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Notation

Throughout this thesis we use the following notation: We write the scalar product of two
vectors a, b € R? as

Az by
a-b=|ay | -|by| =azbs +ayby +a.b.,
a, by

and denote their cross product by

Qg by ayb, — a.by
axb=|ay | x|by | = | azbs —azb,
a, by azby — ayby

Let Ry = (0,00) denote the positive real numbers. We often consider multivariate functions
u : Ry x R® — R, where the first variable is the time variable ¢ and the three remaining
variables are the space variables x,y,z. We usually drop the space variables and just write
u(t) = u(t, z,y, z) and often also omit the time variable such that u = u(t) = u(t, z,y, 2).

We denote the partial derivatives of u by

0 0
Oyu = au, Opu = %u, Oyu = 8—yu, 0,u = au
The spatial derivatives are collected in the gradient of u, which is given by
Oz
gradu = | dyu
o u

If a function v : R4 — R only depends on the time, we write its time derivative by v = %v.

For a vector field U : Ry x R? — R? we define the following differential operators acting on the
spatial variables: The divergence of U is defined as

U,
divU =div | U, | =0,U; +9,U, +0.U.,
U,
and its curl by
U, 0,U, - 0.0,
curlU =curl | U, | = | 0.U, — 0, U,

U, 9, U, — 8,U,
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Introduction

Motivation

Maxwell’s equations are the fundamental laws in electromagnetism. They describe the inter-
action of time-dependent electromagnetic fields with each other, as well as their behavior in
different materials and in the presence (or absence) of electrical currents and charges. Among
many other applications they play a crucial role in the analysis and design of nanophotonic
systems such as antennas, photonic cristals, waveguides and interferometers.

Despite the fact that Maxwell’s equations have been a research objective for the last 150 years,
they still pose significant challenges and analytic solutions can only be found for certain simpli-
fied systems. With the rise of computing power this shortcoming was cured by the techniques
of numerical analysis providing (high order) approximations of Maxwell’s equations. In many
applications the numerical approximation is realized by a finite-difference space discretization in
combination with an explicit time integrator. One of the oldest and most popular methods fol-
lowing this recipe to solve the time-dependent Maxwell’s equations was proposed by Yee [1966].
This method comprises a finite-difference space discretization on a staggered spatial grid — the
famous Yee grid — and the explicit Verlet (or leap frog) time integrator. However, there are two
shortcomings in this popular approach. On the one hand, methods based on finite-differences
are limited to domains with a regular geometry and their generalization to unstructured grids
is difficult. Moreover, they do not allow for adaptivity and the numerical analysis requires
high regularity of the exact solution of Maxwell’s equations, which is not reasonable in realistic
applications. As a remedy to this problem other space discretization techniques were proposed
such as schemes based on Nédélec elements (Nédélec [1980]) or discontinuous Galerkin (dG)
methods (Reed and Hill [1973]), see also the textbooks Monk [2003], Di Pietro and Ern [2012]
and Hesthaven and Warburton [2008]. On the other hand, despite their wide spread applica-
tion, explicit time integrators such as the Verlet method (Fahs [2009]), explicit two and three
stage Runge-Kutta (RK) methods (Burman et al. [2010]) and low-storage RK schemes (Diehl
et al. [2010]), suffer from severe stability issues when applied to stiff problems such as the spa-
tially discretized Maxwell’s equations. In fact, in order to guarantee stability the time-step size
of these methods is subject to a strong limitation (CFL condition), which often renders the
application of explicit time integrators inefficient.

7
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(b) Enlargement of the gap between
the ring resonator and the wave
guides.

A

(a) The ring resonator and the wave guides
(grey areas) are separated by a small gap.

Figure 1: Mesh of a ring resonator. The white and grey areas are made of different materials.

In particular, explicit time integration schemes perform poorly in the case of locally refined
spatial grids, i.e. grids which consist mostly of coarse elements but also of a few (very) tiny
elements (grid-induced stiffness). However, many applications require such a locally refined
grid, e.g. to resolve tiny geometric details or to guarantee the optimal convergence order of
the space discretization. A concrete example is that of a ring resonator where the different
materials require a space discretization by a locally refined grid, see Figure 1. These problems
demand for more adapted time integration methods and two classes of novel time integrators
have been proposed in the literature. The first class are explicit local time stepping schemes.
They were initially proposed in Diaz and Grote [2009] for the second order wave equation and
extended to Maxwell’s equations in Grote and Mitkova [2010]. In several succeeding papers
these methods were extended and generalized, see Chapter 5 for a detailed discussion. The
underlying idea of local time stepping methods is to treat the tiny elements in the spatial grid
with a small time-step size, thus avoiding a restrictive CFL condition emanating from these
fine elements, and treating the remaining coarse elements with a bigger time step. The second
class consists of locally implicit time integrators and originates from Piperno [2006] and Verwer
[2011]. Further insight into these methods was provided in Descombes et al. [2013]. The key
ingredient in locally implicit time integration schemes is to treat the fine elements with an
implicit time integrator while retaining an explicit time integration scheme for the remaining
coarse elements.

Aims und results

In this thesis we provide a deeper understanding and a rigorous error analysis of the locally
implicit time integrator proposed in Verwer [2011]. So far, the method was only constructed
by considering the spatially discretized Maxwell’s equations as a system of ODEs and the error
analysis was limited to the non-stiff case since the error constants depended on the spatial mesh.
Moreover, it was unclear which elements of the spatial grid exactly enter the CFL condition.
We closed this gap by combining the idea of Hochbruck and Pazur [2015] to consider the
spatially discretized Maxwell’s equations in a variational setting with an adaption of the locally
implicit scheme from Verwer [2011]. This allows us to control exactly which spatial elements
are integrated implicitly and which explicitly and we can prove rigorously which of them enter
the CFL condition. It turns out that in order to ensure a CFL condition, which only depends
on the coarse elements of the spatial grid, not only all fine elements have to be integrated



implicitly but so do their (coarse) neighbors. Another result emanating from our new ansatz is
an error analysis which is independent of the spatial grid and thus also valid in the relevant stiff
regime. In fact, we can prove that the locally implicit method is of order two in the time step
and of order k in the mesh parameter, when using a dG space discretization with polynomials
of order k. We developed a novel technique for the stability and the convergence proof, which
is —in our appreciation— simpler than an energy technique and which also provides a rigorous
error analysis for the fully explicit Verlet method and the fully implicit Crank—Nicolson scheme.
These results were published in Hochbruck and Sturm [2016].

So far, locally implicit schemes discussed in the literature were limited to an unstabilized spatial
discretization, which is usually referred to as a central fluxes dG discretization. However, a
stabilized (upwind fluxes) dG discretization provides many benefits such as a better stability
behavior and a higher spatial convergence rate. We were able to adapt the locally implicit
scheme to this space discretization ensuring that it also features a CFL condition which solely
depends on the coarse elements in the spatial grid. Moreover, we can prove that it is convergent
of order two in the time step and k + 1/2 on the coarse part of the grid and % in the fine part
of the grid. It turns out that the construction of this method needs completely new ideas and
that the error analysis has to be carried out with an energy technique. As byproduct of our
analysis, we also give rigorous error bounds for a fully explicit Verlet-type time integrator for
the upwind fluxes dG discretization of Maxwell’s equations. A summary of the results can be
found in Hochbruck and Sturm [2017].

Outline

This thesis is organized as follows. In Chapter 1 we introduce Maxwell’s equations and discuss
the particular case of linear, isotropic materials which lead to the linear Maxwell’s equations we
consider in this thesis. We provide the functional analytic framework in which Maxwell’s equa-
tions are a well-posed problem. Chapters 2 and 3 are concerned with the spatial discretization of
Maxwell’s equations by means of a dG method. In Chapter 2 we introduce the discrete setting
we need to formulate the dG method in Chapter 3. In this chapter we derive both the central
fluxes dG discretization and the upwind fluxes dG discretization and discuss their differences.
We end this chapter with an error analysis, which reveals the different techniques needed in the
central fluxes case and in the upwind fluxes case. This distinction will also be employed in the
fully discrete case. Chapter 4 is devoted to the time integration of the semidiscrete Maxwell’s
equations stemming from the dG space discretization of Chapters 2 and 3. In this chapter we
study the explicit Verlet method and the implicit Crank—Nicolson method, which will be the
underlying methods for our locally implicit scheme. We provide a stability analysis as well
as an error analysis for both time integration methods in combination with a central fluxes
dG scheme and with an upwind fluxes dG scheme. The presented techniques will be the basis
for our analysis of the locally implicit scheme which we present in Chapter 5. We begin this
chapter with a decomposition of the spatial mesh as preparation for the distinction of explicit
and implicit time integration. Then, we derive the locally implicit scheme in combination with
a central fluxes dG space discretization. Our main results for this scheme are its CFL condition
(5.40) under which we can prove its stability and the convergence result given in Theorem 5.13.
Next, we introduce the modifications needed to adapt the central fluxes locally implicit method
to an upwind fluxes dG discretization. Our essential results for this method are the CFL condi-
tion (5.93) and the convergence result in Theorem 5.35. We conclude this thesis with Chapter 6
where we illustrate how the locally implicit methods can be implemented efficiently and where
we provide numerical examples underlining the theoretical results.






CHAPTER 1

Maxwell's equations

In this chapter we present Maxwell’s equations in their integral form and derive their differential
form. Then, we focus on electromagnetic phenomena in isotropic, linear materials which are
described by the linear Maxwell’s equations and which are the underlying equations for this
thesis. We shortly give an overview of the functional analytic framework in which we embed the
linear Maxwell’s equations and in which we can show their well-posedness. We end this chapter
by discussing the energy conservation and the stability of solutions of Maxwell’s equations. Our
main references for this chapter are the books Monk [2003] and Kirsch and Hettlich [2015].

1.1 Maxwell’s equations in integral and differential form

In the following, 2 C R3 denotes a domain and R, = (0,00). The electromagnetic field is
described by four vector fields called

electric field intensity E:R, xQ— R3 [r\; ,
magnetic field intensity H:R, xQ—-R? [i ;
electric displacement D:Ry xQ— R3 Liz ,
magnetic induction B:R, xQ— R3 L\rflz .

The interaction of these fields on each other as well as their dependence on the two sources

A
electric current density J: Ry xQ— R3 [2] ,
m
. . As
electric charge density 0: Ry xQ—=R — |
m

is described by Maxwell’s equations.
Remark: Frequently used units are also Coulomb C = As and Tesla T = Vs/m?.

11



12 CHAPTER 1. MAXWELL’S EQUATIONS

1.1.1 Maxwell’s equations in integral form

In order to state Maxwell’s equations in integral form we consider the following setting: Let
S C € be a connected, smooth surface with boundary 8S. We denote by ng : S — R3 the
continuous, unit normal vector which is always directed to the same side of S. We call this side
the “positive side” of S. Moreover, we denote by tg : S — R3 the unit tangent vector of 99
that is directed counterclockwise when seen from the positive side of S. Last, let V' C Q be an
open set with boundary 9V and outer unit normal vector ny : OV — R3.

Maxwell’s equations now consist of the following set of four equations which are often split into
two equations containing time derivatives

d
Faraday’s law of induction / E-tgdl=—— / B ng ds, (1.1a)
o5 dt Js
d
Ampeére’s circuital law H-tg dl = / D ng ds+ / J - ng ds, (1.1b)
a5 dt Js s
and two integral equations

Gauss’ magnetic law B-ny ds=0, (1.2a)
)%

Gauss’ electric law D ny ds = / o dx. (1.2b)
ov Vv

The first equation (1.1a) means that a changing magnetic field induces an electric field. Equation
(1.1b) states that a magnetic field can be generated by an (external) electrical current or by a
changing electric field. Equation (1.2a) essentially states that there are no magnetic monopoles
and that the magnetic field lines form closed loops. Finally, equation (1.2b) describes how
electric charges generate an electric field.

1.1.2 Maxwell’s equations in differential form

Now, we derive the differential form of Maxwell’s equations from two famous theorems which
hold for sufficiently smooth vector fields F :  — R3:

Stoke’s theorem / curlF - ng ds = / F-tg del, (1.3)
S oS

Gauss’ divergence theorem / divF dx = / F - ny ds. (1.4)
\%4 ov

Applying (1.3) to (1.1) and (1.4) to (1.2), and furthermore using that S, V are arbitrary we
obtain Maxwell’s equations in differential form. They consist of two curl-equations

0B = — curl E, (0,T) x Q, (1.5a)
oD = curlH — J, (0,T) x Q, (1.5b)
and two div-equations
divB =0, (0,T7) x Q, (1.6a)
divD = p, (0,T) x Q. (1.6b)

These equations need to be supplemented with initial values and boundary conditions.

For sufficiently smooth D and H we can already gain a relation between the charge density o
and the current density J in the continuity equation

dro + divI = 0. (1.7)
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This follows from (1.5b) and (1.6b) by
Or0 = div(9;D) = div(curl H) — divJ = —div J,

where the last equation holds since div(curl-) = 0.

On the other hand, if we assume the continuity equation (1.7), then the div-equations (1.6)
become redundant in the sense that they only have to be ensured for ¢ = 0 and then follow
from the curl-equations (1.5) for all ¢ > 0. We collect this in the following proposition.

Proposition 1.1. Let B, D, H, E be smooth solutions of (1.5) and let o and J satisfy (1.7).
Furthermore, assume that (1.6) is satisfied for t =0, i.e.

divD(0) = o(0),  divB(0) = 0. (1.8)

Then, (1.6) holds true for allt € R,.

Proof. By (1.8) we have that
divD(t) = divD(0 / O¢(divD(s / O¢(divD(s (1.9)

Furthermore, by (1.5b) and (1.7), we conclude
O¢(divD) = div(9;D) = div(curl H) — divJ = 0;p.

Inserting this into (1.9) shows that (1.6b) holds for all ¢ € Ry. In order to prove (1.6a) we take
the divergence of (1.5a) and obtain

O¢(divB) = div(0;B) = —div(curl E) =
Together with (1.8) this yields
div B(t) = div B(0) = 0,
which finishes the proof. O

Considering the set of equations (1.1)—(1.2) or (1.5)—(1.6), respectively, we see that we have
12 unknowns B, D, H and E but only eight independent equations (six if we assume (1.8)).
Hence, we need additional conditions to ensure the well-posedness of Maxwell’s equations.

1.1.3 Constitutive equations

The constitutive equations provide a description of how the electric field E and the magnetic
field H give rise to the electric displacement D and the magnetic induction B:

D=D(E,H), B =B(E,H).
In general, the relationships are complicated and strongly depend on the material (e.g. molec-
ular character, density, temperature) in which the electromagnetic phenomena are examined.

For stationary media a typical representation is given by
D =¢E+P, B = poH + poM,

where P and M denote the polarization and magnetization, respectively, and €9 and ug are
the permittivity and the permeability of free space. The values of the latter are given by

7VS

A
co=8.854-1071220 0 = dr 1077
Am

Vm
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These quantities are related to the speed of light in vacuum ¢y by

1
€00

€o

— 2.998 - 108%

An example fitting in the upper framework is light propagating through optical materials in
photonic crystals described by the Kerr nonlinearity

P(E)=¢c(e, — 1 +x|EPE (x€R), M=0,

cf. [Busch et al., 2007, Section 3], [Dorfler et al., 2011, Chapter 1] and Pototschnig et al. [2009].
Here, €, : R? — R3*3 is the relative permittivity.

In non-ferroelectric and non-ferromagnetic media the electric displacement and the magnetic
induction depend linearly on the electric field and the magnetic field, respectively, if the fields
are relatively small. Then, we have

with matrix-valued functions € = ege, : R? — R3*3 the dielectric tensor with relative
permittivity &,, and p = pop, : R> — R3*3, the permeability tensor with relative per-
meability u,.. We call such a material linear and anisotropic. Note that € and p need
not to be continuous. If 2 is a composite material, i.e. made up of different materials, the
coefficients € and g may jump at material interfaces.

In the special case where the polarization and the magnetization do not depend on the directions,
the dielectricity and the permeability can be modeled as just real functions e, jt, : R? — R.
We call such a material isotropic.

In the simplest case, €, and u, are constants and we call such a medium homogeneous. In
such a medium light travels with speed

= — N = +\/Erly,

where n is called the refractive index of the medium. An important example of a homogeneous
medium is that of vacuum, where €, = 1, y, = 1 and thus n = 1. For some other materials
the refractive indices are given by

Mair = 1.000292,  Magater = 1.33,  Mglass = 1.46...1.65,  Ngiamond = 2.42.

Last, we point out that both the current density J and the charge density o can depend on the
material and the fields. In conducting media the electric field E induces a current J. In a
linear approximation this is described by Ohm’s law

J=cE+J,,

where J, is an external current density. For isotropic materials the function o : R? — R is
called the conductivity. In anistoropic media the function ¢ is matrix-valued and in vacuum
we have o = 0.

In this thesis we focus on linear, isotropic materials. This results in the linear Maxwell’s
equations. Moreover, we assume that the material is nonconducting, i.e. ¢ = 0.
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1.2 Linear Maxwell’s equations

We substitute the linear constitutive relations D = ¢E and B = pH into (1.5),

woH = — curl E, (0,T) x Q, (1.10a)
eOE = curlH — J, (0,T) x Q, (1.10b)
and into (1.6),
div(pH) = 0, (0,T7) x Q, (1.11a)
div(¢E) = o, (0,T) x Q. (1.11b)

These equations are endowed with initial values H(0) = HY and E(0) = E° satisfying
div(uH") = 0 and div(¢E°) = 0(0), respectively.

As mentioned above the coefficients € and p are allowed to have jumps. In this case we cannot
use Maxwell’s equations (1.10), (1.11) directly since the data is not smooth enough. Thus, we
consider next interface conditions for E and H and also discuss appropriate boundary conditions.

1.2.1 Interface and boundary conditions

We consider the situation where €2 is made up of two different materials, say material 1 and 2,
which share a common surface S. We denote by ng the unit normal to S and by E;, Hj, €5,
pj the restriction of the respective functions to material j € {1,2}.

From (1.1a) and (1.2a) one can obtain

ng x (E; —Eg) =0 on S, (1.12a)

ng x (H; —Hy) =Jg on S, (1.12b)

ng - (mHy — peHy) =0 on S, (1.12¢)
ng - (e1E1 — e2B9) = og on S, (1.12d)

where gg is the surface charge density and Jg is the surface current density on S, cf. [Kirsch and
Hettlich, 2015, Section 1.4] and [Monk, 2003, Section 1.2.2] for details. In many applications
we can assume Jg = 0. Then (1.12b) becomes

ng x (H —Hy) =0 on S. (1.12¢)

The conditions (1.12a) and (1.12¢) mean that both the electric field E and the magnetic field
H have continuous tangential components at interfaces. On the other hand (1.12¢) and
(1.12d) state that they exhibit jumps in the normal components if ¢ and p are discontin-
uous, respectively. In the presence of material discontinuities, a numerical scheme has to take
this behavior into account.

Since we are interested in solving Maxwell’s equation in a bounded domain we need appropriate
boundary conditions for E and H on 0{2. In this thesis we consider the case of perfectly
conducting boundary conditions, i.e. we assume that 2 is surrounded by an idealized
perfect conductor. By letting 0 — co, Ohm’s law shows that E — 0 if we demand that J stays
finite. Thus, we conclude that inside a perfect conductor the electric field has to vanish, whence
we deduce from (1.12a) the boundary condition

nxE=0 on 0f2. (1.13)
Here and from now on we denote by n the unit outward normal to 2. This condition implies

n - (uH) = const on 012, (1.14)
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since
O(n- (pH)) =n- (u0H) = —n - curlE = div(n x E) — E - curln = 0.

Here, we used div(U x V) =V . curlU — U - curl V for the third equation. The last equation
holds because of (1.13) and since n can be written as gradient of a parametrization of 92 and
curl(grad -) = 0. We conclude that

n- (uH(t)) = n- (uHY), for all t € Ry.

Hence, it is sufficient to pose boundary conditions on the electric field E and on the initial value
of H only. In the following we will assume that the normal components of H vanish on the
boundary,

n-(uH) =0 on 0€). (1.15)

1.2.2 Reduction to two dimensions

If the underlying physical system is homogeneous in z-direction Maxwell’s equations (1.10)
decouple into two sets of three equations, cf. Niegemann [2009]. The first case is the transverse-
electric (TE) polarization where the associated equations read

pdH, = —0,E, + 0,E., (0,T)
0,E, = 0,H. — 1., 0,T) x Q,
o v (0,7) > (1.16)
cOE, = —9,H, — J,, (0,T)

(0,7)

nzEy —n,E, =0,
Here, the electric field vector lies in the (z,y)-plane and the magnetic field vector is directed

in z-direction. In the second case, the transverse-magnetic (TM) polarization, it is the
other way round. The associated equations read

woH, = —0,E;, (0,T) x Q,
nwoH, = 0, E., (0,T) x Q, (117)
OB, = -0,H, + 0, H, — J_, (0,T) x Q,

E.=0, (0,7) x 09.

Our later numerical experiments will be carried out for the TM case.

1.3 Well-posedness of linear Maxwell’s equations

From now on we consider the system

woH = — curl E, (0,T) x Q,
eOE = curlH — J, (0,7) x Q,
0 0 (1.18)
H(0) =H", E(0)=E", Q,
nxE=0, (0,T) x 0N2.
We assume the continuity equation (1.7) and for the initial values we demand
div(pH") =0, div(eE®) = 0(0), Q,
(n 0) (eE”) = 0(0) (1.19)
n- (pH") =0, o0.
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Furthermore, we assume that the coefficients ¢, y are bounded and uniformly positive
definite, i.e.
eRELT(Q), e n=4, (1.20)

for a constant § > 0. We can write Maxwell’s equations (1.18) as the abstract Cauchy

problem
dpu(t) = Cu(t) + j(t), u(0) = u’, (1.21)

where we collected the electric field and the magnetic field in u = (H, E) and the current density
in j = (0, —e~1J), and where € is the Maxwell operator

(0 =Cg\ _ 0 —pteurl
¢= (GH 0 ) o <5_1 curl 0 ) ' (1.22)

We will specify the exact mathematical setting in which € is a well-defined operator in Sec-
tion 1.3.2. We already indicate that this setting has to incorporate the boundary condition on
the electric field E otherwise the Cauchy problem (1.21) is not equivalent to Maxwell’s equations
(1.18).

In the next section we give a short overview on the well-posedness of more general abstract
evolution equations.

1.3.1 Abstract evolution equations and semigroups

The material in this section is taken from Engel and Nagel [2000], [Jacob and Zwart, 2012,
Chapters 5 and 6] and Pazy [1983]. We also considered the lecture notes Schnaubelt [2010
2011], Schnaubelt [2012-2013] and Schnaubelt [2015].

Let (X, (-, )X) be a Hilbert space with corresponding norm |[|-[|% = (., ~)X. By L£(X) we denote
the space of all bounded linear operators from X into X with operator norm
Axl| x
Al x = sup 42X
zeX ”xHX

z#0

Definition 1.2. A one-parameter family (T'(t))t>0 of bounded linear operators from X to X is
called a semigroup of bounded linear operators on X if

(a) T(0) =1 and
(b) T(t+ s) =T(t)T(s) for all t,s > 0.
A semigroup (T'(t))t>0 is called a strongly continuous semigroup or Cy-semigroup” if for

allxz € X,

Jm [[T(t)e —zlx =0;

i.e. t — T'(t) is strongly continuous at 0.

We call X the state space. If we replace in Defintion 1.2 “t,s > 0” by “t,s € R” and “t — 04
by “t — 0” we obtain the concept of a (strongly continuous) group.

Lemma 1.3. A strongly continuous semigroup (T'(t))i>0 has the following properties:

(a) There exist constants M > 1 and w > 0 such that

1T ||l xex < Me*?, for all t > 0. (1.23)

*Co abbreviates “Cesasro summable of order 0”
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(b) The mapping t — T(t) is strongly continuous on [0,00), i.e.

lin% IT(t+ s)x —T(t)x||x =0, for allt > 0.
S—>

If M =1 and w = 0 the semigroup is called a contraction semigroup.

Example 1.4. We illustrate the connection between semigroups and Cauchy problems with
the simple example of X = C". Let A € C"*" and 4 € C" be given and consider the following
system of ordinary differential equations:

u(t) = Au(t), u(0) = u®. (1.24)
It is well-known that its solution u : [0,00) — C™ can be written as
u(t) = e,

where e!4 is the exponential of the matrix tA. This exponential itself is again a n x n
matrix, or in other words a linear operator from C" to C". Even more, it is easy to see that

(etA)tZO is a strongly continuous semigroup. The semigroup and A are directly linked via

_ d tA
NS

One can easily prove that for an arbitrary matrix (1.23) holds with M =1 and w = ||A||. For
our purposes, we are mostly interested in matrices with a field of values

(1.25)
t=0

F(A) = {mAx ’ zeCm\ {0}} (1.26)

contained in C~ = {z € C | Rez < 0}. Then e is a contraction semigroup. For matrices
with F(A) C iR, e.g. skew-hermitian matrices, the matrix exponential ¢*4 is unitary and thus
satisfies ||e/d|| = 1. The latter two properties can be shown by considering the ODE (1.24). o

We generalize (1.25) by associating an operator A to a generic Cy-semigroup (7'(t))¢>o-

Definition 1.5. Let (T'(t)):>0 be a Co-semigroup. We define the linear operator A : D(A) — X

by
Ar = lim M’
t—0+ t

where the domain D(A) consists of all x € X for which the limit in (1.27) exists.

(1.27)

We call A the infinitesimal generator of the strongly continuous semigroup (T'(t))e>0.

The next lemma shows that for every x € D(A) the function ¢ — T'(t)x is differentiable.

Lemma 1.6. Let (T(t))i>0 be a Co-semigroup with infinitesimal generator A. Then, the fol-
lowing results hold:

(a) Forx € D(A) and t > 0 we have T(t)z € D(A).
(b) For all x € D(A) and all t > 0 we have the relation

d

Z(T(t)z) = AT(t)x = T(t)Ax. (1.28)

(¢) The domain of A is dense in X and A is a closed operator.
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Definition 1.5 implies that every Cpy-semigroup has a unique generator. The following corol-
lary of Lemma 1.6 shows the converse, namely that every generator belongs to a unique
semigroup.

Corollary 1.7. Let (T1(t))e>0 and (T2(t))e>0 be two Co-semigroups with generators Ay and As,
respectively. If Ay = Aa, then Ti(t) = Ta(t) for allt > 0.

Moreover, Lemma 1.6 enables us to link a strongly continuous semigroup to the abstract
Cauchy problem
Opu(t) = Au(t), u(0) = u°. (1.29)

Theorem 1.8. Let A be the infinitesimal generator of the strongly continuous semigroup
(T(t))t>0- Then, for every u® € D(A) the abstract Cauchy problem (1.29) has the unique
solution u(t) = T(t)u’ € CY(Ry; X) N C(Ry; D(A)).

In Example 1.4 we saw that the semigroup belonging to a matrix A can be written in the form
of a matrix exponential. We adopt this notation also for an unbounded operator A by writing
ez instead of T(t)x if A generates the Cop-semigroup T'(t).

Having established the correspondence between ODEs and the abstract Cauchy problem (1.29)
we can carry over many concepts from the ODE case to general Cauchy problems. For instance,
the variation of constants formula is also valid in the more general situation. More precisely,
for the inhomogeneous abstract Cauchy problem

Oru(t) = Ault) + f(1), u(0) = u®, (1.30)
the following result holds true.

Theorem 1.9. Let A be the infinitesimal generator of the strongly continuous semigroup
(etﬂ)t>0 andu® € D(A). Moreover, assume that either f € C1(0,T; X) or that f € C(0,T; D(A)).
Then, there exists a unique solution u € C1(0,T; X) N C(0,T; D(A)) of (1.30) given by

¢
u(t) = el +/ =941 (s) ds.
0

Next, we give two sufficient conditions for an operator A to generate a Cyp-semigroup (Theorem
1.12) or a Cy-group (Theorem 1.17), respectively.

Definition 1.10. A linear operator A on a Hilbert space (X, (-, )X) is called dissipative if
for every x € D(A) we have that
Re(flx, 1:)X <0.

Example 1.11. A matrix A € C"*" whose field of values is contained in the left complex
half-plane, F(A) C C, is dissipative. In fact, every skew-hermitian matrix is dissipative. ¢

We note that the concept of dissipative operators, like most of the considerations above, can
be carried out also in Banach spaces, see [Pazy, 1983, Section 1.4], [Engel and Nagel, 2000,
Chapter IIb.]. Moreover, the famous Lumer—Phillips Theorem [Engel and Nagel, 2000,
Theorem I1.3.15] holds true in this setting. We give its statement for the simpler case of
Hilbert spaces, see [Jacob and Zwart, 2012, Theorem 6.1.7] and also [Engel and Nagel, 2000,
Corollary I1.3.20].

Theorem 1.12. Let A be a linear operator with domain D(A) on a Hilbert space X. Then,
the following statements are equivalent:



20 CHAPTER 1. MAXWELL’S EQUATIONS

(a) A is densely defined and generates a contraction semigroup.

(b) A is dissipative and ran(A — A) = X for some A > 0.

For the condition that A generates a Cp-group we first have to introduce the notion of the
adjoint operator.

Definition 1.13. Let A : D(A) — X be a linear operator with dense domain D(A) = X. The
adjoint operator A* of A is defined as follows. The domain D(A*) consists of ally € X such
that there exists a z € X satisfying

(A:U,y)X = (x, z)X for all x € D(A).

For y € D(A*), the adjoint is defined as A*y = z.

Note that for a bounded operator A € £(X) the definition of the adjoint simplifies significantly,
since in this case D(A) = D(A*) = X. Then, the adjoint is given by A* : X — X

(Ax,y)X = (x,A*y)X for all z,y € X.

Definition 1.14. Let A : D(A) — X be densely defined. The operator A is called

(a) symmetric if Ax = A*x for all x € D(A) C D(A*),
(b) skew-symmetric if Ax = —A*x for all x € D(A) C D(A¥),
(c) self-adjoint if A = A*, i.e. if A is symmetric and D(A) = D(A*),

(d) skew-adjoint if A* = —A, i.e. if A is skew-symmetric and D(A) = D(A*).

Remark. Note that by the previous definition, a (skew-) hermitian matrix A € C"*" represents
a (skew-) symmetric linear operator A : C" — C™ and vice versa.

The following lemma provides a useful criterion to decide whether a skew-symmetric operator
is also skew-adjoint.

Lemma 1.15. Let A : D(A) — X be skew-symmetric. Then, A is skew-adjoint if I £ A has
dense range, i.e. if
ran(J+ A) = X.

Definition 1.16. A Cy-group (T(t))ier is called a unitary group if

IT(t)x||x = ||=]|x forallz e X,t e R.

Eventually, we can state the announced condition for Cy-groups. This theorem can be found in
[Engel and Nagel, 2000, Theoremm I1.3.24].

Theorem 1.17 (Stone’s Theorem). Let A : D(A) — X be a linear operator with dense
domain D(A) = X. Then, the following statements are equivalent:

(a) A generates a unitary Co-group (T'(t))icr on X.

(b) A is skew-adjoint.
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1.3.2 Application to Maxwell’s equations

In this section we apply the previously obtained results to Maxwell’s equations. For this purpose,
we first provide an appropriate framework in which Maxwell’s equations fit in and in which the
previous results are applicable. We start by introducing abbreviations for inner products that
we will use throughout the thesis.

Functional analytic setting

For a set K C 2 and vector fields U, ﬁ, V, V : K — R3 we denote the L?(K)-inner product by
(U,0), :/ U-U dz, (1.31)
K

and for F' C 0K we write
(U,0), :/ Ulp - Ul do. (1.32)
F

Let u= (U,V) and u = (ﬁ,\?) Given uniformly positive weight functions wi,ws : Q@ — Ryg
we write the weighted inner products as

~ ~

(U’ﬁ)wl,K - (wlU’ﬁ)K’ (u’ ﬁ)lewz,K - (U’U)wl,K + (V’V)WQ,K. (133)

By || [lw; and || - [l xws We denote the corresponding norms. We abbreviate (-,-) = (-,),, and

|-l =1 - llo and analogously for the weighted inner products and norms.

Q

We want to analyze Maxwell’s equations (1.18) in the state space L2(Q)%. This requires to clarify
what we mean by writing curl U, since in general functions U € L?(Q)? are not differentiable
(and thus do not possess a “classical curl”). In the following we denote by C*¥(€2) the space of
k times differentiable functions in  and by C*(Q2) the space of k times differentiable functions
in Q U 9. Furthermore, we write

C5e(92) ={v e C*(Q) | supp(v) C 2 is compact} .

Note that the space C§°(€2) (and also C(Q2)) is dense in L?(€2) if the boundary is smooth
enough, e.g. if it satisfies the segment condition, see [Adams and Fournier, 2008, Chapter 3,
page 68]. For our purpose we do not need differentiability of U but it is sufficient that we have
curl U € L?(Q)3. This statement means that the functional

(v C(Q)? - R, ly(p) = / U - curl ¢ dz,
Q

is bounded in L?(2)3, i.e., there is a constant Cyy such that
tu(p) < Cullell,  for all p € C5o(Q)°.

Then, by the Riesz representation theorem there is a unique V € L?(Q2)? such that
ly(p) = / V- dz, for all p € C5°(Q)3.
Q

This V is called the variational curl of U and we denote it (for the moment) by curl U. In
Definition 1.19 we fix this concept. Before, we show that for smooth functions the classical curl
operator equals the variational curl.
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Example 1.18. Consider U € C*(Q)? and ¢ € C§°(Q)3. Applying integration by parts we
obtain

ly(p) = /chrlU - dx,

where the boundary term vanishes due to ¢|sq = 0. By the Cauchy—Schwarz inequality we
obtain [fy(p)| < Culle| with Cuy = | curlUl[12(q)s. As above, this means that there is a

unique V € L?(Q)? such that curl U =V and
/cgl?oncpdx:/curlU.cpda:, for all ¢ € C5°(Q)3.
Q Q

Since C§°(Q)? is dense in L2(Q2)? we can conclude that for U € C*(Q)? we have that curl U =
curl U (in L?(Q2)3). This motivates to use the notation curl also for the variational curl in the
following definition.

The same holds true for U € H(Q2)3, if the partial derivatives in the definition of the curl are
replaced by weak derivatives. Here, we have Cy = 2 |U| H(Q)3

Definition 1.19. A function U € L*(Q)? possesses a variational curl if there exists V €
L2(Q)? such that

/ U - curly dzx = / V.pdr for all ¢ € CF°()3. (1.34)
Q Q
In this case we write curlU = V.

In the following, curl U always denotes the variational curl of U. We consider the subspace of
L?(9)3 functions which possess a variational curl.

Definition 1.20. The graph space of the curl operator is given by
H(curl, Q) = {U € L*(Q)* | curlU € L*(Q)*}. (1.35a)
We endow this space with the inner product

(U,V)H (U,V) + (curlU, curl V), for all U,V € H(curl,Q), (1.35b)

(curl,2) -

and the associated norm given by ||U||%—I(curl,9) = (U, U)H(Curm).
Let us compare H (curl,2) with the standard Sobolev space H'(2). While the former space is
vector valued, the latter consists of scalar valued functions. Nevertheless, these spaces share
some similarities. Either space consists of L?-functions such that the associated functionals
remain bounded in L2. In fact, a function u € L?(Q) possess a variational gradient if £, () =
— [qugrad ¢ dz can be bounded in L?(Q)? for all ¢ € C§°(Q2), see [Kirsch and Hettlich, 2015,
Definition 4.1].

The space H'(f2) has among others the following three important properties. It is a Hilbert
space, it can be defined as the closure of C*(Q) (or C*()) with respect to its graph norm,
i.e. w.r.t. the H'(2)-norm, and there is an integration by parts formula. Analog properties also
hold for the space H(curl, Q).

Theorem 1.21. Let Q C R? be a bounded, simply connected Lipschitz domain.

(a) The space H(curl, ) is a Hilbert space.

b) The space H(curl, Q) is the closure of C*(Q)3 with respect to || - || g (curl.)-
(curl,Q2)
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(c) For U e H'(Q)? C H(curl,Q) we have

(curlU, ) = (U, curlp) + (n x U, p) for all o € C=(Q)3. (1.36)

o’

Proof. For part (a) we refer to [Kirsch and Hettlich, 2015, Section 4.1.2], parts (b) and (c) are
shown in [Monk, 2003, Theorem 3.26] and [Monk, 2003, Cororally 3.20], respectively. O

Remark 1.22. In general, functions in H (curl,§2) do not admit a trace in L2(952)® but only in
H~1/2(0Q)3. Part (c) of Theorem 1.21 can be extended to the case U € H(curl, Q), see [Monk,
2003, Theorem 3.29], but the integration by parts formula (1.36) is sufficient for this thesis and
we omit these details.

For the boundary condition we recall once more standard Sobolev spaces, where the space
HZ(9) is defined as the closure of C§°(Q2) with respect to the H!(2)-norm. This motivates the
following definition.

Definition 1.23. The space Hy(curl, Q) is defined as the closure of C§°(Q)? with respect to the

norm || - HH(curl,Q)~

We illustrate the meaning of Definition 1.23 by considering the space Hy(curl, Q) N H'(Q2)3
which admits traces in L?(99)3. However, we point out that the following results hold also true
without the assumption that U € H(Q)3, cf. [Monk, 2003, Section 3.5.3].

Owing to Definition 1.23, for every U € Hp(curl,2) N HY(Q)?3 there is a sequence (Uy), C
C5°(Q)3 such that Uy — U w.r.t. ||- | F(curt,) @ k — oo. Hence, Uy — U and curl Uy, — curl U
w.r.t. || - ||. Applying integration by parts we infer

(Curl Uy, <p) = (Uk, curl go), for all p € C*(Q)?,
where the boundary term vanishes due to Ug|gsq = 0. Taking the limit k¥ — oo we obtain

(curlU, ) = (U, curly), for all p € C>(Q)>. (1.37)

Since Hoy(curl, ) is a subspace of H(curl,2), Theorem 1.21 is applicable and we deduce by
comparing (1.36) with (1.37) that

(nxU,p)y =0 for all ¢ € C™(Q)3.

This means that the space Ho(curl, ) N H'(2)3 only contains functions U with vanishing
tangential components on the boundary,

(nxU)lpga =0,  for all U € Hy(curl, Q) N H(Q)3. (1.38)
The converse is true as well, i.e. if a function U € H(curl, Q) N H(2)? satisfies (1.37), then we

have that U € Hy(curl, 2), see [Monk, 2003, Lemma 3.27, Theorem 3.33]. The following lemma
can be concluded from this.

Lemma 1.24. IfH € H(curl,Q) and E € Hy(curl,?). Then, we have

(curlH,E) = (H, curlE). (1.39)
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Proof of the well-posedness of linear Maxwell’s equations

We can now compose the different parts together to show the well-posedness of linear Maxwell’s
equations (1.18) with perfectly conducting electric boundary conditions. In order to apply the
semigroup theory of Section 1.3.1, we consider the Cauchy problem formulation (1.21) for
X = L*(Q)? x L*(Q)? = L*(2)°® with the weighted inner product (-, -)

uxe’

Theorem 1.25. The Mazwell operator C defined in (1.22) with domain
D(C) = D(Cy) x D(Cg) = H(curl,Q) x Hy(curl, Q) (1.40)
generates a unitary Co-group et®.

Proof. The concept of this proof is taken from [Hochbruck et al., 2015a, Proposition 3.1]. We
prove the assertion via Stone’s theorem (Theorem 1.17), i.e. we show that C is skew-adjoint.
We begin by observing that due to Lemma 1.24 the Maxwell operator € is skew-symmetric
w.r.t. the weighted inner-product (‘, -)MXE, ie.,

(Cu,u) for all u,u € D(C). (1.41)

xe

= —(u, Gﬁ)u

WXE

In order to prove that € is skew-adjoint we apply Lemma 1.15. Hence, we have to show that
ran(J & @) = L*(Q)S. (1.42)

Because C§°(Q)¢ is dense in L?(Q)® we infer that (1.42) is equivalent to show that for every
f = (F,G) € C5°(Q2)8 there is a u = (H,E) € D(€) such that

(J£Cu=f, (1.43a)

or, equivalently,
HFp lculE=F, (1.43b)
E+c 'curlH=G. (1.43c)

Formally inserting H from (1.43b) into (1.43c) yields
¢E + curl(p ' curl E) = eG F cwrl F := G € L*(Q)°. (1.44)

In order to solve this problem we consider the bilinear form
a(E, p) = / eE- o+ ptewlE - curl ¢ dz, E, p € Hy(curl, Q).
Q

Clearly, a is symmetric. Moreover, by using the Cauchy—Schwarz inequality (A.5) we infer

1/2

1/2
la(E, p)| < </ e|EP 4 p | curl E? da:) (/ elol* + p | curl 2 dx)
Q Q
< max (|lell o (9, 6 1) 1Bl mcurto) |01 (curt,0)-

Hence, a is bounded. It is also coercive, since
_ 2 -1 2 2 -1 2
a(E,E) = /Qg\E\ + p | curl E|* dz > §||E||* + ||,uHLOO(Q)H curl E||

> min ((5, ||NHZ<}°(Q)) ||EH?{(curl,Q)‘



1.3. WELL-POSEDNESS OF LINEAR MAXWELL’S EQUATIONS 25
As a consequence, the Lax—Milgram theorem, see e.g. [Di Pietro and Ern, 2012, Lemma 1.4],
shows that there is a unique E € Hy(curl, ) which satisfies
a(E, p) = (é, go), for all ¢ € Hy(curl, Q).
Furthermore, we have that
(u_l curl E, curlp) = (é —¢E, p), for all p € Hy(curl, Q).

By Definition 1.19 we deduce that g~ curl E € H(curl,Q) and thus E satisfies (1.44). If we
now define H € H(curl,Q) by (1.43b) we obtain u = (H,E) € D(C) which solves (1.43a) as
asserted. O

Remark 1.26. The skew-adjointness of the Maxwell operator € can also be proven by showing
that it is skew-symmetric and furthermore that D(C) = D(C*) holds.

As a direct consequence of Theorem 1.25 we obtain the well-posedness of Maxwell’s equations.

Corollary 1.27. Let u’ = (H°,E°%) € D(C) and let j = (0,—e~1J) € C10,T;X) orj €
C(0,T;D(C)). Then, the linear Mazwell’s equations (1.21) have a unique solution u(t) =
(H(t),E(t)) in C*(0,T; X) N C(0,T; D(C)) given by

t
u(t) = eu’ + / e=9Cj(s) ds. (1.45)
0

Proof. The statement follows from Theorem 1.9. O

Remark 1.28. It is possible to incorporate the divergence conditions and the boundary con-
dition on the magnetic field (1.19) into the domain of the Maxwell operator €. This enables
to prove a well-posedness result (such as Corollary 1.27) for the whole Maxwell system (1.10)—
(1.11), see [Hochbruck et al., 2015a, Prop. 3.5] and [Pazur, 2013, Theorems 3.4, 3.6].

1.3.3 Energy conservation and stability

The electromagnetic energy £ is given by
1
E(H,E) = S ([HI[ + |[B])Z).

In the absence of sources, the solution of Maxwell’s equations conserves the electromagnetic
energy.

Corollary 1.29. Let u(t) = (H(t),E(t)) be the solution of Mazwell’s equations (1.21) with
J=0. Then, for all t > 0 we have that

E(H(t),E(t)) = EH,E?). (1.46)

tC

Proof. This result follows directly from Theorem 1.25, since e*~ is a unitary group. O

We conclude this chapter by giving two stability results for the solution of Maxwell’s equations.

Corollary 1.30. For the solution u(t) of (1.21) we have the following bounds:

1 t
[a(®)llxe < [[0”]luxe + \/3/0 [ ()l s, (L.47a)

T+1 [t
IIU(t)HiXE < elIIUOHZXE + 615/0 1J(s)[1? ds. (1.47b)
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Proof. Taking the norm of (1.45) and using the triangle inequality (A.4) we get

t
Ja(®)llxe < [0 e + / 1083 (8) e ds.

Since e!® is unitary, cf. Theorem 1.25, we have |le!®ul|,xc = ||ul| xc for all u € L?(2)%. The

bound (1.47a) follows from

lilluxe = Il =" 3]l = lle™ 2311 < 672 3]. (1.48)
In order to prove (1.47b) we consider
iﬁl\u(t)llim = (u(t)aatu(t))wg

= (u(t), Gu(t))uxg + (u(t)vj(t))uxs
= (u(t)ﬂj(t))uxa’

where the second equality follows by (1.21) and the last equality holds since € is skew-symmetric,
see (1.41). Applying the Cauchy—Schwarz inequality (A.5) and Young’s inequality (A.2) we get

1d . T + 1 1
§@Ilu( M2se < @) luxelli()lluxe < =557 xe + mllu( MZice-

Integrating from 0 to ¢ shows

e < e 4 1) [ e ot 7 [ )1 ds

Gronwall’s lemma (Lemma A.1) yields

t
t t .
la(®)lfixe < e [[u’]fxe + ™ (T + 1)/0 13(s) e ds

The stated bound (1.47b) now follows from (1.48) and ¢t < T. O



CHAPTER 2

Spatial discretization: discrete setting

The following two chapters are devoted to the spatial discretization of Maxwell’s equations
(1.18) by means of a discontinuous Galerkin (dG) method. In the current chapter we introduce
the necessary discrete setting and provide essential tools which we will use frequently in this
thesis. This chapter closely follows the concepts presented in the book of Di Pietro and Ern
[2012].

First of all, let us note that the domain €2 can by approximated by a polyhedron. Because this
can be done of arbitrary accuracy we neglect the error of this approximation in this thesis and
henceforth assume the following simplification.

Assumption 2.1. We assume that the domain Q is a polyhedron in RY.

This assumption enables us to cover the domain with a mesh consisting of polyhedral elements.

2.1 Meshes

Our first step is to discretize 2 using a mesh. The simplest choice is a simplicial mesh.

Definition 2.2. Let {zo,...,zq4} be a set of d + 1 points in R? such that the vectors x1 —
xo,...,Tq — xo are linearly independent. We call the interior of the convex hull of {zo,..., x4}
a non-degenerate simplex in RY.

For d = 1 a non-degenerate simplex is an interval, for d = 2 a triangle and for d = 3 a
tetrahedron.

Definition 2.3. A finite set T = {K} is called a simplicial mesh of the domain Q if it
satisfies:

(a) Every K € T is a non-degenerate simplex.

(b) T forms a partition of Q, i.e. @ =ger K and KN K=0foral K,KeT,K+K.
Fach K € T is called a mesh element.

27
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Note that a simplicial mesh is allowed to have hanging nodes. For (continuous) finite elements
simplicial meshes without hangin nodes are a quite convenient choice. An advantage of dG
methods is that they allow more easily to work with more general meshes.

Definition 2.4. We call a finite set T = {K} of polyhedra K a general mesh of the domain
Q if it satisfies (b) of Definition 2.3. Each K € T is called a mesh element.

Clearly, a simplicial mesh is just a particular case of a general mesh.

Assumption 2.5. We suppose that the coefficients p and & are piecewise constant and that
the mesh T is matched to them such that ulx = px and e|g = €k are constant for each
KeT.

Definition 2.6. Let T be a mesh of Q). For all K € T we denote the diameter of K by hx and
the radius of the largest ball inscribed in K by ri. Furthermore, we define the meshsize
as

h = maxh
KeT K>

and use the notation Ty, for a mesh with meshsize h.

Definition 2.7. Let Tj, be a mesh of Q. We say that a closed subset F of Q is a mesh face
if F' has positive (d — 1)-dimensional Hausdorff measure and if either one of the following two
conditions is satisfied:

(a) There are distinct mesh elements K, K€ Trn such that F' = 8Kﬂ8f(; in this case, we call
F an interface.

(b) There is a mesh element K € Ty such that F = 0K N 0X); in this case, we call F a
boundary face.

The set of interfaces is denoted by f,int and the set of boundary faces by ]-",E’nd. With Fp, =
.7:}1“‘3 U .F,'fnd we denote the set of all faces and

Ny = max card{F € Fy, | F C 0K
0 = max { h | }
denotes the maximum number of mesh faces composing the boundary of a mesh element.

For simplicial meshes we have Ny = 2 for d =1, Ng = 3 for d = 2, and Ny = 4 for d = 3.

Definition 2.8. Let T be a mesh of Q). For all K € T, we define ng a.e. on 0K as the unit
outward normal to K.

For every interface F € }"}lnt we choose arbitrarily one of the outer unit normals of the two
mesh elements composing the face F'. We fix this face normal and denote it with np. We use
the notation K and Kr for two neighboring elements 0K N OKp = F € Fi™, whereby the face
normal ng points from K to Kg. For a boundary face the orientation of ng is always outwards.

Figure 2.1 shows the face normal ng and the associated elements K and Kp.

In dG methods we will consider functions v : £ — R which are only piecewise smooth,
i.e. smooth on every mesh element K but not on Q (e.g. v € H'(K) for all K € T, but
v & HY(Q)). The restriction of such a function to an element v|x admits a well-defined trace
on OK. However, for all F € Fi" o has a (possibly) two-valued trace. Thus, the following
concepts of the average and the jump of a function at an interface are essential for dG methods.
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Figure 2.1: Convention for K, Kp.

Definition 2.9. Let v : Q — R be a function such that for every mesh element K € Tj, its
restriction v|x admits a trace a.e. on the boundary OK. Then, for all interfaces F € F,iz“t we
define the jump of v on F' as

[0lF = (vxp)lF — (V]K)|F-

Let w: Q — Ry be a piecewise constant weight function, i.e. w|x = wg for all K € Ty. Then,
we define the weighted average of v on F' as

ol = wi (V] K)|F + wip (vlke) 7
WK + WKE

For vector fields these operations act componentwise.

We abbreviate the average with w = 1 by {v}} . For later purpose we already state an important
identity, which constitutes an essential trick in dG methods that we frequently will use.

Lemma 2.10. Assume that the weight functions w and @W satisfy
0 # ww = const. (2.1a)

Then, for vector valued functions U,V : 0 — R3 we have that

[U- V]I ={U}% - [VIr + [U]r - { V5. (2.1b)
Proof. By (2.1a) we have
_ _ WKp WK 1 1
- = 2E T8 = —
PRWK T SR YKy WKk WKp 1+ 55 S +1
F
WK WKp

WK + WKp - WK +pr.
Using this, we obtain
{Uds - [Vlr +[Ulp - {V}5 = Uk, - Vi, — Uk - Vi = [U- V]p,
which is the stated identity. O

We do not want to consider only a single approximation associated with a fixed grid 7y, say
up(t), to the exact solution u(t) of Maxwell’s equations (1.21). Instead, we want to analyze
how the quality (i.e. the error) of a sequence (uy(t)), improves when the associated meshes
(Tr)n consist of finer and finer elements. In other words, we want to analyze the convergence
uy(t) — u(t) when h 0. This requires that our meshes have a certain quality.

We consider a mesh sequence
Tr = (Th)hen

where H is a countable subset of R, having 0 as only accumulation point.
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Definition 2.11. We call T;, a matching simplicial mesh if it is a simplicial mesh and if
for every K € Ty, with vertices {xo,...,xq}, the set 0K NOK, K € Ty, is the convex hull of a
(possibly empty) subset of {xq,...,xq}.

In R? the set K NOK for two distinct elements of a matching simplicial mesh is either empty,
or a common vertex, or a common edge of the two elements.

Definition 2.12. Let T}, be a general mesh. We call T, a matching simplicial submesh if:

(a) T, is a matching simplicial mesh.
(b) For all K' € T, there is only one K € Ty, such that K' C K.

(c) For all F' € Fj, the set collecting the mesh faces on T/, there is at most one F' € Fj, such
that F' C F.

Definition 2.13. Let Ty be a mesh sequence which admits a matching simplicial submesh T,
for all h € H.

(a) Ty is shape-regular if there is p1 > 0, independent of h, such that for all K’ € T, we
have that
hgr < pirir. (2.2)

(b) T3 is contact-regular if there is pa > 0 such that for all K € Ty, and all K' € T, K' C K,
we have that
hK S thK’- (23)

We denote the product of the mesh parameters p1 and pa by
P = p1p2-

If Tp, is itself simplicial and matching, then 7, = 7}, and thus pa = 1. So, in this case, one only
has to require shape-regularity (2.2).

An important observation is that the number of faces of a shape- and contact-regular mesh
sequence is bounded independently of the mesh parameter h.

Lemma 2.14. Let Ty be a shape- and contact-reqular mesh sequence. Then, for all h € H, Ny
is bounded uniformly in h. In fact, we have

No < (d+1) [Bdlg" p%

where | - |q denotes the d-dimensional Hausdorff measure and By is the unit ball in RY,

Proof. We follow the proof in [Di Pietro and Ern, 2012, Lemmas 1.40, 1.41]. Let, for all K € Tp,
the set Sy collect the subelements K’ € 7, composing the element K, i.e.

Sk ={K' €T, | K'Cc K}
Then, we have

he > |Klg= > |K'la> Y |Balarfe > Y |Balapy b
K'eSy K'eSy K'eSy,

> > |Balapyp; "h = card(Si)|Balap~ -
K'eSy
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Here, we used (2.2) for the third inequality and (2.3) for the fourth inequality. This yields
card(Sy) < |Bd\glpd.
The bound on Ny is seen from
card{F € F,, | F C 9K} < card{F' € F;, | F' C 0K'} = (d + 1)card(S}),

since every simplex has d + 1 faces. O

The next lemma gives a comparison of the diameters of neighboring elements.

Lemm/g 2.15. Let Ty be a shape- and contact-reqular mesh sequence. Then, for all h € H and
all K, K € Ty, sharing a face F', we have that

max(h,hp) < pmin(hg, hg),

and
hix +hz
1max(hK,hf() < KR < pmin(hg, bz ). (2.4)

p =T

Proof. We adapt the proof given in [Di Pietro and Ern, 2012, Lemmas 1.42, 1.43]. Let dp
denote the diameter of F'. Clearly, we have
dp <min(hg, hg).
Let 7, be a matching simplicial submesh of 7}, and let K, K' e 7, such that
K' C K, K c K, F' =0K'noK' c F.
Then, we have
Op > 6pr > max(rg:,vg,) > ppt max(hgs, hg,) > py syt max(hy, hz),

where we applied (2.2), (2.3) for the last two estimates. This gives the first assertion which
easily yields (2.4). O

2.2 Approximation spaces: Broken polynomial spaces

We want to approximate the exact solution u(¢) in a finite dimensional function space consisting
of piecewise polynomials, i.e. in a broken polynomial space.

2.2.1 The spaces P4 and P%(7;)

Let k € Ny be an integer and a = (o, ..., aq) € Ng be a multi-index. For z = (x1,...,14) € R?
we use the convention z¢ = H?Zl zt. We set
d
Ak ={aeN}||alp =) a; <k}
i=1

We define the space of polynomials in d variables and of total degree at most k as

PG = {p RIS R | I0a)aeay € RMD st p(a) = 37 %“xa}’

anA’;
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which is of dimension

k o kla

This follows since the cardinality of Ag is the number of multi-indices o € N¢, that satisfy
Z?:l a; < k. This can be equivalently expressed as

o1+ tag+oagr =k,

with a slack variable ag11 € Ng. A “stars and bars” argument then gives the result.

We define the approximation space (or dG space) as the broken polynomial space
PE(T;) = {v € L2(Q) | v|x € Pk for all K € Th} . (2.5)

The space P%(T},) consists of functions which are polynomials on each mesh element but which
are allowed to be discontinuous across the mesh faces. IP”; (Tn) is a vector space with dimension

dim(PX(73)) = card(Ty) - dim(P).

Definition 2.16. The L?-orthogonal projection onto Ph(Ty), m, : L*(Q) — PE(Ty), is
defined such that for every v € L(),

(v =m0, o) =0,  for all gy € Pi(Th). (2.6)

For vector fields V € L?(Q)™ the projection acts componentwise.

In our later dG discretization we will need L?-projections which are orthogonal w.r.t. the
weighted inner products (-,-)M and (-, ~)€, respectively. The next lemma shows that, under

Assumption 2.5, the L2-orthogonal projection (2.6) satisfies this. Moreover, the lemma pro-
vides a bound on the projection operator.

Lemma 2.17. For V € L?(Q)? we have that
(V—mV, gph)u = (V—mV,pon), =0, for all p, € PE(T;)3. (2.7)
Moreover, we have the following bounds
1Ta Vil < Vil 7 Ve < Ve (2.8)

Proof. For ¢y, € IP’];(’E)S the restriction ¢p|x only depends on the values of ¢y, in K. So, we
can deduce

(V—mV,¢n), =0, for all K € Tp, on € (PX)? c PA(T;)?,

since by (2.6) this holds true for all ¢, € PX(T7;)3 with enlg =0, K # K. So, for all
Y € ]P’s('ﬁl)3 we have that

(V—mV, goh)u = Z (V- WhVaWh)“yK = Z pur (V=1 V., 0n) o = 0,
KeTs, KeTn

which proves (2.7). The bounds (2.8) are obtained by

Imn Ve = sup (7 V,pp), = sup (Vi) < sup [Vlenll = V],
@R €PE(T},)3 on€PE(T},)3 o €PE(T,)3
llenlln=1 llenlln=1 llonll=1

Replacing p by € shows the corresponding results for the weight €. O
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Alternatively, we could use orthogonal projections w.r.t. the weighted inner products, e.g. 7,
via

(H - m,H, goh)u =0, for all @, € P5(T,)%.
Then, one can show that m,H = 7, H if the weight function satisfies Assumption 2.5.

Remark 2.18. It is possible to consider other broken polynomial spaces. An important example
is the space of polynomials in d variables and of degree at most k in each variable,

Qfi = {p R? >R | 3(%)@63’9 e Red(B) g ¢, p(z Z ot }
aEBk

where
Bt ={aeNd <kl
d {0‘ 0l ey, 0 < }

This space is used e.g. when working with hexahedra instead of tetrahedra.

2.2.2 Inverse and trace inequality

Next we study properties of IP’S (Tn), which are essential for proving error bounds.

Lemma 2.19 (Inverse inequality, cf. [Di Pietro and Ern, 2012, Lemma 1.44]). Let T3 be
a shape- and contact-reqular mesh sequence. Then, for all h € H, all vy € P]j(ﬁ), and all
K € Ty, we have that

| grad vnl| i < Cloohi lonll - (2.9)

The constant C!_ only depends on d, k, and the mesh regularity parameters p1, p2.

mv
Clearly, under the assumptions of Lemma 2.19 we have for all V, € PX(7,)3 that
||CUI‘1Vh||K < Cinvh;('lHVhHK’ (210)

where Cj,, has the same dependences as C’l’nv

Lemma 2.20 (Discrete trace inequality, cf. [Di Pietro and Ern, 2012, Lemma 1.46]). Let
Ty be a shape- and contact-reqular mesh sequence. Then, for all h € H, all v, € IP”;(E), all
KeTy, and all F € Fp,, FF C 0K, it holds

lonllr < Cochie? onl| . (2.11)

The constant Cy, only depends on d, k, and the mesh reqularity parameters py, pa.

Remark 2.21. The constants Cl’nv (and thus Cj,y) and Ct depend on the polynomial degree
k. E.g. on triangles, C!__ scales as k%, whereas Ci, scales as \/k(k + d), see [Di Pietro and Ern,

2012, Remark 1.47].

2.2.3 Approximation properties

Recall that we are interested in approximating the exact solution u(t) of Maxwell’s equations
by a discrete function uy(t) in the dG space P%(75,)6. Consequently, the question arises which
quality can be achieved by this approximation. It turns out that this depends on the mesh
sequence we employ. For this thesis we will focus on mesh sequences which allow the optimal
approximation [Di Pietro and Ern, 2012, Definition 1.55]. We will give error bounds in terms
of the seminorm on H™(K), which we denote by | - |m.x = | - |gm(k)-
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Definition 2.22. A mesh sequence Ty has optimal polynomial approximation properties
if, for allh € H, all K € Ty, and all polynomial degrees k, there is a linear interpolation operator
I¥ LK) — PX(K) such that, for all s € {0,...,k+ 1} and allv € H*(K), we have that

v —ZEv|mx < Capplic ""Vls.c for allm € {0,...,s},

with a constant C’;pp that is independent of both K and h.

This allows to define the following class of mesh sequences.
Definition 2.23. A shape- and contact-regular mesh sequence Ty with optimal polynomial

approrimation properties is called an admissible mesh sequence.

An important example is that of shape- and contact-regular mesh sequences whose elements
are either simplices or parallelotopes. Further examples can be found in [Di Pietro and Ern,
2012, Section 1.4.4].

Assumption 2.24. For the remaining thesis we assume that Ty is an admissible mesh sequence.

Lemma 2.25 ([Di Pietro and Ern, 2012, Lemmas 1.58, 1.59]). Let 7, be the L?-orthogonal
projection onto PE(Ty,) defined in (2.6). Then, for allh € H, all K € Ty, and all v € H*1(K)
it holds that

lv — ol < Cg’pph];(+1|v|k+1,;<. (2.12a)
For oll F € Fy,, FF C 0K we have
An g k412
o = mnvllr < Clpphid 0l i, (2.12b)

The constants Cy,, and égpp are independent of both K and h.

2.3 Broken Sobolev spaces

We already considered polynomial spaces and their broken versions. In this section we introduce
a similar concept for the Sobolev spaces H™(€2).

Definition 2.26. For m € Ny we define the broken Sobolev spaces as

H™(T) = {v e L*(Q) | v|g € H™(K) for all K € Ty,}.

On H™(T},) we define the seminorm and norm

m
‘Uﬁn,Th = Z ‘Uygn,Kv H'UHEn,’Th = Z ‘U’jza
KeTy, 7=0

respectively. Clearly, for all functions v € H'(T,) and all elements K € 7y, the restriction
v|x € H'(K) has a well-defined trace on the boundary K. Moreover, the continuous trace
inequality [Di Pietro and Ern, 2012, Section 1.1.3] yields

lollox < Cewellolli 0l . for all K € Ty (2.13)

Obviously, the usual Sobolev spaces are subspaces of their broken versions, i.e. for every m > 0
we have H™(2) C H™(Ty). However, the converse inclusion does not hold true. The crucial
difference is that functions in H'(7;,) might have nonzero jumps at interfaces whereas the
jumps of a function in H!(Q) at an interface vanish. The next lemma shows that this property
characterizes functions in H*(Q).
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Lemma 2.27. [Di Pietro and Ern, 2012, Lemma 1.23] A function v € H'(T},) belongs to H(Q)
if and only if .
[v]Fp =0 for all F € F™.

As we have seen in Chapter 1, Maxwell’s equations are well-posed in the space D(C) =
H(curl, Q) x Hy(curl, Q). However, we will assume from now on slightly more regularity, namely
that the solution of Maxwell’s equations satisfies u(t) € D(€) N H(T4)®. We prefer working
in this space since it admits L?-traces on the faces F' € Fj,. Moreover, we need at least this
regularity to show convergence of the dG method. In the following, we write Ug = U|g for
the restriction of a function U onto a subset K C €.

Lemma 2.28. Let V € HY(T,)? and let w, @ be given piecewise constant weight functions
satisfying (2.1a).

(a) For ¢ € HY(Tp,)? we have

Z (nK X VK’(‘OK)BK = Z (’I’LF X V,(,O)F (2.14)
KeTn FeFpnd
= 3 ((r x AV [ele) o + (0  [VIF A0 B) 5 ).
FeFint

(b) For ¢ € C§°(Q)? we have

(curl V,¢) = (V,curlp) — Z (np x IIV]]F,QO)F. (2.15)
FeFr

Proof. (a) By Definitions 2.8 and 2.9 of the face normal ng and the jump [-] r, respectively, we
have

Z (nK XVK,SOK)aK = Z (nF ><V,<p)F

KeTy, Fe]:hbnd
+ Z ((TLF X Vi, ¢K)p — (nr X VKFaSOKF)F>
FeFm
= 3 (e xV9) = Y ([tnr x V) - @lp 1)
FeFpnd FeFint

The statement now follows from the identity (2.1b).
(b) The integration by parts formula (1.36) applied on every element K yields

Z (cuer,«p)K = Z (V,curlgp)K—i— Z (nK X VK,SOK)aK- (2.16)
KeTy, KeTy KeTy,

Using (2.14) for the second sum and exploiting that for p € C§°(2)3 we have [¢]r = 0 and
{35 = p for all F € Fi* and ¢|p = 0 for all F € FP proves the result. O

In the next lemma we explore the relation between H (curl,Q) and H'(73)3. It turns out that
functions in H(curl, Q) N H!(7;,)? have vanishing tangential jumps along interfaces.

Lemma 2.29. A function V € H(T;)? belongs to H(curl, Q) if and only if
np X [V]rp=0 for all F € Fi™. (2.17a)
Additionally, for V € Hy(curl, Q) N HY(T;)? we have that
npx V=0 foralF e Fm. (2.17D)
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Proof. (a) Let V. € H'(T;)2. We first prove that (2.17a) implies V € H(curl, ). Inserting
(2.17a) into (2.15) we obtain

Z (curl V, <p)K = Z (V,curl go)K = (V,curlyp), for all p € C5°(Q)3.
KeTh KeTh
By Definitions 1.19 and 1.20 this shows V € H (curl, §2).

(b) Now we assume that V € H(T,)3 N H(curl, Q) and we choose ¢ € C§°(Q2)? arbitrarily. By
Definitions 1.19 and 1.20, and (2.15) we have

(V,curlp) = (curl V, ) = (V,curlcp)Q - Z (np x [[V]]F,np)F.
FeFnt

Thus, we obtain

Z (nr % [V]F,¢)p =0 for all ¢ € C5°(Q)3.
FeFjn

Since this holds for arbitrarily chosen functions ¢, we can choose it such that the support of ¢
intersects only a single interface. This shows (2.17a).

(c) To prove (2.17b) we use (2.16) and then (2.14) for ¢ € C°°(2)3. Then the sum over all
F € Fin* vanishes since [p]r = 0 and also np x [V]r =0 by (b). By (1.37) we thus obtain

Z (npxV,0),=0 forallpe C™ ()3,
FeFpnd

An argument analogous to (b) applied to the boundary faces proves the result. O



CHAPTER 3

Spatial discretization: construction and analysis of the dG method

In the previous chapter we established the underlying discrete setting needed for dG methods.
The aim of this chapter is to derive the actual dG space discretization of Maxwell’s equations.
We start by formulating the unstabilized central fluxes dG discretization and then extend it to
the stabilized case leading to an upwind fluxes dG method. We show that the central fluxes
discretization preserves the energy conservation of the continuous Maxwell’s equations whereas
the upwind fluxes discretization leads to a dissipative scheme. Moreover, we provide an error
analysis for both space discretization methods. For the central fluxes scheme our arguments
rely on the fact that the spatially discretized problem inherits the property of having a unitary
group as solution operator as in the continuous case. In contrary, in the upwind fluxes case we
need to apply an energy technique in order to profit from the dissipative nature of this space
discretization which eventually gives a superior convergence rate compared to the central fluxes
case.

As pointed out above we aim in this chapter in deriving the spatial discretization of Maxwell’s
equations (1.21),

0:H(t) = —CgE(t), (3.1a)
OE(t) = CaH(t) — e 1J(t), (3.1b)
H(0)=H" E_0) =E° (3.1c)
or, equivalently,
owu(t) = Cu(t) +j(t), (3.1d)
u(0) = u’, (3.1e)

with a discontinuous Galerkin (dG) method. The Maxwell operator € and the curl oper-
ators Cg, Cg have been defined in (1.22) and (1.40).

3.1 dG spaces

As in the last section we will assume that the solution u(t) = (H(¢), E(¢)) of (3.1) is slightly
more regular, namely that for all ¢ > 0 it satisfies

H(t) e VB =D(€u)NH (Th)®,  E(t) € V;¥ = D(Cg) N H'(Ty)?,

37
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or, equivalently,
u(t) eV, =VHEx VE.

We recall some consequences from this assumption. First, all functions H € VH E € VF
have well-defined L2-traces on mesh elements K, i.e. H|gx, E|gx € L?(0K)3. Moreover, by
Lemma 2.29 all vector fields H € VH and E € VF have vanishing tangential jumps, i.e.,

np X [H]lp =np x [E]Jp =0,  forall F € Fi"*, (3.2a)
and E has zero tangential components on the boundary, i.e.,
npxE=0, forall FeFm (3.2b)

In our dG method we want to construct discrete approximations Hy(¢) ~ H(t), Ex(t) =~ E(t)
in the broken polynomial space
Vi = P5(Th)?,

where the mesh 7; belongs to an admissible mesh sequence. We refer to V}, as the discrete
solution space (or just dG space) and seek our discrete solution u, = (Hy, Ej) € V2. Note
that the discrete solution space is not contained in the continuous solution space, Vh2 ¢ Vi
Every function vy, € Vh2 with nonzero tangential jumps cannot be in V, due to Lemma 2.29.
This characterizes dG methods as non-conforming space discretization schemes. So, we ad-
ditionally consider the spaces

V*I}L = V*H + Vha V*];Eh = V*E + Vh7 ‘/*,h - ‘/*I}L X ‘/*];3]7,7

which contain both the exact and the discrete solutions. Moreover, theses spaces also contain
the error function of the dG discretization, which is the difference of the exact solution and the
discrete solution. Thus, it will be important that our discretizations of Cyy and Cg are not only
well-defined on V}, but also on VH and V;F and thus on V*}}Z and on V*]:3h, respectively.

Observe that finding a solution H, E to (3.1) is equivalent to solving the variational problem:
Seek u = (H, E) € C1(0,T; L*(Q)%) N C(0,T; Vi) such that and

(0,H(2), gzﬁ)u = —(CgE(t), ‘% . (H(0), ‘% = (H, (;5)“, for all ¢ € L*(Q)?, (3.3a)
(BE(t) — 7' I(1),v). = (CaH(t),v),, (E(0),%) = (E%v)_, forally e L*(Q)*. (3.3b)

The essential task in a space discretization of (3.3) is to discretize the curl-operators Cy and
Cr. We will now derive such discretizations resulting in discrete curl-operators Cy and Cg.

3.2 Central fluxes

In order to define Cy, we consider the continuous curl-operator Cy tested with a discrete test
function: Let H € V! and ¢;, € V},. Then, by using the integration by parts formula (1.36) we
infer that

(CaH, ), = > (curlH,¢y) e = > (Hyewldhy) o + Y (nx x Hi, ) o

KeTy KeTy KeTy,

Using (2.14) with w = pe, @ = ec (the local impedance and the local conductance, respec-
tively) and (3.2a) we obtain

S (nk xHi, k) gpe = > (ne x Hyy) p— > (ne x {HY, [Ynlr) 5

KeTn FeFpnd FeFint

_ Z ({{H}}MC,W,F > [[wh]]F)F_ Z (H,nF X wh)F

FeFint FeFpnd
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Here, the last equality was obtained via (A.1). The same computations with w = ec and W = pec
can be carried out for Cg with the difference that the integrals over boundary faces vanish due
to (3.2b). This motivates to define the following discrete versions of the curl-operators Cy, Cg
in their weak form (derivatives on the test functions).

Definition 3.1. We define Cy : th — Vi, such that for all ¥y € Vy,

(CHH,wh)E = Z (H,curlwh)K

KeTy,
+ Z (fH} e x [[wh]]F)F - Z (H,np x wh)F , (3.4a)
FE]—"ilnt FG}—;L)“d

and Cg : th — Vi, such that for all ¢p, € Vp,

(CeE,¢n), = > (Brcurlen) + > ({E}E nr x [6]r) f - (3.4b)

KeTn FeFirt

We collect Cy and Cg in the discrete Maxwell operator,

C:Vip V2 C= ( cO _OCE> . (3.4¢)
H

Observe that by the discontinuous ansatz the respective first terms on the right-hand sides of
(3.4a) and (3.4b) do not admit a transfer of information between the mesh elements. This
task is performed by the flux functions, i.e. by the terms involving the inner products on the
interfaces F' € f}lnt. We see that they couple two neighboring elements by using the (weighted)
mean of H and E, respectively. Thus, such a dG discretization is called a central fluxes
discretization.

The discrete curl-operators can also be stated in their equivalent strong form (derivatives on
H and E).

Lemma 3.2. For H € Vf}l, E e V*Eh and ¢n, Y € Vy, we have that

(CaH, ) = > (curlHL¢hy) o+ > (np x [Hlp, {vn}E) 5 (3.5a)

KeTh FeFn

and

(CEE. ¢n), = > (cwrlE, ¢y)

KeT,
+ Y (e < [Elp {on}) p— D (nr xE, p) - (3.5b)
FeFn FeFpnd

Proof. This statement follows by applying the integration by parts formula (1.36) to (3.4). O

In the next lemma we examine the discrete curl-operators in more detail:

Lemma 3.3. The discrete operators Cy, Cg, and C have the following properties:

(a) Ch, Cg, and C are consistent, i.ce., for u = (H,E) € V, we have

CyH = 7,CyH, CgE = m,CgE, Cu = m,Cu. (3.6)
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(b) For Hy,Ej, € V}, we have the adjointness property

(CHHh;Eh)E = (Hh;CEEh)H- (37&)

(c) The discrete Mazwell-operator C is skew-adjoint on Vh2 w.r.t. (-,-)MXE, i.e. for all
uy, vy € Vh2 we have

(Cuh,vh)uxa = —(uh,th)uxg . (3.71?))

Note that by (3.7a) the discrete curl-operators inherit the adjointness properties of the con-
tinuous curl-operators we proved in Lemma 1.24, but on the discrete space V},. Furthermore,
observe that by (3.7b) it holds that

(Cuh,uh)uxa =0 for all uy € VhQ

Note that by Definition 3.1 an expression like (CHHh, E)6 is only well-defined for E € V}, but
in general it is not well-defined for E € V;E. This is the reason why (3.7) only hold true on Vj,.

Proof. (a) follows directly from (3.5) by using (3.2).
(b) is seen from from (3.4a) with H = Hj, and ¢y, = Ej, and (3.5b) with E = E;, and ¢, = Hy,.
(c) is a direct consequence of (b). O

Using the central fluxes dG discretization to approximate Maxwell’s equations (3.1) we obtain
the semidiscrete problem: Find Hy, E; € C1(0,T;V},) such that

8tHh(t) = —CEEh(t),
8tEh(t) = CHHh(t) — Jh(t), (38&)
H,(0) = Hj, Ex(0) = Ej,

or, more compactly, find u, = (Hy, Ep,) € C*(0,T; th) such that
(3.8b)

where
In(t) =ma(e 1 I(),  n(t) = (0, =Ju(t)),

3.8¢
HY) = 7, HC, E;,(0) = 7, E°. (3:8¢)

Note that the boundary condition (n x Ep(t))]|agn = 0 is weakly enforced within the definition
of Cg, cf. (3.5b).

We denote the restriction of C to Vh2 by
Cr:Vii = Vi, Ch=Clye.
Now, we can prove well-posedness of (3.8).
Theorem 3.4. The semidiscrete problem (3.8) is well-posed, i.e. there is a unique solution

uy, € CY0,T; V) given by

t
uy,(t) = e“rul) —|—/ et=9)Cnj, (s) ds. (3.9)
0

Moreover, the following stability results hold:
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(a) ForJy € C(0,T;V}) we have

1 t
(e < 0 le + 7 /0 13(s)]] ds, (3.10a)

where § was defined in (1.20).

(b) For J, =0, we have
s ()l uxe = [lma0° | xe < 0°]xe- (3.10b)

By (3.10b) we see that semidiscrete Maxwell’s equations stemming from the central fluxes space
discretization conserve the electromagnetic energy smilar to the continuous Maxwell’s
equations. In fact, for the semidiscrete solution uy(t) = (Hy(t), Ex(t)) we have

E(H, (1), Ex(t)) = EHY, EY), t>0, (3.11)

given that j, = 0.

Proof. Since Vh2 is finite dimensional, the operator Cj; is bounded, i.e. C;, € E(Vh2 , V,?) From
(3.7b) we deduce that Cj, is skew-adjoint and thus, by Stone’s Theorem (Theorem 1.17), it
generates a unitary Co-group e’* on Vh2. Together with Theorem 1.9 this yields (3.9). Since e‘€»
is unitary, the equality in (3.10b) holds true. The bound in (3.10b) stems from the boundedness
of the projection operator 7, see (2.8),

Huh(o)HuXE = ||7Thu0||uxe < ||u0||uxs-

The estimate in (3.10a) is obtained by the triangle inequality, (2.8) and

1
-1 _qa—1/2
e J|le =le” T £ J|| < —=||J]]. 3.12
I3 = 17723 < e I < (312)
Here, we used the assumption that the coefficient € is uniformly positive. O

In Section (3.4) we will prove that the central fluxes dG discretization is convergent of order h*.
But before, we introduce a stabilization, which will enable us to improve this rate to h¥t1/2,

3.3 Upwind fluxes

The following definitions are taken from Hesthaven and Warburton [2008] and Hochbruck et al.
[2015b]. Further insight in the motivation of the stabilization terms, in particular on the solution
of the Riemann problem, can be found there.

On the faces F' € Fj, we define the coefficients

1 1

ap = . bp = , F e Fint, (3.13a)
EKCK + €EKpCKp MKCK + WKpCKp
1
bp = , F e Frd, (3.13b)
HKCK

where cx = 1/ /uxeK is the speed of light in the element K.
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Definition 3.5. We define the stabilization operators Sy : V*}}L — V3, such that for all
d’h € Vh;
(SuH, ¢n), = > ap(ne x [H]p,ne x [65]F) - (3.14a)
FeFint

and Sg : V:jh — Vi, such that for all ¥y € Vy,

(SEE, ¥n), = Z bp(np x [E]lp, ne X [Yn]F) » + Z be(np x BE,np X ¢p) . - (3.14b)
FeFint FeFpnd

Moreover, we define

S Vin — V2, S = <80H SQE) . (3.14c)

We introduce the stabilization parameter « € [0, 1]. The stabilized dG discretization of
Maxwell’s equations (3.1) reads as follows. Seek u;, = (Hy, E;) € C1(0,T;V}?) such that
8tHh(t) = —CEEh(t) - OéSHHh(t),
8tEh(t) = CHHh(t) — CkSEEh(t) — Jh(t), (3.15&)
H,(0) = Hj, E(0) =Ej,
or, equivalently,
oruy,(t) = Cuy(t) — aSuy(t) + ju(t),
hup,(t) ' n(t) n(t) +in(t) (3.15b)
u,(0) = u;,.

The source term j;, and the initial value u?L are given in (3.8¢). In the context of dG methods

employing o € (0,1] is usually referred to as an upwind fluxes dG discretization and the
choice o = 1 as the upwind fluxes dG discretization. For a = 0 we retrieve the central fluxes
dG scheme.

The stabilization has no physical meaning but is only used for numerical reasons. Thus, it is
natural to demand that the stabilization operators vanish when applied to the exact solution
because then the extra term does not destroy the consistency of the overall discretization.

Lemma 3.6. The stabilization operators Sy, Sg, and 8 have the following properties:
(a) They are consistent, i.e. foru= (H,E) € V, we have
SyH=0, SgE=0, Su=0. (3.16)
(b) They are symmetric on Vy,, i.e. for u, = (Hy, Ey), Uy = (ﬁh,ﬁh) € VhQ we have

(SuHy, I/:Ih)u = (Hh,SHﬁh)
(Sup,0p) = (up, SUy)

; SgEn Ey), = (Ey, SgEy),
o (SRR - (BLSE)
uxe puxe "

(c) They are positive semi-definite on Vj,, i.e. for u, = (Hy, Ep) € V2 we have

(SHHiuHh)M >0, (SeEx, Ep)_ >0, (Su}uuh)u > 0. (3.18)

xXe —

Proof. (a) follows with (3.2). (b) and (c) follow directly from the definition. O

Since the stabilization operators are symmetric and positive semidefinite, they induce semi-
norms. We define these seminorms in such a way that they are also well-defined on V¥ and
VE.
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Definition 3.7. For u= (H,E) € V, ;, we define the seminorms

HIE, = Y arlne x Hrlf (3.19a)
FeFint
El5, = Y brlne < [ElellF+ D brlne xE|} (3.19D)
FeFint FeFbnd
and
uls = H5, + El5, . (3.19¢)

On the discrete space V}, we can represent these seminorms by the stabilization operators. In
fact, for uy, = (Hp, Ep) € V/? we have that

Hal5y, = (SuHn, H) [Enl3, = (SEEn, Ej)

IS )

w ]uh]?g = (Suh,uh)uxe . (3.20)

Analogously to Cj, we define the restriction of S to Vh2 by

Sh:VhQ—>VhQ, Sh:S‘th.

Now, we show well-posedness of (3.15).

Theorem 3.8. The stabilized, semidiscrete problem (3.15) is well-posed, i.e. there is a unique

solution uy, € C1(0,T; V%) given by
t
uy, (t) = ellCh=aSny) —i—/ elt=9)Cr=aSn)j, () ds. (3.21)
0
Moreover, the following stability results hold:
(a) For Jy, € C(0,T;V},) we have
2 ! 2 194,012 T+1 [ 2
[an (8) e + 2cx ; [un(s)ls ds < e’ [[uffe + e —5— ; [I(s) |7 ds, (3.22a)

where § was defined in (1.20).

(b) For Jy, =0 we have
2 ‘ 2 012 012
[l () [axe + 204/0 [un(s)ls ds = [[mnu|[xe2 < 0[]« (3.22b)

Note that by (3.22b) the upwind dG discretization does not conserve the electromagnetic energy,
but it is a dissipative scheme, i.e. it decreases the energy. In fact, we have

E(HL, (1), En(t)) = E(HO,ED) — oz/ot n(s)% ds, >0,

The stability parameter o € [0,1] controls the amount of dissipation. The dissipative term
a fot lun(s)|% ds plays a crucial role in our error analysis and in particular in proving the
superior convergence rate hET1/2 compared to k¥ of a central fluxes discretization.
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Proof. We introduce 5h = Cj,—ad8y, which is a bounded operator since th is a finite dimensional
vector space, i.e. Cp, € L(V}2,V}2). By (3.7b) and (3.20) we infer that for all u, € V;* we have
that

(éhuh, uh)NXE = —a\uh’?&

Thus, the operator éh is dissipative on Vh2 . Moreover, we have for all uy, € th ,
(Z—-Chup,up),, . = Jun|? e + afunls > [us? ..

whence we conclude that Z — Cj, is 1nJect1ve (even coercive) and thus also surjective, ran(Z —
Ch) Vh Theorem 1.12 now states that Ch generates a contraction semigroup e'Ch on V2 So,
the unique solution of (3.15) is given by (3.21).

In order to prove (3.22a) and (3.22b) we take the inner-product of (3.15b) with uy(¢) and use
(3.7b) and (3.20) to obtain

5 e (0) e + olun (0l = (n0), wa(0) ..

For vanishing source term j; = 0 we integrate this identity from O to ¢ and get the statement
(3.22b). For the bound (3.22a) we apply the Cauchy—Schwarz inequality (A.5) and the weighted
Young’s inequality (A.2) with weight v > 0 to the right hand side of the upper equation, which
yields

1d i
5 g7 nBllixe + afun®)ls < *IIJh( Mixe + 5 n(®)xe-

Integrating from 0 to ¢ gives

t t t
1 .
s () e + 204/0 [ ()I5 ds < [[uj e + 7/0 (NACHI +'y/0 [ETCHAE

The continuous Gronwall lemma (Lemma A.1) gives

t vt t
€ .
[un ()7 + 2@/0 lun(s)[5 ds < ™ |uplf?. + 7/0 in(s)|[7xe ds
At 114,012 ettt 2
< eV[upllaxe + 5 [ 1T ()" ds,
Y Jo

where the last inequality follows from (3.12). The proof is completed by choosing v = T%rl and

the boundedness of the projection operator my,. O

Note that the bounds (3.10) and (3.22) of the central fluxes discretization and of the upwind
fluxes discretization, respectively, are derived differently. For the central fluxes we used the
variation of constants formula and the bound ||ef€#|| = 1, whereas for the upwind fluxes we
applied an energy technique. This different treating will be needed in the now following error
analysis and also plays an important role in the time integration.

3.4 Error analysis of the spatial discretization

Let

Coo = MAaX Ck
KeTy
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denote the maximum speed of light. Furthermore, let u(t) = (H(¢), E(t)) € Vi denote the exact
solution of (3.1) and let uy(t) = (Hp(t), En(t)) € V;? be the semidiscrete approximation to u(t)
obtained by the central fluxes scheme (3.8) or the upwind scheme (3.15). By considering (3.15)
for v € [0,1] we can do the first steps of the error analysis for both schemes simultaneously.
We denote the error by

e(t) =u(t) — up(t), (3.23a)

which we split into a projection error and a dG error,
B ~ (H(t) — mpH(2) Hy(t) — 7, H(t)
e(t) = er(t) —en(t) = <E<t> - W:E(t)> — (E:(t) - W:E(t)> : (3.23b)

The projection m,u(t) is the best approximation of u(t) in the dG space V;? w.r.t. the L?-norm
and thus er(t) is the best approximation error in the dG space. The error ep(t) describes
the error between the best approximation m,u(t) and the approximation uy(t) we obtain from
the dG scheme.

We recall that by Assumption 2.24 the mesh 7; has optimal polynomial approximation prop-
erties. Hence, by Lemma 2.25, for K € Tp,, F' € F, I' C 0K and H,E € HFT1(K)3 there are
constants Capp, Capp such that the projection errors ex = (e H, er ) satisfy

HemHHu,K < Capph];(+1|H’k+l,K ) ”emEHs,K < Capphllf{—H’E’kJrl,K ) (3.24a)
and
s k+1/2 s k+1/2
lensllr < Copphlh P Higsrx » llenmller < Copphlis P|Elkiix - (3.24D)

Observe that this already yields an optimal bound for the projection error e, and consequently,
we only have to bound the dG error. To improve readability we omit the arguments of the
vector fields whenever possible.

Lemma 3.9. Let a € [0,1]. Then, the dG error e, = uj, — mpu of (3.15) satisfies
ore, = Cep, — aSey, +d, eh(O) =0, (3.25&)
with a defect d, called the space truncation error, given by

d, = —Ce; + aSe;. (3.25D)

Proof. We proceed in the usual way by inserting the projected exact solution mpu into the
semidiscrete equations (3.15b). This yields

Oympu = Cmpu — aSmThpu + ji, — dor, (3.26)

with a yet to be determined defect d,. Subtracting (3.26) from (3.15b) shows (3.25a).

It remains to compute d,. Projecting (3.1) onto V;? and using the fact that 8; and 7, commute
yields
Oympu = mpoiu = m,Cu + mj = Cu — aSu + jj, (3.27)

where we used the consistency properties (3.6), (3.16) of C and of 8, respectively, i.e. 7,€ =C
and Su = 0, and the definition of j,. Comparing (3.26) and (3.27) finally proves (3.25b). O

The lemma shows that ej, is the solution to the semidiscrete scheme (3.15b) with source term
jn = dr and zero initial value. Hence, we can apply the stability result (3.22), which provides
a bound of ey in terms of d,. In the next theorem we establish bounds on d,, i.e. bounds on
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Ce, and Se,. Here, we introduce the following notation for broken ¢P-H™-seminorms scaled
with the order ¢ of the spatial approximation by

m ThoDsq Z hpq ]v (3'28)
KeTy,

Note that for our H™(7})-seminorm we have |v|y, = |v|m, 7;,,2,0- see Section 2.3.

Theorem 3.10. Assume u € V, N H*1(T,)8. Then, for all oy € VhQ, e, = u — mpu satisfies

(ce7r7 Sph)uxa >~ ‘@h‘s’u’k_H 77,72,k+ y (329&)
and

(Ce7r790h)u><€ < Cr lonllpxelale+1,75,2.k5 (3.29Db)
Moreover, we have

(Sexon) e < Crlonlsluliys 7, 0p11- (3.30)

The constants are given by Cr = (2N3000)1/26app and @r = 25appCtrNacoop.

Remark 3.11. Because the bounds (3.29a), (3.29b) are also valid for —pp, we conclude by
_(Ceﬂ,gph)uxs = (Cer, —goh)uxs that (3.29a), (3.29b) also hold true for ‘(Ce,r,cph)uXE . With

the same arguments the bound (3.30) also holds true for ‘(Se,r, ©n)

uxel|’

Proof. (a) Let ex = (exm,er k) and ¢, = (¢p, ). By definition of the inner products, we can
write

(Ce7r7 Sph)uxa = (CEeT(,E7 d)h)“ + (CHeW,H7 wh)a- (331)

For arbitrarily chosen weights wr > 0, we have by (3.4Db)

(CEemEyfbh)u = Z (curl ¢p, exg) . + Z (nr % [¢n]r, fere}¥) 5

KeTn FeFnt
= Y (nr x [¢nlr, {erp}F) 5 by (2.7)
FeFint
< Z Ine x [én]rllr |[{ere}F |l F Cauchy-Schwarz in L?(F)
FeFint
1/2 1/2
< (X wrlwxfolelp) (X wilMensd¥lt) . G32)
FeFn FeFn

where the last inequality stems from the Cauchy—Schwarz inequality (A.3) in Reard(F™) with
weight wp. By definition of ap in (3.13), the second factor can be bounded by

I{er e} #llF = af lexcrenrlx +experpernlis b
< 2a% (H&KCKGTF7E’KHF + HEKFCKFGW,E‘KFH%>
= 20} (cnckllen sl |2 7 + xcp i, lenmlic )
< 2ar (exllenslicl r + cxllenlice |.r)

< 205 C2 o0 (MBI 1 i + BE B g, ) - (3.33)
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1/2

Here, we applied the triangle inequality, Young’s inequality, and used ||¢"/“u||r = ||u||.,r and

the obvious bounds
aregcg <1, AFEKpCKry < 1. (3.34)

The last inequality (3.33) follows from (3.24D).

(b) To prove (3.29a) we choose wp = ap in (3.32). Then, the first factor in (3.32) is equal to
|¢n|sg - Summing over all interfaces, and recalling that every mesh element K has at most Np
faces shows

1/2
(Ceerm. dn), < \/icappcgz|¢h|SH< S REUER,, o+ h?é“;uEliH,KF)
FeFjn
< CrlonlsulBler 7 2041

~

with C; = (2Nacoo)l/20app.
The same computations carried out for Cgy show

(Caerm, ¥n), < Crlion| sl Hllpp1 7 2841
Using (3.31), and the Cauchy-Schwarz inequality in R? yields
(Cen, ‘Ph)#xe < Cﬂ(‘d)h’SH‘E‘k—i-l,ﬁ“Zk-i-% + ’¢h|5E|H’k+1,T;L,2,k+%>

2 2 \1/2 2 2
< Cﬂ(|¢h|SH + ’¢h‘SE) (|E|k+1,’7’h,2,k+% + |H‘k+177’h72,k+%)

= Crlenlslulpyy 7 0041

1/2

(c¢) To prove (3.29b) we start again from (3.32). To bound the first factor we use |np| = 1, the
triangle inequality, Young’s inequality, and subsequently the trace inequality (2.11), to obtain

Ine x [onlellF < 2(Ionl k7 + |60kl 7)
< 2C% (hi 1 on %k + bk 1ol )
= 2C% (i b onll2 s + i it 1 onll2 o) - (3.35)

In (3.32) we now choose the weight as

_ hix + hKFaF

5 (3.36)

wp

From the shape- and contact-regularity of the mesh 7y, in fact by using (2.4), we deduce

1

ptap <wphit, th;_(}w < pap. (3.37)

This gives

wrllng x [onlpllE < 202 par (ug lonll} x + nxsllonllh kp)
< 205 coopllOnlly wurcys (3.38)

since one can easily show that
ap < CKlK, ap < CKp[Kp, (3.39)

by definition of cx = 1/(expur). Finally, (3.33) yields

Wi IHenm I} < 202 pcncn (WEIBR L i + W5 IBR 1, ) (3.40)
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As in (b) one first shows
(CEeW,Ea gbh)u < 26appctrNacoop||¢hH,LL|E|/€+17Tthvk7

by summing over all interfaces, then uses the analog result for (CHemH, wh)s to finally prove
the desired bound (3.29a).

(d) It remains to prove (3.30). By Definition 3.5, the Cauchy—Schwarz inequalities (A.5), (A.3)
yield

(Smerm, on), < > apllng x [exulrlr Ine x [¢nlrlr
FeFirt
1/2
< lonlsu( X arllor < Termlelf)
FeFint
By |np| = 1, the triangle inequality and Young’s inequality (A.6) we infer

ap|np x [exulrlF < 20r (lerulx|F + llexulx.|7)

= 2ar (g llexulil r + g lerulke 5 F)
< QCgpp (CKh%CH\H’%H,K + CKph%?:IIH‘iH,KF)- (3.41)

Here, the last inequality follows from (3.24b) and (3.39). Consequently, we have
(Suerm: én) < CrldnlsulHlr 7 2041
Analogously, we obtain
(SeerE, V) < Crl¥nlse Elpr1 7, 2801

Finally, by the Cauchy-Schwarz inequality in R? we obtain (3.30). O

From now on, the error analysis in the central fluxes case and in the upwind fluxes case diverge.
For the central fluxes error analysis we can only use the bound (3.29b) whereas for the upwind
fluxes analysis we can use the bounds (3.29a) and (3.30). This will allow us to prove the superior
convergence rate for the upwind fluxes case.

3.4.1 Convergence result for central fluxes

By Lemma 3.9, the error ep(t) solves the semidiscrete problem (3.8) with source term jj(t) =
—Ce,(t) and initial value e (0) = 0. Hence, we can apply Theorem 3.4 which shows

t
len(®) e < /0 1Cen(s) e ds. (3.42)

The convergence result for the central fluxes dG discretization is stated in the following
theorem.

Theorem 3.12. Let u € CY(0,T;L*(Q)%) N C(0,T; D(C) N H**(T3)8) be the solution of
Mazwell’s equations (3.1) and let v, € CY(0,T; Vh2) denote the semidiscrete approximation
obtained from the central fluzes dG discretization (3.8). Then, the error e(t) = u(t) — up(t) is
bounded by

t
mmmms@mmwMﬂMH+@/hwm%mmwzcm
0

where C' only depends on Capp,@, and |u(s)|p+1,7,, s € [0,1].
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Figure 3.1: Dependence of C\pyw on o.

Proof. As before we split the error into the projection error and the dG error, i.e., e = e; — €.
The projection error can be bounded with (3.24a). To bound the dG error, we infer from (3.29b)

”CeﬂHuXE = sup (Ceﬂ-, Soh),uxs § Cﬂ|u|k+177‘h727k. (3.43)
&phEV’?
HSOhHuxazl

Inserting this bound into (3.42), we obtain

t
len(®)luxe < o / 0($) 1,752k ds.
0

The triangle inequality ||e()||,xe < [lex(t)|lxe + |len(t)||uxe completes the proof. O

3.4.2 Convergence result for upwind fluxes

In order to prove the convergence in the upwind fluxes case we apply an energy technique.

Theorem 3.13. Let u € CY(0,T;L*(Q)%) N C(0,T; D(€) N H*(T;,)®)) be the solution of
Mazwell’s equations (3.1) and let up, € CY(0,T;V}?) denote the semidiscrete approzimation
obtained from the upwind fluxes dG discretization (3.15). Then, the error e = u — uy, satisfies

le(®)2c +a / en()l3 ds < C2 () 41751541 + Cums / E——
<Ch2k+1.

with Cypw = C2(1 + «)*/a. The constant C only depends on Capp, Cupw, and [u(s)|g41.7,
s € 10,1].

Note that the constant Cypw depends on the dissipation parameter «, see Figure 3.1. For o = 1
we obtain the smallest constant. On the other hand for o ™\, 0 the constant explodes and
therefore the upper bound is not valid for the case o = 0, i.e. for the central fluxes case.

Proof. The energy technique is based on taking the p x e-inner product of (3.25a) with ey, (t).
Using the skew-symmetry (3.7b) and the definition of the stabilization seminorm (3.20) we

obtain 14
Sorlen(®)l. = —alen(t)l3 + (de(t), en(t),. -
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with d, = —Ce, + aSe,. Integrating from 0 to ¢ and using e,(0) = 0 yields

t t
Heh(t)HiXE + 2a/0 len(s)|% ds = 2/0 (dﬂ(s),eh(s))uXE ds. (3.44)
From (3.29a) and (3.30) we obtain by Young’s inequality with weight v = a//(1 + a)?
2(d77’ eh)y,xz—: < 2(1 + a)cﬂ|eh|s|u‘k+177—}172yk+%
<01+ a)lenls + Zu, o
- ry k+17771127k+§

= aley|s + Cupw|u\i+177_h’27k+%, (3.45)

by the definition of Cyypyw = C2/v. Inserting this bound into (3.44) we conclude

t t
len(Olf e+ [ len(ls ds < Cop [ 0GR 7 01y (3.46)
Because of e}, € Vh2 we have (eh, eﬂ)#xs =0, cf. (2.7), and thus we conclude
lellfixe = ller = enllfixe = llexlixe + llenllxe-
The statement now follows from (3.24a) and (3.46). O

3.5 Bounds of the discrete operators

The discrete operators Cg and Cy are bounded as operators on the finite dimensional space
V3. Obviously, their bounds depend on the mesh parameter h, namely they tend to infinity
for h 0. Next we consider this dependence in more detail. This is necessary to understand
the dependence of the CFL condition on h for explicit time integration methods that we will
consider in the next chapter.

We use the following short notation inspired from (3.28)

[ H |

Z,E,p,q - Z R I ke IERlIZ 7, pg = Z W IERIE - (3.47a)
KeTy KeTy

Furthermore, for uy, = (Hy, Ej,) we write

HuhHZxa,’Th,p,q = HHh| Z,T}up,q

Theorem 3.14. For Hy,, E;, € V;, we have the bounds

|CEELx < Conacool|Enlle,7,,2,-1 (3.48a)
and
ICaHy e < Conacool|Hpllp,75,2,~1- (3.48Db)
Moreover, the stabilization seminorm is bounded by
~ 1/2
[unls < (Conacoo) " [0hll e 7.0, 1- (3.49)

The constants are given by Cpng = Ciny + 2C2Nap and amd = 202 Ny.
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Proof. (a) We prove (3.48a). The bound (3.48b) can be shown analogously. For E;, ¢ € V},
we have by (3.4Db)

(CEEh, (Zsh)u = Z (Eh,curl ¢h)K + Z ({{Eh}}%,np X [[(bh]]F)F . (3.50)
KeTn FeFint

We bound the two terms on the right-hand side separately. For the first term we apply the
Cauchy—Schwarz inequality twice and in between the inverse inequality (2.10) to obtain

> (Bncurln) i < Cine Y b IEnlikllénllx
KeTy, KeTy,
= Cinv Y e Bl x| onll i
KeTy,

< e (Y2 onlle) (X mi2Imal2i)

KeTy KeTy
= CinvCoollPnlul|Enlle,7,.2.-1- (3.51)
For the second term in (3.50), a weighted Cauchy—Schwarz inequality yields
1/2
> WEYE e < [onde)p < (3 wellne x [onleld) (3 wrtlgEEIE)
FeFint FeFint FeFint

The weight is chosen as in (3.36). By definition of ap, the discrete trace inequality (2.11), and
(3.37) we end up with

2c
wi I€ER |17 < T;OQF(HEHKII r+ 1 Balxe 2 F)
202 ¢ _ _
< :f Zap (b 1ELZ k + b |BalZ k)

< 205 cocp (W ERIZ i + P I EnllZ k).
Together with (3.38) we obtain the bound
>° (BN e x [onlr) ;o < 202 NocopllonlluBulle 2. (352)
FeFint
Inserting the estimates (3.51) and (3.52) in (3.50) and using the identity

|ICEEL|[, = sup (CeEs, QSh)u
PrEVR | onllp=1

yields the statement.
(b) We have |up|3 = [Hyl3,, + |Exl%,, where by Definition 3.7,
Hul%, = > arllng x [Ha] |3 (3.53)
FeFint

By |np| = 1, the triangle inequality, Young’s inequality, the trace inequality (2.11) and (3.34)
we infer

arlne x [Hul el < 2C2ar (excckhid IBAIE k& + enpchep ik IFAIE 1, )
—1
< 2C%con (DR HIZ i+ Bk IR 1, )
Inserting into (3.53) gives

’Hh‘SH < CbndcooHHhHMTh 2, _7.

The proof of the bound for |Eh\‘2gE is done analogously. O
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3.6 Implementation issues

In this section we briefly consider the implementation of the dG discretization.

In order to implement a dG method we first construct a basis of the dG space V2 = (P5(75))¢
consisting of piecewise polynomials without any coupling between the elements of T,. This
allows to choose basis functions independently for each element K and to restrict them to K.
Hence, we consider a basis of the form

K K
{9015"'7S0Nh} = {901 "”’(’Onh}KE'Th7

where o
oK e (P55, supp(pf) =K, for KeTp, L=1,...,n

Recall from Section 2.2.1 that the dimension ny, is given by
ny, = np (k) = dim ((P5)%) = 6 dim(P%) = (k + 3)(k + 2)(k + 1),
and thus the dimension of our basis is given by
Ny, = npcard(Tp).

Note that without any difficulty, one could vary the degree k between the elements. Although
ny, is independent of h, we use this notation to reflect the fact that it is a parameter related to
the space discretization.

Using this basis, the semidiscrete Maxwell’s equations (3.15) can be equivalently stated as
(atuha(pf)uxa = (Cuhagof)‘uXE _a(suhvwf)p‘xtg"i_ (jha(pé)lbx57 (= L,..., Np. (354)
Since uy,(t) € V;2, we can represent it as
Ny,
w(t) = Y um(t)pm,
m=1

with coefficient vector u(t) = (ui(t),...,un, (t)) € RV Inserting this representation into
(3.54) we obtain the following system of ordinary differential equations in RV

Mua(t) = Cu(t) — aSu(t) + j(t). (3.55a)
Here,
M = ((som,w)#xa)e’mzlwh : (3.55Db)
denotes the mass matrix and
C= ((Cwm’W)MXE)z,m:L...,Nh ’ 5= <(8¢m’we)l‘“)e,m:l,...,zvh ’ (3.55¢)

denote the stiffness matrix and the stabilization matrix, respectively. Furthermore, the
source term is given as j = M j, where j denotes the coefficient vector of m,j(t), i.e.,

Np
in(t) = mi(t) = > Jm(O)m. (3.55d)
m=1

The localized ansatz of our basis functions reduces the communication between mesh elements
and ultimately leads to block-diagonal mass matrices (in contrast to conformal finite element



3.7. NUMERICAL EXAMPLES 53

-1 0 1

Figure 3.2: Ilustration of the mesh refinement: Coarsest mesh 771(1) left, finest mesh ’771(4) right.

j max hg min hg
KeT? KeT?

1 0.2384 0.0125

2 0.1248 0.00625

3 0.0721 0.003125

4 0.0370 0.0015625

Table 3.1: Diameter of the largest and of the smallest mesh element in ’77l(j ),

discretizations). However, the choice of the basis functions can have a strong impact on the
performance and the accuracy of a dG scheme, in particular, when using high order polyno-
mials. For example, choosing modal basis functions, i.e. basis functions being orthogonal
w.r.t. (‘, -)MXE’ > leads to a diagonal mass matrix. However, they suffer from the fact that the
approximation of the integrals by quadrature formulas is costly. Another popular ansatz is to
use nodal basis functions associated to a set of nodal points. Usually one uses Lagrange
polynomials and a set of nodal points leading to good approximation properties. For instance,
Gaufl-Lobatto points are well suited for rectangular meshes, since they provide a high approxi-
mation order and directly allow to evaluate the dG function on the faces of the elements, which
is required to compute the fluxes. For general meshes the efficient approximation of integrals is
often considered more important than orthogonality. For further insight, we refer to [Di Pietro
and Ern, 2012, Section A.2] and [Hesthaven and Warburton, 2008, Section 6.1].

Obviously, the stiffness matrix C' and the stabilization matrix S are also sparse, since a coupling
between the elements only takes place over common faces. More precisely, nonzero elements
can only appear for basis functions ¢,,, ¢, satisfying,

supp(pm) Nsupp(pe) = K, K € Ty, or supp(pm) Nsupp(pe) = F, F € .F,ilnt.

For more details we refer to [Di Pietro and Ern, 2012, Section A.1].

3.7 Numerical examples

Finally, we illustrate our theoretical results by employing the dG space discretization to the
TM Maxwell’s equations in R?, see (1.17). As setting we consider a homogeneous medium with
p,€ = 1 in the square Q = (—1,1)2. We use a reference example from Descombes et al. [2013],
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Figure 3.3: Convergence of the dG method w.r.t. the mesh width h. We used central fluxes
(left), upwind fluxes with o = 1 (right), and polynomial degrees k = 2, k = 3, , k=5.
The dotted lines have slope h* for k = 2,...,6. The final time was T = 1.
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Figure 3.4: Convergence of the dG method w.r.t. the polynomial degree k. We used central
fluxes (left), upwind fluxes with o = 1 (right), and the mesh levels , , ’77[“5'), . The
final time was 1" = 1.

namely u = (H,, H,, E,) with components

H,(t) = —7sin(mwz) cos(my) exp(t),
H,(t) = 7 cos(mx) sin(my) exp(t), (3.56a)
E.(t) = sin(mz) sin(my) exp(t).

This function satisfies Maxwell’s equation (1.17) with source term
J.(t) = —(1 + 27?) sin(7z) sin(7y) exp(t). (3.56D)

We consider a mesh sequence 771(1), ey 771(4) of continuously refined meshes. The mesh data can
be found in Table 6.7. Plots of the coarsest mesh 7;1(1) and of the finest mesh 7;1(4) are given
in Figure 3.2. In Figure 3.3 we plotted the L?-norm of the error e, (T) = u,(T) — mpu(T)
which the dG method generates at the final time 7' = 1 when applied to the different mesh
levels ’7;51), . ,771(4). For the time integration we used the Verlet method (see Chapter 4) with
a small time-step size 7 = 107° which ensures that the time integration error is negligible. We
observe that the central fluxes discretization converges with order k, which is in agreement with
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Figure 3.5: Dependence of the error of the dG method on the stabilization parameter . We

used the grid is 7;1(1), the polynomial degrees k =2, k = 3, , k=05 and the final time
T=1.
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Figure 3.6: Dissipation of the electromagnetic energy. We used the mesh 771(1) and polynomial
degrees i = 1, k = 2 and k& = 3. The final time is T' = 20.

Theorem 3.12. Moreover, we see that the upwind fluxes discretization is convergent with order
k + 1 and thus even half an order better than stated in Theorem 3.13. In Figure 3.4 we show
the L?-norm of the error when using different polynomial degrees and a fixed grid in the dG
method.

Recall that the constant C\pw, which appears in the convergence result for the upwind method,
depends on «. This dependence is illustrated in Figure 3.5 where we plotted the error of the dG
method for different values of alpha. We see that the choice a = 1 yields the smallest error. For
the time integration we used a Verlet-type scheme (see Chapter 5) with time-step size 7 = 107°
which yields a small time integration error.

As pointed out in Sections 3.2 and 3.3 the central fluxes dG discretization is energy preserving
while the upwind fluxes discretization is dissipative. This is confirmed in Figure 3.5 where
we give the electromagnetic energy of the semidiscrete solution obtained from a dG method
depending on the stabilization parameter a.

Last, we plotted in Figure 3.7 the eigenvalues of the matrices associated with the central fluxes
dG operator C, i.e. M ~1C, and the eigenvalues of the upwind dG operator C—S8, i.e. M ~1(C—S9).
We see that in the central fluxes case the numerically computed eigenvalues are on (or at
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Figure 3.7: Plot of the eigenvalues of the central fluxes matrix M~'C (orange), and of the
upwind fluxes matrix M~1(C — S) (blue). We used the polynomial degree k = 1 and mesh

levels 771(1) (left), 7;1(2) (middle) and 7;1(3) (right).

least very close to) the imaginary axis. In contrary, we observe that in the upwind fluxes
case the eigenvalues moved from the imaginary axis into the left complex half plane. This
is due to the dissipative behavior and the improved stability properties of the upwind fluxes
discretization. Moreover, we observe that the eigenvalues grow with (minge7; hi)~! which
illustrates Theorem 3.14.



CHAPTER 4

Time integration

Let us recall Maxwell’s equations from (1.18),

D et i OH(t) = —CgE(t), 41
() =Cul) T30S B~ ewH() - o130, )

with initial value u(0) = u® = (H° EY), and the semidiscrete evolution equation stemming
from their spatial discretization with a dG method

. . 8tHh(t) = —CEEh(t) — OéSHHh(t),
on(t) = (€ —aSym@) +in) & st 30, Y

with u,(0) = u) = (HY,EY), see (3.8) and (3.15). Here, a = 0 corresponds to a central fluxes
dG scheme, and « € (0,1] to an upwind fluxes dG scheme.

In order to obtain a fully discrete numerical scheme we further have to integrate the semidiscrete
problem (4.2) in time. This chapter is devoted to this time integration and there are plenty
time integrators for this purpose proposed in the literature. For Runge-Kutta (RK) methods
let us mention the following references: explicit two or three stage RK methods are analyzed in
Burman et al. [2010]. More adapted to the time integration of Maxwell’s equations are the low-
storage RK schemes from Diehl et al. [2010] and the implicit, algebraically stable and coercive
RK methods (such as Gauss and Radau collocation methods) analyzed in Hochbruck and Pazur
[2015]. Moreover, there are exponential integrators Hochbruck and Ostermann [2010], Pazur
[2013], ADI methods Namiki [1999, 2000], Zhen et al. [2000], Hochbruck et al. [2015a], Krylov
subspace methods Hochbruck et al. [2015b] and many others.

In this thesis we focus on two widely applied methods, namely the explicit Verlet (or leap frog)
method and the implicit Crank—Nicolson method. These two methods are also the underlying
schemes for the locally implicit time integrator studied in Chapter 5. We begin this chapter
by introducing the two methods and shortly give an overview of their analysis in the ODE
case. Next, we apply the Verlet method and the Crank—Nicolson method as time integrators
for the semidiscrete Maxwell’s equations emanating from a central fluxes dG discretization. We
provide a stability and an error analysis, which is inspired by the analysis in the semidiscrete
case. Next, we tackle the upwind fluxes case. The Crank—Nicolson method can be directly

57
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used as a time integrator for this case. Contrary, the Verlet method first has to be modified in
order to meet the requirements of the semidiscrete problem stemming from an upwind fluxes
dG discretization. Similar to the central fluxes case we provide a stability analysis and an error
analysis, but this time it is based on an energy techniques. We conclude this chapter with
numerical results.

All time integration methods we analyze in this thesis use equidistant time steps 7 = T/Np
and provide approximations uy ~ uy(t,), t, =n7, n=0,..., Nr.

4.1 Time integration for ODEs: 2nd order methods

4.1.1 The Verlet or leap frog method

In this section we construct the Verlet or leap frog method, cf. Hairer et al. [2006]. It is an
explicit time integration scheme, which is particularly constructed to integrate second order
differential equations of the type

(4.3)

Here, q : Ry — R? is the searched vector field, ¢°, p° are given initial values, and f : R — R?
is a given force. By introducing p = ¢ we can rewrite (4.3) as a first order problem by

p(t) = fla(t)), (4.4a)
q(t) = p(?), (4.4b)

with initial values ¢(0) = ¢" and p(0) = p°. Note that (4.4) is a Hamiltonian system with

Hamiltonian )

H(p.q) = 5 — F(a).

where F' is the anti-derivative of f, i.e. d%F(q) = f(q)-

The Verlet method can be derived in different ways. One option is to interpret it as a collocation
method. For given values ¢", ¢"~! and unknown ¢"*!, let £ € Py be the unique interpolation
polynomial satisfying

0t;) = ¢, j=n—1,n, n+1.

The Lagrange form of ¢ is given by

_ (t —tn)(t = tn-1) n+1 (t—tng)(E—tn1) (E— b)) —tn) g
() = 52 ¢ — = q + 5.2 q .

The unknown approximation ¢”*! is determined by the collocation condition

i 1 n n n— ! n
U(tn) = (" = 20" +¢"71) = f(d"),

cf. Figure 4.1. This yields the two-step Verlet method

"t =2¢" + ¢ =T (4.5)

Now, we derive the one-step formulation of the Verlet method from the following central finite
difference approximations to p = ¢,

n+l _ n—1 n+l _ . n n_ n—1
P = 27(] A A A (4.6)
T T T
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tn—l tn t7L+1
t

Figure 4.1: Illustration of the collocation condition for the Verlet method.
Clearly, this yields

netjp _ € 20" + ¢!
T

n+1/2

p p

By using (4.5) we obtain the one-step Verlet method,

P2 T2 — (g™, (4.7a)
qn+1 _ qn — Tpn+1/2' (47b)
Observe that ¢ and p live on a staggered time grid, i.e., approximations to ¢ are computed

at times ¢, and approximations to p at times ¢, /5. It is also possible to provide both values
at t,, since by (4.6) we have

P2 12 gt — gt — 2",
T
Solving either for p"*1/2 or for p"~/2 and inserting into (4.7a) yields
prtE =t =2 = gf(qn)' (4.8)
Consequently, we obtain,
prtE -t = gf(q”), (4.92)
¢t g = Tp"+1/2, (4.9Db)
= = (), (4.90)

Except for the first time step, the scheme requires only one evaluation of f per time step, since
the evaluation in (4.9a) is already available from the previous time step. Alternatively, one
could also use the update formula

pn+1/2 — 2pn _pnfl/Z7 n>1,

which follows from (4.8).

In the following we will always use the one-step formulation (4.9) of the Verlet method.
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In order to analyze the stability behavior of the Verlet method we consider the (undamped)
harmonic oscillator in the scalar case d =1,

p(t) = —wq(t),

i(t) = p(), (4.10)

G(t) = —w?q(t), or, equivalently,

with initial values q(0) = ¢°, ¢(0) = p(0) = p°, and w € R, see also [Hairer et al., 2006, Section
1.5.2]. (When (4.10) is used to describe a mass-spring system we have w = (k/m)'/? where m
is the mass and k is Hooke’s constant of the spring). The exact solution of (4.10) is given by

(20) = (Gt e ().

p(t)? + (wq(t))2 = (po)2 + (qu)Q, for all ¢t > 0.

Thus, the question arises if also the Verlet method produces a bounded approximation. This is
answered in the following lemma.

Clearly, we have

Lemma 4.1. Let 0 < 0 < 1. Assume that the time-step size T satisfies
0 <wr <26. (4.11)

If6 € (0,1), the approzimation (p™,q"™) to the solution of (4.10) obtained from the Verlet method
(4.9) is bounded and satisfies

(p")* + (1 - 6%) (wg™)* < (0°)° + (wg°)*. (4.12a)
Moreover, for 6 =1 we have

P"| + |lwg"| < (L +wD)[p°] + lwg°],  n < Np. (4.12b)

A condition on the time-step size like (4.11) is usually referred to as a Courant—Friedrichs—Lewy
(CFL) condition.

Proof. The Verlet method (4.9) applied to (4.10) reads

2,2

qn—l-l "= 7_pn—i-1/2 = 7p" — T;‘) q", (4.13a)
and
2 2,,2 2 2,,2
TW T W TW Tw
pn+1 _ pn — _T(qn+1 + qn) = — 5 pn — 7( — 5 )qn (413b)

Here, the second equality in (4.13a) follows with (4.9a) and (4.13b) is obtained by adding (4.9a)
with (4.9¢) and inserting (4.13a). We can write (4.13) compactly as

n+1 n 14 £2_|_ 2,,2
(Zn+1)_‘4<zn>7 A—( TC T(1+<C)>, C:—Tzw. (4.14)

The stability of (4.14) is determined by the eigenvalues of A, which are given by

M2=C+1++/2+2C.

Now, we discuss the three cases associated with the sign of the term in /-
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(1) “C? +2¢ > 07: Because of ¢ < 0 this case is equivalent to ( < —2. Then, for the second
eigenvalue we have

ho= (1 VETH <1 /EF < 1.
——

>0

This means that for all 7 with

7'20.12

(=— 5 < =2 — wT > 2

(4.14) possesses an unbounded solution.

(2) “C2+2¢ < 07: Because of ¢ < 0 this case is equivalent to ¢ > —2. Then, for the eigenvalues
we have that

Mo=C+1E/(D)(=1)(2+20) =C+1+iy/—C2 -2,

which means that their real and imaginary part are given by

Re()\Lg) = C + 1, Im(>\172) = £/ —CQ - 2C 75 O,

respectively. Consequently, we have
Mgl =(C+1)? = -20=1, M #X

This means that for all 7 with

(=- > —2 = wT < 2

(4.14) possesses a bounded solution. For the bound (4.12a) we use an energy technique. By
(4.92a) and (4.9¢) we have

1 T
P = S ") 4 @t 0.
Inserting this into the first equality of (4.13a) we obtain

2

T T
" =gt =" = SO ")+ (@ - ),
pn+1 _pn — _Zw2(qn+1 + qn)
2 Y

where the second equality stems from (4.13b). Multiplying the first line with w?(¢"*! + ¢"),
the second line with p"*! 4 p" and adding the resulting equations we get

7_2

(pn+1)2 o (pn)Q + (qu+1)2 o (qu)Q — ZWQ ((qu+1)2 o (qu)2) ]
Summing from 0 to n yields

2 2
(") + (wg")? + —w?(wg”)? = (1°)% + (wg")? + —w?(wg™)*.
4 4

Employing the CFL condition (4.11) we obtain,
(P™)? + (1= ) (wg™)* < (0°)* + (wg”)?,

which proves (4.12a).
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o] o o
11/2 1/2
| 1/2 1/2

Table 4.1: Butcher tableau of the Crank—Nicolson method.

3) “¢2+42¢ = 07: This case can only appear for ( = 0 or ( = —2. The first case would require
7 = 0 or w = 0, which are both a contradiction to our assumptions. So, we only consider
¢ = —2. In this case we get the repeated eigenvalue

)\17224-}-1:—1.

In order to decide if this repeated eigenvalue provides a bounded solution we insert { = —2 into
(4.14),

P (=10 () _(~1 0" _ (0 (=) 0\ (P
o) "\ ) \e) T\ ) ) T e ey coee ) )
Taking the absolute value we obtain

" <P, 1" < P+ T+ D)% < |+ TP,

and consequently the time-step size 7 satisfying

2 2
¢= I ; =-2 = wT =2
yields a bounded solution on finite time intervals, T' < oo. ]

4.1.2 The Crank—Nicolson method

The Crank—Nicolson or implicit trapezoidal rule [Hairer et al., 2006, Section II.1.1], [Hairer
and Wanner, 1996, Section IV.3] is an implicit RK scheme with Butcher Tableau given in
Table 4.1. We first analyze the Crank—Nicolson method when applied to a general evolution
equation in R?,
u(t) = F(t,u(t)),
u(0) = u®,

with vector fields u : Ry — R? and F : Ry x RY — R According to Table 4.1 the Crank—
Nicolson time integration reads

(4.15)

Ut =", U = F(t,, U™), (4.16a)
U“Q::u“+-g(0”1+-0“%, U™ = F(tar1, U™), (4.16b)
u"+1::u”+-g(U”1+lf”), (4.16c)

where we used the notation of Hochbruck [2015]. Observe that we have
™t :un’ U2 :un+17 Un1+Un2 :F(tn,u")—i—F(th,unH).
As a consequence, the Crank—Nicolson scheme simplifies to

Mleu”+g(F@mMﬁ+F@M%uM40. (4.17)
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Because we are interested in linear Maxwell’s equations, we now consider the Crank—Nicolson
method for a linear evolution equation in RY,

u(t) = Au(t) + f(t),

4(0) — ub, (4.18)

where A € R?*? is a matrix with field of values (see (1.26)) in the left complex half-plane,
F(A) € C™. The exact solution of (4.18) is given by the variation of constants formula, c.f.
Theorem 1.9,

t
u(t) = e’ —i—/ =941 (s) ds.
0

Employing the Crank—Nicolson method (4.17) as a time integrator for (4.18) gives the scheme
W= A ) (), (4.19)

with f* = f(t,). Equivalently, we can write this as

R = R + Z (£ + f7), (4.20a)
or -
"= Ru" + SR (" 1), (4.20b)
with matrices
Rr = Rp(TA), Rr = RRr(TA), R = R(TA), (4.21a)
stemming from the functions
z z 1 1+ 3
Rp(z)=1- o Rr(z) =1+ o R(z) = Rp(2) " Rr(2) = T (4.21b)
T2

R(z) is called the stability function of the Crank—Nicolson method. It is the same stability
function as the one of the implicit midpoint rule, namely the (1,1)-Padé approximation of
e?, i.e., numerator and denominator are polynomials of degree one and ¢* — R(z) = O(23) for
z — 0, cf. [Hairer and Wanner, 1996, Section IV.3]. The stability region associated with this
stability function is the left complex half-plane C™, see [Hairer and Wanner, 1996, Chapter IV]
or [Hochbruck, 2015, Chapters 10.3 and 10.6]. Consequently, the Crank—Nicolson method is
A-stable, but is not L-stable, since lim,_,o, R(z) = —1 # 0.

Lemma 4.2. Assume that A € R™? satisfies F(A) C C~. Then, the approzimation obtained
from the Crank—Nicolson method (4.19) is bounded by

n—1
u”| < |ul| + % Z_:O FiaaEiap (4.22)

Proof. The assumption on the field of values of A ensures
IRI<1, R <1,
since the functions R(z) and RZI(Z) defined in (4.21) are the stability functions of the Crank—
Nicolson method and of the implicit Euler method, respectively. From (4.20b) we deduce that
T n
+1 _ pntl, 0 —mp—1( pmt1
m=

Taking norms and using the upper bounds on R and RZI yields the statement. O
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Remark 4.3. For skew-adjoint matrices A the matrix R is unitary and thus, for vanishing
source term f = 0, the Crank—Nicolson method preserves the norm,

lu"| = |u°, n=12....

Our later error analysis for the full discretization of Maxwell’s equations is based on the ideas of
the convergence analysis of the Crank—Nicolson method. It is instructive to recall this analysis
also in the ODE case.

4.1.3 Error analysis of the Crank—Nicolson method

In order to compute the error " = u™ — u(t,) of the Crank—Nicolson method we would like to
insert the exact solution u(t) of (4.15) into the recursion (4.17) of the Crank—Nicolson method.
However, the exact solution does not satisfy this recursion but we obtain

Wtns1) = u(tn) + %(u(tn) Filtnsr)) —d?,  d = —726" (i), (4.23)

where the defect d" is the quadrature error of the trapezoidal rule applied to ,

7257 (g) = /t i g(t) dt — %(g(tnﬂ) + g(tn))- (4.24a)

We can express quadrature errors in terms of the Peano kernels, see, e.g., [Hochbruck, 2015,
Theorem 1.10]. Hence, we have

g = [ gt [ ol @ @)

n

since the Peano kernel of the trapezoidal rule is given by s(s — 1)/2, cf. [Hochbruck, 2015,
Example 1.11]. Subtracting (4.23) from (4.19) and using (4.18) shows that the error e” satisfies

et e o %A(en-&-l +em) +dn, el = 0. (4.25a)

Solving this recursion gives

en+1 = Re™ + Rzldn+1 _ Z Rnmezldm’ (425b)

m=0
by definition of R and Ry, in (4.21).

Lemma 4.4. Assume that A € R™*? satisfies F(A) C C~. Then, the error of the Crank-

Nicolson method satisfies
2

tn
< / @ (1) dt.
8 Jy

Proof. As in the proof of Lemma 4.2 the assumption on the field of values of A ensures |R| <1
and |R;!| < 1. Taking norms in (4.25b) and using the triangle inequality and (4.24b) yields
the result. 0
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1/2 | 1/2
1

Table 4.2: Butcher tableau of the implicit midpoint method.

4.1.4 The implicit midpoint method

In this section we consider a very similar method to the Crank—Nicolson method, namely the
implicit midpoint method [Hairer et al., 2006, Section I1.1.1], [Hairer and Wanner, 1996, Sec-
tion IV.3]. As the Crank—Nicolson method it is an implicit RK scheme, however with one instead
of two stages, see its Butcher tableau in Table 4.2. If we apply the implicit midpoint method
to the general evolution equation (4.15) we obtain the recursion

R L U™ = Fltni1/a, U™), (4.26a)
wt =y U (4.26b)

where we abbreviated t,, .1/ = tn + 7/2. Clearly, we have U "= (y"t! + y")/2 and hence we
can write the implicit midpoint method compactly as

n+1 n
u”+1 = u" + TF (tn+1/27 U;’U> . (427)
For the linear evolution equation (4.18) the implicit midpoint scheme is given by
ut ="+ %A(u"+1 + u”) + 7 frtl/2 (4.28a)

where frt1/2 = f(tns1/2). Using the matrices Rp, Rr (4.21) introduced for the Crank-
Nicolson method, we can write (4.28a) equivalently as

Rpu™ = Rpu™ + 7 fm+1/2, (4.28D)

or
un—l—l = Ru™ + TRElfn+1/2- (428C)

Comparing (4.28c) with (4.20b), we see that the implicit midpoint method and the Crank-
Nicolson method exhibit the same stability function, and only differ in the treatment of the
source function f. As a consequence, the implicit midpoint method has the same stability
properties as the Crank—Nicolson method. In fact, it is A-stable, but not L-stable. Moreover,
for skew-adjoint matrices A it conserves the norm,

TL’_

lu ‘uo, n=12 ...,
In summary, we observe that the Crank—Nicolson method and the implicit midpoint method are
closely related. Thus, we focus in this thesis on the Crank—Nicolson method, and only mention

how the proofs and techniques can be transferred to the implicit midpoint method.

4.1.5 Error analysis of the implicit midpoint method

In this section we present the error analysis for the implicit midpoint method when applied
to the linear evolution equation (4.18). It turns out that it is more involved compared to the
Crank—Nicolson method. As a first step, we present an error recursion in the subsequent lemma.
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Lemma 4.5. The error of the implicit midpoint method (4.28) satisfies
et = e 4 %A(ewrl +e") +d". (4.29a)

The defect d* is given by

d" = —1%5" (1) — T2A(0"(u) — 8" (w)),  TX"(g) = /t ) dt - 79(tn1/2),  (4.29b)

where 0" is the error of the midpoint quadrature rule and where 6™ is the error of the trapezoidal
quadrature rule given in (4.24). We further have

n bnty2 tp, — ¢ 2 . fnt1 tnt1 — T 2 .
6" (g) :/t (272)9(75) dt+/ (J;TZ)g(t) dt, (4.29¢)

n

tpt1)2

and

57(0)] < ;/t"“ WO )] dt, A ) — 5 (w))] < i/t"“ (D) de. (4.294)

Note that in the Crank-Nicolson method only the defect d® = —726" (1) appears, whereas the
defect d" of the implicit midpoint method involves besides —726" (1) additionally —72A (6" (u)—
6"(u)). We observe that the implicit midpoint method is only of order 2 if Aii(t) can be
bounded. In the literature this assumption is often made, e.g. in [Hochbruck and Pazur,
2015, Theorem 5.4] for Maxwell’s equations. However, this is not a desirable condition, since
it requires artificial regularity assumptions on the exact solution. In this thesis, we propose a
different way that omits additional regularity assumptions. But first we give the proof of the
upper lemma.

Proof. We start by inserting the exact solution of (4.18) into the implicit midpoint scheme
(4.28b),

W(tngr) = ultn) + %A(u(tn_i_l) Fu(ty)) + T2 — . (4.30)

Subtracting (4.30) from (4.28a) yields the error recursion (4.29a) and it remains to determine the
defect d"*!. Note that we cannot proceed like for the CrankNicolson method in the previous
section. The reason is that we cannot write (4.30) analog to (4.23), i.e. with derivatives of the
exact solution u, since the treatment of the linear part and the treatment of the source term
do not match. Instead, we replace the source term f"+1/2 according to the linear evolution
equation (4.18). Then, (4.30) reads

U(tns1) = ultn) + %A(u(tn-i-l) + U(tn)) — TAu(tpi1/2) + TU(tni1/2) — d". (4.31)

So, the defect d"*! is given by

IS
3
I

A(u(tnt1) +ultn)) — TAu(tngay2) + T(tnii/2) — /t w u(t)dt

Afultusn) + u(tn)) = 7Au(tys12) — 725" (i)

N[ N N

tnt1 tn+1 _
A(ultng) + ulty)) — /t Au(t) dt — T Au(t,qq1/2) + /t Au(t) dt — 726" (u).

This shows (4.29b). The representation (4.29¢) of 726"(g) is obtained by using the Peano
kernels.
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Figure 4.2: Kernel w1 (t)of the defect (™1 — (™.

The first bound in (4.29d) is seen from (4.29b). For the second bound note that by (4.24a),
(4.29b) we have that

§"(u) = 5"(w) = — o (wltns1) — 2ulter ) + (i)

1 fint1 ¢, —t 1 [in+1/2 ¢, — ¢
— / LT () dt + 2/ = ii(t) dt, (4.32)
tn T

thy1/2
where the second equality follows from a Taylor expansion of u(t,+1) and of u(t,) around ¢, /.
Taking norms and applying the triangle inequality completes the proof. O
Now, we discuss how we can eliminate the boundedness assumption on Ai(t).

Lemma 4.6. The error e™*! of the implicit midpoint method (4.28) satisfies

n n—1
et = ("= RO — 2N T RTR O (0) - Y R - (M, (4.33a)
m=0 m=0
where (™ is given by - -
" =7(0"(u) — 6™ (w)), (4.33b)
and obeys the bounds
= 72 = = 72 [imte
< e i@l [ T [T ) (4.33¢)

Proof. First, we write the error recursion (4.29a) with the matrices Ry, Rpg,
Rpe™™ = Rpe™ 4+ d" = Rre™ — 726™(4) + (R, — Rr)C", (4.34a)

where we used —7A = R — Ry for the second equality. Because Ry, is invertible, we can rewrite
(4.34a) as ) B
" = Re" — 2R (0) + (I — R)C™ (4.34b)

Solving this recursion yields

entl — 2 Z Rnmezlgm(u) + Z Rnfm(I o R)ém
m=0 m=0
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The second sum can be rewritten as

n n n—1

Z Rnfm(l_ R)gm _ Z Rnfmgm - Z Rnfmém+1
m=0 m=0 m=—1
n—1
:ROEn _ Rn+1<‘-0 _ Z Rn—m(ém—f—l - Em) (4.34(:)
m=0

This shows (4.33a). The first bound in (4.33¢) follows from (4.32) by

IN

ey T [t 72 .
‘C ‘§4/t [i(t)] dt T, max [i(t)] . (4.35)

t€[tm,tm+1]

For the second bound we use a Taylor expansion of u(tm+1) and of u(t,,) around t,,, /5.
Together with (4.32) this implies

1
5( tmt1) = 2u(tpi1y2) + ultm)) (4.36)
72 A ( ) +1/2 _
D ityy) - = / W) dt + = / (=% 0 at.
8 2 tm+1/2 27’2
Because of ii(t,,43/2) — @(ty41/2) ﬁmmjl% >u®)(t) dt we have that
_ _ 2 tm+2
ot = T [T ) at,
tm

where kT is given by

—(tm — 1), t € [tms byt /2,
2
272 k() = ¢ (tmg1 — )% — o5 t € [tmy1/2: tmts/als (4.37)
—(tmg2 — 1)?, t € [tmy3/2 tmtal-

Since k7(t) is bounded by 1/4 for ¢t € [t tmi2], see also Figure 4.2, we obtain the second
bound in (4.33c) and the proof is finished. O

We end this section with the convergence result for the implicit midpoint method.

Lemma 4.7. Assume that the matriz A € R¥9 satisfies F(A) C C~. Then, the error of the
implicit midpoint method satisfies
2

le™] < — T max li(t)] + 377—2 /t" ’u(g)(t)‘ dt (4.38)
4 te(to,t1]U[tn—1,tn] 8 0 ' '

Note that this bound does not involve Aii(t).

Proof. As pointed out in the proof of Lemma 4.4 we have |R| < 1 and |R;'| < 1. Taking norms
in (4.33a) and using the triangle inequality, we infer

‘ n+1‘ <|Cn}_’_‘€0‘+722‘5m ‘+Z}<m+1 Cm‘

m=0

Inserting the bounds (4.29d) and (4.33¢) concludes the proof. O
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4.2 Time integration for Maxwell’s equations: central fluxes

In this section we integrate the semidiscrete Maxwell’s equations in time by using the Verlet
method (4.9) or the Crank—Nicolson method (4.19). Note that if we want to use the Verlet
method we have to restrict ourselves to a space discretization using central fluxes, i.e. we can
only consider the semidiscrete problem (3.8). This is due to the fact that the Verlet method is
only applicable to evolution equations possessing a Hamiltonian structure, see (4.4). However,
this is not the case for an upwind fluxes dG discretization (3.15a). Thus, we only consider a
central fluxes dG discretization in this section. However, we point out that it is possible to
adapt the Verlet method to the upwind fluxes case. This will be discussed in Section 4.3.

We start by stating the Verlet method (4.9) and the Crank—Nicolson method (4.19) when applied
to the semidiscrete Maxwell’s equations emanating from a central fluxes dG discretization (3.8).
The Verlet method yields the recursion

HZH/? —Hp = —%CEE", (4.39a)
B _Ep = TCHHZH/Q _ g(JZH + I, (4.39b)
L HZH/2 _ _gCEEZH’ (4.39¢)
and from the Crank—Nicolson method we obtain
it = = Te(ut ) + DG ), (4.40)

where we abbreviated u} = (H}, E}) and j} = (0, —J7}).

Remark 4.8. In fact, the scheme (4.39) is a (slight) adaption of the Verlet method (4.9) as
proposed in [Verwer, 2011, Equation (2.1)]. It is constructed in such a way that the scheme
(4.39) can be interpreted as perturbed Crank-Nicolson method, see Lemma 4.9 below. This
will allow us to construct the locally implicit time integrator in Chapter 5. For convenience we
refer to (4.39) as the Verlet method in this thesis.

4.2.1 Stability and energy preservation

Adapting (4.20a) to the Maxwell’s equations, the Crank—Nicolson method can also be written
as

Row ™ = R + 2 (7 +37), (4.41a)
with operators Ry, Rp : Vh2 — th given by
T T 0 —Cg
Rrp=IZ—--C Rr=I+ =C C= ) 4.41b
L 2% rR=E+50 (cH 0 ) (4.41b)

In the next lemma we show that the Verlet method can also be cast into the form (4.41a) but
with perturbed operators R and Rpg.

Lemma 4.9. The Verlet method (4.39) can be written as
T

Rout = Rpuf + 5

Gyt -+, (4.42a)

with operators ﬁL,ﬁR : Vh2 — Vh2 defined by

Ry =Ry - D Rp=Rn— oD p— (" O (4.42b)
L=y =R —\o cucCg)” '
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Proof. Adding (4.39a) and (4.39¢) we obtain
HH — HY = —%CE(EZ“ +ED). (4.43a)

This is the first component of (4.42a). For the second component, we subtract (4.39¢) from
(4.39a):

n+1/2 1 n n T n n
H, " /2 _ 5(Hh+1 +H}) + Z(:E(Eh+1 —E}).

Inserting this into (4.39b) yields

T ’7'2 T
Bt - B = JCu(Hy*t + H) + CaC(Ej ™ —Ej) - S(Ip +33),  (4.43D)

which is the second component of (4.42a). O

The next lemma gives fundamental properties of the operators Ry, Rrg, ’ﬁ,L and ’ﬁ,R.

Lemma 4.10. Let up, = (Hy, Ep),uy, € VhQ. The operators Ry, Rr have the following proper-

ties:
(’R,Luh, ﬁh)uxa = (uh, RRah)uxs’ (4.44&)
("-\’,[/uh,uh)‘u><€ = (T\:',Ruh,uh)u><€ = ||uhH/2L><E’ (4.44b)
HRZIHuxe S 1. (4440)
Moreover, for the ’ﬁL,'ﬁR operators we have that
(’ﬁLuh, ﬁh)p,xe = (uh, ﬁRﬁh)st, (4.45&)
2
~ ~ T
('R,Luh,uh)#><€ = (’RRuh,uh)uXE = ||uh||i><6 - ZHCEEhHZ (4.45b)

Proof. The statements (4.44a), (4.44b), (4.45a) and (4.45b) follow directly from the adjointness
property (3.7) of the discrete curl-operators.

By (4.44b) we see that R is injective (and thus bijective). In fact, we have

(RLuhth)#XE (Rrus, uh)uXE
IR Luplluxe = sup > = [Junuxe-
v EV? Vil uxe [uplxe
This implies that | Rz|.xe > 1 and by setting vj, = Rpuy we obtain
IRE Vhlluxe < IVhlluxe,
which proves (4.44c¢). O
As a consequence of this lemma, we can write (4.41a) as
u)tl = Ruy + gngl (P +3p), where R =TR;'Rnp. (4.46a)

Solving this recursion yields

n
Wt = R 4 5 SRR (G 4 ). (1.460)
m=0
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Note the similarity of this recursion with the semidiscrete approximation,
tn41
wp(tng1) = e +Cu)) +/ eltnt170C5, (¢) dt,
0

see Theorem 3.4. As explained in Section 4.1.2, we observe that the Crank—Nicolson method
employs a (1,1)-Padé approximation to the exponential function, i.e.

R=(T- gC)‘l(I+ %C) ~ ™.

In Theorem 3.4 we showed the stability of the semidiscrete approximation. In the central fluxes
case this proof is based on the skew-adjointness of the discretized Maxwell operator C and the
resulting unitary property of the group it generates,

e e = 1.

In the next lemma we show that this property is preserved by the operator R. In fact, R is a
Cayley transform.

Lemma 4.11. The operator R is an isometry on VhQ, i.e.,

IR [luxe = [lunlluxe, [ Rluxe = 1. (4.47)

Proof. By (4.44b), R R = RRp, and then multiple times (4.44a) we have

[Rw . = (R Rus, Ruy)

Rrup, R, Reuy)

Xe

o~ o~ o~~~

uhaRRuh)an

= (Rrup, uh)#xe

s e

This is the desired equality. O

As a consequence of this lemma the Crank—Nicolson method inherits the properties of the
central fluxes semidiscrete approximation given in Theorem 3.4: In the following two corollaries
we show that the Crank—Nicolson method is energy preserving and that it is stable with a bound
analog to (3.10a).

Corollary 4.12. For vanishing source term Jy = 0, the approximation obtained from the central
fluzes dG discretization and the Crank—Nicolson method (4.40) conserves the electromagnetic
energy, i.e.,

EHLEN = E(H),EY), n=12,....

Proof. For J, =0, we have u}l = R"u), see (4.46b). The statement follows with Lemma 4.11,
since €(Hy, Ey) = |lus||? O

HXE*

Corollary 4.13. The approximation uj obtained from the central fluzes dG discretization and
the Crank—Nicolson method (4.40) is bounded by

n—1

-
[ [|ixe < [0O]]uxe + NG I 4 3™, n=1,2.... (4.48)
m=0
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Proof. Taking the norm of (4.46b) and using the triangle inequality, (4.44c), (4.47) and (3.12)
gives the statement. O

Now, we turn to the Verlet method. In contrary to the operator Ry from the Crank—Nicolson
method, the operator ’ﬁL associated with the Verlet method is not unconditionally invertible.
In fact, we need to ensure the following condition to guarantee its invertibility: Let 0 < h<1
be an arbitrary but fixed parameter. Then, the CFL condition of the Verlet method reads

~

20
< in h 4.49
TS G o in hrc, (4.49)

where Cpnq was defined in Theorem 3.14 and c is given by co = maxge7;, cx. The next
lemma states that if (4.49) is satisfied Ry, is invertible and (Ry-,-) defines a norm which is

equivalent to the weighted L?-norm || - [|,xc (where one of the constants depends on (/9\)

Lemma 4.14. Let u;, € V;2 and assume that the CFL condition (4.49) is satisfied with a
6 € (0,1). Then, we have

~ ~
(L =) unlive < (Rowp,un) < [lunlffxe. (4.50)

In particular, 'ﬁL 1s invertible with bound
IR luxe < Coips Copy = (1= 677, (4.51)

Proof. The upper bound in (4.50) follows immediatly from (4.45b). For the lower bound we
use Theorem 3.14 and the CFL condition (4.49) to infer

2 2
T T ~ ~
T ICREMIE < T CRuack B2 7 2 < PPUEAIE < 822

Together with (4.45b) this proves (4.50).

In order to bound ’ﬁgl we proceed as for the Crank—Nicolson scheme. In fact, we have

~ ('ﬁ—Luh, Vh) ('ﬁ—Luh, U—h)
| RLtnfluxe = sup B > P > (1= 0)|[up e
vy EV? [Vl uxe lan|pxe
Hence, ’ﬁ,L is an isomorphism on th. Setting vj, = ’ﬁ,Luh proves (4.51). ]

This lemma enables us to write the Verlet method (4.42a) as
T n
wp =R 0 Y RTRGET4IY), R=RpRe,  (452)
m=0

if the time step 7 satisfies the CFL condition (4.49). Analogously to the bound (4.47) for the
Crank—Nicolson method, we need a bound on powers of R.

Lemma 4.15. Assume that the CFL condition (4.49) is satisfied with a g c (0,1). Then, for
all m € N and for all up, = (Hp, Ey) € Vh2 we have the bound

~ T2
IR™ w2 < Co(unlce = ICEEAIL)- (4.53)

In particular, it holds that
IR™ | uxe < CLL2. (4.53b)
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Note that contrary to the bound (4.47) for the Crank-Nicolson method, the bound (4.53)
depends on the CFL parameter 6. Moreover, we see that this bound cannot hold true if the
CFL condition is harmed since Cgy, — oo for 6 7 1.

Proof. As in the proof of Lemma 4.11, an induction argument shows

(’RLuh, llh)u><€ = (ﬁL’ﬁ'uh’Ruh)yxs =...= (ﬁLﬁmuhaﬁmuh)uX€a m=1,2,....
Together with (4.50) and (4.45b) this implies
2
~ A o ~ T
(1 =) R™wpixe < (RER™Mup, R™up) . = [lunlffe — ZHCEEhHia
m =1,2,..., which completes the proof. O

In the next corollary we prove that the Verlet method preserves a perturbed electromagnetic
energy.

Corollary 4.16. Assume that the CFL condition (4.49) is satisfied with parameter 6 e (0,1).
Then, for J, =0, the approzimation uj = (H}, E}) obtained from the scheme (4.39) conserves
the perturbed electromagnetic energy

~

2
-
E(Hy,, Ey) = E(HY,Ep) — §HCEEhHi, (4.54)
ie, EHY,EP) =EMHY),E)), n=1,2,....

Proof. For Jj, = 0 the Verlet method reads uj = ’fé”ug, see (4.52). Thus, the proof of the
previous lemma shows that

(’ﬁ,LuZ,uZ) = (ﬁLug,ug)

uXxe uxe’

The statement then follows from (4.45Db). O

We conclude this section with the stability result for the Verlet method.

Corollary 4.17. Assume that the CFL condition (4.49) is satisfied with parameter g c (0,1).
Then, the approximation uj obtained from the Verlet method (4.39) is bounded by

n—1

1/2 3/2 T

loillxe < Co e + OG5 D0 137437 (4.55)
m=0

Proof. Taking the norm of (4.52) and using the triangle inequality, (4.51), (4.53) and (3.12)
gives the statement. O

4.2.2 Full discretization errors

Let u” = (H",E") = (H(t,),E(t,)) be the exact solution of (4.1) at time ¢, and denote by
uy = (H},E}) = u” the approximation obtained by the central fluxes dG discretization in
combination with the Verlet method (4.39) or with the Crank-Nicolson method (4.40). The
full discretization error is given by

e = <eg) = <Hn B H/}) . (4.56a)
eR E" - Ey
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As in Chapter 3 we split it into
H" — m, H" H} — m, H"
n_ ol _ N — _ h
e"=e —ep (E" _ WhE”> (EZ _ TrhE”> . (4.56b)
So, e contains the projection error and e} contains the dG error and the time integration error.
The projection error has already been studied in Chapter 3, cf. (3.24a) and (3.43). Hence, we

can focus on ej. In the next lemma we prove that e} satisfies a perturbed version of the
Crank-Nicolson recursion (4.41a).

Lemma 4.18. Let u € C(0,T;V,) NC?(0,T; L*(Q)%) be the exzact solution of (4.1). The error
e} defined in (4.56b) satisfies
Rre) ! = Rpep +d", (4.57)

if we employ the Crank—Nicolson method. The defect d" = d! +d}} is given by

&= —Tclenttvel), i = —r*md" (), (4.58)

where 6™ denotes the quadrature error of the trapezoidal rule given in (4.24).

Proof. The defects are obtained by inserting the projected exact solution into the numerical
scheme (4.40). This yields

T

5 Grtt +3p) —dm (4.59)

mp(u™ ! —u") = %Cﬂh(u’”l +u") +

Subtracting this equation from (4.40) proves (4.57).
It remains to determine the defect d”. By (4.23) we have

u"tt —u" = g(&gu"+1 + Opu™) + 726" (0pu). (4.60)
Moreover, (3.27) shows that u satisfies
ﬂhatu(t) = Cu(t) +jh<t).

Projecting (4.60) onto Vh2 and inserting the last identity, we infer

(™ —um) = gc(u"“ Fu) + %(jﬁ“ +3P) + 72m,0" (Bpu). (4.61)
Together with (4.59) this yields the desired representation (4.58). O

Next, we give the error recursion for the Verlet method.

Lemma 4.19. Under the assumptions of Lemma 4.18 the error e} satisfies
Rpel™t = Rpep +d”, (4.62)

if we use the Verlet method as a time integrator. The defect dr = aﬁ + aZ s given by

n n O
dﬂ. = dﬂ. — Z <CHCE (GZEI _ eZ7E)> s (463&)

and

n n 2 0 n n+1 n bt 2
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Proof. The identity (4.59) for the projected exact solution is equivalent to

'R,L7rhu”+1 = Rrmpu” + 2( jrtt +jp) —d"™. (4.64)

Inserting again the projected exact solution into the Verlet scheme yields

’ﬁLwhu"H = ’ﬁ,Rwhu” + 2( ntl +Jh) a" (4.65)

Subtracting both equations and using (4.42b), we thus have
d"=d" + Z'th(u”‘*'1 —u"),

2
=d" + 7—Z’D(u"+1 —u" — (et — e")),

whose components read

2
R ~ T
f=di di = di+ L CaC(EN B - (e —efp)).

By the consistency of the discrete curl-operators, cf. (3.6), we can write
CuCg(E"™! — E") = Cym,Ce(E"™ — E") = —Cyym, (0, H" — 0;H") = —CympAYy.

Here, the second equality is obtained via Maxwell’s equations (1.21), in particular by differen-
tiating O;H = —CgE w.r.t. t. This yields

a—a- T O - "
= 4 \CamA}y) 4 \CuCe(e"l —ery))”

which completes the proof. O

Solving the error recursions for the Crank—Nicolson method and the Verlet method, respectively,
while exploiting e% = 0, shows that the errors satisfy

Crank-Nicolson : e}"! = Z’R” mR ™, (4.66)

m=0

and, under the CFL condition (4.49),

n
Verlet : e}t! = Z ﬁ"—mﬁglam. (4.67)

m=0

Since we already established bounds on R™, ’R,Zl, R™ and ’ﬁzl, it remains to prove bounds
on the defects d” and d™.

Lemma 4.20. Let u € C(0,T; D(C) N H*(73)%) N C3(0,T; L*(2)®) be the exact solution of
(4.1). Then, the following bounds hold true,

2 tn+1
~ T T
42 e < Cop ™ a5 [ 100 e dt (4.650)

Moreover, if the CFL condition (4.49) is fulfilled, it holds that

~

e < Gt (0" 075, 20 + (B = B .75, 000). (4:68D)

If we assume more regularity for H, in particular H € C2(0,T; VH), we obtain,

PH ()| (e ) + 2Ca 0P 7,2) b (4.68¢)

[ e < T / 1020 (E) e + \/gnat
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Proof. (a) Using (4.58), the bound on the projection defect d} follows from (3.43) and the
bound on d} from (4.24b).

(b) For the bound (4.68b) observe that CE( nil — eﬁ’E) €V}, and consequently we can apply
Theorem 3.14. This gives

2
7Cbndcoo||cE( n+1 - ez’E)

*GIIC (erE —enm)ll

*llCHCE( e —elp)le

| /\

| /\

< C'W§IE"+1 —E"i1,75,2,5> (4.69)

where the last inequality follows from (3.29b).

(c) In order to prove (4.68c) we decompose mpAYy = Afy — A%, where Afy is given by (4.63Db)
and A7 is defined as

tn+1
AZ’ = A?—I - WhAnH = / Q?emH(t) dt.
ln

By the regularity assumption on H we have np x [0?H]r = 0 for all F € F;™ and thus the
strong form (3.5a) of the discrete curl-operator implies

(Coa(OPH), 0n). = 37 (url @PH), 01) e < =1 1R H it -
KeTy,
This shows
ICu(3;H)|. < 51/2”5’ H{ g (cur ),
and

1 lnt1
Il < s [ WEHO e dt

Finally, by (3.29b) for k = 0 we have

tn+1 5 N tn+1 9
leussl < [ Ien@ el dr <. [ ioH
tn

tn

2 dt.

This completes the proof. O

With the bounds of Lemma 4.20 at hand we can already prove the fully discrete convergence
result for the Crank—Nicolson method.

Theorem 4.21. Let u € C(0,T; D(C)NH*(T,)8) NC3(0,T; L*(2)°) be the exact solution of
(4.1). Then, the error of the central flures dG discretization and the Crank—Nicolson scheme
(4.40) satisfies
Hun - uZH,qu < Capp|un|k+1,7}“1,k+1
g n—1 7_2 tn
+Cnp Y e+ g [ 0P
2 8 Jo
m=0
< C’(hk + 72>.

The constant C only depends on Cypp, C, [u(t)k+1.75, and ||03a(t)|| uxe, t € [0,tn)].
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Proof. Our proof is a discrete counterpart to the convergence proof of Theorem 3.12 for the
semidiscrete central fluxes discretization with the following differences: Instead of the bound
on the semigroup |[e(tn+179)€|| .. < 1 we now use the operator bound |R" ™R |xc < 1,

cf. (4.44c) and (4.47). The time-integral over the defect fg”“ Ce,(t) dt is replaced by the

discrete integral 5> C(el*! 4 e). In addition, the full discretization error now involves
the quadrature error dj.

We take the norm of (4.66) and apply the triangle inequality, and use d" = d* +d}" to obtain

n n
leh ™ luxe < D 1A luxe < D (17 llxe + 15 xe)
m=0

m=0
AT N +1 P [ s
m m
< ng mEO lu +u |I<:+1,Th,2,k: + ) mEO/t” 10; u(t)HuXe dt,

where the bounds on the defects were taken from Lemma 4.20. For the full discretization error
recall e” = e — e} and use (3.24a) for the projection error. O

It is possible to prove an analogo convergence result for the Verlet method based on the bounds
of Lemma 4.20. However, we would like to stress that we can relax the regularity assumption
for H which we used to prove (4.68c). The different technique for this proof is mandatory for
the locally implicit time integrator we consider in the next chapter since a result like (4.68¢) is
not available in this case. A key observation is that for all Hy € V}, we have that

(—Tc(i[H;) B (—TOCH TgE> (}g)h> = (}(I)h> = (Ri-Rp) (I%h> '

Now, consider the defect dr = aﬁ + a’}} defined in Lemma 4.19. Using the previous identity, we
can write

501 (g~ R R0 £ (@) =175 e
This enables us to split the defect further into

d"=7"+(Rp - Rp)€", 7" =d+d}. (4.70D)

The advantage of this splitting is that " can be bounded by Lemma 4.20 and that we can
exploit that the error recursion involves terms of the form

R1A" = RA" + (T - R)E™ (4.71)

This is detailed in the following fully discrete convergence result for the Verlet method.

Theorem 4.22. Letu € C(0,T; D(C)NH*1(T;,)8) nC3(0,T; L*()°) be the ezact solution of

(4.1). Moreover, assume that the CFL condition (4.49) is satisfied with 6 c (0,1). Then, the
error of the central fluzes dG discretization and the Verlet scheme (4.39) satisfies

[u™ = upluxe <Cappla” (k41,7141
n—1
324 T
+C2h Cng > (\umH a7 2k + BT - Em\k+1,7'h,2,k) (4.72a)

m=0

SC’(hk + 72>. (4.72b)
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The constant C' only depends on Cypp, Cr, 0, u)k+1.75, 1OPHE) ||, and [|03a(t)||uxe, t €
[0,t,].

Proof. The proof is done in three steps.

(a) First, we rewrite the error recursion such that the terms involving &™ within a sum only
appear as differences of consecutive values.

Employing (4.71) we obtain
n+1 Z Rn mR 1dm o Z ﬁnfmﬁilﬁ'm + Z rfinfm(I _ ﬁ)é\m

m=0

Using (4.34c¢) for the second sum shows

n—1
n+1 En Rn+1 + Z Rn mR 1Nrn Z ﬁn—m(é\m—&-l _ é\m) (4.73)
m=0

m=0
(b) Next, we prove a bound on gm+l _ gm_ By definition (4.63b) of A}y we observe that
A?I—‘rl _ gﬁ — gﬂ'h (atHnJrQ _ 28tHTL+1 + atHn)

A Taylor expansion of 9;H" ! at t,, and ¢, 2, respectively, yields

tn+l
OHM! = g HTEL 3 7o2HMIEL 4 / (tne1 — t)OPH(t)dL.

tpt1+1

Adding both equations implies
n+1 2 n+2 n\ _ fo+2 _ 3
— &= wh TOf (H"* — H") tni1 —t| OPH(t) dt
tn

2 e b1 — 1
=T (1 - |”+1’> TR OPH(t) dt.

4 J, T

Taking the norm, using the triangle inequality and observing that the kernel of the integral is
bounded by 1 yields

n en T2 [ini
167 &l < T [ 1ot e (474

(c) Finally, we combine the results of (a) and (b) by taking norms in the error recursion (4.73),
using the triangle inequality, (4.51), and (4.53b). This yields

n—1 n—2
Fn— 1/2) 20 3/2 . 1/2 P~ P~
el < I8 lxe + Oy 1€ e+ o’ 3 W™ e + G’ 3 17— €7l
Observe that by (4.70a) and (4.63b) the first two terms can be bounded by

. 72 72
H£ 1||M><a < Zte[ﬁfitn] H8t2H(t)||ua || ||u><a = Ztren[(f)i,)ri] ||8162H(t)||u (4-75)

By (4.70b) and Lemma 4.20 we have
”ﬁnnuxs = ||dﬁ + dZH/—LXE

2 tn+1
N T
<. (\un+1+u st 7r 2 + [EPFL — E”Ik+1,n,z,k)+8/ 103 u(t) e dt.
tn
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Finally, (4.74) gives

27L2

m—+2 2 tn
ZHE’”“ & lhee <y 3 / PO e < T [ 1Pt

This proves the desired bound on ej. The stated bound on the full discretization error e" =
e — e} is then obtained from the bounds (3.24a) for the projection error €.

O

4.3 Time integration for Maxwell’s equations: upwind fluxes

In the previous section we used the Verlet method or the Crank—Nicolson method to integrate
the semidiscrete Maxwell’s equations (3.8) stemming from a central fluxes dG discretization.
Now, we turn to the semidiscrete Maxwell’s equations (3.15) arising from an upwind fluxes
discretization. Since the Crank—Nicolson method is a RK scheme, it can be applied to every
(first order) evolution equation. For the semidiscrete upwind fluxes Maxwell’s equations it reads

-
Wit up = 2(C - aS)(upt up) + 2G4 5, (4.76)

or, by using the opperators R and Rpg,
Row ™ = Rpw, = —SaS(upt +uf) + 2G5 + 7). (4.77)

On the contrary, the Verlet method is a time integration scheme designed for Hamiltonian
systems. Regarding the upwind Maxwell’s equations we see that they do not fit into this class.
So, we need to adapt the Verlet method. A first idea could be to treat the stabilization operators
as in the Crank—Nicolson method. This yields the scheme

H 2 _Hp = —chEh aSHH",
E;t —Ej = rCuH T - TaSg(ENT 1 EY) - LI+ 3
h =T7CH 5% E( +Ep) 2( no tJIn),

+1 n+1/2 _ +1 7' +1
H,"™ -H, C E} —5048 uH}

Observe that we end up with an implicit scheme which is not a desired property for a Verlet-type
integrator. However, we can retrieve an explicit scheme by approximating the implicit terms
by SEEZJrl ~ SgE} and SHHZJrl ~ SgHj}. This results in the scheme

H’;Ll+1/2 _ h _ _7CEEh CVSHHH, (478&)
L TcHHnH/? ~ TaSpE}, — Z(I; 7+ 37), (4.78D)
HZH B HZ+1/2 C En+1 _ —aSHH”, (4.78¢)

which we will work with in this thesis. We note that related ideas have been presented in
Alvarez et al. [2014] and Montseny et al. [2008] when working with the Verlet method on a
staggered time grid. In the notation with the operators Ry, and Ry the scheme (4.78) reads

Rou ! — Rpup = —raSu} + — (7 +3p). (4.79)

2
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4.3.1 Stability and energy dissipation

Contrary to Section 4.2.1 our stability analysis (and our later error analysis) are based on an
energy technique. This is in accordance with the semidiscrete case, where we also used this
technique, see Theorems 3.8 and 3.13. We start by giving an energy identity for the Crank—
Nicolson and the Verlet method.

Lemma 4.23. The approzimation up obtained from the Crank-Nicolson method (4.77) satisfies

Hun+1”u><a+a Z ‘um—&-l_i_uh ‘S_ HuhHuxa+ Z m—H“v‘jZL, m+1+uh )er, (4.80)

mO

The approzimation uy = (H}',E}) obtained from the Verlet method (4.79) satisfies

||u"+1||,m—f||c 7 - aglup s + o Z gt a3
. (4.81)
T T
= uf e = CaB)2 - aglupls +5 > Gr T+ )
m=0

Proof. (a) In order to prove the identity for the Crank—Nicolson method we take the p X e-inner
product of (4.77) with u"*! + u} and use the definition of | - |s, see (3.20), to obtain

(Rrup™ — Rpujy, up™ +uf) fa\u”“ +uhls + 5 gt )

Uxe = uxe "

The adjointness of Rz, and Rp given in (4.44a), and furthermore (4.44b) imply

(R un+1 RRuZa u?}’lLJrl + UZ) (RLun+1 uerl)qu — (RRUZ7UZ)

HXE WXe

- “un+1"uxs - HuZHZXE

Thus, we conclude

1 ; 1
g e = g e = §a|un+1 +upls + g C (it d et + Uh) e

and by summing this identity we obtain the desired result.

(b) By analog arguments we obtain for the Verlet method

(Rput, uﬁ“)um—(ﬁwz,ums

1 1 1
Using the symmetry of S, we have
1 1
(Sup a4 ), = (S )t ), = 5 (S - ) ),
1 1 1
I+ uhls = 5 (s = [uhls).

Inserting this identity into (4.82) and further using (4.45a), (4.45b) and summing yields the
statement. Ul

This lemma implies that the combination of the upwind fluxes dG space discretization and the
Crank—Nicolson method is a dissipative scheme. Clearly, this implies unconditional stability.
For the Verlet method we again need a CFL condition to ensure stability.
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Corollary 4.24. For vanishing source term Jp, = 0, the Crank—Nicolson method is dissipative.
More precisely, we have

n—1
SHPE}) = £(HY, EY) — a% STt rupi, n=12,.. . (4.83)
m=0
For the Verlet method we have
Eupw (HLLEY) = Epw (HY), EY) — Z Pt uy, o n=1,2,... (4.84)
where the perturbed electromagnetic energy gupw is defined as
= N T
Eupw(Hp, Ep) = E(Hy, Ep) — 041|Uh|?9-

The next corollary gives the stability result for the Crank—Nicolson method.

Corollary 4.25. The approximation uj obtained from the upwind fluzes dG discretization and
the Crank—Nicolson method (4.77) is bounded by

T+ 1T
[uj e +ag Z i s < Pl 4 e —— Z 197+ ™2, (4.85)
forn=1,2,...,Np.

Proof. We apply the Cauchy—Schwarz inequality and the weighted Young’s inequality with
weight v > 0 to (4.80). This yields

i e + o Z g+

n
)
< e 5 30 (G I e G )
m=0

Applying the triangle inequality and Young’s inequality to the last term, we obtain

e+ g Z|um+1+uh 5 <luflce + 5 Zlbm“ﬂh lixe

n

D (e + e -

m=0

+7

(R

Now, we choose the weight v = 1/(T" + 1). This enables us to apply a variant of the discrete
Gronwall inequality given in Lemma A.2,

3t T
i lfxe + o Z\um“+um?g<exp<” j;l) (hablce + T+14ZIIJ’”“+Jh IFxe)-

Clearly, we have t,, /(T + 1) < 1 and the proof is complete. O
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As mentioned above we need a CFL condition for the Verlet method. Since we integrate the
stabilization operators explicitly in time, they contribute to the CFL condition and we thus
need a stronger condition compared to the one for the central fluxes (4.49). In particular, we
need the following CFL condition for the upwind fluxes Verlet scheme,

of
o min hg, (4.86a)

T<
CVbndcoo KeTy

with a fixed parameter 0 < f < 1 which satisfies the condition

~

Oup = 07 + 0 < 1. (4.86D)

Note that the CFL condition depends on the stabilization parameter . For larger o we get a
stricter condition.

Corollary 4.26. Assume that the CFL condition (4.86) is satisfied. Then, the approximation
u} obtained from the upwind fluzes dG discretization and the Verlet method (4.79) is bounded
by

(1- upW)”uthxg"‘O‘ Z ‘umH + uhm|‘25
m=0
n—1

T+1
32 4 +1 + 137 T2, (4.87)

UXe s
( l.lp m=0

forn=1,2,... Nrp.

Observe that the bound deteriorates for é\upw yan®

Proof. By (4.81) we have

2
_
lup 7 e + a5 Z lap ™+ ap s < flud e + ZHCEEZHHM +ag \unH\S
+ - Z 1377+ 12

+ 'Y Z |um+1H,u><e + ”uh ”,uxs)

see the proof of Corollary 4.25. Applying the boundedness results for Cg and | - | s obtained in
Theorem 3.14 and the CFL condition (4.86), we infer

2 e + 0l me“ +up

<Huh|| 0 lup ;. +a9||un+1||,u><e

;L><s

am Z 5+ 37 e + 73 Z (i e + ailZxe) -
m=0

ILXE

We choose the weight v = (1 — Gupw) /(T + 1), which enables us to apply the discrete Gronwall
lemma (Lemma A.2 with A\ = 1/(T +1)). This yields

1
(1- UPW)||uhH/,L><€+ Qs Z |U-m+ +U-;zn|<2s

mO

3 tn T+1 T +1 R 2
<ew (5727) (H Wl + Zum P )

- upw
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which completes the proof. O

4.3.2 Full discretization errors

In the previous section we established the stability of the upwind fluxes dG space discretization
in combination with the Crank—Nicolson time integration or with the Verlet scheme. Now,
we turn to the error analysis. We restrict ourselves to the Crank—Nicolson method because
its convergence result is relatively straightforward, whereas the result for the Verlet method is
more involved. The result for the Verlet scheme will be given in the next chapter as a special
case of a result for the locally implicit scheme.

Similar to semidiscrete case the use of an upwind fluxes discretization improves the spatial con-
vergence to order k+1/2 compared with order k in the central fluxes case. Another similarity is
that our analysis is again based on an energy method, compare Theorem 3.13. The convergence
result for the Crank—Nicolson method is relatively straightforward, whereas the result for the
Verlet method is more involved.

As in (4.56b) we split the error into " = e — ej.

Lemma 4.27. Let u € C(0,T;V,) NC?3(0,T; L*(Q)%) be the exzact solution of (4.1). The error
e} satisfies

Rie;™! - Rief = —ZaS(ef™ + ) + di. (4.88)
if we employ the Crank-Nicolson method. The defect dyy,,, = d7 ., +d}, is given by
A7 e = A+ ZaS(ert! +ef) = —2(C — aS)(ex! +eb), (4.89)

where d}} and d}} were defined in (4.58).

Proof. The defects are obtained by inserting the projected exact solution into the numerical
scheme (4.76),

T T, .
(™ ) = 7€~ a8) (m (0 w) + G ) - . (490)
By (4.61) and the consistency of the stabilization operator (3.16) the exact solution u satisfies

mp(u™ T —u) = %(C —a8)(u" +u") + g(jZH +3m) + 0" (Opu).

Subtracting this from (4.90) gives

dip = —5(C— a8)(ef ! +ef) — *m8" (9u) = 7 + SaS(er! +ef) + dj,
by definition of d? and dj} in (4.58). This proves the statement. O

The convergence result for the upwind fluxes dG discretization in combination with
the Crank—Nicolson scheme reads as follows.

Theorem 4.28. Let u € C(0,T; D(C) N H*(T,)8) NC3(0,T; L*(2)°) be the exact solution of
(4.1). Then, the error of the upwind fluzes dG discretization and the Crank—Nicolson scheme
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(4.76) satisfies

n—1
Ju" = wilf e + o D7 lef ™ + el 5 ORI Ry 1k
m=0
03/2 o ,
+7 —(T+ )/ |07 u(t)]| dt
64 0 He (4.91)
o3/ = +1 2
m m
+ TCupr Z u +u |k+1,7'h,2,k+§

m=0

< C<h2k+1 +T4>'

The constant C only depends on Capp, Cr, (1 4+ a)?/a, T, |u(t)|k11.7,, and [|03a(t)| uxe, t €
[0,t,].

Proof. By (4.88), Lemma 4.23 with Z(jj jrtd + i) replaced by di,,, and e) = 0, the error e

satisfies
n

1 1
ler T2 lixe + 05 Z et +eps =Y (A, ept +ef) e (4.92)

m=0

From Lemma 4.27 we have

dm =dm - g(c — a8)(emt! +em).

upw

For the first term on the right-hand side of (4.92) we have

T—i—lHd || Lo 1
pxe T T4 14

The bound (4.68a) for dj* and the Cauchy-Schwarz inequality imply

(di eyt +ep) . < L

74 tm41 3 2 75 flm41 3 5
7 e < S ([ N0t at) < T [ o
For the second term we obtain from Theorem 3.10 and Remark 3.11
(€~ a8) (e +el), eyt o),
1 1
< Cn(1+ a)le ! 4 e ls ™t w g s

<7

CQ
1 1 2
< 51+ a)ey ™ +epls + o 0T A ey

Choosing v = /(1 + a)? we conclude

3

1 7

e 2 + 0% Z\em“+e;?|?ssm5 (e 1Ece + lleR )

m=0

n
T+1 1
b3 (e + Stz ),
m=0

where we used C2/vy = Cypw, see Theorem 3.13. Since 7/(T + 1) < 3/2, the discrete Gronwall
lemma (Lemma A.2) shows

o3/2 tn
IIGhH#XeJra Z et + ez <7 67(T+ 1)/0 187 u(t)|2x. dt

03/2 n—1 ) )
m-+ m
+ 74 CupWT E |u +u |]€+1,7~h,2,k+%‘

m=0
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Since (eﬂ, eh) = 0, the result now follows from

X €

TLH2 2 2

1€”lluxe = €7 luxe + llenlluxes

and (3.24a). O

4.4 Time integration for Maxwell’s equations: Implicit mid-
point method

In this section we briefly present how the above developed techniques can be extended for
the analysis of the implicit midpoint method in combination with a central fluxes dG space
discretization. In this case the implicit midpoint method (4.28a) reads

W - g = () + S (4.935)
or, equivalently,
R~ R+ o

The operators Ry, and Rp are the same as for the Crank—Nicolson method, see (4.41b). We
emphasize again that the implicit midpoint method and the Crank—Nicolson scheme differ
only (for linear problems) in the treatment of the source term j,. As a consequence, the
implicit midpoint method inherits the stability and energy conservation properties of the Crank—
Nicolson method shown in Section 4.2.1.

Corollary 4.29. For the approximation u} = (H},E}) of the central flures dG discretization
and the implicit midpoint method (4.93) we have the following stability bound

n—1
.
[u? ] ixe < [[u®]]xe + 7 SR n=1,2,. (4.94)
m=0

Moreover, for vanishing source term Jp, = 0, the electromagnetic energy is conserved over time,
1.e.,
EMHE}) =EMHY,EY)), n=12....

Comprising the ideas of Sections 4.1.5 and 4.2.2 we obtain the following error recursion.

Lemma 4.30. Let u € C(0,T;V,) NC?(0,T; L*(Q)%) be the exzact solution of (4.1). The error
e} of the central fluzes dG discretization and the implicit midpoint rule (4.93) satisfies

’RLe};”rl = Rpge} +d", d"” =d? +dj. (4.95a)
The projection defect A was defined in (4.58) and the quadrature defect aZ s given by
d? = —7%7,0"(dpu) — TQC(cS”(u) —6"(u)). (4.95D)

Here, ™ and 6™ are the quadrature errors of the trapezoidal rule and the midpoint rule, respec-
tively, given in (4.24a) and (4.29b). The defect ™ can be expressed as

d" = dz — TZTFhSn(atu) + (RL - 'R,R)ﬂ'hé'n, (4.95C)

with

m ™

dr = —rCel ™2 (" =7(6"(u) — " (u)). (4.95d)
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Remark 4.31. Note that a straightforward bound on 72C(6"(u) — 6" (u)) of order 73 requires
the regularity assumption 9?u € D(€). Under this assumption we could achieve the bound

,7_2

— _ tn+1
I72C(6™ () = 6" (W) [luxe < 72[TC(S" (1) = 8" (W))||uxe < 4/t 107 a() | rr(cun ) dt-

Here, the first inequality follows by the consistency of €, see (3.6), and the second inequality
with (4.32). However, in Section 4.1.5 we derived a technique to omit this assumption and
which enables us to prove the convergence result in Theorem 4.32 below without it.

Proof. (a) We insert the projection of the exact solution u into the implicit midpoint scheme
(4.93),
h (u”"‘1 —u") = gCﬂ'h (u"+1 +u") + sz+1/2 —d". (4.96)

Subtracting this equation from (4.93) yields
ef Tl —e) = %C(eZH +ep) +d",

which proves (4.95a). In order to compute the defect d" we substitute jZH/Q in (4.96) via (3.27)
with a = 0,

T (u”Jr1 — u") = %CWh (u"‘*'1 + u") + %mﬁtu”“ﬂ — rCu"t/?2 _qn.

Thus, the defect is given by

B tn+l
an = — gc(eﬁJrl +e?) + mpdun 2 — / mh(Oru(t)) dt
tn

tn
— rCut1/2 +/ -

tn

T tn+l
Cu(t) dt + §C(u"+1 +u") —/ Cu(t) dt,
tn

which shows (4.95b).
(b) For the splitting (4.95¢) observe that by that —7C = R — Rpg, cf. Lemma 4.6, we have

d" = d? — r1,6"(0pn) — 7CC" = d” — 7C(T — 7)¢" — TPmR0"™ (Ou) + (R — Ri)mr™.

Then,
dy = —sC(er +ef), (T -m)C" = - C(ept! — 26t e,
see (4.58) and (4.36), yield (4.95¢), (4.95d). O

Theorem 4.32. Assume that the ezact solution of (4.1) satisfiesu € C(0,T; D(C)NH*(T3)%)n
c3 (O,T; L2(Q)6). Then, the full discretization error of the central fluxes dG discretization and
the implicit midpoint rule (4.93) is bounded by

n—1

0" = 0 [l ixe < Capplt™ k1,75 1k41 + Cor D [0y 77 0k

m=0

72 5 3 [in 3
w5 (s 100 e+ 3 [ 0P ).

[to,t1]U[tn—1,tn]

< C(hk—l—Tz).
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Proof. Employing the splitting (4.95¢) in the error recursion (4.95a) we infer

eZ+1 — p " — R, ¢0 Z Rn—mRzl (a;n B 7'27rh5m(atu)) _ Z R, (éerl B ém)’

The assertion now follows with (3.43), (4.29d), (4.33c), (4.35), and the bounds (4.44c) and
(4.47) on ’Rzl and R, respectively. (The bounds are applicable since all defects are elements
of V;2). O

Remark 4.33. Note the similarity of the upper convergence proof for the implicit midpoint method
to the convergence proof for the Verlet method, i.e. to the proof of Theorem 4.22. In both proofs
we use that problematic part of the defect can be represented by using Ry, — Rp (implicit mid-
point) or R.—Rnr (Verlet). This enables us to achieve a convergence result with less regularity
assumptions on the exact solution than a naive approach.

4.5 Implementation and numerical results

We end this chapter with the discussion of some implementation issues of the Verlet method
and of the Crank—Nicolson method and subsequently give numerical results confirming our
theoretical considerations.

4.5.1 Implementation

We begin by discussing the implementation and the costs of the Verlet and of the Crank—
Nicolson method. The central fluxes dG discretization in combination with the Verlet method
(4.39) only needs one evaluation of Cyg in (4.39b) and one evalution of Cg in (4.39¢). The
computation in (4.39a) only has to be carried out for n = 1 and then can be replaced by

HV? oy —HV?, n=23,.... (4.97)
Alternatively, we can store CEE}™ in (4.39¢) and use it to compute (4.39a) in the next step,
i.e.,

3/2 T
12 Rl =H - CCpEt, n=23..

h
For the upwind fluxes dG discretization together with the Verlet method, we cannot use (4.97),
but by storing CEEZJrl in (4.78¢) we can save one matrix-vector multiplication in (4.78a), since

3/2 T T
H; % = By - CCpBt - CoSuHT, n=23,.. .

Thus, we need one evaluation of each Cg, Cyg, Sy and Sg.

For the Crank—Nicolson method the main effort lies in the solution of a linear system. When
using a central fluxes dG discretization this linear system reads
T

Rpwy ™t =bji, by =Rpuj + 5

(™ +in), (4.98a)

see (4.40). This is a linear system on all degrees of freedom (dof) of the combined field u;, =
(Hp, Ep). By using a Schur decomposition one can show that (4.98a) is equivalent to

T 3Cg\ (H) by A
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where the right-hand side consists of
t = Hj} — _CgE} b= Ej + CuHy — — (I + 37 1.98
H = th = 5¥ESh E— h+2Hh 2(h +h>7 (4.98¢)

and where £ is the Schur complement of Z — $C given by

2
L=T+ TZCHCE. (4.98d)

We see that (4.98b) only requires the solution of a linear system on the dof of the electric field
Eh,
CE =bj + chbﬁ,

and the magnetic field then can be explicitly updated via
H; ™' = by — ZCoE} T
In the case of an upwind fluxes dG discretization the Crank—Nicolson method reads
T n+1 n IND n_ T n
(R + §aS)uh = by, r=Dbp — §a8uh, (4.99a)

where b} = (bg;, bg). A Schur decomposition similar to (4.98b) yields

T+ a8y 3Cg\ (H'! bY.
0 Eupw Eh b% + %CH(I + %O&SH)_ an

with Schur complement

T 7'2 T 1
Lopw =T+ §SE + ZCH(I + 5o“sH) Cg. (4.99¢)

If we want to use a direct linear solver, working with the system (4.99b) requires the computation
of the Schur complement L. Because this needs the inversion (and the storage of the inverse)
of the matrix associated with Z+5aSw, it cannot be carried out efficiently. Thus, it is preferable
to solve the linear system (4.99a). On the other hand, for an iterative solver the formulation
(4.99b) might be beneficial. For this type of solver we only need matrix-vector multiplications
with Lypw. This only requires the solution of linear system involving Z + FaSg (and not the
inversion of Z + FaSy) which might be possible with a direct solver.

Last, let us comment on the mass matrices which enter in our time integration schemes when
working with a representation of our semidiscrete equation w.r.t. a basis of V4, see Section 3.6
and in particular (3.55). The mass matrices enter in the right-hand side of the Verlet methods
(4.39), (4.78) and of the Crank—Nicolson methods (4.40), (4.76). Since in dG methods the
mass matrices are block-diagonal, they can be inverted at low costs. Thus, the fully explicit
nature of the Verlet methods is preserved and also the Schur decomposition for the central
fluxes Crank—Nicolson method can be carried out.

4.5.2 Numerical results

We consider the example from Section 3.7. Our aim in this section is to observe the temporal
convergence of the Verlet method and of the Crank—Nicolson method. If we use the mesh
sequence ’7751), .. ,771(4) from Section 3.7, the CFL condition of the Verlet method only allows
us to use such tiny time-step sizes that the space discretization error is already dominant and
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0.5

-0.5

-1

-1 -0.5 0 0.5 1

(a) Initial mesh 7;1(1) corresponding to 771(1C)FL The square [—0.05,0.05)% is marked in green.
/\ — @<

b) Refinement of the elements in [—0.05,0.05]2. This correspond to the meshes 7 e 7@
h,CFL h,CFL

Figure 4.3: Mesh family 771(]()]“

J max hx min  hg J max hyg | min hg
KETyom, KeT KeT,) KeT,’)

1 0.2384 0.0125 1 0.2384 0.0125

2 0.2384 0.00625 2 0.1248 0.0125

3 0.2384 0.003125 3 0.0721 0.0125

4 0.2384 0.0015625 4 0.0370 0.0125

(a) Mesh parameters of 7;L(JC)1FL (b) Mesh parameters of Th(]T)

Table 4.3: Maximum and minimum diameter of the mesh elements in 771(@“ and in 7;@ .

we cannot conclude about the time discretization error. Thus, we use different mesh sequences
for the following numerical experiments. In order to examine the CFL condition we use the
mesh 771(1) as an initial mesh and then only refine the elements in the square [—0.05,0.05)%, see

Figure 4.3. This yields a mesh sequence 7;521%7 ey ’7;540)“ with parameters given in Table 4.3a.

For the confirmation of the temporal convergence we start again with 7;1(1) and then refine all
mesh elements in [—1,1]*\[—0.05,0.05]2. We call the resulting mesh sequence 7;1(1) ce 7;1(4)

9T ’
The mesh parameters can be found in Table 4.3b and a plot of 7;L(1T) and 7;L(4T) in Figure 3.2.

We start with the validation of our theoretical results with the CFL condition of the Verlet
method. We used a central fluxes dG space discretization of Maxwell’s equation with different
polynomial degrees k and different mesh levels ’771(](%FL We ran our simulation with final time
T = 1 with decreasing time step 7 until our numerical solution became stable. In Figure 4.4a we
plotted these maximum stable time-step sizes. We see that the decrease of the maximum stable
time-step size matches the minimum mesh element diameter as stated by the CFL condition
(4.49). Next, we turn to the Verlet method when applied to an upwind fluxes dG method. In
this case the CFL condition depends on the stabilization parameter «, see (4.86). In fact, it
gets stricter for a larger «, and this can be observed in Figure 4.4b.

In order to examine the temporal convergence of the Crank—Nicolson method and of the Verlet
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—

3
w
t

stabilization parameter a

(a) Maximum stable time step of the Verlet

(b) Maximum stable time step of the Verlet

method when applied to a central fluxes dG
discretization. The black dashed line represents
the slope 0.05min

method when applied to an upwind fluxes dG
discretization with stabilization parameter «.

KeT 2w hi. We used the grid 771(’4(%FL.
Figure 4.4: Maximum stable time-step size of the Verlet method. The polynomial degrees in
the dG space discretization are k = 2, k = 3, , k=5,

method we use the mesh sequence 7;1(37) and the polynomial degree & = 5. This rather high
polynomial degree ensures that the space discretization error is small enough such that the
time discretization error is dominant. In Figure 4.5 we give the graphs of the error e;LVT =
u;LVT — mpu(T) measured in the L?mnorm at the final time T = ty, = 1. They confirm the
convergence order two in the time variable as proven in Theorems 4.21, 4.22 and 4.28 (the proof
for the upwind fluxes Verlet method is postponed to Chapter 5). Comparing Figures 4.5a, 4.5b
with Figures 4.5¢, 4.5d we see again the superior space convergence of the upwind fluxes dG
method compared to the central fluxes dG method, see also Section 3.7.
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1072 1 1072 ¢
1075 1075 1
p— _J ‘// p—— //
%f oo’ ’ Z:;‘i MK 2
= 1071 = 10771
1079 1 1079 1
// //
107° 107* 107% 1072 107! 107° 107* 107* 1072 107!
time step 7 time step 7
(a) Crank-Nicolson method in combination (b) Verlet method in combination with a cen-
with a central fluxes dG space discretization. tral fluxes dG space discretization.
1073 % 10—3 4
1070 1 1075 1
Z:..: ,’/ Z:J: //
= 10771 v = 1071 /
r/// of e
sososoey soeet .
1079 1 1079 1
// //
107° 107* 10% 1072 107! 1075 107* 107% 1072 107!
time step 7 time step 7
(¢) Crank—Nicolson method in combination (d) Verlet method in combination with an up-
with an upwind fluxes dG space discretization wind fluxes dG space discretization with o = 1.
with a = 1.

Figure 4.5: Temporal convergence of the Crank—Nicolson method and of the Verlet method.
The final time is 7' = ¢y, = 1 and the polynomial degree is k = 5. We used the meshes

, Th(_:i) and . The black dashed line represents slope 72/10.

)






CHAPTER D

Locally implicit time integration

Let us recall Maxwell’s equations (1.21),

OH(t) = —CeE(t),

dru(t) = Cu(t) +j(t), , equivalently,
tu( ) u( ) .]( ) or, equivalently. 8tE(t) _ GHH(t) - 5_1J(t)7

(5.1)

with initial values u(0) = u® = (H°, E®). Many applications require a space discretization with
a locally refined spatial mesh, i.e. a mesh which consists mostly of coarse elements but also
contains a few (very) fine elements.

5.1 Examples and overview

Let us give some examples which require such a locally refined mesh: If the domain €2 contains
tiny geometric features, e.g. narrow areas as in Figure 5.1 or a barrier with a small gap as
in Figure 5.2, the mesh has to be adapted to this situation which might only be possible
with some small elements. As another example, observe that the convergence rate of the
spatially discretized Maxwell’s equations depends on the regularity of the exact solution, see
Theorems 3.12 and 3.13. However, in many situations the exact solution is known to be of low
regularity and thus a spatial discretization on a quasi-uniform grid fails to provide an optimal
convergence rate. Examples where this phenomenon appears are domains 2 with reentrant
corners, see e.g. Figure 5.3a. In such situations one can restore the optimal convergence rate
by using a locally refined grid around the subdomains where the solution is of low regularity,
see Figure 5.3b. For further insight we refer to Costabel and Dauge [2000], Dorfler [2013] and
Nochetto et al. [2009]. As a third example let us mention the situation where the material

Figure 5.1: Deformed mesh.

93
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(a) Whole mesh. (b) Zoom on the gap in the barrier.

Figure 5.2: Rectangular mesh with a barrier inside that possesses a small gap in the middle.

coefficients € and p vary on a small spatial scale. In Figure 5.4 we depict an (adapted) example
from Busch et al. [2011], where we have a ring resonator and two wave guides with permittivity
e = 9 in a domain which is covered with vacuum (¢ = 1). Because our dG method requires
constant material coefficients on each mesh element, we have to resolve the small (vacuum) gap
between the ring wave guide and the straight wave guides with a few very tiny mesh elements.

In summary, we see that there are many situations demanding for a space discretization with
a locally refined mesh. This yields a semidiscrete scheme approximating the exact solution
of Maxwell’s equations. For a fully discrete approximation we then have to integrate this
semidiscrete scheme in time. It turns out that this is a challenging task and standard time
integration methods fail to be efficient. In Chapter 4 we have seen two popular time integrators
for Maxwell’s equations representing the two basic classes of available time integration methods.
On the one hand, we considered the Verlet method which is an example for explicit time
integrators. On the other hand, the Crank—Nicolson method belongs to the class of implicit
time integration schemes. Independent of the class of time integrators we want to use the
optimal time-step size. This means we want to use the time step such that the spatial
discretization error and the time integration error are (approximately) of the same size. Using
a bigger time-step size results in an approximation which is not of the best possible quality
(w.r.t. space discretization) while smaller time steps do not yield a better approximation but
come at the cost of having to compute more time steps than necessary. So, we can conclude
that using the optimal time-step size is the most efficient choice. In the particular case of
locally refined meshes the space discretization error is dominated by the contribution of the
coarse elements and consequently we have a rather large optimal time step size. The problem
of explicit methods is that their CFL condition becomes very restrictive when we work with a
locally refined spatial mesh. In fact, we are forced to use a time-step size which is considerable
smaller than the optimal time-step size. This renders explicit methods inefficient for locally
refined meshes. We illustrate this effect with the example of the ring resonator from above. In
Figure 5.5 we give the full discretization error versus the time-step size of the Verlet method
for an example using the mesh of the ring resonator. As comparison we plotted the error of
the Crank—Nicolson method which indicates the space discretization errors (the plateaus in
Figure 5.5) and which we use to determine the optimal time-step size. We see that due to the
restrictive CFL condition we need to apply the Verlet scheme with a far too small time-step size,
at least for polynomial degrees k = 1,2,3, see also Table 5.1. For higher polynomial degrees
the situation seems to be better and it is possible to use the Verlet method with the optimal
time-step size. However, we point out that we used a C* solution for this example. This allows
to access the small errors we observe in Figure 5.5 for k£ = 4,5. However, we point out that for
realistic, low regularity examples this might not be the case.

If we employ an A-stable implicit time integrator, we avoid a CFL condition. However, these
methods come with the drawback that we have to solve a large linear system in each time
step. In fact, this linear system involves all degrees of freedom in the spatial grid. For many
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(a) Quasi-uniform mesh. (b) Locally refined mesh.

Figure 5.3: Mesh with reentrant corner.

applications this is not feasible anymore. In particular, if only a small amount of the mesh
elements are small, and thus require an implicit scheme, a fully implicit method is too costly
or not even possible to realize for 3D problems.

In the literature several methods have been proposed as a remedy to this problem. In Diehl
et al. [2010] the authors consider explicit low storage RK methods. They use the stabilization
parameter « in the upwind fluxes dG discretization to tune the spectrum of the dG operator
C — a8 such that it better fits the stability region of the low storage RK methods. This allows
for larger time-step sizes. Another approach are explicit local time stepping methods
initially proposed in Diaz and Grote [2009] for the second order wave equation. Based on
the explicit Verlet method, the authors construct a time integrator which uses a small time-
step size on the small elements in the spatial grid while treating the coarse elements with a
big time step. In numerical examples it is shown that the CFL condition of the resulting
scheme only depends on the coarse part of the grid. An extension of this work to Maxwell’s
equations is given in Grote and Mitkova [2010]. Moreover, in Grote and Mitkova [2013] the
authors derived explicit local time stepping methods of arbitrarily high order based on Adams
multistep methods for the damped wave equation. Hochbruck and Ostermann [2011] showed
that these methods can be interpreted as a particular implementation of exponential multistep
methods (where actions of the matrix exponentials are replaced by approximations gained from
explicit multistep methods). Moreover, in Demirel et al. [2015], the ideas of optimizing the
stability region with respect to the shape of the field of values of the given discrete operator
was used to construct optimized predictor corrector schemes which outperform the low storage
RK schemes of Diehl et al. [2010]. In Grote et al. [2015] and Mehlin [2015] explicit local time
stepping schemes based on explicit RK and low storage explicit RK methods instead of the
Verlet method were derived. Currently, multi-level explicit local time stepping methods have
been proposed. These methods take into account that a spatial mesh might consist of different
areas with varying diameters of the elements. Thus, every area is treated with an adapted
time-step size. In Diaz and Grote [2015] the multi-level local time stepping scheme is based on
the Verlet method and in Almquist and Mehlin [2016] on RK methods.

In this thesis we consider a different approach to integrate the semidiscrete Maxwell’s equations
disposing locally refined meshes, namely locally implicit time integrators. The underlying
idea of these methods is to treat the fine mesh elements in the spatial grid with an implicit
time integrator, thus avoiding a restrictive CFL condition, while employing an explicit time
integration scheme for the remaining coarse elements. In Piperno [2006] the author proposed
such a locally implicit scheme for the homogeneous semidiscrete Maxwell’s equations comprising
the explicit Verlet method and the implicit midpoint method (or Crank—Nicolson method, which
is the same in the homogeneous case). However, in Moya [2012] it is shown that this locally
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(grey areas) are separated by a small gap.

Figure 5.4: Mesh of a ring resonator. In the white areas we have ¢ = 1 and in the grey areas
e=9.

implicit method fails to retain the second order temporal convergence of the underlying schemes
(unless unnatural regularity assumptions for the exact solution are demanded) and is only of
order one. A different combination of the Verlet method and the Crank—Nicolson method
was proposed and analyzed by Verwer [2011]. Further insight into this method and numerical
examples were provided in Descombes et al. [2013] and extended in Descombes et al. [2016, 2017]
to dispersive media with the focus on biological tissues. In the two papers Verwer [2011] and
Descombes et al. [2013] the authors have proven that the proposed locally implicit method is
second order convergent in time (Verwer [2011]) and only exhibits a CFL condition involving the
coarse parts of the mesh (Descombes et al. [2013]). However, in both papers the construction and
the analysis of the locally implicit method is based on a formulation of the spatially discretized
Maxwell’s equations as an ODE, i.e. as (3.55). As a consequence the locally implicit method is
based on a splitting of the stiffness matrix C' in order to assign the spatial degrees of freedom
to the explicit and implicit time integration. It is left unclear how the spatial mesh has to be
split and which mesh elements enter in the CFL condition. Moreover, the error analysis based
on the ODE formulation given in Verwer [2011] exhibits constants depending on the spatial
grid and as a consequence this analysis deteriorates if the mesh parameter h tends to 0. This
means that the given error analysis is only valid in a non-stiff regime. It is based on an infinite
Taylor expansion of the exact solution and unfortunately lacks the analysis of remainder terms
and spatial discretization errors. Last, let us point out that the mentioned references only
cover the case of the semidiscrete Maxwell’s equations stemming from a central fluxes dG space
discretization.

In this thesis we aim at complementing the previous work in Descombes et al. [2013], Verwer
[2011]. In the following we will present a locally implicit scheme based on the ideas of Verwer
[2011]. In contrary to the previous work we formulate the locally implicit scheme as a time
integrator for the semidiscrete Maxwell equations in the variational formulation (3.8) or (3.15).
We provide a splitting of the spatial mesh into parts which have to be treated implicitly and parts
which can be treated explicitly. We already point out that this splitting does not coincide with
the splitting of the mesh in coarse and fine elements, if we want to obtain a CFL condition which
solely depends on the coarse mesh elements. We proceed in two steps: First, we formulate the
locally implicit method for the semidiscrete Maxwell equations stemming from a central fluxes
dG method. We give a stability and error analysis which is also valid in a non-stiff regime,
i.e. an analysis exhibiting only constants independent of the spatial mesh. Our work is based
on the techniques we presented in Chapter 4, in particular in Section 4.2, for the fully implicit
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Figure 5.5: Full discretization error versus time-step size. We used the polynomial degree k
in the space discretization and the Verlet method and the Crank—Nicolson method as time
integrators. The exact solution is a C*° function.

i |1 |2 [ 38 | 4 | 5
Verlet time-step size || 0.0055 | 0.0028 | 0.002 | 0.0014 | 0.00035
optimal time-step size || 0.1050 | 0.0313 | 0.009 | 0.0014 | 0.00035

Table 5.1: Optimal time-step sizes.

Crank—Nicolson method and the fully explicit Verlet method. A compact version of the results
can be found in Hochbruck and Sturm [2016]. Subsequently, we turn to the case of an upwind
fluxes dG discretization. We show how the locally implicit scheme from the central fluxes case
can be adapted to this situation and then present a stability and an error analysis. Again, we
obtain a scheme with a CFL condition which only depends on the coarse mesh elements and
an error analysis independent of the spatial mesh. A summary of these results can be found in
Hochbruck and Sturm [2017].

5.2 Splitting of the mesh

As pointed out above we are interested in locally refined meshes, i.e. we deal with grids which
are split into a coarse and a fine part

Th = The U Tht,

where the number of fine elements is small compared to the number of coarse elements,
0 < card(Tp,5) < card(Th.c)-

Clearly, the locally implicit time integrator has to treat the fine elements in 7, y implicitly to
that they enter the CFL condition. However, if we recall Definition 3.1 of the discrete curl-
operators, we observe that each mesh element couples with its neighbors, i.e. with all elements
with whom it shares a face. As a consequence, we cannot only treat the fine elements in 7}, ;
implicitly, but we also need to include their neighbors in the implicit time integration. All
remaining elements can be treated explicitly. We fix this observation in the following definition.

Definition 5.1. We partition the mesh Ty into an implicitly and an explicitly treated part
defined by

Thi={K €T, |3IKs€Thys : }aKmaKf|d717é0}, and The =T\ Thi, (5.2a)

5
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Figure 5.6: Example of the splitting of the mesh elements. The coarse elements from 7y, . are
blue and dark orange. The fine elements from 7}, y are light orange. Explicitly treated elements
from 7}, . are blue, implicitly treated elements from are orange. The coarse, but implicitly

treated elements from are dark orange. The faces in F, ,1[“} are blue, the faces in are

orange and the faces in F}™. are red.

respectively. Here, | - |4—1 denotes the (d — 1)-dimensional Hausdorff measure. Furthermore,
we denote the set of implicitly treated elements which share a face with at least one explicitly
treated element by

Thei = {Ki € Tni | IKe € The : |0K.NOK;|, | #0}. (5.2b)

Note that the explicitly treated set only contains coarse elements. In contrast, the implicitly
treated set does not only contain fine elements but also their coarse neighbors. Furthermore,
all elements in 7}, .; are coarse although they are treated implicitly (as suggested by the index
ci):

77L,€ - 77L,C7 771,f C 771,i7 771,1' N 7;L,C 7é @, 771,01 C 771,0 N 771,i-

An example for the sets is given in Figure 5.6.

Definition 5.2. The set of interfaces is partitioned into
fint _ int U .Fint U Fint 5 3
h = Y hi h,e h,ci> (5.3a)

where .F;Ln;“ contains the faces between implicitly treated elements, .7-";5‘; the faces between explicitly
treated elements and f,ilnzi the faces bordering an explicitly and an implicitly treated element.
Furthermore, we write

Fie = Fie U Frei (5.3b)
Moreover, we split the set of boundary faces into

Fond — f’l;»gd U f;]fgd- (5.4)

An example for the splitting of the mesh faces can be found in Figure 5.6. It is important
to observe that the set F}lng only contains faces bordering two coarse elements. We use the
int

convention that for a face F' € fh7 ", the normal np is directed from the implicit element K;

towards the explicit element K., see Figure 5.7.

In our locally implicit time integrator we will assign the mesh elements to the explicit or implicit
time integration with cut-off functions x; and xe,

v(z), zeK; K;e€Thy, 0, r € K;, K; € Thy,
xiv(z) = Xev(T) =
0, x e Ke, Ke € Thp, v(z), ze K Ke€ The.



5.3. CENTRAL FLUXES 99

Figure 5.7: Convention for the face normal ng in the case where the face F' borders an explicit
element /. and an implicit element /1, i.e. if F' € F™ .

Because the cut-off functions are matched to the mesh elements, their application to a broken
polynomial yields again a broken polynomial, i.e.

XeUhs XiUh € Vi, for all v, € V. (5.5)

We recall from Assumption 2.24 that our mesh 7 is shape- and contact-regular with param-
eter p. Clearly, also the coarse part of the mesh 7}, . is shape- and contact-regular, but with
parameter p. < p and for locally refined meshes we might have p. < p. As a consequence the
upper and lower bound for the ratio of the diameters of neighboring elements (2.4) holds true
with this parameter,

hK—ghK < pemin(h ., hz), hie,hp € The (5.6)
Moreover, the constants Cj,, and Cf, in the inverse and the trace inequality (2.10) and (2.11),
respectively, only depend on p. on the coarse mesh 7; .. We denote these constants by Ciny .
and Circ. In our later analysis of the locally implicit scheme we show that its bounds only
depend on these constants, i.e. on the mesh regularity of the coarse part 7. but not on the
fine part Tj, ;.

pgl max(hK, h}?) <

5.3 Central fluxes

In Chapter 4 we saw that for the time integration of the semidiscrete Maxwell’s equations we
have to distinguish whether the space discretization stems from a central fluxes dG method or
from an upwind fluxes dG method. The same holds true for the locally implicit time integration.
So, in this section we focus on the locally implicit time integration for the space semidiscrete
Maxwell’s equations obtained from a central fluxes dG method, i.e.,

O Hy,(t) = —CgEpL(t),
O ER(t) = CaHy(t) — Jn(t), (5.7)
H;,(0) = Hj, E;(0) =E},
see (3.8). Adapting the locally implicit scheme of Verwer [2011] we will blend the explicit Verlet
method and the implicit Crank—Nicolson method, which we analyzed in Chapter 4. So, let us

begin by recalling these methods. Employing the Verlet method as a time integrator for (5.7)
yields the recursion

H;,"/? — Hj = —2CoE}, (5.8a)

T
Bt - Bf = reuH, - D3 I, (5.8b)
HyH —H T2 = _chEg“, (5.8¢)
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and the Crank-Nicolson scheme for (5.7) is given by

r

HZJrl —HP =— §CE(EZ+1 + Ep), (5.9a)
T T

B BR —eu(H)Y 4 HY) - D33+ ), (5.0

see (4.39) and (4.40), respectively.

5.3.1 Construction of the locally implicit method

As a first step in the construction of our locally implicit method we observe that the Crank—
Nicolson method (5.9) can be cast into the form (5.8) of the Verlet method by splitting the
update formula of HZ“ into two half steps. In fact, we can write the Crank—Nicolson recursion
equivalently as

HZ+1/2 o Z — _chEn7 (510&)
T T
BB = () - D ), (5:100)
H - HZ+1/2 _ —%CEEZ+1~ (5.10c)

This motivates a combination of the Verlet method and of the Crank—Nicolson method given
in the following locally implicit scheme

Byt - Bf = rCH Y L Ch(Hy 4 Hp) - (3 ), (5.11b)
HZ—H _ HZ-H/Q _ _%CEEZ_H- (5.110)

Here, Cf; and Cf, denote the (yet to be determined) discrete curl-operators associated with
the explicit mesh elements in 7. and analogously Cﬁ and Cﬁ the ones associated with 7j ;.
We construct these split discrete curl-operators by the following observations: First, it
is natural to enforce that adding the split discrete curl-operators yields the original discrete
curl-operators (acting on the full mesh), i.e.

Ca=Ch+Ch,  Crg=Cqh+Ch. (5.12)

Further insight is gained by casting the scheme (5.11) into the familiar notation using modified
versions of the operators R, and Rp. As before, we write

HY? 0
un - ( h) ’ jn - ( > ’
h EZ h _JZ

. T . z o 0 —CE
RrL,=1T1 C, RR—I+2C, C_<CH 0 )

and recall that

N3

Lemma 5.3. The recursion (5.11) of the locally implicit scheme can be written as

R = Rpuj + 2 (57 +37), (5.13a)

with operators ’ﬁ,L, ’ﬁ,R : Vh2 — Vh2 defined by

Ry-R, - LD Rp =R D po— (Y 0 (5.13b)
L — L 4 ’ R — R 4 ) - 0 CﬁcE . .



5.3. CENTRAL FLUXES 101

Proof. The first component of (5.13a) is obtained by adding (5.11a) and (5.11¢). For the second
component we subtract (5.11c) from (5.11a):

1 T
H; 2 = C(H 4 HY) 4 Ca(BT - B,
Inserting this into (5.11b) we infer

2

Ej "~ B = SCn(Hj " +H}) + L ChCa(E; T —Ef) - S35t + 7, (5.14)
by using C + Ciy = C, see (5.12). O

We saw in Chapters 3 and 4 that the adjointness of Cy and Cg,see (3.7a), is crucial for the
well-posedness, the stability and the convergence of the space semi-discretization and of the full
space and time discretization. So, we require this property for the explicit and the implicit split
curl-operators, respectively, i.e. for all Hy, Ey € V},

(CHp, Ey), = (Hy, CLEs)

(C%Hhv :Eh)E = (Hh7 C]%Eh) (515)

w’ w

Ensuring the conditions (5.12) and (5.15) leaves us with the choice of using either
Ci=Cuoxs, Ch=xp0Cr, or Cx=xp0Cu, Ch=Cmoxsp, b€ {i,e}.

If we also want to preserve the adjointness properties of the operators Ry, Rr of Crank—
Nicolson method and of the operators 7%,;, ’ﬁR of the Verlet method given in Lemma 4.10,
then the only possible option is the first one. It is easy to see that for the second option the
adjointness of Ry and Rp is lost.

Definition 5.4. We define the split discrete curl-operators as
Cha=Caoxi, Cig=Cuoxe (5.16a)

and
Ch = xi o Cg, Cé = xe o CE. (5.16b)

This definition immediately yields

e _ pe pe e 0 0
CHCE = CHCE and Df = (0 C%CE) . (517)

In combination with (5.15) and Lemma 4.10 we obtain the following result.

Lemma 5.5. Let up, = (Hp, Ep),uy € Vh2. Then, the operators R, and Ry have the following
properties:

(’féLuh, ﬁh) = (uh, ﬁRﬁh) (5.18&)

WXE uxe’

2
T
= [unllixe = 7 ICEERL. (5.18b)

= (ﬁRuh, uy) Lixe

(ﬁLuha Uh)

WXE XeE
As we demanded, we obtain the same adjointness property as satisfied by R, and Ry and by
R 1 and Rp, compare (4.44a) and (4.45a) with (5.18a). Moreover, the property (5.18b) is the
same as (4.45b) for the Verlet method but where Cg is replaced by Cg.
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5.3.2 Alternative construction of the locally implicit method

In this section we briefly present an alternative construction of the locally implicit scheme (5.11)
based on the two step formulations of the Verlet method and of the Crank—Nicolson method.
Since we slightly adapted the Verlet method (4.9) in respect of the inhomogeneity in order
to fit Maxwell’s equations, we cannot use the two step formulation (4.5) but derive a suitable
alternative now. Observe that by (5.8a) and (5.8¢) we have for the Verlet method

2 Hy = oy,
2 n+1/2 n—1/2 n
no1)2 =z and thus H, - H, = —71CgE}. (5.19)
H;, - H, = —§CEEZ,
Moreover, by (5.8b) we have
E} —E} ' =rcgH! 2 - Z(3p 40770,

\V]

z
Bt - Bf = reuHy T 2 (3 4 0),
and by subtracting these two equations we obtain
- +1/2 -1/2y T -

Ejt —oE} + B! = reu(H) T2 - H) %) - 5(J;;H . ) (5.20)

Inserting this in (5.19) we obtain the Verlet method in the desired two step formulation,
E/t! — 9E} + B} ! = —7%CuCgE} — %(JZ“ ) (5.21)

Next, we rewrite the Crank—Nicolson method as a two step scheme. By (5.9a) we have

.
Hj —H}™ = —5Ca(E] + B},
2 and thus HZH—HZ—l = —ZCE (EZH-F?EZL—FEZ_l).
n+1 n T n+1 n 2
H,™ -H), = _§CE(Eh —i—Eh),
(5.22)

Analogously to (5.20), we obtain from (5.9b),
+1 -1_T +1 -1 T (qn+l -1
By 0B+ By = e ( o) - (@t ),
Inserting (5.22) into the last equation, we obtain the Crank—Nicolson method in the two step
formulation,

2
E;t 2B} + E} ! = _TchcE (Ep 4 2By + EpY) — %(Jg“ —Jph). (5.23)
Now, we combine the Verlet method (5.21) and the Crank-Nicolson method (5.23) to the
following locally implicit scheme,

2
Ejt! —2E} + B} 7' = —°CHCRE) — TZCﬁcg (Bp*' + 2By + E; 1) — %(JZ“ —Jph.

As in Section 5.3.1 we demand that adding the split discrete curl-operators restores the full
discrete curl-operators, i.e. (5.12). Next, we consider the adjointness of Cy and Cg,see (3.7a).
For the composition of Cyr and Cg appearing in both the Verlet and the Crank—Nicolson method
this means R R R

(CHCEEmEh)E = (Eh,CHCEEh) E,,E, € V.

So, our second requirement on the split curl-operators is that they satisfy

(CHCLE Ep)_ = (B, CHCLES) (CHCEER Ep)_ = (B, CHCEES)

E’
e’ e’

for all Ey, Eh € V. It is easy to check that only the split discrete curl-operators as defined in
Definition 5.4 satisfy both properties.
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5.3.3 Bounds of the explicit discrete curl-operators

In this section we transfer the bounds on the full discrete curl-operators given in Theorem 3.14
to the explicit curl-operators. A crucial observation is that the explicit curl-operators can be
bounded independently of the fine mesh. This is the essential ingredient for our proof that the
locally implicit scheme possesses a CFL condition which solely depends on the coarse part of
the mesh. Let

c = max c 5.24
T KeTh, (5:24)

denote the maximum speed of light in the coarse grid.

Theorem 5.6. For Hy, E;, € V), we have the bounds

HCI%Eh ”u < Cbnd,ccoo,cHEh ||s,’7'h,eu7717ci,2,—17 (5.25&)

and

ICEH |« UThei2— 1 (5.25b)
where the constant is given by Cpnda,c = Cinv,c + QCtr Nope.

Although our proof follows mainly the one of Theorem 3.14 we give it here in detail such that
it can be retraced without detailed knowledge from Chapter 3.

Proof. We only prove (5.25a) since the bound (5.25b) can be shown analogously. For Ep,
¢n € Vi, we have by (3.4b) and (5.16b),

(CREn, ¢h)ﬂ = (CEEn, Xe®n),,
= > (Bueurlgn) e+ Y. ({Ba}E nr x [xednlr) - (5.26)

K€Th,e FeFint

h,c

We bound the two terms on the right-hand side separately. For the first term we apply the
Cauchy—Schwarz inequality twice and in between the inverse inequality (2.10) on the coarse
mesh 7y, . to obtain

> (Ercwlon) e < Cuve Y hi [Enllxllonllx

KeTh,e KeTh,e
:Cinv,c Z CKh;(IHEhHE,KHQShH%K
Ke€Th,e
1/2 - 1/2
Scinv,ccoo,c< Z ||¢h”2,K> ( Z hK2HEhHg,K>
KeTh,e KeTh,e

< Cinv,ccoo,c||¢h||u| 2,—1- (527)

For the second term in (5.26), a weighted Cauchy—Schwarz inequality yields

1/2
> (B e xenlr)p < (3 wrlne < beeondeld) (Y wrtlEE#IE)
FeF FeF FeFt
(5.28)
To bound the first factor on the right-hand side, we use [ng| = 1, the triangle inequality, Young’s
inequality, and subsequently the trace inequality (2.11) on the coarse mesh 7} ., to obtain

Ine x [xedrlpllF < 2(|[xenl |7 + | Xedn|Kp | F)
<202 (Bt Ixednlli + Rt Ixednll%,)

=207 (i hi Ixe@nl2 i + 1z b xeBnll2 k) - (5.29)
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Now, we choose the weight wr as

_ ARy here ap = 1
2 ’ EKCK + EKpCKp

wr (5.30)

From the shape- and contact-regularity of the coarse mesh 7y, ., in particular by applying (5.6),
we obtain
pglap < wphl_(l, thI_(; < pear, for all K, Kr € Tjc. (5.31)

Moreover, it is easy to see, that we have
ap < CKUK, aF < CKpMKp- (5.32)

By (5.29), (5.31) and subsequently (5.32) we infer

wrllne x [xednlpll% < 202 cpear (ng Ixednll o + e IXePn 1)
< 2Ct2r,ccOO7CPCHXe(bhHi,KUKF' (533)

For the second factor on the right-hand side of (5.28) we use the triangle inequality, Young’s
inequality and the trace inequality (2.11) on the coarse mesh 7}, .. This yields

wi [{E}E1F < 20pw5" (cxl|Enl k|12 + cxp | BalellZ )
<202 apcoo i (R IERIZ ¢ + Dk 1ER 2 1,0 )
<207 oocpe (D NERIZ i + B B2 e, )- (5.34)

Here, we further used the obvious bounds

arcrcrg <1, AFEKpCKy < 1, (5.35)

in the first inequality and (5.31) for the last inequality. Inserting (5.33) and (5.34) in (5.28) we
obtain

> ({EL}F nr x [XetnlF) p < 2C% Nocoocpellénll 7. [IEn|

577~h,eu7dh,ci72»71

FeF™
< 20, Nocoocpel|dnll | Bnlle, 75, 0T, 2,1 (5.36)
Last, we insert the bounds (5.27) and (5.36) in (5.26) and use the identity
ICEMl = swp  (CoBion),.
OnEVhllgnlln=1
This proves the statement. O

So far, the split discrete curl-operators inherited the properties of the full operators. By the
construction of Cg and Cy, this also holds true for the consistency property (3.6). In fact, for
E € VP we have that

C4E = x(m,CEE),  CiE = xi(m,CxE). (5.37)
Clearly, this yields the bounds
ICEEl, < 6 2Bl meunoeys  ICEEl, < 672 |E] peun sy, for all E € V., (5.38)

with § from (1.20). Here, Q¢ and Q° correspond to the explicitly and implicitly treated part of
the domain 2, respectively, i.e.,

o= J K o= ] FK

KE'EL& KE’Th,i

Unfortunately, a uniform bound like (5.38) cannot by obtained for C§ and Cl, but only one

involving hl_(l/ 2,
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Lemma 5.7. For H € V. we have the bound
1/2
ICEH]: < 672 [H meun o) + Chuaed | D0 htlHITk, | (5.39)
FeF™,
where K, denotes the explicit element corresponding to a face F € .F;Lnfn and the constant is

given by C{)nd,c = \/icctr,cctr,cNapC'

Proof. Let K. and K; denote the explicit and implicit element corresponding to a face F' € F, ,ilnz,
respectively, see Figure 5.7. Note that both elements are coarse, K., K; € Tp .. Employing
H c VH and vy, € Vj, in (3.5a), we have

(CiHL¥n), = Y (curl(xeH), vn) o + > (ne x [xeHlr, {en}5) 5

KeTy, FeFint
= Z (curlH,wh)K + E (TLF x [H]F, {{wh}}%)p
KeTh,e FeF"
+ Y (e x DeHlr fen}5)
Fef;lng‘l
= Z (CU.I'I H, ¢h)K + Z (nF X H|Kea ﬁwh}}%)p‘
KeTh,e FeF,

Here, for the last equality we exploited that by (3.2a) for all H € VH = D(Cg) N H'(T)?
holds that .
nr x [H]r =0, for all F € F}™,

For the first term we obtain from the Cauchy—Schwarz inequality

> (cwrlH, ) o < [ curl H 7, lvnll7,. <6772 H| geun,oe[¥nll-
KeTh,e

For the second term we use the Cauchy—Schwarz inequality with weight O = (hk, + hx,)/2
and |np| =1, to obtain

1/2 1/2

Y (> Hig fundi)p < | Y OF IHIk 7 Y orlfendFElE

FeF™, FeF™, FeF™,
By the continuous trace inequality (2.13) on the coarse mesh 7 . and (5.6) we infer

A_1HH‘Ke||F ctrc 1HHH%,KE < C ctr,ePe KGHHH1 K-

By the triangle inequality, Young’s inequality and the discrete trace inequality (2.11) on the
coarse mesh, we have

orl{vn}E1E < @rl{vndrllE < 20r (e,
< 2Ctr ch (6[(6 Ke
< 2Crcpc 1(

2r)
F e lnlP )
+ ||'9Z}h||g,K1)

Here, we further used (5.35) in the first inequality and

~ -1 ~ -1
"JFhKe’ thKi < pe,
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see (5.30) and (5.31). In summary, we have

1/2
Y (e x Hig fn}5) p < V20eurCureNoped Pllnlle | Y hi IHIT
resin resn
Applying
ICHH[. = sup  (CHH,¥n)_,
Yh€Vh[lnlle=L1
gives the statement. O

5.3.4 Analysis of the locally implicit method

In this section we prove the well-posedness and the stability of the locally implicit scheme (5.11)
under a CFL condition that solely depends on the size of the mesh elements in the coarse mesh
The: Let 0 < @ < 1 be an arbitrary but fixed parameter. Then, the CFL condition of the
locally implicit scheme reads

20

7<———— min hg 5.40
C'bnd,ccoo,c KeTh,c ' ( )

where Cpng . was defined in Theorem 5.6 and ¢ in (5.24).

We have seen in Section 4.2.1 that the CFL condition of the Verlet method (4.49) ensures the
invertibility of the operator R . and the boundedness of R™ = (7/@217%3)""” for all m € N, see
Lemmas 4.14 and 4.15. The same holds true for the analog operators of the locally implicit
method but under the weakened CFL condition (5.40).

Lemma 5.8. Let u, = (Hy,,Ep,) € V2 and assume that the CFL condition (5.40) is satisfied
with a 6 € (0,1). Then, we have

(1= 0)unlfve < (Reup,un),, . < [luplff.. (5.41)
In particular, ’ﬁ,L 1s tnvertible with bound
Hﬁzluyxs < C(stb,cy Cstb,c = (1 - 52)_1- (542)
Moreover, for all m € N, R = ’ﬁzl’ﬁR satisfies
~ 72 ~ 1/2
IR™ w2 < Cotve(lunlie = TICKEAIE)  and [ R™xe < e (5:43)

Proof. For this proof we follow the ones of Lemmas 4.14 and 4.15 .

The upper bound in (5.41) is clear by (5.18b). For the lower bound we use Theorem 5.6 and
the CFL condition (5.40) to infer

2

and,cCZo,cHEh g,Th,eUTh,ci < 02Huh”u><e'

2 e 2 2 2 72
TlICREAE < T 2 T2t < P

w=y
Together with (5.18b) this proves the lower bound.

In order to bound ’ﬁgl we use

(ﬁLuha Vi) (ﬁLuh, uy)

XE

IR Lup|luxe = sup BXE > (1 — 0%)|[up]ixe

vyEV? [Vl uxe B lanlpxe
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which follows from (5.41). Consequently, R, is an isomorphism on Vh2 and by setting v;, =
R ru;, we obtain the first bound in (5.43).

As in the proof of Lemma 4.11, an induction argument shows

(’ﬁ,Luh, uh)u><€ = (’ﬁ,Lﬁuh, ’ﬁ,uh) ce. = (’ﬁ,Lﬁmuh, ’ﬁ,muh) m = 1, 2, e

nuxe = uxe’

Together with (5.18b) and (5.41) this implies

2
o ~ ~ ~ T
(1= ) R™ s < (RER™Mup, R™un) . = [lunlffe — ZHCEEhHia
m =1,2,..., which completes the proof. ]

This lemma enables us to write the locally implicit scheme (5.13a) as

n
5 T 51/ . 5 T Sn—may—1/(s .
wp = Ruf + SR+ R) = R+ SORVTRIGET 45, (5.44)
m=0

if the time step 7 satisfies the CFL condition (5.40). This representation of the locally implicit
method together with Lemma 5.8 allows us to prove that the locally implicit method preserves
a perturbed electromagnetic energy and furthermore it allows us to prove the stability of the
scheme. We give these results in the subsequent two corollaries.

Corollary 5.9. Assume that the CFL condition (5.40) is satisfied with parameter 6 € (0,1).
Then, for vanishing source term J, = 0, the approximation vy = (H}',E}) obtained from the
locally implicit scheme (5.11) conserves the perturbed electromagnetic energy

2
.
EHp,Ep) = E(Hp, Ep) — §‘|CEEhH37 (5.45)

ie, EHNLEN) =EH),E)), n=1,2,....

Proof. For Jj, = 0 the locally implicit method reads uj = ’ﬁ"ug, see (5.44). Thus, the proof of
the previous lemma shows that

(’ﬁ,LuZ, uZ) = (’féLu?L, u%) (5.46)

uxe

The statement then follows from (5.18b). O

puxe’

Note that the locally implicit method conserves the same perturbed energy as the Verlet method,
but involving the explicit discrete curl-operator Cg, instead of the full discrete curl-operator Cg,
see (4.54).

The next corollary adresses the stability of the locally implicit scheme.

Corollary 5.10. Assume that the CFL condition (5.40) is satisfied with parameter 6 € (0,1).
Then, the approzimation uj obtained from the locally implicit method (5.11) is bounded by

n—1

n 1/2 3/2 T m m

I llixe < Coellu®llue + Ol D 137+ 07 (5.47)
m=0

Proof. Taking the norm of (5.44) and using the triangle inequality, (5.42), (5.43) and (3.12)
gives the statement. O

We observe that the locally implicit scheme satisfies a stability bound analogous to the one of
the Verlet method. The difference between the two schemes is that the locally implicit scheme
only requires a CFL condition on the coarse mesh to ensure stability and that the stability
bound involves Cppnq . rather than Chyg, cf. (4.55).
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5.3.5 Error analysis of the locally implicit scheme

For our error analysis we recall some notations from Chapter 4. By u" = (H",E") =
(H(ty),E(t,)) we denote the exact solution of Maxwell’s equations (5.1) at time ¢, and by
u} = (H,E}) = u”" we denote the approximation obtained by the central fluxes dG discretiza-
tion and the locally implicit scheme (5.11). As before, we split the full discretization error
into

e"=u"—uj; = (u" —mpu") — (up —mTpu") = e —ej. (5.48)

We note that we already obtained a bound on the projection error el in Chapter 3, cf. (3.24a).
In the next lemma we provide a recursion for the remaining error ej. It turns out that it
satisfies a perturbed version of the locally implicit scheme (5.11).

Lemma 5.11. Let u € C(0,T; Vi) NC?3(0,T; L*(Q)%) be the exzact solution of (5.1). The error
e} satisfies

Riel ™t = Rpep +d". (5.49)
The defect dn = (Niﬁ + H;; is given by
In n 7 0 n n 7 0
LT (oo erg) BT (cmag) O

where A, d}} were defined in (4.58) and AYy was defined in (4.63b).

Proof. We follow the proof of Lemma 4.19. In (4.59) we obtained the following recursion for
the projected exact solution,

Rpmpu™ = Rpmu” + = (G 4 37) — d” (5.51)

2
If we insert the projected exact solution into the locally implicit scheme (5.11), we obtain
~ ~ 7' . . ~
Rympu™ = Rpm,u® + 5(,]2“ +jp) —d™. (5.52)

Subtracting (5.52) from (5.13a) yields the stated recursion (5.49) and it remains to determine
the defect d”. We subtract (5.52) from (5.51),

C~1n =d" + (RL — ’ﬁL)mlu”H — (RR — ’ﬁ,R)Whu”
2
=d" + %’Deﬂh(u’”l —u"),

72

=d" + ZDe (u”‘H —u” — (et — eﬁ)).

Here, the second equality follows by the definitions of the operators R, R and ’ﬁL, ’ﬁR, see
(4.41b) and (5.13b), respectively. The components of d” = (dfy, dg) are given by

2
~ ~ T
u = dh, E=dg + ZCIe{CE (E"Jrl —E" - (eZ}l — e?E)).

From the consistency of the discrete curl-operators, cf. (3.6), we conclude
CHCe(E™T! — E") = Cqm,Ce(E"T! — E") = —C4my (0, H" ! — 9, H") = —CqmpAY.

Here, the second equality is obtained via Maxwell’s equations (1.21), in particular by differen-
tiating O;H = —CgE w.r.t. t. Combining the last three equations we end up with

an — 4" — LQ 0 _ LQ 0
- 4 \cgmAy) 4 \CxCr(elly —eltg))”

which completes the proof. O
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If we assume that the CFL condition (5.40) is satisfied, we can rewrite the error recursion (5.49)

as
n

et =Rep + Ry 'd" = Y R"™R'A™, (5.53)

m=0

since eg = 0. Now, we give a bound on the defect dm.

Lemma 5.12. Let u € C(0,T; D(C) N H*(73)%) N C3(0,T; L*(2)®) be the exact solution of
(5.1). If the CFL condition (5.40) is fulfilled, we have that

~ ~ T
[d7 [l xe < C7r§(!u"+1 + U 1,720 + [ET = EM g 75 2.0) - (5.54a)

If we assume more regularity for H, in particular H € C?(0,T; V), we obtain

n+1
[ e < / 1030 () e + CIOPE@) 17, . di+CrY2 / |OPH(t) |1 7., dt. (5.54b)

tn

The constant C' depends on Cynd.c, C} 4 ..» Capps 67” Coo,c; and 6.

If we compare the bounds from Lemma 5.12 with those of Lemma 4.20, we observe that the
bound on d? is of the correct order, namely k£ in the space variable. However, the defect dZ
is only of order 2.5 in time compared to the order 3 of the defects dj and aZ of the Crank—
Nicolson and the Verlet method, respectively. If we would use this bound on (~i", we could only
prove a temporal convergence order of 1.5 for the locally implicit method. This would imply
that the locally implicit method suffers from an order reduction in the temporal convergence.
If we consider the proof below, we see that the problem of the reduced order of c~12 lies in
the loss of the consistency of the explicit curl-operator Cgy, cf. Section 5.3.3 and in particular
Lemma 5.7. However, we point out that the locally 1mpllclt scheme (5.11) does not suffer
from an order reduction, which we will prove in the following. Yet, we first give the proof
of the lemma.

Proof. This proof follows the proof of Lemma 4.20.

(a) The first part of the defect &” was already bounded in Lemma 4.20. For the second part

observe that in the last term Cg/(e W’"El —e me) € Vi, and consequently we can apply Theorem 5.6.

This yields
2

-
7||CHCE( e —elg)lle < T

7-~
S *GHCE( :4];‘11 - eTr E) ||;Uf77-h,eU7—h,Ci
—||C ( e e — gl

<C IEnJrl E" k41,7525 (5.55)

(el — et ) luT T w21

| /\

Here, the second inequality is obtained via the CFL condition (5.40) and the last inequality
follows from (3.29b).

(b) Next, we consider the two terms of the defect &;; given in (5.50). In Lemma 4.20 we already
derived a bound for the first part. For the second part we decompose m, Afy = Afy — A%, where
AT is defined as

tn+1
Az = A?—I - WhAnH = / 8fe,,7H(t) dt.
in
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We have
tn

lny1 - +1
ICaAn. < / ICa(@ s () dt < Cr [ 10PH@)17, dr.
tn

in

Here, the last inequality is obtained by the following computations:

(Chrerm, ¥n). = (Cu(xeH — xemnH), ¢n) . =(Cr(xH — maxH), ¢n) _
:(CHeﬂ',XeH7 ¢h)€
Saﬂ||¢h||€’XeH|k+l,77u?7k

=CrllnlleHlk+1,7, . 2,k

In the second equality we were allowed to interchange x. and 7, since y. is matched to the
mesh elements in the spatial grid 7;. The last inequality is obtained via (3.29b). Moreover, we
have

tn+1
ICa A < / |Ca(OPH(1)) - dt,

and Lemma 5.7 yields

1/2
T2 e a0 7 2 ' 8/2 —111 9217112
ZHCH(at H)[|. < WnatHHH(curLQ) +Cbnd,cm Z Thi 07 H||T &,
FeF
2 Cl +3/2
< ——||0?H + i O’H ,
y 451/2 ” t ”H(Curl,Q) (Cbnd,ccoqc)l/Q 2\/551/2 H t Hlvn,e
because of the CFL condition (5.40). This completes the proof. O

Recalling the error analysis for the Verlet method in Section 4.2.2 we now rewrite the second
term in the defect djl. A crucial observation is that, by the definition of the split discrete
curl-operator Cf; = Cy © Xe, wWe can transfer the idea from the Verlet method to the locally
implicit case. In fact, for all Hy, € V},, we have that

(_TC(%IH’) N <—TOCH T§E> <Xe;{h) =-7C <Xe;{h> = (R —Rg) (Xeglh> . (5.56)

Using this identity we can write the defect EIZ as

an n 7 0 n P P \¢&n £n NITEI T Xeﬂ-hArIEI
n=dn— (CﬁﬁhAnH> =d; + (R —Rp)§", &= (5% =1 ( 0 ) (5.57a)

and split the defect dr = &g + (NiZ into

d"=7"+ (Rp - Rp)E", 7" =dl+d]. (5.57b)
Inserting this splitting into the error recursion (5.53), we obtain
" . " no_ _ n—1 . " "
eZ""l — E‘n _ Rn+1€0 + Z Rn—mRzl,ﬁm . Z Rn_m(€m+1 o gm)’ (5.58)
m=0 m=0

with the same computations as for (4.73). Now we have all ingredients to prove our main result,
namely the convergence result of the full discretization of the locally implicit scheme.
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Theorem 5.13. Let u € C(0,T; D(C)NH*(T,)8) NC3(0,T; L*()°) be the exact solution of
(5.1). Moreover, assume that the CFL condition (5.40) is satisfied with 8 € (0,1). Then, the
error of the central flures dG discretization and the locally implicit scheme (5.11) satisfies

Hun - U—Z”uxe Scapp|un‘k+1,7-h,1,k:+1

n—1
3/2 4 T
+ Cst/bjccﬂ—g Z (|um+1 + um|k+1,7'h72,k + |Em+1 _ Em|k+177_}“27k)

m=0
1/2 2 2
FU+ O T ma |OFH0) 7, (5.59)
1/2 T2 [t 3
+ON2(+ Cane) /0 [P () e dt

§C<hk + T2>.

The constant C' only depends on Capyp, Cr, 0, lu(t)|kr1.7,, |02H@)|, and [|07u(t)|uxe, t €
[0,t,].

Proof. We take norms in (5.58), use the triangle inequality, (5.42) and (5.43), which gives

n—1 n—2
T 1/2 | & 3/2 ~ 1/2 = g
||eZ||qu < HEn 1||;LX€ + Cst/b,cH'fOHuXE + Cst/b,c Z ||77m||MXE + Cst/b Z H£m+1 o émH#XE‘
m=0 m=0
The defect n™ can be bounded with (4.68a) and (5.54a),
2

tm+1
_ ~ T T
177 [l ixe < ng(!umﬂ U k1,702 BT = E™es1 7 20) + 8/t 107 ()| uxe dt.

For €™, observe that €™ = x.£™, where €™ was defined in (4.70a). From (4.74) and (4.75) we
infer

2 tm+2
~ ~ ~ ~ -~ = T
€7 = €7 luxe = 165 — & llw = 165" — Ef . < 4/t 107 E(8) .75, dt, (5.60)
and
[l Xa<l2 max ||0ZH®)| 7.,  ||€ XE<T—2maX 107 |75, (5.61)
HRE =4 beltn1.tn) Holh.e #7574 tefor] e

The result now follows by applying the triangle inequality to the full discretization error e” =
e — e}, and using (3.24a) for the projection error. O

5.4 Upwind fluxes

In this section we extend the locally implicit scheme (5.11) from a central fluxes dG space
discretization to an upwind fluxes dG method. We recall that an upwind fluxes dG discretization
of Maxwell’s equations reads
GtHh(t) = —CEEh(t) — OéSHHh(t),
8tEh(t) = CHHh(t) — OtSEEh(t) — Jh(t), (562)
H,,(0) = Hy, Ey(0) = Ej,

see (3.15).
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5.4.1 Construction of the locally implicit method

In Section 4.3 we presented the Crank—Nicolson method when applied to (5.62),

HZ+1/2 _ h = ——CEEh O[SHHn,
B B = §CH(H}’:+1 +HJ) - %aSE(EZ“ +E}) - %(JZ“ +Jh), (5.63)
Hn+1 _ HTH”I/2 _ _ZCEEH+1 _ ZO[SHHTLJFI
h h - 2 h 2 h

and an adaption of the Verlet method for (5.62),

Hz+1/2 —H} = —*CEEh ozSHHn,
B -Ej = TCHHZH/2 — 7aSEE), — %(JZH +J5), (5.64)
HZ+1 _ HZ+1/2 = ,chEZJFl — gozSHHZ,

see (4.76) and (4.78), respectively. We recall that by our construction of the scheme (5.64), it is
fully explicit, which is a desired property for a Verlet-type method. However, it comes with the
drawback that the stabilization operators contribute to the CFL condition of the method, see
(4.86) and how it enters the proof of Corollary 4.26. Recalling Definition 3.5 of the stabilization
operators, we see that they involve every mesh element in the spatial grid. As a consequence,
we cannot use the full stabilization operators in our locally implicit scheme, since this would
lead to an integrator with a CFL condition depending on the whole mesh 7. As a remedy we
propose to use in place of the full stabilization operators Si and Sg explicit versions Sg; and
Sg, of these operators. In summary, we base our locally implicit time integrator on the Verlet
scheme (5.64), since it is fully explicit, replace the full stabilization operators by their explicit
(yvet to be defined) counterparts, and incorporate the Crank—Nicolson method analogous to the
central fluxes locally implicit method. The resulting locally implicit scheme for an upwind
fluxes dG discretization then reads

HZH/Q _H) = ——CEE" ozSIe_IH", (5.65a)
Bt - Ejf = TcHHZ“/ P4 SCH(H + H)) — TaSEE] — Z(33 T +37), (5.65b)
a2 7chEZ“ - gaSﬁHZ. (5.65¢)

It remains to define the explicit stabilization operators, which we do in the next section.

5.4.2 The explicit stabilization operators

Recall from Lemma 3.6 that the full stabilization operators given by

(SHH,(bh)M = Z aF(nF X HH]]F,TIF X [[(Z)h]]F)F

FeFint
(SEE,vn). = > br(nr x [E]lp,ne x [¢nlr)p+ Y br(nr x Bnp x ),
FeFnt FeFpnd

are consistent, symmetric, and positive semi-definite. They solely take values of the functions on
faces into account. Hence, it is natural to construct explicit stabilization operators by replacing
the sums over all faces by sums over faces belonging to explicit elements, i.e., by the sets ]-" mt

and f,?;d, cf. Definition 5.2. We fix this idea in the following definition.
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Definition 5.14. We define the explicit stabilization operators Sy : V*Hh — V}, such that
for all ¢, € Vp,

(SI(EIH> (Z)h)/i = Z ap (nF X [[H]]Fa ng X [[(Z)h]]F)F ) (5668.)
FG]—‘}L‘E

and Sg, : V*Eh — Vi, such that for all Yy € Vy,

(SRE, ¢n), = Z br(np x [Elr.np x [nlr) g+ Y br(ne x B x dn) (5.66b)
FeFnt Ferp

where ap and bp were defined in (3.13). Moreover, we define

S Vop VP 8= (‘%H 80> . (5.66¢)
E

The explicit stabilization operators share important properties with their full counterparts.
Lemma 5.15. The stabilization operators S§; and Sg have the following properties:
(a) They are consistent, i.e. foru= (H,E) € V, we have
SiH =0, SgE =0, Su =0. (5.67)
(b) They are symmetric on Vy, i.e. for u, = (Hy, Ey), Uy = (ﬁh, Eh) € V2 they satisfy

(StHn, ﬁh)u = (Hj,, SgH;,)

QSeuh,ﬁh) ::(uhﬂseﬁh)

w (SI%EhaEh)s = (Eh,S]%Eh)E ) (568)

uxe puxe "

(c) The are positive semi-definite on Vj,, i.e. for up, = (Hy, Ey) € V2 it holds that

(SaH, Hy), >0, (SEEn, Epn)_ >0, (S°up,up),, . >0 (5.69)

Proof. Analogous to Lemma 3.6. O

Remark 5.16. It is easy to see that it is not possible to define stabilization operators in a
similar way as the discrete curl-operators by means of cut-off functions such that they inherit
all properties in the previous lemma. On the other hand, splitting the discrete curl-operators
Ch Cﬁ, Cg, and C]g as in Definition 5.14 by replacing the full set of faces in the full operators
(3.4) by the sets of faces boardering explicit (for C§, C§) or implicit elements (for Ciy, C&)
leads to operators losing the adjointness property (5.15).

As for the full stabilization operators, we associate a seminorm with the explicit stabilization
operators.

Definition 5.17. For u= (H,E) € V, }, we define the seminorms

Hfs, = Y arllne x [H]#|F (5.70a)
FeF™

Elsg = Y brlnr < [E]elf:+ Y brlnr x B[ . (5.70b)
FeF™ FeFpnd

Moreover, we set
[uf2. = [H%, +[Ef%, . (5.70c)
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Note that for u, = (Hp,Ep) € th we can represent these seminorms with the stabilization
operators by

|uh|?ge = (Seuh,uh) (5.71)

e

Hpl5;, = (SirHas, Hy) [Enls; = (S&En, En)

W wxe

We conclude this section by transferring the results from Theorems 3.10 and 3.14 to the explicit
stabilization operators.

Theorem 5.18. For uy, € Vh2 we have the bound
~ 1/2
luplse < (Cond,eCooye) 1l e 75, T 0sn2,— 1 (5.72)
with constant ébnd,c = 2Ct2rch(9.

Proof. For u;, = (Hy, E;) we have |uy|%. = ]Hh%ﬁ + |Eh\‘2s]%, where by Definition 5.17

|Hh|?9§I = Z ap|np x [Hy]pl7 (5.73)
FeF™

By |np| = 1, the triangle inequality, Young’s inequality, the trace inequality (2.11) on the coarse
mesh Tj, ¢, and (5.35) we infer

ap|np x [Hu]rl3 < 2C2 .ap <€K012th<1HHhHZ,K +€Kpcfr<ph?<§”thli,KF>

< 262 oo (Wi IHRIE 1 + b B2 i, )
Inserting this bound into (5.73) gives

3y, < Gt A2 7

The proof of the bound for |Eh\?gE is done analogously. O

Theorem 5.19. Let u € V, N H**Y(T;,)8. Then, for all o € th, the projection error e, =
u — mpu satisfies

(Cer, Soh)um <Creclenlselalyiy 7 07 2kt l (5.74)

+ Crllonllpxe, k1,7, 2.5

and
(Seeﬂ'a Soh),uxa < Cf7r,c|4)0h|.58 |u|k+1,7—h,eU7—h,ci,27k+l' (575)

2
The constants are given by Cr . = (QNQCOQC) 1/26app and 677 = 26’appCtrNacoop.

Remark 5.20. (a) The bound (5.74) combines the results (3.29a) and (3.29b) for the full
discrete curl-operator C which we used in the convergence proofs in the upwind fluxes case
and in the central fluxes case, respectively. On the elements that are stabilized by &€, we can
use a bound similar to (3.29a) and obtain the higher convergence rate k + 1/2 in the spatial
variable. On the remaining elements we are forced to use an estimate like (3.29b), which leaves
us only with convergence order k. The result (5.75) is the counterpart of (3.30) for the explicit
stabilization operator 8¢ instead of the full stabilization operator S.

(b) Both [ul;,y 7 7 o1 and [ufgr1,7, 2% involve u on the set 7p . In fact, the former
) ;€ ,C194y 2 ’ [X 2l )

involves [ul;, ;7 5,1 and the latter involves |ulx41,7, ,;,2,k- This results in the convergence
s Th,cir4 2 s Th,ciré

rate k on the (very few) coarse elements in 7j .. It also might happen that a very small
amount of coarse mesh elements belongs to Ty, ; \ Thci (e.g. if a coarse mesh element possesses



5.4. UPWIND FLUXES 115

only fine neighbors). Consequently, we only obtain the convergence rate k + 1/2 on the set of
explicitly treated elements 7y, . rather than on the whole set of coarse elements 7j .. However,
an advantage of dG methods is their flexibility in choosing a different polynomial degree on
each mesh element. As a consequence, if we choose the polynomial degree k + 1 on the (small
number of) mesh elements in 75 . N 7, we obtain the rate & + 1/2 on the whole coarse set.
Particularly, we obtain

(Cem SDh)u><€ < CW,C’SOh‘Se|u‘k+1,7’h,c,2,k+% + CWH‘»OhHuX&Th,i’u|k+1,771,f,27k7 (5.76)
and

(Seem 90!1)“XE < Cr.clenlse |u|k+1,77hc,2,k+%' (5.77)

(c) In the following we will use (for a shorter notation) the bounds (5.74) and (5.75) w.r.t. the
set Th,c instead of Tp, ¢ U Th i, and leave it to the reader to recall that by the idea from (b) they
can be sharpened to (5.76) and (5.77), respectively.

Proof. (a) We start with the proof of (5.74): For ex = (exu,er k) and ¢, = (¢p, V) we have

(Cer,¢n),,. = (CEerE, én), + (CHerH, ¥n).- (5.78)

By Definition 3.1 of Cg and since the projection error e, g is orthogonal on Vj, (cf. Defini-
tion 2.16), we deduce that

(CeerE, ¢h>u = Z (curl ¢n, erg) ;- + Z (nr % [on]F, fere}¥)

KeTy, Fe]:}ilnt
= Y (nr x [nlr fered¥)p (5.79)
FeFint
< Y ne x [onlelle I{expdélle+ D lne x [nlele |§eru}lle.
FeF) FeF
Here, we used the splitting of the mesh faces 7" = ,‘lnf: U .7-",11“; from Definition 5.2 and the

Cauchy—Schwarz inequality. By Definition 2.9 of the weighted averages we have

K+ 5Kpcer7r,E|KF||%

Ifere}¥lE = af llexcxere

2
Kell?)

= 20} (exckllenmlic |2 p + xrck, lenmlill )

2
e, F

< 2ar C2, (exh3EBR e + exco B B R 1k, ) (5.80)

< 20} (Jlexexenslill} + lenpcrcpens

< 2ap (CKHeﬂ',E’KHg,F + cipllerElkp

Here, we applied the triangle inequality, Young’s inequality, and (5.35).

From now, the two sums in (5.79) have to be treated differently.
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(b) By the Cauchy—Schwarz inequality (A.3) in R with weight ap, we obtain

> ne < [enlrllF [{ere} e

FeF™

< (Y arlr < 10ideld) (X artHenmbEI)

FeF" FeF™
126 2t 1pm (2 2%+1 1/2
< 22Cupplnlsg (Do enhit T ER o k + excehs [BR Lk, )
FeFt
125
< (2Ngcoo,c) / Capp|¢’h|5§1|E|k+1,n,eu7z,c¢,2,k+§
- ﬂ-’c|¢h|sﬁ |E|k+177—h,eU7—h,cia2yk+% : (58]‘)
For the second inequality we used the Definition 5.17 of the stabilization seminorm and (5.80).
(¢) Again the Cauchy—Schwarz inequality (A.3) in R (%) implies
> Ane x [¢nlelle 1{erp}lle

FeFm
1/2 1/2
< (X wrlnr < fondelF) (X wr'ifenmdElE)
FeF™ FeFm

with a weight wp = ap(hx+hk,)/2 as in (3.36). Note that F;™ (also) contains faces bordering
mesh elements from the fine set 7, y. Thus, in this part of the proof we need the shape- and
contact-regularity of the whole mesh 7Ty, i.e. (2.4). In fact, we can now use Part (c) of the proof
of Theorem 3.10 where we proved the bounds (3.38) and (3.40). This yields

> Alne x [onlelle [1{ers}] | Blkt1,75 5,2k (5.82)

int
FeF

Inserting (5.81) and (5.82) into (5.79), we finally obtain
(Crerp. d1), < Cr,

Analog computations show

f ’E’k+1,7’mu7’h7m,2,k+% + Cxllon Huﬂ’h,i |E|k+1777L,i727k'

(Crerm, Un), < Creltnlsy Ml 7, o7 2kt + Crllvnlle,  Hlerr, 7, 2k,
whence the asserted bound (5.74) is obtained by (5.78) and the Cauchy—Schwarz inequality in
R2.
(d) We proceed with proving the bound (5.75): By Definition 5.14, the Cauchy—Schwarz in-
equalities in L?(F) and in R4FNe) we have
(Stren i, #n), < Y arlnr x [exulrlr [nr x [¢n]r|F
FeFp
1/2
< Iy ( X arllnr < Termlelf)
FeF™
Using (3.41) we have
(Strerm, &n) < Crcldnlsu M1 7, 07 0241
and analogously we obtain
(Sﬁew,Ea ¢h) = Cﬂ’,CW)hLSE|E|k+1,7}lyeu7-h,ci,2,k+%'

Finally, by the Cauchy-Schwarz inequality in R? we get the desired bound (5.75). O
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5.4.3 Interlude: The semidiscrete problem with explicit stabilization

We briefly consider the spatial semi-discretization of Maxwell’s equations with the explicit
stabilization operator, i.e.,

Brup(t) = Cup(t) — aS°up(t) + jn(t),

up(0) = u, (5.83)

since the analysis of this semidiscrete problem gives insight into how the fully discrete analysis
has to be carried out. For the stability analysis we can use the ideas for the fully stabilized dG
discretization presented Section 3.3.

Theorem 5.21. We have the following stability result for the solution uy of (5.83):

(a) For Jy € C(0,T;Vy,) we have

¢ T+1
lun ()2 + 20 /0 ()2 ds < et [u’]2,.. +e! / 13(s)|2 s, (5.84a)

where 6 was defined in (1.20).

(b) For J;, =0 we have
2 ! 2
[[an () xe + 204/0 [un(s)|5e ds = [’ uxe < [[u°[luxe- (5.84b)

Proof. The statement can be proved exactly as Theorem 3.8. O

Note that by (5.84b) the explicitly stabilized upwind dG discretization is (as the fully stabilized
upwind fluxes discretization) dissipative, but only with respect to the explicit stabilization
seminorm. In fact, we have

E(H, (1), By (t)) = £(HL, ED) — a/ot wn(s)[%e ds, 0.

As in the fully stabilized case, the stability parameter o € [0, 1] controls the amount of dissipa-
tion. For the error analysis it turns out that (both in the semidiscrete and in the fully discrete
case) we both need techniques applied in the central fluxes analysis and techniques used for
the fully stabilized upwind fluxes analysis. (Roughly speaking we need the central fluxes tech-
niques on the implicit part 73 ; and the upwind fluxes technique on the explicit part 7 ). This
was already done in Theorem 5.19 which combines these two worlds. First, we give an error
representation.

Lemma 5.22. Let o € [0,1]. Then, the error e, = u, — mpu of (5.83) satisfies
orep, = Cep, — aSep, +d7, en(0) =0, (5.85a)

with defect
di = —Ce, + aS°e;. (5.85b)

Proof. The proof of Lemma 3.9 can be transferred from the full stabilization & to the current
case of the explicit stabilization 8¢, since & and &€ share the same properties. O

We end this interlude with the convergence result for the semidiscrete problem (5.83).
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Theorem 5.23. Let u € C'(0,T;L*(Q)%) N C(0,T;D(C) N H*(T,)) be the solution of
Mazwell’s equations (5.1) and let v, € C! (O,T; VhQ) denote the semidiscrete approximation
obtained from the (explicitly stabilized) upwind fluxes dG discretization (5.83). Then, the error
e =u — uy satisfies

t
Jelt)ee + o [ lon(o)be ds <ol s 7 20
1.~ ! 2
el Cupe [ )10y

t
LT + 1) /0 ()27 0 ds

gc(Kxg% WE (T4 1) max h%ﬁ). (5.86)

where 5’upw7c is given by 5’upw7c = 2072“0(1 + a?)/a. Moreover, the constant C' only depends on
Coapps Cupw.cs Cre, and [u(s)|k+1,7,, s € [0,1].

Similar to the full upwind case, the constant (~)’upch depends on the stabilization parameter
a € (0,1]. For @ = 1 we obtain the smallest constant and for o N\, 0 the bound (5.86)
deteriorates.

Proof. We use an energy technique to prove this result, i.e. we take the p X e-inner product of
(5.85a) with ey (t). Then, by (5.85b), the skew-symmetry of the discrete Maxwell operator C,
see (3.7b), and the property (5.71) of explicit stabilization seminorm, we obtain

1d

5 rllen(®l2c = —alen(t)l3. + (d5(0), en(t),,.

Integrating from 0 to ¢ and using e, (0) = 0 yields
2 ‘ 2 ‘
len(®)2,. + za/o len(s)]%e ds = 2/ (d5(s), en(s) .. ds. (5.87)

0

Using Young’s inequality in the bounds obtained in Theorem 5.19 we conclude that for arbitrary
v1,7¥2 > 0 it holds

o 2 C2 2
(Ceron) e < Mlonle +ellenlc, + 2 1017 ooy + 12 M e (5:59)
and
2
, 2
(Oéseem SOh)MXE < 71042|90h"2se + ﬁ ‘u|k+1,’rhﬂc,2,k+% : (5.89)

Because we have e;, € V;2, we can apply bounds (5.88) and (5.89) to (d<, eh)uXE in (5.87) which
imply

2 2 2 Cle o cz
<2(1+ a%)yilen|se + 272llenlluxe 7, + E" u|k+1,Th,C,2,k+% + 2y ulii1,75 2k

~

2
~ 2 2
< alenfe + 2vallenle + Copc [00E 17 oy + 5 17 20

2(dfr, eh)

ILXE
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where in the second inequality we chose v1 = a/(2(1 + %)) and used lenlluxe, 7. < llenlluxe-
Inserting this bound into (5.87) we conclude

t t
len(®)]2,. +a /0 len(s)[Ze ds < 27 /0 len(s)2... ds
¢ ~ 2 62 2
s
# ) G 0O 2y + 5 PO 00)

Next, we apply the continuous Gronwall lemma (Lemma A.1), which results in

t t 2
~ C
2 2
’eh(t)‘im‘*‘@/o len(s)|se ds < e272t/0 (Cupw,c|u(3)‘k+1,n70,2,k+% - ’u(3)|k+1,7‘h,i,2,k) ds.

272
Finally, choosing the weight vo = (T 4 1)/2 and using [le[|%,. = [lex[2.. + llenl’ ., together
with (3.24a) yields the desired statement. O

Note that in contrast to the convergence proof in the fully stabilized case (cf. Theorem 3.13),
this proof requires a Gronwall lemma.

5.4.4 Analysis of the locally implicit method: Stability and energy dissipa-
tion

Our first step in the analysis of our locally implicit upwind method (5.65) consists in casting
it into a compact form with the operators Ry and Rp of the locally implicit central fluxes
scheme.

Lemma 5.24. The locally implicit scheme (5.65) is equivalent to

Rout! = Rpuf - oS + 2 (5 +7), (5.90)

where the operators Ry, and Ry were defined in (5.13b).

Proof. Adding (5.65a) and (5.65¢) yields
H} "' — Hj, = —Cu(E}" + E}) — raSHH],
which is the first component of (5.90). For the second component we subtract (5.65¢) from
(5.652):
172 1 T
H; "2 = O (T HY) 4 Ca(BR - E).
Inserting this into (5.65b) we infer

2
B~ Ej = SCu(H} " +H}) + - CiCe(E}™ — Ef) — 7aSRE] — (I3 +J7),

by using C§ + Cly = Cu, see (5.12). O

Next, we give an energy identity.

Lemma 5.25. The approzimation up = (H},E}) obtained from the locally implicit method
(5.90) satisfies

2 n
T T 1 T
Iy e = S ICEER T — ag ™ e +ag D o™+ ufl 3.
m=0 (5.91)

2 n
T T T R .
= [l e = FICEERI, — aglafdlse + 5 D (" + 3w + uf)

m=0

uxe’
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Proof. Analogous to the proof of Lemma 4.23. O

This lemma implies that the upwind fluxes locally implicit scheme is dissipative w.r.t a perturbed
electromagnetic energy.

Corollary 5.26. For vanishing source term J, = 0, the approzimation up = (H},E}) of the
locally implicit method (5.90) satisfies

~ T
Eupw (HIL B = Eypne (HY), Ef) —ag Z ot ulE, n=1,2,... (5.92)

where the perturbed electromagnetic energy gupw 1s defined as

~ ~ T
gupW(Hh)Eh) = g(Hhv Eh) - az‘Uh"zse.

Next, we address the stability of our locally implicit scheme. As for the upwind fluxes Verlet
method we will need a tightened CFL condition compared to the central fluxes case since the
stabilization enters the CFL condition (compare the two CFL conditions (4.49) and (4.86) for
the central fluxes and the upwind fluxes Verlet method, respectively). The upwind fluxes Verlet
method involves the full stabilization operators and thus their contribution in the CFL condition
comprises all mesh elements in the spatial grid. In contrary, we constructed the upwind fluxes
locally implicit method with the explicit stabilization operators and as a consequence we obtain
a CFL condition involving only the coarse grid elements. In particular, the CFL condition
for the upwind fluxes locally implicit scheme reads,

20
7T<————— min hg, 5.93a
o C1bnd cCoo,c KETh,c K ( )

with a fixed parameter 0 < 0 < 1 which satisfies

Oupw = 0% + ) < 1. (5.93b)

Note that the CFL condition depends on the stabilization parameter «. For larger a we obtain
a method with a stricter CFL condition.

Corollary 5.27. Assume that the CFL condition (5.93) is satisfied. Then, the approximation
u} obtained from the upwind fluzes dG discretization and the locally implicit method (5.90) is
bounded by

(1 - upw)HU”“Hera Z i+ a5

T+1 7
< &2 )2 ye + —— T
(1 — Oupw) 0

m=

n

[Eha +Jm\l2> ; (5.94)
form=1,2,... Np.

Observe that the bound deteriorates for gupw 1.
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Proof. We apply the Cauchy—Schwarz inequality and the weighted Young’s inequality with
weight v > 0 to (5.91),
1 1 12 152
[t ,N+Oé Z [t up e < flup 7. + HCEE’H I+ a5 Iun+ 5
n

+ @ Z IIJ"”1 + 3% e

+ 7 Z Hum—HH,uXE + Huh ”,uxs) (595)

By the boundedness results for C¢ and | - |se obtained in Theorems 5.6, 5.18 in combination
with the CFL condition (5.93), we infer

2
T 1 112 1
Z||C}63EZ+ 12 + a*!ll"* Ze < Oupwllu 2., (5.96)

since CAZ'bnd,c < Chnd,c- Inserting the last inequality in (5.95) shows

(1 - HUPW)HunJ’_l u><z—: tag Z |um+1 + uZLLZSe < ||u?LH/2L><E Z HJm+1 +Jh Hqu—:

n

.
g D (g e + I )

m=0

We choose the weight v = (1 — gupw) /(T +1), so that the discrete Gronwall lemma is applicable
(Lemma A.2 with A = 1/(T 4+ 1)). This yields

(1- 0111>W)Hun+1 uxs+a Z |um+1 + UZIESS

SWQﬁJ@mm ZWme,

upw

which finishes the proof. O

5.4.5 Error analysis of the locally implicit method

As in Chapter 4 we split the full discretization error into e" = e} — e}/, where the error e}
satisfies the recursion of the locally implicit method (5.90) but with defects instead of the
source term jp. The next lemma gives the details.

Lemma 5.28. Letu € C’(O,T; V*) nes (O,T; LQ(Q)G) be the exact solution of (5.1). Then, the
error e} of the locally implicit scheme (5.90) satisfies

’ﬁ,LeZJF = Rpel — raS%} + dﬁpw, (5.97a)

where the defect Zigp =d7 pw + d s given by

d* . =d’+raS%", (5.97b)

T, UpwW

and where d” and (NiZ were defined in (5.50).
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Proof. First, we observe that the locally implicit method (5.90) can be written as

2

+1 _ T +1 +1 T 0
uZ uZ - §C( u, "+ uh) —Tas¢ uh + 5 ( h +-]h) + Z (C%CE(EZ+1 B EZ)) .

Next, we insert the projected exact solution into this form of the locally implicit scheme,

mp(u T —uh) :%th(un+1 +u") — ra8°mu”

2

I sn+1 n L 0 n
+ 2(Jh +Jh> + 4 (CfiICEﬂ'h(En—i_l _ En)) dupw

Subtracting these two equations yields (5.97a). It remains to determine the defect dupw By
(4.61) and the consistency of the explicit stabilization operator (5.67) the exact solution u

satisfies

mp(u T —u) = gC(u”Jr1 +u") — TaSu" + 2( P 4§ + 20" (D).
Subtracting the last two equations yields
dr . = —ZC(enJrl +e") + raS%” — %m0 (Ju) + r 0
upw 2 s ™ T h t A C%CEWh(En+1 _ E") :
Finally, using
ChiCrmy(E"! — E") = —ChmAfy — CiiCr(e) | — el p),
see the proof of Lemma 4.19, gives the desired expression for the defect dﬁpw. O

By (5.50) the defect aZ consists of two parts, where the first one does not cause problems, but
the second part cannot be bounded straightforwardly, since it suffers from an order reduction
from Ti to 725, see Lemma 5.12. As a cure we presented in (5.57) the idea of splitting the
defect dj} into

di =dj + (R, —Rp)€", &' = i (X”’SA%> : (5.98)

In the following we will use this idea, but we cannot follow the further steps from the central
fluxes case. In contrary to the central fluxes case we apply an energy technique in order to obtain
the improved spatial convergence order k+1/2 in the spatial variable as in the semidiscrete case,
see Section 3.4.2, and as in the fully discrete case with the Crank—Nicolson time integration, see
Section 4.3.2. However, it turns out that even the energy technique applied directly to (5.97),
(5.98) fails to give the desired temporal convergence order. The essential idea — besides the
energy technique — is to consider a modified error €} instead of e}. A related idea has been
presented in Verwer [2011]. In the following lemma we introduce this modified error and give
the associated error recursion.

Lemma 5.29. Let u € C(0,T;V,) N C3(0,T; L*(2)®) be the ezact solution of (5.1) and let ]!
be the error of the locally implicit scheme (5.90). Then, the modified error

fé”Z, — e’lrlL _ gn—l’ n Z 17 E?L = e?L = 0, (599&)
satisfies

ﬁLEZ = Rpel! — TaSE} + ar n >0, (5.99b)

upw>

with defect

S - (5.99¢)
d? o, +di — Re(€" — €1 — a8, n>1.

T,Upw

~ _{dgupWerg—ﬁREO, n=0,
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An important observation is that by (5.5) we have 5" € V2 and thus e} € V2.

In (5.60) we have seen that the difference E” — E’“—l allows us to gain an order 7 which avoided
the order reduction in the temporal convergence order in the central fluxes case. The same
should hold true in the upwind fluxes case, which motivates the modified error recursion.

Proof. We employ the splitting (5.98) of dh in (5.97a), which yields

’ﬁ,Le ’R,Reh —TaS%) + dﬁ upw T dp + ('féL — ﬁR)én
= Rpe} — raS%) +d? p +df + RE" — Rp(€" — €1 —Rr€™ !,  n>1,
Rrep =d?  +d)+ (R —Rg)E,

T,Uupw

since e(,)l = 0. This is equivalent to

7’% ( n+1 én) _p (en_gn—l) TOzSee +dﬁupw+dn_RR(£ sn 1) n>1,
RL (eh - 60) = 7'( JUpwW + do RR£O7
which ends the proof. O

The error €} satisfies the recursion (5.90) of the locally implicit scheme with defect aﬁpw instead

of the source terms 5 (‘]ZJrl +j}). Hence, we can apply Lemma 5.25 and obtain

&5 e + Z &t e s = HCEN”“H# !N”“ 5

0 ~1 E : m+1 ~m
(dUpW7 u><a + UPW’ + ©€h ),u><5’

where we used 62 = 0. By the boundedness results for C¢ and &¢ obtained in Theorems 5.6
and 5.18 in combination with the CFL condition (5.93), we infer

(1 Oupw) I8} 2 + s Z @+ & Ee < (0 6h)
Z - m+1+eh)w, (5.100)

see also (5.96). So, we have to bound the defects in the form (&fﬁaw, ‘Ph)um' For the sake of
readability we give these bounds with respect to a generic constant C, which depends on Cr .,
@r, Cetr, éapp, Chnd,c and ¢ ¢, but is independent of 7, h and «. Moreover, we introduce
two weights ~y1,v2 > 0 which we will choose in our main theorem (Theorem 5.35).

We start with the projection error d;‘ upw-

Lemma 5.30. Assume that the exact solution of Maxwell’s equations satisfies u = (H,E) €
C(0,T; H*(T3)%) and E € C'(0,T; H*'(T;,.)?) and moreover assume that the CFL condi-
tion (5.93) is satisfied, Then, for all oy, € V2 we have the bound

(A7 upws #1) e < L+ ) n7lenlSe + 2727015 e

C 2
~ n+1 n n|2
+ 717( w4 u ’k+1,”rh,0,2,k+$ 0 7 2k L >

C n+1 n|2 tnt1
(e gt [ OEOR g i ).
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Proof. We recall that by (4.58), (5.50) and (5.97b) the defect d”

7_2

T 0
d upw = _§C(eﬁ+1 +ef) +rase; — 4 (CﬁCE (e7”'E1 — e E)> '
T m,

Tupw 1S given by

The first two terms can be bounded by (5.88) and (5.89). For the third term of d” upw We use
the Cauchy—Schwarz inequality and the weighted Young’s inequality to obtain

2 3

T 0 > > 2 n+l n 2
e e n+l _ _n » Ph < 'VQTHSDh”ng ”CHCE( eTr,E) Hz—:
4 <<CHCE (e e g) e

T, E B

< yrllenlixe + HCE( me —elp)ll (5101

Here, we used Cf;Cr = C{Cg, the boundedness result for Cﬁ from Theorem 5.6, and the CFL
condition (5.93) for the second inequality. So, we need to bound a term of the type |Cger gl .-
Therefore, note that by (5.74) (cf. the proof of the associated theorem), we have

(CkerE, ¢h)u = (CeerE, Xeﬁbh)ﬂ < Ch,

i |E|k+1,Th,c,2,k+é )

since |[xednlly,7,, = 0. Next, we use the boundedness of | - [sg,, see (5.72) and the associated
proof, to obtain

712 (Chene, 0n), < 72 Cre(Cond.ceoo.c) V2 IXeOh 7 75 2,172 [Bliir 75 2ot L
< \@Cw,cu(ﬁh”u |E’k+1,7’h,w2,k+% .

The second inequality follows with the CFL condition (5.93) and the fact that CA'mec /Chnd,c < 1.
This yields
7'1/2”c]€397r,EHu < \/icﬂ,c ’E‘k—i-lﬂ’h,c,Q,k:-l-% )

and we can conclude

2
n+1 7r c ‘En—‘,—l

FH E( )Hu = 8 |k+1,7;1,0,2,k+%‘

Inserting this bound into (5.101) and using that

2

11 2 tn+1

n n —

" —E |k+1,Th,c,2,k+§ - / OE(t) dt )
tn k+17771,eu7;l,ci727k+§

tn+1
2
<r / OBWE 7 apys
tn ’

finishes the proof. O

Remark 5.31. In comparison to the central fluxes locally implicit method we need an additional
regularity assumption, namely that E € C! (O,T; Hk+1(77170)3). The reason lies in the bound
(5.101). It is possible to change this bound to

7—2 0 © _L(Cc(n-‘rl_en )Ced})
4 ce CE( 1’L+1 ez7E) s Fh e 4 H m~E)“E¥h u

7_2

1
SZCﬂ,c|cﬁ¢h|S§|En+ _En|k+1,7;1,6,2,k+$7

which yields the right convergence order k 4+ 1/2 in the spatial variable without a regularity
assumption on 0;E. However, this bound implies that a term |Cg (e}, ntly e 191 sg, enters the right-
hand side of our error recursion and our locally implicit scheme does not prov1de a dissipative
term of this form to cancel it. Thus, this ansatz is not usable.
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Next, we address the defect Rp(€" — £71).

Lemma 5.32. Let the exact solution of Maxwell’s equations satisfy H € C3 (O,T; L2(9)3) and
moreover assume that the CFL condition (5.93) holds. Then, for all ¢y, € Vi2 and alln > 1, we
have that

. C’ tn+1
(Rel@ =& n) e < wrlinlioe+ 7' [ 1RO 7,
n—1

Proof. Comparing (5.98) with (4.70a) we see that
£ = x£" = (XJSA > : (5.102)

For general functions H;, € Vj, and ¢y = (¢n,¥n) € Vh2 we have by the definitions of ’fiL in
(5.13b) and of Cfy in (5.16a) that

s eH e
<RR (X 0 h) ,<Ph> = (XeHh,%)M + %(CHHhﬂ/Jh)E
Xe

2
.
< sorllenlee + o (Il 7, + TCHE)

1
2

< %eTllenllixe + 277” hHuTh e (5.103)
Here, the first inequality is obtained by the Cauchy—Schwarz inequality and the weighted
Young’s inequality, and the second inequality follows from the boundedness result for Cg,

i.e. (5.25b), and the CFL condition (5.93). Using this, we have

. o ¢n—1
(Rr(€"—&"1), <Ph)uXE = <RR (XE@H 0 ‘n )> ﬂ%)
JXE

1 5 S
< ’Y2T\|<Ph||3m + ﬁHﬁﬁ — & 1”2
4 tnt1

< o7l enlfixe + 75 3273 1o HO 7, d

n—1

Here, the second inequality follows via (4.74) and the proof is complete. O

In the subsequent lemma we provide a bound on TaSeg"*I.

Lemma 5.33. Let H € C2(0,T; H™LE=D (T, )3) and assume that the CFL condition (5.93)
is satisfied. Then, for all pp € Vh2 and allmn > 1, we have that

(70436571_1,9011)%5 < ma’Tlpnls
tn

C
Rl A G 2 O 0 (OT AP L2
tn—1

Proof. By using (5.102), the Cauchy—Schwarz inequality and Young’s inequality we obtain

3
~ _ 7- _
Ta(8°¢" la@h)uxg < 1al€" 7 selpnlse < v1aPT|on)Be + 61 —— |xemn A 5

In the second term we decompose m, A}y ' = Afy ' — AL where

tn tn
AT = | OFH(t) dt,  AY'= t Ofexml(t) dt,
n—1 n—1



126 CHAPTER 5. LOCALLY IMPLICIT TIME INTEGRATION

see part (c) of the proof of Lemma 4.20. By the definition of | - |sg, , see (5.70a), we have

3 3
T T B
|X67Th nH ! ‘25e = 764 Z CLFHTZF X IIXeﬂ'hAnH 1]]F”%“
71 A

FeF

3
<2 3 ar (Il el + TxeAZ e l3). (5.104)
3 ’YI Fe]:int
h,c

Here, the inequality is obtained via the splitting of FhA?{l, the triangle inequality, Young’s
inequality and |np| = 1. We bound the two terms separately. For the subsequent calculations
it is important to recall that the set JF} int - only contains faces bordering coarse elements. So, for

the remaining proof let F' € ]-';Lnﬁ, Wthh yields K, Kp € Tp.c.
(a) For the first term the Cauchy—Schwarz inequality in L? yields

tn
ar|[xeAf TrlF < aFT/t IO H(®)]FlI7 dt
n—1

o IXe(WOPH®))I ke dt

tn
< 202, apr / i e (uOPH ()2
tn 1

tn
<90 T / e O 2 e, .
tn 1

Here, we used the triangle inequality, Young’s inequality and the continuous trace inequality
(2.13) for the second inequality, and (5.32) for the third inequality.

(b) For the second term we have

tn
ap|[[xeA7FllE < aFT/ IIxe0ferm(t)]FlE dt
tn—1

tn
< 2Coo,cT/ IxeOFerm(t)xfp + IxcOierm(t) .l r dt,
t

n—1
where the second inequality is obtained via the triangle inequality, Young’s inequality and
(5.32). Let k = max(1,k — 1), then the regularity assumptions on 0?H together with (3.24b)
imply

2 2 A2 12k—1) 92772 A2 47 —472k+31 921712
H@t eﬂ—’H|KHIJJ7 Capph’ |815H|E7 = Capp 7' hK hK+ ’at H‘E,K
16C2

< o1 app —4h2%+3’82H‘g

bndc OOC

For the last inequality we used the CFL condition (5.93). Hence, we end up with

ap||[x-Ar rlF < 32@7_3/ h%€+1|xeat2H(t) + I X OPH(L) gy Ot
C’bnd ,c-oo,c tn—1

where we used h%ﬁ‘? < h%f“. (This holds true with in the case k > 1 and in the case k = 1
for hxg < 1, i.e. the relevant case for a convergence proof. If hx > 1, an additionally constant
Q|2 enters this bound.)

(c) Inserting the results from (a) and (b) in (5.104), we infer

’ ‘ C(?trcoo,c A /tn ” 9 (t)H2 .
X h St T Mé H 1,7h.e d
64 el H |6 P t Th,

C§ tn
b2 [ O] .t
C’énd ,C OO 0'71 tn_1 Hlax(l,k 1)77—h er2, k+2



5.4. UPWIND FLUXES 127

which is the desired bound. O

It remains to establish a bound on d0 It will be essential that this defect appears as inner

upw*
product with the local error eh.

Lemma 5.34. Let the exact solution u = (H, E) of Mazwell’s equations satisfy
ue C*0,T; L2 ()% NnC (0, T H Y (T,)8),  EeCH0,T; H (T 0)%),

and moreover assume that the CFL condition (5.93) holds. Then, the following bound holds
true

(d8PW’~1)u><a SC’ul + uo‘%+1777u27k+1
,
+ 07! s |FR() [, + O [P0

+C’T‘u 1+C’T‘u

0 0
’k+1 The 2k + |k+1,7;1¥c,2,k+% :

Proof. By (5.99b), €, = 0 and subsequently (5.18b) we have
(@ &), = (R, < G
Under the CFL condition the operator R, is invertible and thus we obtain from (5.99b)
Aéllz R (dgr JUpwW + d(l)z) + ffé’go

Observe that by (5.97b), (5.50) and (4.58) we can write the projection defect as

2
~0 T 1 0 0 T ’
B = —geleh o) £ 708~ (g el et )

e (al _ A0
(RL — RR)(e +e ) + TaSeeO + - (RL — RR) <cE(e7r’E0 eW’E)> .

Here, the second equality follows by R —Rg= —%C and (5.56). Using Lemma 5.8 we infer
18 xe IR uxe 1% xe
IR e (7185 e + 1D e )
~ 1 T
1T = Rue (G llek + eDlue + 7 ICE (e — el w)l)
1/2
< o€l
+ Cumo(Tl157€S e + \|d°uuxa)
1/2
F 2 (Gled + e + TICE (kg ~ p)l)-

The first term can be bounded with (5.61), the third term with (4.68a), the fourth term with
(3.24a) and the last one as in the proof of Lemma 5.30. For the remaining defect we use (5.75),
(5.72) and the CFL condition

T(Seeﬂ, ‘;Dh)‘u><€ < Cﬂ,cT|‘Ph’Se|u|k+1,7’,hc,2,k+%
S CW,C(CbHd,CCOO,C)l/2T||(Ph||/14><57771,75U7—h,cia27_1/2|u|k+1yn,c’2:k+%

< \/ﬁcn,ch/Q||<Ph||MXe|U|k+1,Th,C,2,k+%7
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see also the proof of Lemma 5.30. As a consequence, we have
e 0 1/24,.0
7I8 € lluxe < V2Cr 20y 7 g

This concludes the proof. O

Now, we have all ingredients to prove the convergence result for the full discretization
of the upwind fluxes locally implicit method.

Theorem 5.35. Assume that the exact solution u = (H,E) of Mazwell’s equations (5.1) sat-
isfies

ue C(0,7;D(C) N H*(T;,)%) nC3(0, T; L2()%),

and
EcC0,T; H(T0)%),  He (0, T; Hmh1(T, )%,

)

Moreover, assume that the CFL condition (5.93) holds true with gupw € (0,1), and assume that
nt <T. Then, the error of the upwind fluxes dG discretization and the locally implicit scheme
(5.65) satisfies

[[u” _uhHuxa—i_O‘ Ejlem+1 + @[5

o)

<C(’u gk 0t 00 e T Dnax 1O7H ()2,

sbn

tn
n CT4/0 (Hatgu(t)uixs + HuafH(t)Hi%,e) dt

n
2 2
+07 ) <|um|k+1,7'h,m2,k+% + |“m|k+1,n,i,27k>

m=0

tn
9 2H ()2
+ C/ latE(t)’k-l—l,ﬁ,c,Q,k—i—% HITHO) ] 151, Thes2,det L ) dt

§C< max h2k+1 4+ max h2k+7' >
KeTh e KeTy

The constant C' only depends on Capp, Cr.c, @, Cetr, C’app, Chnd,e, 1/(1 — upw) and from T,
(1+0?)/a, and moreover from [u(t)|ky1.7,, [OEW) k11,75 > [07H) [max(1,k—1),75, . and |OFH(E)]|,.,
107 (t)[|ixe, t € [0, ).

Remark 5.36. We recall Remark 5.20: In dG methods we have the freedom to choose the
polynomial degree differently on every mesh element. Thus, by choosing degree k + 1 on the
(very few) elements in Tp, . N Ty ;, we obtain the convergence rate

_ m+1 . < C( h2k+1 B2 )
Ju" = il + 0] Z|e Fea < O guax ME 4 e Wi 47

This is the desired rate k + 1/2 on the coarse elements and k on the fine elements.

Proof. The full discretization error is given by e" = e} — e}l — @-1. Using (eﬂ, gph)#xe =0,
and the triangle inequality and Young’s inequality we infer

6™ 7ixe < lleRllne + 21€7 Ixe + 218" [7xe-
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The first and the last term can be bounded with (3.24a) and (5.61), respectively, which yields

lex 1l

4
WXE < Capp|u‘k+177’h,2,k‘+la ||£-n 1||u><5 = 16 [ ||82H( )Hp,ThF

n— lan}

For the remaining error €} we have the bound (5.100) and inserting

n C 4 bnt1 3
(dhﬂph)ux5 > FYQTH()OFLH;LXE %T ] Hat ( )H,uxs )

and the results from Lemmas 5.30-5.34 with 1 = «/2(1 + 2a?) we obtain
(1- upw)HM”Hllux#Oé Z &+ e s

< 3yo7 Z 1+ + &5l

+Cla + a7 ok
+ C7* max ||0?H
T te[O,):]H PH() 7.

C tn+1
LY /0 |02, dt

V2
C 2
— m~+1 m m|2
T > (‘“ U g kg T |k+1,771,c,2,k+§>

C

n tn+1
+1 2 c 2
T Z [u" ™+ un’k+1,7’h¢,2,k + 7'/ |atE(t)|k+1,Thc,2 k+3 dt
72 m=0 ’ 72 0

c [ir
+%/0 (T4HM6§H@)H%%6H‘fH()fnaxlk DT 2kt )dt'

By the triangle inequality, Young’s inequality and by choosing the weight vo = ! (g 1y we have
3yar e+ & ke < mz(H~m+1\|2 + &R 1)
V2T € Ch lluxe = T+1 2 Ch X € Ch lluxe

and thus the discrete Gronwall lemma (Lemma A.2) yields the result. O

5.5 The locally implicit scheme and the implicit midpoint method

In this section we present the locally implicit scheme when the implicit time integration is
carried out with the implicit midpoint method instead of the Crank—Nicolson method. We
restrict ourselves in this section to a central fluxes dG space discretization.

The only difference of the Crank—Nicolson and the implicit midpoint time integration for the
semidiscrete Maxwell’s equations stemming from a central fluxes dG discretization (3.8) is the
treatment of the source term, see (4.40) and (4.93). So, by substituting 7 (jj, i i) to TR we
change from the Crank—Nicolson scheme to the implicit midpoint method. The same holds true
for the locally implicit scheme (5.11), i.e. our implicit midpoint method locally implicit
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scheme reads

HZ+1/2 . HZ _ —%CEEn, (5105&)
By - By = rCREG T 4 S (B 4 H) (5.105b)
HZ+1 _ Hz+1/2 — _%CEEZH‘l, (5105C)

or, more compactly, _ _
RLUZJ,-I _ RRuZ + TjZ+1/2, (5106)

where the operators R, and Ry were defined in (5.13b). Clearly, the implicit midpoint locally
implicit scheme (5.105) satisfies the same stability and energy conservation properties as the
(Crank—Nicolson) locally implicit scheme (5.11), see Corollaries 5.9, 5.10.

Corollary 5.37. Assume that the CFL condition (5.40) is satisfied with parameter 6 € (0,1).
Then, the approximation uj obtained from the implicit midpoint locally implicit method (5.105)
is bounded by

n—1

1/2 3/2 T

e < ol e+ €Y7 S 974172, (5.107)
m=0

Moreover, for vanishing source term J, = 0, the perturbed electromagnetic energy g(Hh,Eh)
defined in (5.45) is conserved,

EHLE) =EMHLEY)), n=12....

Now, we turn to the error analysis of (5.105). First, we present its error recursion.

Lemma 5.38. Let u € C(0,7T;V,) NC?(0,T; L*(Q)°) be the exzact solution of (5.1). The error
e} of the implicit midpoint locally implicit scheme (5.105) satisfies

Rrel™ = Rpef +d”, d"=d"+d}. (5.108a)
The projection defect aﬁ was defined in (5.50) and the quadrature defect czlg s given by

o 0 (5.108b)
Ty \CpmiAY ) '

where df was introduced in (4.95b). The defect can be written as

d” = d” — 72m,6"(0pu) + (Rp — Rg)(mpl" + €"), (5.108¢)
with ) ) - 0
dl =d’ - T (Cf&CE(eZEl B e?E>> ) (5.108d)
where d? and ™ were defined in (4.95d) and £" was defined in (5.57a).
Proof. (a) In (4.96) we obtained the recursion
Rymu™t! = Rpmpu” + rji /2 — dn (5.109)

for the projection of the exact solution u. By inserting mpu into the implicit midpoint locally
implicit scheme (5.106) we have

'ﬁ,LTrhun—H = 'ﬁ,mrhu” + 7‘j2+1/2 —dan. (5.110)
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Subtracting (5.110) from (5.106) yields the error recursion (5.108a) where the defect d™ yet has
to determined. This is achieved by subtracting (5.110) from (5.109) which implies

an

Ei” + (RL — 'ﬁ,L)ﬂ'hunJrl — (RR — ’ﬁ,R)mLu"

|
Qll

T 0 N_T 0

4 \Cxmn A 4 CECE(GZEI — e;‘7E) ‘
Here, the second equality follows analog to the proof of Lemma 5.11.
(b) The representation (5.108¢) of the defect d” follows with (4.95¢), R, — Rr = Ri — Rar,
and (5.57a). O
Now, we state the convergence result.

Theorem 5.39. Let u € C(0,T; D(C)NH*(T,)8) NC3(0,T; L*(2)°) be the exact solution of
(5.1). Moreover, assume that the CFL condition (5.40) is satisfied with 0 € (0,1). Then, the

error of the central fluzes dG discretization and the implicit midpoint locally implicit scheme
(5.105) is bounded by

[u™ — UZH/LXE SCapp|un|k+1,7'h,1,k+1

n—1
3/2 A 1
+ . Cor 3 (217 o+ SIET ! — B 70k

m=0
2
1/2 \T 2
+ (1 + Cstb,c)z tg[loz,lt}i] Hat u(t)H,uXE
1/2 T2 [in
FOUR A+ Can) S [ 0Pl e
0
SC(hk + T2>.

Proof. For the full discretization error e = e}} — e}! we have by (3.24a)

1€®luxe = llexlluxe + lleklluxe < Capplu”lk1,7:, 1441 + ll€f luxe,

since (eﬁ, eﬁ)uxe = 0. Under the assumption of the CFL condition the operator R 1, is invertible

and by solving the recursion (5.108a) we obtain

ez—l—l _ ﬂ_hén + gn _ Rt (ﬂ-héo + EO)

n n—1
+ Z ’R,nfm’ﬁ,zl (Eﬂm - TQTrhS”(ﬁtu)) - Z R (ﬂ'h(ém+1 —¢™) + EmH — gm),
m=0 m=0

compare (5.58). The assertion now follows with the bounds (5.42) and (5.43) on ’ﬁzl and R™,
respectively, and with the bounds (3.43), (4.29d), (4.33¢), (4.35),(5.55), (5.60) and (5.61). O






CHAPTER 0

Implementation and numerical results

Our last chapter is dedicated to the efficient numerical implementation of the central fluxes
and the upwind fluxes locally implicit schemes. This issue will be discussed in Sections 6.1 and
6.2. Moreover, in Section 6.3 we provide numerical examples illustrating the efficiency, the sole
dependence of the CFL condition on the coarse mesh elements, and the theoretical convergence
order we obtained in the previous sections.

6.1 Efficient formulation of the locally implicit schemes

Given uj our locally implicit schemes (5.11) and (5.65) require the solution of the following
linear system
-

Roui =bP(a),  bj(a) = Rpu} — raSuf + 5

@rtt + k), (6.1)
to compute u} " . For a = 0 we obtain the right-hand side of the central fluxes locally implicit
time integrator and for a € (0,1] the right-hand side of the upwind fluxes locally implicit
scheme. In particular, both schemes exhibit the same left-hand side of the linear system
which has to be solved in every time step. In the following we will drop the argument « in b
and only write it if necessary.

n+1
h

At first glance (6.1) seems to be a linear system of all degrees of freedom (dof) of uy = (Hy, Ep).
However, similar to the Crank—Nicolson method in Section 4.5.1, we can reduce this system by
using a Schur decomposition. This yields the equivalent linear system

z %EE H;™ =1 - BT}LI ~ (6.2a)
0 L E;+! by + TCuby

where the right-hand side reads
~ T
u=H; — §CEEZ — 1aSiH}, (6.2b)

_ 2
b = Bf + ZCaH} — TChCuE} — raSEE] — 2(Ip 4 37), (6:2¢)

133
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and where the Schur complement is given by

_ -2 -2 2
L=T-— ZCI%ICE + ZCHCE =7+ ZC%ICE. (6.2d)

Note that solving (6.2a) only requires to solve a linear system on the dof of the electric field Ey,.
Comparing (6.2d) with the Schur complement £ of the central fluxes Crank—Nicolson method
(4.98b), we see that both are linear systems on all dof of the electric field, and they only differ
in the fact that the locally implicit methods involve Ci; whereas the Crank—Nicolson method
uses Cy. A detailed discussion why the locally implicit methods can be implemented far more
efficiently is provided in the next section. Moreover, by construction, the upwind fluxes locally
implicit scheme integrates the stabilization operators explicitly. Hence, its linear system does
not involve these operators — in contrast to the upwind fluxes Crank—Nicolson method, see
(4.99¢). This is of great computational advantage, in particular if we want to use direct solvers,
see the discussion in Section 4.5.1.

Next, we discuss the right-hand side of (6.2a). Note that we have HZH/ 2= E’I}I + SaSHHT,
and thus

by, + chB" = E! - raSLE}
ey 4 Soh (T 4 B - SSEHY) - S(T 4 37). (63)
In the central fluxes case this simplifies to

BR(0) + 5Cubi(0) = Bf, + ey Y 4+ Zoi (H P+ HY) - S(I0T 4+ 37), (6.4)

where we used (5.11a).

We summarize the computations needed to perform the time step from uj to uZ'H with the
locally implicit methods in Algorithm 6.1.

Algorithm 6.1 Update from HY, E} to H™', E*! in the locally implicit methods

Given H}, E}:
1: Compute H /% = by 4+ TaSgHP by (6.2h)

2: Compute B% + %CHBﬁ by (6.3) (upwind fluxes) or by (6.4) (central fluxes)
3: Solve EEZH = B% + %CHf)ﬁ with £ given in (6.2d)

4: Update H}t! = HZ“/2 — ICRE]T! — ZaSgHD

Note that for the central fluxes case the computation of HZ’H/ % in Line 1 can be replaced by

HZ+3/ 2 = 2H’,;°Jrl — Hj} for n > 1. In the upwind fluxes case the value C’EE’,;”Jrl might be
saved in order to use it in Line 1 for the next step. In summary, carrying out one step of the
central fluxes locally implicit method needs one matrix-vector multiplication with (the matrices
associated with) Cg, one with Cgy, one with Cfl and the solution of a linear system involving C.
The upwind locally implicit method additionally needs one matrix-vector multiplication with

Spp and one with Sg.

As indicated above, our next aim is to analyze the left-hand sides L and L of the locally implicit
scheme and the Crank—Nicolson method, respectively, and show why (and in which setting) the
locally implicit scheme can be implemented more efficiently than the Crank—Nicolson method.
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me{l,..., 0} I me {41, N}
_ ([ Pm _ (0
re{l,... )
(e * 0
= (2
te (B 11, Ny}

0 0 *

Table 6.1: Zero and possibly nonzero entries of the mass matrix My, = ((pm’w)um =

(¢m7 (bf)u - (wma W)E-

mE{l,,T

mE{%—i—l,...,Nh}

= () | =)

te{l,... )
ey 0 *
(s
ZE{%—FL...,N}L}

ee= (1)

Table 6.2: Zero and possibly nonzero entries of the stiffness matrix Cy,, = (Ccpm, (pg)’uxe =

(Crxdms ¥e), — (CEm: de) -

6.2 Efficient numerical implementation

In this section we want to compare the linear systems of the (central fluxes and upwind fluxes)
locally implicit scheme £ with the linear system of the central fluxes Crank—Nicolson method
L. We recall from (6.2d) and (4.98b) that we have

£=T+ " CiCh, L=T+ " CuCp,

where we used CﬁCE = C%IC]Z;] for £. In order to analyze the costs associated with these linear

systems we have to examine £ and L in a representation w.r.t. a basis of VhQ. As in Section 3.6
we consider the basis

b
{9017""(10]\[};}’ Yy = (W y
and recall that the support of these basis functions consists of a single mesh element,
supp(¢¢) C K, fora K € Tp,.

A natural ordering of the basis functions is given by

(5) (%) Contn) - ()
0 gouy 0 y th/QJrl Yy ¢Nh ’
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—Cg H

Cu E

Figure 6.1: Structure of the mass matrix M (left), the stiffness matrix C' (middle) and the
coefficient vector u (right) for the ordering (6.5) of the basis functions.

i.e. we first take the basis functions for the H components and subsequently the ones for the
E components. We recall that by (3.55b) and (3.55¢) the entries of the mass matrix M and of
the stiffness matrix C' are given by

My, = (wmvwe)uxg = (¢m, W)M + (Y, ¥r) s

and

Crm = (Com, W)ME = (Cu¢m, Ve), + (—Crm, ¢z)u,

respectively. The structures of these matrices are given in Tables 6.1, 6.2 and visualized in
Figure 6.1. In this figure we already indicated the block structure of the mass matrix. In fact,
the mass matrix is block-diagonal where the block size corresponds to the number of dof in one
spatial mesh element. As we can observe in Figure 6.1 both the mass and the stiffness matrix

have a block structure
_ (Mu O (0 —Cg
u=(" i) o= (e 07)

Comparing (3.15b) with (3.55a) we conclude that the operator C corresponds to the matrix
M~1C and vice versa. Thus, the operators Cy and Cg correspond to the matrices Mg 1Cq and
MﬁlCE, respectively.

Our next aim is to derive the structure of the matrices associated with Cﬁ and Cﬁ, which we
denote by Cy and Cf, respectively. For this purpose we decompose the stiffness matrices Cyg
and Cg into explicitly and implicitly treated elements. By (3.5), (5.2), (5.3a) and (5.4) this
reads

Coem =D (cwrldm, ) o+ Y (nex [bnlr {e}F)

KeTh,; Fe}—’i;ﬁlg
+ Z (nF X [[¢mﬂF7 {W}}%C)F
Fe]:int

h,ct

+ Y (curlgm, ) e+ D (nr x [bmlr, {1035 o

KETh e FeFin
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(a) Splitting of the mesh elements into 7, . (b) Left: Structure of full stiffness matrices
(blue) and ( ). Cu and Cg. Explicit element coupling: 7, .

t0 Th.e (blue), implicit element coupling:

, explicit-implicit element cou-
pling: 7}, . to (blue- striped). Right:
Coefficient vector.

Figure 6.2: (a) Splitting of the mesh into explicitly and implicitly treated elements. (b) Stiffness
matrix and coefficient vector corresponding to the ordering (6.6) of the basis functions.

me S, m € S;
supp(Xi®m) C Th,e | sSupp(Xi®m) C Th,i

(el g
2" T o 0 *

supp ¢ C The

ée%JrS,-
0 *

supp ¢y C Th

Table 6.3: Zero and possibly nonzero entries of the implicit stiffness matrix (Cly)em =

(Ci—I¢TH7 W)a-

and
(CE)Z,m = Z (Cur1¢m7¢z)u,K + Z (nF X [¥m]F, {‘b@}l;’C)F - Z (nF x ¢m7¢6)F
KeTh. Fery Fery
+ Z (nF X [[wm]]Fv{{(be}}lIf—'c)F
FeF™,
£ 3 (curlvmbe), o+ Y (o X [Wnlr A0} p = 3 (o X 00)
KETh,e Fer rez

Here the respective first and third lines only involve basis functions with support on 75, ; and 7, ¢,
respectively, and the second lines contain the coupling between these two sets. It is natural
to order the basis functions corresponding to their belonging to the sets 7j,. and 7. Let
Ne = npcard(Th,e) denote the dof in the explicitly treated part 7., where nj, = dim ((P§)6),
see Section 3.6. We introduce the sets

Se ={1,...,N/2}, Si={Ne/2+1,...,Ny/2},

and order our basis functions by

%) (0) s () s ()
<() eese’ 0 eesi’ e EGAM/2+Se7 e leA@/2+Si7 (66)
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mefh 15, | melris,
supp ¥im C The | Supp¥m C Th i

fes,
0 0
supp(xi®e) C The
{ e Sz
* *

supp(xi®e) C Th,i

Table 6.4: Zero and possibly nonzero entries of the implicit stiffness matrix (C&)rm =

(Cistoms ).,
such that they satisfy

supp(y¢) = supp <(§Z>) CK,K € The, for £ € (Sc U (Nyp/2+ Se)),

supp(pg) = supp <(iﬁ>> CK,K € T, for £ € (S; U (Nyp/2+5;)).

This ordering of the basis functions yields a stiffness matrix as depicted in Figure 6.2b. Recalling
Definition 5.4 we obtain

(Cit)eam = (Cirdm, vr), = (Ca(Xidm), V)., (Ck)em = (Cﬁlﬁm,w)u = (CEwm,XidM)M

and in combination with the upper decomposition of Cg and Cg and the convention about the
face normal np for F € F}™ (see Figure 5.7) we infer

(Ch)em = Y (curlgm,ve), + > (nrx [dmlr, {0e}F) 5

Ke€Th.s FeF
+ 30 ((0m)lke £ }E) 1 (6.7a)
FeF™,
and
(Chem = Y (curl¥m, dp) ,  + > (ne x [Wmle, {0} p = D (nr X ¥m, é0) 1
K€7’h,i FE‘F}TE Fe]:}]::;_d
+ Y urcerbr(ne x [Ynlr, (60K, p- (6.7h)
FeFt,
This means we have
(Ch)em =0 for m € S, (Ch)em =0 for £ € S..

We collect these results in Tables 6.3 and 6.4 and illustrate the structure of Ciy and Ch in
Figure 6.3. We observe the result of the different definitions of Ci; and C§, compare (5.16a)
with (5.16b): on the one hand C{; belongs to a splitting Cg = Clg + C§ w.r.t. columns of Cy
and on the other hand C§ stems from a splitting Cg = C§ + Cg w.r.t. rows of Cg.

Now, we can examine the left-hand sides L and £ of our linear systems. They read

2

~ T
L=1+—
T3

Since the mass matrices are block-diagonal they do not change the structure of the stiffness
matrices but only can change the sparsity of the nonzero blocks. In Figure 6.4a we illustrate

Mg Cig My iy, Leg =1+ %MglCﬂMﬁlCE. (6.8)
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(a) Structure of C. (b) Structure of C.

Figure 6.3: Structure of the implicit stiffness matrices C}; (left) and Cf (right) associated
with the splitting of the spatial mesh into implicitly treated elements and explicitly treated
elements 7, . and the corresponding sorting of the basis functions (6.6). Implicit element
coupling;: , explicit-implicit element coupling: 7, . to (blue-
striped).

the structure of L and in Figure 6.4b the structure of L. Observe that we obtain the same
pattern (although more sparse) for L than for L¢t. Consequently, we cannot deduce the gain in
efficiency of the locally implicit schemes compared to the Crank—Nicolson method. The essential
idea to recognize how the locally implicit scheme can be implemented more efficiently than the
Crank—Nicolson method is an additional distinction of the basis functions, which we will discuss
next.

We introduce the following partition of the set of explicitly treated mesh elements 7} ,

Tie ={Ke € The | VK; € Thi : |KeNK;|, | =0},
777,7:,6 = {Ke S 771,8 | ElKl S 777,,i : |Ke N Ki‘dfl # 0}7
i.e. we divide 7T} into the set of explicitly treated elements which only have explicitly treated
neighbors, and into the set of explicitly treated elements which possess at least one implicitly
integrated neighbor. Note that 7;1’ ¢ = Thi, but we prefer to write 77; . for a consistent notation.
Analogously, we partition 7y, ; into
Tii ={Ki € Tni | 3Ke € The : |KiNKe|, | # 0},
Thi={Ki € Thi | VKe € The: |KiN K|, , =0}
The first set contains all implicitly treated elements which only have implicitly integrated neigh-
bors, whereas the second set collects the implicitly treated elements which exhibit at least one
explicitly treated neighbor. An example for these sets is given in Figure 6.5a. We denote with
Se={1,...,N¢/2}, St ={N¢/2+1,...,N./2},
Sy ={N/2+1,...,Ne/2+ N7 /2}, St ={N,/2+ Nf/2+1,...,N,/2},

where N¢ = ny,card( hfe) and Nf = npcard( hel) denote the dof in 7,7, and in ;7 ,, respectively,
and sort our basis functions by

<Z5e> <¢e) <¢e> <¢e> 6.9
<0 ZeSg’ 0 EESQ’ 0 Eesg” 0 éeS;" (692)
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(a) Structure of Mg'Ca, My'Cg and of the left-hand side of the linear system in the Crank-—

Nicolson method L = T + %MEICHMI?CE-

(b) Structure of Mg 'Cly, Myg'C and of the left-hand side of the linear system in the locally implicit

method L = I + I My Cig Mg Ci.

Figure 6.4: Structure of the left-hand side of the linear systems in case of the (central fluxes)
Crank—Nicolson method and in case of the locally implicit methods.

(a) Splitting of the mesh elements into 7,°.
(light blue),
and

/1’{.@ (dark bhle)7

(b) Left: Structure of full stiffness matrices Cy
and Cg. Explicit element coupling: 7,7, to 7,
(light blue), 7,7, to Tt (dark blue) and ,,‘f;(%
to 7;7’( (blue, st,ripod).' Implicit element cou-

pling: ,

and
Explicit-implicit element coupling;: T}fE to
(blue- striped). Right: Coeflicient vec-
tor.

Figure 6.5: (a) Splitting of the mesh into explicitly integrated elements with only explicit
neighbors and with at least one implicit neighbor, and implicitly treated elements with only
implicit neighbors and with at least one explicit neighbor. (b) Stiffness matrix and coefficient
vector corresponding to the ordering (6.9) of the basis.
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m € S¢ | m e S! m € 57 | m € S}
supp(xi¢m) C Tpto | supp(Xi®m) C Ty, | supp(xidm) C Tjl. | supp(xi¢m) C Ty,
N,
te 5+ 5¢ 0 | 0 0 | 0
SwppYe C Ty | S .
et gt | |
; 0 | 0 * | 0
supp T/’z C 7;16 \ \
Nh e T T
e + Se 0 : 0 * : *
supp 1/14 C Thi | ‘
SWPPRCEha | i
Le S t5 0 1 0 ] 1 *
supp ¢y C Ty, | |

Table 6.5: Zero and possibly nonzero entries of the implicit stiffness matrix (Cﬁ)&m =

(Ci{¢m7 we)a'

melfp+Se 1 mefp+S | melpis i melp sl
supp P C Tp, | SUpp ¥ C Tpr o | supp¥m C Ty, | suppem C T,
e | |
fese 0 | 0 0 | 0
swpOad) CTye | R S
tes k i
. 0 | 0 0 | 0
supp(xi¢e) C Ty . 1 1
EGSE 0 | |
% * *
swpGe) T | YTt
lesS! | |
) 0 ! 0 * ! *
supp(xipe) C Ty ; | |

Table 6.6: Zero and possibly nonzero entries of the implicit stiffness matrix (C&)rm =

(Cigtom: 90),.

and
( g) S € ’ ( e) e ’ < e> e ’ < é) ' (6. b)
1/} 4 Nh/2+se /l/) l Nh/2+Sé w KEN}L/Q-‘FSZ w EEN}L/Q-‘FS;

This ordering gives rise to stiffness matrices Cyg, Cg with a structure as depicted in Figure 6.5b.
By (6.7) the implicit stiffness matrices satisfy

(Cip)e.m = 0 for m € (SL U SS), (Ch)em =0 for £ € (SLUSE).

Moreover, we have
i e Nh e i 4 N e %
(CH)em = 0 for m € S, €€(7+Se), (Ch)e,m =0 for m € S;, EG( 5 +(S¢USh)),

(Ch)ean =0 for £€ 57, me (- +50),  (Ch)em=0for €S}, me (5 +(SEUSY),

since basis functions with support in an element of 7-8 do not couple with basis functions whose

support lie in an element of 7,7 . Basis functions Wlth support in a subset of an element of
hi ;, do not couple with elements with support in an element of 7,°, U 7;3 .- We collect this in

Tables 6.5 and 6.6 and illustrate the structure of C’f{ and C’]ia in Figure 6.6.

Finally, we give the structure of L. and L in Figure 6.7. Observe that for the Crank-

Nicolson method L.¢ involves ag dof of the E-field in the whole spatial mesh 7. In contrary,
for the locally implicit method L exhibits the identity matrix on the dof in 7;& ., i.e. we do not
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ED
1]

(a) Structure of Cy. (b) Structure of C.

Figure 6.6: Structure of the implicit stiffness matrices Cj; (left) and Cy (right) associated
with the splitting of the spatial mesh into , , ,f .» /). and the corresponding sorting
of the basis functions (6.9). Implicit element coupling: ,

Explicit-implicit element coupling: 7,

h,e to

(blue- striped).

(a) Structure of Mg'Ca, My'Cg and of the left-hand side of the linear system in the Crank-—
Nicolson method L. = I + %MEICHMI:IICE.

tructure o S1CL, M7'C%L and of the left-hand side of the linear system in the locally implicit
b) S f Mg'Cjy, Myg'Cy and of the left-hand side of the 1 he locall 1
method L = I + %Mglc’ﬁMﬁlcﬁ.

Figure 6.7: Structure of the left-hand side of the linear system in case of the (central
fluxes) Crank—Nicolson method and in case of the locally implicit methods. For the Crank—
Nicolson method the left-hand side involves all dof in the spatial mesh, whereas for the locally
implicit methods only the dof from the elements from 77;2 U7y, U 77; ¢ = ThiUTh i enter in the
left-hand side. 7 ’ ’



6.3. NUMERICAL RESULTS 143

SMSATAT
CREDR]
Rarasavaasa
RRREAEK
SRRIKISRY
S
X
S
0.5 s
: JAY
IR
PRI
PERRSORR!
NSRRI
o
TarYAYAVAVA
4 0 NKIARR]
0 IR
K ORI at
R CRASR 5
R KR X 5K
AN AL 0eR
KRR ORISR IR ;
PRSI vl
A0 %
- 4 RS RKIEK] RISRS
05 e SR
RO B AR PIN IR,
ORISR RS K
R S AIIIIIAIRISERAT
YA AN AT AT AV A, S A VAVA AV TA AV VA
SRR
SRR
S
R
1 . . . boo
(a) Mesh 7 (1.1) Ak A (b) Mesh 7 @ — 7@ 7
h h,c h,f h h,c h, f

(c¢) From left to right 771(11‘)’ e 77;1(,4]’)'

Figure 6.8: Illustration of the two types of mesh refinements yielding the grid 7;1(3‘ 4 = 7;1(]1:) Uﬁ?.
In the upper figures the coarse part of the mesh is refined whereas in the lower plots we refined

the fine part.

have to solve a linear system on these elements. This means that the implicit part of the locally
implicit scheme boils down to solving a linear system only on the dof of the E-field stemming
from the mesh elements in 7;fiu7;fl.u7;fe = Tn,iUThci, i.e. a linear system on the implicitly
treated mesh elements and their néighbors. By Definition 5.1 the set 7 ; U Tj ¢ consists
of all fine elements in 7} r, their neighbors and the neighbors of the neighbors. Now, recalling
that we are interested in locally refined meshes, i.e. meshes for which card(7y, ) < card(7p.c),
we see that the cost for solving the linear system in the locally implicit method is far smaller

than the cost for solving the linear system in the Crank—Nicolson method. We summarize this
again by

dof Crank—Nicolson= %nhcard(ﬁ]) > %nhcard(’ﬁl,i U Th,ci) = dof locally implicit.

6.3 Numerical results

In this last section we numerically examine the central fluxes and the upwind fluxes locally
implicit schemes (5.11) and (5.65), respectively. For comparison we consider the Verlet methods
(4.39) and (4.78), and the Crank-Nicolson schemes (4.40) and (4.76).

We illustrate the different aspects of our theoretical results with the help of three examples. As
a first example we look at a rather hypothetical scenario that allows us to exactly control the
mesh parameters and thus confirm the CFL conditions and the convergence rates of our locally
implicit schemes. The second example is an (adapted) example from nanophotonics, cf. Busch
et al. [2011], namely the ring resonator of Section 5.1. Besides the repeated confirmation of
our convergence results we show with this example the efficient numerical implementation of
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j hI(IQLXﬂ hggn,c hx(Ijn)n,c/hr(Ijl;l,lc) 4 hr(ﬁ;x,f hfﬁzn,f hfﬁzn,f/hfﬁ;i}}
1 0.2384 | 0.0336 - 1 0.025 | 0.0125 -
2 0.1248 | 0.0268 0.80 2 0.025 | 0.00625 0.5
3 0.0721 | 0.0257 0.96 3 || 0.025 | 0.003125 0.5
4 0.0370 | 0.0209 0.81 4 || 0.025 | 0.0015625 0.5

(a) Largest and smallest diameter of the ele-

ments in 7;1(? and refinement factor.

(b) Largest and smallest diameter of the ele-

ments in 771(? and refinement factor.

Jo| e | b I s C P

1 0.2384 | 0.0376 1 | 0.0372 1 ]| 0.0125

2 0.1248 | 0.0277 2 || 0.0305 2 || 0.00625

3 0.0721 0.0272 3 || 0.0333 3 | 0.003125
4 0.0370 | 0.0209 4 1 0.0291 4 || 0.0015625

(d) Largest and smallest diameter of the ele-
ments in 7;52’@. The left table is valid for all
£ =1,...,4, and the right table is valid for all
j=1,....4

(¢) Largest and smallest diameter of the
elements in ’7;576’6). Valid for all £ = 1,...,4.

Table 6.7: Mesh parameters of 771“ 9 The sets 771(7]2, 7;1(? collect the coarse and the fine mesh

elements, and the sets 771(je’e), 771(5’0 collect the explicitly and the implicitly treated elements,
respectively.

the locally implicit schemes. Moreover, the first example covers the case of inhomogeneous
Maxwell’s equations (J # 0), whereas the second one treats consider the homogeneous problem
(J =0). In our third example we apply the locally implicit time integrators to a larger locally
refined mesh (compared to the two previous examples) to show their ability to treat huge
problems. The idea for this mesh is taken from Grote et al. [2015].

All our examples work with the 2D TM Maxwell’s equations (1.17) and their implementation
is carried out with an extended version of the matlab codes for the dG space discretization
provided by Hesthaven and Warburton [2008]. The implementation of the dG space discretiza-
tion and the locally implicit time integrators for the 3D Maxwell’s equations (1.18) is beyond
the scope of this thesis, which focus lies on the theoretical results. However, we mention that
the realization of this implementation with the software package deal.ITI is ongoing work and
extensive numerical experiments, in particular in comparison with explicit local time stepping
methods, will be presented elsewhere.

Our mesh data is available upon request by software@waves.kit.edu.

6.3.1 Numerical example 1: Test scenario

As mentioned above, our goal of this first example is to examine the CFL condition and spatial
and temporal convergence of the locally implicit methods. As in Section 3.7 we consider ) =
(—1,1)? with constant material coefficients y,e = 1 and the reference solution (3.56).


mailto:software@waves.kit.edu
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Mesh sequences

For our spatial discretization we consider the following family of grids: Our initial mesh is
the grid 7;1(1) from Section 3.7, see Figure 3.2. The fine part 7;1(1} of this mesh consists of the
elements in the green square [—0.05,0.05]> and the coarse part 7;510) of the remaining elements
in [-1,1]?\ [-0.05,0.05]2, see Figure 6.8a.

We refine our initial mesh in two different ways: In each refinement step, we either refine the
coarse elements in 7;1(12 or the fine elements in 7;L(1f) We denote the resulting meshes by 7;1,(]13)
and 7;5?, respectively, where the parameters j and ¢ refer to the number of refinements. We
denote by 7;I(j 9 the complete mesh composed of ’72(30) and 7;1(? In Figure 6.8b we plotted the
mesh 771(4’1), and in Figure 6.8c the meshes 771(7?, {=1,...,4. By Definition 5.1 we treat the
elements in Th(? and their neighbors (wich are elements of 7;510)) implicitly and all remaining

elements explicitly. We call the respective sets 7;1(]11’6) and 7;(];[). Moreover, we denote by

J : i
hr(nzn c = mH(lA) hK? hgrjlza,x,c = ma‘)((,) hK7
K ,7 ]
Ke7’hac Ken,c
L . ¢
hgnzn,f = Hlln[ hK, hEn)ax,f = max[ hK’
KeT) KeT)
j’e 3 j,f .
hinin),b = e hl(na;b = max hg, b e {e,i},
KeT" KET),

the diameter of the smallest and of the largest element in 7;(]2, 7;1(?, 7;l(je’e) and 72({.’@, respec-
tively. In Table 6.7 we collect these mesh parameters as well as the refinement factors of the
diameters (when changing from one mesh level to the next one).

Remark 6.1. Note that the mesh sequence 7;L(j ) corresponds to the sequence 7710 ) from Sec-

tion 3.7. The mesh sequences 771(€C)FL and 771(]7_) agree with 7;(1’@ and 72(;’ ’1), respectively.

CFL condition

We begin with the validation of our theoretical results by examining the CFL condition. For
our locally implicit schemes we are interested in confirming two points: First, that the CFL
condition is independent of the fine part of the mesh, see (5.40) and (5.93a), and second that a
larger stabilization parameter « induces a stricter CFL condition, see (5.93b).

In view of the first point, we ran our numerical experiment with all meshes ’771(] ’é), 5, l=1,...4,
polynomial degree k = 2, final time 7' = ¢, = 1 and decreased the time-step size 7 until the
numerical solution became stable. We denote this time step with ngﬁ() and give its values in
Tables 6.8 and 6.9. We clearly confirm that for both the central fluxes and the upwind fluxes
locally implicit method the maximum stable time-step size does not depend on the fine mesh
level, i.e. Tgéf() in Tables 6.8a and 6.9a is independent of the fine mesh level /. On the other
hand, the coarse mesh elements do enter in the CFL condition, which is seen in the decreasing of
T%{) when we refine the coarse mesh level j. We observe that the factor of which the maximum
stable time-step size reduces matches well the refinement factor of the coarse mesh elements
given in Table 6.7a. Moreover, we observe that central fluxes locally implicit method possesses
a less strict CFL condition than the upwind fluxes locally implicit scheme. This stems from

the explicit time integration of the stabilization operators in the upwind fluxes scheme which
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TR =1 ¢=2 | ¢=3 | =4 | %/md""

j=1 0.0120 | 0.0120 0.0120 0.0120 -

j=2 0.0088 | 0.0088 0.0088 0.0088 0.73

=3 0.0072 | 0.0072 0.0072 0.0072 0.82
j=4 0.0062 | 0.0062 0.0062 0.0062 0.86
(a) Central fluxes locally implicit.

T (=1 | t=2 ] ¢=3 | (=1

j= 0.00272 | 0.00138 | 0.000688 | 0.000336

j 0.00272 | 0.00138 | 0.000688 | 0.000336

J 0.00272 | 0.00138 | 0.000688 | 0.000336

j=4 0.00272 | 0.00138 | 0.000688 | 0.000336
e V- 0.51 0.5 0.49

(b) Central fluxes Verlet.

Table 6.8: Largest stable time steps Tr(,{éi) for the mesh ’T(j ™ and ratio of largest time steps.

We used a central fluxes space discretization with polynomlal degree k = 2. The final time was

T=ty, =1.

) e=1 | ¢=2 | ¢=3 | ¢=4 | 552/
j=1 0.00648 | 0.00648 | 0.00648 | 0.00648 -
j=2 0.00448 | 0.00448 | 0.00448 | 0.00448 0.69
3 0.00360 | 0.00360 | 0.00360 | 0.00360 0.8
j=4 0.00320 | 0.00320 | 0.00320 | 0.00320 0.89
(a) Locally implicit upwind fluxes.

T (=1 | €=2 | ¢=3 | (=4
j= 0.00141 | 0.000688 | 0.000336 | 0.000170
7 0.00139 | 0.000688 | 0.000336 | 0.000170
j 0.00139 | 0.000688 | 0.000336 | 0.000170
] = 0.00139 | 0.000688 | 0.000336 | 0.000170

T s . 0.49 0.49 0.51

(b) Verlet upwind fluxes.

Table 6.9: Largest stable time steps Tr(rfax) for the mesh 7;L(j 4) and ratio of largest time steps.

We used an upwind fluxes (o = 1) space discretization with polynomial degree k = 2. The final
time was T' = tyn, = 1.
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(a) Maximum stable time step 7 (b) Maximum stable time step  (c¢) Error of the locally implicit
for the locally implicit method. 7 for the Verlet method. method with time step 7 = 1074,

Figure 6.9: Dependence of the maximum stable time step and of the error on the stabilization

parameter . We used the mesh 771(1’4), the final time 7" = ¢, = 1 and polynomial degrees
k=2,k=3, and k = 5.

additionally enters the CFL condition. This can be seen by the condition 02 < 1, which is
needed for the central fluxes locally implicit scheme, whereas the upwind fluxes scheme requires
02 + af < 1, see (5.40) and (5.93). Last, we give as comparison in Tables 6.8b and 6.9b the
maximum stable time steps for the central fluxes and for the upwind fluxes Verlet method,
respectively. We see that, in contrary to the locally implicit methods, the CFL condition of the
Verlet methods does depend on the fine mesh levels. We also observe that the reduction factor
of the maximum stable time-step size matches the refinement factor of the fine mesh elements,
see Table 6.7a.

Next, we investigate the dependence of the maximum stable time step on the stabilization
parameter « € [0,1]. In Figures 6.9a and 6.9b we give the maximum stable time-step size we
observe in our numerical experiments in dependence on « for the locally implicit method and
for the Verlet method. We again confirm that the central fluxes schemes posses the largest
maximum stable time step. Moreover, we validate that a larger stabilization parameter « leads
to a smaller maximum stable time-step size (i.e. a stricter CFL condition) as predicted by (5.93).
This might indicate that the full upwind choice @ = 1 is not be the best choice. However, we
emphasize that the error also depends on « since the error constant scales with (1 + o?)/a,
see Theorem 5.35 (and also Theorems 4.28, 3.13 and Figures 3.1, 3.5 for the semidiscrete case
and the fully discrete case with the Crank—Nicolson scheme). This is illustrated in Figure 6.9¢

where we give the error ehN T = u,]lv T —mpu(T) at the final time T' = ¢y, = 1 measured in the
L?-norm || - || in dependence of the stabilization parameter .. Note that in the here considered
case fi, € = 1 we have that || - ||uxe = || - ||. We observe that the choice o = 1 yields the smallest

error. So, we have to carefully choose a € [0,1] in order to balance the CFL condition and the
error size.

Spatial convergence
Our next aim is to validate the spatial convergence rates

k+1/2
max h% and max hK+ 2 4+ max k.
KeTh, KETh e KeTh,

proven in Theorems 5.13 and 5.35 for the central fluxes and for the upwind fluxes locally
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(a) Central fluxes locally implicit. ~ (b) Upwind fluxes locally implicit. (¢) Upwind fluxes Verlet.

Figure 6.10: Spatial convergence. We used the final time 7" = ¢y, = 1 and the time step
7 =1075. We employed the polynomial degrees t = 1, k = 2, k = 3, and k£ = 5. For the
solid lines with e markers we used the fine mesh level ¢ = 1 and for the dashed lines with +
markers we used ¢ = 4. The black dashed lines have slope h* for k =1,...,6.

implicit method, respectively. For this purpose we ran our simulation with all coarse mesh
levels j = 1,...,4, two different fine levels £ = 1,4 and different polynomial degrees k until
the final time 7" = ty, = 1. We used the small time step 7 = 10~° such that the spatial
error dominates over the temporal error. We give the resulting error e;LVT = uiVT — mpu(tng,)
measured in the L2-norm in Figure 6.10 for the central fluxes locally implicit scheme, the upwind
fluxes (a = 1) locally implicit scheme and the upwind fluxes (o = 1) Verlet method. The first
figure confirms the spatial convergence rate of the central fluxes locally implicit scheme when
the coarse grid 7. is refined. Moreover, we do not observe a decrease of the error when
the fine elements in 7},  are refined (the solid and the dashed lines in Figure 6.10a coincide).
This is plausible because the contribution of the few small elements in 7, r to the total error is
negligible. In Figure 6.10b we observe that the spatial error of the upwind fluxes locally implicit

scheme decreases with order h*t! for the mesh sequences 771(1’1), el 7;1(3’1) and 771(1’4), .. .7;1(4’4).
This confirms the convergence rate maxger;, , hl;rl/ 2 (we even get the better rate k+1) because

for these meshes the error stemming from the explicitly treated elements are dominant over the
error arising from the implicitly treated elements (and decreasing only with order k), see the
mesh element sizes in Tables 6.7¢ and 6.7d. However, for the mesh 771(4’1), the elements in
the explicitly treated set and the larger elements in the implicitly treated set are of the same
size. As a consequence we observe the rate maxger;, h’;( (stemming from the unstabilized
implicitly integrated part of the mesh) which spoils the upwind fluxes rate k + 1/2. However,
we point out that the mesh 7;(4’1) is not a locally refined mesh, see Figure 6.8b, and thus a

locally implicit time integrator is not appropriate. In contrary, the meshes 771(]’4) are locally
refined and we observe that the upwind fluxes locally implicit scheme works very well. This
is emphasized by comparing it to the error of the fully stabilized upwind fluxes Verlet method
given in Figure 6.10c. We see that the locally implicit scheme and the Verlet method yield an
error with the same accuracy (for the locally refined meshes 7;5] ’4)).

Temporal convergence

Finally, we confirm the temporal convergence of our locally implicit methods. We employ the
polynomial degree k& = 5 in our dG space discretization so that (at least for larger time-step
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Figure 6.11: Temporal convergence. For the space discretization we employed the central fluxes

method with polynomial degree £k = 5 and used the meshes 7751’@, 7752’[),

and 7754’@ . For

the solid lines with e markers we chose the fine mesh level £ = 1 and for the dashed lines with +
markers ¢ = 4. The black dotted line has slope 72 and the black dashed line has slope 1/1072.

The final time was T' =tn, = 1
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Figure 6.12: Temporal convergence. For the space discretization we employed polynomial degree
k =5 and used the meshes ’flfl’4), T,I(M), and T,L<4’4). The black dotted line has slope 72

and the black dashed line has slope 1/1072.. The final time was T = ty,. = 1

sizes) the time integration error dominates over the space discretization error.

We start with a central fluxes space discretization and the associated time integration schemes.
In Figure 6.11a we give the L?-norm of the error e;IVT of the locally implicit scheme at the final
time T' = ty, = 1 for the meshes 72(1’5), ey h(4/)7 with fine mesh levels £ = 1,4. We only
plotted the errors for time-step sizes that yield a stable numerical solution. We clearly observe
that our locally implicit method converges with order two in the time-step size, which illustrates
the convergence result of Theorem 5.13. Moreover, we see that the mesh levels do not influence
the temporal convergence (all errors decrease with the same rate of around 72). This confirms
that the error constant in Theorem 5.13 does not depend on the spatial mesh and thus our con-
vergence result does not deteriorate if the mesh width h goes to zero. As comparison we give in
Figures 6.11c and 6.11e the errors of the Verlet and of the Crank—Nicolson method. In the first
figure we observe again the stricter CFL condition of the Verlet method and that both the locally
implicit method and the Verlet method converge with the same error constants. In contrary, we
deduce from Figure 6.11e that the Crank—Nicolson method enjoys a slightly better error con-
stant. In Sections 4.4 and 5.5 we discussed the implicit midpoint time integrator and the locally
implicit scheme based on the implicit midpoint method instead of the Crank—Nicolson method.
In Figures 6.11b and 6.11f we give the plots of the errors of these two methods. We see that
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5

~s 5

Figure 6.13: Mesh 7 of the ring resonator. The elements in the green marked area belong to
the fine set ’7;Lf and all remaining elements are assigned to the coarse set 7.

both converge with order two in the time-step size. Comparing the implicit midpoint locally
implicit scheme with the (Crank—Nicolson) locally implicit scheme we see that the former has
a slightly better error constant. On the other hand, the implicit midpoint method has a larger
error constant than the Crank—Nicolson scheme. For completeness, we give in Figure 6.11d a
modified Verlet method which emanates from the original Verlet method (4.39) if we replace
the “Crank-Nicolson” treatment of the source terms, i.e. Z(J7™" +J7), with the “implicit mid-
point” treatment TJZ—H/ % The result is the same as for the locally implicit method, namely
the error constant slightly improves.

We end this subsection by considering an upwind fluxes space discretization with stabilization
parameter o = 1. The polynomial degree is again k = 5 and the final time is 7' = ¢y, = 1. In
Figure 6.12b we plotted the error of the upwind fluxes locally implicit scheme for the meshes
771(1’4), cees ,54’4). In order to relate the results we give in Figures 6.11a, 6.12c and 6.12d the
errors of the central fluxes locally implicit, of the upwind fluxes Verlet and of the Crank-—
Nicolson method, respectively. First of all, we confirm the temporal convergence result of
Theorem 5.13, namely that the upwind fluxes locally implicit method is of order two in the time
step. Comparing with the errors of the central fluxes method we again observe the improved
spatial convergence rate — the plateaus of the error lines indicating the spatial error are on
smaller values for the upwind fluxes locally implicit method than for the central fluxes locally
implicit method. Moreover, we see that the integration of the explicit stabilization operator
does not spoil the temporal convergence. By comparing the errors of the upwind fluxes locally
implicit method with the errors of the upwind fluxes Verlet method we observe that they both
converge with the same temporal order and that the Verlet method has a more severe CFL
condition.

6.3.2 Numerical example 2: ring resonator

In our second example we consider the ring resonator of Figure 5.4 in the domain Q = (-5, 5)2.
A crucial difference for this section is that we assume that the entire domain is covered in
vacuum, i.e. we have u, ¢ = 1. This is based on two reasons. On the one hand we are mostly
interested in the effects of the spatial mesh on our locally implicit time integrators and on the
other hand we prefer to have an exact solution available. In vacuum such an exact solution is
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T'c,max Tc,min T f,min

‘ T f max

0.2545 \ 0.0640 H 0.0424 \ 0.0058

(a) Mesh parameters of 7,¢ and 771]0 .

Te, max Te,min ‘ T'i,max T'{ min ?e,max ?e,min ‘ ?i,max ?i,min
0.2545 \ 0.0640 H 0.1527 \ 0.0058 0.2545 \ 0.0640 H 0.0424 \ 0.0058
(b) Mesh parameters of 7,¢ and 7' (¢) Mesh parameters of ﬁe and 77:

Table 6.10: Mesh parameters of the ring resonator mesh and its decomposition: largest and
smallest inner radius.

given by the cavity solution u = (H,,H,, E,),

H,(t) = —% sin(gx) cos(gy) sin(wt),
H,(t) = % cos(%aj) sin(gy) sin(wt), (6.10)

E.(t) = sin(gx) sin(gy) cos(wt),

where w = v/27/5. This cavity solution satisfies the homogeneous Maxwell’s equation (1.17),
i.e. with source term J, = 0 [Hesthaven and Warburton, 2008, Section 6.5].

Mesh

As usual we denote the mesh of the ring resonator with 7. In Figure 6.13 we give a plot of
the spatial grid where the mesh elements in the green marked regions are assigned to the fine
set ’7;Lf and all remaining elements belong to the coarse set 7;°. Due to the particular form of
the mesh elements in the gap between the ring resonator and the wave guides, which are long
but flat, we decided to determine the fine set by the inner radius (i.e. the radius of the largest
ball inscribed in a mesh element) of the mesh elements and not by the diamater. Following
Definition 5.1 we treat the elements in 7;Lf and their neighbors implicitly and all other elements
explicitly. Let us denote these sets with 7' and 7;¢, respectively. In order to show the effect if
the neighbors of the fine elements are not included into the set of implicitly treated elements,
we also consider the choices 7,i = 771f and T¢ = 7. In Table 6.10 we give the associated mesh
parameters, where we denote by 74 max and 74 ymin the largest and the smallest inner radius of

T, b € {c, f}, and analog for ﬁb.

Convergence and CFL condition

We evaluate the quality of our locally implicit schemes for this example by using different
polynomial degrees k in the space discretization and running the simulation with different
time-step sizes 7 until the final time 7' = ty,. = 1. The L?-norm of the resulting errors is given
in Figure 6.14 for the locally implicit method combined with a central fluxes space discretization
and with an upwind fluxes space discretization with stabilization parameter o = 1. Moreover,
we provide in this figure the errors of the Verlet and of the Crank—Nicolson method. First of
all, we confirm the temporal convergence order two for our locally implicit schemes and that
they converge with the same rate as the Crank—Nicolson method. By comparing the plateaus
of the error lines of Figures 6.14a and 6.14b, which indicate the space discretization error, we
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Figure 6.14: Temporal convergence. The implicit and explicit time integration of the mesh
elements in Ty of the locally implicit schemes are based on the sets 77; and 7,°. For the space

discretization we employed polynomial degrees i = 1, k = 2, k = 3,

and k£ = 5. The black

dashed line has slope 1/1072. The final time was T' = ty,. = 1.
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Figure 6.15: Temporal convergence. For the space discretization we employed the central fluxes
method and polynomial degrees & = 1, k =2, k = 3, and k£ = 5. For the solid lines with
e markers we used the locally implicit time integrator based on the sets 77; and 7. For the
dashed lines with 4+ markers we used the locally implicit method based on the sets 7A7f and ﬁf,
i.e. we did not include the coarse neighbors of the fine elements into the implicitly treated set
of mesh elements. The black dashed line has slope 1/1072. The final time was T = ty,. = 1.

k=1 | k=5 k=1 | k=5

nz(Mg'C) || 56.697 | 1.744.759 nz(Mg' Cg) || 56.700 | 1.744.561

nz(Mg'Cly) || 6.995 | 216.207 nz(Mg'Cg) || 6.996 | 216.171
Mg'C Mg'C

My Cut) o g 0p | 124 9% My Ce) 1o 4o | 12.49%

nz(Mg Chy) nz(Mg Cg)

Table 6.11: Number of nonzero elements in the matrices My 1CH, MﬁlCE associated with
the full discrete curl-operators Cy, Cg, respectively, and in the matrices My IC’fI, MﬁlC’]’;3
associated with the split implicit curl-operators Cy;, Cy, respectively.

again confirm the improved spatial convergence of the upwind fluxes locally implicit method
compared to the central fluxes locally implicit scheme. Moreover, Figures 6.14a — 6.14d prove
the considerable relaxed CFL condition of the locally implicit schemes in comparison with the
Verlet methods.

Last, we give in Figure 6.15 the errors of the central fluxes locally implicit scheme once with the
right choice (i.e. the choice in accordance with Definition 5.1) of the implicitly and explicitly
treated elements 7;; and 7;°, and once with the wrong choice ’77; and ’7Ajf. We observe that the
spatial and the temporal errors are not spoiled. However, we do observe that the CFL condition
gets stricter if we do not treat the coarse neighbors of our fine elements implicitly.

Structure of linear system

In Sections 6.1 and 6.2 we elaborated the ideas how the locally implicit schemes can be im-
plemented efficiently. Now, we illustrate these considerations by our numerical results, i.e. we
examine the structure of the mass and the stiffness matrix, and of the linear system that has
to be solved in each time step. Note that for the 2D TM Maxwell’s equations the Maxwell
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k=1 | k=5

nz(Ler) || 74.508 | 2.644.836
nz(L) | 9.348 | 333.123

n2(Let) | 195 0 | 19.6 %
nz(L)

Table 6.12: Number of nonzero elements in the left-hand sides Ly = I + T;M]g 1C’HMP_IIC’E
and L = [+ T Mg Ciy My ' C of the Crank-Nicolson method and the locally implicit schemes,

respectively. For the values corresponding to L we omitted the block which can be solved
explicitly, i.e. the blue identity in Figure 6.18b.

operator reads

0 0 -9,
c= (eo _SE) —{ o0 0a | cg= (_‘3’5 ) Crr = (~0, 8,).
H ~8y 9r 0 v

The matrices associated with Cg and Cq, i.e. Mg 1CH and MﬁlCE, inherit this structure.

As in Section 6.2 we order our dof such that our coefficient vector first contains the dof stemming
from 7;5 ., then from 77: ., then frorn’ﬁii and finally the ones from 77:1 In Figures 6.16 and 6.17
we give the structure (the nonzero elements) of the full matrices Mg'Cr, Mg Cg and of the
implicit split matrices Mg 1C’ﬁ, MIEICE. Moreover, we give the number of the nonzero entries
in Table 6.11. First of all, we observe that the implicit matrices are considerable more sparse
than the full matrices (only 12% of the nonzero entries). Moreover, we confirm the theoretical
structures of the matrices we gave in Figures 6.5b and 6.6. In particular, the implicit split
matrices in Figure 6.17 only depend on the implicit dof from 7}, ; and on their explicit neighbors
from 7'hZ .- Last, in Figure 6.18 we give the structure of the left-hand sides

L=1+ TZME_lC}{MﬁlC’E, L =1+ %MglCHMﬁlCE,

of the locally implicit schemes of the central fluxes Crank-Nicolson method, respectively, see
(6.8).~We see that L is considerably more sparse than L.¢, see also Table 6.12, and moreover
that L only consists of the identity matrix for the dof associated with mesh elements in 7;°..
This means that the linear system for the locally implicit schemes is only imposed on the dof of

hi U 7;32-, see Figure 6.18d. In contrary, the linear system for the Crank—Nicolson method
involves all dof of Th.

6.3.3 Numerical example 3: rectangular mesh with barrier

In our last example we study the performance of our locally implicit time integrators for a larger
example (compared to the previous two examples). For the spatial discretization we used the
mesh shown in Figure 6.19a, where we assign the red marked elements in Figure 6.19b to the
fine part. As a polynomial degree in the dG method we chose k = 6.

For this example the left-hand sides of our locally implicit schemes and the central fluxes
Crank—Nicolson method have

nz(L) = 676.630, nz(Le) = 18.191.637
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Figure 6.16: Structure of My 1Cx and MﬁIC’E. We have the following coupling of the dof:
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7,! . (pale green). Coupling between implicit elements: ' ’ ,

, 77,‘ to Ty (green). Coupling between explicit and implicit elements: 77?5 to Ty,
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Figure 6.18: Structure of Le = I + 5 Mg 'CaMg'Cg and L = I + T Mg'CizMg'Ch. The
blue entries only depend on the explicitly integrated mesh elements, the orange entries only
depend on the implicitly integrated mesh elements, the pale green entries depend on both the
explicitly and the implicitly treated elements. The green entries depend on both the explicitly
treated elements in '7;: . and the implicitly treated elements in '7;?1
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(b) Zoom on the fine part of the mesh (red marked elements).

Figure 6.19: Mesh of the rectangular domain with a barrier inside which possesses a small gap
in the middle. The maximum and minimum diameters of the mesh elements are given by 0.13
and 0.023, respectively.

nonzero entries, respectively. For the nonzero values of L we omitted the identity in the explicit
part of L (the blue identity block in Figure 6.18b). We observe that by using the locally implicit
schemes we can reduce the size of the linear system considerable, in fact, we only have to solve
a linear system with 3.7 % of the nonzero elements compared with the Crank—Nicolson method.

We ran our simulation with the central fluxes and the upwind fluxes (o = 1) locally implicit
schemes until the final time 7" = 6. As initial value we chose

H,

0, H, =0, E. = exp ( — 1000(z + 0.5)* + y?).

In Figure 6.20 we give snapshots of the electric field from our simulation. We can nicely observe
how the small gap affects the solution. Moreover, we see the improved properties of the upwind
fluxes dG discretization. On the one hand we obtained a more detailed approximation while on
the other hand we avoid artefacts as exhibited in the central fluxes case, see in particular the
snapshot at time ¢ = 5.02.
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(a) Central fluxes.

(b) Upwind fluxes with stabilization parameter o = 1.

Figure 6.20: Snapshots of the electric field E} at times ¢,, = 0.44,1.31,4.15,5.02. We used a
dG method with central fluxes (upper plots) or upwind fluxes with @ = 1 (lower plots), the
polynomial degree &k = 6 and the locally implicit time integrators with time step 7 = 0.0011.
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Conclusion and outlook

In this thesis we presented and analyzed an efficient numerical method to discretize the linear
Maxwell’s equations on a locally refined spatial mesh. This scheme comprises a discontinuous
Galerkin (dG) space discretization and a locally implicit time integrator.

We based our idea on a paper of Verwer [2011] and adapted the therein proposed locally implicit
scheme to a variational formulation of the dG space discretization. We showed that this scheme
can be interpreted as a pertubation of the Crank—Nicolson method. In order to analyze it we
developed a novel technique inspired by the variation of constants formula and the boundedness
of the solution groups of the continuous and semidiscrete Maxwell’s equations. We are confident
that this technique can be employed in a wide field in the analysis of time integration methods
for PDEs.

Moreover, we succeeded in extending the locally implicit scheme from an unstabilized central
fluxes dG discretization to a stabilized upwind fluxes dG method. This provides an improved
stability behavior and a higher spatial convergence rate. For the analysis of this method we
had to apply a completely different technique than in the central fluxes case, namely an energy
technique.

Last, we showed how the locally implicit scheme can be implemented efficiently and verified
our theoretical results with numerical experiments. These examples clearly show the improved
CFL condition of our locally implicit method compared to the standard explicit time integrator
for Maxwell’s equations — the Verlet method.

As a byproduct of our work we provide a rigorous stability and error analysis for both the
Crank—Nicolson method and the Verlet scheme.

Further extensions of this thesis comprise the application of the locally implicit time integrators
to other PDEs such as the wave equation and to Maxwell’s equations in anisotropic or even
nonlinear materials.
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APPENDIX A

Auxiliary results and identities

In this appendix we give auxiliary results which we use throughout the thesis.

For the scalar triple product of three vectors a, b, c € R? we have that
(axb)-a=(axb) -b=0,

i.e.axb L a,b. Furthermore, the scalar triple product can be expressed as (a x b)-c = det(a, b, ¢)
and satisfies the identity

(axb)-c=—(axc)-b. (A1)
Next, we state some useful inequalities:

Let a,b > 0 be two non-negative numbers and v > 0 be a positive weight. The weighted
Young’s inequality states that

) 1 5
< = —b~. .
ab < 2a +27b (A.2)

For two vectors a,b € R™ the Cauchy-Schwarz inequality (in R"™) gives that

n n 1/2 n 1/2
a-b<|alld| — Z Ambm < (Z a$n> (Z bf,L) . (A.3)
m=1 m=1

m=1
Let v,w € LP(D), p € [1,00]. The Minkowski inequality (in LP) yields that
v+ wllzepy < vllerpy + lwllLe(py- (A.4)

We will refer to this inequality by the triangle inequality (in LP).

Let v,w € L?(D). Then, vw € L'(D) and the Cauchy-Schwarz inequality (in L?) ensures
that
(v,w)p, < Ivlipllwlp. (A.5)

Let v,w € L?(D). By combining the triangle and Young’s inequality with weight v = 1 we
obtain that,
lv+wlp < 2(|[0llD + [lwl)- (A.6)

In the following lemma we give a modification of the continuous Gronwall lemma.
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Lemma A.1. Let A > 0 and a € L*>(0,T). Moreover, let b € C(0,T) be a monotonically

increasing and ¢ € L*°(0,T) be a non-negative function. If
t
a(t) + c(t) < b(t) + )\/ a(s) ds, a.e. in [0,T]
0

is satisfied, then there holds

a(t) + c(t) < eMb(t).

Proof. Since ¢ is non-negative, we can estimate (A.7) further by

a(t) +c(t) < b(t) + )\/0 a(s) + c(s) ds, a.e. in [0, 7.

The continous Gronwall lemma [Emmrich, 1999, Proposition 2.1] gives the assertion.

Next, we give a modified discrete Gronwall lemma.

Lemma A.2. Let A >0, 7 > 0 and %7‘ < 1. Furthermore, let {an}, {bn} C R be two sequences

satisfying ap < bo, {cn} C Ry be a non-negative sequence and

n
-
ant1 + g1 < bpyr + )\5 Z (am—i-l + am)-

m=0

Then, if {b,} is monotonically increasing, there holds

1+ AZ\"
an +c, < t Ay by,
1= A3

If in addition, A\t < %, then

3

an + cp < e2M7h,,.

Proof. Since {c,} is a non-negative sequence we get from (A.9)

n
.
ang1 + g1 S bpyr + >\§ Z (@mt1 + Cms1 + am + cm),

m=0

(A.9)

(A.10)

(A.11)

whence the statement (A.10) follows from [Emmrich, 1999, Proposition 4.1]. The bound (A.11)

follows by

1+m<63x 3
1—z —
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