conditions for an attribute or a
reference of a metaclass with respect to a single attribute value or model element. Some
operators also accept collections of attribute values or model elements as arguments.
One operator has only one operand because it only checks or enforces that a list is
empty. We present four basic condition operators that can be checked and enforced
on simple-typed attributes and complex-typed references. For these four operators we
also present negated operators, which are realized according to the principle of least
change [Mee98]. All but one of these negated operators need a default value, which is
only de�ned for attributes but not for references. Therefore, these negated operators can
only be used for attributes. Additionally, we present an enforceable condition operator
for number inequality conditions, which can be used in four variants. Furthermore,
we explain two containment operators that help developers to add model elements to
containment references of existing model elements or to a new model resource if needed.
Finally, we discuss two enforceable iterator condition operators, which are only de�ned
for attributes.

uniform concrete syntax
for operators where

possible

The concrete syntax of all enforceable operators for single-sided conditions and the
fallback to a pair of checking and enforcement code blocks is illustrated using a syntax
diagram in Figure 7.3. It shows, that we use the in�x notation for all binary operators
and the pre�x notation for the unary empty-list operator. The second operand of all
operators except for the path operator is always a feature expression, which denotes an
attribute or reference of a model element. Therefore, developers only have to remember
that a single-sided condition that is not a path condition or pair of check and enforce
blocks always starts with literals, i.e. with a single or several attribute values or model
elements. All enforceable condition operators except for the containment and iterator
operators are also summarized in Table 7.1.

7.3.1. General Enforceable Operators

operators without
application restrictions

We explain every enforceable operator individually and start with the four general
operators and their negated counterparts. These general operators can be applied to
every attribute or reference but the negated counterparts are only de�ned for attributes.
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single-sided condition:

value expression equals feature expression

, not
in

not

value expression at index int in

<=
<

>=
>

element expression default contained in

empty
not

default path for element expression = string

path of element expression +

check expression block enforce expression block

Figure 7.3.: Syntax diagram illustrating all enforceable operators for single-sided conditions and
the fallback to check and enforce code

Equals Operator

set or clear single or
multi-valued attributes or

references

The most fundamental enforceable operator for single-sided conditions is the equals
operator. It can be used to check and enforce equality of a given list of attribute values or
model elements and an attribute or reference. If the attribute or reference has a upper
bound multiplicity greater than 1, the equality operator only accepts a list of attribute
values or references but this list may of course have only a single entry. Equality is always
checked by calling appropriate implementations of Java’s equals method regardless of
multiplicity. This also means that the order of attribute values or model elements is
ignored during comparison if the attribute or reference of was de�ned as unordered in the
metamodel. The equals operator is enforced di�erently depending on the multiplicity. If
the attribute or reference has an upper bound of 1, equality is enforced by setting the
attribute or reference to the given attribute value or model element. In all other cases the
attribute or reference may list several attribute values or referenced model elements and
therefore equality is enforced by removing all current list entries and adding all entries
that were provided as left argument for the operator.

enforcing negated equality
with default values or list

clearings if necessary

The mappings language also supports the negated equals operator for attributes. It is
checked by negating the result of the equals operator check and enforcement depends
again on the multiplicity of the attribute. If the attribute has an upper bound of 1, negated
equality is enforced by setting the default attribute value if the current value equals the
given value. As references have no default model element to which they could refer
in such a case, the negated equals operator is not yet de�ned for references. In future
work, we plan to also support references by setting them to null if the lower bound is
0 or by referencing a default model element that has to be provided as an additional
argument for the operator. If the attribute has an upper bound greater than 1, negated
equality is enforced by removing all values from the list if the list contains exactly the
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given values. Partial equality is tolerated by the negated equality operator as nothing
is changed if at least one of the given values is currently not in the list. This idea of
enforcing consistency for single-sided conditions only if it cannot be avoided and to a
minimal extend is used for all operators. It can be seen as an implementation of the
principle of least change [Mee98].

Entry-In-List Operator

add entries to list if they
are not yet in it

The entry-in-list operator can be used to check or enforce that one or more given
attribute values or model elements are listed for an attribute or reference of another model
element. This operator is checked by simply calling Java’s contains or containsAll

method on the list. As the operator does not state anything about other elements,
enforcement is performed by adding the given entries to the list if they are not yet in the
list.

remove entries if they are
present

The negated entry-in-list operator checks also supports left arguments with di�erent
multiplicities. If a single entry is provided, it checks whether this entry is not contained
in the list and enforces this by removing the entry from the list. If several entries are
provided, the operator checks whether none of the entries is contained in the list and
enforces this by removing all entries from the list. This means the negated entry-in-list
operator only removes entries and does not need a default value. Therefore, it is de�ned
for attributes and references.

At-Index-In-List Operator

add entry at index if
necessary

We also present an extended entry-in-list operator that checks and enforces that an
entry is listed at a certain index of a list. The operator is checked by obtaining the list
entry for the given index and checking whether this entry is equal to the given attribute
or model element. To enforce this operator, the list entry for the given index is set to the
given attribute or model element.

set entry at index to
default attribute value

The negated version of the at-index-in-list operator is also straightforward. To check it,
the result is negated and to enforce it the entry at the given position is set to the default
value. Therefore, the not-at-index-in-list operator is not de�ned for references.

Empty-List Operator

enforce emptiness by
clearing non-emptiness by
adding the default value

The only operator that takes only a single argument is the empty-list operator. It is
checked by calling Java’s isEmpty method and enforced by removing all current values
from the list. The negated empty-list operator is checked by negating the result of
the check for emptiness and enforced by adding the default value if the list is empty.
Therefore, it is only de�ned for attributes.

7.3.2. Special Enforceable Operators

operators requiring special
properties

We continue our library of enforceable operators with operators that can only be
applied to attributes or references that have special properties. The �rst operator is only
de�ned for numerical attributes, the second operator is only de�ned for containment
references, the third operator has no feature operand but requires a path string, and the
fourth and �fth operand are only de�ned for lists of attribute values.

Number-Inequality Operator

enforcing number
inequality with a minimal
di�erence

We present four variants of an enforceable operator for checking and enforcing in-
equalities of a single number and an appropriatedly typed attribute of a model element.
These four variants can be used to check and enforce that a number is greater, less, not
greater, or not less than the value of an attribute. All four variants are checked using
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the appropriate operators in Java. Enforcement is, however, performed di�erently for
equalities that are strict or not strict. The <= variant, for example, enforces that a given
value v is not greater than the attribute a by adding the di�erence v-a to the attribute if
v is currently greater than a. The result is that v and a are equal after this enforcement.
The < variant, however, also has to add the minimal value that makes a greater than v to
enforce that v is strictly less that a. This minimal value depends on the attribute type and
has to be at least 1 for integers and at least the unit of least precision (ULP) for �oating
point numbers. The greater-than and less-than operators can be enforced with any value
that is great enough to ful�ll the condition, but using the minimal value ensures that the
enforcement introduces the minimal change that is necessary. In Table 7.1, we denoted
this minimal value with ε . It would also be possible to support further operators for
numerical attributes, for example for checking and enforcing conditions for the maximal
element, the minimal element, or the sum of all elements. If such operators should
turn out to be necessary when the mappings language is applied in further consistency
preservation scenarios, they can be easily added to the mappings language.

Default Containment Operators

add element to container
element or resource if

necessary

To make it easier for developers to write mappings that result in serializable models
with a proper containment hierarchy, we provide two operators that enforce containment
only if necessary. To decide whether an enforcement is necessary, both operators check
whether a model element is currently part of the containment hierarchy. This is the
case if the model element is contained in another model element or if it is the root
element of a model resource. If this is not the case, then the operators are used to enforce
that a model element is part of the containment hierarchy. The default-contained-in

operator takes a model element as left argument. It could also be named “if not contained
then add to” operator as the right argument is a combination of a model element and a
containment reference that is de�ned for one of the metaclasses that are instantiated by
the element. This operator can be used to de�ne which containment reference should
be used to add the given left model element to the given right model element if the left
model element is not yet contained in any other element and also no root element of a
resource. Similarly, the default-path-for operator can be used to add a given model
element to a new resource which is created at a given �le path if the model element is
not yet contained in any model element or resource. The �le path for the resource to
be created can either be given as an absolute path or as a path relative to the path of
a resource of an existing model element. In the �rst case, the complete path has to be
provided as a string. In the second case, an element that is located in a resource with a
path that should be used as a pre�x for the new path should be provided together with a
path su�x string.

Iterator Condition Operators

enforcing conditions for all
or at least one attribute

value

Finally, we suggest two enforceable operators forAll and exists to de�ne conditions
for collections of attribute values that should hold for all attribute values or at least for
one attribute value. These iterator operators are not yet implemented in our language
prototype, but we already suggest how they should be realized in the future. The condition
that should hold for all or for at least one value can simply be checked for every value
individually. Similarly, the forAll operator can also be enforced individually for every
value. The exists operator, however, should add a new element for which the condition
is enforced if no such element is already present.
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7.3.3. Manual Checking and Enforcement

check and enforcement
code blocks with restricted
model access

If the enforceable condition operators that we presented above are not su�cient, a
developer can still specify manually how a single-sided condition is to be checked and
enforced. To this end, the mappings language provides the possibility to de�ne a single-
sided condition with two separate code blocks for checking and enforcing the condition.
These code blocks, are restricted in the same way as single-sided conditions that are
speci�ed using an enforceable condition operator. This means the code can only read
and write properties of model elements that instantiate metaclasses of the metamodel for
which the single-sided condition is speci�ed. Elements of the other metamodel cannot be
accessed and neither check nor enforce blocks obtain any other input than the elements
of the side that is mapped with the condition. We already discussed the rationale for
these restrictions in subsection 7.2.2.

successful enforcements
for all failed checks
necessary

In order to correctly check and enforce consistency in both preservation directions the
following requirements can be formulated:

1. every negative check has to lead to an enforcement

2. every enforcement has to lead to a positive subsequent check

3. the enforcement behavior after a positive check does not need to be de�ned, but if
it is de�ned, then it should not change anything

To meet these requirements, we suggest to start creating a manually enforced single-sided
condition by developing the check code. Then, all cases in which the check fails should
be determined. The enforcement code has to take all these cases into account in order to
ful�ll requirement 1. As di�erent reasons for a negative check may be treated uniformly
in the enforcement code, it can be bene�cial to separate the detection of a case for which
an enforcement is responsible from the update behavior. With such a separation it is
su�cient to ensure that the execution of the update code always implies a positive
subsequent check to ful�ll requirement 2. In contrast to the �rst two requirements,
requirement 3 is optional. It is possible to correctly check and enforce consistency
without ful�lling this requirement if it is ensured that the enforcement code is only
executed after a negative check. In order not to introduce any faults when a check or
enforcement code block is maintained, it is, however, a good practice to ensure that even
such unecessary invocations of the enforcement code do no harm.

7.4. Bidirectionalizable Conditions and Inverters

bidirectionalizable
conditions are equations
that can be read as an
assignment

The last language construct of an individual mapping, which we did not yet explain in
detail, are bidirectional enforcement speci�cations. Such speci�cations are only relevant
for enforcing consistency and may contain bidirectionalizable conditions and a pair
of forward and backward enforcement code blocks. In the following we will focus on
bidirectionalizable conditions as the syntax and semantics of arbitrary enforcement code
for both directions is straightforward. In order to be bidirectionalizable, a condition that
relates both sides of a mapping has to be expressed as an equation for an attribute of a
mapped metaclass. Conditions for references do not need to be bidirectionalized as the
referenced model elements can be directly mapped in the signature of a mapping (see
subsection 7.2.1). To eliminate unnecessary variations, the mappings language imposes
a syntactic restriction on bidirectionalizable conditions without limiting the expressive
power. It is required that a bidirectionalizable condition adheres to the notational direction
of the mapping and that the equation has a single attribute of a mapped model element on
one side. Therefore, a bidirectionalizable condition can always be read as an assignment
but sometimes this assignment lists the attribute for which a value is to be assigned on
the right side, which may look unfamiliar. We call this attribute of a mapped element the
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11 component.name = componentPkg.name

12 component.name + "Impl" = class.name

Listing 7.5: Two bidirectionalizable conditions of a mapping for a component, a package, and a
class (complete version in Listing 7.3)

assignment target and the other side of a bidirectionalizable equation is called operation to

be inverted. This operation to be inverted may use attribute values of any model element
on that side and operands can in turn be results of operations that can be inverted.

bidirectionalization
through operator-based

inversions

When consistency is preserved from the side with the operation to be inverted to the
side with the assignment target, then the assignment is simply executed in this direction,
which may also be from left to right. In order to also preserve consistency in the opposite
direction, we bidirectionalize the assignment by inverting the operation. This yields an
inverse condition that assigns the result of the inverse operation to an attribute of the
side that was not assigned in the original condition. If more than one attribute of one side
is used to express a condition of an attribute on the other side, then it has to be speci�ed
which of these attributes should be assigned in the inverse condition. Currently, we are
able to invert all operations that are build using 30 basic operators for which we created
inverters. If a consistency relation cannot be expressed in a bidirectionalizable way using
these operators, then a developer can still specify manually how the condition is to be
enforced in forward and backward direction.

based on round-trip laws
and a previously published

article

In the remainder of this section, we will explain the inversion approach that we
developed for bidirectionalizable conditions of the mappings language. We present
inverters for 30 currently supported operators and explain how they ful�ll important
round-trip laws for bidirectional model transformations. All text, tables, and proofs are
based on an article [KR16a] and a technical report [KR16b]. We published the article and
the report in cooperation with Kirill Rakhman, who implemented prototypical inverters
while working on his master’s thesis [Rak15], which was supervised by the author of
this dissertation.

7.4.1. Inversion Examples and Overview

example for inverting
identity and string

concatenation operations

To illustrate how a trivial and more complex condition is bidirectionalized, we come
back to a mapping of our running example. It maps a component of an architectural model
to a package and a class of an object-oriented design and was introduced in Listing 7.3
on page 142 of subsection 7.1.3. In addition to three single-sided conditions for the
component, the package, and the class, the mapping also de�nes two bidirectionalizable
conditions that relate both sides of the mapping (line 10–13). We repeat these two
conditions in Listing 7.5. The �rst condition demands identical names for the component
and package. Therefore, the equation can be read as an assignment in both directions and
inversion is trivial because the identity operator is inverse to itself. The second condition,
however, can only be read as an assignment from left to right. It demands that the name
of the class on the right side is identical to the result of appending a su�x “Impl” to the
name of the component on the left side. From left to right the assignment can be directly
executed to obtain a new class name. In order to also preserve consistency in the opposite
direction after the class name is changed, we have to invert the string concatenation
operation. This inverted operation has to distinguish two cases. If the name of the class
ends with the su�x “Impl”, then the component name is set to the remainder of the class
name. If the name of the class does, however, not have this su�x, then the inverted
operation cannot ful�ll the given equation. In order not to break more than necessary, it
sets the name of the component to the complete class name. If the component name is
later changed by a user, the class name will be updated again according to the speci�ed
assignment and so the class name will end with the su�x “Impl” again.
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Rental Car
range:int

Managed Vehicle

capacity:int
consumption:�oat

range = 100 * capacity / consumption
bidirectional condition requirement:

Figure 7.4.: Metaclasses and bidirectionalizable condition requirement for mapping cars that are
modelled for customers to vehicles for internal management

1 mappings CarOffersAndManagement for carOffers and vehicleMgmt

2
3 mapping Car<->Vehicle {

4 map (carOffers::Car car)

5 and (vehicleMgmt::Vehicle vehicle)

6 such that {

7 car.range = 100 * vehicle.capacity / vehicle.consumption

8 update vehicle.consumption

9 }

10 }

Listing 7.6: Mapping between cars of customer models and vehicles of management models

inverting an operation
involving a multiplication
and a division

To show that many non-trivial conditions can also be bidirectionalized successfully, we
introduce a small consistency preservation example and an appropriate mapping. In this
example, we want to preserve consistency between models for o�ering and managing
rental cars using two metamodels as shown in Figure 7.4. The metamodel that is used
in the system for customers that rent cars contains a metaclass RentalCar, which has an
attribute range to represent the distance that can be approximately covered with a full
tank or battery. Another metamodel is used to manage the cars internally. It contains a
metaclass ManagedVehicle, which has two attributes to represent the capacity of the tank
or battery and the average consumption. To keep models of these metamodels consistent,
we can de�ne a mapping with a bidirectionalizable condition that relates the range, the
capacity and the consumption as shown in Listing 7.6. This condition (line 7) assigns
the result of a multiplication to the range attribute of the left mapped model element car.
The second operand of the multiplication is a division of the values for two attributes of
the right vehicle element. More than one attribute of the right side is used to calculate
the value that has to be assigned to the range attribute of the left side. Therefore, it is
speci�ed that the consumption attribute is to be updated after changes in the left model
(line 8). Through bidirectionalization for this attribute the given forward enforcement of
the condition is inverted to yield the inverse enforcement

vehicle.consumption = 100 * vehicle.capacity / car.range

If we would specify the attribute capacity to be updated, we would obtain the inverse
enforcement

vehicle.capacity = car.range * vehicle.consumption / 100

For the given example, updating an average consumption based on the observed range is,
however, more reasonable than updating the �xed tank or battery capacity.

alternatives to
operator-specific
inversion?

With other approaches for bidirectional transformations, a transformation developer
cannot easily specify conditions as those of the two examples above in a bidirectional way.
Either the developer is forced to specify separate unidirectional operations to calculate the
attribute values in forward and backward direction. Or the condition has to be expressed
using constraints, e.g. divide(capacity,consumption,t1), multiply(t1, 100, t2), and
floatToInt(range,t2). In the �rst case the developer has to ensure manually that both
operations together ful�ll round-trip properties and types have to explicitly casted in
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s op t

s′ op← t ′

Figure 7.5.: Illustration of an operator and its inverse operator using the lense analogy (adapted
from [Fos10, Figure 2.1, p. 12])

both directions. This is necessary in order to correctly preserve consistency without
introducing any imprecisions or inconsistencies that could be avoided. These round-trip
properties also have to be ensured in the second case. To this end, the developer has
to learn the constraint language in order to de�ne appropriate pairs of atomic forward
and backward operations for the basic operations divide, multiply, and floatToInt.
Such a constraint-based approach is ine�cient because all other developers that use the
same basic operations in their conditions also have to provide such pairs of forward and
backward operations. Furthermore, it can be error-prone because every new de�nition
of an inversion for a basic operation can be faulty.

7.4.2. Round-Trip Laws and Inverter Properties

applying round-trip laws
for bidirectional

transformations to
consistency preservation

Before we explain how we bidirectionalize mapping conditions using operator-speci�c
inverters, we discuss important round-trip properties for such inversions. We already
mentioned above, that we use inverters to obtain an inverse attribute assignment for a
bidirectionalizable condition that is given in the form of an attribute assignment. Such a
derivation of an inverse operation is not only used for consistency preservation but also
for any other scenarios in which values of a model are to be transformed into values for
another model and the other way round. For such model transformations in general, it is
necessary that forward and backward transformations meet certain requirement in order
to guarantee important properties for round-trips from one model to another and back
again.

Round-Trip Laws for Well-Behavedness

applying an operation and
its inverse or the other way

round has to yield the
same value

There are several de�nitions of round-trip laws for bidirectional transformations. We
reuse the well-known GetPut and PutGet laws that were formulated for lenses by
Foster et al. [Fos+07] (see also subsection 2.2.3 and 3.8.3). The general idea is that we
always have to obtain the same value if we apply an operation and its inverse after each
other or the other way round. In order to be able to prove that inverters meet these
laws, we de�ne them for our special setting of attribute assignment expressions. To keep
the de�nitions simple, we formulate them for a unary operator op but an extension to
operators with several operands is straightforward. An inverse operator for an operation
op is always denoted by op← and has to obtain a target value t and a source value s . The
relation between an operator and its inverse operator and the inputs and outputs is also
illustrated in Figure 7.5. It suggests that the source values s , s ′, and s ′′ are di�erent and
that the target values t and t ′. This is possible but should not be the case as we will see
with the round-trip laws.

Based on this simple notation we de�ne the essential round-trip law GetPut:
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op

op←

s t

1.

3.
2.

4.

3.

1.
4.

2.

3.

1.

legend:
GetPut

PutGet

Figure 7.6.: Illustration of the GetPut and PutGet laws for an operator and its inverse operator
(based on [Fos10, Figure 3.1, p., 39])

De�nition 44 (GetPut Law)
An operator op and its inverse operator op← ful�ll the GetPut law, if the subsequent

application of op (get) and op← (put) always yields the same value:

op← (op(s ),s ) = s , for all source values s (7.1)

The PutGet law is symmetric to the GetPut law except for the di�erent arities of op
and op←:

De�nition 45 (PutGet Law)
An operator op and its inverse operator op← ful�ll the PutGet law, if the subsequent

application of op← (put) and op (get) always yields the same value:

op(op← (t ,s )) = t , for all target values t and all source values s (7.2)

identical laws except for
application order

Both laws are also illustrated in Figure 7.6. The requirements of both laws are repre-
sented by the same closed loop and only the order in which the operator and inverse
operator are applied is di�erent.

Best-Possible Behaved Inverters

many operations have no
inverse for which PUTGET
would be fulfilled

It is desirable that both round-trip laws, GetPut and PutGet, are always ful�lled. To
have a convenient term for this, pairs of operations and inverse operations that always
ful�ll the GetPut and the PutGet law are called well-behaved by Foster et al. For many
operations it can, however, not be avoided that the PutGet law is violated during a
round-trip if all possible target updates are allowed. This means that no inverse operation
can be de�ned that would make the operation pair well-behaved. The operations for
which this is the case are all operations that are not right-total, i.e. surjective. For these
operations, only updates to target values that are in the image of the operation can be
inverted in a way that ful�lls the PutGet law. An operation that returns the absolute
value of a source value, for example, cannot be inverted without breaking the PutGet
law if the target may be updated to a negative value: no matter which value will be put as
new source, the absolute target value that we will get from it will always be positive and
therefore not identical to the negative target value after the update. A similar problem
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can be observed for the bidirectionalizable condition of the mapping for components,
which we discussed in subsection 7.4.1. If the name of the class is changed to a string
that does not end with the su�x “Impl”, then we cannot update the component name to
something that will yield the same class name after a round-trip.

best-possible means
PUTGET is fulfilled

whenever this is possible

In order to precisely capture cases in which a violation of the PutGet law is inevitable,
we introduce a new term of best-possible behavedness:

De�nition 46 (Best-Possible Behaved)
A pair of an operation and inverse operation is called best-possible behaved i�

1. the GetPut law is ful�lled in all cases and

2. the PutGet law is ful�lled for every target change that can be inverted without

breaking the PutGet law.

Inverters that yield well-behaved or best-possible behaved transformations are also
called well-behaved respectively best-possible behaved inverters. All 30 inverters that we
present and realized in our prototype are best-possible behaved inverters and 14 of them
are even well-behaved inverters. Proofs for the well-behavedness of our inverters will be
presented in section 9.3.5. They always have the same structure: for a partitionW ,B of
the set of possible target values we prove the following three propositions: 1. GetPut
holds for all source values. 2. PutGet holds for all values inW . 3. For every inverter that
would ful�ll PutGet for a target value in B, we obtain a contradiction.

restrictable and desperate
PUTGET violations sustain

some or no target
information

Best-possible behaved inverters have to deal with target updates for which a violation
of the PutGet law cannot be avoided. These cases are always updates to target values
that are in the codomain of the function represented by the forward operator but not
in the image of this function. They can, however, be divided into two categories: For
PutGet violations of the �rst category some of the information of the updated target
value can be used to choose a new source value for which the new target after a round-trip
will be closer to the initially updated target value than for all other choices of source
values. For PutGet violations of the second category no choice for a new source value
yields a target value after a round-trip that is closer to the initially updated target value
than for all other choices of source values. Therefore, we call the �rst type of PutGet
violations restrictable PutGet violations and the second type desperate PutGet violations.

examples for restrictable
and desperate violations

A restrictable PutGet violation occurs, for example, if the target of the arithmetic
abs operator is changed to a negative value: the absolute value of the negative target
is used to choose a new source value that yields a target after a round-trip that has the
correct absolute value but inevitably an incorrect algebraic sign. A desperate PutGet
violation occurs, for example, if the target of the trigonometric sin operator is changed
to a value that is not in the interval [−1,1]: all choices for a new source value that are
of the form 2n ± π

2 for an n ∈ N0 yield the target value ±1 after a round-trip and are as
close as possible to the initially updated target value.

handling PUTGET
violations in the prototype

In our prototype, we respond to restrictable violations with a handler that updates
the source according to a passed value that is derived from the updated target value.
How the passed value is changed before updating the source or whether a target update
shall be rejected by throwing an exception can be customized using a callback. The
default implementation directly updates the source to the passed value without any
further changes and rejects no target update. For desperate PutGet violations, no kind
of exception handling would make any di�erence so our prototype simply updates the
source to a default value that is independent of the updated target value.
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7.4.3. Bidirectionalization trough Inversion

Before we present our library of operator-speci�c inverters, we brie�y explain how they
are used to bidirectionalize conditions of the mappings language.

Inverting Assignments by Rewriting Equations

inputs and outputs for
inversion

Bidirectionalizable conditions are inverted by transforming the equation, which can
be read as an assignment in one direction, according to common rules for rewriting
mathematical equations. The input is the assignment expression that has a single attribute
of a mapped model element on one side and possibly several attributes of mapped model
elements of the other side. From this input the bidirectionalization computes an inverse
assignment expression for the opposite transformation direction as output. The metaclass
instances for which attribute values are read and updated, are managed in the reaction
part that is generated for a mapping. Therefore, their attribute values can directly be
manipulated by the forward and backward operation.

rewriting mathematical
equations on an abstract
syntax tree representation

The input assignment represents an initial equation and the output assignment rep-
resents the equation that results from solving the initial equation for the variable that
corresponds to the attribute that is updated when the inverse operation is executed. The
output assignment is obtained by transforming the abstract syntax tree (AST) of the
input assignment: every operation node on the way from the root to the leaf node for
the attribute to be updated is replaced with an inverse operation. All other nodes remain
unchanged. Each operation is inverted independently using an inverter for the used
operator. Only the result of the previously inverted parent operation is passed in form of
a temporary variable and the �nal result is the result of the last inversion.

restricted to linear
expressions mentioning
every attribute at most
once

The inversion approach has a semantic restriction in addition to the syntactical restric-
tions for bidirectionalizable conditions that we already mentioned. In total, the operation
to be inverted and all operations that are directly or indirectly used as operands may only
refer to every attribute of a model element at most once. This property is called linear
[Wad88] or a�ne [Mat+07] and guarantees straightforward inversion. In the following
we will use simpler terms for the side with the assignment target and for the side with
the operation to be inverted in order to ease the discussion. To stick with the common
syntax of assignments, we call the �rst side target side and the second side the source

side of an assignment. We also call the direction in which the assignment can directly
be executed the forward direction and the direction in which the inverted operation is
executed the backward direction (see also page 50). Nevertheless, inversion can be used
for bidirectionalizable conditions that assign values from the left side to the right side or
the other way round, as explained at the beginning of this chapter.

attribute to be updated
has to be marked if several
are used

We already mentioned that one attribute has to be marked as the one to be updated in
the backward direction if more than one attribute of the source metaclass is mentioned.
The reason is that we currently do not support operators that can only be inverted by
updating more than one operand. Operations that operate directly or indirectly on the
attribute according to which the expression is inverted have to use operators for which
an inverter is de�ned. In the AST these operations correspond to nodes that are direct
or indirect parents of the attribute leaf. All other operations can use arbitrary operators
as they do not have to be inverted. The expression of our initial car rental example
range = 100 * capacity / consumption is an assignment expression for the attribute
range of the metaclass RentalCar of the metamodel that acts as target in in the forward
transformation direction. The source side is a multiplication operation of a constant
literal operand and a division operation that mentions the two attributes capacity and
consumption of the source metaclass ManagedVehicle. To enable an inversion of this
expression both of these source attributes could be marked as the one to be updated in
the backward direction. We already explained, however, that an inversion according to
the consumption would probably be chosen to respond to a change of the monitored
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range. The reason is that a changed observed range indirectly re�ects a change of the
average consumption and not of the �xed tank or battery size.

Technical Inversion and Code Generation

three inversion steps:
check, transform a copy,

generate code

The inversion procedure for an attribute assignment expression consists of three steps.
First, the AST of the expression is statically checked to ensure that the assignment ful�lls
the above requirements. Then, a copy of the AST is transformed: �rst the root and then
every node on the way to the leaf for the attribute according to which the expression
is inverted. Finally, the source code for the inverted assignment is generated from the
transformed AST copy in form of a method. This method returns the result of the last
inversion and has a parameter for the target attribute and for every source attribute.

independent inversion for
independend operands

It is possible to invert every operation individually because they only depend on the
value of the operands and not on the internal structure of the operands. This can be
illustrated using the expression of our car rental example range = 100 * capacity /

consumption. It is inverted in two steps to capacity / consumption = range / 100 =:

tmp and then to capacity = tmp * consumption which yields (range / 100) * con-

sumption. The temporary variables, which we use during the code generation in our
prototype, are not necessary as they could be inlined, but they make the generated code
more readable.

7.4.4. Inverter Classification and Overview

inverter overview before
individual definitions

We brie�y present all inverters for the currently supported 30 common operators and
classify them with respect to the round-trip laws that we presented above. Afterwards,
we de�ne and explain each inverse operator in detail.

operand-agnostic and
target-agnostic inverters

In the previous section, we have introduced the notion of well-behaved and best-
possible behaved inverters and distinguished restrictable and desperate PutGet violations.
There are two further properties that can be used to classify inverters: The �rst property
deals with the role of di�erent operands during inversion. Operators with more than one
operand that realize a commutative function can be inverted identically for all operands.
Therefore, we call such inverters operand-agnostic. For operators that have no operand-
agnostic inverter, we de�ne individual inverse operators for inversion according to each
operand and call these inverters operand-speci�c. The second property is concerned
with the way inverters can be de�ned for di�erent target values. Some operators can
be inverted in way that ful�lls the GetPut law with a single de�nition that holds for
all possible target values. We call such inverters target-agnostic. All operators that have
no target-agnostic inverter are inverted with separate de�nitions for target values with
di�erent properties. These inverters are called target-sensitive.

operands and notation We write op(s1 : T1,s2 : T2) : T3 to denote an operator with the name “op”, two operands
named “s1” and “s2” of type T1 and T2, and a return type T3. An operand-agnostic inverse
operator of this operator is denoted by op←. op←i denotes an inverse operator for inversion
according to the operand with 1-based index i . All inverse operators have at least one
parameter to obtain the updated target value and may have additional parameters for the
values of the operands of the operator to be inverted.

categories for type-cast,
logical, arithmetic, and

string operators

We group the 30 operators for which we de�ne inverse operations in �ve categories:
primitive casts, boolean logical operators, basic and advanced arithmetic operators, and
string operators. Table 7.2 lists properties of the operators and their inverse operators.
The 14 well-behaved inverters are those that neither have restrictable nor desperate
PutGet violations. All operators for which we present inverters operate on single values
not on collections of values and can be inverted by updating a single source attribute.
Inverters for collection operators and for operators that require updates of more than
one source attribute in backward direction are part of our future work.
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Primitive Casts

narrowing cast numeric – 3 3 3
widening cast numeric – 7 7 3

Boolean Logical Operators

not, xor boolean – 3 3 3

Basic Arithmetic Operators

unary minus numeric – 3 3 3
addition, multiplication numeric 3 3 3 3
�oat division �oats 7 3 3 3
int division integers 7 7 3 3

Advanced Arithmetic Operators

absolute value numeric – 7 7 3
rounding �oats – 7 3 3
�oor, ceil double – 7 7 3
�oor modulus integers 7 7 7 7

exponentiation b:num.,e:int. 7 7 7 3
sin, cos �oats – 7 3 7

tan �oats – 7 3 3
asin, acos, atan �oats – 7 7 3

String Operators

parse bool.,num. – 3 3 3
num printing numeric – 7 3 7

bool printing boolean – 7 3 3
length strings – 7 3 3
concat strings 7 7 7 3
su�x strings – 3 3 3
substring (�xed indices) strings – 7 7 3
toUpper/LowerCase strings – 7 7 3

Table 7.2.: Overview on all operators for which we developed inverters with their argument types
and inverter properties (where – stands for not applicable, 7 for no, and 3 for yes)
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Fordegrees of freedom for
developing inverters

some operations, the presented inverters are just one out of several possibilities
to invert the operation. In many cases there are, however, only a few di�erent ways to
de�ne a best-possible behaved inverter that updates only a single source attribute. This
is di�erent for inverters that update more than one source attribute, which we plan to
examine in future work. Such inverters have an important additional degree of freedom:
the di�erence between the old and the updated target value ∆ can now be split in di�erent
ways on several source attributes. An inverter for binary arithmetic operators may, for
example, apply the inverse arithmetic operation using ∆

2 to both source attributes or
using ∆ to one of both source attributes.

additional inverters can
reuse presented inverters

The presented extensible library of inverters for basic operations is restricted to invert-
ers that update only one attribute and to an incomplete set of common operations. For
many cases, this is, however, su�cient as we discovered by analyzing all 103 transforma-
tions of a well-know repository for model transformations2. We discovered that 55% of
the logical lines of code (LLOC) of all attribute transformation expressions (including the
trivial identity operator) and 26% of the LLOC of all non-trivial transformation expres-
sions in these transformations only use operations for which we present inverters. Many
inverters for operations that we did not address can, however, reuse some of the presented
inverters or can be de�ned in a similar way. A new inverter for a string concatenation
operator with more than two operands, for example, could easily be de�ned even if more
than operand shall be updated in the inverse transformation.

helper definitions for
restricting and reporting

PUTGET violations

In the following de�nitions, we use a helper restrictPGV(p:T):T to encapsulate the
handling of restrictable violations of the PutGet law based on the value of the parameter
p. In our prototype, the default implementation always returns the passed value, but
it can be customized to react di�erently depending on the value and / or operator that
was inverted. For desperate violations of the PutGet law, a helper reportPGV(p:T):T
updates the source to the given �xed value and reports the violation.

7.4.5. Operator and Inverter Composition

A key characteristic of our approach is that bidirectionalizable conditions may compose
several operations with di�erent operator because the operator-speci�c inversion is
compositional. Therefore, we brie�y explain how we invert composed operations using
the inverters of individual operators before we present operator-speci�c inverters. Let
op←1 (t ,s ) and op←2 (t ,s ) be two inverters for two operators op1 (s ) and op2 (s ). For the
composition operator op1◦2 (s ) := op1 (op2 (s )) we de�ne the inverse composition operator
as follows:

op←1◦2 (t ,s ) := op←2 (op←1 (t ,op2 (s )),s )

This relation between the individual operators, their inverse operators, the composition
operator, and its inverse is illustrated in Figure 7.7 using the lense analogy. A proof that
this composition operator and its inverse operator respect the round-trip laws GetPut
and PutGet will be given in section 9.3.5.

7.4.6. Operator-Specific Inverters

ordered by purpose,
operands, and
dependencies

In the following, we present all individual inverters that we developed for the mappings
language. We ordered them according to the purpose and operand types of the operations.
If an inverter for an operation is de�ned based on an inverter for another operation, we
made this dependency explicit and present both inverters in the appropriate order.

2ATL Transformations Zoo: eclipse.org/atl/atlTransformations
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op2

op←2

op1

op←1

s t

s̃

t̃

op1◦2

op←1◦2

Figure 7.7.: Illustration of the composition and inversion of two operators and their inverse opera-
tors using the lense analogy

Primitive Casts

Type only casts for primitive
types necessary

conversions and a notion of type-compatibility are necessary for some arithmetic
operators. Therefore, we start by de�ning inverse operators for primitive type casts.
These are the only possible casts that can appear in attribute mapping expressions. Casts
of complex-typed references to metaclass instances are usually not necessary in the
mappings language because the signatures can directly specify a desired subtype.

widening and narrowing
casts

If a numeric type T2 can be converted without information loss to a numeric type T1,
we call T1 wider than T2 and write T1 > T2. For our prototype we use the relation that is
de�ned by the widening primitive conversion int the Java language speci�cation3: double
> �oat > long > int > short > byte. Consider a �oating-point value x that is equal to
another �oating-point value y with a relative tolerance of ε , i.e.

|
x − y

max (x ,y)
| < ε

In this case, we call x and y ε-equal and write x ε
= y. In our prototype values are ε-equal

if a call to org.apache.commons.math3.util.Precision.equalsWithRelativeTolerance

using the IEEE 754 machine epsilon 2−53 returns true, but the epsilon can be con�gured
di�erently and the comparison could be replaced with a comparison based on the units
in the last place (ulp).

inverting explicit
narrowing casts by
widening and vice versa

To invert a narrowing cast, we perform an appropriate widening cast and the other
way round. More formally, this leads to the following two inverters. For two numeric
types T1 > T2 and the narrowing primitive cast operator ncastT1,T2 (source : T1) : T2, we
de�ne the inverse operator

ncast←T1,T2
(tarдet : T2) : T1 := wcastT2,T1 (tarдet )

3Conversions: docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2
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For two numeric typesT2 > T1 and the widening primitive cast operator wcastT1,T2 (source :
T1) : T2, we de�ne the inverse operator

wcast←T1,T2
(t : T2) : T1 :=




ncastT2,T1 (t ) if wcastT1,T2 (ncastT2,T1 (t ))
ε
= t

restrictPGV(ncastT2,T1 (t )) otherwise

implicit casts also have to
be inverted

To invert all implicit casts in expressions, which are called “widening primitive con-
versions” for Java, we replace them with explicit widening casts before inverting an
expression and use the inverse operator wcast← as de�ned above. As a result, all explicit
and implicit widening casts are inverted using a narrowing cast without violating the
PutGet-law whenever the target value can be cast with a relative error smaller than ε .
In all other cases a PutGet violation cannot be avoided but its e�ect can be restricted by
choosing the cast target value as new source value.

Boolean Logical Operators

only not and xor can be
inverted with a single

update

The next group of operators with inverters consists only of the not and the xor operator,
because conjunctions and disjunctions cannot always be inverted by updating only a
single source attribute: If a target value is changed from 1 to 0 an inverter for the and
operator has to update both source values and an inverter for the or operator has to do
this if both source values were 1.

Not For the operator not(source : bool ) : bool , we de�ne the trivial inverse operator

not← (tarдet : bool ) : bool := not(tarдet )

Xor For the operator xor(s1 : bool ,s2 : bool ) : bool , we de�ne the inverse operator

xor←1 (tarдet : bool ,s2 : bool ) : bool := xor(tarдet ,s2)

for inversion according to the �rst operand s1 and the inverse operator

xor←2 (tarдet : bool ,s1 : bool ) : bool := xor(tarдet ,s1)

for inversion according to the second operand s1.

Basic Arithmetic Operators

This group of operators realizes the four basic arithmetic operations on integer and
�oating-point types.

Unary Minus For all numeric types T and the arithmetic operator unaryminus(source :
T ) : T , we de�ne the trivial inverse operator

unaryminus← (tarдet : T ) : T := unaryminus(tarдet )

Addition As we invert implicit casts separately, it is su�cient to de�ne, for example,
the addition operator only once for two operands of identical type. For all numeric types
T and the arithmetic operator addition(s1 : T ,s2 : T ) : T , we de�ne the inverse operator

addition← (tarдet : T ,s : T ) : T := addition(tarдet ,unaryminus(s ))
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We reducing binary
subtraction to unary
minus

support the subtraction operator in bidirectionalizable conditions indirectly by
reusing the unary minus. That is, we replace the syntactic sugar s1−s2 with the expression
addition(s1,unaryminus(s2)). This allows us to reuse the inversion of the unary minus
operator for the inversion of subtraction operations.

Multiplication For all numeric types T and the arithmetic operator multiplication(s1 :
T ,s2 : T ) : T , we de�ne the inverse operator

multiplication← (tarдet : T ,s : T ) : T := xdivision(tarдet ,s )

where the operator xdivision uses the operator �oatdivision if T is a �oating-point type
and otherwise uses the operator intdivision.

Division For two �oating-point types T1 > T2 or T1 = T2 and the arithmetic operator
�oatdivision(s1 : T1,s2 : T2) : T1, we de�ne the inverse operator

�oatdivision←1 (tarдet : T1,s2 : T2) : T1 := multiplication(t ,s2)

for inversion according to the dividend s1 and the inverse operator

�oatdivision←2 (tarдet : T1,s1 : T1) : T1 := �oatdivision(s1,t )

for inversion according to the divisor s2.
the first operand-specific
inverter

The �oat divison inverter is the �rst of many inverters that are operand-speci�c (see
subsection 7.4.4). So far, the commutative addition and multiplication were the only binary
operators for which we de�ned inverters. The next inverter is not only operand-speci�c
but also target-sensitive.

For two integer types T1 > T2 or T1 = T2 and the IEEE 754 round-toward-0 operator
intdivision(s1 : T1,s2 : T2) : T1, we de�ne the inverse operator

intdivision←1 (t : T1,s1 : T1,s2 : T2) : T1 :=



s1 if intdivision(s1,s2) = t

multiplication(t ,s2) otherwise

for inversion according to the dividend s1, and the inverse operator

intdivision←2 (t : T1,s1 : T1,s2 : T2) : T1 :=



s2 if intdivision(s1,s2) = t

intdivision(s1,t ) otherwise

for inversion according to the divisor s2.
the first target-sensitive
inverters

Integer division is an operator that is not left-unique, i.e. not injective. Therefore,
it cannot be inverted in a way that ful�lls the GetPut law without inspecting the
original target value. Thus, the presented inverse operators for intdivision are both
target-sensitive (see subsection 7.4.4). They avoid a violation of the GetPut law by
checking whether the target was changed to another value than the one that we would
get from the source values using the original operator. If this is the case, they return the
original source value for the operand according to which the operation is inverted in
order to ful�ll the GetPut law. In all other cases, it does not matter which of the values
that would ful�ll the GetPut law is chosen. Therefore, the common division inversion
by multiplication with the divisor respectively division by the dividend is enough.
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Advanced Arithmetic Operators

To simplify the de�nition of inverse operators for advanced arithmetic operators, we will
use a helper, which returns the algebraic sign for uses in multiplications and is de�ned
for numeric types T as

sign4mult(p : T ) : T :=



1 if p ≥ 0
−1 otherwise

Absolute Value For a numeric typeT and the absolute value operator abs(source : T ) : T ,
we de�ne the inverse operator

abs← (tarдet : T ,source : T ) : T :=



sign4mult(source ) · tarдet if tarдet ≥ 0
restrictPGV(sign4mult(source ) · |tarдet |) otherwise

only loose information on
algebraic sign

With this inverter we can sustain the information about the absolute value of an
updated target and restrict the loss of information to the algebraic sign of it, which
cannot be avoided for the abs operator. For numeric x and y, we brie�y write |x | to
denote abs(x ) and x · y to denote multiplication(x ,y).

Round toNearest For a �oating-point typeT and the IEEE 754 round-to-nearest operator
round(source : T ) : int , we de�ne the inverse operator

round← (tarдet : int ,source : T ) : T :=



source if round(source ) ε
= tarдet

wcastint,T (tarдet ) otherwise

Roundtoward Infinity For the IEEE 754 round-toward-−∞ operator �oor(source : double ) :
double , we de�ne the inverse operator

�oor← (tarдet : double,source : double ) : double :=



source if �oor(source ) ε
= tarдet

tarдet if �oor(tarдet ) ε
= tarдet

restrictPGV(tarдet ) otherwise

For the IEEE 754 round-toward-∞ operator ceil the inverse operator ceil← is de�ned
completely analog to �oor and �oor←.

Modulus Instead of de�ning an inverter for the modulus operator with round-to-zero
division, which is denoted by a % b in Java, we present an inverter for the �oor modulus
operator4. It is de�ned as

�oormod(divisor ,dividend ) :=
divisor − (�oordiv(divisor ,dividend ) · dividend )

inverting floor mod to
preserve algebraic sign

where �oordiv is the round-toward-−∞ �oor division operator and “returns the largest
[...] integer value that is less than or equal to the algebraic quotient”4. This operator

4Java �oor mod: docs.oracle.com/javase/8/docs/api/java/lang/Math.html#�oorMod
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�oormod dividend
−13 −6 −5 5 6 13

divisor −9 −3 −4 3 4

9 −4 −3 4 3

Table 7.3.: Illustration of the inversion of the �oor mod operator with all old and new operand
values after target updates from ±3 to ±4

yields a modulus with the same sign as the divisor, which is helpful for example for array
index arithmetic.

For an integer typeT and the modulus or remainder operator �oormod(s1 : T ,s2 : T ) : T ,
we de�ne the inverse operator

�oormod←1 (t : T ,s1 : T ,s2 : T ) : T :=



s1 if �oormod(s1,s2) = t

�oordiv(s1,s2) · s2 + t if �oormod(t ,s2) = t

restrictPGV(t ) otherwise

for inversion according to the dividend s1, and the inverse operator

�oormod←2 (t : T ,s1 : T ,s2 : T ) : T :=



s2 if �oormod(s1,s2) = t

t + s2 · sign4mult(t ) if s1 = t

|s1 − t | · sign4mult(t ) =: s ′2 if �oormod(s1,s
′
2) = t

reportPGV(1) otherwise

for inversion according to the divisor s2.
preserve range of divisor
when inverting according
to dividend

In the case of �oormod(tarдet ,s2) = tarдet we could also make �oormod←1 (tarдet ,s1,s2)
return simply tarдet for the inversion according to the dividend. For every n ∈ N0 re-
turning n · s2 + tarдet would ful�ll PutGet. Our choice of n = �oordiv(s1,s2) preserves
information about the old range of the divisor s1 before the update of the target: For
example, if the target for a divisor of 5 and a dividend of 3 is changed from 2 to 1, our
inversion of the remainder operator would update the divisor to 4 instead of 1.

preserve information
about dividend when
inverting according to
divisor

In the case of s1 = tarдet the inversion according to the divisor �oormod←2 (tarдet ,s1,s2)
ful�lls PutGet if it returns tarдet +n · sign4mult(t ) for an n ∈ NK{0} . Our choice of n = s2
preserves information about the old value of the dividend s2 before the update of the
target: For example, if the target for a divisor of 5 and a dividend of 3 is changed from 2
to 5, our inversion of the remainder operator would update the divisor to 8 to indicate
that the divisor was 8 − 5 = 3 before the update.

An example for which all four possible target changes from ±t to ±t ′ can be inverted
is given in Table 7.3. For the divisor values ±9 and the dividend values ±6, the �oormod
operation always yields ±3.
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Exponentiation For a numeric type T1, a �oating-point type T2, and the exponentiation
operator pow(b : T1,e : T2) : double , we de�ne the inverse operator

pow←1 (t : double,b : T1,e : T2) : T1 :=






sign4mult(b) · e√t if t ≥ 0
restrictPGV(sign4mult(b) · e√

|t |) otherwise
if e is even

sign4mult(t ) · e√
|t | otherwise

for inversion according to the base b, and the inverse operator

pow←2 (t : double,b : T1,e : T2) : T2 :=

wcast←T1,T2

*...
,




e if be = t

loд |b | ( |t |) if bloд|b | ( |t |) ε
= t

restrictPGV(loд |b | ( |t |)) otherwise

+///
-

for inversion according to the exponent e .

Trigonometric Operators For the fundamental trigonometric sine operator sin(source :
double ) : double , we de�ne the inverse operator

sin← (t : double,source : double ) : double :=



source if sin(source ) ε
= t

asin(t ) if − 1 ≤ t ≤ 1
reportPGV(sign4mult(t ) · π2 ) otherwise

cosine inverted analog to
sine except for π2 −

For the trigonometric operator cos the inverse operator cos← is de�ned completely
analog to sin and sin←: only sign4mult(t ) · π2 has to be replaced with π

2 − sign4mult(t ) · π2
for cos←.

For the trigonometric operator tan(source : double ) : double , we de�ne the inverse
operator

tan← (tarдet : double,source : double ) : double :=



source if tan(source ) ε
= tarдet

atan(tarдet ) otherwise

Inverse Trigonometric Operators For the inverse trigonometric operator asin(double ) :
double , we de�ne the inverse operator

asin← (tarдet : double,source : double ) : double :=



sin(tarдet ) if |tarдet | ≤ π

2
restrictPGV(sin(tarдet )) otherwise

For the inverse trigonometric operators acos and atan the inverse operators acos←
and atan← are de�ned analog to sin and sin←: only |tarдet | ≤ π

2 has to be replaced with
0 ≤ tarдet ≤ π for acos←.

String Operators

The last group of operators for which we de�ne inverters operates on character strings.
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Parsing, Printing and Length For all types T and the operator parse(source : strinд) : T ,
we de�ne the trivial inverse operator

parse← (tarдet : T ) : strinд := print(tarдet )

For all numeric typesT and the operator numprint(s : T ) : strinд, we de�ne the inverse
operator

numprint← (t : strinд,s : T ) : T :=



parse(t ) if t represents a number of type T
reportPGV(0) otherwise

For the operator boolprint(source : bool ) : strinд, we de�ne the inverse operator

boolprint← (tarдet : strinд,source : bool ) : bool :=



true if tarдet = “true ′′ (case insensitive)
f alse otherwise

pad strings and su�ixes
with underscores to
needed length

We de�ne a helper pad(source : strinд,lenдth : inteдer ), which appends as many
underscore characters to a given string source as are needed to obtain a string with
lenдth characters. We also de�ne a helper to obtain pre�xes that are automatically
padded to a desired length using the pad helper:

pre�x(source : strinд,end : int ) : T :=



substring(source,0,end ) if end ≤ length(source )
pad(source,end ) otherwise

It uses the substring operator substring(s : strinд,b : int ,e : int ), which returns e − b
subsequent characters of s including the character at index b and excluding the character
at index e . For the operator length(source : strinд) : int , for which we brie�y write
|source |, we can now de�ne the inverse operator

length← (tarдet : int ,source : strinд) : strinд :=
pre�x(source,tarдet )

ConcatenationandSubstrings For the string concatenation operator concat(s1 : strinд,s2 :
strinд) : strinд, for which we brie�y write s1

_s2, we de�ne the inverse operator

concat←1 (tarдet : strinд,s2 : strinд) : strinд :=



s ′1 if tarдet = s ′1_s2

restrictPGV(tarдet ) otherwise

to invert according to the �rst operand s1, and the inverse operator

concat←2 (tarдet : strinд,s1 : strinд) : strinд :=



s ′2 if tarдet = s1
_s ′2

restrictPGV(tarдet ) otherwise

for inversion according to the second operand s2.
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We de�ne a specialized substring operator:

su�x(s : strinд,b : int ) : T :=



substring(s,b, |s |) if b < |s |
“” otherwise

where “” denotes the empty string. Its inverse operator is

su�x← (t : strinд,s : strinд,b : int ) : strinд := pre�x(s,b)_t

We de�ne a helper that concatenates a circum�x c and an in�x i by prepending the
�rst e characters of the circum�x to the in�x while appending the last |c | − b characters
of the circum�x:

circumcat(c : strinд,e : int ,i : strinд,b : int ) :=
pre�x(c,e )_i_su�x(c,b)

Now we can de�ne an inverse operator for the substring operator substring(s :
strinд,b : int ,e : int ) : strinд. This inverse operator �xes the indices b and e at which
the substring begins and ends. It uses the helpers pad and circumcat:

substring← (t : strinд,s : strinд,b : int ,e : int ) : strinд :=



circumcat(s,b,t ,e ) if |t | = b − e
restrictPGV(circumcat(s,b,t ,e )) if |t | > b − e

restrictPGV(circumcat(s,b,pad(t ,b − e ),e )) otherwise

an example for inverting
the substring operator We illustrate the inversion of the substring operator with �xed indices using the

example input s =“inverse”, b = 2, and e = 6: If the target “vers” is changed to “plac”,
then the �rst case applies because |“plac”| = 4 = 6 − 2 and the source is changed to
“in”_“plac”_“e”. If the target is changed to “carnat”, then the second case applies because
|“carnat”| = 6 > 6 − 2 and the source is changed to “in”_“carnat”_“e”. If the target is
changed to “di”, then the third case applies because |“di”| = 2 < 6 − 2 and the source is
changed to “in”_“di__”_“e”. Without the third case, a target change to “di” would yield
“indie” for which an application of substring with b = 2 and e = 6 would not be possible
because e = 6 > 5 = |“indie”|. Therefore, we have to ensure that the source string has at
least the length of the target string.

Letter Case To invert letter case conversions, we de�ne a helper that returns the index of
the �rst occurrence of a pattern p in a string s if such an occurrence exists and otherwise
returns the length of s:

�rstIndex(s : strinд,p : strinд) : int :=
min({i ∈ N0 | substring(s,i,i + |p |) = p} ∪ {|s |})

Furthermore, we de�ne two shorthands for the next de�nition. The �rst occurrence of the
pattern t in the base string tUC (s ) is de�ned as i := �rstIndex(tUC (s ),t ). For the other
shorthand t and tUC (s ) switch the roles of pattern and base string. The �rst occurrence
of the pattern tUC (s ) in the base string t is de�ned as j := �rstIndex(t ,tUC (s )).
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For the to-upper-case-conversion operator tUC(s : strinд) : strinд, we de�ne the
inverse operator

tUC← (t : strinд,s : strinд) : strinд :=



restrictPGV(tUC← (tUC(t ),s )) if t , tUC (t )

substring(s,i,i + |t |) if |t | < |s | ∧ i < |s |
tLC(pre�x(t , j ))_s_tLC(su�x(t , j + |s |)) if |t | > |s | ∧ j < |t |

tLC(t ) otherwise

all four cases of inverting
case conversions in one
example

We illustrate the inversion of the upper-case conversion operator based on the ex-
ample input s =“CamelCase”: If the target “CAMELCASE” is changed to “Cas”, the
�rst case of the de�nition applies because “Cas” , “CAS” = tUC(“Cas”). The inverse
operator is recursively called with the new target “CAS” and the obtained string will
be used as default value during the handling of the PutGet violation. This recursive
call has the same e�ect as if the target would have been directly changed to “CAS”.
For such a target, the second case of the de�nition applies because |“CAS”| = 3 < 9 =
|“CamelCase”| and �rstIndex(tUC (“CamelCase”),“CAS”) = 5 < 9. Therefore, “Cas” is
returned. If the target is changed to “NOCAMELCASED”, the third case applies because
|“NOCAMELCASED”| = 12 > 9 and �rstIndex(“NOCAMELCASED”, tUC(“CamelCase”)) =
2 < 12. Therefore, “no”_“CamelCase”_“d” is returned. If the target is changed to
“DROMEDAR”, the last case applies and “dromedar” is returned.

to-lower-case conversion
is inverted completely
analogously

The inverse operator tLC← for the to-lower-case-conversion operator tLC is de�ned
completely analogously. That is, all occurrences of tUC and tUC← in the above de�nition
have to be replaced with tLC and tLC←. Furthermore, all original occurrences of tLC in
the de�nition have to be replaced with tUC.

7.4.7. Limitations of the Approach and the Inverters

a limitation of the
approach and two
restrictions of the inverters

Currently our approach is bound to one limitation and the presented inverters to
two restrictions. As we already stated in section 7.4.3, our approach can only be used
for operations in which every source attribute appears at most once. Furthermore, we
currently only de�ned inverters for operators that can be inverted by updating a single
source attribute (see subsection 7.4.4). Finally, all supported operators only operate on
single-valued attributes not on collections or sequences.

limitation is theoretical
and restrictions are
temporary but challenging

The limitation to linear or a�ne expressions is common but not relevant in many
practical use cases. The restriction to operators that can be inverted with a single update
limits the applicability of our approach but it is only temporary: the conceptual framework
and implementation prototype can easily be adapted in the future to support inverters
that update several source attributes. Even de�ning inverters for operators on collections
or sequences should not be conceptually more di�cult: If the source value collections
before an update of the target collection are given, then the inversion of a collection
operator is often similar to the inversion of single-element operators. The technical
realization and static analysis e.g. of higher-order functions would, however, probably be
challenging.

7.4.8. Fall Back to Unidirectional Enforcement

forward and backward
enforcement code should
meet same requirements

If a condition that relates both sides of a mapping cannot be expressed by composing
operations that only involve the operators for which we developed inverters, then the
developer can directly specify code to enforce the condition in both propagation directions.
In such cases, the developer is responsible for ful�lling the above mentioned round-trip
laws during consistency preservations whenever this is possible. Tests are, however, in
many cases no su�cient strategy to ensure this because the number of possible value
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changes is too large. Therefore, it can be bene�cial to also express the code for both
directions in a formal way and to prove that the code meets the requirements if it
implements the formal representation correctly. In order to make it possible that such
e�ort can be reused, language constructs for extending our library of inverters could be
provided by the mappings language. This would give developers the possibility to use
newly developed inverters in several bidirectionalizable conditions instead of writing
partly redundant pairs of forward and backward enforcement code.

7.5. Dependencies and Multi-Parameter Mappings

dependencies to structure
mappings and fine-tune
consistency preservation

consequences

We have presented all possibilities to de�ne an isolated mapping in the previous
sections but the mappings language also provides a possibility to de�ne mappings that
depend on other mappings. Such inter-mapping dependencies can be used to structure
a set of mappings, for example, according to the parts of the metamodels that are kept
consistent with individual mappings. Furthermore, developers can choose from di�erent
possibilities for mapping instances of a certain metaclass at di�erent locations in a chain
of dependent mappings. In this way, the desired consistency preservation consequences
can be �ne-tuned and many di�erent scenarios can be covered with a simple language
construct. We also experimented with another way to relate mappings by nesting them
but explicit dependencies turned out to be more �exible. In this section, we explain
how dependencies can be expressed, discuss the consequences of di�erent possibilities
to de�ne mappings with dependencies, and present nested mappings as a discarded
alternative to explicit dependencies.

7.5.1. Inter-Mapping Dependencies

example dependency and
alternative of copying

conditions

In the signature of a mapping it is possible to declare a dependency to another mapping.
An example of such an inter-mapping dependency was already given in the mapping
between a component, a package, and a class in Listing 7.3 on page 142. This mapping
depends on the mapping between a component repository and four packages in the
object-oriented design, which we presented in Listing 7.2 on page 139. The dependency is
used to put the subpackage that corresponds to a component into one of the four packages
that corresponds to the repository (Listing 7.3, line 7). Together, both mappings specify
that this package will always contain a package for each component in the repository.
Instead of declaring a dependency to the repository mapping, we could also write code
that �nds this package for all components. This code would need to be put in a check
block of a single-sided condition of the component mapping. Additionally, we would have
to specify in the enforce block of this condition how the subpackage for an individual
component is to be put into the package for all components. This enforce code would
be similar to the single-sided condition that refers to the package on which it depends
using the identi�er repoPkgs. The check code would, however, almost be identical to the
two conditions of the package for all components in the repository mapping (Listing 7.2,
line 10–13). This means, we have to copy a part of this mapping if we do not declare a
dependency to it. Such copied conditions are an unnecessary source for errors and for
avoidable maintenance e�ort, especially if mappings are more complex and have several
direct or indirect dependencies.

general semantics of
inter-mapping

dependencies and further
restriction for element

equality

In general, an inter-mapping dependency from a mapping to another mapping means
that the �rst mapping is only instantiated (see page 138) if the other mapping was already
instantiated. That is, instances of the metaclasses that are mentioned in the signature of
the depending mapping are only mapped if instances of the metaclasses mentioned in
the signature of the other mapping are already mapped. If some or all of the metaclasses
in both signatures are the same, then the dependency does not require that the same
instances are mapped. To further restrict the meaning of an inter-mapping dependency in
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such a way, a single-sided condition has to be speci�ed. In it, the appropriate parameters
of both mappings have to be related using the equals operator. This need to explicitly
specify that elements that were mapped in both mappings are equal, gives developers
full control over the extent of an inter-mapping dependency.

dependency graphAll dependency relations between all mappings for two metamodels can be represented
as a directed acyclic graph. In this dependency graph, nodes represent mappings and a
directed edge from one node to another node means that the mapping of the �rst node
depends on the mappings of the second node. The graph may not have any cycles because
none of the mappings that are on a dependency cycle could ever be instantiated so all
these mappings would be useless. In general, the dependency graph does not need to be
an oriented tree because several paths between two nodes are possible. The reason for
this is that a mapping may indirectly depend on another mapping multiple times when it
depends on several mappings that �nally depend on the same mapping. If it is necessary
in such a case, then it can be ensured that the same mapping instantiation is used on
several paths by de�ning single-sided conditions that ensure that the same elements are
mapped. We suggest, however, to avoid indirect dependencies to the same mapping along
di�erent paths. In most cases, it should be su�cient if developers only specify mappings
for which the dependency graph is an oriented tree, probably also with a low height.

7.5.2. Mapping Possibilities and Consequences

controlling which
conditions have to be
fulfilled simultaneously

If instances of several metaclasses are mapped on one side, developers have many
di�erent possibilities to design appropriate mappings and the dependencies between
them. With this degree of freedom, developers can determine which model information
shall be kept consistent for di�erent possible model states. By de�ning a single mapping
or multiple mappings with dependencies, a developer can control which conditions
have to be ful�lled together and which conditions may but do not need to be ful�lled
simultaneously.

three kinds of model
states for twomappings
and a dependency

The e�ect of a mapping dependency can be explained using the model states for
which a mapping is instantiated and its conditions are enforced. In the previous sections,
we already explained that all single-sided conditions of one side have to be ful�lled
before a mapping is instantiated. We also explained that a mapping that depends on
another mapping is only instantiated if the other mapping is already instantiated. Broadly
speaking, this means that the conditions of the other mapping are added to the dependent
mapping. Thus, we can distinguish three kinds of model states for a inter-mapping
dependency between two mappings. The �rst kind of model states are those in which the
conditions of none of the two mappings are ful�lled. The second kind, are model states in
which the conditions of the independent mapping are ful�lled but the conditions of the
dependent mapping are not. The third and last kind of model states are those in which
the conditions of both mappings are ful�lled.

an example scenario to
illustrate mapping
strategies

To illustrate the di�erent possibilities for designing mappings and their dependencies,
we present an example consistency preservation scenario and three mapping strategies for
it. For a �rst metamodel, we are only concerned about a single metaclass for expressing
mailing addresses in terms of a number, street, and zip code. Instances of this metaclass
are to be kept consistent with instances of a second metamodel in which the information
for an address is distributed over three metaclasses. A �rst metaclass to model a location
in terms of a number and a street, and second metaclass to model a city in terms of a zip
code, and a third metaclass to model a recipient at a location in a city. These metaclasses
are also depicted in the class diagram that is shown in Figure 7.8. Real metamodels would
contain much more metaclasses and metaclass features, but to explain di�erent mapping
strategies this simple snippet is already su�cient. The distribution of street and zip code
information to instances of two separate metaclasses that are related by a third recipient
metaclass is representative for a constellation that can appear in many variants in other
consistency preservation scenarios. As only this information distribution is necessary
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Address
number:Integer
street:String
zipCode:String

Recipient

Location
number:Integer
street:String

City

zipCode:String

locatedAt 1 locatedIn1

Figure 7.8.: Class diagram for two example metamodels for mailing addresses, which are used to
explain di�erent mapping strategies

1 mapping Address<->RecipientLocationCity {

2 map (Address a)

3 and (Recipient r, Location l, City c)

4 such that {

5 a.street = l.street

6 a.zipCode = c.zipCode

7 }

8 }

Listing 7.7: Example mapping for mailing addresses according to the all-or-nothing strategy for
mapping dependencies (metamodel pre�xes omitted)

for our subsequent illustration of di�erent mapping strategies, we will even ignore the
number of a location in the following.

three mapping strategies
for inter-mapping

dependencies

For this simple consistency preservation scenario we explain three exemplary mapping
strategy and discuss their e�ect for both preservation directions:

all-or-nothing map instances of all three metaclasses of the second metamodel in a
single mapping with two bidirectionalizable conditions for the street and the zip
code (Listing 7.7). The e�ect of this mapping is that address information is only kept
consistent if it is complete.

step-by-step de�ne three individual mappings to map the complete address to a recipient,
a location, and a city (Listing 7.8). The e�ect is that the address container, its street,
and its zip code are individually kept consistent in possibly separate steps.

containers-then-content create separate mappings for the metaclasses and their features
(Listing 7.9). This last strategy has the e�ect that model elements that act as containers
for the information that is kept consistent are created independent of this content.

e�ects for di�erent
preservation directions
and intermediate states

All three possibilities to de�ne mappings for the address example scenario represent
general mapping strategies that can be applied whenever a variant of the described
information distribution occurs. We explain the detailed e�ect on the behavior of the
consistency preservation reactions that are generated in all three cases using a concrete
mapping example. This example is based on a more general example from Dominik
Werle’s master’s thesis [Wer16, pp. 53–57]. First, we show in Table 7.4 three di�erent
model states that are obtained after changing a model of the metamodel for bundled
address information. For each of these states and each of the three mapping possibili-
ties discussed above, we present the corresponding model with the distributed address
information that is obtained after the appropriate reactions for the mappings are exe-
cuted. Then, we provide analogue information for the opposite consistency preservation
direction and for four di�erent model states in Table 7.5. These states are reached after
a change in a model of the metamodel for distributed address information. This time,
the columns contain the corresponding model with bundled address information that is
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1 mapping Address<->Recipient {

2 map (Address a)

3 and (Recipient r)

4 }

5
6 mapping Address<->Location

7 depends on (Address<->Recipient arm) {

8 map (Address a) with { a equals arm.a }

9 and (Location l)

10 such that {

11 a.street = l.street

12 a.zipCode = c.zipCode

13 }

14 }

15
16 mapping Address<->City

17 depends on (Address<->Recipient arm) {

18 map (Address a) with { a equals arm.a }

19 and (City c)

20 such that {

21 a.zipCode = c.zipCode

22 }

23 }

Listing 7.8: Example mappings for mailing addresses according to the step-by-step strategy for
mapping dependencies (metamodel pre�xes omitted)

1 mapping Address<->RecipientAndContainers {

2 map (Address a)

3 and (Recipient r, Location l, City c)

4 }

5
6 mapping Address<->LocationCityContent

7 depends on (Address<->RecipientAndContainers aracm) {

8 map (Address a) with { a equals aracm.a }

9 and (Location l, City c) with {

10 l equals aracm.l

11 c equals aracm.c

12 }

13 such that {

14 a.street = l.street

15 a.zipCode = c.zipCode

16 }

17 }

Listing 7.9: Example mappings for addresses according to the containers-then-content strategy for
mapping dependencies (metamodel pre�xes omitted)
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obtained after the appropriate reactions for the mappings are executed. Together, both
consistency preservation directions demonstrate that di�erent mapping possibilities or
strategies that realize the same consistency if all information is provided can nevertheless
preserve consistency very di�erently for intermediate states.

7.5.3. Nesting as a Discarded Alternative to Dependencies

apparent advantages of
nested mappings and

explored disadvantages

Nested mappings could be a more concise language construct for relating mappings
than explicit dependencies. This would make it unnecessary to name mappings, because
they would no longer be referenced from other mappings. Furthermore, mappings could
be nested in a similar way model elements are contained in other model elements. Despite
these apparent advantages, we also discovered disadvantages when we experimented
with nested mappings in an early prototype of the mappings language. During these
experiments we observed that nested mappings are less �exible than inter-mapping
dependencies and implicit matches can be more complex to understand than such explicit
dependencies.

a mapping can only be
nested once but may have

several dependencies

Nesting instead of explicit dependencies is less �exible because an individual mapping
can only be nested in a single parent mapping but may depend on several other mappings.
For many cases a single direct dependency is su�cient and therefore nested mappings
would be an alternative for these cases. Other cases with several direct dependencies
should, however, not be neglected. Such a case can be found, for example, in the original
consistency preservation scenario on which our running example for component-based
architectures and object-oriented design scenarios is based. When components of a
component repository are used in a concrete system, they are assembled with other
components using connectors. The mapping for such a connector depends on a mapping
for a component and on a mapping for an architectural interface. Therefore, the connector
could not be nested in one of the two mappings without an additional dependency to the
other mapping.

scoping and several layers
can make nested

mappings complex

Nested mappings can be more complex to understand than mappings with explicit
dependencies because of the scoping of metaclass parameters in mapping signatures.
This scoping can be realized in two ways. Either identical names for parameters in nested
mappings are disallowed. In this case, it has to be explicitly speci�ed if the same element
should be mapped in a parent and a nested mapping as it is necessary for inter-mapping
dependencies. Or identical names are allowed to express exactly this behavior. In both
cases, it can be di�cult for developers to trace which model element are in�uenced by
which conditions, especially if mappings are nested over several layers.

7.6. Realizing a Compiler for the Mappings Language

In this section, we provide further information on the concrete and abstract syntax of
the mappings language and brie�y describe how we realized it in terms of a prototypical
compiler.

7.6.1. Mappings Language Syntax

complete AST and
grammar information for

mappings

So far, we described the concrete and abstract syntax of the mappings language only
for special language parts and mostly using examples and diagrams. In the following,
we will provide a complete view on the abstract syntax in terms of a class diagram with
metaclasses that can be instantiated to represent mappings as an AST. Furthermore, we
will describe the concrete syntax of the mappings language using grammar rules.
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Mapping Speci�cation

name:Identi�er
Metamodel

nsURI:Identi�er

leftMetamodel

1

rightMetamodel

1
Bootstrap Mapping

name:Identi�er

bootstrapMappings0..*

mappedMetamodel

1

Mapping

name:Identi�er

mappings1..* 0..*
dependsOn

Parameter
name:Identi�er

leftParameters

1..*

rightParameters

1..*

parameters1..*
Typetype

1

Bidirectionalizable
Condition

bidirectionalizableConditions0..*
Fallback Execution Code

fallbackExecutionCode0..1
Single-Sided

Condition

leftConditions

0..*

rightConditions

0..*
conditions

0..*

Check and
Enforce Code

Resource ConditionFeature Condition

Empty List
Condition

Default Containment
Condition

Single Value

Condition

Multi Value

Condition

negated:bool

Equals
Condition In List Condition At Index

Condition
negated:bool

Num Compare
Condition

Figure 7.9.: Simpli�ed class diagram with metaclasses for completely representing mappings as an
AST

Complete Abstract Syntax

Most class diagram for complete
representation of
mappings as an AST

of the abstract syntax of the mappings language has already been graphically
illustrated in Figure 7.1 in section 7.1 and Figure 7.2 in section 7.3 and textually described
in this chapter. A more compact and complete overview over the abstract syntax of
mappings is given in Figure 7.9. This class diagram also contains concrete subclasses
for the di�erent operators that can currently be used in single-sided conditions that
specify properties that have to be checked and enforced for a referenced feature of a
metaclass and multiple values or a single value. References to metamodel elements, such
as metaclasses or features, and to technical artifacts, such as model resources, are still
omitted.

Concrete Syntax for Mappings and Single-Sided Conditions

concrete mappings syntax
in EBNF

We have already illustrated a part of the concrete syntax of the mappings language in
terms of a syntax diagram in Figure 7.3 in section 7.3. Furthermore, we provided several
listings of exemplary mapping code that also demonstrate which concrete syntax is used
for the mappings language. In order to complete this partial and distributed information on
the concrete mappings syntax, we show a simpli�ed version of the complete grammar in
Listing 7.10. The rules are again presented in EBNF, which we have introduced on page 125
of section 6.6.1. In the grammar and in our current compiler prototype, bidirectionalizable
conditions are realized as expressions of the reused expression language. Instead of having
special grammar rules for bidirectionalizable conditions with di�erent operators, we
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parse arbitrary expressions and validate that they correctly compose only operations
with operators for which we realized inverters.

7.6.2. Editing, Compiling, and Executing Mappings

analogue editor
realization as for reactions,
di�erent code generation

The editor and the compiler for the mappings language are realized analogous to
the editor and the compiler of the reactions language (see subsection 6.6.2). Again, the
Xtext language workbench [E�+12] was used to realize an editor with, for example,
auto-completion and quick-�xes that are suggested in case of common compilation errors.
Code validation and code generation are, however, not realized as a transformation to Java
models, but as a model-to-text transformation using template expressions. The current
prototype does not yet use the change-driven constructs of the reactions language as it
only generates a single reaction to arbitrary changes. In the future, we are planning to
re�ne the code generation part of the compiler so that a single mapping is realized by
several reactions that are triggered for changes that directly re�ect which metaclasses
and features are mapped.

typesafe and named
wrappers for

corresponding elements
and calls to platform code

We addressed the Open Consistency Speci�cation Language Challenge 4 by wrapping
calls to general platform code in classes and methods that provide typesafe and properly
named access to model elements and correspondences. For both sides of a mapping, a class
MappedSideWrapper is generated. It provides access to mapped parameters and wraps calls
to platform code for creating, updating, and deleting instances of the mapped metaclasses.
Furthermore, a class CorrespondingElementsWrapper is generated for every mapping. It
uses both wrappers for mapped parameter instances and provides additional methods
with appropriate types and names for adding and removing correspondences. Finally, a
class MappingInstantiation is generated for every mapping. It provides functionality
for establishing mapping instantiations by creating instances of mapped metaclasses and
correspondences for them. Additionally, it provides methods for updating corresponding
elements and for destroying mapping instantiations by deleting corresponding elements
and their correspondences. This class, only uses methods of the wrapper classes and no
platform code is directly called. Therefore, this mapping instantiation code can be directly
traced to the mappings speci�cation code. Moreover, no casts or parameterized types
have to be used in this code, which may be debugged by developers that use the mappings
language. Additional details on the code that is currently generated for mappings can be
found in Dominik Werle’s master’s thesis [Wer16, pp. 75–83].

realization of single-sided
and bidirectionalizable

conditions

For all single-sided conditions of one side of a mapping, two methods for checking
and enforcing the conditions are generated in the mapping instantiation class. The
realization of bidirectionalizable conditions is currently separated from the remainder
of the code generator. It works with arbitrary expressions of the reused expression
language Xbase [EV06] but validates whether only bidirectionalizable operators are used
in these expressions. As before, the names and the type information of the mapping
speci�cation is used in the generated code of the inverse operations that are created for
bidirectionalizable conditions. Only methods of the platform code with semantics that
are well-known or can be easily derived, such as special equals methods, are called in the
generated code. The goal is that developers can directly relate the structure and behavior
of a generated inverted operation to the operation they speci�ed. Further information on
the bidirectionalization process can be found in section 7.4.3.

7.7. Semantics of Consistency Mappings based on Reactions

complete mappings
semantics based on formal

reactions semantics

In the previous sections, we have illustrated the semantics of the mappings language
for individual language constructs and examples. To complete this information, we will
present the complete semantics of the mappings language based on the reactions language.
In this way, the provided mappings semantics rely on the formal semantics for reactions,
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1 mappings header = "mappings" , xbase identifier ,

2 "for" , xbase namespace , "and" xbase namespace;

3
4 mapping = "mapping" , xbase identifier ,

5 ["depends on (" , mapping dependency, ")"] , "{" ,

6 "map (" , parameters , ")" ,

7 ["with" , "{" , {single-sided condition} - , "}"] ,

8 "and (" , parameters , ")" ,

9 ["with" , "{" , {single-sided condition} - , "}"] ,

10 ["such that" , "{" , {bidirectionalizable condition} - , "}"] ,

11 ["forward execute {" , {xbase expression} - , "}" ,

12 "backward execute {" , {xbase expression} - , "}"] ,

13 "}";

14
15 bootstrap mapping = "bootstrap mapping" , xbase identifier , "{" ,

16 "create (" , parameters , ")" ,

17 ["with" , "{" , {single-sided condition} - , "}"] ,

18 "}";

19
20 mapping dependency = xbase identifier , {"," , xbase identifier};

21
22 parameters = typed identifier , {"," , typed identifier};

23
24 typed identifier = type expression , xbase identifier;

25
26 type expression = xbase identifier , "::" , xbase identifier;

27
28 single-sided condition = feature condition | resource condition |

29 check and enforce code;

30
31 feature condition = (multi value condition | single value condition |

32 element condition | ["not"] , "empty") ,

33 feature expression;

34
35 multi value condition = {value expression} - ,

36 ["not"] , ("equals" | "in");

37
38 value expression = xbase expression;

39
40 single value condition = value expression ,

41 (index expression | num compare expression);

42
43 index expression = ["not"] , "at index" , xbase expression , "in";

44
45 num compare expression = "<=" | "<" | ">=" | ">";

46
47 element condition = element expression , "default contained in";

48
49 element expression = xbase expression;

50
51 feature expression = xbase identifier , "." , xbase identifier;

52
53 resource condition = "default path for" , element expression ,

54 "=" , ["path of" , element expression , "+"] , xbase string;

55
56 check and enforce code = "check " , xbase expression block ,

57 "enforce " , xbase expression block;

58
59 bidirectionalizable condition = xbase expression;

Listing 7.10: Simpli�ed grammar of the mappings language in EBNF, which reuses grammar rules
of the Xbase language
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which we have already presented in section 6.7. Therefore, the discussion does not always
need to be as formal as the discussion of the reactions semantics. Nevertheless, we aim
to achieve the same precision indirectly via the more formal reactions semantics. First,
we will present fundamental algorithms for creating, updating and deleting mapping
instantiations, which can be realized as reaction routines. Then, we will explain why and
how we distinguish between mappings that are realized with exhaustive checks after
every change and mappings that can be realized with more speci�c reactions. Finally, we
describe both realizations in detail and show that the execution of mappings preserves
consistency according to the mappings speci�cation.

7.7.1. Fundamental Algorithms for Mapping Instantiations

routines when conditions
newly apply, still apply, or

no longer apply

To realize mappings, three fundamental algorithms for creating, updating, and deleting
a concrete instantiation of a mapping are necessary. These algorithms have to be carried
out after it was determined that all mapping conditions newly apply, still apply, or no
longer apply for objects that instantiate the mapped metaclasses. Here, we will only
present the algorithms and later we will explain in detail under which circumstances they
have to be carried out. For every mapping six separate reaction routines can be generated
to realize these algorithms for the speci�c mapping and both consistency preservation
directions. In order to not repeat explanations for both directions, we ignore whether a
mapping was de�ned for a metamodel A and a metamodel B or for B and A. This means
we use the fact that mappings are direction-agnostic (see page 140 in subsection 7.1.2).
As the realization of mappings is not direction-agnostic but symmetric, we will use the
terms of a change source side and an execution target side, which we have introduced on
page 111 in section 6.3.

create parameter
instances, add

correspondences, and
enforce conditions

The �rst fundamental algorithm creates a new mapping instantiation for a mapping
and for a tuple of objects of the change source side for which the mapping conditions
are newly ful�lled. Therefore, we brie�y call it create algorithm. This tuple is an instance
tuple 〈os 〉 := (os1 , . . . ,osn ) (see De�nition 16) of the metaclass tuple 〈cs〉 := (cs1 , . . . ,csn )
(see De�nition 14) that can be constructed for the list of mapping parameters of the
change source side. Similarly, the appropriate metaclass tuple for the execution target
side is denoted by 〈ct〉. The algorithm consists of four steps:

1. Create an instance of every metaclass that is listed as a parameter of the target
execution side of the mapping, i.e. for every csi ∈ (cs1 , . . . ,csn ), and call these new
model elements (ot1 , . . . ,otn ) =: 〈ot 〉 parameter instances.

2. Add a correspondence between all pairs of existing mapped elements of the change
source side and the newly created parameter instances, i.e. for all (osi ,otj ).

3. Enforce every single-sided condition on the target execution side by updating the
appropriate reference links and attribute values of the new parameter instances.

4. If the mapping contains a bidirectional enforcement speci�cation, i.e. bidirectional-
izable conditions, a pair of forward and backward enforcement code blocks, or both,
then execute this enforcement speci�cation in the current consistency preservation
direction.

update by enforcing as
a�er instance creation

If a mapping was already instantiated previously and the conditions still apply, then
the second fundamental algorithm, which we call update algorithm, has to be carried out:

I. Enforce every single-sided condition on the target execution side (identical to step
3 of the create algorithm).

II. If the mapping contains a bidirectional enforcement speci�cation, then execute it
in the current direction (identical to step 4 of the create algorithm).
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remove correspondences
and delete parameter
instances

When the conditions of a mapping apply no longer for a mapping instantiation, then
the last fundamental algorithm, which we call delete algorithm, has to be carried out:

a. Remove all correspondences that were added in step 2 of the �rst algorithm.

b. Delete every parameter instance that was created in step 1 of the �rst algorithm.
no other deletion
semantics, but
confirmation may be
desired

As a mapping speci�es that instances of the mapped metaclasses that ful�ll the map-
ping conditions always have to co-occur, it is not possible to de�ne any other deletion
semantics for mappings. Nevertheless, it may be desirable in many consistency preser-
vation scenarios to ask the user to con�rm the consequence of deleting corresponding
elements. The reason is, that a user may not always be aware of information that may
have been manually added to corresponding elements but for which no corresponding
information is available in the model in which the mapping conditions were violated by
the user change.

7.7.2. Distinguishing Pure from Impure Mappings

relieve developers from
code and invocations that
are not necessary

In order to preserve consistency according to a mappings speci�cation the three
fundamental algorithms that we presented in the previous section have to be carried
out whenever mapping conditions newly apply, still apply, or no longer apply. This can
be done by checking all conditions for all objects that instantiate metaclasses that are
used as mapping parameters and therefore could be part of a mapping instantiation (see
page 138). A potential problem of such an approach is, however, that developers may
have to inspect general check code that is not necessary to preserve consistency and
super�uous invocations of checks. Therefore, we suggest to restrict reevaluations of
mapping conditions to certain changes and to reduce the number of model elements
for which such reevaluations are performed based on the information in the mappings
speci�cation. This would relieve a developer of a mapping speci�cation from considering
such unnecessary reevaluations. The goal of such a change-driven realization of mappings
is not to improve the performance but to address the Open Consistency Speci�cation
Language Challenge 4. Furthermore, a mapping realization using speci�c reactions is
an important prerequisite for future improvements of the integration of mappings and
reactions. If the consistency preservation behavior that is implied by a mapping shall
be overridden or extended for certain changes, then a realization of mappings with
�ne-grained reactions can be necessary to achieve a good integration of mappings and
reactions.

need to determine which
mappings have to be
checked a�er which
changes

To realize mappings in a change-driven way, it has to be possible to determine after
which changes conditions of a mapping have to be checked. After these checks the
previously presented algorithms can be carried out to create, update, or delete mapping
instantiations. In order to perform the checks only after certain changes, it has to be
determined which changes can lead to cases in which conditions are newly or no longer
ful�lled. This is not precisely possible if mappings contain arbitrary imperative code with
while loops. Therefore, we will introduce terms that allow us to distinguish between
mappings that will be realized with exhaustive checks after every change and mappings
that will be realized in change-driven way.

purely navigational
expressions in single-sided
conditions

To determine which changes have to lead to which checks for a mapping, we have to
analyze expressions that are used in single-sided conditions. Depending on the operator
used in a single-sided condition, these expressions to be analyzed are value expressions,
element expressions, and feature expressions (see Figure 7.3 in section 7.3). If such an
expression only accesses model elements via mapping parameters, calls pure getters
for references or attributes on them, or lists �xed value literals, then we call it a purely

navigational expression. As a consequence, all purely navigational expressions have no
side-e�ects but not all expressions without side-e�ects are purely navigational. Bidirec-
tionalizable conditions do not need to be checked as they are always enforced (see also
page 140 of section 7.1.1).
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distinguishing pure and
impure single-sided

conditions

In order to be able to identify mappings that we will realize with speci�c reactions, we
have to distinguish three di�erent kinds of single-sided conditions:

pure elements conditions are single-sided conditions that use a default containment oper-
ator and only have purely navigational element expressions,

pure feature conditions are single-sided conditions that use an operator with a feature
expression—i.e. the equals, in, at index, or number-inequality operator—and only have
purely navigational value and feature expressions,

impure conditions are single-sided conditions with a check and an enforce block and
single-sided conditions that use an operator with a feature expression but have at least
one expression that is not purely navigational.

Both, pure elements conditions and pure feature conditions are brie�y called pure condi-
tions. In contrast to all other single-sided conditions, default containment conditions,
i.e. conditions with a default-contained-in operator or a default-path-for operator, are
never used to check whether the conditions of a mapping hold. These conditions are
only enforced, but whether they have to be enforced does not depend on the consistency
preservation direction but on a containment check (see section 7.3.2).

pure mappings only
specify single-sided

conditions in a declarative
way

In the following, we transfer this notion of purity and impurity with from single-
sided conditions to mappings. A mapping that speci�es only pure conditions for both
sides is called a pure mapping. Similarly, all other mappings, which have at least on
impure condition, are called pure mappings. Roughly speaking, the purity of a mapping
denotes whether only declarative language constructs are used in conditions that have
to be checked to decide whether mapping instantiations have to be created, updated, or
deleted.

7.7.3. A Reaction for All Impure Mappings

intended for impure
mappings but applicable

to all mappings

In the following, we will present how mappings can be realized using a single reaction
that is triggered after every change. Although this realization is correct for all mappings,
we suggest to only use it for impure mappings. A more �ne-grained realization for pure
mappings will be presented in the next section.

exhaustively check
single-sided conditions
using cartesian product

Mappings can be realized with a single reaction that exhaustively recomputes cartesian
products. This reaction has to be triggered after any arbitrary change and has to keep
track of all current mapping instantiations for all mappings. After every change, we
can determine for every mapping and for every combination of model elements that
could instantiate a mapping whether this is or was the case. That is, we always have to
determine whether the mapping has to be newly instantiated or no longer instantiated
and whether an existing instantiation has to be preserved. To obtain these model elements,
we can iterate over all tuples in the cartesian product of all sets that contain all instances
of the metaclasses that are listed as parameters for the mapping. All these tuples are
candidates for instantiations of the mapping (see page 138). For each of these mapping

instantiation candidates, we can check whether all single-sided conditions are ful�lled
and whether a mapping instantiation is currently registered for them. Then, we have to
distinguish three cases for every mapping instantiation candidate:

new instantiation If the conditions are newly ful�lled, i.e. no mapping instantiation
is currently registered for the candidate, then we have to register a new mapping
instantiation and execute the create algorithm, which was presented on page 180.

preserve instantiation If a mapping instantiation is currently registered for the candidate
and the conditions are still ful�lled, then we have to execute the update algorithm (see
page 180).
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delete instantiation If a mapping instantiation is still registered for the candidate but the
conditions are no longer ful�lled, then we have to deregister the mapping instantiation
and execute the delete algorithm (see page 181).

disadvantage: perform all
checks on all candidates
a�er all changes

As we have already mentioned above, this exhaustive realization strategy for mappings
has the disadvantage that it may lead to many unnecessary checks. After every change, all
single-sided conditions are checked for all elements in the cartesian product of all mapping
signatures. For large models, the vast majority of these checks is often unnecessary
because a single change usually leads to a low number of mapping instantiations that
have to be created, preserved, or deleted. If a developer wants to test or debug a mapping
speci�cation, it may be bene�cial if fewer checks are performed on fewer mapping
instantiation candidates and only after certain changes. To achieve this at least for pure
mappings, we propose to use another realization strategy with more �ne-grained reactions.
The compiler prototype for the mappings language, currently uses the exhaustive strategy
for all mappings but we will extend it in future work to realize pure mappings according
to the strategy that is presented in the next section.

7.7.4. Reactions and Data for Pure Mappings

dynamic data to manage
fine-grained reactions for
mappings

We propose a strategy for realizing pure mappings with reactions that use the available
mapping information to restrict the number of cases in which single-sided conditions are
reevaluated. As all single-sided conditions of a pure mapping are pure and bidirectional-
izable conditions do not need to be checked, we will omit the descriptors “single-sided”
and “pure” in the following and brie�y write condition. For the exhaustive strategy, it
was su�cient to manage mapping instantiations for every mapping during the process of
consistency preservation. To realize mappings with �ne-grained reactions, we propose
to maintain further data to represent the results of checks that were performed when
consistency was preserved according to a mapping speci�cation after changes. For each
mapping in the speci�cation, we keep track of mapping instantiation candidates, of
conditions that are currently ful�lled or unful�lled, and of parameter instance candidates.
To keep the discussion concise, we de�ne a special notation for this data: For a mapping
m, we brie�y write MICm , to denote the set of all mapping instantiation candidates ofm.
Furthermore, we write Fi to denote the set of all conditions that are currently ful�lled for
a candidate i ∈ MICm . Analogue, we write Ui to denote the set of all conditions that are
currently unful�lled for a candidate i ∈ MICm . Finally, for a parameter p of a mappingm,
we write PICp to denote the set of all parameter instance candidates of p. These are all
model elements that directly or indirectly instantiate the metaclass that is speci�ed for p.
For every mapping m, these sets MICm , Fi1 , . . . , Fi |MICm |

, Ui1 , . . . , Ui |MICm |
, PICp1 , . . . , PICpn

have to be dynamically managed during the consistency preservation process.
static data to simplify how
reactions for mappings are
expressed

In addition to the dynamic sets, there is also static data that can be precomputed
when the consistency speci�cation is complete. We use this static data to express the
realization of mappings in terms of reactions that update the dynamic data and execute the
fundamental algorithms, which we have presented in subsection 7.7.1. For the complete
mapping speci�cation, we write MMC to denote the set of all mapped metaclasses, i.e.
all metaclasses that are used as a parameter in at least one mapping. For every mapping
m we write Pm to denote the set of all parameters ofm. If a mappingm has to be newly
instantiated or if an existing instantiation has to be preserved, then every condition of a
mapping has to be ful�lled. Therefore, we write r to denote such a required condition
ofm and Rm to denote the set of all required conditions ofm. In a pure condition, apart
from value literals, only model elements and values that are obtained for references or
attributes can be accessed. Therefore, we inspect which conditions access a reference
or attribute, which are both called a feature of a metaclass. For every such feature f of
a metaclass c ∈ MMC, we write FACf to denote the set of feature accessing conditions.
These are all conditions in which a getter for f is invoked. This is necessary, because a
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condition may indirectly access features of metaclasses that are not listed as a parameter
of the mapping by navigating references on parameter instances.

three groups of reactions
for creations, updates, and

deletions

The static and dynamic data can be used in all reactions that realize pure mappings.
We suggest to create three di�erent groups of reactions for pure mappings. The �rst
group of reactions, will react to creations of new model elements. For every parameter
of every mapping, an individual reaction can be created to handle creations of elements
that instantiate the metaclass of the parameter directly or indirectly. This means, if
di�erent mappings list the same metaclass as a parameter, then di�erent reactions for the
di�erent parameters will be created but they will react to creations of the same model
elements. The second group of reactions, will react to feature updates of existing model
elements. We propose to create an individual reaction for every pair that combines
a metaclass feature that may be updated with a mapping that accesses this feature in
at least one of its conditions. Such reactions will determine whether the result of a
feature update is that conditions of the mapping are newly, still, or no longer ful�lled for
instantiation candidates of the mapping. This means, for a given feature of a metaclass,
several reactions can be created if the feature is accessed in several mappings but for
every mapping at most one reaction will be created for the given feature. The third and
last group of reactions, will react to deletions of existing model elements. Analogue to
element creation reactions, an individual reaction can be created for every parameter of
every mapping.

The group of element creation reactions, will contain an individual reaction for every
parameter of every mapping. They react to creations of all model elements that instantiate
the metaclass of the parameter directly or indirectly. That is, for a mapping m and a
parameter p ∈ Pm that maps the metaclass c ∈ MMC, such a reaction is triggered
after the creation of a model element e i� e is an instance of c or an instance of a
direct or indirect subclass of c. If this is the case, the reaction executes the procedure
parameterInstanceCreated as shown in Algorithm 1.

Algorithm 1 React for parameter p of mappingm to creation of element e
1: procedure parameterInstanceCreated(e,p,m)
2: PICp ← PICp ∪ {e} . register parameter instance candidate

3: for all pj ∈ Pm \ {p} do . for all other parameters ofm . . .

4: compute PICpj . . . . compute parameter instance candidates

5: for all i ∈ {e}
Ś

i PICpj do .
Ś

j is |Pm |-ary cartesian product

6: MICm ← MICm ∪ {i} . register mapping instance candidate

7: for all conditions r j ofm do . check every condition . . .

8: if r j is ful�lled for i then . . . . for the current candidate

9: Fi ← Fi ∪ {r j } . remember ful�llment for later

10: else
11: Ui ←Ui ∪ {r j } . or remember unful�llment

12: if Ui = ∅ then . all conditions ful�lled for i?
13: execute create algorithm (p. 180) . enforce consistency

To react to updates of existing model elements, we propose to create a reaction for
every pair that combines a feature with a mapping that accesses this feature in a condition.
To create these reactions, it has to be determined for every mappingm, which features
are accessed in at least one required condition r ∈ Rm . Those are all features f, for which
the intersection of the set of conditions that access f and the set of conditions of m is
not emtpy. The conditions in the result set of this intersection are the conditions to be
checked form after every update of f. Therefore, we brie�y write CTCf,m := FACf ∩ Rm .
For every mappingm and every feature f such that CTCf,m , ∅, we propose to create a
separate reaction. This reaction is triggered to check conditions in CTCf,m after a change
in which f was updated for an existing model element e . The element for which f is
updated has to instantiate the metaclass c for which f is de�ned or a direct or indirect
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subclass s of c. As conditions may access features of all metaclasses, it is possible that c, s,
or both are not mapped, i.e. neither c nor s has to be in MMC. If the reaction is triggered,
then it executes the procedure featureUpdated as shown in Algorithm 2.

Algorithm 2 React for mappingm to update of feature f for element e
1: procedure featureUpdated(f,e,m,CTCf,m )
2: for all i ∈ MICm do . for every instantiation candidate ofm
3: for all r ∈ CTCf,m do . and every condition that accesses f
4: if r is ful�lled for i then . check condition for candidate

5: if r ∈ Ui then . not ful�lled before change?
6: Fi ← Fi ∪ {r } . add to ful�lled conditions
7: Ui ←Ui \ {r } . remove from unful�lled conditions

8: newlyFul�lled ←> . at least r is newly ful�lled

9: else . r is not ful�lled for i
10: if r is a default containment condition then
11: enforce r for i . containment always ful�lled

12: else
13: if r ∈ Fi then . ful�lled before change?
14: Fi ← Fi \ {r } . remove from ful�lled conditions

15: Ui ←Ui ∪ {r } . add to unful�lled conditions
16: newlyUnful�lled ←> . at least r is newly unful�lled

17: if Ui = ∅ then . all conditions ful�lled for i?
18: if newlyFul�lled = > then . overall newly ful�lled?

19: execute create algorithm (p. 180) . new instantiation ofm
20: else . all conditions still ful�lled for i
21: execute update algorithm (p. 180) . update instantiation ofm

22: else if Fi = ∅ then . no condition ful�lled for i?
23: if newlyUnful�lled = > then . overall newly unnful�lled?

24: execute delete algorithm (p. 181) . remove instantiation ofm

The last group of reactions handles deletions of existing model elements and can be
created analogue to creation reactions. For every mappingm and every parameter p ∈ Pm ,
which maps a metaclass c ∈ MMC, we create a separate reaction. It is triggered after the
deletion of a model element e i� e instantiates c directly or indirectly. In such a case, the
reaction executes the procedure parameterInstanceDeleted as shown in Algorithm 3.

Algorithm 3 React for parameter p of mappingm to deletion of element e
1: procedure parameterInstanceDeleted(e,p,m)
2: PICp ← PICp \ {e} . deregister parameter instance candidate

3: for all i = (o1, . . . ,o |Pm | ) ∈ MICm do . instance candidates ofm
4: if ∃ j ∈ {1, |Pm |} such that oj = e then . deleted e involved?
5: MICm ← MICm \ {i} . deregister mapping instance candidate

6: if Ui = ∅ then . conditions ful�lled before deletion?
7: execute delete algorithm (p. 181) . enforce consistency

example for several
mapping reactions to a
single user change

A single change that is performed by a user may involve several creations, updates,
and deletions. Therefore, several reactions for the same or di�erent mappings may be
triggered to react to a single user change. Let us consider, for example, the deletion of a
model element that is contained in another model element. To achieve such a deletion,
a user often performs only a single change operation in a model editor. For the model,
this operation induces, however, two changes in which the containment link from the
container object to the contained object is removed before this object is deleted. The
a�ected feature f of the update before the deletion is a containment reference that is
de�ned for the metaclass of the container object or for a direct or indirect superclass of
it. If f is accessed by a condition of a mapping m1, then the reaction that is de�ned for f
andm1 will be triggered. It executes the procedure featureUpdated and rechecks every
condition that accesses the feature (Algorithm 2, line 4) to decide whether one of the
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fundamental algorithms for the creation, update, or deletion of a mapping instantiation
has to be executed (see pages 180–181). It is also possible, that other model elements link
to the object to be deleted before the user performs the deletion. In this case, the user
change induces further feature updates for all incoming links. As an element is always
only contained in one container, these links are de�ned for other reference features than f.
If these other features are accessed in mappings, then the featureUpdated procedure is
also executed for these feature updates and mappings. Only after all feature changes that
are induced by the user change are handled, the deletion itself is handled. If the deleted
element instantiates a metaclass c that is mapped in a mappingm2 using a parameter p
or instantiates a subclass of c, then the reaction for p andm is triggered by the change.
It executes the parameterInstanceDeleted procedure to deregister obsolete instance
candidates for parameters and mappings and to execute the fundamental delete algorithm
for all mapping instantiations that involved the deleted element.

7.7.5. Consistency Preserving by Construction

preserving consistency
means ensuring

co-occurence of mapped
elements a�er changes

We will now brie�y discuss why both mappings realizations of the previous sections
preserve consistency by construction. As we have explained above, a mapping declares
that a certain combination of model elements that ful�ll certain conditions on one side
always has to co-occur with a certain combination of model elements that ful�ll certain
conditions on the other side. In this way, an individual mapping speci�es that two models
are consistent i� an occurence of the left element combinations exists for every occurrence
of the right element combination and the other way round. For such a co-occurence
of elements for a given mapping, we have introduced the term mapping instantiation
on page 138. To preserve consistency according to a mapping, it has to be ensured that
the requirement of co-occurence is always ful�lled after changes. That is, a mapping
has to be realized in such a way that the elements that are demanded for one side are
always created, updated, or deleted according to the mapping conditions on this side i�
elements on the other side are created, updated, or deleted in such a way that the mapping
conditions for that side are newly or no longer ful�lled. This is exactly what the single
reaction that we have described in subsection 7.7.3 does by executing the fundamental
create, update, and delete algorithms (see subsection 7.7.1). Furthermore, this is also what
the �ne-grained reactions that we have described in subsection 7.7.4 do by executing
the three procedures presented in Algorithm 1–3. Altogether, consistency according to
speci�cation with several mappings is preserved if the co-occurrence requirement is
always ful�lled for every mapping.

preservation by
construction due to
declarative mapping

conditions

Consistency according to mappings can be preserved by construction and in such a
direct way because the consistency to be preserved is prescribed in terms of mappings.
Furthermore, the language was speci�cally designed for declarative consistency speci-
�cations and restricted to those consistency relations for which such declarations are
su�cient. Broadly speaking, a mapping only consists of two lists of metaclasses for
two metamodels and two sets of conditions that have to be ful�lled by instances of the
metaclasses of one metamodel whenever instances of the remaining metaclasses of the
other metamodel ful�ll the other set of conditions. The conditions are directly given. To
enforce a condition it is necessary to derive enforcement code from check code or inverse
enforcement code for one direction from code for enforcement in the other direction.
These automated derivation processes can, however, be performed in isolation and has no
in�uence on the overall consistency preservation process. Therefore, this preservation
process is simple even if complex conditions and complex derivations can be used. If
the mappings language would provide further constructs that are not directly expressed
in terms of conditions to be ful�lled, then it would be much more di�cult to preserve
consistency. With such constructs, it would not only be more di�cult to show that
mappings preserve consistency but it would already be more di�cult to de�ne how the
consistency conditions to be preserved can be obtained from a mapping.
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7.8. Conclusions and Future Work

abstract mappings with
derived enforcement,
inverted operations, and
reaction-based semantics

In this chapter, we have presented a bidirectional language for consistency mappings.
We have compared it to the reactions language to demonstrate that it abstracts away
from many details of consistency preservation directions and that it is completely change-
agnostic in order to address OCSLC 3. In this context, we have also discussed how we
addressed OCSLC 1 with fallback constructs for direction-speci�c checks or enforcements.
Furthermore, we have explained why two di�erent kinds of conditions are necessary and
su�cient to check conditions on one of two sides and to enforce them for both sides. For
both kinds of conditions, we have presented all operators that are currently provided
in detail. Furthermore, we have discussed how enforcement code can be derived from
checks for the �rst kind of conditions and how the second kind of conditions can be
bidirectionalized using composable, operator-speci�c inverters. To illustrate how several
mappings can be combined to preserve consistency in more complex situations, we have
explained which possibilities are o�ered by mapping dependencies and multi-parameter
mappings. Moreover, we have described the syntax and how we addressed OCSLC 4
with a prototypical compiler, for example, by indirectly calling generic platform code via
mapping-speci�c wrappers. Finally, we have explained the semantics of the mappings
language by describing how reactions can be created to check and enforce consistency
according to a mappings speci�cations in reaction to user changes.

answers to three
subquestions of research
question 2

Similar to the previous chapter on the reactions language, we have also provided
answers to the subquestions 2.1, 2.3, and 2.4 of research question 2 as they correspond to
the Open Consistency Speci�cation Language Challenges 1, 3, and 4. We have showed
how bidirectional constructs of the mapping language can be used if consistency can
be expressed with checks for which enforcement can be derived and with conditions
that relate both mapping sides using operations that can be inverted. In such cases,
the mappings language relieves developers from explicitly specifying when and how
conditions have to be checked or enforced after changes on one or another side. Moreover,
we have described how these bidirectional constructs are realized in a way that gives
developers the possibility to foresee how consistency will be preserved according to a
mappings speci�cation by either studying the explanations of the language semantics
or by inspecting the generated code, which directly reproduces all type and naming
information provided in a mapping. Nevertheless, the mappings language can also be
applied if these concerns have to be considered and controlled as it provides powerful
fallback constructs.

future detailed
improvements, operator
reuse mechanisms, and
fine-grained reactions

Future work on the mappings language can be arranged in three groups for detailed
improvements, operator reuse, and �ne-grained reaction realization. To improve details of
the mappings language, several existing language constructs could be extended and new
language construct could be introduced. The negated equals operator, for example, could
be extended to also support references. Furthermore, a new possibility could be introduced
to specify a concrete metaclass that is instantiated for a mapped abstract superclass.
Additionally, inverters that update more than one source attribute could be provided.
An important area of future work, could be a reuse mechanism for developer-de�ned
operators that are not yet supported in single-sided conditions or bidirectionalizable
conditions. Such a mechanism could give developers the possibility to de�ne new reusable
operators for which enforcement-derivation or inversion code only needs to be provided
once. These operators could then be directly reused in future mappings and would no
longer need to be realized as two separate helper methods that can be called from check
and enforce code blocks or forward and backward enforcement blocks. Last but not
least, we plan to completely implement the proposed realization strategy for impure
mappings so that developers that want to debug their mappings code have to consider
fewer unnecessary reevaluations of mapping conditions.
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8. A Normative Language for Parametrized
Consistency Invariants

only normative
consistency invariants but
no preservation
specificaton

In this chapter, we present our last and smallest language for consistency speci�cations.
It gives developers the possibility to de�ne constraints that always have to hold when
models of two modelling languages are kept consistent. Therefore, these constraints
are called invariants and the language is simply named invariants language. With this
language, developers can specify consistency conditions that have to be successfully
checked but they have to use the reactions or the mappings language in order to specify
how consistency is to be enforced. This means, with the invariants language it is possible
to specify consistency but not consistency preservation, neither in an imperative way
nor in a declarative way. Therefore, we call it a normative language that complements
the reactions and mappings languages.

automated derivation of
queries that return
invariant violating
elements

To support developers in preserving consistency when an invariant is violated, the
compiler of the language automatically derives queries that return the model elements that
violate an invariant. This automation relieves the developer from manually writing code
that searches for model elements that have to be updated because they are responsible for
the invariant violation. Instead of repeating parts of the constraint code in a manual query,
developers only have to expose iterator variables for which invariant violating elements
shall be computed. Such exposed iterator variables are called invariant parameters. For
every invariant parameter, the compiler generates a query by transforming an expression
tree representation of the original constraint. If an invariant is violated at a model context,
then these queries can be called for such a context. They return all those elements that
are responsible for the violation and that were accessed during the evaluation via the
iterator variable that matches the invariant parameter. This way, these invariant violating
elements can directly be accessed in reactions, mappings and in Java code to preserve
consistency.

based on OCL-aligned
expressions, an article and
a bachelor’s thesis

The invariants language is built on top of the Xbase expression language, which can
be seen as an extensible dialect for Java method body expression (see section 2.1.2 and
5.4.2). Furthermore, it reuses our expressions extension that provides equivalent methods
for collection operators and iterators of the Object Constraint Language (OCL) (see
subsection 5.4.3). We developed the automated derivation of queries and the invariants
language together with Sebastian Fiss, who developed a prototypical compiler that
generates the queries. He also wrote his bachelor’s thesis on this topic [Fis15], which
was supervised by the author of this dissertation. Texts, �gures and tables of this chapter
are based on a joint article [FKL16].

8.1. Invariants for Consistency Preservation

Before we explain how queries for elements that violate an invariant are automatically
derived from the constraints, we brie�y introduce the invariants language and motivate
the query derivation.

8.1.1. Normative Inter-Language Invariants

particular with respect to
consistency preservation
and the languages

Some constraints that have to be enforced when models of two modelling languages
are kept consistent are already de�ned for one of the two languages, for example in terms
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1 context ReadingRoom

2 invariant AtLeast3ReferenceCopies(Book b)

3 constraint self.books.forAll[Book b |

4 b.referenceCopy implies (b.copies >= 3)]

Listing 8.1: Initial example of an invariant with a simpli�ed constraint for the number of reference
copies of books in a reading room of a library

ReadingRoom Book

referenceCopy:boolean
copies:int

1 books *

Figure 8.1.: Minimal library metamodel for the metaclasses, attributes, and the reference used in
the introductory example invariant

of OCL invariants that are added to the metamodel of the language. Other constraints are,
however, speci�c for the combination of the two languages or for the notion of consistency
that is to be preserved. In many cases, such constraint always have to hold for all models
and at all times so that they are often called invariants. The invariants language presented
in this chapter gives developer the possibility to specify such inter-language constraints
for consistency preservation.

initial example invariant to
show language structure

We will explain and illustrate the structure of the invariants language using an initial
example invariant that is provided in Listing 8.1. This example invariant is de�ned for a
library metamodel and also used later on in the chapter to explain the automated query
derivation. It speci�es in the context of a reading room that all those books in a reading
room that are used as reference copies have to have at least three copies. A minimal
metamodel for the metaclasses used in this example invariant is shown in Figure 8.1. We
chose this example in order to keep the discussion of the query derivation algorithm
concise. Furthermore, we demonstrate with this example that the approach can also be
used in other contexts where invariant violating elements are needed regardless of a
consistency relation to models of another metamodel.

a context, a signature with
a name and parameters,

and a constraint

Every invariant that is de�ned with the invariants language consists of three �rst-level
elements:

• a context declaration, to specify for which elements the invariant has to hold

• a signature with a unique name and optional parameters for the query derivation

• a constraint expression that has to yield a boolean result

context for invariant
evaluation

An invariant de�nition starts with the declaration of the context in terms of a name
of a metaclass. All direct and indirect instances of the metaclass with this name have to
ful�ll the invariant at all times to be considered consistent. The name has to be preceded
by the keyword context and in our example this context metaclass is named ReadingRoom

(line 1). An evaluation of an invariant is always performed for a speci�c instance of the
context metaclass. These instances are called context elements. Furthermore, the context
metaclass is treated as an implicit �rst parameter during query derivation.

name for referencing the
invariant and parameters

for queries

The context metaclass has to be followed by an invariant signature in an invariant
de�nition. This signature starts with a unique name for the invariant, which has to be
preceded by the keyword invariant. The name is used to refer to the invariant when it
is evaluated or when queries for invariant violating elements are executed. Our example
invariant is named AtLeast3ReferenceCopies (line 2). After the name the signature may
contain optional invariant parameters, which have to be given in parentheses and have
to be separated by a comma. Each parameter declaration consists of a metaclass name
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and an identi�er for the parameter. In our introductory example, we only specify a single
parameter for the metaclass Book with the identi�er b (line 2). During the generation of
queries for an invariant, each parameter declaration is bound to an iterator variable in
the invariant expressions. This iterator variable has to have a compatible type and the
same identi�er.

arbitrary boolean
expressions as invariant
constraints

Finally, an invariant de�nition ends with the invariant constraint. Such a constraint
is an arbitrary Xbase expression that returns a boolean. In particular, the constraint
expression can use the collection operators and iterators of our OCL-aligned expressions
extension (see subsection 5.4.3). To use the automated query derivation, the constraint
expression of an invariant has to contain iterator expressions with iterator variables that
match the type and identi�er of an invariant parameter. In the constraint expression, the
context element at which the invariant is currently evaluated can be accessed via the key-
word self. The constraint expression has to be preceded by the keyword constraint. In
our example the constraint expression starts with a context element of type ReadingRoom,
calls the getter for the reference books, and invokes the iterator forAll on the resulting
collection. This iterator has an iterator variable of type Book that is identi�ed with the
variable name b. It contains an implication for every element in the collection that is
iterated. This implication demands that the value of the integer attribute copies has to
be at least 3 when the boolean attribute referenceCopy is set to true.

almost identical abstract
syntax as OCL

To ease the usage of the invariants language for developers that are already familiar
with OCL invariants, we adopted the abstract syntax of OCL and aligned the concrete
syntax of the invariants language to OCL where this was possible. More speci�cally, the
abstract syntax of an invariant is identical to that of an OCL invariant except for two
di�erences: Invariant names in OCL are optional and invariant parameters can only be
provided in the invariants language.

partly di�erent concrete
syntax than OCL

There are small di�erences between the concrete syntax of the invariants language
and the concrete syntax of OCL. These di�erences mostly result from the Java-based
expression language Xbase, which we reused to build the invariants language (see sub-
section 5.4.3). Model elements as well as their attributes and references are accessed
in the invariants language in the same way they are accessed in OCL. In contrast to
OCL, the invariants language also sticks to the dot notation of Java to access �elds of
collections and to invoke methods on them instead of using the arrow notation (->).
Furthermore, square brackets [...] instead of parentheses (...) have to be used for
collection operators and iterators in the invariants language. The reason is that they are
realized using lambda expressions of Xbase. Furthermore, the types that are provided by
Java and the metamodel for which invariants are de�ned have to be used in the invariants
language, for example for collections and primitive types, instead of OCL counterparts.
For most language constructs, such as enumerations, null values, arithmetic expressions,
and logical expressions there are, however, no remarkable di�erences between OCL and
Xbase and therefore also not between OCL and the invariants language. Finally, OCL
methods starting with the pre�x ocl, such as oclAsType or oclIsTypeOf, have equivalent
counterparts in Java or Xbase, which can be used in the invariants language.

8.1.2. Invariant Violating Elements

elements to be updated do
not need to be the
changed ones

To preserve consistency when an invariant is no longer ful�lled after a user change,
consistency preservation actions have to update models in such a way that the invariant
is ful�lled again. Especially for complex models or invariants these model elements to
be updated are not necessarily those model elements that were changed by the user.
In such cases, it is necessary to obtain the right model elements on which consistency
preservation actions are to be performed.

context elements o�en not
close enought to violating
elements

One possibility to �nd elements to be updated, for example in case of OCL invariants,
is to start at the context element at which the invariant evaluation started and �nally
failed. As in the invariants language, this context is only an element of a given type
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which is provided in addition to the boolean constraint expression and the name of the
invariant. Many OCL invariants inspect, however, not only this context element but
numerous di�erent elements that are directly or indirectly related to the context element
at which the evaluation started. Therefore, the context element of an OCL invariant often
does not directly indicate where, how, and why a model violates the constraints.

redundancies in
constraints and code that

searches for violating
elements

Another possibility to �nd those elements that are responsible for an invariant violation
and that have to be updated, is to compute the set of elements that were accessed during
the failed evaluation of the invariant (see subsection 10.2.3). The elements to be updated
have to be responsible for the invariant violation and updating them has to lead to a new
ful�llment of the invariant. Therefore, these elements to be updated have to be in the set
of elements that were accessed during the evaluation. We mentioned, however, already
that it is common that many model elements are accessed during invariant evaluation,
for example because all instances of a metaclass are checked. Thus, it can be di�cult
to �nd the elements on which actions are to be performed in this possibly large set of
elements. Therefore, developers often write query code that searches for elements that
caused an invariant violation in addition to the code for the invariant constraint. The
invariant constraint and such queries often share many redundant parts. Model navigation
statements and condition checks, for example, often have to be repeated. Even in cases
where only a few statements are redundant for a single invariant, the amount of duplicated
code can grow to a considerable size for metamodels with hundreds of invariants, such as
the Uni�ed Modeling Language (UML) [ISO12b]. This code duplication can be a source
for costly errors and can lead to unnecessary development and maintenance e�ort.

8.1.3. Parameters for Query Derivation

parameters that expose
iterator variables for

queries

Redundant invariant constraints and queries for invariant violating elements are
not necessary if the elements that are to be updated can be extracted from the set of
invariant violating elements. This set of all elements that are responsible for a violation
is always indirectly but completely speci�ed by the constraint. In order to obtain only
those elements on which a particular consistency preservation action is to be performed,
the invariants language gives developers the possibility to expose iterator variables
as parameters. For these parameters, queries are automatically derived to yield those
elements that violate the constraint and that were accessed during the evaluation via the
iterator variable. Additionally, the context metaclass is used as an implicit �rst parameter
of an invariant to also provide access to the context element of an invariant violation.

8.1.4. Automated Deriviation of Queries for Parameters

deriving queries by
transforming a constraint

expression tree

For every explicit parameter of an invariant, the compiler of the invariants language
generates a query. These queries are obtained by transforming an expression tree repre-
sentation of the original invariant constraint. Broadly speaking, these queries perform
the same computation as the constraint until the collection of model elements is obtained
for which an iteration with an iterator variable that matches the parameter is speci�ed.
This collection of model elements is then �ltered to obtain those elements that contribute
to the fact that the invariant constraint is not ful�lled. Our example invariant, which
we have presented in Listing 8.1, only has a single invariant parameter Book b. This
parameter matches the only iterator of the invariant constraint. The resulting query
for this parameter and iterator variable is almost identical to the constraint because the
example invariant constraint is not complex: It speci�ed that all books in a reading room
that are used as reference copies have to have at least three copies. Therefore, the query
only has to select those books in the reading room that are used as reference copies but
have less than three copies:

self.books.select[Book b | !(b.referenceCopy implies (b.copies >= 3))]
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This query is derived from the constraint by replacing the forAll iterator with a select

iterator for which the iterator expression is negated. It would not be di�cult for a
developer to manually specify this query. It is, however, an unnecessary source for errors,
especially when numerous and more complex constraints with several iterators are used.

8.2. Iterator Variable Queries for Violating Elements

After this introduction and motivation for the invariants language, we will now explain
the automated process of deriving iterator variable queries for violating elements. First,
we give an overview on the complete process and mention current limitations. Then, we
introduce a more complex invariant based on our initial example. Next, we explain the
individual steps of creating an expression tree, matching the parameter, and transforming
the nodes of the expression tree. Finally, we illustrate these steps using the extended
example.

8.2.1. Transformation Overview and Limitations

four steps for parsing,
matching, transforming,
and printing

As we already stated above, we present a process for transforming an invariant con-
straint to a query that yields model elements that violate the invariant. This process is
performed in four steps. First, an expression tree is created to represent the invariant
constraint in a format that is suitable for the necessary transformations. Then, every
invariant parameter is matched to the unique iterator expression node in the tree that
uses a compatible type and the same identi�er for the iterator variable as the parameter.
For every invariant parameter, a copy of the constraint expression tree is transformed
to a query expression tree according to rules for the individual node types of the tree.
Finally, for each query expression tree a method is generated that can be called from
reactions, mappings, or Java code to obtain elements that violate the constraint at a given
context.

direct parameters for
feature accesses and local
variables not yet
supported

The presented approach has two syntactical and a semantical limitation: Currently,
only invariant parameters that match an iterator variable can be speci�ed. Attributes and
references of model elements can be accessed in invariant constraints in an equivalent
way to OCL but these accesses cannot yet be bound to invariant parameters. Furthermore,
local variables can be used to simplify constraint expressions but they cannot be bound
to invariant parameters. The e�ect of such feature accesses and local variables can also
be expressed with additional iterator expressions. Therefore, the restriction to iterator
variables is currently an inconvenience for developers but it does not limit the number
of cases in which our query derivation approach can be applied. As let expressions
and de�nition constraints for local variables are a commonly-used feature of OCL, this
limitation of the invariants language should be addressed in future work.

not all operators may
occur a�er a matched
iterator variable

Furthermore, our approach is limited to constraints in which the matched iterator vari-
able is only followed by operations for which we de�ned transformation rules. Currently,
these operations are not, and, or, select, map, forAll, and exists. That is, nested param-
eters an certain operators, such as collection size comparisons, are not yet supported.
For other operators, such as the operator one, an automated derivation of elements that
violate the constraint would, however, not be enough because the set of elements cannot
be �ltered appropriatedly. More speci�cally, di�erent elements are responsible for di�er-
ent ways in which a one constraint can be violated so that the queried elements have to
be checked again. The restriction to certain operator only applies to expressions after a
matched iterator variable. All expressions prior to it may perform arbitrary operations.
In future work, nested parameters could be supported by transforming non-nested and
nested expressions separately and combining them afterwards. Moreover, transformation
rules for the mentioned collection size comparisons operators and the operators includes
and excludes could be added to complete the query derivation support.
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Library

Book
Edition

referenceCopy:boolean
copies:int

Stack

closed:boolean

books

1

1..*

editions
1 1..*

stack
1..*1

stacks

1

1..*

Figure 8.2.: Library metamodel for the complete version of the example invariant

8.2.2. Extended Example Invariant

books that are stored in
stacks and that have

editions

In order to be able to explain more transformation rules we extend our initial example
invariant, which we have presented in Listing 8.1. Books of the intial metamodel directly
belong to a reading room and have a boolean attribute referenceCopy as well as an integer
attribute copies (see Figure 8.1). For our extended example invariant, we use a slightly
more detailed metamodel, which is shown in Figure 8.2. Now, books do not belong to a
�xed reading room but to a library and they are stored in stacks which may be open to
the public or not. Furthermore, the attribute that marks reference copies and the attribute
for the number of copies are no longer speci�ed for a book but for a speci�c edition of a
book. Therefore, the requirement that at least three references copies have to be available
can no longer be speci�ed as before.

di�erent possibilities for
elements that are

responsible for a violation

The extended invariant for the more detailed library metamodel takes the concept of
open stacks and book editions into account as shown in Listing 8.2. It speci�es that the
sum of copies for all editions of a book in an open stack must be more than three (line
3–7). If the constraint is violated, there are several possibilities to retrieve the model
elements that are responsible for the violation and therefore may need to be updated.
A trivial solution would be to return the library context element (line 1). This solution
ignores, however, the book, stack, and edition elements that are inspected during a check
and does not determine a precise cause for an invariant violation, especially if the library
contains many books. The model elements that are directly responsible for a violation of
this invariant are either those lists of editions for which the sum of copies does not satisfy
the constraint or the books to which these editions belong. With our approach, both
possibilities are supported. Lists of editions can be retrieved by specifying an invariant
parameter List<Edition> editions and the books can be retrieved by specifying an
invariant parameter Book b (line 2). To illustrate the query deriviation, the book iterator
variable is chosen as it is followed by further expressions that have to be transformed
accordingly. We will use this invariant and the book parameter in the remainder of this
chapter to explain the query derivation rules in detail.

an example query
demonstrating

To directly illustrate the result of query derivation before we explain the detailed
steps, we present the query for the book parameter of the extended example invariant in
Listing 8.3. Like the constraint, it iterates over all books that are referenced by the library
context element. In this iteration the query does, however, not simply select all books
that are in an open stack to demand a lower bound for the number of reference copies
that exist for all editions of the book. Instead, it directly adds another condition to the
iterator expression that selects only books in open stacks. This condition is similar to the
expression of the constraint in which the editions that are used as reference copies are
�ltered and in which a lower bound for the sum of copies for these editions is formulated.
There are only two di�erences. First, the lower bound is not demanded for every sum of
reference copies of every book but for the book of the current iteration. Second, the lower
bound requirement is negated to obtain exactly those books that violate the constraint.

initial and extended
invariant illustrate need

for queries

Both, the initial and the extended version of the example invariant illustrate why
elements that are accessed for iterator variables can be helpful in addition to context
elements. The initial version of the invariant demonstrates a general case in which a
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1 context Library

2 invariant AtLeast3OpenReferenceCopies (Book b, List<Edition> editions)

3 constraint self.books.select[Book b | !b.stack.closed]

4 .map[it.editions.filter[it.referenceCopy]]

5 .forAll[List<Edition> editions |

6 editions.reduce[e1,e2 | e1.copies + e2.copies] >= 3

7 ]

Listing 8.2: Extended example invariant ensuring that at least three copies of any edition have to
be present for reference books in an open stack

1 context Library

2 query Books4AtLeast3OpenReferenceCopies

3 self.books.select[Book b | !b.stack.closed &&

4 !(b.editions.filter[it.referenceCopy].

5 reduce[e1,e2 | e1.copies + e2.copies] >= 3)

6 ]

Listing 8.3: A query for the extened invariant example returning open reference books with less
than three copies

constraint only has to hold for instances with incoming references from the context
element: It does not need to hold for books that are not in the reading room. Nevertheless,
the reading room itself is not the element that needs to be updated to ful�ll the invariant
again. The extended version of the invariant illustrates another general case in which a
single context element is not su�cient because a combination of elements is responsible
for an invariant violation: Violations of this invariant cannot be resolved by updating a
libary element or a stack but by updating books respectively the number of copies only
in those editions that are used as a reference copy.

8.2.3. Expression Trees for Constraint Transformation

AST not suited for
constraint to query
transformation

The grammar of the invariants language speci�es that invariant constraints can be
arbitrary Xbase expressions. Therefore, we can obtain an Abstract Syntax Tree (AST) that
consists of instances of the metaclass XExpression from the parser for the invariants lan-
guage, which we generated using Xtext. The subclasses for di�erent types of expressions
that are de�ned by the Xbase grammar were created to support the development of a
parser, validator, and code generator for Xbase. On the one hand, the structure of such an
AST and the available information in it re�ects many case distinctions that are not needed
to transform a constraint into a query. On the other hand, there are also expressions
that can be treated the same way in the Xbase compiler but that have to be di�erentiated
during query derivation. All method calls, for example, are represented in terms of a
XMemberFeatureCall in Xbase, but they have to be transformed in a way that depends on
the speci�c method that is called. Calls to the methods select or forAll, for instance,
have to be transformed in another way than other method calls. Therefore, we created a
expression tree metamodel that di�erentiates exactly between those node types that have
to be transformed di�erently and uni�es node types that can be treated identically. This
made it possible to de�ne transformation rules exactly for the appropriate node types
and to only consider those properties that are relevant for the transformation.

class diagram for
expression tree and
mapping to AST
subclasses

A simpli�ed class diagram that depicts our metamodel for expression trees is shown in
Figure 8.3. It also shows some of the references, which link nodes of our transformation-
speci�c expression trees to parent nodes and child notes. These references are essential
because the transformation is realized in terms of tree traversal. To obtain an instance of
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Metaclass for
transformation

Example invariant constraint ex-
pressions

Corresponding
subclass of XExpression

Forall forAll[...] XMemberFeatureCall
Exists exists[...] XMemberFeatureCall
Select select[...] XMemberFeatureCall
Map map[...] XMemberFeatureCall
Operation self.getBooks(), e1.copies XMemberFeatureCall
And && XBinaryOperation
Or || XBinaryOperation
Binary <, +, /, ... XBinaryOperation
Not ! XUnaryOperation
Feature self, editions, b, it, 3 XFeatureCall or Literal
Function [a|expression(a)] XClosure
Block {...} XBlockExpression

Table 8.1.: The classi�cation of nodes that are used to build the expression tree

this expression tree metamodel for a particular invariant constraint, nodes of the AST
provided by the parser are transformed to nodes of our expression tree. The metaclasses
that are instantiated for a particular AST subclass of XExpression are given together with
some exemplare invariant constraint expresssions in Table 8.1. With the current compiler
of the invariants language, the following expressions cannot be transformed because the
appropriate node types and transformation rules are not de�ned yet: type casts, control
�ow expressions, and variable declarations. As a workaround, the language provides
extension methods to transform equivalent constraints that use these extension methods
instead of the unsupported expressions. In future work, the necessary node types and
transformation rules will be added to replace these extension methods.

expression tree for
extended example

invariant

To illustrate the transformation-speci�c representation of constraint expressions, we
present the expression tree for the extended example invariant in Figure 8.4. The part
of the concrete syntax belonging to a node of the expression tree is listed in a separate
line in square brackets. To obtain the pretty-printed expression shown in Listing 8.2, an
in-order traversal has to be performed on the tree.

8.2.4. Matching Parameters to Iterator Nodes

identical names and
assignment-compatible

types

To prepare the transformation of the invariant constraint for each speci�ed invariant
parameter, every invariant parameter has to be matched to a unique node of an iterator
that uses a compatible type and identi�er for the iterator variable. More precisely, the
expression tree is traversed with in-order depth-�rst search to �nd all nodes of type
IterateNode. If the lambda function of an iterator node speci�es an iterator variable that
has the same identi�er as the invariant parameter, the node is a name match candidate.
In order to provide only unambiguous matches, both invariant parameter names and
iterator variable names have to be unique within the complete invariant constraint even
if their types are di�erent. A name match candidate is only matched to a parameter if
the type of the iterator variable is assignment-compatible to the type of the invariant
parameter. This ensures that the derived query only retrieves elements that can be bound
to the return type that is de�ned by the invariant parameter type. In the running example
(Listing 8.2), the name of the invariant parameter b (line 2) matches the iterator variable
of the select operation (line 3). Therefore, they form a name match candidate. As the
iterator variable and the parameter have the same type they are successfully matched to
each other. To prepare the transformation to a query, a matching iterator node for each
invariant parameter is computed and a separate copy of the expression tree is created for
it. The rules for this transformation are presented in the next section.
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8. A Normative Language for Consistency Invariants

ForAll

[forAll]

Function
[editions]

Binary
[>=]

Feature
[3]

Operation
[reduce]

Function
[e1,e2]

Binary
[+]

Operation
[copies]

Feature
[e2]

Operation
[copies]

Feature
[e1]

Feature
[editions]

Map

[map]

Function
[it]

Operation
[�lter]

Function
[it]

Operation
[referenceCopy]

Feature
[it]

Operation
[editions]

Feature
[it]

Select
[select]

Function
[Book b]

Not
[!]

Operation
[closed]

Operation
[stack]

Feature
[b]

Operation
[books]

Feature
[self]

Figure 8.4.: Illustration of the custom expression tree obtained for the complete example invariant
(matched iterator printed in bold, parents of it in italics)
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8.2.5. Parent-Dependent Top-Down Transformation

top-down in an in-depth
tree means from right to
le� for text

After generating an expression tree and matching an iterator node for every invariant
parameter, a copy of the constraint expression tree is transformed to obtain an expression
tree for a query that selects the desired elements. A transformation algorithm is executed
independently for every invariant parameter. Given the constraint expression tree and
an iterator node matching an invariant parameter, this algorithm recursively applies
transformation rules to nodes of the tree. It starts top-down at the root node of the
tree and transforms all nodes on the path to the matched iterator node, which is always
converted into a SelectNode. Recall that the textual representation of the constraint
expression corresponds to an in-order traversal of the expression tree. Therefore, the
root node represents the last operation of a chain of operations that starts at the context
element. The algorithm �rst transforms this node, which is a direct or indirect parent of
the matched iterator and then transforms all other parents. In the textual representation
this corresponds to transforming the constraint expression from right to left.

parent-dependend
transformation of nodes

So far, we have only explained in which order the nodes of the constraint expression
tree are transformed to yield the query expression tree. Now, we will brie�y explain
why the nodes are not transformed in isolation before we explain the transformation
rules for individual nodes. To create the needed selection restrictions for the query, each
node is transformed in a way that takes the parent node, which was already transformed,
into account. In the textual representation this means that an expression part to the
right of the current expression part is considered. At the end of the transformation, a
SelectNode is at the former position of the matched iterator node and all former parent
nodes have been transformed accordingly. For the textual representation this means that
beginning with the matched iterator the remaining right part of the constraint expression
was transformed.

8.2.6. Node Transformation Rules for Queries

We will now brie�y describe the transformation rules for all nodes that are currently
supported.

transform negations using
DeMorgan’s laws

For NotNodes DeMorgan’s laws are applied: Negated conjunctions and disjunctions are
replaced through their counterparts with negated inner expressions. A negated universal
quanti�cation is replaced with an existential quanti�cation for the negated predicate, and
vice versa. The node metaclasses a�ected by these rules are AndNode, OrNode, ForAllNode,
and ExistsNode.

replace universal
quantification with select
for negated predicate

A ForallNode speci�es that all elements in the target collection have to satisfy a given
predicate. Therefore, the resulting query has to select all elements that do not satisfy the
predicate and thus violate the constraint:

coll.forAll[e | predicate(e)]

coll.select[e | !predicate(e)]

negate predicate of
existential quantification

An ExistsNode speci�es a predicate that has to be satis�ed by at least one element in
the target collection. If the constraint is violated, then all elements in the target collection
are responsible as none of them satis�es the predicate. If at least one element satis�es
the predicate, then no elements have to be retrieved. Both can be achieved with the same
query by restricting the select operation in such a way that it returns all elements in the
�rst case and no elements in the second case:

coll.exists[e | predicate(e)]

coll.select[!coll.exists[e | predicate(e)]]

combine parent select
using a conjunction and
variable substitution

As we do not yet support nested parameters, a SelectNode can only occur with a parent
node or as the result of a prior transformation. The transformation of such nodes is
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8. A Normative Language for Consistency Invariants

performed in three steps: First, the parent node is transformed by applying the appropriate
transformation rule to it. The result of this step is a SelectNode for the parent. Then,
the predicate of this parental SelectNode is combined with the predicate of the current
SelectNode in a conjunction. Last, the iterator variables are substituted to form a single
resulting SelectNode:

coll.select[e | predicate(e)].select[p | parentPredicate(p)]

coll.select[e | predicate(e) && parentPredicate(e)]

inline map by replacing
iterator variable through

function application

A MapNode applies a function to each element of the target collection. Further iterate
operations may be performed on the resulting collection of function values. These
operations are represented as parent nodes. Altoghether, a MapNode is transformed
in three steps: First, the parent operations are transformed into a SelectNode. Then,
the MapNode is inlined into this SelectNode by replacing all occurrences of the iterator
variable with appropriate calls to the function speci�ed in the map expression:

coll.map[e | function(e)].select[p | predicate(p)]

self.select[e | predicate(function(e))]

remove expression that is
out of scope for a

conjunction

An AndNode combines an expression that contains the unique iterator variable that
matches the invariant parameter with another expression. For the resulting query,
elements referenced by this iterator variable have to be retrieved if the expression with
the matched variable evaluates to false. Whether the other expression without the
matched variable also evaluates to false has no in�uence on the elements to be retrieved.
Therefore, the transformation removes the expression without the matched variable
and only transforms the expression with the matched variable. For this transformation,
the order of the expressions does not matter. A swapped invariant otherExpression &&

self...e... is transformed analogue, but we only provide the de�nition once:

coll.forAll/exists[e | predicate(e)] && otherExpression

coll.select[e | predicate(e)]

negate unmatched
predicate of disjunction

and add it using a
conjunction

An OrNode combines an expression that contains the matched iterator variable and
another predicate similar to an AndNode. In contrast to the transformation for the
conjunction, the other predicate of the disjunction cannot be ignored. If the expression
evaluates to false but the other predicate holds, then the constraint is not violated.
Therefore, the retrieved elements of the child expression have to be selected by the query
only if the other predicate is violated. This is achieved by adding a conjunction with a
negated predicate to the transformation result of the other expression:

coll.forAll/exists[e | predicate(e)] || otherPredicate

coll.select[e | predicate(e) && !otherPredicate]

8.2.7. Transformation Example

exemplary application of
transformation rules

To illustrate the overall transformation algorithm and the individual transformation
rules, we explain the transformation of the extended example shown in Listing 8.2 on
page 195 and Figure 8.4 on page 198. The node that is matched to the invariant parameter
Book b is the Select node, which is printed in bold. To obtain a query for this parameter
and node, the algorithm transforms the parent nodes of the matched node, which are
printed in italics. It starts at the most distant parent node ForAll, which represents the
following constraint part (except for the omitted type of the iterator variable, which is
inferred by the compiler):
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.forAll[editions | editions.reduce[e1,e2 | e1.copies + e2.copies] >= 3]

After applying the rule for forAll, which we have presented in the previous section, the
node is a Select that can be textually represented as:
.select[editions | !(editions.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

The algorithm continues by transforming the Map node, which is the next child of
the transformed parent node on the way to the matched iterator node. Before the
transformation, this node can be textually represented as:
.map[it.editions.filter[it.referenceCopy]]

After applying the transformation rule for map, the previously obtained Select node
contains the inlined call to the function filter of the transformed map expression:
.select[!(it.editions.filter[it.referenceCopy].

reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

Last, the Select node with the invariant parameter is transformed by incorporating the
parent node’s predicate and substituting the iterator variable:
.select[Book b | !b.stack.closed &&!(b.editions.filter[it.referenceCopy].

reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

The �nal result is the query that we have already presented in Listing 8.3 on page 195. It
retrieves all books that violate the constraint because the are in an open stack and their
total number of presence copies for all editions is less than 3.

8.3. Conclusions and Future Work

invariants with
iterator-based derivation
of queries for violating
elements

We have presented a language for parameterized invariants with an automated deriva-
tion of queries for model elements that violate an invariant. It is closely aligned to OCL,
provides equivalent collection operators and iterators and additional invariant parame-
ters. We have discussed di�erent ways for obtaining elements that are responsible for an
invariant violation and have motivated why constraint code should not be manually du-
plicated in queries for such elements. Moreover, we have explained how iterator variables
can be used to explicitly declare which elements that cause an invariant shall be retrieved.
We have presented an automated derivation of queries that return those elements that
were accessed for an iterator variable and that are responsible for an invariant violation.
For expressions that may occur in iterators, we have presented transformation rules
that are applied to a special tree representation of the invariant constraint to obtain the
appropriate queries. Furthermore, we have illustrated the invariants language and its
query derivation using a running example.

local variables, further
operators, and nested
parameters to be
supported in future work

In future work, support for local variables and further operators, such as collection size
comparators, should be added to the query derivation. These constructs can currently only
be used in invariant constraints before an iterator that is matched to a parameter occurs.
The e�ect of the local variables and the operators can also be expressed with additional
iterator expressions. This is, however, inconvenient and local variables are a commonly-
used feature of OCL which should also be supported by the invariants language during
query derivation. Furthermore, the derivation algorithm should be extended in future
work to also support nested parameters. For this, we suggest to transform non-nested
and nested expressions separately to combine the results afterwards.
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9. Evaluation and Discussion

9.1. Evaluation Overview

evaluation of theoretical
and practical properties

In this chapter, we explain how we evaluated theoretical and practical properties of the
languages we presented in this thesis. Before we present an overview of our evaluation,
we brie�y introduce the four properties that we evaluated:

Completeness was evaluated as the extent to which a language supports all use cases that
are theoretically possible

Correctness was evaluated di�erently for each language but altogether it is the theoretical
property of yielding the intended and claimed results in all possible cases

Applicability was evaluated by examining whether the languages can be applied in

practice to realize realistic consistency requirements by creating speci�cations that lead

to the expected results

Bene�t was evaluated by analyzing whether applications of the languages demonstrate

advantages in comparison to other languages

di�erences to applicability
and benefit evaluation as
presented by Böhme and
Reussner [BR08]

The two practical properties applicability and bene�t are based on properties with the
same name that were originally introduced for the evaluation of metrics for prediction
models by Böhme and Reussner [BR08, p. 15]. As programming languages and prediction
metrics have di�erent characteristics, these properties are, however, not identical. Böhme
and Reussner state that applicability is evaluated by checking “whether the input data can
be acquired reliably and whether the results of the metric can be interpreted meaningfully”.
For our formulation of applicability, we replaced the check that metric results can be
interpreted meaningfully with a check for expected results. Furthermore, we added
the restriction to evaluate applications in which realistic requirements are realized. For
evaluations of bene�t, Böhme and Reussner require that an “approach has to demonstrate
its bene�ts over other competing approaches”. This can be regarded as equivalent to
our formulation, but the subsequent explanations of Böhme and Reussner illustrate that
evaluations of bene�t can be performed very di�erently and can be very costly. We cannot
de�ne in advance for all approaches how often they have to be applied together with
one or more competing approaches and under which conditions. Similarly, we cannot
precisely de�ne upfront what will be considered a “bene�t”. Both, the conditions of the
comparison and the bene�t to be compared have to be de�ned and discussed individually
for every evaluation.

outline and section
references for each
language

To outline how we evaluated each property individually for each language, we provide
two tables. Table 9.1 presents an overview on our evaluation of theoretical properties
and Table 9.2 summarizes the evaluation of practical properties. We do not yet explain
the evaluation parts but provide references to the sections that discuss them. The evalu-
ation parts are structured according to the evaluated property so that, for example, all
evaluations of completeness are described in a common section. When discussing the
evaluation of an individual property, we almost never refer to evaluations of the same
property for other languages, except for the change and expression languages, which
were designed for reuse. Therefore, the two tables can also be used to read the discussion
of all evaluated properties for a speci�c language independent of the other languages by
following all section references in the appropriate row in both tables.
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9. Evaluation and Discussion

rationale for not
evaluating the challenges

contribution

By evaluating all languages presented in this thesis, we also evaluated all contributions
except for the identi�ed and classi�ed challenges to consistency preservation (chapter 3).
We did not perform an evaluation for this contribution in order to focus on the languages
that address the identi�ed challenges and on their evaluation. One possibility to evaluate
this contribution in the future is to analyze which of the identi�ed challenges are not
only claimed to be addressed by other approaches but are demonstrably successfully
addressed by them. For this, it would be necessary to �nd or create exemplary consistency
preservation scenarios in which the identi�ed challenges occur. Furthermore, it would be
a risk that speci�c languages and consistency preservation tools are misjudged if not all
features that address a challenge are known or if they are not used correctly. Therefore,
we are convinced that the e�ort for such an evaluation would not outweigh the bene�ts.
Instead, it would be favorable to create benchmarks for consistency preservation scenarios
together with developers of other consistency preservation approaches. An evaluation
of whether these approaches successfully address the challenges we identi�ed, could
then be performed by the developers based on the common benchmark. Such an idea of
a common benchmark is not new and has already been pursued by many researchers,
for example, especially for bidirectional transformations [Anj+14a; Che+14]. So far,
no common consistency preservation benchmark that is realistic because it exhibits
substantial requirements and challenges of modelling languages that are widely used in
practice, is, however, publicly available. Nevertheless, the challenges that we identi�ed
and classi�ed in this thesis, can be used to create such a benchmark in the future.

9.2. Evaluation of Theoretical Completeness

di�erent intended ranges
of use, di�erent notions of

completeness

For each language presented in this thesis, we discuss the property of completeness,
which denotes whether the language supports all use cases that are theoretically possible
and intended. As the languages and their intended ranges of use vary strongly, we also
have to discuss di�erent notions of completeness for each language. Most languages
are intended for a general range of use, for example, for all models that conform to
EMOF-based metamodels, or for preservation behavior that can be described with a
Turing complete language. Some languages have, however, a more restricted range of
use, such as to act as a replacement for the collection operators and iterators of operation
body expressions of the Object Constraint Language (OCL).

9.2.1. Completeness of the Formal Language

For the formal language, which we have described in chapter 4, we discuss four notions
of completeness:

Model completeness denotes the ability to represent all models that conform to metamod-
els that are de�ned using the metamodelling language standard Essential Meta-Object
Facility (EMOF)

Consistency completeness is the ability to express arbitrary co-occurring consistency
conditions based on correspondences that witness consistency

Change completeness denotes whether all model changes can be represented in such a
way that it can always be analyzed whether they break consistency or not

Update completeness is the ability to express all theoretically possible updates on models
and correspondences in such a way that it can be analyzed whether they preserve
consistency or not
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Completeness of Model and Consistency Representation

syntactical limitations of
representable models

The formal language abstracts away from many details and has some limitations (see
page 23 of section 2.3.1). Most of these limitations are, however, only syntactical as they
do not restrict the set of models that can be represented but the way how models are
represented. An example for such a syntactical limitation of the formal language is that
it is currently not possible to represent references to metaclasses of other metamodels
(limitation 1). If we would extend the formal language to also support such cases, this
would not conceptually change the way in which consistency can be expressed and has no
semantic in�uence on consistency preservation because metamodel boundaries have no
e�ect on it. Therefore, it is only a syntactical limitation of the formal language. The same
argument applies to the syntactical limitation that it is not possible to express several
models with links to objects of other models (limitation 2). Again, the necessary language
extension would only have syntactical implications as model boundaries have no semantic
in�uence on consistency preservation. We did not extend the language to overcome both
limitations because we are convinced that the risk to decline the understandability is
much higher than the gained bene�t of demonstrating syntactical completeness.

limitation to links and
values that appear only
once and unordered

In addition to syntactical limitations, there are, however, also three limitations that
restrict the set of models or consistency relations that can be represented. They limit the
formal language to cases in which no link points to the same object more than once (limit
6), no value is labeled more than once per object and attribute (7), and links and labels
are unordered (8). This restricts the formal language because reappearence of links and
values as well as the order of links and values could be analyzed in consistency conditions.
If a consistency preservation scenario is encountered in which these multiplicities or the
order make a di�erence, a few changes would be necessary to extend the formal language
to take these concerns also into account.

internal limitations
without e�ect on models
and consistency relations

The remaining limitations 3–5, which we have presented in section 2.3.1, do not restrict
the completeness of the formal language. They neither limit the syntactical variations to
which the language can be applied nor do they limit the models or consistency relations
that can be semantically expressed. The reason for this is that they only limit the
language-internal representation and not to the represented models themselves.

serializability-prerequisite
for consistency imposes a
restriction

In addition to the limitations 6–8, we have imposed a last restriction on the formal
language by making serializability a prerequisite for consistency (see De�nition 13). This
restriction could be overcome if consistency would also be de�ned for models that are
not serializable. The only e�ect of such an extension is that serializability had to be
taken into account in all de�nitions that involve updates. For these updates it had to be
considered that this extension makes it possible that updates break serializability without
breaking consistency.

Altogether, we discussed two limitations that are only syntactical, three limitations for
multiplicities and ordering that could be overcome if the language is extended accordingly,
and the restriction that we made serializability a prerequisite for consistency. This shows
that the formal language could be used to represent all EMOF-based models if it would
be extended so that links and labels for a single object and feature could be ordered and
could point more than once to the same object or value.

Completeness of Correspondence-Based Consistency

complete but simple
representation of
conditions

The de�nition of conditions in the formal language covers all possible conditions as it
simply represents conditions as a list of objects ful�lling the condition (see De�nition 18
in subsection 2.3.3). Therefore, this simple representation of conditions is complete. If the
formal language would, however, be used for something else than for general explanations
of the semantics of the other languages, then this representation of conditions would also
make it very impractical to use the language for speci�c model instances and conditions.
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Thecorrespondence based but
not restricted

fact that our consistency de�nition is correspondence-based does not restrict
its usage (see De�nition 24 in subsection 4.1.2). On the contrary, it provides a way
to con�gure how consistency has to be preserved for models by selecting appropriate
correspondences. If no correspondences are necessary because every ful�llment on one
side has to co-occur with a ful�llment on the other side, then it is still possible to simply
add all these co-occurrences to the set of correspondences to achieve the desired behavior.

Change Complete and Update Complete

change complete but
restricted to isolated
consistency breaks

The last two notions of completeness that we discuss for the formal language concern
changes that are performed by users and that can break consistency as well as updates that
are performed to restore consistency. Changes of arbitrary type for arbitrary elements on
one model side are supported by the formal language (see De�nition 34 in subsection 4.3.1).
The de�nitions of consistency preservation after such changes are, however, limited to
changes that break consistency for at most one consistency rule. This means, that all
theoretically possible changes can be expressed with the formal language but we can
oonly analyze whether an update after such a change preserves consistency or not for
those changes that break a single rule. Therefore, the language is change complete but
preservation is restricted to isolated consistency breaks.

update complete Any theoretically possible updates in reaction to changes can be expressed with the
language to describe how model elements on the other side and correspondences are
updated (see De�nition 30 in subsection 4.2.1). Thus, we call the formal language update
complete.

9.2.2. Change Language is EMOF Complete

complete for any change
of any model element or

property

The change modelling language, which we have presented in subsection 5.4.1, can
be used to describe all changes that can occur in models that conform to EMOF-based
metamodels. This completeness is achieved in two steps. First, the language supports all
changes in such models that can be represented as a single atomic change of a model
element or of a model element’s property. Second, it supports all changes that can be
represented as a combination of atomic change representations. As no other changes are
possible in models conforming to EMOF-based metamodels, the language can be used to
represent any change in such models. Therefore, we call it EMOF complete. The reason
why this completeness can be achieved by only supporting element and property changes
is that all characteristics of EMOF-based models are realized in terms of objects and object
values for properties de�ned in an EMOF-based metamodel. Every possible change that
can be performed on such objects and values can be described in the same way for any
metamodel because EMOF is the �xed meta-metamodel for these metamodels. This way,
everything that can be changed in EMOF-based models can be described without the
need to consider which particular modelling language is used.

9.2.3. Completeness of OCL-Aligned Expressions

not complete but supports
characteristic collection
operators and iterators of

OCL

In subsection 5.4.3, we have presented an OCL-aligned extension for the reused expres-
sion language Xbase (see subsection 5.4.2). This extension is used to support OCL-aligned
expressions for collections in the reactions, invariants, and mappings language. It is,
however, not complete. It does not cover the complete OCL language, The expressions
extension supports all 14 collection operators and 13 out of all 14 iterators1 that can be
used in OCL operation body expressions [ISO12c, pp.156–174]. Collection operators and
iterators are characteristic for OCL. They make it possible to specify constraints in a
declarative way in terms of operations that mostly correspond to well-known mathemat-
ical operations, such as universal quanti�cation for elements of sets. Furthermore, we

1The closure iterator is not yet supported.
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1 reaction {

2 after any change

3 call simulateTuringMachine(change)

4 }

5
6 routine simulateTuringMachine(EChange change) {

7 action {

8 execute {

9 // arbitrary code in a Java dialect, e.g. to simulate Turing machine

10 }

11 }

12 }

Listing 9.1: Exemplary reaction and reaction routine to execute Java code or simulate a Turing-
machine in an execute action block

analyzed that these operations represent a big part of the OCL expressions that are used
to restrict instances of metamodels: More than 80% of the invariants in the metamodel of
the Uni�ed Modeling Language (UML), for example, consist of such collection operator
expressions, iterator expressions, or of expressions that only invoke a getter on a model
element for a feature of a metaclass [Fis15, p.40][FKL16, p.13].

9.2.4. Reactions Language Completeness

computationally complete
and complete constructs
for changes and
correspondences

For the reactions language, which we have presented in chapter 6, we discuss di�erent
notions of completeness for entire reactions, change triggers, correspondence matching,
and for actions. First, we explain how we achieved Turing completeness for the reactions
language. Broadly speaking, the result is that everything that may be necessary to
preserve consistency can be expressed with the reactions language. This computational
completeness is su�cient but it is achieved using a fallback action for imperative code that
should only be used if other update actions cannot be used. Such a fallback is, however,
not necessary for tasks that fall into the responsibility of other parts of the language.
These parts provide constructs for de�ning change triggers and matching corresponding
elements that cover all necessary and possible cases. Therefore, we also show that
the trigger and matching part of the reactions language are complete in the sense that
no other language constructs are necessary to express after which changes a reaction
should be executed. Finally, we demonstrate that the language constructs for retrieving
and managing correspondences are complete, because all types of correspondences and
operations on correspondences can be expressed with them.

Reactions are Turing Complete

reducing Turing machines
to simple reaction with an
execute action block

The reaction language is Turing complete as arbitrary Java code can be executed in
response to arbitrary changes. If it is not possible to express the intended consistency
preservation behavior using particular constructs of the reactions language, a developer
could theoretically decide to express all update behavior in a single execute action block
(see subsection 6.5.5). In this block arbitrary Java code can be speci�ed. To execute this
code after arbitrary changes, it is necessary to de�ne a reaction and a reaction routine
(see Listing 9.1). In the reaction routine the simplest trigger has to be speci�ed using the
change type any change (line 2) and a call to the reaction routine has to be added (line 3).
This routine (line 6–12) only contains an execution action block with the arbitrary Java
code (line 9). As the Java language is Turing complete, this simple reduction shows that
the reactions language is also Turing complete.
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Inminimalistic use of
reactions possible but not
necessary for triggers and

matching

the next sections, we will show that such a minimalistic use of the reactions language
is, however, not necessary. The reason is that the �rst two of the three main steps
of consistency preservation reactions (see section 6.1) can always be expressed with
appropriate language constructs. We will demonstrate that even if some actions can only
be expressed in terms of execute action blocks, it is always possible to use constructs
of the reactions language to express after which changes and on which corresponding
elements these actions shall be performed.

Triggers and Matching are EMOF-Change Complete

specifying when to update
with triggers andmatch

blocks

After the computational completeness of the previous section, we will now show
a notion of completeness for those constructs of the reactions language that make it
possible to specify after which changes a reaction is to be executed. These constructs
give developers the possibility to restrict the execution of reactions to changes that ful�ll
conditions of a change trigger as well as conditions of retrieval conditions and match
checks (see subsection 6.4.1, 6.4.2, 6.5.1, and 6.5.2). Together, these language constructs
make it possible to ful�ll any requirements that specify under which conditions actions
shall be performed after a change in arbitrary models of an EMOF-based metamodel.

EMOF-complete change
types and change
properties checks

The change type of a trigger can be de�ned based on the change modelling language,
for which we explained in subsection 9.2.2 why it is EMOF complete. Currently, reactions
are implemented in such a way that compound change descriptions are decomposed
before they are processed, because we do not yet provide keywords for di�erent com-
pound change types. Therefore, it is not directly possible to restrict a reaction to certain
compound changes. A trigger may, however, also specify a change properties check in
terms of arbitrary code that has no side-e�ects. As a workaround, such a check can be
used to manually encode any conditions for compound changes, if the decomposition
of changes in the underlying framework is deactivated before. This way, the trigger
part can be made complete also with respect to compound representations of changes in
EMOF-based models.

completing trigger
conditions with

model-related retrieve and
match checks

Model elements that are not explicitly related to changed model elements cannot be
accessed in a trigger de�nition (see subsection 6.4.2). This means that this part of the
reactions language can only be used to de�ne change-related reaction conditions, which
can be checked if all change information but no further information on the changed model
is provided. Arbitrary conditions for the execution of consistency preserving updates
cannot be expressed with it. For this, conditions based on arbitrary model information
can be expressed using retrieve properties checks and match checks in a match block of
a reaction routine. Such model-related reaction conditions can be expressed in terms of
code that may access any model elements but may not cause any side-e�ects. Together,
change-related conditions of trigger de�nitions and model-related conditions of match
blocks make it possible to realize arbitrary conditions that have to be ful�lled before
update actions shall be applied. Therefore, triggers and match blocks make the reactions
language complete with respect to changes in EMOF-based models.

Matching and Actions are Correspondence Complete

retrieve and update
constructs make matching

and actions
correspondence complete

The third and last notion of completeness that we discuss for the reactions language is
about the possibilities for retrieving and managing correspondences between consistent
elements of models that conform to two metamodels. Together, the retrieve and update
constructs make the reactions language correspondence complete in the sense that every
requirement for retrieving, creating, updating, or deleting a correspondence can be
expressed with them.

many-to-many
correspondences can be
emulated using tagged

one-to-one
correspondences

The reactions language only supports tagged correspondences between two model
elements but as several such correspondences may exists with di�erent tags, this simple
approach is as expressive as correspondences that directly relate more than two model
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elements. More speci�cally, such correspondences can be emulated by using a tag to mark
all correspondences between two elements that realize a many-to-many correspondence.
Furthermore, we rely on identi�ers that only need to be temporarily unique to realize such
correspondences (see section 5.5.1). Therefore, the used correspondence representation
is su�cient to express any type of correspondence between any types of elements for
which a temporarily unique identi�er can be calculated.

supporting any possible
correspondence retrieval
using arbitrary restrictions

In order to be correspondence complete, it is not su�cient to be able to represent
every correspondence but it also has to be possible ti retrieve and manipulate such
correspondences. The reactions language provides speci�c constructs for retrieving
model elements. With such constructs it is possible to obtain model elements on the
side where reactions are executed. These elements correspond to model elements on
the side that was changed by a user or the other way round (see subsection 6.5.1). Only
a single element can be retrieved at once but every retrieval can be restricted using
arbitrary side-e�ect free code (see subsection 6.5.2). Therefore, any theoretically possible
correspondence retrieval can be expressed.

creating and deleting
correspondences based on
tags and conditions is
su�icient

The reactions language provides speci�c actions for creating and deleting correspon-
dences. A new correspondence can be added with an optional tag and deletions of existing
correspondences can be restricted using optional tags and arbitrary conditions (see sub-
section 6.5.3). Correspondences have no own identity because they can be identi�ed
using the identi�ers of the corresponding elements and the tag of the correspondence.
Therefore, no correspondences need to be updated in order to express that other elements
should correspond. More speci�cally, deleting an existing correspondence for formerly
corresponding elements and creating a new correspondence for newly corresponding
elements is equivalent to an update. Thus, the reactions language is correspondence
complete although no explicit correspondence update construct is provided.

9.2.5. Mappings Language Completeness

completeness of the
mappings language and of
both automated
enforcement derivation
techniques

For the mappings language, which we have presented in chapter 7, we discuss the
completeness of the entire language as well as completeness of the automated derivation
of enforcements from checks and completeness of inverse enforcements from bidirection-
alizable conditions. First, we will sketch a reduction to show that the mappings language
can be used to express anything that can be expressed with ordinary triple-graph gram-
mars. Second, we will explain that the derivation of enforcements from condition checks
and the derivation of inverse enforcements are not complete. This incomplete automation
does, however, not restrict the cases in which the mappings language can be applied, as
it is possible to manually specify check and enforce code or code for both enforcement
directions if the supported operators are insu�cient.

Triple-Graph Grammars as Mappings

brief introduction to
Triple-Graph Grammars

The powerful graph transformation concept of a Triple-Graph Grammar (TGG) was
originally de�ned for directed graphs [Sch95] and extended in many di�erent ways, for
example, to also support attributes and types for vertices and edges. A TGG consist of rules
that combine a left graph L = (VL ,EL ) and a right graph R = (VR ,ER ) with an intermediary
correspondence graphC = (VC ,EC ) by relating them using graph morphisms r←[ : C → L
and r 7→ : C → R. This means all edge relations have to be preserved by the functions r← [,V
and r← [,E for the vertices and the functions r 7→,V , r 7→,E for the edges. More speci�cally, for
all (cs ,ct ) ∈ EC it has to hold that

( r← [,E (cs ,ct ) = (vs ,vt ) ) ⇒ ( r← [,V (cs ) = vs ∧ r← [,V (ct ) = vt )

and analogue for r 7→,E and r 7→,V .
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Unfortunately,sketch of a reduction
based on tuples of

corresponding vertices

a formal reduction from TGGs to mappings is out of scope for this
thesis, but we will sketch how such a reduction can be performed. For this, we will show
how to reduce every TGG rule to one or several mappings. Before we can start, we have
to brie�y mention how graphs can be used to represent models. Vertices in a left or right
graph of a TGG rule are used to represent instances of metaclasses and edges represent
links of these instances which are de�ned for references of the instantiated metaclass.
The �rst step of the reduction is to determine which metaclasses have to be mapped by
computing all tuples of vertices that are related via the correspondence graph and the
morphisms:

{({vl1 , . . . ,vlm }, {vr1 , . . . ,vrn }) ∈ P (VL ) × P (VR ) | ∃ c ∈ C :
(∀ i ∈ {1, . . . ,m} : vli = r← [ (c ))
∧ (∀j ∈ {1, . . . ,n} : r 7→ (c ) = vr j )}

individual mappings for
each tuple of

corresponding vertices

For each of these tuples a separate mapping has to be created. Each mapping has to
list the metaclasses for the vertices in the left set and in the right set of the tuple as
left and right parameters of the mapping. All constraints that are de�ned for attributes
and links of a vertex have to be expressed in all mappings for tuples that contain the
vertex. If the constraint does not relate attributes of vertices of the left and the right
graph, then we have to create an appropriate single-sided condition in the mapping.
Otherwise, a bidirectionalizable condition has to be created. To our knowledge, there is
no TGG-based tool that supports declarative constraints for operators for which we did
not de�ne automated enforcement derivation (see section 7.3) or automated inversion
(see subsection 7.4.6). Therefore, all attribute and reference constraints that can be
directly written in a TGG can also be expressed using single-sided or bidirectionalizable
conditions. Additional constraints may be added to a TGG rule, for example, by providing
three Java methods for checking a constraint and for enforcing it in both directions.
With the mappings language, such constraints can always be expressed as a single-sided
condition that consists of two code blocks for checking and enforcing the condition
(see subsection 7.3.3) or as a bidirectionalizable condition with two code blocks for
enforcing the constraint in both directions (see subsection 7.4.8). Advanced concepts
such as negative application conditions or context nodes that are not in the image of the
functions of the morphism can be translated back to the fundamental concepts of vertices,
edges, and constraints. Thus, even for such concepts a reduction can be performed as
explained above. The result of such a reduction would be that every consistency relation
that can be expressed in terms of a TGG can also be expressed in terms of a mapping
speci�cation with several mappings for each TGG rule. Therefore, the mappings language
is at least as complete as TGGs with respect to the expressable consistency relations.

other reductions and
usage of explicit

dependencies possible

With the above reduction, one or several isolated mappings are created for a single
TGG rule. This is, however, not the only way to reduce TGGs to mappings. It would, for
example, also be possible to avoid the repetition of constraints for vertices that occur in
several of the tuples that we used to determine which mappings have to be created. For
this, explicit dependencies could be used during the reduction process.

Incomplete Enforcement and Inversion Derivation

incomplete automation
but complete support for
manual specifications

The second and last discussion of completeness for the mappings language is con-
cerned with the automated derivation of enforcements from checks and from opposite
enforcements. As we have already stated before, the sets of supported operators for
which enforcements or inverse enforcements can be derived are not complete. There
are, however, language constructs to cope with this incompleteness: It can be manually
speci�ed how a check is to be enforced and how a condition that relates both sides is to be
enforced using two unidirectional enforcements. These constructs only have to be used
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if the provided operators are not su�cient. Other languages and tools for consistency
preservation either always require such manual speci�cations or only support basic oper-
ators, such as addition, subtraction, division, multiplication, (in)-equality, and numerical
comparisons but no advanced operators such as those presented in subsection 7.4.6.

9.2.6. Invariants Language Completeness

completeness of
expressions extensions
already discussed

The invariants language, which we have presented in chapter 8, can be used to specify
invariants using the expressions language Xbase (see subsection 5.4.2) and the extension
for OCL-aligned collection operations (see subsection 5.4.3). We have already discussed
the completeness of these collection operator and iterator extensions in subsection 9.2.3.
Therefore, the only additional notion of completeness that we discuss for the invariants
language is computational completeness.

primitive recursive
functions without helper
methods, otherwise Turing
complete

In terms of computational power, the invariants language is at least as complete
as OCL. More speci�cally, the completeness of the invariants language can be judged
di�erently if calls to helper methods that are written in Java or Xbase are counted as part
of the language or not. If invariant conditions do not contain any such calls, then they
can contain expressions that represent loops that always iterate over all elements of a
collection but no interruptible while-loops. This means, without such calls, all loops that
are executed in an invariant always either perform a number of iterations that is �xed
before the loop is entered or they do not terminate if the collection is in�nite. Therefore,
such invariants without calls to helper methods can only express primitive recursive
functions, as it is the case for OCL [MC99; CK03]. If calls to helper methods are, however,
counted as part of the invariants language, then it inherits the Turing completeness from
the Java language.

9.3. Evaluation of Theoretical Correctness

to evaluate: correct
models of languages or
changes and correct
consistency preservation

For each language presented in this thesis, we will evaluate notions of correctness
in this section. As we designed these languages for di�erent purposes, the evaluated
notions of correctness are also di�erent. The goal of the formal language and of the
change modelling language is to create representations that support explanations and
realizations of the other languages. Therefore, we will evaluate for these two languages
whether they correctlymodel consistency preservation and changes according to the main
characteristics of a model as de�ned by Stachowiak [Sta73, pp. 131–133]. For the OCL-
aligned expression language, we will discuss why the provided operators correctly realize
the same functionality as their OCL-counterparts. The goal of the mappings, reactions,
and invariants language is to allow developers to specify consistency preservation in
di�erent ways for di�erent consistency scenarios and relations. For these languages, we
will evaluate whether they are correct in the sense that they preserve consistency as we
de�ned it and claimed it in the previous chapters.

9.3.1. Formal Language Correctly Models Consistency

evaluating whether formal
language fulfills main
model characteristics

In this section, we will show that the formal language, which we presented in chap-
ter 4, correctly models the notion of consistency that is supported by the reactions,
mappings, and invariants language and the way in which consistency can be preserved
with these languages. For this, we will explain why the formal language ful�lls three
main characteristics of models, which we have already presented in subsection 2.1.1.
These characteristics are representation, reduction, and pragmatics.
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Representation of Consistency for EMOF-Based Models

Therepresentation of model
and consistency

specification originals

formal language represents models of EMOF-based metamodels and consistency
speci�cations that are expressed using the reactions language. As per the general model
theory of Stachowiak [Sta73], the model entities of the formal language are the sets of the
de�nitions in section 2.3 and chapter 4. The originals represented by these entities are
EMOF-based models and consistency speci�cations. More speci�cally, the represented
originals of the �rst part of the formal language are elements of models for which
consistency is to be preserved. The represented originals of the second part are conceptual
conditions and updates of consistency speci�cations that are expressed in terms of
reactions. Altogether, the formal language contains no entities that do not represent such
originals and it models no properties that cannot be mapped to properties of the originals.
Therefore, the formal language ful�lls the representation characteristic.

Reduction of Model and Consistency Details

explicit list of specification
information that is
abstracted away

Only a few of the properties of models and consistency speci�cations are represented
using the de�nitions of the formal language. For the �rst part of the language, which
represents models, we have already provided a detailed list of the properties that are
abstracted away in section 2.3.1. We have, however, not explicitly mentioned the prop-
erties of consistency speci�cations that are abstracted away in the second part of the
formal language. Entities and properties of consistency speci�cations that are implied by
reactions but not represented in the formal language are, for example

• descriptions of how it is decided whether objects ful�ll a consistency condition,

• properties of correspondences in addition to the elements that correspond, or

• instructions that are executed and cases that are distinguished to obtain a consistency-
preserving model update.

Therefore, the reduction characteristic is ful�lled by the formal language.

Pragmatic Utility for Explaining Semantics

replacing models and
specifications in

explanations for readers

The purpose of the formal language is to facilitate explanations of the semantics of
the other language of this thesis. We have directly provided such explanations for the
reactions language in section 6.7. The mappings language and the invariants language
are, however, also indirectly explained using the formal language, because the semantics
of mappings are explained in terms of reactions (section 7.7) and because conditions for
reactions and mappings can be expressed as invariants. In the explanations of reactions
semantics, the formal language replaces the models and consistency speci�cations in
order to relieve the reader from considering all modeling and speci�cation details. The
supported functions are that relevant parts of models and consistency preservation
behavior can be explained and illustrated. This means, the formal language is a pragmatic
utility for both the author and the readers of this thesis and therefore the last main
characteristic of a model according to Stachowiak [Sta73] is also ful�lled.

9.3.2. Change Modelling Language Correctness

In this section, we will show that the change modelling language, which we have pre-
sented in subsection 5.4.1, correctly models changes in EMOF-based models. As for the
correctness of the formal language, we will explain why the three main characteristics of
models—representation, reduction, and pragmatics—are ful�lled.
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Representation of Changes in EMOF-Based Models

only change properties
represented

The change modelling language can be used to represent changes in models that
conform to metamodels that were de�ned using EMOF or using Ecore (see section 2.1.3
and 2.1.3). All change properties that can be represented using the language are properties
of the original change. No properties that cannot be mapped to properties of the modelled
originals can be expressed with the language. Therefore, the representation characteristic
is ful�lled.

Reduction of Derived and Context Information

reduction to essential
change and edit
information

All models that are created using the change modelling language only provide essential
information on the original changes and edit operations. Information that can be derived
or that describes irrelevant details of the context of a change is abstracted away. If an
editor provides, for example, di�erent ways of performing the same change using di�erent
commands that execute the same edit operation, then it is not modelled which of these
commands was used. Moreover, no information about the used editor is modelled. This
means that two changes that perform the same edit operation for the same elements and
values are represented in the same way even if di�erent editors, for example, with textual
and graphical representations are used. Thus, the reduction characteristic is ful�lled.

Pragmatic Usage for Triggering Reactions

replacing changes for
developers of reactions, of
the reactions language,
and of monitored editors

The models created with the change modelling language replace the original change
during the execution of consistency preservation reactions. Developers that specify
change types in triggers of reactions can use these replacements to restrict the actions
that they de�ne to be only executed before or after certain changes (see subsection 6.4.1).
The purpose of this replacement is that both the developers using the reactions language
and the developers of the reactions language only have to consider those properties
of a change that are relevant for consistency preservation. Furthermore, developers of
monitored editors, which provide change information, can specify how change models
are created in order to give users of the editor the possibility that the models they are
changing can be kept consistent using reactions and mappings (see subsection 5.5.2). This
means, the change modelling language is a pragmatic means for three di�erent kinds of
developers to represent and retrieve change information for change-driven consistency
preservation and the last main characteristic of a model is ful�lled.

9.3.3. Correctness of OCL-Aligned Expressions

operators validated
against OCL counterparts

We have presented our OCL-aligned language expressions extension in subsection 5.4.3
and we will brie�y describe how OCL constraints are automatically converted to expres-
sions of it in subsection 9.4.3. The extension does not introduce any new operators but
only realizes operators that were de�ned in the OCL and for which precise semantics were
given in the according ISO standard [ISO12c, pp. 156–174]. To show that the operators of
our OCL-aligned extension are correct, one could formally verify that they ful�ll the given
preconditions and postconditions. As we generate Java code for all languages and the
OCL-aligned expression, it would be possible to apply existing code veri�cation tools for
Java, such as KeY [BHS07]. As all operators have well-known counterparts in set theory
and therefore a low conceptual complexity, we decided, however, to only test these oper-
ators. We performed unit tests in which we validated that the operators yield the same
results as their OCL counterparts (see subsection 9.4.3) and we performed integration
tests in which the provided operators were used in reactions code (see subsection 9.4.4).
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9.3.4. Reactions Correctly Preserve Consistency

the language is correct if
execution of reactions
preserves consistency

To show that the reactions language is correct, we have to show that the reactions
that can be created with it correctly preserve consistency. For this, it is necessary to have
conditions that have to be ful�lled by two models of two modelling languages whenever
these two models shall be considered consistent. Such conditions can, however, not be
given and �xed for all usages of all pairs of modelling languages in all development
contexts. This is why the languages presented in this thesis were designed for prescriptive
consistency speci�cations (see subsection 3.1.2 and 4.1.2). More precisely, a reactions
speci�cation for two modelling languages indirectly prescribes under which conditions
models of these two modelling languages are consistent. Therefore, we can only show
that the reactions language is correct by showing that the execution of reactions always
leads to the ful�llment of the consistency conditions that are indirectly given by the
reactions.

for reactions and changes
that meet certain

requirements correctness
can be shown

At the end of our chapter on reactions, in section 6.7, we have shown how consistency
rules and update functions as de�ned in our formal language (see chapter 4) can be
constructed for reactions. After this construction, we have also explained which funda-
mental properties have to be ful�lled by reactions in order to be consistency preserving
by construction (see page 133 of section 6.7.4). For such reactions, we have shown that
they preserve consistency after a single change that breaks consistency according to a
single rule. Broadly speaking, this is only possible because of the prescriptive nature
of reactions. We have explained which consistency conditions correspond to a reaction
and only had to argue that the execution of the update function that corresponds to the
reaction leads to the ful�llment of these conditions. In general, this explains why the
execution of reactions that ful�ll certain requirements preserves the speci�c notion of
consistency that is indirectly de�ned using these reactions.

in practice reactions
correctness should be
validated using tests or

verification tools for Java

In practice, developers of reactions should not solely rely on our explanations of
the semantics of reactions and on their ability to assess which notion of consistency
they indirectly speci�ed and whether the reactions meet the formal requirements. They
should rather apply well-known techniques such as unit and integration tests or formal
veri�cation to validate that the reactions they develop preserve consistency. As the
reactions compiler generates Java code, all existing tools and methods for this target
language can also be applied to validate the execution of reactions.

9.3.5. Mappings Language Correctness

correct consistency
preservation, enforcement
derivation, and inversion

For the mappings language we will discuss three notions of correctness. First, we will
mention again why the execution of mappings correctly preserves the conditions that
are explicitly de�ned with it. Then, we will show that enforcement code is correctly
derived from checking code of single-sided conditions. Last, we will prove that inverters
for operations of bidirectionalizable conditions are generally composed in such a way
that round-trip laws are sustained and that exemplary inverters ful�ll these laws.

Mappings Correctly Preserve Consistency

preservation process is
simple, individual

condition enforcement
can be complex

In section 7.7, we have explained the semantics of the mappings language by describ-
ing a transformation from mappings to reactions. For pure and impure mappings we
have presented algorithms and procedures for creating, updating, and deleting model
elements in such a way that the ful�llment of mapping conditions for and on one side
always co-occurs with the ful�llment of mapping conditions for and on the other side.
Furthermore, we have described after which changes these algorithms and procedures
have to be executed using reactions. Finally, we have also explained in subsection 7.7.5
why consistency is preserved according to the conditions that are explicitly prescribed
with mappings. This argumentation could either be formally proven for the presented
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mapping realization algorithms or the code that is generated for a mapping could be for-
mally veri�ed. As the consistency conditions are, however, already directly provided in a
mapping, the overall preservation process is not complex. How an individual consistency
condition has to be preserved is, however, less clear if complex condition operators are
used. Therefore, we argue that it is more important to prove that enforcement code is
correctly derived from checking code or from enforcement code for the opposite direction
than to prove that such enforcement code is invoked whenever it is necessary.

Enforcement Correctly Derived from Checks

enforcements have to fix
failed checks

After this discussion of the overall correctness of mappings, we will now explain why
the automated derivation of enforcement code for operators in single-sided conditions is
correct. We have provided requirements for correct check and enforcement code of single-
sided conditions in subsection 7.3.3. These requirements only state that every negative
check has to lead to an enforcement that ensures that a check after the enforcement
yields a positive result. That is, those parts of a model for which the check fails have to
be �xed using the enforcement code. Furthermore, it is suggested that enforcement after
a positive check should not change anything. It is especially important to ensure that
these requirements are ful�lled for manually speci�ed pairs of check and enforcement
code. The prede�ned operators for single-sided conditions, however, also have to ful�ll
them. Therefore, we will brie�y show for each of these operators that they meet these
requirements.

proving enforcement for
every operator of
single-sided conditions

We have provided code snippets for the enforcement behavior of the prede�ned opera-
tors for single-sided conditions in Table 7.1 on page 147 of section 7.3. For these operators,
we will now brie�y show that the given enforcement code is correct. As the model state
changes that are caused during enforcement are not complex, we refrain from formally
proving the requirements, for example, using Hoare logic. Instead, we employ a more
concise notation and structure the argument for every operator as follows: First, we show
that a negative check result is always �xed by the enforcement code (requirement 1 and
2 on page 151). We provide code snippets to represent a negative check for an initial
model state, the enforcement behavior, and the positive check for the resulting model
state. To link the negative check and the enforcement, we use the leads-to arrow ( ) and
to indicate that the enforcement yields the positive check, we use the implication arrow
(⇒). We employ the set and list syntax of the reused expression language Xbase to denote
unordered collections using curly braces preceded by a hash sign (#{...}) and denote
ordered collections using square brackets preceded by a hash sign (#[...]). Furthermore,
we also use e.a as a short hand for the result of an invocation of a getter method for the
feature f on the model element e. Moreover, we use the placeholders default to denote
the default value of an attribute and ε to denote the type-dependent minimal value that
makes a numerical value greater or less than another numerical value (see section 7.3.2).
We do not explain for every operator that it also ful�lls the optional requirement that an
enforcement after a positive check should have no e�ect. This can directly be seen from
the enforcement code snippet.

Equals operator for a single-valued feature:
given: x equals e.f == false

 if (x not equals e.f) { e.f.set(x) }

⇒ x equals e.f == true

Equals operator for a multi-valued feature:
given: #{x,y} equals e.f == false

 if (#{x,y} not equals e.f) {

e.f.clear()

e.f.addAll(#{x,y})

}

⇒ #{x,y} equals e.f == true

Negated equals operator for a single-valued attribute (non-null):
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given: x not equals e.a == false

 if (x equals e.a) {

if (x equals default) { e.a.set(null) }

else { e.a.set(default) }

}

⇒ x not equals e.a == true

Negated equals operator for a multi-valued attribute:
given: #{x,y} not equals e.a == false

 if (#{x,y} equals e.a) {

e.a.clear()

}

⇒ #{x,y} not equals e.a == true

Entry-in-list operator for a multi-valued feature:
given: #{x,y} in e.f == false

 for (z : #{x,y}) {

if (#{z} not in e.f) { e.f.add(z) }

}

⇒ #{x,y} in e.f == true

Negated entry-in-list operator for a multi-valued feature:
given: #{x,y} not in e.f == false

 for (z : #{x,y}) {

if (#{z} in e.f) { e.f.remove(z) }

}

⇒ #{x,y} not in e.f == true

At-index-in-list operator for a multi-valued feature:
given: x at index i in e.f == false

 if (x not at index i in e.f) { e.f.set(i,x) }

⇒ x at index i in e.f == true

Negated at-index-in-list operator for a multi-valued attribute:
given: x not at index i in e.a == false

 if (x at index i in e.a) { e.f.set(i,default) }

⇒ x not at index i in e.a == true

Empty-list operator for a multi-valued feature:
given: empty e.f == false

 if (not empty e.f) { e.f.clear() }

⇒ empty e.f == true

Negated empty-list operator for a multi-valued attribute:
given: not empty e.a == false

 if (empty e.a) { e.a.add(default) }

⇒ not empty e.a == true

Not-greater-than operator for single-valued numerical attributes:
given: x <= e.a == false

 if (x > e.a) { e.a += x-e.a }

⇒ x <= e.a == true

Less-than operator for single-valued numerical attributes:
given: x < e.a == false

 if (x >= e.a) { e.a += x-e.a+ε }

⇒ x < e.a == true

Not-less-than operator for single-valued numerical attributes:
given: x >= e.a == false

 if (x < e.a) { e.a -= e.a-v }

⇒ x >= e.a == true

Greater-than operator for single-valued numerical attributes:
given: x > e.a == false

 if (x <= e.a) { e.a -= e.a-v+ε }

⇒ x > e.a == true
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This shows that all pre-de�ned operators for single-sided conditions of the mappings
language are correctly enforced.

Correct Inversion According to Round-Trip Laws

best-behavedness of
composition inverter and
individual inverters

The last notion of correctness that we discuss for the mappings language, is the
correctness of the automated derivation of inverse enforcement. To show this correctness,
we formally prove well-behavedness and best-possible behavedness for our generic
composition inverter and for exemplary individual inverters of our operator categories.
These proofs and the text of the remaining section are based on an article [KR16a] and a
technical report [KR16b].

Best-Possible Behavedness with Respect to a Partition In order to be precise enough
for the proofs, we �rst re�ne our notion of best-possible behavedness, which we have
presented in section 7.4.2. To this end, we de�ne best-possible behavedness with respect
to a partition of target values based on the de�nition of best-possible behavedness
(De�nition 46):

De�nition 47 (Best-Possible Behaved w.r.t. a Partition)
A pair of an operation and inverse operation (op,op←) is best-possible behaved with
respect to a partitionW ,B of the set of possible target values i�

1. (op,op←) is best-possible behaved such that

2. the PutGet law holds for all values inW and

3. the PutGet cannot hold for any value in B.

Based on this re�ned notion, our proofs for best-possible behavedness always have the
same structure: for the partitionW ,B of the set of possible target values, we show that

I. the GetPut law holds for all source values,

II. the PutGet law holds for all target values inW , and

III. a contradiction is obtained for every inverter that would ful�ll the PutGet law for
a target value in B.

Best-PossibleBehavedness isCompositional We have already mentioned in subsection 7.4.5
that our inversion approach is compositional. Now, we will formally proof that the com-
position operator and its inverse operator sustain best-possible behavedness as this also
implies that they sustain well-behavedness. More precisely, we will show that best-
possible behavedness is compositional by showing the following: if two inverters are
best-possible behaved, then the composed inverter that combines these two inverters is
also best-possible behaved.

Lemma 1 (Best-Possible Behavedness is Compositional)
Let op←1 (t ,s ) and op←2 (t ,s ) be two inverters for two operators op1 (s ) and op2 (s ) such
that op←1 is best-possible behaved with respect to the partitionW1,B1 and op←2 is best-
possible behaved with respect to the partitionW2,B2. Furthermore, letW2 include
the image ofW1 under op←1 and let S denote the set of all source values. Moreover,
let op←1 [W1,S] denote the image ofW1 and S under op←1 , then op←1 [W1,S] ⊂W2.
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Figure 9.1.: Illustration of the GetPut part of the proof of well-behavedness for the composition
operator using the lenses analogy

The composed inverter op←1◦2 (t ,s ) := op←2 (op←1 (t ,op2 (s )),s ) for the composition op-

erator op1◦2 (s ) = op1 (op2 (s )) is best-possible behaved with respect to the partition

W1,B1.

The requirements of the round-trip laws GetPut and PutGet for the composition
operator and its inverse are illustrated in Figure 9.1 and 9.2. In these �gures, we relate
individual steps and arrows to usages of the best-possible behavedness of op←1 and op←2
by referencing the numbers of the appropriate equations in the proof.

Proof 3
“I.”

First, we show that the composed inverter always ful�lls the GetPut law: Let s be a

source value. Then

op←1◦2 (op1◦2 (s ),s ) = op←1◦2 (op1 (op2 (s )),s )

by the de�nition of composition. The de�nition of inverse composition yields

op←1◦2 (op1◦2 (s ),s ) = op←2 (op←1 (op1 (op2 (s )),op2 (s )),s ) (9.1)

Because op←1 is best-possible behaved, it ful�lls the GetPut law for the source value s̃ :=
op2 (s ). This means,

op←1 (op1 (̃s ), s̃ ) = op←1 (op1 (op2 (s )),op2 (s )) = s̃ = op2 (s ) (9.2)

With this, we obtain from (9.1) and (9.2)

op←1◦2 (op1◦2 (s ),s ) = op←2 (op2 (s ),s ) (9.3)
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Figure 9.2.: Illustration of the PutGet part of the proof of well-behavedness for the composition
operator using the lenses analogy

Because op←2 is best-possible behaved, it ful�lls the GetPut law for s :

op←2 (op2 (s ),s ) = s (9.4)

With this, we �nally obtain from (9.3) and (9.4)

op←1◦2 (op1◦2 (s ),s ) = s (9.5)

This shows that the GetPut law holds for the composed inverter op←1◦2 and all source values
s .

“II.”

Second, we show that the composed inverter ful�lls the PutGet law for all values inW1:
Letw be a target value inW1 and let s be an arbitrary source value. Then

op1◦2 (op←1◦2 (w ,s )) = op1◦2 (op←2 (op←1 (w ,op2 (s )),s ))

by the de�nition of the inverse composition. The de�nition of composition yields

op1◦2 (op←1◦2 (w ,s )) = op1 (op2 (op←2 (op←1 (w ,op2 (s )),s )))

We de�ne t̃ := op←1 (w ,op2 (s )) and obtain

op1◦2 (op←1◦2 (w ,s )) = op1 (op2 (op←2 (t̃ ,s ))) (9.6)
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We chose w to be inW1. Therefore, t̃ is in op←1 [W1,S] and also inW2. Thus, op2 ful�lls the
PutGet law for t̃ , which means

op2 (op←2 (t̃ ,s )) = t̃ (9.7)

With this, we obtain from (9.6)

op1◦2 (op←1◦2 (w ,s )) = op1 (t̃ )

, which stands for

op1◦2 (op←1◦2 (w ,s )) = op1 (op←1 (w ,op2 (s ))) (9.8)

Forw inW1 and s̃ := op2 (s ), the �rst operator op1 ful�lls the PutGet law, which means

op1 (op←1 (w , s̃ )) = w (9.9)

With (9.8) this yields
op1◦2 (op←1◦2 (w ,s )) = w (9.10)

Thus the PutGet law holds for allw inW1.

“III.”

Last, we show that the PutGet law cannot hold for any value in B1: Assume op←1◦2 ful�lls
the PutGet law for an arbitrary target value b in B1 and all source values. We indirectly

de�ne s through b := op1◦2 (s ). Then op←1◦2 ful�lls the PutGet law for b and s :

op1◦2 (op←1◦2 (b,s )) = b

By the de�nition of the inverse composition this yields

op1◦2 (op←2 (op←1 (b,op2 (s )),s )) = b

The de�nition of composition yields

op1 (op2 (op←2 (op←1 (b,op2 (s )),s ))) = b

By applying the de�nition of b on both sides we obtain

op1 (op2 (op←2 (op←1 (op1◦2 (s ),op2 (s )),s ))) = op1◦2 (s )

Then, the de�nition of composition yields

op1 (op2 (op←2 (op←1 (op1 (op2 (s )),op2 (s )),s ))) = op1 (op2 (s ))

Removing the application of op1◦2 on both sides yields

op←2 (op←1 (op1 (op2 (s )),op2 (s )),s ) = s

Because op←2 ful�lls the GetPut law for s , we can replace s on the right side and obtain

op←2 (op←1 (op1 (op2 (s )),op2 (s )),s ) = op←2 (op2 (s ),s )

We remove the application of op←2 (. . . ,s ) on both sides, which yields

op←1 (op1 (op2 (s )),op2 (s )) = op2 (s )
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Then, we apply op1 on both sides and obtain

op1 (op←1 (op1 (op2 (s )),op2 (s ))) = op1 (op2 (s ))

The de�nition of composition yields

op1 (op←1 (op1◦2 (s ),op2 (s ))) = op1◦2 (s )

Finally, using the de�nition of b, we obtain

op1 (op←1 (b),op2 (s ))) = b

This is a contradiction to the requirement that op←1 does not ful�ll the PutGet law for b.
Therefore, our assumption is wrong, which shows that the PutGet law cannot hold for any

value in B1.

Altogether, the GetPut law holds for all s , the PutGet law holds for all values inW1 and
cannot hold for any value in B1. Therefore, we conclude that op←1◦2 is best-possible behaved
with respect to the partitionW1,B1. �

Proofs for Individual Inverters Now that we have proven that composed operations are
correctly inverted, we present proofs for some exemplary operator-speci�c inverters.
All inverters, which we presented in subsection 7.4.6, are best-possible behaved and
the proofs for this best-possible behavedness are mostly straightforward applications
of the de�nitions of the operators and their inverters. Therefore, we do not present
proofs for all inverters but only for three exemplary operators. With these exemplary
proofs, we illustrate how the general proof template is used for operators with di�erent
properties, e.g. �oating-point involvement or several operands in�uencing the ful�llment
of round-trip laws.

Lemma 2 (Inversion of pow is Best-Possible Behaved)
The inverter of the abs operator (see page 164 of section 7.4.6) is best-possible behaved

with respect to the partition

W := {t ∈ Num | t ≥ 0},B := {t ∈ Num | t < 0}

Proof 4
Let s be a source value. Then

abs← (abs(s ),s ) = abs← ( |s |,s ) = sign4mult(s ) · |s |

If s ≥ 0, this yields
1 · s = s

Otherwise s < 0, which yields

−1 · −1 · s = s

Thus, the GetPut law holds for all s .

Letw be a target valuew inW and let s be an arbitrary source value. Then

abs(abs← (w ,s )) = abs(sign4mult(s ) ·w )

If s ≥ 0, this yields
abs(1 ·w ) = abs(w ) = w
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becausew ≥ 0. Otherwise s < 0, which yields

abs(−1 ·w ) = abs(−w ) = w

Thus, the PutGet law holds for allw inW .

Assume abs−1′
is an inverse operator for abs that ful�lls the PutGet law for a target

value b in B and an arbitrary source value s . Then

abs(abs−1′ (b,s )) = b

This yields

|abs−1′ (b,s ) | = b < 0

which is a contradiction to the de�nition of the absolute value operator because |x | ≥ 0 for

all x .
Altogether, the GetPut law holds for all s , the PutGet law holds for all w inW and

cannot hold for any inverse operator abs−1′
and b in B. Therefore, we conclude that abs← is

a best-possible behaved inverter. �

Lemma 3 (Base-Inversion of pow is Best-Possible Behaved)
For the exponentiation operator pow (see page 165 of section 7.4.6), the inverter pow←1
for inversion according to the base is best-possible behaved with respect to the partition

W1,P1 such that

W1 :={(t ,e ) ∈ Num × Double | t ≥ 0 ∧ e is even} ∪
{(t ,e ) ∈ Num × Double | e is not even}, and

P1 :={(t ,e ) ∈ Num × Double | t < 0 ∧ e is even}

Before we prove this lemma we brie�y explain the used partitionW1,P1 The exponen-
tiation operator pow is one of the operators with more than one operand for which it
is not su�cient to partition the space of possible target values to prove best-possible
behavedness. Instead, we have to partition the space of tuples that contains a possible
target value and a source value for every additional operand that in�uences the ful�llment
of the rount-trip laws (except —of course— for the operand according to which we are
inverting).

Proof 5
Let b be a base source value and e be an exponent source value. If e is not even, then

pow←1 (pow(b,e ),b,e ) = sign4mult(be ) · e
√
|be | = sign4mult(b) · e

√
|be |

because sign4mult(be ) = sign4mult(b) for all e that are not even. If b ≥ 0, we obtain
e√
be = b

Otherwise b < 0 and we obtain

−1 · e
√
|be | = b

If e is even, then

pow←1 (pow(b,e ),b,e ) = sign4mult(b) · e√
be

because pow(b,e ) = be ≥ 0 for all b and all even e . If b ≥ 0, we obtain
e√
be = b
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Otherwise b < 0 and we obtain

−1 · e√
be = b

because e is even. Altogether, we obtain

pow←1 (pow(b,e ),b,e ) = b

for all possibleb and e . Thus the GetPut law holds for all base valuesb and exponent values
e .

Let (tw ,e ) be a tuple of target and exponent source value inW1 and let b be an arbitrary

base source value. If e is not even, then

pow(pow←1 (tw ,b,e ),e ) = pow(sign4mult(tw ) ·
e
√
|tw |,e )

If tw ≥ 0, we obtain
pow( e√tw ,e ) =

e√tw
e
= tw

Otherwise tw < 0 and we obtain

pow(−1 · e
√
|tw |,e ) = (−

e
√
|tw |)

e = tw

If e is even, then tw ≥ 0 by construction ofW1 and

pow(pow←1 (tw ,b,e ),e ) = pow(sign4mult(b) · e√tw ,e ) =

= (sign4mult(b) · e√tw )
e =

e√tw
e
= tw

because |sign4mult(b) | = 1 for all b and xe = 1 for all even e and x such that |x | = 1. Thus
the PutGet law holds for all (tw ,e ) inW1.

Assume pow−1′
1 inverts pow according to the base and ful�lls the PutGet law for a target

value tp , an exponent source value ep such that (tp ,ep ) in P1, and an arbitrary base source

value b. Then
pow(pow−1′

1 (tp ,b,ep ),ep ) = tp

This yields

(pow−1′
1 (tp ,b,ep ))

ep = tp < 0

which is a contradiction to the de�nition of exponentiation because ep is even by the con-

struction of P1 and it holds that x
e ≥ 0 for all even e and all x .

Altogether, the GetPut law holds for all base values b and exponent values e , the PutGet
law holds for all (tw ,e ) inW1 and cannot hold for any inverse operator pow−1′

1 and (tp ,ep )
in P1. Therefore, we conclude that pow←1 is a best-possible behaved inverter. �

Lemma 4 (Exponent-Inversion of pow is Best-Possible Behaved)
For the exponentiation operator pow (see page 165 of section 7.4.6), the inverter pow←2
for inversion according to the exponent is best-possible behaved with respect to the

partitionW2,P2 such that

W2 :={(t ,b) ∈ Num × Num | bloд|b | ( |t |) ε
= t }, and

P2 :={(t ,b) ∈ Num × Num | bloд|b | ( |t |) 6 ε= t }

Proof 6
Let b be a base source value and e be an exponent source value. Then

pow←2 (pow(b,e ),b,e ) = e
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by de�nition of pow←2 because pow(b,e ) = be . Thus, the GetPut law holds for all base

values b and exponent values e .

Let (tw ,bw ) be a tuple of target and base source value inW2 and let e be an arbitrary

exponent source value. If (bw )
e = tw , then

pow(bw ,pow←2 (tw ,bw ,e )) = pow(bw ,e ) = (bw )
e = tw

If (bw )
e , tw , then

(bw )
loд|bw | ( |tw |) ε

= tw

by the de�nition ofW2. This yields

pow(bw ,pow←2 (tw ,bw ,e )) = pow(bw ,loд |bw | ( |tw |)) =

= (bw )
loд |bw | ( |tw |)

ε
= tw

Thus, the PutGet law holds for all (tw ,bw ) inW2, except for negligible �oating-point inac-
curacies.

Assume pow−1′
2 inverts pow according to the exponent and ful�lls the PutGet law for a

target value tp , a base source value bp such that (tp ,bp ) in P2, and an arbitrary exponent

source value e . Then
pow(bp ,pow−1′

2 (tp ,bp ,e )) = tp

This yields

(bp )
pow−1′

2 (tp ,bp ,e ) = tp 6
ε
= (bp )

loд|bp | ( |tp |)

which is a contradiction to the de�nition of the logarithm operator because xy
ε
= x loд|x | ( |y |)

for all x and y.

Altogether, the GetPut law holds for all base values b and exponent values e , the PutGet
law holds for all (tw ,bw ) inW2 and cannot hold for any inverse operator pow−1′

2 and (tp ,ep )
in P2. Therefore, we conclude that pow←2 is a best-possible behaved inverter. �

Lemma 5 (Inversion of sin is Best-Possible Behaved)
The inverter of the trigonometric sin operator (see page 166 of section 7.4.6) is best-

possible behaved with respect to the partitionW ,B such that

W :={t ∈ Double | − 1 ≤ t ≤ 1}, and
B :={t ∈ Double | |t | > 1}

Proof 7
Let s be a source value. Then

sin← (sin(s ),s ) = s

by de�nition of sin← because sin(source ) ε
= sin(source ). Thus the GetPut law holds for

all s .

Letw be a target valuew inW and let s be an arbitrary source value. If sin(s ) ε
= w , then

sin(sin← (w ,s )) = sin(s ) ε
= w

Otherwise

sin(sin← (w ,s )) = sin(asin(w )) = w

by the de�nition of asin. Thus the PutGet law holds for all w inW , except for negligible

�oating-point inaccuracies.
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Assume sin−1′
is an inverse operator for sin that ful�lls the PutGet law for a target value

b in B and an arbitrary source value s . Then

sin(sin−1′ (b,s )) = b

This is a contradiction to the de�nition of the sine operator because |sin(x ) | ≤ 1 for all x .
Altogether, the GetPut law holds for all s , the PutGet law holds for all w inW and

cannot hold for any inverse operator sin−1′
and b in B. Therefore, we conclude that sin← is

a best-possible behaved inverter. �

9.3.6. Invariants Correctly Transformed to Queries

correctness requirements
for the transformation and
obtained queries

In this last section on theoretical properties of the languages presented in this thesis,
we discuss the correctness of the invariant-to-query transformation of the invariants
language (see section 8.2). The input for this transformation is a context metaclass
and a constraint of an invariant as well as an explicit invariant parameter that has the
same identi�er as an iterator variable of an iterator expression in the constraint and a
compatible type. In order to be correct, the output of this transformation has to be a
query that ful�lls the following properties with respect to an arbitrary instance of the
context metaclass, which is brie�y called context element:

1. The query has to yield an empty collection of elements for a context element i�
the constraint evaluates to false for the context element.

2. In all other cases, the query has to yield a non-empty result collection of elements
such that

a) every element of the result collection is bound to the iterator variable in at
least one iteration of the iterator expression when the invariant constraint is
evaluated for the context element

b) for every element of the result collection, the following implication has to
hold for the collection that is iterated for the iterator expression when the
invariant constraint is evaluated for the context element: if the original
collection is replaced with a collection that only contains the element in
question of the result collection, then an evaluation of the iterator expression
on this replacement collection yields false if the result type of the iterator
expression is boolean and otherwise it yields the replacement collection

correctness could be
proven but the gained
benefit is questionable

These conditions specify precisely what it means for a query to yield elements “that are
responsible for the violation and that were accessed during the evaluation via the iterator
variable”. To show that our query derivation approach is correct, one would have to show
that these properties are ful�lled for the intermediate results of each transformation
rule that we have presented in subsection 8.2.6. In order to show the correctness of a
speci�c query that is generated by the invariants language, one would have to prove that
these properties are ful�lled for it. As the generated Xtend query compiles to Java code,
existing code veri�cation tools for Java, such as KeY [BHS07], could again be applied. The
transformation rules are, however, just applications of fundamental inference rules of
�rst-order predicate logic. Therefore, we expect that the interest of proving correctness
of the transformation rules or correctness for a particular query is in many contexts
probably not considered worth the e�ort.

9.4. Evaluation of Practical Applicability

evaluate whether
applications lead to
expected results

To evaluate the practical applicability of the languages presented in this thesis, we
have examined whether they can be applied in practice to realize realistic consistency

229



9. Evaluation and Discussion

requirements and whether the results obtained from the created speci�cations are as
expected. The most important expectations for the results of such practical applications
are the theoretically guaranteed properties, which we discussed in detail in the previous
sections. This means by having evaluated the applicability of the languages we have also
indirectly evaluated whether the languages were realized in such a way that theoretically
guaranteed completeness and correctness are not lost during realization.

9.4.1. Application of the Formal Language

only application of formal
language are explanations

of semantics

The formal language is the only language presented in this thesis that cannot be
processed in an automated way because it is not realized as software but only formally
described in chapter 4 of this thesis. All other languages are realized in terms of a
compiler except for the change modelling language, for which instances are obtained in
an automated transformation from monitor-speci�c change descriptions.

Because of the missing technical realization for the formal language, the only practical
application of it is its use to explain the semantics of the reactions language (see section 6.7)
and thus also indirectly the semantics of the mappings language (see section 7.7). We
consider this application of the formal language successful, because it helped us to write

the explanations of the semantics of the reactions language. This was also achieved by
adapting the de�nitions of the formal language in several iterations to cover everything
that we deemed necessary for the explanations but nothing more. The expected result
of the application of the formal language is, however, also that it becomes easier to
understand the semantics of the reactions language. We did, however, not perform an
empirical evaluation of this claim in order to focus on evaluating the other languages
and other properties.

9.4.2. Application of the Change Modelling Language

successful application to
represent changes of
di�erent editors for

processing in reactions

We have indirectly evaluated whether the change modelling language, which was
presented in subsection 5.4.1, can be applied in practice by using it as an intermediate
language for triggering consistency preservation code that is generated for reactions. The
change modelling language is used as a target in two model transformations in order to
enable reactions to changes in editors. In the �rst transformation, instances of the change
modelling language are created for changes that are performed in the Java code editor of
the Eclipse Integrated Development Environment (IDE). The second transformation also
creates instances of the change modelling language but it is not bound to a speci�c editor:
It can be used for any models that are created based on the Eclipse Modeling Framework
(EMF) and therefore conform to a metamodel that was created using the EMOF-variant
Ecore (see section 2.1.3). We have used it for all case studies in which we applied the
reactions and mappings language. If consistency shall be preserved for models that are
changed with editors that are not built using EMF, then further transformations are
necessary to express the changes as instances of the change modelling language. This
means, the change modelling language is used as an intermediate language in the current
transformations and can also be used by future transformations to represent changes for
which consistency shall be preserved using reactions. The Java code that is generated
by the reactions compiler uses the editor-agnostic change representations to determine
which code for which reactions has to be executed based on the trigger de�nitions of
the reactions. For all changes that occurred in the di�erent applications of the reactions
language the expected change representations were created using the change modelling
language and further processed by reactions. This demonstrates the practical applicability
of the change modelling language.
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9.4.3. Application of OCL-Aligned Expressions and Invariants

successful manual and
automated application of
invariants language and
expressions extension

In subsection 5.4.3, we presented 27 collection operators and iterators that form an
OCL-aligned extension for the reused expressions language. To evaluate this expressions
extension and the invariants language, we have applied them to those invariants of
the UML metamodel2 that can be expressed with it [Fis15, p.40][FKL16, p.201]. The
metamodel contained 420 OCL invariants. We skipped 175 syntactically trivial invariants
that only contain direct comparisons of results by calling getters and simple operators
such as implies or not. Out of the 245 remaining invariants, 88 contained the supported
collection operators and iterators but no unsupported language constructs such as nested
de�nitions of temporary variables. We successfully applied the invariants language and
the OCL-aligned expression extension to manually create equivalent invariants for each
of these 88 UML invariants. In addition, we have also successfully translated more than
330 out of the 420 OCL invariants automatically to invariants that use the collection
operators and iterators and other operators that are provided by the reused expression
language. For this, we extracted all invariants from the Ecore-based metamodel of the
UML and parsed them using Eclipse’s OCL parser. We obtained an AST for every invariant
and performed a model-to-text transformation on it to output functionally equivalent
constraints for the invariants language. Together, the manual re-implementation and the
automated translation of UML invariants show the practical applicability of the invariants
language and of the OCL-aligned expressions extension.

9.4.4. Applications of Reactions

four case studies with
reactions-based
consistency preservation
tools

To evaluate the practical applicability of the reactions language we have used it in
four case studies to develop tools that preserve consistency between models of di�erent
languages. In the �rst case study, the reactions language was used to support the coevo-
lution of architectural models and object-oriented source code during the development of
component-based software [Kra+15]. Reactions were developed to keep object-oriented
code consistent after changes in architectural models.In the second case study, we have
kept architectural models consistent after changes in component-based source-code. The
third case study was concerned with the preservation of consistency between architec-
tural models and object-oriented code that that was integrated from an existing code base
and does not ful�ll the original consistency constraints. In the last case study, consistency
was preserved for two modelling languages that are used in the automotive domain.
Software models for embedded microcontrollers were kept consistent to model changes
for block diagram of the Systems Modeling Language (SysML) [Obj15].

SLOC as non-empty lines
of code without comment
lines

In Figure 9.3, we illustrate the amount of reactions code that was developed in the case
studies. We measured the Source Lines of Code (SLOC) by counting all lines in the source
code �les that are not empty and that contain something else than code comments. This
means, we exclude only those lines that are also ignored by compilers because they never
in�uence the program behavior.

Component-Based Architectures and Object-Oriented Code

In the �rst case study, the reactions language was used to preserve consistency between
models of an Architectural Description Language (ADL) and object-oriented Java code. We
will brie�y introduce the involved languages and the realized consistency requirements,
which are discussed in detail by Langhammer [Lan17].

reusable components with
provided and required
interfaces

To represent software-components and the relations between them, the Palladio Com-
ponent Model (PCM) [Reu+11] was used in the �rst case study for the reactions language.
It is an ADL that models reusable components as well as the interfaces that they pro-
vide and require in a system-independent repository. Concrete systems are expressed

2http://www.eclipse.org/uml2/5.0.0/UML metamodel revision from 2014-12-14
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Figure 9.3.: Source lines of code (SLOC) for reactions in di�erent case studies

in terms of so-called assembly contexts to instantiate components. The roles for their
provided and required interfaces are linked using assembly connectors. To illustrate the
reactions language, we used a running example that is inspired from this case study (see
section 6.2). This example discussed only a small part of the PCM in a simpli�ed way, but
it introduced the main concepts. As the PCM is part of the Palladio Approach [RHK16]
for architectural simulations and analyses, it provides much more concepts, for example,
to model resource-demands of services for performance predictions.

processing Java code and
code changes in terms of

EMF-based models

To obtain a model representation of Java source code, we used the Java Model Printer
and Parser (JaMoPP) [Hei+10]. This made it possible to de�ne reactions that process
instances of an Ecore-based metamodel for Java and not source code in a textual format. As
a result, the reactions code in this case study did not need to consider the fact that source
code changes were processed or produced. Furthermore, changes that are performed
in the common Java editor of the Eclipse IDE were represented as changes of the Java
model by transforming the involved change representations (see subsection 9.4.2).

two out of several
alternatives for relating
component models and

code

The main challenge of co-evolving architectural models and object-oriented code for
software that is developed in terms of components is to represent components in a
suitable way in the code. Langhammer [Lan17] presents di�erent ways to achieve this in
his dissertation. We have evaluated the practical applicability of the reactions language,
only for two of these alternatives. In this �rst case study, reactions were developed to
ensure that code for Plain Old Java Objects (POJOs) is co-evolved in a consistent way
with PCM-based models (see subsection 6.2.3). For this, components are realized in terms
of so-called component realization classes with an appropriate package structure. Such
a component-realization class contains, for example, methods for all provided services
of the component. Another alternative for relating component models and code was
evaluated in the second case study, which we describe in the following.

Component-Based Code and Architectures

explicit annotations for
Enterprise Java Beans and

PCM-basedmodels

In the second case study for the reactions language, PCM-based software architecture
models are kept consistent after changes in source code with an explicit notion of com-
ponents. For this, the Enterprise Java Bean (EJB) standard was used [Sak09]. It gives
developers the possibility to designate, for example, Java classes as component classes
by marking them with annotations for di�erent types of so-called beans. Furthermore,
component interfaces can be realized as Java interfaces with appropriate annotations so
that the ordinary implements-relation between classes and interfaces can also be used to
express that a component respectively bean realizes an interface. Such annotations are
inspected by the reactions that keep the corresponding architectural models consistent
for Palladio [Lan17].
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Coevolution Integration of Object-Oriented Code

reactions for keeping
architectural models
consistent with legacy
code

The reactions of the third case study have been developed in order to keep architectural
models consistent after changes in legacy code. These architectural models are reverse
engineered from the code base [Lan17]. The obtained model and the legacy code can be
integrated into the Vitruvius framework for consistent co-evolution. Object-oriented
code that was developed without the automated consistency preservation for component-
based models does, however, usually not have an appropriate structure to be co-evolved
afterwards. Therefore, particular consistency preservation logic is needed in order to
support as much edit operations on the legacy code as possible during the co-evolution
with the architectural models. This particular logic was speci�ed with reactions. The
consistency preservation rules for newly created code, however, were de�ned before the
reactions language was developed and therefore written in Xtend. The other preservation
direction for keeping code consistent with changes in architectural models was, however,
realized with reactions and is the �rst case study, which we have described above.

Automotive So�ware Models and SysML

specific models for
microcontroller so�ware
and general-purpose
SysMLmodels

The third and last case study in which we have evaluated the applicability of the
reactions language was performed in the context of automotive software engineering.
This case study was performed in cooperation with an industrial partner in order to
obtain realistic consistency requirements for this special domain. The partner uses
a proprietary language to model software for Electronic Control Units (ECU) and to
generate C code from it. For the case study, we have developed a modelling language that
is structurally equivalent to a subset of this property language and called it Automotive
Software Engineering Metamodel (ASEM). It mainly covers modules and classes that
communicate using messages and methods. The goal of the case study was to preserve
consistency between such domain-speci�c models and models that were created using
the general-purpose Systems Modeling Language (SysML) [Obj15]. SysML uses and
extends a subset of the UML for systems engineering and supports 9 diagram types
that are categorized in three di�erent types for requirements, structural, and behavioral
modelling. The consistency requirements that have been realized using the reactions
language are concerned with ASEM models and with structural block diagrams of the
SysML. Changes that are applied to blocks and their ports in SysML models are kept
consistent with corresponding modules, classes, messages, and methods in ASEM models.
Development of the consistency preservation tools for the automotive case study was
not �nished at the time of writing this thesis. Therefore, all results that we present for
this case study are preliminary.

9.4.5. Applications of Mappings

a TGG example and
invertability of attribute
expressions in the ATL
transformation zoo

We have evaluated the applicability of the mappings language by realizing mappings
that are equivalent to TGG rules of an example case and by analyzing attribute expressions
in the ATL transformation zoo. The TGG example for which we successfully realized
mappings is concerned with keeping cards of a Leitner learning card system consistent
with entries in a dictionary [AVS12]. To this end, the di�erent partitions, in which cards
of a Leitner box are stored, are mapped to levels of the dictionary. The goal of this
application of the mappings language was to compare the attribute mapping capabilities
of it with a TGG-based tool. Furthermore, we used this example to inspect the size of
the involved mappings and TGG rules as well as the code that is generated for both
approaches.

26% of common attribute
transformations use
invertible operators

To evaluate the applicability of the automated bidirectionalization for unidirectional
enforcement conditions of the mappings language, we inspected 103 transformations of
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the so-called ATL Transformations Zoo3. We have analyzed how much of the expressions
that appear in available model transformations transform attributes using operators for
which we de�ned inverters [KR16a]. The goal of this analysis was to obtain an indicator
for the share of common attribute transformations that can be inverted with the currently
available inverters. To this end, we have classi�ed all operators of all transformations in
the zoo using the following categories: identity operator, arithmetic operators, parsing
or printing, other string operators, sequence operators, list operators. The result of this
categorization was that 26% of the lines of code in the ATL transformations used only
attribute operators expressions for which we de�ned inverters.

9.5. Discussion of Practical Benefit

evaluations of total cost of
ownership are expensive

The second practical property, which we evaluated for all languages except for the
formal language, is the bene�t of applying the languages. It is also the property that
is most costly to evaluate [BR08, p. 15]. To thoroughly evaluate the bene�t for every
language, one would have to take a notion of total cost of ownership into account. This
means, to clearly demonstrate that the presented languages are bene�cial, it would not
be su�cient to compare the e�ort for applying these languages in representative case
studies. Additionally, one would have to consider the e�ort for learning these languages
and probably even the e�ort for developing and maintaining both the languages and the
consistency preservation tools written with them. Finally, such a thorough evaluation
of the bene�t of using the presented languages would mean to plan, to perform, and
to analyze a family of empirical experiments with appropriately competent software
developers for each language. Such experiments could provide enough data to reliably
answer the question whether using these languages is altogether bene�cial. Similar data
for answering the same question for widely used programming languages is, however,
still not published because such families of experiments that consider the whole lifecycle
of software are very costly. Furthermore, such results can always be put in doubt by
questioning whether the developed applications and the subjects that were tested are
representative for all or certain contexts of software development. Therefore, we do not
provide such evidence for the overall bene�t of using all presented languages. Instead,
we present arguments for the change modelling language, the expression extension, the
mappings language, and the invariants language, which suggest that applying these
languages is bene�cial. To demonstrate potential bene�ts of the reactions language,
we also compare consistency preservation tools that were realized with the reactions
language to functionally equivalent tools that were written in Java or the Java dialect
Xtend. This comparison shows that those tools that were developed using the reactions
language require on average 40% less source lines of code than their Java or Xtend
counterparts.

9.5.1. Intermediary Change Models for Editors

transform change
representations instead of

adapting reactions or
reactions compiler

A potential bene�t of the change modelling language is that consistency preservation
code can be decoupled from the format that is used to describe changes after which
consistency is to be preserved. Without an intermediary change modelling language,
there would be two alternatives for representing changes for consistency preservation.
Either reactions code would have to be manually tailored to the changes that are observed
in an editor for a speci�c modelling language. Or the compiler of the reactions language
would have to be customized so that the code that is generated for reactions is able to deal
with di�erent change representations of di�erent editors. If many di�erent modelling
languages and editors have to be supported, such manually adaptations of reactions to
these editors or appropriate extensions of the compiler can result in high development

3ATL Transformations Zoo: eclipse.org/atl/atlTransformations
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e�ort. In such cases, it can be bene�cial to use a generic change modelling language,
such as the one we have presented in subsection 5.4.1 as intermediate representation.
With such a language, it is su�cient to develop a transformation from speci�c change
representations to the generic change format. As a result, neither manually developed
reactions code nor the reactions compiler have to consider the fact that changes may be
observed in di�erent editors and for di�erent modelling languages.

9.5.2. Integration and Code Generation for OCL-Aligned Expressions

integrated into our
languages and its
Eclipse-based editors

A practical bene�t of the OCL-aligned expression extension, which we have presented
in subsection 5.4.3, is its integration into other languages. This integration applies to the
languages presented in this thesis as well as to the Java language. The provided extension
methods for collection operators and iterators can be used in the reactions, mappings, and
invariants language. As a result, developers that use these languages do not need to learn
a new language and have the �exibility to express constraints in di�erent ways. They can
either use lambda expressions and the operators and iterators of our extension to write
constraints that are almost identical to OCL constraints (see also subsection 5.4.2 and
8.1.1). Or they can use Java to write helper methods if they are more familiar with this
language. In both cases, developers also bene�t from the integration of our Xtext-based
languages into the Eclipse IDE and its editors. Developers are always supported, for
example, in terms of auto-completion, and they do not need to use di�erent editors or
compilers when writing, for example, reactions, OCL-aligned expressions, and Java code.

static analyses and
debugging tools for Java
can be reused

The other potential integration bene�t stems from the fact that we also generate Java
code for the OCL-aligned expressions. This makes it possible to also perform static code
analyses on reactions, mappings, or invariants code that involves such expressions. Such
analyses can be helpful, for example, when refactoring steps are performed. Furthermore,
the direct generation of Java code means that the execution of expressions code that
was written with our extension can directly be debugged with established Java tooling.
OCL, however, provides some features that complicate direct code generation and static
analyses, such as unlimited integers or access to all instances of a metaclass. Therefore,
many approaches that generate code instead of interpreting OCL expression only support
a subset of OCL [Wil12].

9.5.3. Code Size Comparison for Reactions

comparing code size of
reactions with GPPL code

We have evaluated whether using the reactions language instead of a General-Purpose
Programming Language (GPPL) has an e�ect on the amount of code to be written. The
goal of this comparison was to obtain an indicator for a potential bene�t of the reactions
language. By Gyimothy et al. [GFS05, p. 907], for example, it has been shown that an
increasing amount of lines of code correlates with an increasing number of faults. To
analyze this code size, we compared functionally equivalent realizations of consistency
preservation tools for two of the case studies, which we have already described for the
evaluation of practical applicability subsection 9.4.4. For both case studies, the same
consistency requirements were realized twice and the same test cases were successfully
passed by both variants. In the �rst case study, Java source-code was kept consistent
according to changes in corresponding architectural models that conform to the PCM. For
this case study a realization with the reactions language was compared to a realization
that was developed using the Java dialect Xtend [Lan17]. In terms of code size, the
di�erences between Xtend and Java should, however, be negligible (see also section 2.1.2).
The alternative realization of the second case study was developed with Java. In order to
avoid a potential bias, all four implementations for this comparison have been developed
by graduate students or colleagues but not by the author of this dissertation.

comparison of SLOC for
languages with similar
concrete syntax

We compared the SLOC excluding empty and comment lines (see subsection 9.4.4)
of functionally equivalent consistency preservation tools that were developed with the
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reactions language, Java, or the Java dialect Xtend. For this comparison, we exploit the
fact that the reactions language and both Java and Xtend are very similar in terms of
concrete syntax, especially with respect to the question where new lines are necessary
or common. It can always be questioned whether SLOC comparisons alone are su�cient
to show that some piece some language provides a practical bene�t. Thus, the goal of
this code size comparison was not to obtain precise results that can be used to perform
statistical tests on hypotheses, for example, to correlate the SLOC with the number of
faults. Instead, we provide this comparison only to provide a rough estimate for the code
size reductions that can be achieved with the reactions language. Therefore, potential
minor di�erences in the usage of new lines in the case studies are acceptable.

SLOC with and without
imports and helper

methods

For all four realizations of both case studies, we computed four di�erent numbers for
the SLOC including and excluding imports and helper methods. The current prototype of
the reactions language provides limited support for distributing reactions across several
compilation units. Thus, code from Java compilation units is only imported once in
reactions whereas the alternative realizations in Java and Xtend are split over several
classes which have to repeat import statements. To account for this, we always compute
the SLOC with and without such lines that import code. We also analyzed the e�ect
on the SLOC of helper methods in order to be independent of a potentially di�erent
tendency to outsource such code. When we compare the SLOC for both case studies in
the following, we always provide four measurements for all combinations of including
and excluding helpers and methods. Excluding the imports should avoid a potential
bias towards a lower SLOC for reactions. Similarly, by including helper methods we
ensure that all code that is needed for consistency preservation is taken into account
even if it is not de�ned as a reaction but as a helper method. Therefore, we argue that
the measurements that include helpers and exclude imports should represent the fairest
comparison of all four measures.

size and complexity
metrics for future work

In future work, we are planning to also compare the average McCabe complexity
per thousand SLOC [GK91]. Furthermore, we plan to de�ne which expressions in the
reactions language can be regarded as a statement to compare the Total Number of
Statements (TNOS). The TNOS metric is often also called Logical Lines of Code (LLOC)
and it has been shown that it is a good predictor for maintainability, for example by
Dagpinar and Jahnke [DJ03, p. 7].

Comparison for Component-Based Case Study

always fewer SLOC but the
extent depends on helper

methods and imports

In Figure 9.4, we provide the results of the code size comparison for the case study
in which Java code is kept consistent to changes in architectural models conforming to
the PCM. As we have motivated above, we present four di�erent measurements for the
SLOC with and without helper methods and imports. The results show, that less code was
written with the reactions language than with the GPPL Xtend. The biggest di�erence
in size can be observed when the code of helper methods and imports is also counted.
Analogue, the smallest di�erence is obtained when both helper method and imports are
excluded.

Comparison for Automotive Case Study

biggest and smallest
di�erences in SLOC for
samemeasurements

In Figure 9.5, we provide the results for the code size comparison of the automotive case
study in which ASEM models are kept consistent to changes in SysML block diagrams.
These results for this second case study also show that fewer reactions code than GGPL
code was written. Furthermore, the biggest and smallest di�erence between the code
size of the functionally equivalent consistency preservation tools is again observed when
helper methods and imports are both excluded or both included. The tool that has been
implemented in Java contains more import lines than SLOC for helpers. Therefore, the
number of SLOC in the second measurement, which includes helper methods but excludes
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Figure 9.4.: SLOC for reactions and Xtend code for consistency preservation from PCM instances
to Java code

Figure 9.5.: Source lines of code (SLOC) for reactions and Java code for preserving consisteny in
ASEM models after changes in SysML block diagrams

imports, is lower than the number of SLOC in the third measurement, which excludes
helper methods but includes imports. As we have already mentioned in section 9.4.4,
the development of both tools in this case study is not yet �nished so the results are
preliminary and the SLOC will increase in the future.

Relative Reduction of Source Lines of Code

the reactions code of the
case studies is 33% to 71%
smaller than GPPL code

In order to provide a relative indicator for the amount of code that is written using
reactions and using a GPPL, we computed the relation between the SLOC of reactions
and the SLOC of GPPL code for both case studies. The results for this relation are
shown in Figure 9.6. Depending on the di�erent possibilities for counting the SLOC
with and without helper methods and imports, both case studies yield a reduction of
the SLOC from GPPL code to reactions code that ranges between 33% and 71% of the
SLOC for the GPPL code. The average reduction for both measurement that includes
helper methods but excludes imports is 48%. As the absolute size of both case studies is,
however, relatively small, this relative reduction cannot be used, for example, to predict
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Figure 9.6.: Relative reduction of SLOC from GPPL code to reactions in percent for consistency
preservation from PCM models to Java code and SysML models to ASEM models

how much code would be necessary in a third case study. Nevertheless, these results
allows us to expect that the reactions code that will be developed in future case studies
will also have noticeably fewer SLOC than functionally equivalent GPPL code.

9.5.4. Discussion of Benefits of the Mappings Language

no comparison of gain by
automation and loss for

necessary training

We have developed the mappings language, which we have presented in chapter 7, in
order to support developers in writing bidirectional consistency speci�cations. One of
the goals was to combine automated support for preserving consistency for common
relations between model elements and attributes with unlimited expressive power. In
subsection 9.3.5, we have shown that the automated approaches for deriving enforce-
ment code from checks and for deriving inverse enforcement code from unidirectional
conditions are correct. We have, however, not analyzed, whether the gain in productivity
that can be achieved using this automation is bigger than the loss of productivity by
introducing our language in development projects of consistency preservation tools. For
such comparisons it would, however, be important to have an appropriate baseline, in
this case another language for bidirectional consistency speci�cations. Such languages
have been presented by researchers but applications in industry are rare and limited to
explorative case studies (see subsection 10.3.2 and subsection 10.3.3).

preliminary comparison
betweenmappings

language and a TGG-based
tool

To obtain a preliminary indicator for potential bene�ts of the mappings language we
have performed an exemplary comparison with the TGG-based tool eMo�on [Anj+11].
For the Leitner box example, which we have already mentioned in subsection 9.4.5, we
compared, for instance, the possibility to realize complex attribute relations and the
code generated by both approaches. A complex attribute relation that had to be realized
is, for example, the relation between the content text of a dictionary entry and the
two texts on the front and back side of a Leitner card. Furthermore, the partition in
which a card of a Leitner box is stored had to be mapped to a level for the entry of the
dictionary and vice versa. In the TGG-based approach such attribute mappings have
to be realized in terms of a constraint satisfaction problem and using three operations
for forward enforcement, backward enforcement, and condition checking [AVS12, p. 9].
Our pre-de�ned inverters, for which only a single condition expression has to be given,
cannot be used for all complex attribute relations of this example. In such cases, forward
and backward enforcement has to be speci�ed separately in terms of Java code. Our
comparison of the two approaches showed that even in such cases developers have to
write less mappings code. Furthermore, the compiler of the mappings language generates
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less code than eMo�on and the gap between the generated code and the speci�ed rules is
smaller [Wer16, pp. 113–116]. In future work, further comparisons should, however, be
performed in order to obtain enough data for quantitative analyses of mappings code.

9.5.5. Discussion of Automated Query Derivation

negligible additional input
for automated generation
of queries

In section 8.2, we have presented an automated approach to obtain a query that returns
model elements that violate the constraint of an invariant that was speci�ed using
our invariants language. To automatically obtain such a query that returns invariant-
violating model elements, only one additional input in the form of an invariant parameter
is necessary. It would even be possible to automatically expose all iterator variables of an
invariant constraint as invariant parameters and to generate queries for all of them. As a
result, the additional e�ort for using our automated query derivation approach is very
small. Thus, we argue that our approach has a positive in�uence even in cases in which
using a generated query instead of manually developing code for retrieving invariant-
violating elements yields only a relative small productivity improvement. Therefore, we
are convinced that an isolated evaluation of the bene�t of this approach in some small
case studies would not lead to many insights. Instead, we suggest to focus in future work
on evaluations that compare a usage of the invariants language and its query derivation
approach to the usage of OCL. Such comparisons should also analyze the e�ort needed
to train developers in using OCL and in using the invariants language.

9.6. Future Evaluations

In future work, further evaluations, especially of the practical bene�t of the presented
languages, should be performed. Extensions and improvements of the evaluations of
theoretical correctness and completeness are possible, but should not be in the focus of
future work.

9.6.1. Further Case Studies and Comparisons

suggestion for extending a
previous case study with
non-functional contracts

We suggest performing future evaluations of the practical applicability and bene�t, for
example, using a case study that also involves contracts written using the Java Modeling
Language (JML) [LBR99]. We have already realized a consistency preservation tool for
such a case study with an early prototype of the Vitruvius framework and therefore
without the languages presented in this thesis [Kra+15]. Consistency between source
code and, for example component-based models or abstract non-functional speci�ca-
tions, is especially crucial when the code is veri�ed to ensure security properties, such
as con�dentiality of data. Therefore, we are convinced that a reimplementation and
extension of this initial case study with the reactions, mappings, and invariants language
would provide many interesting insights. Furthermore, this case study yields important
challenges of consistency preservations as, for example, JML contracts are speci�ed
in terms of code comments, which are insu�ciently supported by many co-evolution
approaches and code models. Despite these particularities, any additional case studies
could be used to further analyze potential bene�ts of the presented languages in di�erent
contexts.

As we have discussed above, we suggest to also perform further case studies, for
example to obtain data for quantitative analyses of mappings code. Additionally, we have
already mentioned in subsection 9.5.3 that measurements for additional metrics could be
performed, for example to compare the complexity density and the TNOS.
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9.6.2. Planned Experiment on Program Comprehension

We have planned and prepared a controlled experiment to evaluate the in�uence of the
reactions language on code comprehension [Kra+16]. Unfortunately, we were not able to
perform the experiment before we completed this thesis. Therefore, we brie�y present
this experiment as future work.

evaluate whether reaction
code improves code

comprehension

The goal of the experiment is to evaluate whether consistency preservation code
that is written with the reactions language can be understood better or faster than
consistency preservation code that is written in Java. To this end, we planned a within-
participants experiment in which developers obtain multiple-choice questions that assess
the ability to understand what the consistency preservation code does. In addition to
a questionnaire with such questions, the developers will obtain code printouts. They
will inspect reactions code and Java code of di�erent consistency preservation tools
in several sessions of a counterbalanced setup. For every session, we will record the
number of correctly answered questions and the time that the developers needed for
this. Based on these records, we will evaluate whether the fact that developers were
inspecting reactions or Java code had a signi�cant in�uence on the quality or speed of code
comprehension. To this end, we will perform a statistical test that checks an appropriate
null-hypothesis for all individual di�erences of the quality of code comprehension. This
test will analyze whether subjects answered more questions on the functionality of the
consistency preservation code correctly when they inspected reactions code. If this
is the case and the obtained p-value is small enough to allow for a second statistical
test on the same data, then we will also test the individual di�erences for the speed of
code comprehension. We have described the detailed setup of this experiment in an
article [Kra+16].

9.7. Conclusions

theoretical completeness
and correctness as well as
practical applicability and

benefit

In this chapter, we have discussed how we have evaluated theoretical and practical
properties of the languages presented in this thesis. First, we have discussed theoretical
completeness with respect to the intended range of use. We have shown that the reac-
tions language is Turing complete and reduced TGG rules to mappings to demonstrate
the expressive power of the mappings language. Furthermore, we have discussed the
theoretical correctness of every language. To show the correctness of the automated
bidirectionalization of enforcement code, for example, we have introduced a new notion
of best-possible behaved round-trips based on the notion of well-behaved transforma-
tions [Fos+07]. This new notion guarantees that the GetPut law is always ful�lled
and that the PutGet law is ful�lled whenever this is possible. Furthermore, we have
illustrated the applicability of the languages using case studies in which consistency was
successfully preserved with tools that were written using the presented languages. Finally,
we have discussed potential bene�ts of the presented languages. We have compared, for
example, consistency preservation tools that were realized with the reactions language to
functionally equivalent tools that were written in Java or the Java dialect Xtend. Those
tools that were developed using the reactions language had between 33% and 71% less
source lines of code than their GPPL counterparts.
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an overview structured
using concerns that are
not orthogonal

In this chapter, we provide an overview on work that has been published so far in
the context of consistency preservation for models of di�erent languages. To structure
the discussion, we focus on di�erent concerns while describing the literature. First, we
present work in the general context of updating models or views. Then, we discuss
approaches that describe how consistency can be checked and formalized. Finally, we
review related work on automated consistency preservation. The discussed concerns are
not orthogonal so that many approaches could be discussed several times with di�erent
foci. As too many cross-references would, however, limit the clarity of the discussion, we
only mention approaches in several sections if they have a strong focus on the discussed
concern. Parts of this chapter are based on corresponding sections of articles that we
have published previously [KBL13; Kra15; KR16a; FKL16].

10.1. Consistency between Models, Views, and a�er Updates

The goal of consistent representations of a system under development was subject of
many publications in software engineering and related �elds of computer science. In
this thesis, we have presented languages for preserving consistency between models of
modelling languages that comply to the Essential Meta-Object Facility (EMOF) standard
[ISO14]. Before we limit the discussion to related work that is concerned with similar
representation formats for development artifacts, we brie�y describe the more general
context of consistency preservation.

10.1.1. The View Update Problem

translating updates in
partial database views
back to the source

The problem of keeping information that is part of several representations consistent
after changes has been discussed as the view-update problem in many publications and
for several application contexts. Bancilhon and Spyratos [BS81] and Codd [Cod90], for
example, discussed it for relational databases. Other researchers, such as Foster et al.
[Fos+05], transferred it to the �eld of programming languages. The general problem
is that an update in a view that is derived from a database has to be translated to an
appropriate update in the database if the view and its source shall be kept consistent. Such
update translations can be realized using a complement view that contains all information
of the database that is not in the view that shall be updated. More precisely, a complement
of a function is another function, such that the tupled combination of both functions
is injective. A backward transformation can be obtained from such a complement by
inverting this tupled combination of the original function and its complement. There can
be several complements for a view and the question whether an update can be translated
back to the database depends on them: A view is updatable if it can be translated to the
database with a constant complement [BS81]. This is, however, not always the case and
Bu� [Buf88] has shown that the question whether a unique translation exists is in general
undecidable. Therefore, consistency can only be preserved if views and complements for
translating updates are designed accordingly.
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10.1.2. Models, Databases, and Ontologies

Modelsschema integration and
active database systems

that conform to EMOF-based metamodels are a way to represent data in a
format that is equivalent to attributed, typed graphs with inheritance (see section 2.3.1).
Such models are used in many software engineering projects and di�erent application
domains. Often, various domain-speci�c languages are used [Whi+13; Whi+15], so that
consistency has to be preserved between models of di�erent languages. Consistency
problems can, however, arise independent of the technological space [KBA02] and also
when di�erent technological spaces are combined and bridged [Hen11]. In the �eld
of databases, for example, methods for integrating schemas that represent data in a
partially redundant way were proposed [BLN86]. Such schema integration methods can
also support developers in integrating existing data that was persisted using di�erent
schemas [Red+94]. Other approaches create federations of cooperating databases [SL90]
or focus on semantic challenges of schema integration [HG01; DH05]. To preserve
consistency while a database is used, active database systems can be used [PD99]. They
provide developers the possibility to de�ne rules for specifying which updates should
lead to further database updates. Such rules are often expressed in terms of an event, a
condition, and an action. This overall structure of so-called ECA rules is also similar to
the structure of reactions (see section 6.1). Furthermore, mapping languages have already
been discussed for schemas of the EXPRESS data modelling language [VLA95].

modularizing large
ontologies andmapping

several ontologies

Ontologies can be regarded as a special form of descriptive models [AZW06] and
foundational ontologies can be used in a similar way like metamodels [Hen11]. To
better deal with very large ontologies, strategies for ontology modularization have been
proposed [PS09]. An issue that has to be addressed in this context is overlapping knowl-
edge [PS09, p. 12], for which inconsistencies can be prevented using update propagation
mechanisms [PS09, p. 20]. In order to combine individual ontologies, languages for
ontology mapping can be used. Brockmans et al. [Bro+09] discuss extensional and in-
tensional interpretations of mappings and three di�erent kinds of mapping relations:
equivalence, containment, and overlap. An overlap mapping, for example, “states that
some objects described by the element in the one ontology may also be described by the
connected element in the other ontology” [Bro+09, p. 270]. Furthermore, Brockmans et al.
showed that the reviewed ontology mapping languages have fundamentally di�erent
semantics.

10.1.3. Synthetic and Projective Multi-View Approaches

synthetic, projective and
hybrid views in modelling

and programming

The ISO 42010 standard distinguishes between two approaches for constructing views
on software architectures [ISO11], but this distinction can be applied to views of arbitrary
kind: In a synthetic construction, views are integrated and thus have to be kept consistent
to each other in a peer-to-peer manner. A problem with such approaches is that the
number of inter-view relations, which may have to be kept consistent, grows exponentially
with the number of used views. This can be avoided in a projective construction, in which
views are projected from a central representation so that they only have to be kept
consistent with this central representation in a hub-and-spoke manner. With such an
approach it can, however, be challenging to create such a central representation without
redundancies and to de�ne editable projections. An example for a projective approach
to programming is the Meta Programming System (MPS)1. Both approaches can also
be combined in a hybrid manner to project some views from other views that are kept
consistent with each other.

a projective approach with
dynamically generated

orthographic views

Orthographic Software Modeling (OSM) [ASB10] is a projective approach that strongly
in�uenced the development of the Vitruvius framework, which we extended with the
languages presented in this thesis. It transferred the principle of orthographic projec-
tions to component-based software development and introduced the concept of a Single

1Meta Programming System (MPS): jetbrains.com/mps
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Underlying Model (SUM). Furthermore, it de�ned the role of a methodologist, which
we also use for the development of consistency speci�cations. Moreover, OSM supports
extensible, dimension-based navigation between views and dynamic view generation.

categorization based on
five dichotomies for
multi-viewmodelling

In order to categorize approaches for creating multiple views, Atkinson et al. [ATM15]
presented �ve dichotomies. First, they discuss whether views and consistency rules are
de�ned in a rigorous or in a relaxed way. Then, they distinguish between synthetic and
projective approaches. Next, Atkinson et al. oppose explicit inter-view correspondences
to implicit correspondences. Furthermore, they distinguish extensional de�nitions of
correspondences on the instance level from intensional de�nitions of correspondences
on the type level. Finally, they oppose approaches that use a redundancy-free model
for projective views to so-called pragmatic approaches that use inter-related models
with partially redundant information for their projections. Atkinson et al. illustrate how
these dichotomies can be used to categorize multi-view approaches by classifying the
viewpoint modeling approach of the Reference Model of Open Distributed Processing
(RM-ODP) [ISO09]. They classify it as a rigorous, synthetic approach with intensionally
de�ned explicit correspondences between pragmatically inter-related models. The Vit-
ruvius approach, which we extended with the languages presented in this thesis, can be
categorized in almost the same way. The only di�erence is that it is not purely synthetic
but a hybrid approach as it also supports the de�nition of projective views [Bur14] and
the integration of code and models that were not created with it [Lan17].

10.1.4. Tolerating Inconsistency

marking, monitoring,
using, and isolating
inconsistencies

In the last subsection of this section on fundamental problems and notions of multi-view
consistency, we brie�y discuss related work that explored whether, why, and to which
extent inconsistencies can and should be tolerated. Balzer [Bal91], for example, suggests
to mark inconsistent constraints and to store the a�ected values for a later resolution of
the inconsistency. He described an approach for tolerating inconsistencies in data that
is processed while a software system is executed but the approach can—of course—also
be used in tools for software development. His idea of marking inconsistencies can
be useful to postpone or delegate resolution of inconsistency, especially in contexts of
cooperative or concurrent modi�cations. In the Vitruvius framework, such delayed
consistency preservation can be realized by adding tasks to a list via the interactive
interface for user change disambiguation (see subsection 6.5.6). Another approach for
dealing with inconsistencies was suggested by Finkelstein et al. [Fin+94]. To address
the problem that anything follows from contradictions (principle of explosion), they
suggest that developers should specify how the database should respond to inconsistencies

depending on the context. Therefore, they present an “action-based meta-language
based on linear-time temporal logic” [Fin+94, p.574]. Nuseibeh et al. [NER01] state that
inconsistency does not always need to be addressed immediately because inconsistencies

can serve a purpose. Furthermore, they emphasize that inconsistencies on itself are not
always problematic but “undetected inconsistencies can be dangerous” Nuseibeh et al.
[NER01, p.176]. They mention, for example, that inconsistencies “may indicate deviations
from a process model”, that they “facilitate �exible collaborative working”, and that
they “can be used to identify areas of uncertainty” [NER01, p.173]. Thus, they present a
general framework for managing inconsistency based on a loop with four steps, in which
inconsistencies are monitored, diagnosed, and handled. Moreover, they suggest that the
consequences of this inconsistency handling should be monitored as well. Finally, Nöhrer
et al. [NBE12] also suggest to allow inconsistencies but they also suggest to eliminate
resulting reasoning errors by isolating assumptions that lead to the inconsistency, i.e. the
unsatis�ability. This approach yields slightly less complete reasoning and can be applied
to any satis�ability solving.
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10.2. Challenges, Formalizations, and Consistency Checking

So far, we have discussed the fundamental view-update problem in di�erent technological
spaces. In the following sections, we restrict the discussion to approaches of the modelling
space. That is, the discussed approaches directly support representations that can be
considered equivalent to the EMOF standard [ISO14] or indirectly support them via graph
transformations.

10.2.1. Challenges to Consistency Preservation

consistency preservation
as a particular kind of
model transformation

Several authors reviewed approaches for model transformation in general and dis-
cussed problems that arise in this context. These surveys, for example by Czarnecki and
Helsen [CH03] and Biehl [Bie10], can also be used to classify approaches for consistency
preservation. According to Biehl, approaches for preserving consistency between models
of di�erent languages can be classi�ed as exogenous transformations that preserve se-
mantics. These transformations can be executed as batch transformations as well as in
source- and target-incremental ways.

consistency preservation
as a particular kind of
change propagation

Unfortunately, challenges that are particular to consistency preservation for di�erent
modelling languages are so far only partially discussed in surveys and other articles,
even if they are restricted to incremental transformations [Etz+13]. Tratt [Tra08], for
example, discusses several decisions that have to be taken when change propagating
model transformations are developed as well as some challenges in this context. Some
of these change propagation challenges also apply to consistency preservation. The
degree of automation and the question whether updates are only checked or also prop-
agated, for example, is also discussed in section 3.6.3. Egyed et al. [Egy+11] discusses
challenges of change propagation with a special focus on how humans can be guided
in semi-automated transformations. They propose partial transformations to address
bidirectionality problems and discuss, for example, the problem of propagating changes
until no further di�erences would be introduced, which is also mentioned in section 3.9.

requirements for model
synchronization through

change translation

Ivkovic and Kontogiannis [IK04] describe requirements for model synchronization
transformations that are based on tracing information. They discuss the need for unique
identi�ers and present a model synchronization concept based on a graph formalism.
Furthermore, they present a synchronization algorithm that is based on tracing and
translating source model changes to target models. Moreover, they introduce a process for
instantiating their methodology. They discuss, however, no realization of their ideas and
state that an implementation of their synchronization algorithm is an “implementation
problem” that “is out of the scope” [IK04, p. 9]. Similarly, Sendall and Küster [SK04]
describe properties that are desirable for model round-trip engineering but do not present
in detail how such properties can be achieved. For example, they require “the ability
to precisely de�ne the meaning of consistency between model” and “assistance when
multiple solutions are possible” [SK04, pp. 9–10].

10.2.2. Formal Consistency Checking and Synchronization

Some of the literature that we mentioned in the previous section already demonstrated
that the problem of keeping information consistent is suited for formal approaches. In
this section, we brie�y discuss some further publications that use formal methods to
describe consistency checking and synchronization.

checking consistency a�er
merging heterogeneous
models using category

theory

An algebraic approach that reduces the problem of checking consistency between
models of di�erent languages (heterogeneous) to checking consistency between models
of the same language (homogeneous) was presented by Diskin et al. [DXC10]. This
approach is based on category theory and therefore could be applied to all models that
can be represented accordingly. More speci�cally, Diskin et al. present a merge procedure
to transform heterogeneous models into homogeneous models. This merge is based on
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explicit instance-level mappings, which have to be de�ned manually. After this reduction,
existing techniques for correspondence spans can be applied. These spans are similar
to the mappings of the language that we have presented in chapter 7. Furthermore, the
approach can treat indirect model overlap and can check constraints that are not part of
an involved metamodel. This is similar to invariants that can be de�ned with the language
that we have presented in chapter 8. According to Diskin et al., “the main question is how
e�ectively a multimodelling tool based on the framework could be implemented” [DXC10,
p. 51].

symmetric, asymmetric,
delta-based and
state-based
synchronization

There are further formal descriptions of how consistency can be checked and enforced
based on category theory. Three families of algebras for modeling synchronization
were, for example, presented by Diskin [Dis08]. Furthermore, a diagrammatic “notation
for specifying synchronization procedures” was presented [Dis11]. It is based on tiles,
which represent matches between di�erent models and updates between di�erent model
versions. In two related publications, a symmetric and an asymmetric case of delta-based
model transformations are introduced. The symmetric case is given if neither of the two
models to be synchronized “fully determines the other” [Dis+11, p. 304]. For this case,
synchronization is described as a transformation of a horizontal delta to a vertical delta.
In this thesis, we refer to the former as user change and to the latter as a consistency
preservation update. The asymmetric case is also described in terms of delta-based
model transformations [DXC11]. In this case, one model can be derived from the other
and update propagation exhibits functorial properties of category theory. Moreover,
delta lenses are presented to overcome problems of state-based synchronization, for
example, during the sequential composition of transformations. In this line of work,
Diskin et al. [DMC12] also describe how maintenance of intermodel relationships can
be speci�ed using monads and Kleisli categories. Finally, a threedimensional taxonomy
based on organizational symmetry, and informational symmetry, and incrementality is
presented [Dis+14]. The �rst dimension describes whether a model dominates the other
in case of an update or con�ict, whereas the second dimension describes whether the
information in a model is a re�nement, abstraction, or subset of the information in the
other model. For the last dimension of incrementality, Diskin et al. emphasize that all
approaches can be implemented incrementally regardless of their organizational and
informational symmetry. How this incrementality is realized depends, however, on these
two other dimensions.

10.2.3. Determining Inconsistencies and their Causes

focused on approaches
that compute causes or
support repairs for
inconsistencies

Various approaches for specifying and checking consistency constraints have been
presented in the literature. As this thesis focused not on checking but on enforcing
consistency, we do not present such approaches in detail. We discuss, however, an
approach that is particularly interesting because it is independent of the language that
is used to specify consistency constraints. This approach by Egyed [Egy11] pro�les
executions of consistency checks to determine which model changes invalidate which
constraint. It was developed with a strong focus on performance. In section 8.2, we have
presented an automated derivation of queries from invariants to obtain model elements
that cause an invariant violation. These queries can be used to restore consistency after
an invariant violation. Thus, we will only discuss approaches with a similar focus on
constraint violation causes or on constraint-based inconsistency repairs in the remainder
of this section.

severity levels and repairs
for violations but no cause
computation

Sigma [KC12] is a hybrid approach for declarative transformation rules and imperative
validation and transformation code. It is provided as a model transformation library for
Scala and therefore it can also be regarded as an “internal” domain-speci�c language,
which reuses the concrete syntax of Scala. Sigma groups constraints in validation contexts
and provides facilities to specify severity levels for invariant violations, as well as error
messages and repair actions. In case of an invariant violation, Sigma provides, however,
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no possibility to obtain elements that lead to the violation. Therefore, code that computes
these elements has to be explicitly de�ned in addition to the de�nition of the invariant
check if a repair action should be based on it [KCF14, p. 1613, ll. 19–22]. To avoid some of
the resulting code duplication, parts of the checking of an invariant can be factored out
in order to be reused for retrieving model elements. We expect, however, that for most
invariants such a manual refactoring step is more complex than specifying parameters
for invariants as we have described it in subsection 8.1.3.

partially redundant fix
procedures bound to a

single constraint

The Epsilon Validation Language (EVL) [KPP09] of the Epsilon framework is similar to
the Object Constraint Language (OCL) but overcomes several shortcomings of it. Similar
to Sigma’s repair actions and our reactions language, it supports the de�nition of �x
procedures for invariants. These �xes are, however, bound to a constraint. Therefore, it
is not possible to write a �x that preserves consistency after di�erent ways of violating
di�erent constraints without duplicating code. Furthermore, parameters that are de�ned
in invariant checks cannot be reused directly in �xes, in contrast to our approach. Instead,
they have to be de�ned and computed again in �xes [KPP09, p. 215, ll. 47–63].

Both Sigma and EVL do not separate the de�nition of invariant checks from �xes. This
can be a problem if violations of invariants that are de�ned for a metamodel regardless
of its usage have to be �xed in di�erent ways, for example for di�erent editors, transfor-
mations, or development projects. Such cases are supported by our approach as there is
no such dependency between reactions and invariants.

incrementality, repair
alternatives, or causes of

inconsistencies

Reder and Egyed presented an approach that computes a so-called validation tree
whenever a consistency constraint is violated. Such a validation tree represents the
computations that are performed when a constraint is evaluated in a particular context.
This interpretative approach is used in three ways. First, validation trees are used to
incrementally reevaluate only those constraints after a change for which a result change is
possible in order to speed up consistency checking [RE12b]. This incremental consistency
checking approach is based on a previously published approach that monitors constraint
evaluation to obtain a bounded scope for the constraints that have to be reevaluated after
a change [Egy06]. Second, possible inconsistency repairs are computed by traversing
validation trees in a process that also eliminates wrong and non-minimal repairs to reduce
the number of repair alternatives [RE12a]. This approach for suggesting changes that
lead to satis�ed constraints is based on previous work in which shared �xes and a reduced
number of �xes are computed [Egy07]. Last, another way of traversing a validation tree
is used to determine the causes of inconsistencies [RE13]. This approach for determining
model elements that are responsible for a constraint violation is similar to our approach
of query derivation for invariants, which we have presented in section 8.2. The main
di�erence is, however, the way in which it is decided whether an element causes a viola-
tion. Reder and Egyed [RE13] compare the current evaluation of constraint expressions
with the expected result. If an unexpected result is obtained for a subexpression, then
the model elements that cause this unexpected result are identi�ed based on the operator
of the subexpression. The queries that are generated by our compiler of the invariant
language, however, rely on explicit parameters. On the one hand, these parameters are an
additional input that has to be provided. On the other hand, di�erent parameters can be
chosen for invariants with several iterator expressions if a consistency preservation action
needs particular elements and not all elements that could be causing the inconsitency.

10.2.4. Finding Consistent Models using Checks

check constraints to find
models that could be
reached in backward

transformation

Consistency checks cannot only be used for �nding inconsistencies but also for indi-
rectly deriving consistent models. This is especially bene�cial for round-trip engineering
when partial and non-injective transformations do not provide enough information to
specify backward consistency in an unambiguous way [HLR08, p. 44]. Therefore, several
approaches use constraints that are indirectly provided in forward transformations or
additional constraints in order to invert the transformation by �nding consistent source
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models. In case of ambiguities, such approaches usually present developers various
consistent models to choose from.

transformation inversion
based on abductive logic

Hettel et al. [HLR09] presented an approach for inverting model transformations that
are written in Tefkat by abduction [Het10]. It can be used to compute those source changes
that can be interpreted as the best explanation for a target model change according to
the forward transformation. Starting from the observed change, the approach inspects
only those parts of a transformation and of the models that need to be changed in order
to yield the observed change after executing the forward transformation. The approach
also takes into account that an execution of the forward transformation on the proposed
source changes can imply further changes in addition to the observed target change.

deducing source models
for non-bijective
transformations

The Janus Transformation Language (JTL) can be used to �nd all source models for
changed target models according to non-bijective transformations [Cic+11]. It provides a
QVT-R like syntax for specifying transformations, which are automatically translated
into search problems via an ATL transformation. The search problems are expressed
using a special form of logical programming, called Answer Set Programming (ASP).
JTL also supports transformations that are not total by approximating source models
if a target model was changed in such a way that no source model could lead to the
target model if the forward transformation was applied on it. The language also supports
change propagations but no incremental execution of transformation rules.

inverting QVT-R
transformations using
Alloy

Another approach �nds consistent models for transformations that are written using
QVT-R [MC13; MGC13]. It starts from an old model to �nd a new consistent model
by applying deltas of increasing size until a model that ful�lls all constraints is found.
The approach uses the model �nder of Alloy, which is based on a SAT-solver, and the
search for consistent models can be restricted using a upper bound for the deltas. Which
consistent models should be found can be controlled in two ways: Either by minimizing
an edit distance that counts additions and deletions of nodes and edges, or by calculating
a speci�c distance from user-provided edit-operations. The approach was also extended
in order to support Alloy-based veri�cation of UML models by validating OCL constraints
with Alloy [CGR15].

10.3. Automated Consistency Preservation

Some of the approaches discussed so far can also be used to preserve consistency, but most
of them rather focus on fundamental consistency problems or on checking consistency
than on preserving consistency in an automated way. In the following, we will now
discuss approaches with a strong emphasis on automated consistency preservation.

10.3.1. Focused on Tool Integration

tool integration without
dedicated consistency
concepts

Many approaches for automated consistency preservation do not provide dedicated con-
cepts and languages for consistency speci�cations but focus on integrating and improving
existing tools. Xiong et al. [Xio+07], for example, presented an approach or propagating
changes in a model that is the target of an ATL transformation back to a source model
by extending the virtual machine that is used to execute ATL transformations. Another
approach for bidirectionalizing the ATL language uses a graph query language [Sas+11].
Both approaches do, however, not improve or extend the ATL language in order to better
support bidirectional speci�cations. Existing modelling tools can be coupled with the
ModelBus approach using a communication bus [HRW09]. For every tool, a speci�c
adapter has to developed in order to connect it to the bus, which can also be used for
change noti�cations and for merging model versions. Similar noti�cation and merging
features are also provided, for example, by Eclipse projects, such as Sphinx [Ebe12] or
Connected Data Objects (CDO) and its Dawn sub-component for collaborative modeling.
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These tools are, however, focused on di�erent versions of the same model and not on
models of di�erent modelling languages and their semantic overlap.

10.3.2. Based on Triple-Graph Grammars

formal guarantees and
restrictions of TGGs

Many approaches for consistency preservation are based on Triple-Graph Grammars
(TGGs), which were introduced by Schürr [Sch95]. A rule of a TGG is a triple that
combines a left graph and a right graph with an intermediary correspondence graph
using graph morphisms (see also section 9.2.5). Therefore, TGG rules are similar to
the mappings for which we presented a language in this thesis. They have, however,
a very di�erent focus. On the one hand, TGG-based approaches often focus on formal
properties and guarantees that cannot be shown for our mappings language. On the
other hand, TGGs were initially designed for batch transformations and only a restricted
set of attribute relations, e.g. equivalence relations, can be expressed with most TGG-
based approaches. Furthermore, TGG-based transformation speci�cations cannot always
be extended with unidirectional code. An overview on TGG-based tools was provided
by Hildebrandt et al. [Hil+13] and complemented with another survey that focuses on
incrementality [Leb+14].

many extensions, various
realizations of TGGs

The original concept of TGGs has been extended in many di�erent way to support, for
example, deletions of elements, move operations, negative application conditions [Kla+10;
Kla12] or di�erent incremental synchronization algorithms [GW06; Lau+12]. Further
extensions introduced restricted TGGs for optimized view-update propagation [Anj+14b]
and added support for transforming a �exible number of model elements [Leb+15, pp.92�]
(see also subsection 3.4.3).

Various tools have been developed to realize TGGs in di�erent ways. MoTE, for exam-
ple, was optimized for performance and applied in an industrial case study to synchronize
SysML and AUTOSAR models in a fully bidirectional way [GHN10]. It supports two
modes: a transformation mode, which applies rules as long as matches are located, and
a synchronization mode, which transforms only nodes that were �agged by a change
listener. Furthermore, an in-depth comparison of the formal semantics of TGGs with the
semantics implemented in the tool was provided [GHL14]. Another TGG-based tool is
eMo�on [Anj+11], which also provides a textual syntax for TGG rules. It provides many
advanced features such as rule re�nement [Anj14] and supports attribute manipulations
for which a forward operation, a backward operation, and a check operation have to
be provided [AVS12]. Recently, a library of bidirectional realizations of attribute opera-
tors was added to support basic arithmetic operators, string concatenation, and number
comparisons. The mappings language that we have presented in this thesis supports
additional operators (see section 7.3 and 7.4.6) that were published previously [KR16a;
KR16b]. Other extensions and tools for TGGs are able to synchronize concurrent model
changes and support semi-automatic con�ict resolution [Her+12] which was used, for
example, to realize safety-critical source code translations [Her+14]. For other applica-
tions it was, however, reported that not all requirements could be realized appropriately
with TGGs [PKL15].

10.3.3. Focused on Bidirectionality

overviews on bidirectional
transformations with

di�erent foci

After the dedicated section for approaches based on Triple-Graph Grammars, we
will now discuss further approaches with a strong focus on bidirectionality. Several
overviews on this area were published with di�erent foci. Stevens [Ste08], for example,
reviewed motivations for bidirectionality and di�erent notions of it. Czarnecki et al.
[Cza+09] described di�erent communities and disciplines interested in bidirectional
transformations. Hidaka et al. [Hid+15] discussed design choices and resulting features
of bidirectional transformation languages and tools. Altogether, this �eld of research is
very diverse and no dominating solution has emerged so far.
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comparing QVT-R and the
presented mappings
language

The QVT-R language is probably the most renown language with support for bidi-
rectional model transformations even if the bidirectional semantics are in some points
unclear and problematic [Ste10]. Therefore, we brie�y compare the mappings language,
which we have presented in chapter 7, to it. In contrast to QVT-R, the mappings language
clearly separates the question whether conditions have to be checked or enforced from
the execution direction. More speci�cally, QVT-R provides when- and where-conditions
with direction-dependent semantics. The mappings language, however, di�erentiates
between single-sided conditions that are checked in one direction and enforced in the
other direction and bidirectionalizable conditions that are always enforced (see sub-
section 7.2.2). Therefore, it is not necessary that developers specify which conditions
should only be checked and which conditions should also be enforced. Furthermore,
the mappings language does not distinguish between top-level and helper mappings.
Moreover, it does not support explicit keys for element identi�cation but relies on a
mechanism for temporarily unique identi�ers (see section 5.5.1). Finally, it combines
direction-speci�c and direction-agnostic code in a single speci�cation, for example using
dedicated containment operators (see section 7.3.2).

syntactic or semantic
bidirectionialization and
combinators

In general, bidirectionalization can be performed in three di�erent ways [FMV12]:
Syntactic bidirectionalization approaches analyze transformations in order to synthesize
Put de�nitions from restricted Get de�nitions. Matsuda et al. [Mat+07], for example, pre-
sented an approach for inverting lambda-based programs that operate on tree structures.
Their approach automatically derives and minimizes complements and inverts them
together with a view function. In contrast, semantic bidirectionalization approaches are
based on the observable transformation behavior and create a single, parameterized Put
de�nition that invokes Get as a black box operation [Voi09; Voi+10]. Last, bidirectional
transformation lenses do not need to derive Put de�nitions from Get de�nitions as they
give developers the possibility to directly specify both transformations together [Fos+05].
In addition, bidirectionalization can also be avoided by realizing two ordinary unidirec-
tional transformations for which appropriate round-trip properties are shown. Poskitt
et al. [Pos+14], for example, described how bidirectionality can be faked by verifying
that a pair of unidirectional transformations cannot be distinguished from a bidirectional
transformation. To this end, they translate transformations that were speci�ed using
the Epsilon Wizard Language (EWL) and constraints that were written with the Epsilon
Veri�cation Language (EVL) to graph rewrite rules that can be veri�ed.

lenses combine forward
and backward functions in
a single specification

The concept of combining a forward and a backward function in a single bidirectional
speci�cation called lense, for which strong round-trip laws are demanded, was initially
introduced in this particular way by Foster et al. [Fos+05; Fos+07]. They provided several
generic lense combinators that can be used to combine lenses on arbitrary data and speci�c
combinators for tree-structured data. This original framework was used and extended
in many ways in the literature. Foster et al. [FPP08], for example, presented so-called
quotient lenses which relaxed some of the requirements to demand ful�llment of round-
trip laws “only modulo insigni�cant details”. Barbosa et al. [Bar+10a] introduced matching
lenses that realign sources to re�ect target changes in ordered structures [Bar+10b].
Incremental lenses with change-based Put functions were introduced by Wang et al.
[WGW11]. They guarantee round-trip laws for change-based lenses if the corresponding
state-based lense version guarantees them. Furthermore, least-change lenses that can
be sequentially composed in a deterministic or in a nondeterministic way and that are
based on relational algebra were introduced by Macedo et al. [Mac+13]. The conceptual
framework of lenses was also realized in many transformation approaches and languages.
Schmidt et al. [Sch+13], for example, use lenses to realize refactorings during language
development. In their approach, a refactoring that is performed on an Xtext grammar leads
to appropriate changes in the corresponding Ecore metamodel and the Xtend-based code
generator that encapsulates the execution semantics of the developed language. Wider
[Wid14] presented Focal, an internal DSL for Scala using state-based tree lenses [Wid15].
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10.3.4. Based on Model Di�erences

computing di�erences vs.
monitoring deltas or edit

operations

Consistency can either be preserved based on model di�erences that are computed
for an old and a new version or based on descriptions of model deltas, which directly
express which elements and values were changed or even which edit operations were
used for it. Model di�erences have the advantage that they can always be computed
without the need to modify existing model editors or tools. The disadvantage of such
approaches is, however, that such di�erences do not always provide enough information
on how corresponding model elements should be changed. That is, even if di�erent edit
operations lead to the same di�erence between the original and the changed model, a
user may want to accomplish di�erent e�ects on further models by invoking particular
edit operations [LK14]. Therefore, the question of di�erences or deltas is fundamental
and most of the approaches discussed so far are indirectly or directly in�uenced by it. In
this section, we discuss some approaches to consistency preservation that are especially
in�uenced by their decision to use model di�erences.

hybrid incremental
synchronization based on

di�erences

Cicchetti et al. [CCL11], for example, presented a hybrid approach for incrementally
synchronizing a central metamodel using higher-order transformations, which are based
on model di�erences. In this approach, views can be user-de�ned and they always display
a subset of the central model. Di�erence computation and change propagation pro�t from
this subset relationship. Furthermore, di�erences are calculated by matching elements
based on identi�ers that are marked as unique by the user. .

li�ing syntactic di�erences
for TGG-based consistency

preservation

The CoWolf approach also determines changes from di�erences between two model
states, but this di�erence computation can be in�uenced [Get+15]. Manual di�erence
computation rules can be written and the SiLift approach can be used to semantically lift
syntactic di�erences to edit operations [KKT11]. The obtained changes are then used to
preserve consistency based on rules for the TGG-based henshin tool.

di�erence computation
and change propagation

for OSM

Tunjic and Atkinson [TA15] presented an approach for computing di�erences between
two versions of a view or betwen two versions of a central model in a projective multi-
view approach. They use unidirectional transformations that relate elements of the
central model to elements of views and propagate changes using these relations. Both,
the di�erence computation and the change propagation mechanism were applied to the
OSM approach, which we brie�y introduced in subsection 10.1.3.

10.3.5. Based on Model Deltas or Edit Operations

Approaches for automated consistency preservation can monitor edit operations or
compute di�erences in order to determine where and how consistency has to be preserved.
Wimmer et al. [WMV12], for example, presented an approach for detecting coarse grained
changes based on graph transformation patterns. They propagate changes to dependent
viewpoints using coupled transformations that exploit explicit correspondence links.

incremental graph pattern
matching based on Rete

networks

The pattern-based transformation language Viatra uses EMF-IncQuery and a complex
event processing framework to preserve consistency [Ber+15]. It is based on an event-
driven virtual machine and supports real-time change propagation for which it relies on
temporal logic and automation theory. If constraints are violated an internal DSL can be
used, for example, to execute queries on the Viatra Query Engine. EMF-IncQuery [Ber+12;
Ujh+15] executes declarative model queries by performing incremental graph pattern
matching based on Rete networks. It provides a live validation service, which can report
constraints validations directly after the modi�cation that lead to it. Furthermore, annota-
tions can be used to turn an ordinary graph pattern into constraints and to de�ne severity
levels or error messages for it. Parameters of a constraint pattern can be designated as
keys to identify a violation which is a pattern match. These constraint keys are equivalent
to the invariant parameters of the approach that we have presented in section 8.2. This
way, EMF-IncQuery also provides elements that lead to a violation based on explicit
constraint parameters and does not force developers to repeat parts of the constraint
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checking logic in order to obtain these elements. The main di�erence to our approach
is, however, the relation to OCL: If elements that cause an invariant violation shall be
computed for pre-existing OCL invariants, these invariants have to be reformulated
for EMF-IncQuery, whereas our approach supports an automated translation of OCL
constraints. There is, however, a translation from OCL queries to graph patterns that
can be queried using EMF-IncQuery [Ber14]. With this approach, it would be possible to
modify the patterns that result from an OCL invariant in order to obtain wanted elements
that violate the invariant. The goal of the translation was, however, better performance.
Therefore, a conceptual mapping from the resulting patterns to the initial OCL invariant
may not always be straightforward.

reactive programming and
incrementalization

Other approaches for event-driven or reactive programming can be found in a survey
by Bainomugisha et al. [Bai+13]. Hinkel [Hin16] presented a transformation language that
supports implicit incrementalization of lambda expression in the .NET framework based
on category theory. It o�ers various synchronization and propagation modes, supports
implicit and explicit bidirectionalization, and is realized as an internal DSL [Hin15].

10.3.6. Domain-Specific Consistency Preservation

Some approaches for automated consistency preservation were presented with a focus
on consistency for a particular domain. In this section, we will brie�y discuss such
approaches even if they may also be mentioned in another category or could also be used
in a generic way.

consistency for enterprise
architecture frameworks

Romero et al. [RJV09], for example, presented an approach for preserving consistency
for UML models of enterprise architecture frameworks with bidirectional transformations.
With this approach, correspondences are de�ned between the viewpoint languages, i.e.
in a peer-to-peer manner.

projective ADL consistency
based on bidirectional
Janus language

Malavolta et al. [Mal+10] presented the DUALLy approach that preserves consistency
between Architectural Description Languages (ADLs). It uses the bidirectional Janus
Transformation Language, which is based on ASP as we have explained above [Era+12].
DUALLy uses Higher-Order Transformations (HOTs) and can be classi�ed as a projective
approach because all ADLs are kept consistent with a central model. If multiple notations
are used, kernel extensions can be applied to avoid losing information that cannot be
represented with the central ADL [Di +12].
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11. Conclusions and Future Work

To conclude this thesis, we summarize its content and contributions, brie�y recapitulate
limitations, and provide an overview on possible directions for future work.

11.1. Summary

challenges to and
languages for
specification-driven
consistency preservation

In this thesis, we have presented research that investigated how software developers
can be supported in creating a particular kind of software engineering tools. These
tools preserve consistency between models that represent a system under development
using di�erent languages. First, we identi�ed and classi�ed challenges that can occur if
such tools have to preserve consistency after model changes during system design and
development. As there is no universal notion of consistency, we introduced an approach
for preserving consistency according to explicit consistency speci�cations. Such speci�-
cations prescribe for two modelling languages under which conditions their instances are
to be considered consistent. We formalized this speci�cation-driven notion of consistency
in a way that is independent of how consistency enforcement is realized. On top of this
formal language, we built three languages for the development of tools that preserve
consistency by following this speci�cation-driven approach. With these languages we
addressed Open Consistency Speci�cation Language Challenges (OCSLCs) that we have
identi�ed before (see section 3.5). The �rst language gives developers the possibility to
precisely de�ne how models have to be updated in reaction to speci�c changes in order
to preserve consistency in a certain direction. In order to relieve developers from writing
repetitive code, this imperative reactions language provides declarative constructs for
common consistency preservation tasks, such as resolving or creating corresponding
elements. Then, we presented a language that can be used if changes never need to be
considered and if preservation directions are not always relevant. With this bidirectional
mappings language, developers only have to declare which conditions have to be ful�lled
when elements of di�erent models should be considered consistent to each other. They do
not have to bother about details of checking and enforcing consistency in one direction
or the other. This is possible because enforcement code is automatically derived from
checks and because conditions that are speci�ed for one direction are automatically bidi-
rectionalized using composable, operator-speci�c inverters. The third and last language
that we presented can be used to complete both previous languages when consistency re-
quirements can be speci�ed in terms of invariants. This normative invariants language is
closely aligned with the Object Constraint Language (OCL) and relieves developers from
searching for elements that violate an invariant as it automatically derives queries that
perform this task. These three presented languages give developers many possibilities to
specify consistency problems instead of providing precise instructions on how they are to
be solved. Finally, we presented how we evaluated theoretical and practical properties of
the presented languages. For every language, we discussed its theoretical completeness
and correctness as well as its practical applicability and potential bene�ts based on case
studies. We discussed, for example, case studies in which consistency preservation tools
that were developed using the reactions language had between 33% and 71% less source
lines of code than functionally equivalent tools that were written in Java or the Java
dialect Xtend.

a collection and
classification of recurring
challenges

In the �rst contribution chapter, we have presented a collection and classi�cation
of consistency preservation challenges (chapter 3). We have classi�ed them according
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to the level of abstraction at which they occur so that they range from conceptual
to implementation challenges. For challenges that occur on several levels, we have
discussed which parts should be addressed on which level. Many enforcement challenges,
for example, should be addressed by tools so that developers can choose from generic
options to enforce consistency for particular modelling languages. Furthermore, we have
presented challenges that are not yet su�ciently addressed by consistency speci�cation
languages. These open challenges are the reason why we have developed the languages
presented in thesis. We have also presented challenges to bidirectional consistency
preservation. Finally, we have brie�y mentioned challenges that will occur when the
restriction to preserve consistency only for isolated modelling language pairs is dropped
in future work.

definitions for
specification-driven

consistency preservation
a�er changes

In chapter 4, we have presented realization-independent concepts of speci�cation-
driven consistency preservation based on set theory. First, we have introduced consistency
rules and correspondences for witnessing consistency. Then, we have de�ned model
updates for preserving consistency and the results of such updates. To express when such
updates have to be performed, we have de�ned consistency-breaking changes. Based
on this, we have introduced functions that yield consistency-preserving updates and
discussed circumstances in which consistency can be preserved inductively and for all
rules if it is preserved for a single change and a single rule.

concepts, paradigms,
integration, and

realization

Before we presented the individual languages for developing consistency preservation
tools, we have brie�y discussed what they have in common in terms of a language
framework (chapter 5). We have explained our approach of preserving consistency in
reaction to changes and according to speci�cations and we have discussed why we
developed new languages and not libraries for existing languages. Furthermore, we
have explained how the languages complete each other, for example, by supporting
problem- and solution-oriented programming paradigms (Open Consistency Speci�cation
Language Challenge 2 (OCSLC 2). We have also presented a change modelling language
and an OCL-aligned extension of a reused expressions language. Finally, we explained
how we have realized all languages in terms of appropriate compilers and editors.

change triggers,
correspondence retrievals,

and update actions

In chapter 6, we have presented a language for change-driven consistency preservation
reactions. First, we have explained how reactions can be structured along three main
steps in which reactions are triggered, corresponding elements are retrieved, and actions
are performed. Then we have discussed how the reactions language can be used according
to these steps to structure consistency preservation code and to avoid unwanted side-
e�ects. For all constructs of the reactions language, we have discussed how they allow
developers to abstract away from details that can be treated in generated code (OCSLC
3). In addition, we have explained why the reactions language provides a fallback to
arbitrary update code in order to combine speci�c support with full expressive power
(OCSLC 1). Moreover, we have discussed how the compiler of the reactions language
separates code that can be directly traced to a reactions speci�cation from repetitive
and generic code in order to clarify the enforcement behavior (OCSLC 4). Finally, we
explained the language semantics using the formal language of chapter 4.

abstract mappings with
derived enforcement and

inverted operations

To further support developers in cases, in which change types do not need to be
di�erentiated, and the direction of preservation is not always important, we have pre-
sented a language for abstract consistency mappings in chapter 7. We have explained
how we ensured that this language can also be applied when preservation direction
details cannot always be abstracted away. This is achieved by providing a fallback to
direction-speci�c enforcement code (OCSLC 1 and 3). Furthermore, we have explained
the di�erence between consistency conditions that relate to models of one language or
to models of both languages. We have introduced special operators for both kinds of
conditions to automatically generate enforcement code. For conditions that relate to
a single side, enforcement code is automatically derived from checks. Conditions that
relate both sides only need to be speci�ed in one direction because enforcement code

256



11.2. Current Limitations

for the opposite direction is automatically derived using composable, operator-speci�c
inverters. Moreover, we have presented di�erent possibilities of mapping dependencies
and multi-parameter mappings. Additionally, we have explained why we generate code
that calls generic platform code via mapping-speci�c wrappers in order to clarify the
enforcement behavior (OCSLC 4). Finally, we have discussed the language semantics by
explaining how di�erent reactions can be created to preserve consistency for mappings
if these ful�ll certain restrictions or not.

invariants with
iterator-based derivation
of queries for violating
elements

In chapter 8, we have presented the invariants language, which complements the
reactions and mappings language with constraint-based programming. With it invariants
can be de�ned in almost the same way as with OCL and queries for model elements that
violate an invariant can be automatically derived based on explicit invariant parame-
ters. We have discussed why invariant-violating model elements are often needed and
explained why constraint code should not be manually duplicated in queries for such
elements. To avoid such code duplications, we have presented an automated derivation
of queries. This query derivation can be con�gured with invariant parameters that match
iterator variables of the invariant constraint. We have explained this automated deriva-
tion by presenting rules that are used to transform a tree representation of the constraint
expression. The result of such a transformation is a query that returns those elements that
were accessed for an iterator variable and that are responsible for an invariant violation.

evaluation of
completeness, correctness,
applicability, and benefit

In chapter 9, we have discussed how we have evaluated theoretical and practical prop-
erties of the presented languages. First, we have discussed theoretical completeness with
respect to the intended range of use. We have shown, for example, Turing-completeness
for the reactions language and sketched a reduction from Triple-Graph Grammar (TGG)
rules to mappings to demonstrate the expressive power of the mappings language. More-
over, we have discussed theoretical correctness, for example for the automated bidi-
rectionalization of enforcement code. To this end, we have introduced a new notion
of best-possible behaved round-trips based, which guarantees that the GetPut law is
always ful�lled and that the PutGet law is ful�lled whenever this is possible. Finally,
we have discussed potential bene�ts, for example, for consistency preservation tools
that were realized with the reactions language or with a General-Purpose Programming
Language (GPPL). Those tools that were developed using the reactions language had
between 33% and 71% less source lines of code than their GPPL counterparts.

from the general context
of view updates to
checking and preserving
consistency for models

In the last chaper before these conclusions, we have reviewed related work in the con-
text of consistency preservation for models of di�erent languages (chapter 10). We have
discussed work in the a more general context of updating models or views, for example
in databases. Furthermore, we have described approaches for formalizing or checking
consistency. Finally, we have discussed automated approaches to consistency preserva-
tion, especially work that is based on TGGs or that realizes bidirectional transformations
in a di�erent way.

11.2. Current Limitations

restricted to consistency
specifications for language
pairs

The major limitation of the languages presented in this thesis is that they are only
designed and evaluated for preserving consistency between models that conform to two

di�erent modelling languages. We realized reactions and mappings in such a way that
updates are only performed on models of one modelling language in reaction to changes
in models of another modelling language. Updates on the change source side cannot
be performed (see page 111). Furthermore, updates on the execution target side are not
monitored so that updates can only be performed in reaction to user changes but not
in reaction to update actions of reactions. Nevertheless, we expect that many of the
presented concepts and language features can be adapted for cases where consistency has
to be preserved between models of the same modelling language or between models of
more than two languages. Intra-language consistency could be approached, for example,
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based on a consistency speci�cation that uses the same language as change source and
execution target. Inter-language consistency speci�cations for more than two languages
could be realized, for example, by combining several consistency speci�cations for suitable
language pairs. Before such new uses of the languages can be evaluated, it is, however,
necessary to solve fundamental problems, for example, to avoid reaction cycles or to
manage con�icting updates.

inverters limited to certain
operations and operators

The operator-speci�c inverters that we use to bidirectionalize mapping conditions
have three limitations as described in subsection 7.4.7: They can only invert operations
in which every source attribute appears at most once, they update only a single source
attribute, and they only operate on single attribute values. The �rst limitation is common
and the second and third limitation can be overcome with inverters that update, for
example, several attributes in the same way and with inverters that update collections
element-wise.

11.3. Future Work

short-term language
improvements and

long-term support beyond
pairwise consistency

The consistency preservation languages presented in this thesis point out various
possibilities for future research. On the one hand, several speci�c aspects of the languages
can be further explored and improved. On the other hand, future work can explore how
the limitation to isolated pairs of modelling languages can be dropped.

11.3.1. Short-Term Specification Language Improvements

extending reactions for
compound changes, reuse,

and user change
disambiguation

In short-term future work, the reactions language could be extended by triggers for
compound changes as well as by constructs for reuse and user change disambiguation
(see section 6.8). The current prototype decomposes compound change representations
and only supports triggers for atomic change representations. In the future, both atomic
and compound change representations should be suitable change types of reactions
triggers. Then, compound change representations should only be decomposed if reactions
would be triggered for the change parts but not for the composed change representation.
Furthermore, the presented rules for avoiding unwanted side-e�ects in di�erent reaction
expressions should be completely enforced by the compiler. Code in initialization or
update actions, for example, should be restricted so that only the speci�ed model element
but no other related elements are updated. Additionally, new language constructs could
be provided to foster the reuse of reactions and reaction routines within a single or
across several consistency speci�cations. Access modi�ers, for example, could be added
to reaction routines or these could be explicitly re�ned or parameterized. Finally, user
change disambiguation could be improved by integrating dialog and options de�nitions.

new operators, inverters,
delegation, and a better

realization for pure
mappings

The mappings language could be extended in the short term with further operators,
inverters, and instantiation delegations and the compiler could be improved based on the
presented realization strategy for pure mappings (see section 7.8). For single-sided and
bidirectionalizable conditions, new operators could be added and existing operators could
be improved, for example, to also derive enforcements for negated equality conditions
for references. Furthermore, inverters of a new type could be provided to also support
cases in which more than one source attribute should be updated for a change of a single
attribute on the other side. To reduce the number of cases were fallback enforcements
are necessary, a mechanism for de�ning and reusing developer-de�ned operators for
single-sided conditions and bidirectionalizable conditions could be developed. Moreover,
a mechanism for delegating instantiations of mapped abstract metaclasses to concrete
metaclasses could be added. Finally, the proposed realization strategy for impure map-
pings should be completely realized in the compiler so that developers have to consider
fewer unnecessary reevaluations of mapping conditions when they debug the code that
is generated for a mapping.
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11.3. Future Work

query derivation support
for local variables, nested
parameters, and further
operators

Short-term future work in the context of the invariants language should add query
derivation support for local variables, nested parameters, and further operators. Currently,
local variables can be de�ned and used in invariants to refer to results of reused expression
parts. The query derivation algorithm has, however, to be extended if invariant-violating
elements should not only be bound to iterator variables but also to local variables. This
could be very useful as let expressions and de�nition constraints for inline and ordinary
local variables are a commonly-used feature of OCL. Furthermore, the derivation algo-
rithm should be extended to also support nested parameters by transforming non-nested
and nested expressions separately and combining them afterwards. Moreover, further
operators, such as common collection size comparisons, could be supported during query
derivation.

11.3.2. Long-Term Support Beyond Pairwise Consistency

reactions to reactions,
cycles, oscillations, and
conflicts

In the long-term, future work should explore ways to also support cases in which
consistency cannot be preserved successfully if reactions and mappings can only be
speci�ed pairwise for two modelling languages without considering other languages (see
section 3.9). As we already mentioned above, consistency can only be preserved between
models of three or more modelling languages at once if several fundamental problems
are solved. First, it has to be ensured that updates that are performed when reactions or
mappings are executed are monitored and processed analogue to user changes. That is,
consistency should be enforced the same way if a model element was directly changed
by a user or indirectly changed in reaction to a change in a model of another language. A
problem in this context is, for example, that user change disambiguation requests cannot
be answered by an automated update and therefore would have to be forwarded to the
user that performed the change that lead to the indirect reaction. This would, however,
mean that users cannot focus on the modelling language they are using and only have
to consider appropriate parts of directly related languages as they may have to take
all languages that are used into account. Second, reaction cycles and oscillations have
to be avoided which cannot be done by simply ensuring that consistency preservation
stops as soon as a sequence of updates would not yield any model di�erences. Instead,
it should be explored whether appropriate detection mechanism that were developed
in other contexts can be transferred. Last, reactions that may directly or indirectly lead
to con�icting updates along di�erent paths have to be managed, for example, based on
precedence rules. Problems that are similar to the three presented ones are likely to be
already addressed in other contexts. Therefore, an important direction for future research
is to perform di�erent practical case studies with several modelling languages. With
such case studies it should be investigated which of these theoretically possible problems
occur in realistic settings and whether well-known solution strategies can also be used
for preserving consistency between models of di�erent languages in a change-driven way.
In this sense, such future work could pursue the same goal as this thesis by supporting
developers in specifying consistency preservation also for cases where more than two
modelling languages have to be considered at once.
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