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Chapter 1

Introduction

Dynamical systems theory is a mathematical area unifying the treatment of an enormous
set of applications ranging from automata theory to economics and population models as
well as to physical processes of various kinds. Despite their variety, common ground of these
models is that the system can mathematically be represented by a quantity called state. The
dynamical system then describes the evolution of the state in time. In the present work
we consider the subarea of time-invariant nonlinear control and observation problems with
infinite dimensional state spaces. Here the focus lies on the interaction of the system with its
environment via inputs and outputs. Our examples arise from partial differential equations
modeling wave phenomena on bounded domains.

As for ordinary differential equations, in the finite dimensional situation one has a well
established theory of systems with inputs and outputs. However, to treat e.g. partial differ-
ential equations, one has to pass to infinite dimensional state spaces. In the past decades
a successful linear theory has been developed for such systems. On the one hand, there
is the functional analytic approach based on operator semigroups which allows the unified
treatment of large classes of problems in an efficient way. On the other hand, specific partial
differential equations can very successfully be treated directly. It should be remarked that
the applications of the general theory to concrete problems often require methods or results
from the PDE approach. The theory for nonlinear infinite dimensional systems is much more
restricted. There are almost no results on an abstract level, whereas the direct PDE approach
mostly focuses on nonlinear state equations or feedbacks.

In engineering applications, problems are often cascades or even more complex networks
of interacting subsystems. They can easily become quite complicated. Here abstraction is
important to keep the overview, see e.g. Section 2.4 in [19] or Section 2.3 in [43]. In this
thesis we present a general theory for a class of nonlinear control and observation systems.

Generally speaking, inputs influence the dynamical system. The ability to steer the state
to certain points with the use of inputs is a desirable feature called controllability. There are
several controllability concepts depending on what the reachable states are.

On the other hand, the system’s state is not always visible from the outside world. Instead
one measures an output, which might carry only reduced information. Mathematically, this
is modeled as an output map, which receives the state and yields the output. The system
is called observable if its state can be recovered from the output to some extent. Again,
specifications of this informal description lead to various observability notions.

If the output is used as (part of) the input, we speak of a feedback control or a closed-loop
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system. Feedback controls are important especially for stabilization. To stabilize a system
means to steer it to a state where it is at rest, possibly under uninfluenceable disturbances.

Before we come to the description of our aims and main results, we give an overview on
the existing work. For the well understood area of linear and nonlinear systems on finite
dimensional state spaces we refer to the monographs by E. Sontag [42] and J. Zabczyk [57].
Relevant for us are linearization principles that can be found e.g. in Sections 1.2, 2.8, 3.7
and 6.4 of [42]. In the linear finite dimensional setting, controllability and observability
can be characterized in a strikingly simple way. One has to compute the rank of a certain
(possibly large) matrix determined by the given operators. This characterization is called
the Kalman-rank-condition named after R. Kalman [24], see also Sections 1.5 and 1.6 of [57]

The development of linear time-invariant systems on infinite dimensional spaces started
with bounded control and observation operators. Such system can always be described by
the state space representation

z′(t) = Az(t) +Bu(t) for all t ≥ 0, (1.1)
z(0) = x0, (1.2)
y(t) = Cz(t) +Du(t) for all t ≥ 0, (1.3)

where z is the state, u is the input, y is the output, A generates a strongly continuous
semigroup, and B, C, D are bounded linear operators on appropriate spaces. Several books
are available on the topic. We mention R. Curtain and H. Zwart [14] which contains all the
relevant further references. For the well-developed semigroup theory, on which all results in
the area of linear control problems are founded, we refer the reader to the books [33] by A.
Pazy and [15] by K.-J. Engel and R. Nagel..

Inputs acting on (parts of) the boundary of the spatial domain can not be represented by
bounded linear operators. The same is true for point controls as well as boundary or point
observation. So there is a need for unbounded control and observation operators. When
working in such a framework, it is not clear a priori if the mathematical model has a solu-
tion. Therefore it has to be determined which of these maps are ‘admissible’. First general
and abstract descriptions were given by A. J. Pritchard and D. Salamon in [34], [38] and
[39]. With the articles [52] and [53], G. Weiss established the notions of admissible control
and observation operator that are now widely accepted. For the time being we concentrate
on control problems, since observation is a dual concept to control in the linear case. In
short, Weiss’ idea can be summarized as follows. Instead of the equations (1.1)–(1.3), he
took its solution operators as the starting point. Guided by the finite dimensional case, he
introduced abstract control systems encoding the fundamental properties of solutions to (1.1)
and (1.2). Then he proved that these systems can be represented by a semigroup generator
A and a control operator B. Further they also yield solutions of the corresponding state
space representation (1.1)–(1.2). Conversely, such systems can be constructed by means of
a semigroup generator and an admissible control operator. The approach can be compared
to evolution equations, where the semigroup yields the solution of the Cauchy problem given
by its generator. The research monograph [49] written by M. Tucsnak and G. Weiss compre-
hensively presents the theory of linear observation and control on infinite dimensional spaces
and provides a large amount of examples. B. Jacob’s and J. R. Partington’s survey [22] is
also very readable.

Control systems only deal with the state and take no account of the output. Similarly
when working with observation systems one assumes that there is no input. The concept
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of well-posed linear time-invariant systems addresses the system as a whole, that is with
inputs and outputs. In particular one can couple well-posed systems. Under different names,
they first appeared in [39] as well as in [54] and [13]. An exhaustive discussion was given
by G. Weiss and O. Staffans in the series of papers [55], [44] and [45]. Newcomers find a
very readable and nearly complete overview of this field in the recent survey [50]. We also
recommend the book [43] due to its detailed exposition. In Section 6 of [50] one finds a
collection of the many problems arising in natural sciences that can be described as well-
posed linear systems. Indeed, all kind of equations such as the wave equation, the heat
and Schrödinger equation as well as Maxwell’s equation fit into the framework. Hence, a
successful and rich theory was build upon this definitions.

In general well-posed systems do not posses a unique state space representation as in
(1.1)–(1.3). For the subclass of regular linear well-posed systems a description via (1.1)–(1.3)
is possible. The precise definition goes back to [54]. Regularity has been characterized in
[55] using the transfer function. The latter is an appreciated tool in applications, used also
by engineers. However, already the finite dimensional case indicates that these methods in
the frequency-domain can probably not be generalized to nonlinear systems.

Controllability and observability for infinite dimensional systems is a complicated matter.
Other than in finite dimensions, there are several different controllability and observability
notions. Apart from that, their verification mostly depends on the special structure of the
problem. However, these properties have been checked for large classes of problem. We refer
to Chapters 6 to 9 and 11 of [49].

By now there have only been a few papers which tackle nonlinear systems on infinite
dimensional spaces on an abstract level. In [8] M. Baroun and B. Jacob together with L.
Maniar and R. Schnaubelt introduce and represent a class of locally Lipschitz observation
systems. Moreover, they prove a result on linearized observability for semilinear state equa-
tions and linear observation operators. See also [7] for earlier results. With the same methods
feedback systems where studied in [23]. H. Bounit and A. Idrissi in [20] and [9] started the
investigation of bilinear systems. They generalized the linear approach to problems where
the scalar input is multiplied with the current state. We will treat problems like (1.1)–(1.3)
with nonlinear B and C, as well as linear or semilinear A.

We now depict the aims and main results of the thesis. Control problems are in the
focus, since here up to now there are no results on a general level, whereas some progress
was already made on observation systems as noted above. Nevertheless we also consider
observation systems. In contrast to the linear case, duality arguments can not be used in the
nonlinear setting. In fact, our proofs in both cases differ in many respects. Our first step is
to extend Weiss’ ansatz to nonlinear problems. To this end, we generalize the central notion
of control system. We obtain a fairly general class of nonlinear systems with the property
that the state can be split into two summands; one depending on the initial state and one
on the input. We are able to show that many results such as the representation theorem
remain valid in this setting but now the control operator B can be nonlinear. Our reasoning
is based on the functional equations inherited from dynamical systems which consequently
are the same for linear and our additive control systems. A difficulty we had to deal with
is that statements not automatically extend from dense subsets to the whole space as they
do for bounded linear operators. For example the representation theorem (Theorem 4.9) at
first only holds for inputs from the class of step functions. To overcome the problem, we
have to impose a polynomial growth condition. Moreover, equicontinuity on compact time
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intervals has to assumed, whereas in the linear case the operator norms of the input maps
are increasing with time and so equicontinuity is immediately clear.

For nonlinear systems, in general we can not expect “global” controllability. On the
other hand a well-known linearization principle from the finite dimensional theory says that
controllability of the linearized system yields “local” controllability of the original system.
We prove that this linearization principle is true for our class of systems which encompasses
both admissibility and controllability.

At the beginning we consider the case that the evolution of the systems state in absence
of inputs is governed by a linear strongly continuous semigroup. Then we turn our attention
to semilinear state equations. Here we first have to establish a local existence and uniqueness
theory for mild solutions. We now have to deal with much more technical difficulties due to
the fact that solutions might only exist for finite times. Still the linearization principle holds
also in this situation.

We remark that it is crucial for our reasoning that the part of the state depending on the
initial state is governed by a linear strongly continuous semigroup (or a semilinear perturba-
tion of it). In particular we have the interpolation and extrapolation spaces corresponding to
its generator. The application of the Laplace transform is a central step in our proofs which
also is only possible because of this linear component of the system. For the linearization
theorem and the semilinear state equation we make use of the contraction mapping principle.
These results also heavily depend on Duhamel’s formula.

To treat the output, we define observation systems by a natural functional equation.
Here the underlying state equation is linear. As in [8] we represent these systems by a
semigroup generator and a nonlinear observation operator, but we further provide a more
explicit representation on the domain of the generator. Again we need a polynomial growth
condition on the observation operator in order to prove exponential boundedness of the
outputs. Our linearization result is complementary to the one in [8], where a semilinear
state equation and a linear observation operator was considered. Finally, we introduce and
represent regular additive well-posed systems with inputs and outputs. However, it seems
that here our approach is restricted to linear observation operators.

All our results are illustrated by the linear or semilinear wave equation with nonlinear
control or observation, which act in the interior or via Dirichlet or Neumann boundary
conditions.

Of course, results on particular systems were found before the abstract theory was devel-
oped. To our knowledge, except for the finite dimensional case, nonlinear control operators
have not been considered before. As remarked above, the focus in the PDE literature lies
on semilinear state equations. We refer to the classical treatise [10] by T. Cazenave and
A. Haraux for semilinear evolution equations, i.e., systems without inputs and outputs. A
standard book in the field is [11] by J.-M. Coron. It represents numerous known results and
by that displays the state of the art. Another general reference is the (two-parted) research
monograph [30], [31] by I. Lasiecka and R. Triggiani. J.-L. Lions’ book [32] is an important
early contribution.

We list here results on the main examples in the thesis, namely Dirichlet boundary control
and mixed boundary control for the wave equation. For the well-posedness of the linear wave
equation with Dirichlet boundary control, see [27] and also [26]. Controllability of the system
was established in [28] where the control area is the whole boundary. The case that the control
acts only on a part of the boundary was first considered in [32]. In [58], E. Zuazua studied
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the Dirichlet boundary controllability of the semilinear wave equation.
Our example on the wave equation with mixed boundary control is taken from [47]. In

this article reference is made to the earlier work [35] as well as to [36] although the latter, from
the “PDE-world”, yields well-posedness of a related but different system. The results of [29]
imply the exact controllability in this example. Here statements depend heavily on geometric
properties of the controlled part of the boundary and we mention [6] for the most general
such conditions. We have not found no results on the semilinear version of this system.

We give a short outline of the thesis. This introduction is the first chapter. In the
preceding Chapter 2, we recall the general concept of dynamical systems. By specializing
the situation we obtain the class of well-posed linear systems. As said before, our approach
is based on this theory, so we also repeat several results on linear admissible control and
observation operators. In the last section we explain how the systems treated in this work
fit into the framework of dynamical systems.

Chapter 3 is mainly dedicated to Cauchy problems governed by a generator A. We discuss
several solution concept for this type of equations. Strong solutions in the extrapolation space
of A best fit our needs and we give a characterization of them. We also touch on semilinear
Cauchy problems where matters are more involved, so that the detailed discussion is shifted
to Chapter 5. We conclude with the introduction of the solution space of a linear control
system. It enters into the concept of classical solutions.

The main results of this work are contained in the Chapters 4 to 6. In the first one of
them we state the definition of additive control systems and prove the first representation
theorem. Under mild continuity assumptions the control system yields the strong solution of
the corresponding state space representation. This leads to the definition of Lp–admissible
control operators. Next we verify the above indicated linearization principle.

Chapter 5 is devoted to perturbations of the state equation. In the framework of mild
solutions we establish a well-posedness theory involving inputs. We also generalize the lin-
earization theorem from the preceding chapter. Here we also have to prove that the derivative
of the control operator is admissible for the perturbed semigroup.

Chapter 6 deals with the output. On the one hand we define additive observation systems
and represent them via observation operators. Again a linearization result analog to the one
of Chapter 4 is valid. In the final section we treat regular semilinear well-posed systems.
Each of the Chapters 4 to 6 contains a section with applications mainly to wave equations.

We provide three appendices on extrapolation spaces, the Laplace transform and on
boundary control systems, where we collect needed notions and results from the literature.

11



12



Chapter 2

Dynamical systems

In this chapter we discuss the fundamental concept of dynamical systems. The material is
taken from Section 2 of [42], though we added feedthrough terms. See also [19]. We first
introduce some notation which is used throughout the thesis.

Let J and U be nonempty sets. We will mostly have J = [0,∞). Denote by UJ the family
of all maps u : J → U . Let τ ≥ 0 and u ∈ U [0,∞). The left shift operator S∗τ : U [0,∞) → U [0,∞)

is given by
(S∗τu)(t) := u(t+ τ).

If U is a vector space (i.e., including 0) we set

(Sτu)(t) =
{

0, t ∈ [0, τ)
u(t− τ), t ∈ [τ,∞)

, (Pτu)(t) =
{
u(t), t ∈ [0, τ)
0, t ∈ [τ,∞)

.

The map Pτu can be regarded as the truncation of u to the subinterval [0, τ), and Sτ is the
right shift operator. Note that S∗0u = u = S0u and P0u is the zero function.

Clearly S∗τ is the left-inverse of Sτ , this means that S∗τSτu = u for all u ∈ U [0,∞) and
τ ≥ 0. Moreover, for every u ∈ U [0,∞) and all τ ≥ 0 we have

u = Pτu+ SτS
∗
τu.

Note that Pτ as well as Sτ and S∗τ are linear. Restricted to proper function spaces – such
as Lp([0,∞), U) with a Banach space U – these operators are bounded with norm one, and
S∗τ is the dual of Sτ . In Definition 2.1 below for brevity we use the symbol R2

≥ := {(t, s) ∈
R2 | t ≥ s}. It is needed only here and in Definition 2.6.

2.1 Time-invariant dynamical systems
We model a system which at every instant of time resides in some state and accepts inputs.
Moreover, the current state can be observed via an output function. The current output may
also depend on the current input. It is however independent of how the current state was
reached, i.e., independent of states and inputs of the past.

It is further natural to assume that the transition of the state is evolutionary, a condition
called composition property. This means, if r < s < t are three instants of time, then the
state at time t can either be calculated from the state at time r and inputs made between r
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and t or from the state at time s using only inputs between s and t. Theoretically, we can
stop the system, observe the current state and continue the evolution. Consistency ensures
that the state of the system does not change in “zero time”. Finally, causality tells us that
the current state only depends on past input.
Definition 2.1. A dynamical system (with outputs) Σ = (R, X, U, φ, Y, η) consists of

• a set of states X, a set of input-values U and a set of output-values Y – each nonempty;

• a state transition map φ : DΣ → X, defined on a set DΣ ⊆ R2
≥ ×X × UR, satisfying

– ‘consistency’ ∀x ∈ X,u ∈ UR, s ∈ R : (s, s, x, u) ∈ DΣ and φ(s, s, x, u) = x.
– ‘composition property’ ∀x ∈ X,u ∈ UR, r, s, t ∈ R with t ≥ s ≥ r :

(t, r, x, u) ∈ DΣ =⇒ (s, r, x, u) ∈ DΣ and (t, s, x1, u) ∈ DΣ

and φ(t, s, x1, u) = φ(t, r, x, u),

where x1 = φ(s, r, x, u).
– ‘causality’ ∀x ∈ X,u1, u2 ∈ UR, s, t ∈ R with t > s

u1|[s,t) = u2|[s,t) and (t, s, x, u1) ∈ DΣ

=⇒ (t, s, x, u2) ∈ DΣ and φ(t, s, x, u1) = φ(t, s, x, u2);

• an output map η : R×X × U → Y .

Remark 2.2. a) More generally one can replace R in the above definition by a so called time
set, which is a subgroup T of (R,+), so that 0 ∈ T as well as −t ∈ T and t + τ ∈ T for
all t, τ ∈ T . To avoid that the system is trivial one should require T 6= {0}. Using time
sets one can describe discrete-time and continuous-time uniformly. Since we do not consider
discrete-time systems, we stick to R.

b) It is natural to assume that for all x ∈ X there is some input u ∈ UR and times s, t ∈ R
with t > s such that (t, s, x, u) ∈ DΣ. Else the set of states X might be chosen to large. ♦

Let the system modeled by the last definition reside in the state x ∈ X at time s. Further
assume that at instants τ ∈ [s, t) inputs u(τ) were made. Then the system’s state at time t
is z(t) = φ(t, s, x, u), provided that (t, s, x, u) ∈ DΣ. In this situation the output is given by
y(t) = η(t, φ(t, s, x, u), u(t)).

We should mention that generally only the output y is known and that the input u and
the initial state x can possibly be chosen or are also known. Writing y(t) = y(t, s, x, u), we
immediately derive the composition property

y(t, r, x, u) = y(t, s, φ(s, r, x, u), u)

for all (t, r, x, u) ∈ DΣ and s ∈ [r, t]. Moreover, the causality of φ implies the following. Let
(t, s, x, u1) ∈ DΣ with t > s and let u2 ∈ UR satisfy u1|[s,t) = u2|[s,t). Then we infer

y(t, s, x, u1) = η(t, z(t), u1(t)) and y(t, s, x, u2) = η(t, z(t), u2(t)).

These values may differ, but only if u1(t) 6= u2(t). In many cases the input u and the output
y belong to some vector-valued Lp spaces and are thus defined only almost everywhere. Then
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all the above equations containing u(t) or y(t) should hold for almost every t. Examples for
such system may be obtained from solving a PDE with functional analytic methods.

Now we are going to specialize the situation. Starting from Chapter 3 we will only
consider ‘time-invariant’ systems, defined next. One uses the term time-varying for systems
as in Definition 2.1. It is important to remark that even if one starts with a time-invariant
system, the linearization along a non-constant trajectory in general will be a time-varying
system.
Definition 2.3. A system Σ = (R, X, U, φ, Y, η) is called time-invariant if for all x ∈ X,
u ∈ UR, v ∈ U and s, t ∈ R with t ≥ s we have η(t, x, v) = η(0, x, v) as well as

(t, s, x, u) ∈ DΣ =⇒ (t− s, 0, x, S∗su) ∈ DΣ and φ(t, s, x, u) = φ(t− s, 0, x, S∗su).

For time-invariant systems, the evolution of the state thus solely depends on the time
span t − s and not on the actual times t and s. Consequently we only need inputs from
U [0,∞). To shorten the notation one drops the 0 in the argument of φ, i.e., one considers
the state transition map φ0 : D0

Σ → X given by φ0(τ, x, u) = φ(τ, 0, x, u), where D0
Σ =

{(t − s, x, S∗su) | (t, s, x, u) ∈ DΣ} ⊆ [0,∞) × X × U [0,∞). For simplicity for φ0 and D0
Σ we

write φ and DΣ respectively again. Similarly one drops the 0 in the argument of η. Definition
2.1 with this new state transition map and output map then reads as follows.
Definition 2.4. A time-invariant dynamical system Σ = (R, X, U, φ, Y, η) consists of

• a set of states X, a set of input-values U and a set of output-values Y ;

• a state transition map φ : DΣ → X defined on DΣ ⊆ [0,∞)×X × U [0,∞), satisfying

– ‘consistency’ ∀x ∈ X,u ∈ U [0,∞) : (0, x, u) ∈ DΣ and φ(0, x, u) = x.
– ‘composition property’ ∀x ∈ X,u ∈ U [0,∞), t, τ ∈ [0,∞) :

(t+ τ, x, u) ∈ DΣ =⇒ (τ, x, u) ∈ DΣ and (t, x1, S
∗
τu) ∈ DΣ

and φ(t, x1, S
∗
τu) = φ(t+ τ, x, u),

where x1 = φ(τ, x, u).
– ‘causality’ ∀x ∈ X,u1, u2 ∈ U [0,∞), t ∈ [0,∞) :

u1
∣∣
[0,t) = u2

∣∣
[0,t) and (t, x, u1) ∈ DΣ =⇒ (t, x, u2) ∈ DΣ and φ(t, x, u1) = φ(t, x, u2);

• an output map η : X × U → Y .

Next we define linear systems. For this we need X, U and Y to be vector spaces (over the
same field K). The term ‘linear time-invariant system’ is often abbreviated LTI. We make
no use of this acronym since we do not treat linear systems very much.
Definition 2.5. A dynamical system Σ = (R, X, U, φ, Y, η) is called linear if for all s, t ∈ R
with t ≥ s the set DΣ,t,s := {(x, u) ∈ X × UR | (t, s, x, u) ∈ DΣ} is a vector space, for all t ∈ R
the map η(t, � , � ) : X × U → Y is linear and

∀ (x, u), (x1, u1), (x2, u2) ∈ DΣ,t,s, α ∈ K : φ(t, s, αx, αu) = αφ(t, s, x, u)
and φ(t, s, x1 + x2, u1 + u2) = φ(t, s, x1, u1) + φ(t, s, x2, u2).
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In short, a system is linear if state transition map and output map are linear in the
state and input arguments. For a linear time-invariant system Σ one demands that for all
t ∈ [0,∞) the set DΣ,t := {(x, u) ∈ X × U [0,∞) | (t, x, u) ∈ DΣ} is a vector space,

∀ (x, u), (x1, u1), (x2, u2) ∈ DΣ,t, α ∈ K : φ(t, αx, αu) = αφ(t, x, u)
and φ(t, x1 + x2, u1 + u2) = φ(t, x1, u1) + φ(t, x2, u2),

and that η : X × U → Y is linear.

It is desirable to find a subset of UR such that every input in it can be applied to any
initial state for all times. This is the subject of our last definition.
Definition 2.6. Let Σ = (R, X, U, φ, Y, η) be a dynamical system and Ω ⊆ UR. Then Σ is
called Ω–complete if R2

≥ ×X × Ω ⊆ DΣ.
Clearly, a time-invariant system Σ is Ω–complete if [0,∞)×X × Ω ⊆ DΣ. If for a given

system one finds an Ω ⊆ UR with R2
≥×X ×Ω ⊆ DΣ that is rich enough for ones needs, then

it might be a good idea to assume that DΣ = R2
≥×X ×Ω. If Ω is clear from the context, we

simply say that Σ is complete.

2.2 Linear control and observation systems

Mainly all theory concerning control and observation problems fit into the framework intro-
duced above. As an example, in this section we show that the functional equations demanded
for a well-posed linear system can be deduced from our assumptions in Definitions 2.1 and 2.4.
We introduce a metric structure on our sets X, U and Y in order to describe the regularity
properties of such systems.

Let X, U , Y and Ω ⊆ UR be Banach spaces. Further let Σ = (R, X, U, φ, Y, η) be an
Ω–complete linear system. For t, s ∈ R with t ≥ s we define the functions Ut,s : X → X via
Ut,sx = φ(t, s, x, 0). The resulting family U = (Ut,s)t≥s satisfies the functional equations of
an evolution family, namely

Us,sx = x and Ut,rx = Ut,sUs,rx

for all x ∈ X and s, t, r ∈ R with t ≥ s ≥ r. This follows immediately from consistency and
the composition property. It is clear that Ut,s is linear for all s, t ∈ R with t ≥ s. The family
U actually is an evolution family in the sense of Definition 5.1.3 in [33] if in addition the
following conditions are satisfied.

• Ut,s ∈ L(X) for all s, t ∈ R with t ≥ s.

• For every x ∈ X the map {(t, s) ∈ R2 | t ≥ s} → X; (t, s)→ Ut,sx is continuous.

Given s ∈ R, x ∈ X and u ∈ Ω, then z(t) := zs,x,u(t) := φ(t, s, x, u) is the system’s state
at time t ≥ s. Due to the linearity of Σ, we have z(t) = φ(t, s, x, 0) + φ(t, s, 0, u). This
decomposition suggests the definition of the operators Φt,s : Ω→ X; Φt,su := φ(t, s, 0, u) for
s, t ∈ R with t ≥ s. Then we may write

z(t) = φ(t, s, x, 0) + φ(t, s, 0, u) = Ut,sx+ Φt,su for t ≥ s.
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Hence the influence of initial state x and input u on the state z can be separated. The effect
of the input is added to the unaffected evolution of the initial state.

Again the linearity of Σ yields that Φt,s is linear for every pair s, t ∈ R with t ≥ s.
Consistency and the composition property for the family Φ = (Φt,s)t≥s become

Φs,su = 0 and Φt,ru = φ(t, s, φ(s, r, 0, u), 0) + φ(t, s, 0, u) = Ut,sΦs,ru+ Φt,su

for all u ∈ Ω and r, s, t ∈ R with t ≥ s ≥ r. The pair (U ,Φ) appears in Definition 3.1
of [40], where Ω = Lploc([t0,∞), U) for some t0 ≥ 0 and p ∈ [1,∞). If natural continuity
assumptions are added, it is called nonautonomous control system. Various special cases
have been considered before e.g. in [12], [18], [21] and [1]. The setting of [40] was refined and
applied in [41].

Let us specialize the situation further by assuming that the system Σ is time-invariant.
In this setting a successful and encompassing theory was developed which we now want to
describe. Here the evolution family U is time invariant, i.e., Ut,s = Ut−s,0 for all s, t ∈ R with
t ≥ s. It is easy to see that in this case Tt := Ut,0 yields a semigroup on X. Equivalently, we
can also directly define the maps Tt : X → X for t ≥ 0 by

Ttx := φ(t, x, 0) for x ∈ X.

The consistency and the composition property then imply that

T0x = x and Tt+τx = TtTτx (2.1)

for x ∈ X and t ≥ 0. Again, the linearity of T is a consequence of the linearity of Σ. By
adding the following assumptions, T becomes a strongly continuous linear semigroup on X.

• Tt ∈ L(X) for every t ≥ 0.

• For all x ∈ X the map [0,∞)→ X; t 7→ Ttx is continuous.1

Similar to the definition of Φ above, for t ≥ 0 and u ∈ Ω we set Φtu := φ(t, 0, u). The
resulting maps Φt : Ω→ X are called input maps. They are linear because Σ is linear. Again,
for fixed x ∈ X and u ∈ Ω the state z(t) = zx,u(t) = φ(t, x, u) can be written as

z(t) = Ttx+ Φtu for t ≥ 0. (2.2)

Once more using consistency and the composition property, for the family Φ = (Φt)t≥0
we obtain the rules

Φ0u = 0 and Φt+τu = TtΦτu+ ΦtS
∗
τu (2.3)

for all t, τ ≥ 0 and each u ∈ Ω. We recognize the functional equations that Weiss postulates
for an abstract linear control system (T,Φ) in Definition 2.1 of [52]. Assuming further that

• Φt ∈ L(Ω, X) for all t ≥ 0,
1It is well known that with the help of the semigroup properties, continuity of t 7→ Ttx at 0 extends to

continuity on all of [0,∞).
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the pair (T,Φ) indeed fulfills the definition in [52], except that there the space of input
functions is restricted to Ω = Lp([0,∞), U) for some p ∈ [1,∞]. In Chapter 4 we define and
discuss ‘additive control systems’ as a nonlinear generalization.

The output y can be dealt with in the same fashion. We discuss only the time-invariant
case. Here the output at time t ≥ 0 is given by y(t) := yx,u(t) := η(φ(t, x, u), u(t)). The
linearity of Σ implies that

η(φ(t, x, u), u(t)) = η(φ(t, x, 0) + φ(t, 0, u), u(t)) = η(φ(t, x, 0), 0) + η(φ(t, 0, u), u(t))

for x ∈ X, u ∈ Ω and t ≥ 0. We thus define the linear operators Ψ∞ : X → Y [0,∞) and
F∞ : Ω→ Y [0,∞) through

Ψ∞x := η(φ( � , x, 0), 0) and F∞u := η(φ( � , 0, u), u( � )).

We then can write

y(t) = Ψ∞x(t) + F∞u(t) for x ∈ X,u ∈ Ω and t ≥ 0.

Again the dependence of y on x and u is separated, which could be expected for linear
operators.

Let us first investigate Ψ∞, the so called (extended) output map. Calculations using the
composition property lead to

S∗τΨ∞x = Ψ∞Tτx for all t, τ ≥ 0 and every x ∈ X. (2.4)

To introduce a continuity condition for Ψ∞ its range has to lie in a topological space. We
think of Γ = Lp([0,∞), Y ) for some p ∈ [1,∞). However, in principle the output could be
e.g. constant for all times and consequently just locally integrable on [0,∞).

To avoid the use of the Fréchet space Lploc([0,∞), Y ), we impose the continuity condition
on the truncated maps Ψt := PtΨ∞. Assume that the families T and Ψ = (Ψt)t≥0 satisfy the
following conditions.

• T is a strongly continuous semigroup on X.

• Let Ψt belong to L(X,Γ) for all t ≥ 0.2

Then (T,Ψ) is an abstract linear observation system in the sense of Definition 2.1 in [53]. We
will use an analogous definition for our possibly nonlinear ‘additive observation systems’ in
Chapter 6. The composition property translates to

S∗τΨt+τx = Pt+τ−τS
∗
τΨ∞x = PtΨ∞(Tτx) = Ψt(Tτx)

for all t, τ ≥ 0 and every x ∈ X.
The operator F∞ is called (extended) input-output map. A short calculation shows that

we have the composition property

S∗τF∞u = Ψ∞Φτu+ F∞S
∗
τu for u ∈ Ω and t, τ ≥ 0. (2.5)

2This is actually the same as to assume that Ψ∞ : X → Lploc([0,∞), Y ) is continuous.
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This looks more complicated and, unlike in the previous discussion, the other operators Ψ∞
and Φτ appear. As before we introduce the truncated maps Ft := PtF∞ for t ≥ 0. The
composition property for the family F = (Ft)t≥0 then becomes

S∗τFt+τu = ΨtΦτu+ FtS
∗
τu for u ∈ Ω and t, τ ≥ 0.

As before we add continuity assumptions.

• Let T be a strongly continuous semigroup on X.

• Assume that Φt ∈ L(Ω, X), Ψt ∈ L(X,Γ) and Ft ∈ L(Ω,Γ) for all t ≥ 0.

Then the quadruple (T,Φ,Ψ, F ) is an abstract linear system on Ω, X and Γ in terms of
Definition 1.1 of [54]. The names abstract control/observation system and abstract linear
system are outdated, the latter was replaced by well-posed linear systems, see Definition 2.2
in [44] and the text before it. In the following, we will call the tuples (T,Φ) and (T,Ψ) linear
control system and linear observation system respectively.

Since our theory is based on the work of G. Weiss, let us repeat some linear results.
We follow the papers [52] and [53]. It should be remarked that similar results were proved
independently by D. Salamon in [39].

It can be observed that the state z of many linear dynamical systems obtained by modeling
natural phenomena satisfies the differential equation

z′(t) = Az(t) +Bu(t); z(0) = x0, (2.6)

with linear operators A and B. If state space and input space are finite dimensional, this
equation can be solved. In this case the operators A and B can be seen as matrices A ∈ Rn×n
and B ∈ Rn×m for some n,m ∈ N and the solution is given by

z(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s) ds for t ≥ 0.

The same is certainly true if A ∈ L(X) and B ∈ L(U,X) are bounded on the spaces X
and U which may have infinite dimensions. However, for partial differential equations with
boundary control ‘unbounded’ A and B have to be considered. This means that A is merely
a closed operator in X with a domain D(A) not being the whole space X, and B does not
map into X. It is well known that (2.6) with B = 0 is well-posed if A is the generator of a
strongly continuous semigroup on X. So one is seeking necessary (and sufficient) conditions
for B under which (2.6) is well-posed.

Motivated by the question what properties a solution of (2.6) should have and guided
by the finite dimensional case, Weiss introduced the concept of linear control systems we
encountered above. He then proved the following representation theorem.

Theorem 2.7. Let X and U be Banach spaces and let p ∈ [1,∞). Further let (T,Φ) be a
linear control system on X and Lp([0,∞), U). Then there exists a unique linear operator
B ∈ L(U,X−1) such that for all u ∈ Lp([0,∞), U) and every t ≥ 0 we have

Φtu =
∫ t

0
Tt−sBu(s) ds. (2.7)
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Moreover, for all x0 ∈ X and u ∈ Lp([0,∞), U) the function given by z(t) = Ttx0 + Φtu is
the unique strong solution of (2.6), meaning that z belongs to C([0,∞), X) and we have

z(t) = x0 +
∫ t

0

(
Az(s) +Bu(s)

)
ds for all t ≥ 0.

This is Theorem 3.9 of [52]. We refer to Appendix A for details on the space X−1 as well
as on the spaces X1 and X1,d needed below. Note that we have the continuous embeddings
X1 ↪→ X ↪→ X−1, so that L(U,X−1) includes L(U,X). The notion of strong solution is
discussed in the following chapter.

Next we turn our attention to the output. Here the state of a linear dynamical system is
observed through a linear operator C. We add the equation

y(t) = Cz(t) (2.8)

to (2.6). Again, there is no problem if C belongs to L(X,Y ). But if C is defined on a
subspace W of X, then even in the absence of an input (that is u = 0) it is not clear whether
z(t) = Ttx0 lies in this space for all x0 ∈ X and t ≥ 0. If W is T–invariant, then for x0 ∈W
and u = 0 the solution of (2.6) & (2.8) is given by

y(t) = CTtx0 for t ≥ 0. (2.9)

We expect that this map has an extension to all of X which depends continuously on x0.
In Theorem 3.9 of [53], which we now repeat, a necessary condition for such ‘admissible’
operators C is given.

Theorem 2.8. Let X and Y be Banach spaces and let p ∈ [1,∞]. Further let (T,Ψ) be a
linear observation system on X and Lp([0,∞), Y ). Then there is a unique linear operator
C ∈ L(X1, Y ) such that for all x0 ∈ X1 and every t ≥ 0 we have

(Ψ∞x0)(t) = CTtx0.

Note that L(X,Y ) is a subspace of L(X1, Y ). In the spirit of this approach we now define
‘admissible’ control and observation operators. In short, via (2.7) and (2.9) they must yield
a linear control systems respectively a linear observation system. These abstract conditions
have been checked for many operators in applications. Often this is difficult, see e.g. [49].

Definition 2.9. Let X, U and Y be Banach spaces and let p ∈ [1,∞). Moreover, assume that
A generates a strongly continuous semigroup T on X.

A linear operator B ∈ L(U,X−1) is called Lp–admissible control operator for T if for all
t ≥ 0 the map Φt : Lp([0,∞), U)→ X−1 defined by (2.7) actually lies in L(Lp([0,∞), U), X).

A linear operator C ∈ L(X1, Y ) is called Lp–admissible observation operator for T if for all
τ ≥ 0 the map Ψτ : X1 → Lp([0,∞), Y ) defined by

(Ψτx0)(t) =
{
CTtx0, t ∈ [0, τ)
0, t ∈ [τ,∞)

has a continuous extension to an operator Ψτ ∈ L(X,Lp([0,∞), U)).
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Let B ∈ L(U,X−1) and C ∈ L(X1, Y ) be Lp–admissible for T as in the last definition. It is
easy to see that the families (Φt)t≥0 and (Ψτ )τ≥0 yield linear control and observation systems
(T,Φ) and (T,Ψ) on X and Lp([0,∞), U) as well as on X and Lp([0,∞), Y ) respectively.
Hence the following proposition directly follows from Theorem 2.7.

Proposition 2.10. Let T be a strongly continuous semigroup on a Banach space X and
let B ∈ L(U,X−1) be an Lp–admissible control operator for T. Then for all x0 ∈ X and
u ∈ Lploc([0,∞), U) the function z : [0,∞) → X given by z(t) = Ttx0 + Φtu is the unique
strong solution of (2.6).

Under the conditions of the last definition it is not hard to verify that if for one τ > 0 we
have Ψτ ∈ L(X,Lp([0,∞), U)), then C is Lp–admissible for T. We refer to Proposition 4.3.2
of [49]. Clearly this is equivalent to the existence of a number Kτ ≥ 0 with

‖Ψτx0‖Lp([0,∞),Y ) =
(∫ τ

0
‖CTtx0‖pY dt

)1/p
≤ Kτ‖x0‖X for all x0 ∈ X1.

Similarly, B is Lp–admissible for T if Φt ∈ L(Lp([0,∞), U), X) for one t > 0. It is remarkable
that it suffices to check that Φtu ∈ X for one t > 0 and all u ∈ Lp([0,∞), U). This can be
prove using the closed graph theorem, see Proposition 4.2 of [52].

Assume that C ∈ L(X1, Y ) is an Lp–admissible control operator for T. Unfortunately,
in general the representation (Ψ∞x0)(t) = CTtx0 does not extend to all x0 ∈ X. To obtain
such a formula on X, the Lebesgue extension of C is introduced. This is the linear operator
CL : D(CL)→ Y with domain

D(CL) =
{
x ∈ X

∣∣∣∣ 1
τ C

∫ τ

0
Tsx ds converges in Y as t→ 0+

}
.

The value CLx is defined as the limit above. Since for x0 ∈ X1 the function [0,∞) → X1;
t 7→ Ttx0 is continuous at t = 0, it is clear that X1 is a subset of D(CL). It is shown in
Theorem 4.5 of [53] that x ∈ X belongs to D(CL) if and only if Ψ∞x has a Lebesgue point
at t = 0. We will take this characterization as the definition of our Lebesgue extension in
Definition 6.2.

More generally Theorem 4.5 of [53] says that Ttx is contained in D(CL) if and only if
Ψ∞x has a Lebesgue point at t, and then

(Ψ∞x)(t) = CLTtx.

As a consequence, for every x ∈ X this equation holds for almost all t ≥ 0.
It is a very nice feature of linear control theory that results can be derived by duality.

Assume that X and U are reflexive. In this case the family of duals T∗ = (T∗t )t≥0 is a
continuous semigroup on X∗, see Proposition A.4. Let B ∈ L(U,X−1) and p ∈ (1,∞). We
identify X∗−1 with X1,d (see Proposition A.3 and the preceding text) so that we have B∗ ∈
L(X1,d, U

∗). As usual we also identify Lp([0,∞), U)∗ with Lp′([0,∞), U∗) where p′ ∈ (1,∞)
is the dual exponent for p. Then B is an Lp–admissible control operator for T if and only if
B∗ is an Lp′–admissible observation operator for T∗. For the proof we refer to Theorem 6.9
in [53]. We mention that in this case

Φ∗τ = RτΨd
τ for all τ ≥ 0,
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where Ψd
τ ∈ L(X∗, Lp′([0,∞), U∗)) is the continuous extension of Ψd

τx
∗ = PτB

∗T∗( � )x
∗ for

x∗ ∈ X1,d and Rτ is the time-reflection operator given by

( Rτf)(t) =
{
f(τ − t), t ∈ [0, τ)
0, t ∈ [τ,∞)

for suitable f defined on [0,∞). (2.10)

In the same way C ∈ L(X1, Y ) is an Lq–admissible observation operator for T if and only
if C∗ ∈ L(Y ∗, X−1,d) is an Lq′–admissible control operator for T∗ and then

Ψ∗τ = Φd
τ Rτ for all τ ≥ 0,

where Φd
τ ∈ L(Lq′([0,∞), Y ∗), X∗) is defined by Φd

τu =
∫ τ

0 T∗τ−sC∗u(s) ds. Let us call (T∗,Ψd)
and (T,Φd) the dual systems corresponding to (T,Φ) and (T,Ψ), respectively.

2.3 Additive dynamical systems
We saw that linearity of a dynamical system allows us to separate the effect of the input
from the evolution of the system that is free of influences. This is not a property of linear
systems alone, we can simply assume it. As we shall see in our examples, linear systems with
modified input or output satisfy this assumption. First we introduce the term ‘additive map’.

LetM and N be nonempty sets and let (E,+) be a commutative group. We call a map
f ∈ EM×N additive if there are maps f1 ∈ EM and f2 ∈ EN such that f(a, b) = f1(a)+f2(b)
for all (a, b) ∈M×N . Additive maps can be characterized as follows.

Lemma 2.11. For a function f ∈ EM×N the following statements are equivalent.

(a) f is additive.

(b) ∀a, a∗ ∈M, b1, b2 ∈ N : f(a, b1)− f(a, b2) = f(a∗, b1)− f(a∗, b2).

(c) ∀a1, a2 ∈M, b, b∗ ∈ N : f(a1, b)− f(a2, b) = f(a1, b
∗)− f(a2, b

∗).

Proof. It is obvious that (a) implies (b) and that (b) implies (c). If (c) is satisfied, choose
any (a0, b0) ∈M×N and define f1 ∈ EM and f2 ∈ EN via

f1(a) = f(a, b0)− f(a0, b0) resp. f2(b) = f(a0, b).

Then by condition (c) we have

f1(a) + f2(b) = f(a, b0)− f(a0, b0) + f(a0, b) = f(a, b)− f(a0, b) + f(a0, b) = f(a, b)

for all (a, b) ∈M×N .

Informally speaking, (c) express that the difference f(a1, b) − f(a2, b) is independent of
b. Similarly (b) means that f(a, b1)− f(a, b2) does not depend on a. It should be clear that
(b) and (c) can be replaced by the conditions

(b’) ∃a∗ ∈M ∀a ∈M, b1, b2 ∈ N : f(a, b1)− f(a, b2) = f(a∗, b1)− f(a∗, b2).

(c’) ∃b∗ ∈ N ∀a1, a2 ∈M, b ∈ N : f(a1, b)− f(a2, b) = f(a1, b
∗)− f(a2, b

∗).
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In the proof above, f1 was chosen such that f1(a0) = 0. Of course adding a constant
to f2 and subtracting the same from f1 doesn’t change the identity f(a, b) = f1(a) + f2(b).
Therefore one of the values f1(a0) or f2(b0) can be chosen. However f1(a0) = f2(b0) = 0 can
only be achieved if f(a0, b0) = 0. This special case is characterized in the following lemma.

Lemma 2.12. For a function f ∈ EM×N the following statements are equivalent.

(i) ∃(a0, b0) ∈ M×N , f1 ∈ EM, f2 ∈ EN ∀(a, b) ∈ M×N : f(a, b) = f1(a) + f2(b) and
f1(a0) = f2(b0) = 0.

(ii) ∃(a0, b0) ∈ M×N , f1 ∈ EM, f2 ∈ EN ∀(a, b) ∈ M×N : f(a, b) = f1(a) + f2(b) and
f2(b0) = −f1(a0).

(iii) ∃(a0, b0) ∈M×N ∀(a, b) ∈M×N : f(a, b) = f(a, b0) + f(a0, b).

In any of this equivalent cases we have f(a0, b0) = 0.

Proof. The implication (i) ⇒ (ii) is trivial. If (ii) holds then for all (a, b) ∈M×N we have

f(a, b0) = f1(a) + f2(b0) = f1(a)− f1(a0) and f(a0, b) = f1(a0) + f2(b).

Adding up these equations, we obtain f(a, b0) + f(a0, b) = f1(a) + f2(b) = f(a, b). Thus
(iii) is satisfied. In case (iii) is valid, we define f1 ∈ EM and f2 ∈ EN by f1(a) = f(a, b0)
and f2(b) = f(a0, b) respectively. Then clearly f(a0, b0) = f(a0, b0) + f(a0, b0) which means
0 = f(a0, b0). We conclude that f1(a0) = f2(b0) = 0 and (i) is fulfilled.

Let Σ = (R, X, U, φ, Y, η) be an Ω–complete time-invariant dynamical system. We may
assume that DΣ = [0,∞)×X ×Ω. Let φ(t, � , � ) be additive for every t ≥ 0. Then there are
functions Tt : X → X and Φt : Ω→ X such that

φ(t, x, u) = Tt(x) + Φt(u) for all x ∈ X,u ∈ Ω.

Let t ≥ 0, x ∈ X and u ∈ Ω. As argued above, we may assume that Tt(x) = φ(t, x, 0) −
φ(t, 0, 0) and Φt(u) = φ(t, 0, u). Note that then Tt(0) = 0. From Definition 2.4 we further
infer the identities

Φ0(u) = φ(0, 0, u) = 0,
Φt+τ (u) = φ(t+ τ, 0, u) = φ(t, φ(τ, 0, u), S∗τu)± φ(t, 0, S∗τu)

= φ(t, φ(τ, 0, u), 0)− φ(t, 0, 0) + φ(t, 0, S∗τu) = Tt(Φτ (u)) + Φt(S∗τu).

So the conditions (2.3) are satisfied as in the linear case, and we also have T0(x) = φ(0, x, 0)−
φ(0, 0, 0) = x. On order to fulfill (2.1) we assume that Tt is linear for every t ≥ 0. Then we
can derive

Tt+τx = φ(t, φ(τ, x, 0), S∗τ0)− φ(t, φ(τ, 0, 0), S∗τ0)
= Tt(Tτx+ φ(τ, 0, 0)) + Φt(0)− Tt(φ(τ, 0, 0))− Φt(0)
= Tt(Tτx± φ(τ, 0, 0)) = TtTτx.

These are the type of control systems we are going to study. As for the linear systems we will
add some regularity assumptions. We will further restrict the choice of Ω. See the Definitions
4.1 and 4.3.
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We now describe the observation systems treated in this work. Let t, τ ≥ 0, x ∈ X and
u ∈ Ω. Consider the output y : [0,∞)×X × Ω→ Y given by

y(t, x, u) = η(φ(t, x, u), u(t)).

The composition property from Definition 2.4 yields the identity

y(t+ τ, x, u) = η
(
φ(t, φ(τ, x, u), S∗τu

)
, u(t+ τ)) = y(t, φ(τ, x, u), S∗τu). (2.11)

We could assume that y(t, � , � ) is additive, i.e., y(t, x, u) = y(t, x, 0) + y(t, 0, u) − y(t, 0, 0).
But would lead to the identity

η(φ(t, x, 0) + φ(t, 0, u), u(t)) = y(t, x, u) = y(t, x, 0) + y(t, 0, u)− y(t, 0, 0)
= η(φ(t, x, 0), 0) + η(φ(t, 0, u), u(t))− η(φ(t, 0, 0), 0),

which is reasonable only if η is linear. Instead, we consider the operator Ψ∞ : X → Y [0,∞)

defined by
Ψ∞(x)(t) = y(t, x, 0) = η(φ(t, x, 0), 0).

Assume that φ(t, 0, 0) = 0 for all t ≥ 0, so that with the above notation

Ttx = φ(t, x, 0) and Φt(u) = φ(t, 0, u).

Note that in this case we have Tt0 = 0 = Φt(0) for all t ≥ 0. Plugging in u = 0 into the
composition property (2.11) we obtain

Ψ∞(x)(t+ τ) = y(t, φ(τ, x, 0), S∗τ0) = y(t,Tτx, 0) = Ψ∞(Tτx)(t).

It follows that S∗τΨ∞(x) = Ψ∞(Tτx) for all τ ≥ 0 and x ∈ X which equals (2.4). The systems
introduced here are discussed in Sections 6.1 – 6.3.

On the other hand, the composition property (2.11) with x = 0 yields

y(t+ τ, 0, u) = y(t, φ(τ, 0, u), S∗τu).

For the method used in Section 6.4 it is crucial, that we have the additive structure as in
(2.5). The reasoning above indicates that we have to assume that η is linear. In this case,
we set

F∞(u)(t) = y(t, 0, u) = η(φ(t, 0, u), u(t)) for u ∈ Ω.

Then with (2.11) we infer

F∞(u)(t+ τ) = y(t, φ(τ, 0, u), S∗τu) = y(t, φ(τ, 0, u), 0) + y(t, 0, S∗τu)
= y(t,Φτ (u), 0) + F∞(S∗τu)(t) = Ψ∞(Φτ (u))(t) + F∞(S∗τu)(t).

for all u ∈ Ω and t, τ ≥ 0. This means that (2.5) is satisfied. From the causality property in
Definition 2.4 one easily derives that F∞ also fulfills PtF∞(u) = PtF∞(Ptu) for every u ∈ Ω
and all t ≥ 0.
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Chapter 3

Solvability of Cauchy problems

Throughout let X be a Banach space. In the first two sections we define and compare several
solution concepts for evolution equations. A related topic is the discussion of the solution
space Z in Section 3.3.

3.1 Inhomogeneous Cauchy problems
We define what we mean by a ‘solution’ of the inhomogeneous Cauchy problem

z′(t) = Az(t) + f(t); z(0) = x0, (3.1)

and study the properties of such functions. The following results are essentially known but
since they are crucial for our thesis we give a detailed exposition for convenience. Good
references are Section 4.2 in [33] and Section 3.8 in [43].

We have to specify the objects in 3.1. Let x0 ∈ X. It is known that the homogeneous
problem (that is (3.1) with f = 0) is well-posed if and only if A is the generator of a strongly
continuous semigroup T on X. So let A be such a generator.

The generator A at hand, we can construct a space X−1 such that there is an extension
A ∈ L(X,X−1). Seen as an unbounded operator in X−1 this extension is the generator of
the extension of T to X−1. For more details see Appendix A. In linear control theory, we
have f = B ◦ u for some B ∈ L(U,X−1) and u ∈ Lp([0,∞), U), where p ∈ [1,∞). It is thus
reasonable to postulate that

f ∈ L1
loc([0,∞), X−1).

We now formulate a first solution concept.
Definition 3.1. A function z : [0,∞) → X is called classical solution of (3.1) in X if z ∈
C([0,∞), X) ∩ C1([0,∞), X−1) and (3.1) is satisfied for every t ≥ 0.

We point out that in evolution equations one usually looks for classical solutions in X1,
that is functions z ∈ C([0,∞), X1)∩C1([0,∞), X) where X1 is D(A) with a norm equivalent
to the graph norm (again see Appendix A). Since B maps into X−1 we can not work with
such solutions.

Unfortunately, due to the low regularity of f , we can not expect that classical solutions
of (3.1) in X exist. In fact, if z ∈ C1([0,∞), X−1) is a classical solution then f has to be
continuous in X−1 as the identity f = z′ − Az shows. This setting is not suitable for us.
Therefore we need a somewhat weaker notion of solution.
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Definition 3.2. A function z : [0,∞)→ X is called strong solution of (3.1) in X if it belongs
to C([0,∞), X) and satisfies the ‘integrated equation’

z(t)− x0 =
∫ t

0
(Az(s) + f(s)) ds for all t ≥ 0. (3.2)

Note that the left-hand side of (3.2) belongs to X. Therefore also the value of the integral
on the right-hand side has to lie in X. However, it is calculated in X−1 because under the
given assumptions the functions Az and f belong to L1([0, t], X−1).

It is clear that classical solutions of (3.1) in X are strong solutions of (3.1) in X. The
fact that Az and f are locally integrable with respect to ‖ � ‖−1 implies that a strong solution
of (3.1) in X as a function z : [0,∞) → X−1 is absolutely continuous and differentiable
almost everywhere. In particular we have z′(t) = Az(t) + f(t) for almost every t ∈ [0,∞),
c.f. Proposition 1.2.2 in [5].

Uniqueness is a crucial property of strong solutions. To be more precise, if there is a
strong solution (or even a classical solution) of (3.1), then it is given by the ‘variation of
constants formula’ (3.3). This is the claim of Proposition 3.4.
Definition 3.3. The mild solution of (3.1) is the function z ∈ C([0,∞), X−1) given by

z(t) = Ttx0 +
∫ t

0
Tt−sf(s) ds. (3.3)

The existence of the integral as well as the continuity of the function [0,∞) → X−1;
t 7→

∫ t
0 Tt−sf(s) ds are shown in Proposition 1.3.4 of [5].

Proposition 3.4. A strong solution z of (3.1) in X is a mild solution. In particular for
each initial value x0 ∈ X, there is at most one strong solution of (3.1) in X.

Proof. Let z ∈ C([0,∞), X) be a strong solution. We have to show that (3.3) holds for all
t ≥ 0. For t = 0 the claim is trivial. Thus let t > 0. Consider the function g : [0, t] → X−1
defined by g(s) = Tt−sz(s). With the proof of the product rule as well as the boundedness
of ‖Tσ‖ for σ ∈ [0, t], one shows that g is differentiable almost everywhere on [0, t]. In fact,
if z is differentiable at some s ∈ [0, t], then g has the derivative

g′(s) = −ATt−sz(s) + Tt−sz′(s) = Tt−sf(s)

at s. Moreover, g is absolutely continuous: We use the notation mT,t = supσ∈[0,t]‖Tσ‖ ≥ 1.
For points 0 ≤ a1 ≤ b1 ≤ . . . ≤ am ≤ bm ≤ t we can estimate
m∑
k=1
‖g(bk)− g(ak)‖−1 ≤

m∑
k=1
‖Tt−bk(z(bk)− z(ak))‖−1 +

m∑
k=1
‖Tt−bkz(ak)− Tt−akz(ak)‖−1

≤
m∑
k=1

mT,t‖z(bk)− z(ak)‖−1 +
m∑
k=1

∥∥∥∥∥
∫ t−bk

t−ak
ATσz(ak) dσ

∥∥∥∥∥
−1

≤
m∑
k=1

mT,t‖z(bk)− z(ak)‖−1 +
m∑
k=1
‖A‖L(X,X−1)mT,t ‖z(ak)‖X(bk − ak).

Let ε > 0. Using the absolute continuity of z as well as its boundedness on [0, t] it is easy to
find a number δ > 0 such that

∑m
k=1(bk − ak) ≤ δ implies that the right-hand side is less or

equal ε.
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Since g is absolutely continuous and differentiable almost everywhere, it is the antideriva-
tive of g′ (see Proposition B.4). Therefore we have

z(t)− Ttx0 = g(t)− g(0) =
∫ t

0
g′(s) ds =

∫ t

0
Tt−sf(s) ds.

We have seen that the mild solution is the only candidate for a strong solution (or even
a classical one). On the other hand, the mild solution clearly exists for all x0 ∈ X and every
f ∈ L1

loc([0,∞), X−1). We are thus looking for a condition under which the mild solution is
of a stronger type.

Unfortunately, there are examples for mild solutions that are not strong solutions. Assume
there is an x ∈ X \X1 and some t0 > 0 with Ttx /∈ X1 for all t ∈ [0, t0]. Take λ ∈ ρ(A) and
set x−1 := (λ − A)x. Then Ttx−1 ∈ X−1 \X for all t ∈ [0, t0]. Consider f : [0,∞) → X−1
defined as f(t) = Ttx−1. Due to continuity, f is measurable and locally integrable. The mild
solution of (3.1) with this f and x0 = 0 is given by

z(t) = Tt0 +
∫ t

0
Tt−sTsx−1 ds = Ttx−1

∫ t

0
1 ds = tTtx−1

for t ≥ 0. Since z(t) /∈ X for t ∈ [0, t0], it can not be a strong solution. The next result
characterizes strong solutions. It is proved below.

Theorem 3.5. Let x0 ∈ X, f ∈ L1
loc([0,∞), X−1) and let z ∈ C([0,∞), X−1) be the mild

solution of (3.1). Then z is the strong solution of (3.1) in X if and only if z ∈ C([0,∞), X).
One implication is trivial. The crucial step in the proof of the other is to approximate f

by functions in C1([0,∞), X−1). Therefore we first show that if f has higher regularity, then
also the mild solution has better properties.

The ‘homogeneous part’ zh : [0,∞) → X; t 7→ Ttx0 clearly belongs to C([0,∞), X) ∩
C1([0,∞), X−1). We thus focus on the ‘inhomogeneous part’ of the mild solution, that is

zih : [0,∞)→ X−1; zih(t) =
∫ t

0
Tt−sf(s) ds.

Clearly, for the mild solution to be a strong solution, zih(t) has to belong to X for all t ≥ 0.
This is the case if and only if for all t ≥ 0 the term 1

τ (Tτzih(t)−zih(t)) converges with respect
to ‖ � ‖−1 as τ → 0+. If t ≥ 0 and τ > 0, some transformations including a change of variables
lead to

1
τ (Tτzih(t)− zih(t))

= Tt 1
τ

∫ τ

0
Tτ−sf(s) ds+

∫ t

0
Tt−s 1

τ (f(s+ τ)− f(s)) ds− 1
τ

∫ τ

0
Tτ−sf(t+ s) ds.

(3.4)

The convergence of two of the summands on the right-hand side can easily be discussed.
We do this in a lemma. In the proof of Proposition 3.7 we then only have to treat the third.

Lemma 3.6. Let f ∈ L1
loc([0,∞), X−1). Assume that f has a Lebesgue point at t ≥ 0. We

then obtain ∥∥∥∥ 1
τ

∫ τ

0
Tτ−sf(t+ s) ds− f(t)

∥∥∥∥
−1
→ 0 as τ → 0+.
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Hence this is true for almost every t ≥ 0. In particular, if f has a Lebesgue point at 0, then∥∥∥∥Tt 1
τ

∫ τ

0
Tτ−sf(s) ds− Ttf(0)

∥∥∥∥
−1
→ 0 as τ → 0+

for all t ≥ 0. If f is continuous, then both is true for all t ≥ 0.

Proof. We only have to prove the first claim. Let t ≥ 0. For all τ ∈ (0, 1] we have∥∥∥∥ 1
τ

∫ τ

0
Tτ−sf(t+ s) ds− f(t)

∥∥∥∥
≤
∥∥∥∥ 1
τ

∫ τ

0
Tτ−s(f(t+ s)− f(t)) ds

∥∥∥∥
−1

+
∥∥∥∥ 1
τ

∫ τ

0
(Tτ−sf(t)− f(t)) ds

∥∥∥∥
−1

≤ mT,1
1
τ

∫ τ

0
‖f(t+ s)− f(t)‖−1 ds+ 1

τ

∫ τ

0
‖Tsf(t)− f(t)‖−1 ds.

The right-hand side converges to zero as τ → 0+ for almost every t ≥ 0 due to Lebesgue’s
differentiation theorem (see Theorem B.2) and the strong continuity of T.

We use these facts in the proof of the next proposition.

Proposition 3.7. Assume that f ∈ C1([0,∞), X−1). Then zih ∈ C([0,∞), X) and it satisfies

Azih(t) = Ttf(0) +
∫ t

0
Tt−sf ′(s) ds− f(t) for all t ≥ 0.

Proof. In a first step we show that zih(t) fulfills the asserted identity for all t ≥ 0. From
formula (3.4) we deduce the estimate∥∥∥∥ 1

τ (Tτzih(t)− zih(t))− Ttf(0)−
∫ t

0
Tt−sf ′(s) ds+ f(t)

∥∥∥∥
−1

≤
∥∥∥∥ 1
τ

∫ τ

0
Tτ−sf(t+ s) ds− f(t)

∥∥∥∥
−1

+
∥∥∥∥Tt 1

τ

∫ τ

0
Tτ−sf(s) ds− Ttf(0)

∥∥∥∥
−1

+
∥∥∥∥∫ t

0
Tt−s 1

τ (f(s+ τ)− f(s)) ds−
∫ t

0
Tt−sf ′(s) ds

∥∥∥∥
−1

for t ∈ [0,∞) and τ ∈ (0, 1]. Because of Lemma 3.6 and the continuity of f it remains to
prove that the term∥∥∥∥∫ t

0
Tt−s 1

τ (f(s+ τ)− f(s)) ds−
∫ t

0
Tt−sf ′(s) ds

∥∥∥∥
−1

=
∥∥∥∥∫ t

0
Tt−s[ 1

τ (f(s+ τ)− f(s))− f ′(s)] ds
∥∥∥∥
−1

converges to zero as τ → 0+. This follows from the dominated convergence theorem. Indeed,
since f ∈ C1([0,∞), X−1), the integrand converges to zero pointwise for all s ∈ [0, t] as
τ → 0+. Moreover, for all s ∈ [0, t] the fundamental theorem yields

‖Tt−s[ 1
τ (f(s+ τ)− f(s))− f ′(s)]‖−1 =

∥∥∥∥Tt−s 1
τ

∫ τ

0
(f ′(s+ σ)− f ′(s)) dσ

∥∥∥∥
−1

≤ 2mT,t sup
σ∈[0,t+1]

‖f ′(σ)‖−1.
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Because the area of integration [0, t] has finite measure, the first step of the proof is finished,
and we obtain

Azih(t) = Ttf(0)− f(t) +
∫ t

0
Tt−sf ′(s) ds.

Clearly, the right-hand side is continuous inX−1 as a function of t, i.e., Azih ∈ C([0,∞), X−1).
Recall that zih ∈ C([0,∞), X−1) and that R(λ,A) ∈ L(X−1, X) where λ ∈ ρ(A). Hence the
first claim follows from the identity

zih = R(λ,A) ◦ (λzih −Azih).

We will see below that f ∈ C1([0,∞), X) is a sufficient conditions for a mild solution to
be a classical solution in X. This is also true, if we merely assume that f is continuous and
at the same time zih is continuous, see Corollary 3.9.

Since classical solutions are differentiable, we look at the difference quotient for zih. By
a straightforward calculation one can verify the equations

1
τ (Tτzih(t)− zih(t)) = 1

τ (zih(t+ τ)− zih(t))− 1
τ

∫ τ

0
Tτ−sf(t+ s) ds, (3.5)

1
τ (zih(t)− zih(t− τ)) = 1

τ (Tτzih(t− τ)− zih(t− τ)) + 1
τ

∫ t

t−τ
Tt−sf(s) ds (3.6)

for t ≥ 0, τ > 0 and t ≥ τ > 0 respectively. Very similarly to Lemma 3.6 one checks that∥∥∥∥ 1
τ

∫ t

t−τ
Tt−sf(s) ds− f(t)

∥∥∥∥
−1
→ 0 as τ → 0+ (3.7)

for almost every t > 0. Again, for f in C([0,∞), X−1) this is true for all t > 0.

Proposition 3.8. Let f ∈ C([0,∞), X−1) and assume that zih ∈ C([0,∞), X). Then zih
belongs to C1([0,∞), X−1) with z′ih(t) = Azih(t) + f(t) for all t ≥ 0. That is, zih satisfies
(3.1) with x0 = 0 for all t ≥ 0.

Proof. Fix t ≥ 0. From (3.5) for every τ > 0 we obtain

‖ 1
τ (zih(t+ τ)− zih(t))−Azih(t)− f(t)‖−1

≤ ‖ 1
τ (Tτzih(t)− zih(t))−Azih(t)‖−1 +

∥∥∥∥ 1
τ

∫ t+τ

t
Tt+τ−sf(s) ds− f(t)

∥∥∥∥
−1

.

Since zih(t) ∈ X, the first term right-hand side converges to zero as τ → 0+. The other can
be treated as in Lemma 3.6.

On the other hand, for t > 0 and τ ∈ (0, t] equation (3.6) implies

‖ 1
τ (zih(t)− zih(t− τ))−Azih(t)− f(t)‖−1

≤ ‖ 1
τ (Tτzih(t− τ)− zih(t− τ))−Azih(t)‖−1 +

∥∥∥∥ 1
τ

∫ t

t−τ
Tt−sf(s) ds− f(t)

∥∥∥∥
−1

.

Again we have to show that the right-hand side converges to zero as τ → 0+. For the
second summand one can use (3.7). Moreover, an elementary lemma of semigroup theory
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(see Lemma B.14) yields Tτzih(t − τ) − zih(t − τ) =
∫ τ
0 TσAzih(t − τ) dσ. Because of the

continuity of zih and the boundedness of ‖Tσ‖ for σ in compact sets, we have

‖ 1
τ (Tτzih(t− τ)− zih(t− τ))−Azih(t)‖−1 =

∥∥∥∥ 1
τ

∫ τ

0
TσAzih(t− τ) dσ −Azih(t)

∥∥∥∥
−1

≤
∥∥∥∥ 1
τ

∫ τ

0
Tσ(Azih(t− τ)−Azih(t)) dσ

∥∥∥∥
−1

+
∥∥∥∥ 1
τ

∫ τ

0
(TσAzih(t)−Azih(t)) dσ

∥∥∥∥
−1

≤ mT,t ‖A‖L(X,X−1)‖zih(t− τ)− zih(t)‖X + 1
τ

∫ τ

0
‖TσAzih(t)−Azih(t)‖−1 dσ.

The right-hand side converges to zero as τ → 0+. This shows that zih is differentiable on
[0,∞) with z′ih(t) = Azih(t) + f(t) for all t ≥ 0. From the last equation it is clear, that z′ih
belongs to C([0,∞), X−1). Hence zih is continuously differentiable.

Remark. Without any further assumption on f ∈ L1
loc([0,∞), X−1) and with nearly the same

proof (mainly replace ‖ � ‖−1 by ‖ � ‖−2), one can show that the mild solution z is differentiable
and satisfies (3.1) almost everywhere on [0,∞) as a function z : [0,∞)→ X−2. ♦

The last two propositions at hand, one can easily deduce the following result.

Corollary 3.9. Let z ∈ C([0,∞), X−1) be the mild solution of (3.1). If f ∈ C1([0,∞), X−1)
or if f ∈ C([0,∞), X−1) and z ∈ C([0,∞), X), then z is the classical solution of (3.1) in X.
In case f ∈ C1([0,∞), X−1), the derivative z′ also is the mild solution of the problem

w′(t) = Aw(t) + f ′(t); w(0) = Ax0 + f(0).

We thus have
z′(t) = Tt(Ax0 + f(0)) +

∫ t

0
Tt−sf ′(s) ds for t ≥ 0.

Proof. Let z ∈ C([0,∞), X−1) be the mild solution of (3.1). Then z(t) = zh(t) + zih(t),
where as before zih(t) =

∫ t
0 Tt−sf(s) ds and zh(t) = Ttx0 for t ≥ 0. Recall that zh belongs to

C([0,∞), X)∩C1([0,∞), X−1) and its derivative is given by z′h(t) = ATtx0 = Azh(t) = TtAx0
for t ≥ 0.

First, assume that f ∈ C([0,∞), X−1) and z ∈ C([0,∞), X). Then zih = z − zh is
contained in C([0,∞), X). Proposition 3.8 thus implies that zih ∈ C1([0,∞), X−1) with
z′ih(t) = Azih(t) + f(t) for all t ≥ 0. As a consequence, also z = zh + zih belongs to
C1([0,∞), X−1) and satisfies z′(t) = Azh(t) +Azih(t) +f(t) = Az(t) +f(t) for all t ≥ 0. This
means that z is the classical solution of (3.1) in X.

Second, let f ∈ C1([0,∞), X−1). Then Proposition 3.7 yields zih ∈ C([0,∞), X). Since in
particular f ∈ C([0,∞), X−1), we are again in the first situation. Proposition 3.7 additionally
implies the equation

z′(t) = z′h(t) +Azih(t) + f(t) = TtAx0 + Ttf(0)− f(t) +
∫ t

0
Tt−sf ′(s) ds+ f(t),

so that the last assertion is true.

Finally we are able to prove Theorem 3.5. It says that the mild solution is the strong
solution if and only it is a continuous function with values in X.
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Proof of Theorem 3.5. Let z ∈ C([0,∞), X−1) be the mild solution of (3.1) and assume that
z ∈ C([0,∞), X). We have to verify that z satisfies (3.2), i.e.,

z(t)− x0 =
∫ t

0
(Az(s) + f(s)) ds for all t ≥ 0.

The claim is trivial for t = 0. Thus let t > 0. Moreover, take a sequence (fn) in C1([0, t], X−1)
with ‖fn−f‖L1([0,t],X−1) → 0 as n→∞. For brevity, we write ‖ � ‖L1 instead of ‖ � ‖L1([0,t],X−1)
in this proof.

For n ∈ N let zn be the mild solution of (3.1) with the forcing term fn, i.e., zn(t) =
Ttx0 +

∫ t
0 Tt−sfn(s) ds. By Corollary 3.9 these are classical solutions, so that

zn(t)− x0 =
∫ t

0
(Azn(s) + fn(s)) ds.

for all n ∈ N. The vectors zn(s) approximate z(s) = Tsx0 +
∫ s

0 Ts−σf(σ) dσ uniformly for
s ∈ [0, t], because

‖zn(s)− z(s)‖−1 ≤
∫ s

0
‖Ts−σ(fn(σ)− f(σ))‖−1 dσ ≤ mT,t‖fn − f‖L1 → 0 as n→∞.

Since ‖ � ‖−1 is stronger than ‖ � ‖−2, it follows that ‖zn(t) − z(t)‖−2 → 0 as n → ∞. Using
the above estimate once more together with A ∈ L(X−1, X−2), we further get∥∥∥∥zn(t)− x0 −

∫ t

0
(Az(s) + f(s)) ds

∥∥∥∥
−2

=
∥∥∥∥∫ t

0
A(zn(s)− z(s)) ds+

∫ t

0
fn(s)− f(s) ds

∥∥∥∥
−2

≤ ‖A‖L(X−1,X−2)

∫ t

0
‖zn(s)− z(s)‖−1 ds+

∫ t

0
‖fn(s)− f(s)‖−2 ds

≤ ‖A‖L(X−1,X−2)mT,t t ‖fn − f‖L1 + c‖fn − f‖L1 → 0 as n→∞,

for a constant c ≥ 0 with ‖x‖−2 ≤ c‖x‖−1 for all x ∈ X−1. Combining both, we end up with∥∥∥∥z(t)− x0 −
∫ t

0
(Az(s) + f(s)) ds

∥∥∥∥
−2

≤ ‖z(t)− zn(t)‖−2 +
∥∥∥∥zn(t)− x0 −

∫ t

0
(Az(s) + f(s)) ds

∥∥∥∥
−2
→ 0 as n→∞.

This shows the claimed identity for z, at first as an equation in X−2. But since z(t)− x0 is
contained in X for all t ≥ 0 the proof is finished.

3.2 Perturbed Cauchy problems
In Chapter 5 we investigate perturbations F : X → X of the Cauchy problem (3.1). That is,
we consider the problem

z′(t) = Az(t) + F (z(t)) + f(t); z(0) = x0. (3.8)

Let us first discuss the notions of solution of this problem. We assume that F is contin-
uous. Then, up to a certain point, we can proceed as in the first part.
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Let J = [0, T ] or J = [0, T ) for some T > 0, or let J = [0,∞). Similar as above, any
function z ∈ C(J,X)∩C1(J,X−1) that satisfies (3.8) for every t ∈ J is called classical solution
of (3.8) on J . A strong solution of (3.8) on J is a function z ∈ C(J,X) with

z(t)− x0 =
∫ t

0

(
A(z(s)) + F (z(s)) + f(s)

)
ds for all t ∈ J.

As before we see that classical solutions are strong solutions. Again, from Proposition 1.2.2
in [5] we deduce that any strong solution z ∈ C(J,X) as a function z : J → X−1 is absolutely
continuous, differentiable almost everywhere on J and satisfies (3.8) for almost every t ∈ J .
Additional to the argumentation after Definition 3.2, we use that F ◦ z is continuous and
therefore locally integrable as a function from J to X−1.

A mild solution of (3.8) on J is a function z ∈ C(J,X−1) with z(t) ∈ X for almost all
t ∈ J that satisfies the fixed-point equation

z(t) = Ttx0 +
∫ t

0
Tt−sF (z(s)) ds+

∫ t

0
Tt−sf(s) ds. (3.9)

In the proof of Proposition 3.4 we solely used that strong solutions of (3.1) are absolutely
continuous and differentiable satisfying (3.1) almost everywhere on J . Hence with the same
proof we can show that any strong solution of (3.8) on J is a mild solution of (3.8) on J .

We saw that even in the simplest case F = 0 we can not expect to find classical solutions.
If F 6= 0, in general the situation is even worse. Since by (3.9) mild solution are fixed-points,
at first it is not clear if any such solution exists. Moreover, at this point we do not know
if mild solutions are unique. Hence we can not deduce uniqueness for strong and classical
solutions. In Chapter 5 we establish these properties under certain mild assumptions.

3.3 The solution space

We come back to special case of linear control systems. There is a sufficient condition for the
existence of classical solutions (in X). In short it states that if the input is ‘smooth’ and if
the initial state and the first input value satisfy a certain ‘compatibility condition’ then the
strong solution of Proposition 2.10 actually is a classical solution. The precise formulation is
given in Proposition 3.13.

The following is well known for Hilbert spaces and can be found e.g. in Section 2 of [51].
Most of these results are also true in a Banach space setting. Since we have not found a
reference for that, we decided to include it in this work.

Let X and U be Banach spaces, p ∈ [1,∞) and let A be the generator of a strongly
continuous semigroup T on X. Further let B ∈ L(U,X−1) be an Lp–admissible control
operator for T. Denote the corresponding control system on X and Lp([0,∞), U) by (T,Φ).
For the whole section fix any λ ∈ ρ(A).

Due to the causality Φtu = ΦtPtu for t ≥ 0 and u ∈ Lp([0,∞), U), the operators Φt

posses an obvious extension to Lploc([0,∞), U). We write χv for the constant function equal
to v ∈ U on all of [0,∞). Then Φtχv is defined as ΦtPtχv.
Definition 3.10. The solution space for (T,Φ) is the vector space

Z := X1 +R(λ,A)B(U) = R(λ,A)(X +B(U)).

32



It is easy to see that this definition is independent of the choice of λ ∈ ρ(A). For a
proof we refer to Lemma 2.2 of [51]. Obviously Z is a subspace of X. Since B0 = 0 we also
have X1 ⊆ Z. Consequently, Z is dense in X. We shall define a norm on Z such that the
embeddings

X1 ↪→ Z ↪→ X

are continuous. To this end, we identify Z with a factor space of X × U . The latter is a
Banach space when it is equipped with the norm given by

‖(x, v)‖X×U :=
(
‖x‖2X + ‖v‖2U

)1/2 for (x, v) ∈ X × U.

Consider the set

N = {(x, v) ∈ X × U |R(λ,A)(x+Bv) = 0} = {(x, v) ∈ X × U |x+Bv = 0}.

This is the kernel of ι ∈ L(X × U,X) given by ι(x, v) = R(λ,A)(x+Bv). Let us check that
ι is actually bounded. For (x, v) ∈ X × U we have

‖ι(x, v)‖X ≤ ‖R(λ,A)‖‖x+Bv‖−1 . ‖x‖X + ‖B‖‖v‖U .
(
‖x‖2X + ‖v‖2U

)1/2
,

where we write . if there exists an (unspecified) number c ≥ 0 such that the left-hand side
is less or equal to c times the right-hand side for all parameters appearing in this equation.

Hence N = ker(ι) is a closed subspace of X × U . Note that Z = Ran(ι). It follows that

X×U/N = {[(x, v)]N | (x, v) ∈ X × U}

is a Banach space with the norm given by

‖[(x, v)]N‖X×U/N = inf
{(
‖x+ x̃‖2X + ‖v + ṽ‖2U

)1/2 ∣∣∣ (x̃, ṽ) ∈ N
}
.

Here [(x, v)]N = (x, v) +N denotes the equivalence class of (x, v) ∈ X × U . Since 0 ∈ N we
have ‖[(x, v)]N‖X×U/N ≤ ‖(x, v)‖X×U for (x, v) ∈ X × U . In particular the linear mapping

π : X × U → X×U/N; (x, v) 7→ [(x, v)]X×U/N

is bounded. We identify Z with X×U/N via

ι̃ : X×U/N → Z; ι̃[(x, v)]N = ι(x, v) = R(λ,A)(x+Bv).

Because ι : X × U → X is onto and we factorized its kernel, ι̃ is an isomorphism. The norm
“transported” to Z by ι̃ is given by

‖w‖Z = ‖ι̃−1w‖X×U/N = inf
{(
‖x‖2X + ‖v‖2U

)1/2 ∣∣∣ (x, v) ∈ X × U : R(λ,A)(x+Bv) = w
}
.

We still have to show that the embeddings X1 ↪→ Z and Z ↪→ X are continuous. First let
x ∈ X1. Then x = R(λ,A)(λ−A)x and consequently

‖x‖Z ≤
(
‖(λ−A)x‖2X + ‖0‖2U

)1/2 = ‖(λ−A)x‖X . ‖x‖1. (3.10)

Now let w ∈ Z. For every pair (x, v) ∈ X × U with ι(x, v) = w the boundedness of ι yields
the estimate

‖w‖Z = ‖ι(x, v)‖X ≤ ‖ι‖
(
‖x‖2X + ‖v‖2U

)1/2
.
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Unless X = {0}, we have ‖ι‖ > 0 (e.g. ι(x, 0) 6= 0 for x ∈ X \ {0}). Therefore 1
‖ι‖‖w‖X is a

lower bound for {‖(x, v)‖X×U | (x, v) ∈ X × U : R(λ,A)(x+Bv) = w} and it follows

‖w‖X . inf{‖(x, v)‖X×U | (x, v) ∈ X × U : R(λ,A)(x+Bv) = w} = ‖w‖Z .

We introduced the solution space, because every classical solution with continuous inputs
automatically maps to Z.
Remark 3.11. Let x0 ∈ X and let u ∈ Lploc([0,∞), U) be continuous. Assume that z ∈
C1([0,∞), X) satisfies z′(t) = Az(t) +Bu(t); z(0) = x0 for all t ≥ 0. Then z ∈ C([0,∞), Z).
Indeed, we have

(λ−A)z(t) = λz(t)− z′(t) +Bu(t) ⇐⇒ z(t) = R(λ,A)(λz(t)− z′(t) +Bu(t)). (3.11)

Due to the assumption, the map f : [0,∞)→ X×U ; f(t) = (λz(t)−z′(t), u(t)) is continuous.
Hence also z = ι̃ ◦ π ◦ f : [0,∞)→ Z is continuous. ♦

We first formulate a simple version of the sufficient condition and later reduce the general
case to that situation. To this end, we need the vector-valued Sobolev space W 1,p([0,∞), U).
It consists of those absolutely continuous and almost everywhere differentiable functions
u ∈ Lp([0,∞), U) for which also u′ ∈ Lp([0,∞), U). We write u̇ instead of u′. For an element
u ∈W 1,p([0,∞), U) we thus have

u(t) = u(0) +
∫ t

0
u̇(s) ds for all t ≥ 0. (3.12)

The spaceW 1,p
loc ([0,∞), U) is the subspace of Lploc([0,∞), U) where all this holds locally. More

precisely u ∈W 1,p
loc ([0,∞), U) if and only if u belongs to Lploc([0,∞), U) is absolutely continu-

ous and differentiable almost everywhere on [0,∞) and the derivative u̇ lies in Lploc([0,∞), U).
Identity (3.12) is still valid.

Lemma 3.12. Let u ∈ W 1,p
loc ([0,∞), U) with u(0) = 0. Then the strong solution z ∈

C([0,∞), X) of z′(t) = Az(t) + Bu(t); z(0) = 0 actually is a classical solution (in X).
It even belongs to C([0,∞), Z) ∩ C1([0,∞), X).

Proof. Take u̇ ∈ Lp([0,∞), U) with u(s) =
∫ s

0 u̇(σ) dσ for all s ≥ 0 and set w(t) = Φtu̇ for
t ≥ 0. Then w ∈ C([0,∞), X) is the strong solution of w′(t) = Aw(t) + Bu̇(t); w(0) = 0.
Further set

z(t) =
∫ t

0
w(s) ds =

∫ t

0

∫ s

0
Ts−σBu̇(σ) dσ ds for t ≥ 0.

This clearly defines a function z ∈ C1([0,∞), X) with z(0) = 0. Fubini’s theorem (integration
in X−1) yields

z(t) =
∫ t

0

∫ s

0
TσBu̇(s− σ) dσ ds =

∫ t

0

∫ t

σ
TσBu̇(s− σ) ds dσ

=
∫ t

0
Tσ
∫ t−σ

0
Bu̇(s) dsdσ =

∫ t

0
TσBu(t− σ) dσ = Φtu.

This shows that z is the strong solution of z′(t) = Az(t) +Bu(t); z(0) = 0. We even have

z′(t) = w(t) =
∫ t

0

(
Aw(s) +Bu̇(s)

)
ds = A

∫ t

0
w(s) ds+B

∫ t

0
u̇(s) ds = Az(t) +Bu(t)

for all t ≥ 0. Hence z is a classical solution. The last claim now follows from Remark 3.11.
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We can now prove the main result of this section. This is the Banach space version of
Proposition 4.2.10 in [49]. Where it is important, we write A|m for the extension or restriction
of A to Xm, cf. Appendix A. We do this only occasionally, because otherwise many formulas
would blow up unnecessarily.

Proposition 3.13. Let u ∈W 1,p
loc ([0,∞), U) and x0 ∈ X satisfy (A|0)x0 +Bu(0) ∈ X. Then

the strong solution z ∈ C([0,∞), X) of z′(t) = Az(t) +Bu(t); z(0) = x0 is indeed a solution
of this equation in the classical sense. It belongs to C([0,∞), Z) ∩ C1([0,∞), X).

Proof. Take u̇ ∈ Lp([0,∞), U) with u(s) = u(0) +
∫ s
0 u̇(σ) dσ for all s ≥ 0 and set w(t) = Φtu̇

for t ≥ 0. We consider ũ ∈ W 1,p
loc ([0,∞), U) given by ũ(t) = u(t) − u(0), so that ũ(0) = 0.

The linearity of Φt implies that the strong solution z from the claim has the decomposition

z(t) = Ttx0 + Φtχu(0) + Φtũ for t ≥ 0.

Set zc(t) = Ttx0 + Φtχu(0) and zn(t) = Φtũ for t ≥ 0. From Lemma 3.12 we infer that
zn ∈ C([0,∞), Z)∩C1([0,∞), X) is the classical solution of z′n(t) = Azn(t)+Bũ(t); zn(0) = 0.
For the other part zc we clearly have

zc(t) = Ttx0 +
∫ t

0
TsBu(0) ds for all t ≥ 0.

We see that zc is differentiable with respect to ‖ � ‖−1 and that

z′c(t) = (A|0)Ttx0 + TtBu(0) = Tt((A|0)x0 +Bu(0))

for t ≥ 0. Due to the assumption (A|0)x0+Bu(0) belongs to X. It follows that z′c is contained
in C([0,∞), X) and consequently zc ∈ C1([0,∞), X) since

zc(t) = x0 +
∫ t

0
z′c(s) ds.

Using Lemma B.14, we derive

Azc(t) +Bu(t) = Ax0 +A

∫ t

0
z′c(s) ds+Bu(t) = Ax0 +A

∫ t

0
Ts(Ax0 +Bu(0)) ds+Bu(t)

= Ax0 + Tt(Ax0 +Bu(t))−Ax0 −Bu(t) +Bu(t)
= Tt(Ax0 +Bu(t)) = z′c(t),

showing that zc is a classical solution. We conclude that z = zc + zn ∈ C1([0,∞), X) is a
classical solution. Remark 3.11 yields that z ∈ C([0,∞), Z).

Remark 3.14. In Lemma 3.12 we proved that Φt maps

W 1,p
L ([0,∞), U) = {u ∈W 1,p([0,∞), U) |u(0) = 0}

to Z. We shall show that the restriction of this linear operator is also bounded. We equip
W 1,p
L ([0,∞), U) with the norm given by ‖u‖W 1,p =

(
‖u‖pLp + ‖u̇‖pLp

)1/p. Let T > 0 and
u ∈W 1,p

L ([0,∞), U). Then for all t ∈ [0, T ] we have

‖u(t)‖U ≤
∫ t

0
‖u̇(s)‖U ds = ‖u̇‖L1([0,t],U).

35



If p = 1 the right-hand side is less or equal to ‖u‖W 1,1 , else we continue the estimate

‖u(t)‖U ≤ t
1/p′‖u̇‖Lp([0,t],U) ≤ T

1/p′‖u̇‖Lp([0,∞),U) ≤ T
1/p′‖u‖W 1,p .

This means that ‖u‖L∞([0,T ],U) ≤ T 1/p′‖u‖W 1,p for all u ∈ W 1,p
L ([0,∞), U). It is now easy to

see that W 1,p
L ([0,∞), U) is complete.

Fix t ≥ 0. In the proof of Lemma 3.12 we saw that d
dtΦtu = Φtu̇. Combined with (3.11)

this yields Φtu = R(λ,A)(λΦtu− Φtu̇+Bu(t)). Therefore we have

‖Φtu‖Z ≤
(
‖λΦtu− Φtu̇‖2X + ‖u(t)‖2U

)1/2
.

We estimate both summands on the right-hand side by ‖u‖W 1,p . Above we already showed
that ‖u(t)‖U ≤ ‖u‖L∞([0,t],U) ≤ t1/p

′‖u‖W 1,p . For the other one recall that Φt is a bounded
linear operator between L(Lp([0,∞), U) and X and hence

‖λΦtu− Φtu̇‖X ≤ |λ|‖Φt‖‖u‖Lp + ‖Φt‖‖u̇‖Lp ≤ (|λ|+ 1)‖Φt‖(‖u‖Lp + ‖u̇‖Lp)

. (|λ|+ 1)‖Φt‖
(
‖u‖pLp + ‖u̇‖pLp

)1/p = (|λ|+ 1)‖Φt‖‖u‖W 1,p .

We have shown that there is a constant ct ≥ 0 such that ‖Φt‖Z ≤ ct‖u‖W 1,p for all u ∈
W 1,p
L ([0,∞), U). We stress that ct1 ≤ ct2 for t1 ≤ t2. ♦
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Chapter 4

Additive control systems

In this chapter let X and U be Banach spaces. Let us recall some notation. The symbol
U [0,∞) stands for the family of maps u : [0,∞) → U . We write χv for the constant function
equal to v ∈ U on all of [0,∞). For τ ≥ 0 we have the left shift operator S∗τ , the right shift
operator Sτ and truncation operator Pτ .

The vector space of piecewise constant and right continuous functions from [0,∞) to U
is denoted by Ω0, so a map u : [0,∞) → U belongs to Ω0 if there is an m ∈ N0 as well as
0 = t0 < . . . < tm <∞ and v1, . . . , vm ∈ U such that

u =
m∑
k=1

1[tk−1,tk)vk.

If m = 0, then u is the zero function. This representation is unique if we additionally assume
that vk 6= vk+1 for k = 1, . . . ,m− 1 and vm 6= 0. However, sometimes a representation with
vm = 0 is useful. In particular if we consider Ptu where t > tm.

Definition 4.1. A Fréchet domain is a subset Ω ⊆ U [0,∞) (or a set of equivalence classes of such
functions) containing Ω0 such that for all u ∈ Ω and every τ ≥ 0 we also have S∗τu, Pτu ∈ Ω.

Examples for Fréchet domains are Ω0 itself, the set of piecewise continuous functions and
Lp([0,∞), U) for some p ∈ [1,∞], but also Lploc([0,∞), U).

Definition 4.2. Let Ω ⊆ U [0,∞) be a Fréchet domain and let T = (Tt)t≥0 be a (strongly con-
tinuous) semigroup on X. A family Φ = (Φt)t≥0 of maps Φt : Ω→ X satisfies the composition
property for T if

Φt+τ (u) = TtΦτ (u) + Φt(S∗τu) for all t, τ ≥ 0 and u ∈ Ω. (4.1)

We say that Φ is causal if Φt(u) = Φt(Ptu) for all t ≥ 0, u ∈ Ω.
Let Φ be as in the above definition. Then from the composition property (4.1) with

t = τ = 0 we deduce that Φ0(u) = T0Φ0(u) + Φ0(S∗0u) = 2Φ0(u) for all u ∈ Ω and therefore
Φ0 = 0. Moreover, causality implies the equation

Φt(Psχv) = Φt(PtPsχv) = Φt(Ptχv) for t < s.

Hence we write Φt(χv) := Φt(Ptχv) even though χv might not belong to Ω.
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Note that we have not introduced a topology on Fréchet domains. Starting from Section
4.2 we will work with continuous Φt on the Fréchet domain Lp([0,∞), U). For now we only
pose regularity assumptions on the map

ϕ : [0,∞)× U → X; ϕ(t, v) = Φt(χv).

We mention that ϕ(0, v) = Φ0(χv) = 0 for all v ∈ U .

Definition 4.3. Let X be a Banach space and let Ω be a Fréchet domain. An additive control
system on X and Ω is a pair (T,Φ) consisting of a strongly continuous semigroup T on X and
a causal family Φ = (Φt)t≥0 of maps Φt : Ω → X satisfying the composition property for T as
well as the following conditions.

(i) For all v ∈ U the function ϕ( � , v) : [0,∞)→ X is continuous at 0.

(ii) For all T > 0 the family {ϕ(σ, � ) : U → X |σ ∈ [0, T ]} is equicontinuous.

The operators Φt are called input maps of (T,Φ).
Clearly, condition (ii) implies that for every compact subset K of [0,∞) the family

{ϕ(σ, � ) : U → X |σ ∈ K} is equicontinuous.

4.1 Representation of additive control systems

For the time being let Ω be a Fréchet domain and (T,Φ) an additive control system on X
and Ω. We first discuss several basic properties of this system. These facts will then lead to
a representation of (T,Φ) by a control operator B : U → X−1 as in Theorem 2.7.

Since S∗τχv = χv for all v ∈ U and τ ≥ 0, the composition property for ϕ has the form

ϕ(t+ τ, v) = Ttϕ(τ, v) + ϕ(t, v) for t, τ ≥ 0 and v ∈ U. (4.2)

As a first application of this equation, we show that ϕ( � , v) is continuous on [0,∞).

Lemma 4.4. For every v ∈ U the function ϕ( � , v) : [0,∞)→ X is continuous.

Proof. First let t, τ ≥ 0. The composition property (4.2) yields

‖ϕ(t+ τ, v)− ϕ(t, v)‖X = ‖Ttϕ(τ, v) + ϕ(t, v)− ϕ(t, v)‖X ≤ ‖Tt‖‖ϕ(τ, v)‖X .

Since ϕ(0, v) = 0, the right-hand side converges to 0 as τ → 0 by condition (i) in Definition
4.3. If t > 0 and τ ∈ [0, t], then ϕ(t, v) = ϕ(t− τ + τ, v) = Tt−τϕ(τ, v) + ϕ(t− τ, v) and thus

‖ϕ(t, v)− ϕ(t− τ, v)‖X = ‖Tt−τϕ(τ, v) + ϕ(t− τ, v)− ϕ(t− τ, v)‖X
≤ ‖Tt−τ‖‖ϕ(τ, v)‖X ≤ sup

s∈[0,t]
‖Ts‖‖ϕ(τ, v)‖X .

Again the right-hand side converges to 0 as τ → 0.

Corollary 4.5. The mapping ϕ : [0,∞)× U → X is continuous.
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Proof. Fix t ≥ 0, v ∈ U and let ε > 0. First choose a radius δ1 > 0 such that for s ∈
[t − δ1, t + δ1] ∩ [0,∞) we have ‖ϕ(t, v) − ϕ(s, v)‖X ≤ ε

2 . Clearly [t − δ1, t + δ1] ∩ [0,∞) is
compact. Thus by condition (ii) in Definition 4.3 there is a δ2 > 0 with the property that
‖v − ṽ‖U ≤ δ2 implies ‖ϕ(s, v)− ϕ(s, ṽ)‖X ≤ ε

2 for all s ∈ [t− δ1, t+ δ1] ∩ [0,∞) and ṽ ∈ U .
Set δ := min{δ1, δ2}. Let s ≥ 0 and ṽ ∈ U be such that |t − s| + ‖v − ṽ‖U ≤ δ. Then

obviously |t− s| ≤ δ1 and ‖v − ṽ‖U ≤ δ2, so that

‖ϕ(t, v)− ϕ(s, ṽ)‖X ≤ ‖ϕ(t, v)− ϕ(s, v)‖X + ‖ϕ(s, v)− ϕ(s, ṽ)‖X ≤ ε
2 + ε

2 = ε.

In the next lemma we prove exponential boundedness for ϕ( � , v) for fixed v ∈ U . This
guarantees the existence of the Laplace transform of ϕ( � , v). For the needed facts on the
Laplace transform of vector-valued functions we refer to Appendix B. We first state straight-
forward consequences of the above corollary.
Remark 4.6. Due to the continuity of ϕ, for all v, ṽ ∈ U the sets {‖ϕ(σ, v)‖ |σ ∈ [0, 1]} and
{‖ϕ(σ, v) − ϕ(σ, ṽ)‖ |σ ∈ [0, 1]} are bounded. Hence the constants L(v) and L(v, ṽ) in the
following lemma are finite. The continuity of ϕ also implies that the set {L(v) | v ∈ K} is
bounded for every compact subset K ⊆ U . Finally, from condition (ii) of Definition 4.3 we
deduce that L(v, ṽ)→ 0 as ‖v − ṽ‖U → 0. ♦

Lemma 4.7. Let ω > 0 and M ≥ 1 be such that ‖Tt‖ ≤ Meωt for all t ≥ 0. Then for all
v, ṽ ∈ U and t ≥ 0 we have

‖ϕ(t, v)‖X ≤ L(v)eωt and ‖ϕ(t, v)− ϕ(t, ṽ)‖X ≤ L(v, ṽ)eωt

with constants (both depending on ω and M)

L(v) := M

(
sup
σ∈[0,1]

‖ϕ(σ, v)‖X + ‖ϕ(1, v)‖X
eω

eω − 1

)
≤ M

2eω − 1
eω − 1 sup

σ∈[0,1]
‖ϕ(σ, v)‖X ,

L(v, ṽ) := M

(
sup
σ∈[0,1]

‖ϕ(σ, v)− ϕ(σ, ṽ)‖X + ‖ϕ(1, v)− ϕ(1, ṽ)‖X
eω

eω − 1

)
≤M 2eω − 1

eω − 1 sup
σ∈[0,1]

‖ϕ(σ, v)− ϕ(σ, ṽ)‖X .

Proof. We only prove the second estimate, as the first can be shown analogously. Let v, ṽ ∈ U .
Using (4.2) in an easy induction, we derive

ϕ(n, v)− ϕ(n, ṽ) = Tn−1(ϕ(1, v)− ϕ(1, ṽ)) + ϕ(n− 1, v)− ϕ(n− 1, ṽ)

=
n∑
k=1

Tn−k(ϕ(1, v)− ϕ(1, ṽ)) =
n−1∑
k=0

Tk(ϕ(1, v)− ϕ(1, ṽ))

for all n ∈ N. The exponential boundedness of ‖Tt‖ thus yields

‖ϕ(n, v)− ϕ(n, ṽ)‖X ≤M
(n−1∑
k=0

eωk
)
‖ϕ(1, v)− ϕ(1, ṽ)‖X = M

eωn − 1
eω − 1 ‖ϕ(1, v)− ϕ(1, ṽ)‖X

≤M eω

eω − 1‖ϕ(1, v)− ϕ(1, ṽ)‖X eω(n−1).
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Let t ∈ [0,∞) and take the integer n ∈ N with t ∈ [n− 1, n). Equation (4.2) then yields

ϕ(n, v)− ϕ(n, ṽ) = Ttϕ(n− t, v) + ϕ(t, v)− Ttϕ(n− t, ṽ)− ϕ(t, ṽ),

or equivalently

ϕ(t, v)− ϕ(t, ṽ) = Tt(ϕ(n− t, ṽ)− ϕ(n− t, v)) + ϕ(n, v)− ϕ(n, ṽ).

Since n− t ∈ (0, 1], we now obtain the claimed estimate

‖ϕ(t, v)− ϕ(t, ṽ)‖X ≤ ‖Tt‖‖ϕ(n− t, ṽ)− ϕ(n− t, v)‖X + ‖ϕ(n, v)− ϕ(n, ṽ)‖X

≤Meωt sup
σ∈[0,1]

‖ϕ(σ, v)− ϕ(σ, ṽ)‖X + Meω

eω − 1‖ϕ(1, v)− ϕ(1, ṽ)‖Xeω(n−1)

≤ L(v, ṽ)eωt.

From the last result we deduce that for each λ ∈ C with Reλ > max{ω0(T), 0} and every
v ∈ U the Laplace transform

ϕ̂(λ, v) := (ϕ( � , v))̂ (λ)

converges absolutely. On the other hand, all complex numbers λ with Reλ > max{ω0(T), 0}
belong to ρ(A), where A is the generator of T. Recall from Appendix A that we may assume
that λ−A ∈ L(X,X−1) is isometric for any fixed λ ∈ ρ(A).

Proposition 4.8. The function ϕ( � , v) : [0,∞) → X is continuously differentiable with
respect to ‖ � ‖−1 on X. The derivative is given by

∂1ϕ(t, v) = Tt∂1ϕ(0, v) = Ttλ(λ−A)ϕ̂(λ, v), (4.3)

where λ ∈ C with Reλ > max{ω0(T), 0} can be chosen freely.

Proof. Let v ∈ U . Take λ ∈ C with Reλ > max{ω0(T), 0}. We write (4.2) in the form

1
τ (ϕ(t+ τ, v)− ϕ(t, v)) = Tt 1

τϕ(τ, v) for t ≥ 0, τ > 0. (4.4)

On this equation we apply the Laplace transform with respect to t. The operational properties
Lemma B.8 and Proposition B.15 yield

R(λ,A) 1
τϕ(τ, v) = 1

τ eλτ ϕ̂(λ, v)− eλτ 1
τ

∫ τ

0
eλsϕ(s, v) ds− 1

τ ϕ̂(λ, v)

= 1
τ (eλτ − 1)ϕ̂(λ, v)− eλτ 1

τ

∫ τ

0
eλsϕ(s, v) ds .

Because ϕ( � , v) is continuous at 0 and ϕ(0, v) = 0, the right-hand side converges to

λϕ̂(λ, v)− eλ0ϕ(0, v) = λϕ̂(λ, v)

with respect to ‖ � ‖X as τ → 0+. Thus also the left-hand side converges as τ → 0+. We
obtain

‖R(λ,A) 1
τϕ(τ, v)− λϕ̂(λ, v)‖X = ‖R(λ,A)

( 1
τϕ(τ, v)− λ(λ−A)ϕ̂(λ, v)

)
‖X

. ‖ 1
τϕ(τ, v)− λ(λ−A)ϕ̂(λ, v)‖−1 → 0, as τ → 0+.
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This shows that ϕ( � , v) is differentiable at t = 0 with respect to ‖ � ‖−1 on X, and that
∂1ϕ(0, v) = λ(λ − A)ϕ̂(λ, v). From equation (4.4) we deduce that ϕ( � , v) is differentiable
from the right at every t ≥ 0 (with respect to ‖ � ‖−1 on X) and that (4.3) is valid. The
differentiability from the left at t > 0 can be seen by the inequality

‖ 1
τ

(
ϕ(t, v)− ϕ(t− τ, v)

)
− Tt∂1ϕ(0, v)‖−1

= ‖ 1
τTt−τϕ(τ, v) + 1

τϕ(t− τ, v)− 1
τϕ(t− τ, v)− Tt∂1ϕ(0, v)‖−1

≤ ‖Tt−τ‖‖ 1
τϕ(τ, v)− ∂1ϕ(0, v)‖−1 + ‖Tt−τ∂1ϕ(0, v)− Tt∂1ϕ(0, v)‖−1,

where we used (4.2). The right-hand side converges to 0 as τ → 0+.

Since ∂1ϕ(0, v) exists in X−1 for every v ∈ U , it defines a map

B : U → X−1; B(v) = ∂1ϕ(0, v). (4.5)

The following theorem states (among other things) that B represents Φ. It is the main result
of this section.
Theorem 4.9. Let X and U be Banach spaces and Ω a Fréchet domain. Let (T,Φ) be an
additive control system on X and Ω. Then there is a unique continuous map B : U → X−1
such that for all step function u ∈ Ω0 we have

Φt(u) =
∫ t

0
Tt−sB(u(s)) ds for all t ≥ 0. (4.6)

Proof. As indicated, B : U → X−1 is the map defined in (4.5). The first step is to prove
that B is continuous. Fix λ ∈ C with Reλ > max{ω0(T), 0}. Proposition 4.8 then yields
B(v) = λ(λ−A)ϕ̂(λ, v) for v ∈ U and therefore

‖B(v)−B(ṽ)‖−1 ≤ |λ|‖λ−A‖L(X,X−1)‖ϕ̂(λ, v)− ϕ̂(λ, ṽ)‖X for all v, ṽ ∈ U.

Hence it suffices to show that the map U → X; v 7→ ϕ̂(λ, v) is continuous.
Let ε > 0. Choose ω > 0 and M ≥ 1 with ‖Tt‖ ≤Meωt for all t ≥ 0. Let v, ṽ ∈ U . With

Lemma 4.7 we infer

‖ϕ̂(λ, v)− ϕ̂(λ, ṽ)‖X ≤
∫ ∞

0
e−Reλt‖ϕ(t, v)− ϕ(t, ṽ)‖X dt

≤
∫ ∞

0
e−(Reλ−ω)t dtM 2eω − 1

eω − 1 sup
σ∈[0,1]

‖ϕ(σ, v)− ϕ(σ, ṽ)‖X

= M

Reλ− ω
2eω − 1
eω − 1 sup

σ∈[0,1]
‖ϕ(σ, v)− ϕ(σ, ṽ)‖X .

By condition (ii) in Definition 4.3 there is a δ > 0 such that

sup
σ∈[0,1]

‖ϕ(σ, v)− ϕ(σ, ṽ)‖X ≤ ε
Reλ− ω

M

eω − 1
2eω − 1 ,

provided that ‖v − ṽ‖U ≤ δ. It thus follows that B : U → X−1 is continuous, since

‖ϕ̂(λ, v)− ϕ̂(λ, ṽ)‖X ≤ ε for all v, ṽ ∈ U with ‖v − ṽ‖U ≤ δ.
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Next we prove (4.6) for step functions u. First recall from Proposition 4.8 that ϕ( � , v) is
continuously differentiable for all v ∈ U . From the equations (4.3) and (4.5) we deduce

ϕ(t, v) = ϕ(t, v)− ϕ(0, v) =
∫ t

0
∂1ϕ(s, v) ds =

∫ t

0
TsB(v) ds for all t ≥ 0.

Let v ∈ U . The causality of Φ implies that

Φt(χv) = Φt(Ptχv) = ϕ(t, v) =
∫ t

0
TsB(v) ds =

∫ t

0
Tt−sB(χv(s)) ds for all t ≥ 0. (4.7)

Let u ∈ Ω0 be a step function. It has the form u =
∑m
k=1 1[tk−1,tk)vk, for some m ∈ N,

0 = t0 < . . . < tm < ∞ and v1, . . . , vm ∈ U . The representation (4.6) is proved by an
induction over m.

First, let m = 1, i.e., u = Pt1χv1 . We write τ := t1 and v := v1. For t ≤ τ the causality
of Φ implies that Φt(u) = Φt(PtPτχv) = Φt(Ptχv) = ϕ(t, v). Thus (4.6) for 0 ≤ t ≤ τ follows
from (4.7). Let t > τ . Note that S∗τPτχv = χ0. The composition property (4.1), equation
(4.7) and a change of variables yield

Φt(u) = Tt−τΦτ (Pτχv) + Φt−τ (S∗τPτχv) = Tt−τϕ(τ, v) + ϕ(t− τ, 0)

= Tt−τ
∫ τ

0
Tτ−sB(u(s)) ds+

∫ t−τ

0
Tt−(τ+s)B(u(τ + s)) ds

=
∫ τ

0
Tt−sB(u(s)) ds+

∫ t

τ
Tt−sB(u(s)) ds =

∫ t

0
Tt−sB(u(s)) ds.

The reduction from m+ 1 to m works pretty similar. Let u =
∑m+1
k=1 1[tk−1,tk)vk and set

ũ =
∑m
k=1 1[tk−1,tk)vk. If t ≤ tm, then Ptu = Ptũ, so we are in the case m.

If t > tm, the composition property (4.1) and the causality lead to the equation Φt(u) =
Tt−tmΦtm(Ptmu) + Φt−tm(S∗tmu). Since Ptmu = Ptm ũ and S∗tmu has only one “step”, from the
induction hypothesis we infer

Tt−tmΦtm(u) = Tt−tm
∫ tm

0
Ttm−sB(u(s)) ds =

∫ tm

0
Tt−sB(u(s)) ds

as well as

Φt−tm(u) =
∫ t−tm

0
Tt−tm−sB(u(s+ tm)) ds =

∫ t

tm
Tt−sB(u(s)) ds.

The claimed identity for Φt(u) now is obvious.
Finally, B is unique due to the fact that B(v) is the derivative at t = 0 (in X−1) of

Φt(χv) =
∫ t

0 TsB0(v) ds = ϕ(t, v) seen as a function of t.

Definition 4.10. Let X and U be Banach spaces and let Ω be a Fréchet domain. Moreover,
let (T,Φ) be an additive control system on X and Ω. The map B : U → X−1 from Theorem 4.9
is the control operator associated to (T,Φ).
Remark 4.11. Let (T,Φ) and B be as in the last definition.

(a) It is easy to see that B is linear if Φt is linear for every t ≥ 0. Indeed, this follows
from the fact that for v ∈ U the value B(v) is the limit of 1

τΦτχv as τ → 0+. Because B is
continuous, it belongs to L(U,X−1) in this case.
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(b) Let (T,Φ(1)) and (T,Φ(2)) be two additive control systems on X and Ω with the
associated control operators B1, B2 : U → X−1. For fixed α1, α2 ∈ C and all t ≥ 0 set

Φt := α1Φ(1)
t + α2Φ(2)

t .

By a straightforward calculation one verifies that (T, (Φt)t≥0) is an additive control systems
on X and Ω and that the associated control operator is α1B1 + α2B2. ♦

4.2 Admissible control operators
Let (T,Φ) be an additive control system on X and a Fréchet domain Ω. Further let A be
the generator of T and let B be the control operator associated to (T,Φ). For u ∈ Ω0 and
x0 ∈ X consider the function z : [0,∞)→ X given by

z(t) := Ttx0 + Φt(u) for t ≥ 0. (4.8)

Obviously Bu is a piecewise constant function with values in X−1. Thus it is locally inte-
grable. Using representation formula (4.6), we see that z is the mild solution of

z′(t) = Az(t) +B(u(t)); z(0) = x0. (4.9)

Actually, we want z to be the strong solution in X of (4.9). Moreover, we want this to be
true not only for step functions. To this end, a topology on Ω is needed. In this section and
the following, we work with the Fréchet domain Ω = Lp([0,∞), U) where p ∈ [1,∞). We
exclude p =∞ because Ω0 is not dense in L∞([0,∞), U). The density of Ω0 in Lp([0,∞), U)
is a crucial point in the proof of Proposition 4.17. We abbreviate ‖ � ‖Lp := ‖ � ‖Lp([0,∞),U).

The linear operator Sτ : Lp([0,∞), U)→ Lp([0,∞), U) is isometric. From the dominated
convergence theorem one infers that for all u ∈ Lp([0,∞), U) we have

‖Pτu‖Lp → 0 and ‖S∗τu− u‖Lp → 0 as τ → 0+.

These facts are needed in Lemma 4.14 below. Observe that ‖S∗τu− u‖L∞ → 0 as τ → 0+ if
and only if u is uniformly continuous. This is another reason for not working with ‖ � ‖L∞ .

We have to add another condition to Definition 4.3. In the remark below we make clear
that this is the concept which should be compared with the linear theory.
Definition 4.12. LetX and U be Banach spaces and p ∈ [1,∞). A continuous additive control
system on X and Lp([0,∞), U) is an additive control system (T,Φ) on X and Lp([0,∞), U)
with the additional property that Φt : Lp([0,∞), U)→ X is continuous for every t ≥ 0.

An additive control system on X and Lp([0,∞), U) is called equicontinuous if for all T > 0
the family {Φt : Lp([0,∞), U) → X | t ∈ [0, T ]} is equicontinuous. It is called Lipschitz (on
bounded sets) if Φt is Lipschitz (on bounded sets) for every t ≥ 0.
Remark 4.13. Let us check that this definition is compatible with the definition of a linear
control systems given by G. Weiss in Definition 2.1 of [52], also see page 17 of this thesis. Let
(T,Φ) be a linear control system on X and Lp([0,∞), U). In Proposition 2.3 of [52] it was
shown that the mapping [0,∞) × Lp([0,∞), U) → X; (t, u) 7→ Φtu is continuous. From the
composition property (4.1) it follows easily that the operator norms ‖Φt‖ are non-decreasing
in t. We deduce properties (i) and (ii) of Definition 4.3 and that (T,Φ) is equicontinuous.
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Conversely let (T,Φ) be a continuous additive control systems on X and Lp([0,∞), U)
and assume that the input maps Φt are linear for all t ≥ 0. Because the input maps are
continuous we have Φt ∈ L(Lp([0,∞), U), X). Hence (T,Φ) satisfies Definition 2.1 of [52]. ♦

We consider z from (4.8) but with general u ∈ Lp([0,∞), U). In order to be the strong
solution of (4.9) in X, the function z has to belong to C([0,∞), X), see Theorem 3.5.
Since [0,∞) → X; t 7→ Ttx0 is continuous, we only have to check that t 7→ Φt(u) lies in
C([0,∞), X).

Lemma 4.14. Let (T,Φ) be a continuous additive control system on X and Lp([0,∞), U).
Then for all u ∈ Lp([0,∞), U) the map [0,∞)→ X; t 7→ Φt(u) is continuous.

Proof. Let u ∈ Lp([0,∞), U). We first prove right continuity of t 7→ Φt(u) at t = 0. Take
τ ∈ [0, 1]. From the composition property (4.1) we derive

Φ1(S1−τu) = TτΦ1−τ (P1−τS1−τu) + Φτ (S∗1−τS1−τu) = TτΦ1−τ (χ0) + Φτ (u).

Therefore we can estimate

‖Φτ (u)‖X = ‖Φ1(S1−τu)− TτΦ1−τ (χ0)‖X = ‖Φ1(P1S1−τu)− TτΦ1−τ (χ0)‖X
≤ ‖Φ1(P1S1−τu)− Φ1(χ0)‖X + ‖TτΦ1−τ (χ0)− Φ1(χ0)‖X .

One easily sees the identity P1S1−τu = S1−τPτu. Since S1−τ is isometric, the norms
‖S1−τPτu‖Lp = ‖Pτu‖Lp converge to zero as τ → 0+. Thus the continuity of Φ1 implies

‖Φ1(P1S1−τu)− Φ1(χ0)‖X → 0 as τ → 0+.

Recall from Lemma 4.4 that [0,∞)→ X; s 7→ Φs(χ0) is continuous. From the boundedness
of ‖Tσ‖ for σ ∈ [0, 1] we then deduce that

‖TτΦ1−τ (χ0)− Φ1(χ0)‖X ≤ ‖Tτ‖‖Φ1−τ (χ0)− Φ1(χ0)‖X + ‖TτΦ1(χ0)− Φ1(χ0)‖X
≤ mT,1 ‖Φ1−τ (χ0)− Φ1(χ0)‖X + ‖TτΦ1(χ0)− Φ1(χ0)‖X

converges to zero as τ → 0+.
Next we show right- and left continuity. To this end, let t > 0. Using the composition

property (4.1), we write

Φt+τ (u)− Φt(u) = TτΦt(u)− Φt(u) + Φτ (S∗t u)

for arbitrary τ ≥ 0. The strong continuity of T implies that the term ‖TτΦt(u) − Φt(u)‖X
converges to zero as τ → 0+. The first step yields ‖Φτ (S∗t u)‖X → 0 as τ → 0+.

For τ ∈ [0, t] from (4.1) we derive Φt(Sτu) = Tt−τΦτ (χ0) + Φt−τ (u). It follows that

‖Φt(u)− Φt−τ (u)‖X ≤ ‖Φt(u)− Φt(Sτu)‖X + ‖Tt−τΦτ (χ0)‖X
≤ ‖Φt(u)− Φt(Sτu)‖X +mT,t‖Φτ (χ0)‖X .

As argued before, the expression ‖Φτ (χ0)‖X tends to zero as τ → 0+. Since Sτ is isometric,
we further have

‖u− Sτu‖Lp = ‖Pτu+ SτS
∗
τu− Sτu‖Lp ≤ ‖Pτu‖Lp + ‖S∗τu− u‖Lp → 0 as τ → 0+.

Using the continuity of Φt we thus derive ‖Φt(u)− Φt(Sτu)‖X → 0 as τ → 0+.
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Analog to Corollary 4.5 we see that (t, u) 7→ Φt(u) is continuous. Since the proof is very
similar, we omit it.

Corollary 4.15. To the conditions of Lemma 4.14 add the assumption that (T,Φ) is equicon-
tinuous. Then the mapping [0,∞)× Lp([0,∞), U)→ X; (t, u) 7→ Φt(u) is continuous.

As intended, we can now check that T and Φ are the solution operators for the problem
(4.9) determined by the generator A and the control operator B.

Proposition 4.16. Assume that (T,Φ) is a continuous additive control system on X and
Lp([0,∞), U). Further let u ∈ Lp([0,∞), U) satisfy (4.6) and let x0 ∈ X. Then the function
z : [0,∞)→ X; z(t) = Ttx0 + Φt(u) is the strong solution in X of (4.9).

Proof. Let u ∈ Lp([0,∞), U) and x0 ∈ X be as in the claim. Since (4.6) holds for u, the
function z is the mild solution of (4.9). From Lemma 4.14 we deduce that z belongs to
C([0,∞), X). Theorem 3.5 yields that z is the strong solution of (4.9) in X.

Thanks to Theorem 4.9 we can apply the above result to step functions u ∈ Ω0. Next we
show that polynomial boundedness of the control operator B (with an exponent η ∈ [1, p])
is a sufficient condition for (4.6) to hold for all u ∈ Lp([0,∞), U). But first recall from
Proposition 1.3.4 in [5] that, if Bu ∈ L1

loc([0,∞), X−1) for some u ∈ Lp([0,∞), U), then the
integral ∫ t

0
Tt−sB(u(s)) ds

exists for all t ≥ 0 and defines a continuous function in t with values in X−1.

Proposition 4.17. Let B ∈ C(U,X−1) be the control operator of the continuous additive
control system (T,Φ) on X and Lp([0,∞), U). Moreover, assume that there are η ∈ [1, p]
and c ≥ 0 such that ‖B(v)‖−1 ≤ c(1 + ‖v‖ηU ) for all v ∈ U . Then (4.6) is satisfied for all
u ∈ Lp([0,∞), U).

Proof. In a first step we prove that Bu ∈ L1
loc([0,∞), X−1) for all u ∈ Lp([0,∞), U). Thus

let u ∈ Lp([0,∞), U). Since B : U → X−1 is continuous and u : [0,∞) → U is measurable,
also the map Bu : [0,∞)→ X−1 is measurable. Further, the growth bound of B yields

‖B(u(s))‖
p
η

−1 ≤ c
p
η (1 + ‖u(s)‖ηU )

p
η ≤ (2c)

p
η max{1, ‖u(s)‖pU} for all s ∈ [0,∞).

Clearly, for fixed t ≥ 0 the map [0, t] → R; s 7→ max{1, ‖u(s)‖pU} belongs to L1([0, t],R).
With Bochner’s theorem we derive that s 7→ B(u(s)) ∈ L

p
η ([0, t], X−1) for every t ≥ 0. This

means that Bu lies in L1
loc([0,∞), X−1).

The second step is to actually verify (4.6). Since Bu ∈ L1
loc([0,∞), X−1) the integral∫ t

0
Tt−sB(u(s)) ds

exists for all t ≥ 0 and we have to show that it equals Φt(u). To this end, take a sequence (un)
in Ω0 with ‖un − u‖Lp → 0 as n→∞. After passing to a subsequence, we may assume that
(un) converges to u pointwise almost everywhere on [0,∞) and that we can find a function
g ∈ Lp([0,∞),R) with ‖un(s)‖U ≤ g(s) for almost all s ∈ [0,∞) and n ∈ N. This fact is a
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corollary to Theorem VI.5.2 of [25]. Again fix t ∈ [0,∞). If we can show that the right-hand
side of∥∥∥∥Φt(u)−

∫ t

0
Tt−sB(u(s)) ds

∥∥∥∥
−1
≤ ‖Φt(un)− Φt(u)‖−1 +

∥∥∥∥Φt(un)−
∫ t

0
Tt−sB(u(s)) ds

∥∥∥∥
−1

can be made arbitrarily small, then the claim is shown.
On the one hand, the continuity of Φt implies that ‖Φt(un)−Φt(u)‖X → 0 and thus also

‖Φt(un) − Φt(u)‖−1 → 0 as n → ∞. On the other hand (4.6) is valid for the inputs un,
because they are piecewise constant. Therefore we can estimate∥∥∥∥Φt(un)−

∫ t

0
Tt−sB(u(s)) ds

∥∥∥∥
−1

=
∥∥∥∥∫ t

0
Tt−s

(
B(un(s))−B(u(s))

)
ds
∥∥∥∥
−1

≤ mT,t

∫ t

0
‖B(un(s))−B(u(s))‖−1 ds

for all n ∈ N. With the help of the dominated convergence theorem, we check that the
right-hand side converges to zero as n → ∞. First the integrand ‖B(un(s)) − B(u(s))‖−1
converges to zero as n→∞ for almost all s ∈ [0, t]. This is true because B is continuous and
the functions un converge to u pointwise almost everywhere on [0, t]. Moreover, we have

‖B(un(s))−B(u(s))‖−1 ≤ c(1 + ‖un(s)‖ηU ) + ‖B(u(s))‖−1 ≤ c+ c(g(s))η + ‖B(u(s))‖−1

for s ∈ [0, t]. Clearly Hölder’s inequality implies that s 7→ g(s) belongs to Lη([0, t],R) ⊆
L1([0, t],R). In the first step we already showed that s 7→ ‖B(u(s))‖−1 ∈ L1([0, t],R). Hence
the right-hand side above lies in L1([0, t],R).

We can characterize polynomial boundedness of B in terms of an estimate for ϕ.

Lemma 4.18. As in Proposition 4.17, let B ∈ C(U,X−1) be the control operator of the
continuous additive control system (T,Φ) on X and Lp([0,∞), U). Let ω ∈ R and M ≥ 1 be
such that ‖Tt‖ ≤Meωt for all t ≥ 0. Then for η ≥ 1 the following assertions are equivalent

(i) ∃c ≥ 0 ∀v ∈ U : ‖B(v)‖−1 ≤ c(1 + ‖v‖ηU ).

(ii) ∃c ≥ 0 ∀v ∈ U, t ≥ 0 : ‖ϕ(t, v)‖−1 ≤ cMω (eωt − 1)(1 + ‖v‖ηU ).

Proof. Assume that (i) holds. Let v ∈ U and t ≥ 0. Since ϕ(t, v) =
∫ t

0 TsB(v) ds and
‖TsB(v)‖−1 ≤Meωs‖B(v)‖−1 for all s ∈ [0,∞), we obtain

‖ϕ(t, v)‖−1 ≤M
∫ t

0
eωs ds ‖B(v)‖−1 = M

ω (eωt − 1)‖B(v)‖−1 ≤ cMω (eωt − 1)(1 + ‖v‖ηU ).

On the other hand assume that (ii) is satisfied. Again let v ∈ U . Because B(v) is the
derivative of ϕ( � , v) at 0 with respect to ‖ � ‖−1, we have

‖B(v)‖−1 = lim
τ→0+

1
τ ‖ϕ(τ, v)‖−1 ≤ cMω

(
lim
τ→0+

1
τ (eωτ − 1)

)
(1 + ‖v‖ηU ) = cM(1 + ‖v‖ηU ).

The preceding results now lead to the definition of an ‘admissible control operator’ B.
For such an operator we expect that for every input u – in Lp([0,∞), U) say – the differential
equation (4.9) has a unique strong solution in X. We saw that it is crucial that B is the
control operator of a continuous additive control system on X and Lp([0,∞), U). Hence the
informal definition above can be turned into real assumptions on B as follows.
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Definition 4.19. Let X and U be Banach spaces and p ∈ [1,∞). Further let T be a strongly
continuous semigroup onX. A continuous map B : U → X−1 is called Lp–admissible control op-
erator for T (or shortly Lp–admissible for T) if Bu ∈ L1

loc([0,∞), X−1) for all u ∈ Lp([0,∞), U)
and the family Φ = (Φt)t≥0 of input maps Φt : Lp([0,∞), U)→ X−1 given by

Φt(u) :=
∫ t

0
Tt−sB(u(s)) ds for t ≥ 0

yields a continuous additive control system (T,Φ) on X and Lp([0,∞), U).
We mention that the family Φ = (Φt)t≥0 defined above is always causal and satisfies the

composition property for T. The first claim is obvious. To verify the second let t, τ ≥ 0 and
u ∈ Lp([0,∞), U). By splitting the integral at τ and a change of variables we obtain

Φt+τ (u) =
∫ t+τ

0
Tt+τ−sB(u(s)) ds

=
∫ τ

0
TtTτ−sB(u(s)) ds+

∫ t+τ

τ
Tt−(s−τ)B(u(s− τ + τ)) ds

= Tt
∫ τ

0
Tτ−sB(u(s)) ds+

∫ t

0
Tt−sB(u(s+ τ)) ds = TtΦτ (u) + Φt(S∗τu).

Note that we only used that Bu : [0,∞)→ X−1 is locally integrable for all u ∈ Lp([0,∞), U).
Remark 4.20. (a) A linear operator B ∈ L(U,X−1) is Lp–admissible for T if and only it is
‘p-admissible’ as in Definition 4.1 of [52]. This follows from Remark 4.13.

(b) Let (T,Φ) be a continuous additive control system on X and Lp([0,∞), U) and let
B : U → X−1 be the associated control operator obtained in Theorem 4.9. Then B is
Lp–admissible if Bu ∈ L1

loc([0,∞), X−1) for all u ∈ Lp([0,∞), U).
(c) It is easy to see that negatives and sums of Lp–admissible operators for the same space

U and semigroup T are again Lp–admissible. Compare this to Remark 4.11 (b). ♦

Properties of continuous additive control systems

At the end of this section we gather additional results. Throughout let (T,Φ) be a continuous
additive control system on X and Lp([0,∞), U) for an exponent p ∈ [1,∞).

It is a consequence of the composition property that certain assumptions on Φt auto-
matically hold uniformly for t in compact subsets of [0,∞). We say that Φt is Lipschitz on
bounded sets for all t ≥ 0 if

∀ρ > 0, t > 0 ∃Mρ,t > 0 ∀u1, u2 ∈ Lp([0,∞), U) :
‖u1‖Lp , ‖u2‖Lp ≤ ρ =⇒ ‖Φt(u1)− Φt(u2)‖X ≤Mρ,t‖u1 − u2‖Lp .

Lemma 4.21. Let (T,Φ) be a continuous additive control system on X and Lp([0,∞), U)
and assume that Φt is Lipschitz on bounded sets for every t ≥ 0. Then Φt is Lipschitz on
bounded sets uniformly for t in compact subsets of [0,∞), i.e.,

∀T > 0, ρ > 0 ∃Mρ,T > 0 ∀u1, u2 ∈ Lp([0,∞), U), t ∈ [0, T ] :
‖u1‖Lp , ‖u2‖Lp ≤ ρ =⇒ ‖Φt(u1)− Φt(u2)‖X ≤Mρ,T ‖u1 − u2‖Lp .

Further the control operator B ∈ C(U,X−1) associated to (T,Φ) is Lipschitz on bounded sets.
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Proof. Let T > 0 and ρ > 0 and fix t ∈ [0, T ]. For better readability we set τ := T − t, so
that T = t+ τ . Let u1, u2 ∈ Lp([0,∞), U). As in the proof of Lemma 4.14, the composition
property (4.1) yields

Φt+τ (Sτu1)− Φt+τ (Sτu2) = TtΦτ (Sτu1)− TtΦτ (Sτu2) + Φt(u1)− Φt(u2)
= TtΦτ (χ0)− TtΦτ (χ0) + Φt(u1)− Φt(u2)
= Φt(u1)− Φt(u2).

The linear operator Sτ : Lp([0,∞), U) → Lp([0,∞), U) is isometric. Hence ‖Sτuj‖Lp ≤ ρ if
‖uj‖Lp ≤ ρ for j = 1, 2 and ‖Sτu1 − Sτu2‖Lp = ‖u1 − u2‖Lp . We deduce that

‖Φt(u1)− Φt(u2)‖X = ‖ΦT (Sτu1)− ΦT (Sτu2)‖X
≤Mρ,T ‖Sτu1 − Sτu2‖Lp = Mρ,T ‖u1 − u2‖Lp .

To prove the second statement, take ω > max{0, ω0(T)} and choose M ≥ 1 such that
‖Tt‖ ≤ Meωt for all t ≥ 0. Further let λ > ω. We may assume that ‖x‖−1 = ‖R(λ,A)x‖X
for x ∈ X. The function ϕ : [0,∞) × U → X was given by ϕ(t, v) = Φt(Ptχv). Recall that
the control operator B associated to (T,Φ) was defined as

B(v) = λ(λ−A)ϕ̂(λ, v) for all v ∈ U.

For v1, v2 ∈ B(0, ρ) ⊆ U we have ‖P1χvj‖Lp = ‖vj‖U for j = 1, 2. Lemma 4.7 and the first
part then yield

‖ϕ(t, v1)− ϕ(t, v2)‖X ≤
M(2eω − 1)

eω − 1 sup
σ∈[0,1]

‖ϕ(σ, v1)− ϕ(σ, v2)‖Xeωt

≤ M(2eω − 1)
eω − 1 Mρ,1‖P1χv1 − P1χv2‖Lpeωt

≤ M(2eω − 1)
eω − 1 Mρ,1‖v1 − v2‖Ueωt for all t ≥ 0.

As a consequence, we can estimate

‖B(v1)−B(v2)‖−1 = λ‖R(λ,A)(λ−A)(ϕ( � , v1)− ϕ( � , v2))̂ (λ)‖X

≤ λ
∫ ∞

0
e−λt‖ϕ(t, v1)− ϕ(t, v2)‖X dt

≤ Mλ(2eω − 1)
eω − 1 Mρ,1

∫ ∞
0

e(ω−λ)t dt ‖v1 − v2‖U .

Corollary 4.22. Under the assumption of the last lemma, the representation (4.6) is satisfied
for all u ∈ Lp([0,∞), U) ∩ L∞loc([0,∞), U).
Proof. Let u ∈ Lp([0,∞), U) ∩ L∞loc([0,∞), U) and let t ≥ 0. Then there is some ρ > 0 with
‖u(s)‖U ≤ ρ for almost all s ∈ [0, t]. It follows

‖B(u(s))‖−1 ≤ ‖B(u(s))−B(0)‖−1 + ‖B(0)‖−1 ≤ Nρ‖u(s)‖U + ‖B(0)‖−1

for almost all s ∈ [0, t], where Nρ ≥ 0 is the Lipschitz constant of B on B(0, ρ). As in
the proof of Proposition 4.17 we see that Bu belongs to L1([0, t], U) and is therefore locally
integrable. The claim follows by repeating the steps of the mentioned proof with the map

Lp([0,∞), U) ∩ L∞loc([0,∞), U)→ X−1; u 7→
∫ t

0
Tt−sB(u(s)) ds

and some minor modifications.
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We say that Φt is bounded on bounded sets for every t ≥ 0 if for every ρ > 0 and each
t ≥ 0 there is a constant bρ,t ≥ 0 such that for all u ∈ Lp([0,∞), U) with ‖u‖Lp ≤ ρ we have
‖Φt(u)‖X ≤ bρ,t. Obviously this property is weaker than the Lipschitz property stated above.

The following lemma is verified in the same fashion as the last one, so we omit the proof.

Lemma 4.23. Assume that Φt is bounded on bounded sets for every t ≥ 0. Then Φt is
bounded on bounded sets uniformly for t in compact subsets of [0,∞). This means

∀T > 0, ρ > 0 ∃cρ,T > 0 ∀u ∈ Lp([0,∞), U), t ∈ [0, T ] : ‖u‖Lp ≤ ρ =⇒ ‖Φt(u)‖X ≤ cρ,T .

Further the control operator B ∈ C(U,X−1) associated to (T,Φ) is bounded on bounded sets.

Remark 4.24. In Lemmata 4.21 and 4.23 assume the respective properties hold globally, so
that one can delete the amendment “on bounded sets” everywhere. From the proofs it is
clear that all statements remain true, there simply is no ρ. ♦

In the next section we will assume that Φt : Lp([0,∞), U) → X is differentiable for all
t ≥ 0. This is a property that is hard to achieve if the underlying spaces U and X are
complex vector spaces. However it is sufficient to assume that Φt is ‘R–differentiable’.

Let V,W be Banach spaces and O ⊆ V an open subset. Then a map F : O →W is called
R-differentiable at x ∈ O if there exists a F ′(x) ∈ LR(V,W ) such that for all ε > 0 we find a
δ > 0 with

‖F (x+ h)− F (x)− F ′(x)h‖W ≤ ε‖h‖V

for all h ∈ V with ‖h‖V ≤ δ. Here

LR(V,W ) = {T : V →W |W is R–linear and ∃c ≥ 0 ∀x ∈ V : ‖Tx‖W ≤ c‖x‖V }.

The map F is called R–differentiable if F is R–differentiable at every point x ∈ O.
Clearly L(V,W ) ⊆ LR(V,W ). Thus the difference is that F ′(x) lies in the larger LR(V,W ).

If F is R–differentiable and we know that F ′(x) ∈ L(V,W ), then F is differentiable. In the
very same way as for linear operators one shows that LR(V,W ) is a vector space and that a
norm on LR(V,W ) is given by

‖P‖LR(V,W ) = inf{c ≥ 0 | ‖Px‖W ≤ c‖x‖V for all x ∈ V }.

The usual rules of differentiation are valid. For example, let us recall the fundamental
theorem. Let F : O ⊆ W be R–differentiable and assume that F ′ : O → LR(V,W ) is
continuous. Then we have

F (x)− F (w) =
∫ 1

0
F ′(w + σ(x− w))(x− w) dσ

for all x,w ∈ O with {w + σ(x− w) |σ ∈ [0, 1]} ⊆ O.
All the following statements remain true if we replace every occurrence of the word “dif-

ferentiable” by “R–differentiable”. This fact will be used in our examples. However, in order
to keep the exposition clear, we decided not to present the details. We just mention that most
operator norms ‖ � ‖L(V,W ) have to replaced by ‖ � ‖LR(V,W ) and that the Laplace transform
e.g. in Proposition 4.30 can only be defined for real λ.
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Remark 4.25. Let Φt : Lp([0,∞), U)→ X be differentiable for all t ≥ 0. Then the derivative
is causal and satisfies a composition property. More precisely, for all u,w ∈ Lp([0,∞), U)
and t, τ ≥ 0 we have

Φ′t(u)w = Φ′t(Ptu)Ptw and Φ′t+τ (u)w = TtΦ′τ (u)w + Φ′t(S∗τu)S∗τw. (4.10)

As before we write Φ′t(χv) := Φ′t(Ptχv). To verify (4.10), let u ∈ Lp([0,∞), U), t ≥ 0 and
ε > 0. The causality of Φ yields

‖Φt(u + h) − Φt(u) − Φ′t(Ptu)Pth‖X = ‖Φt(Ptu + Pth) − Φt(Ptu) − Φ′t(Ptu)Pth‖X

for all h ∈ Lp([0,∞), U). We find a radius δ > 0 such that for all h ∈ Lp([0,∞), U) with
‖Pth‖Lp ≤ δ the right-hand side is smaller than ε‖Pth‖Lp . Since ‖Pth‖Lp ≤ ‖h‖Lp , the
uniqueness of the derivative implies the first part of (4.10).

For the proof of the second part let τ ≥ 0. For ε > 0 choose δ > 0 such that for
h ∈ Lp([0,∞), U) with ‖S∗τh‖Lp ≤ δ we have

‖Φτ (u+ h)− Φτ (u)− Φ′τ (u)h‖X ≤
ε

2mT,t
‖h‖Lp .

On the other hand we may assume that from ‖h‖Lp ≤ δ it follows that

‖Φt(S∗τu+ S∗τh)− Φt(S∗τu)− Φ′t(S∗τu)S∗τh‖X ≤
ε

2‖S
∗
τh‖Lp .

Using (4.1) and the fact that ‖S∗τh‖Lp ≤ ‖h‖Lp we obtain

‖Φt+τ (u+ h)− Φt+τ (u)− TtΦ′τ (u)h− Φ′t(S∗τu)S∗τh‖X
≤ ‖Tt(Φτ (u+ h)− Φτ (u)− Φ′τ (u)h)‖X + ‖Φt(S∗τ (u+ h))− Φt(S∗τu)− Φ′t(S∗τu)S∗τh‖X
≤ ε

2mT,t
mT,t‖h‖Lp + ε

2‖S
∗
τh‖Lp ≤ ε‖h‖Lp

for all h ∈ Lp([0,∞), U) with ‖h‖Lp ≤ δ and the claim is shown. ♦

Again we have a result of the type of Lemmata 4.21 and 4.23.

Lemma 4.26. Assume that Φt : Lp([0,∞), U) → X is continuously differentiable for every
t ≥ 0. Then Φ′t is continuous at every χv uniformly for t in compact subsets of [0,∞) in the
following sense

∀v ∈ U, T > 0, ε > 0 ∃δ > 0 ∀t ∈ [0, T ], u ∈ Lp([0,∞), U)
‖u‖Lp ≤ δ =⇒ ‖Φ′t(χv + u)− Φ′t(χv)‖L(Lp,X) ≤ ε.

Proof. Fix v ∈ U . Clearly S∗τχv = χv for all τ ≥ 0. Let T > 0 and ε > 0. Since by
assumption the derivative Φ′T : Lp([0,∞), U) → L(Lp([0,∞), U), X) is continuous at PTχv,
we find a radius δ > 0 with

sup
u∈B(0,δ)

‖Φ′T (χv + u)− Φ′T (χv)‖L(Lp,X) ≤ ε.
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Using the composition property and the causality from (4.10) for t ∈ [0, T ] and τ := T−t ≥ 0,
we infer the identity

Φ′T (χv + Sτ ũ)Sτw − Φ′T (χv)Sτw = Φ′t+τ (χv + Sτ ũ)Sτw − Φ′t+τ (χv)Sτw
= TtΦ′τ (χv + Sτ ũ)Sτw + Φ′t(S∗τχv + S∗τSτ ũ)S∗τSτw − TtΦ′τ (χv)Sτw − Φ′t(S∗τχv)S∗τSτw
= Φ′t(χv + ũ)w − Φ′t(χv)w + TtΦ′τ (Pτ (χv + Sτ ũ))χ0 − TtΦ′τ (Pτχv)χ0

= Φ′t(χv + ũ)w − Φ′t(χv)w

for all ũ, w ∈ Lp([0,∞), U). Let ‖ũ‖Lp ≤ δ. Then ‖Sτ ũ‖Lp = ‖ũ‖Lp ≤ δ due to the fact that
Sτ is isometric on Lp([0,∞), U). We conclude that

‖Φ′t(χv + ũ)− Φ′t(χv)‖L(Lp,X) = sup
‖w‖=1

‖Φ′T (χv + Sτ ũ)Sτw − Φ′T (χv)Sτw‖X

≤ sup
‖w‖=1

‖Φ′T (χv + Sτ ũ)w − Φ′T (χv)w‖X

= ‖Φ′T (χv + Sτ ũ)− Φ′T (χv)‖L(Lp,X) ≤ ε.

4.3 Linearization
Let A : D(A) → X be the generator of a strongly continuous semigroup T on X. Further
let B ∈ L(U,X−1) be an Lp–admissible control operator for T. As usual (T,Φ) denotes the
corresponding additive control system on X and Lp([0,∞), U).

We now investigate the dependence of the strong solution of (4.9) on the data. For
convenience we repeat equation (4.9):

z′(t) = Az(t) +B(u(t)); z(0) = x0. (4.11)

Given x0 ∈ X and u ∈ Lp([0,∞), U), we write z( � , x0, u) ∈ C([0,∞), U) for the strong
solution of (4.11), that is z(t, x0, u) = Ttx0 + Φt(u).

A pair (x∗, v∗) ∈ X × U is called equilibrium point of (4.11) if Ax∗ + B(v∗) = 0. We
then also call (x∗, v∗) an equilibrium point of the system (T,Φ). Set u∗ := χv∗ . Clearly
z( � , x∗, u∗) is the constant function equal to x∗. Since z( � , x∗, u∗) ∈ C1([0,∞), X), it is the
classical solution in X of (4.11).

If additionally B is differentiable at v∗, we consider the so called linearized problem at
(x∗, u∗) given by the linear inhomogeneous Cauchy problem

z′l(t) = Azl(t) +B′(v∗)ũ(t); zl(0) = x̃0, (4.12)

where x̃0 ∈ X and ũ ∈ Lp([0,∞), U). The aim of this section is to show that the following
linearization principle is valid, which we state in a simplified form. Surely the conditions
given so far are not strong enough.

A) The operator B′(v∗) ∈ L(U,X−1) is Lp–admissible for T.
Hence problem (4.12) is well-posed, meaning that it has a unique strong solution zl( � , x̃0, ũ)
for all x̃0 ∈ X and ũ ∈ Lp([0,∞), U).

B) For any fixed T > 0 the map

X × Lp([0,∞), U)→ C([0, T ], X); (x0, u) 7→ z( � , x0, u)|[0,T ]
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is differentiable at (x∗, u∗) with derivative given by (x̃0, ũ) 7→ zl( � , x̃0, ũ)|[0,T ].
Since the derivative is close to the map in a small neighborhood of (x∗, u∗) we will be able
to show that z(T, x0, u) can be steered to any state near x∗ provided the linearized problem
is controllable in a certain sense, see Definitions 4.35 and 4.36.

C) Finally, if problem (4.12) is controllable, then problem (4.11) is controllable for data
close to (x∗, u∗).

Actually the equilibrium point (x∗, v∗) is only used ind part C).

Since we are dealing with unbounded operators A and B, we have to pose our conditions
on the more regular object Φ. In fact, if B : U → X−1 is differentiable, we can derive that
ϕ(t, � ) is differentiable for all t ≥ 0, but with respect to ‖ � ‖−1, so that ∂2ϕ(t, v) ∈ L(U,X−1).
In order to show that ϕ(t, v) ∈ L(U,X), we need to assume B′(v) ∈ L(U,X−1) is admissible
for all v ∈ U . Actually, we also need that the map v 7→ Φl

t(v) is continuous where Φl
t(v) are

the input maps associated to B′(v). In this case we have ∂2ϕ(t, v) = Φl
t(v).

We proceed as in Section 4.1 where we gave a minimal set of assumptions to derive
a representation result (Theorem 4.9). For fixed v ∈ U we will first obtain an operator
Bl(v) ∈ L(U,X−1) which then turns out to be the derivative B′(v). Recall the notation

ϕ : [0,∞)× U → X; ϕ(t, v) = Φt(Ptχv) = Φt(χv).

We are working with the standing assumption stated next: Let (T,Φ) be a continuous
additive control system and assume that there is an open set O ⊆ U with the following
properties.

(H0) For all t ≥ 0 the function ϕ(t, � ) : U → X is differentiable on O.

(H1) For all v ∈ O the family ∂2ϕ( � , v) : [0,∞)→ L(U,X) is strongly continuous at 0.

(H2) For all w ∈ U and every s ∈ [0,∞) the map ∂2ϕ(s, � )w : O → X is continuous,
equicontinuous for s in compact subsets of [0,∞).

Note that for every v ∈ O we have ∂2ϕ(0, v) = 0 ∈ L(U,X), because ϕ(0, ṽ) = 0 for all ṽ ∈ U .
We can treat the derivative ∂2ϕ very similar to the way we treated ϕ in the last section.

The reason is that ∂2ϕ satisfies a composition property analog to (4.2). As a special case of
(4.10) in Remark 4.25 we have

∂2ϕ(t+ τ, v) = Tt∂2ϕ(τ, v) + ∂2ϕ(t, v) for all t, τ ≥ 0, v ∈ O. (4.13)

This equation can also be derived by the chain rule directly from (4.2). Properties (H1) and
(H2) are pretty much the same for ∂2ϕ as (i) and (ii) of Definition 4.3 for ϕ. Therefore many
results of the preceding section can be transferred to ∂2ϕ.

Lemma 4.27. Under the assumptions (H0) – (H2) the following assertions are valid.

(a) For all v ∈ O the family ∂2ϕ( � , v) : [0,∞)→ L(U,X) is strongly continuous.

(b) The function ∂2ϕ : [0,∞) × O → L(U,X) is strongly continuous, that is, the map
(t, v) 7→ ∂2ϕ(t, v)w is continuous for every w ∈ U .
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The proof is analogous to those of Lemma 4.4 and Corollary 4.5 and we thus skip it.
Let [a, b] ⊆ [0,∞) andK ⊆ O both be compact. Then, due to the continuity of ∂2ϕ( � , � )w

for every w ∈ U the set {‖∂2ϕ(t, v)w‖X | t ∈ [a, b], v ∈ K} is bounded. From the uniform
boundedness principle we infer that the set

{‖∂2ϕ(t, v)‖ | t ∈ [a, b], v ∈ K} is bounded.

This fact at hand, we can repeat the proof of Lemma 4.7 to derive exponential boundedness
of ‖∂2ϕ( � , v)‖ for v ∈ O.

Lemma 4.28. Assume that hypotheses (H0) – (H2) hold. Let ω > 0 and M ≥ 1 be such that
‖Tt‖ ≤Meωt for all t ≥ 0. Then for all v, ṽ ∈ O we have

‖∂2ϕ(t, v)‖L(U,X) ≤ L2(v)eωt for all t ≥ 0,
‖∂2ϕ(t, v)− ∂2ϕ(t, ṽ)‖L(U,X) ≤ L2(v, ṽ)eωt for all t ≥ 0

with constants (both depending on ω and M)

L2(v) = M

(
sup
σ∈[0,1]

‖∂2ϕ(σ, v)‖+ ‖∂2ϕ(1, v)‖ eω

eω − 1

)
≤M 2eω − 1

eω − 1 sup
σ∈[0,1]

‖∂2ϕ(σ, v)‖

L2(v, ṽ) = M

(
sup
σ∈[0,1]

‖∂2ϕ(σ, v)− ∂2ϕ(σ, ṽ)‖+ ‖ϕ(1, v)− ∂2ϕ(1, ṽ)‖ eω

eω − 1

)
≤M 2eω − 1

eω − 1 sup
σ∈[0,1]

‖∂2ϕ(σ, v)− ∂2ϕ(σ, ṽ)‖.

Remark 4.29. If K ⊆ O is compact, then {L2(v) | v ∈ K} is bounded. This is just another
formulation of what was said before the last lemma. ♦

Fix v ∈ O. As an exponentially bounded strongly continuous family, ∂2ϕ( � , v) has a
Laplace transform ∂̂2ϕ(λ, v) := (∂2ϕ( � , v))̂ (λ) ∈ L(U,X). It exists at least for all λ ∈ C
with Reλ > max{ω0(T), 0} and it is given by

∂̂2ϕ(λ, v)w =
∫ ∞

0
e−λt∂2ϕ(t, v)w dt for w ∈ U.

For more details we refer to Appendix B.
Below we say ‘∂2ϕ( � , v) is strongly differentiable with respect to ‖ � ‖−1 on X’. This

means that for arbitrary w ∈ U the mapping [0,∞) → X; t 7→ ∂2ϕ(t, v)w is differentiable
with respect to ‖ � ‖−1 on X. Thus the derivative d

dt
[
∂2ϕ(t, v)w

]
=: ∂1∂2ϕ(t, v)w defines a

linear map ∂1∂2ϕ(t, v) : U → X−1. The representation (4.14) below shows that this operator
is bounded.

Proposition 4.30. Let (H0) – (H2) be satisfied. Then for all v ∈ O the function ∂2ϕ( � , v) :
[0,∞) → L(U,X) is strongly differentiable with respect to ‖ � ‖−1 on X. Its derivative
∂1∂2ϕ(t, v) ∈ L(U,X−1) is given by

∂1∂2ϕ(t, v) = Tt∂1∂2ϕ(0, v) = Ttλ(λ−A)∂̂2ϕ(λ, v) for all t ≥ 0, (4.14)

where λ ∈ C with Reλ > max{ω0(T), 0} can be chosen freely. We see that ∂1∂2ϕ( � , v) is
strongly continuous.
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Proof. For v ∈ O and w ∈ U one can repeat the proof of Proposition 4.8 with ∂2ϕ( � , v)w in
place of ϕ( � , v).

For the time being, fix some λ ∈ C with Reλ > max{ω0(T), 0}. Let v ∈ O. We set

Bl(v) := ∂1∂2ϕ(0, v) = λ(λ−A)∂̂2ϕ(λ, v) ∈ L(U,X−1).

Then equation (4.14) yields

d
dt [∂2ϕ(t, v)w] = TtBl(v)w for t ≥ 0, v ∈ O and w ∈ U.

Recall that ∂2ϕ(0, v) = 0. As in the proof of Theorem 4.9 we use the fundamental theorem
of calculus to derive the identity

∂2ϕ(t, v)w =
∫ t

0
TsBl(v)w ds =

∫ t

0
Tt−sBl(v)χw(s) ds. (4.15)

We want to show that Bl(v) is Lp–admissible for T. To this end, we consider the family
Φl(v) = (Φl

t(v))t≥0 of operators Φl
t(v) ∈ L(Lp([0,∞), U), X−1) defined through

Φl
t(v)u :=

∫ t

0
Tt−sBl(v)u(s) ds (4.16)

for arbitrary u ∈ Lp([0,∞), U). Then obviously Φl
t(v)χw = ∂2ϕ(t, v)w. Due to Proposition

4.2 in [52] and Remark 4.20 it suffices to find one t > 0 such that Φl
t maps Lp([0,∞), U) to

X. In Proposition 4.33 we give a sufficient condition for this to be true.
First we want to identify Bl(v) with B′(v). In particular, ∂1ϕ(t, � ) has to be differentiable

for every t ≥ 0. To achieve this, it seems we have to replace condition (H2) by the following
somewhat stronger assumption.

(H2’) For every s ∈ [0,∞) the map ∂2ϕ(s, � ) : O → L(U,X) is continuous, equicontinuous
for s in compact subsets of [0,∞).

Proposition 4.31. Under the conditions (H0), (H1) and (H2’) we have the following. For
every t ∈ [0,∞) the map ∂1ϕ(t, � ) : U → X−1 is continuously differentiable on O and

∂2∂1ϕ(t, v) = ∂1∂2ϕ(t, v) = Ttλ(λ−A)∂̂2ϕ(λ, v) = TtBl(v).

Moreover, B : U → X−1 is continuously differentiable on O with B′(v) = Bl(v) for v ∈ O.

Proof. Let t ≥ 0 and v ∈ O. There is a radius r > 0 with B(v, r) ⊆ O. Let h ∈ B(0, r).
Using (4.3), i.e., the identity ∂1ϕ(t, w) = λ(λ−A)Ttϕ̂(λ,w) for every w ∈ U , we obtain

‖∂1ϕ(t, v + h)− ∂1ϕ(t, v)− TtBl(v)h‖−1

= ‖λ(λ−A)Tt
(
ϕ̂(λ, v + h)− ϕ̂(λ, v)− ∂̂2ϕ(λ, v)h

)
‖−1

≤ |λ|‖λ−A‖L(X,X−1)‖Tt‖ ‖ϕ̂(λ, v + h)− ϕ̂(λ, v)− ∂̂2ϕ(λ, v)h‖X .
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Let ε > 0. We show that the right-hand side can be estimated by ε‖h‖U provided ‖h‖U is
“small”. It suffices to estimate the last factor. From the fundamental theorem we infer

‖ϕ̂(λ, v + h)− ϕ̂(λ, v)− ∂̂2ϕ(λ, v)h‖X

=
∥∥∥∥∫ ∞

0
e−λs

(
ϕ(s, v + h)− ϕ(s, v)− ∂2ϕ(s, v)h

)
ds
∥∥∥∥
X

≤
∫ ∞

0

∥∥∥∥e−λs ∫ 1

0
(∂2ϕ(s, v + τh)− ∂2ϕ(s, v))h dτ

∥∥∥∥
X

ds. (4.17)

Take ω > 0 and M ≥ 1 such that ‖Tσ‖ ≤Meωσ for all σ ≥ 0. Lemma 4.28 yields

‖(∂2ϕ(s, v+τh)−∂2ϕ(s, v))h‖X ≤ eωsM 2eω − 1
eω − 1 sup

σ∈[0,1]
‖∂2ϕ(σ, v+τh)−∂2ϕ(σ, v)‖L(U,X)‖h‖U .

for all τ ∈ [0, 1] and s ∈ [0,∞), Moreover, by the equicontinuity of ∂2ϕ(s, � ) : O → L(U,X)
there is some δ > 0 such that for all h ∈ B(0, r) with ‖v + τh− v‖U ≤ ‖h‖U ≤ δ we have

sup
σ∈[0,1]

‖∂2ϕ(σ, v + τh)− ∂2ϕ(σ, v)‖L(U,X) ≤ (Reλ− ω) eω − 1
M(2eω − 1)ε.

For arbitrary s ∈ [0,∞) and h ∈ B(0, r) with ‖h‖ ≤ δ we thus obtain∥∥∥∥e−λs ∫ 1

0
∂2ϕ(s, v + τh)h− ∂2ϕ(s, v)h dτ

∥∥∥∥
X

≤ e−ReλseωsM 2eω − 1
eω − 1 sup

σ∈[0,1]
‖∂2ϕ(σ, v + τh)− ∂2ϕ(σ, v)‖L(U,X)‖h‖U

≤ (Reλ− ω)e−(Reλ−ω)s ε‖h‖U .

Continuing estimate (4.17), we infer

‖ϕ̂(λ, v + h)− ϕ̂(λ, v)− ∂̂2ϕ(λ, v)h‖X ≤ ε
∫ ∞

0
(Reλ− ω)e−(Reλ−ω)s ds‖h‖U = ε‖h‖U .

It remains to show that ∂2∂1ϕ(t, � ) is continuous. This can be done similar to the proof
of Theorem 4.9. Let t ≥ 0. For v, ṽ ∈ U as above we derive

‖∂2∂1ϕ(t, v)− ∂2∂1ϕ(t, ṽ)‖L(U,X−1) ≤ |λ|‖λ−A‖L(X,X−1)‖Tt‖‖∂̂2ϕ(λ, v)− ∂̂2ϕ(λ, ṽ)‖L(U,X) .

Hence, it suffices to prove that ‖∂̂2ϕ(λ, v)− ∂̂2ϕ(λ, ṽ)‖L(U,X) → 0 as ‖v− ṽ‖U → 0. By means
of Lemma 4.28, one directly verifies that

‖∂̂2ϕ(λ, v)− ∂̂2ϕ(λ, ṽ)‖L(U,X) ≤
∫ ∞

0
e−Reλs‖∂2ϕ(s, v)− ∂2ϕ(s, ṽ)‖L(U,X) ds

≤
∫ ∞

0
e−(Reλ−ω)s dsM 2eω − 1

eω − 1 sup
σ∈[0,1]

‖∂2ϕ(σ, v)− ∂2ϕ(σ, ṽ)‖L(U,X).

For given ε > 0 and the same corresponding δ > 0 as above, we conclude that

‖∂̂2ϕ(λ, v)− ∂̂2ϕ(λ, ṽ)‖L(U,X) ≤ ε,

if ‖v − ṽ‖U ≤ δ.
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Remark 4.32. The following modification is immediate. Let conditions (H0) – (H2) be satis-
fied. Further assume that the family

{∂2ϕ(s, � ) : O → L(U,X) | s ∈ [0, 1]}

is equicontinuous at some v∗ ∈ U , i.e., for all ε > 0 exists some δ > 0 such that B(v∗, δ) ⊆ O
and for all h ∈ B(0, δ) we have

sup
s∈[0,1]

‖∂2ϕ(s, v∗ + h)− ∂2ϕ(s, v∗)‖L(U,X) ≤ ε.

Then B : U → X−1 is differentiable at v∗ with derivative Bl(v∗). ♦

We next assume that Φt : Lp([0,∞), U) → X is differentiable for every t ≥ 0. For fixed
v ∈ U consider the family Φ′(χv) := (Φ′t(χv))t≥0 of bounded linear operators Φ′t(χv) from
Lp([0,∞), U) to X. In Remark 4.25 we have seen that Φ′(χv) is causal and satisfies the
composition property

Φ′t+τ (χv)u = TtΦ′τ (χv)u+ Φ′t(χv)S∗τu (4.18)

for all t, τ ≥ 0 and u ∈ Lp([0,∞), U). Hence (T,Φ′(χv)) satisfies Definition 2.1 of [52].
Consequently it is a continuous additive control system, see also Remark 4.13.

We are now able to prove the first part of the linearization principle stated at the beginning
of this section on page 51.

Proposition 4.33. Let A : D(A)→ X be the generator of a strongly continuous semigroup
T on X and let B : U → X−1 be an Lp–admissible control operator for T. As usual the
corresponding input maps are denoted Φt for t ≥ 0.

Assume that Φt : Lp([0,∞), U)→ X is continuously differentiable for every t ≥ 0. Then
B is continuously differentiable and B′(v) is Lp–admissible for T for each v ∈ U . More
precisely, B′(v) is the control operator associated to (T,Φ′(χv)).

Proof. Recall that we use the abbreviation ‖ � ‖Lp := ‖ � ‖Lp([0,∞),U). We first check conditions
(H0), (H1) and (H2’) with O = U . To this end, let t ≥ 0 and v ∈ U .

(H0): Clearly ϕ(0, � ) = 0 is differentiable and we may assume that t > 0. Let ε > 0.
Because Φt is differentiable at Ptχv there is a δ̃ > 0 such that for all u ∈ Lp([0,∞), U) \ {0}
with ‖u‖Lp ≤ δ̃ it follows that

1
‖u‖Lp

‖Φt(Ptχv + u)− Φt(Ptχv)− Φ′t(Ptχv)u‖X ≤ εt−
1/p.

For h ∈ U \ {0} with ‖h‖U ≤ t−1/pδ̃ we have 0 < ‖Ptχh‖Lp = ‖h‖U t1/p ≤ δ̃. For convenience
we write u0 := Ptχv and u := Ptχh. Clearly u0 + u = Pt(χv + χh) = Ptχv+h so that
Φt(u0 + u) = ϕ(t, v + h). Under these assumptions we infer

1
‖h‖U

‖ϕ(t, v + h)− ϕ(t, v)− Φ′t(χv)Ptχh‖X

= t1/p

‖h‖U t1/p
‖Φt(u0 + u)− Φt(u0)− Φ′t(u0)u‖X

= 1
‖u‖Lp

‖Φt(u0 + u)− Φt(u0)− Φ′t(u0)u‖X t
1/p ≤ εt

1/p

t1/p
= ε.
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Hence ϕ(t, � ) : U → X is differentiable and its derivative is given by

∂2ϕ(t, v)w = Φ′t(Ptχv)Ptχw = Φ′t(χv)χw for all t ≥ 0 and v, w ∈ U. (4.19)

(H1): We have to prove strong continuity at 0 for the map ∂2ϕ( � , v) : [0,∞)→ L(U,X).
We use that the operator norms ‖Φ′t(χv)‖ are non-decreasing in t. This is true because
Φ′(χv) is the family of input maps of a linear control system, see Proposition 2.3 in [52]. For
completeness we repeat the reasoning.

Let τ ≥ 0 and u ∈ Lp([0,∞), U). The composition property (4.18) and causality yieldy

Φ′t+τ (χv)Sτu = TtΦ′τ (χv)PτSτu+ Φ′t(χv)S∗τSτu = Φ′t(χv)u.

Therefore we have ‖Φ′t(χv)u‖X ≤ ‖Φ′t+τ (χv)‖‖Sτu‖Lp = ‖Φ′t+τ (χv)‖‖u‖Lp and consequently

‖Φ′t(χv)‖ ≤ ‖Φ′t+τ (χv)‖.

Now (H1) follows easily. Let w ∈ U and recall that ∂2ϕ(0, v)w = 0. For δ ∈ [0, 1] we compute

‖∂2ϕ(δ, v)w‖X = ‖Φ′δ(Pδχv)Pδχw‖X ≤ ‖Φ′δ(Pδχv)‖‖Pδχw‖Lp
≤ ‖Φ′1(P1χv)‖‖Pδχw‖Lp → 0 as δ → 0.

(H2’): Finally let T > 0. We check that the family {∂2ϕ(t, � ) : U → L(U,X) | t ∈ [0, T ]}
is equicontinuous. Take t ∈ [0, T ] and v, ṽ ∈ U . As above one sees that ‖Φ′t(χv)−Φ′t(χṽ)‖ ≤
‖Φ′T (χv)− Φ′T (χṽ)‖. Consequently,

‖∂2ϕ(t, v)w − ∂2ϕ(t, ṽ)w‖X ≤ ‖Φ′t(χv)− Φ′t(χṽ)‖‖Ptχw‖Lp ≤ t
1/p‖Φ′T (χv)− Φ′T (χṽ)‖‖w‖U

for all w ∈ U . Hence ‖∂2ϕ(t, v)− ∂2ϕ(t, ṽ)‖ ≤ t1/p‖Φ′T (χv)− Φ′T (χṽ)‖.
Let ε > 0. Due to the continuity of Φ′T there is some δ̃ > 0 such that for all u, ũ ∈

Lp([0,∞), U) with ‖u − ũ‖Lp ≤ δ̃ we have ‖Φ′T (u) − Φ′T (ũ)‖ ≤ εT−1/p. If v and ṽ satisfy
‖v − ṽ‖U ≤ δ̃T 1/p, then ‖PTχv − PTχṽ‖Lp ≤ δ̃ and thus

‖∂2ϕ(t, v)− ∂2ϕ(t, ṽ)‖ ≤ t1/p‖Φ′t(Ptχv)− Φ′t(Ptχṽ)‖ ≤ T
1/p‖Φ′T (PTχv)− Φ′T (PTχṽ)‖ ≤ ε.

This means that ∂2ϕ(t, � ) : U → L(U,X) is equicontinuous for t ∈ [0, T ].
The last step is to show that Φ′t(χv) and Φl

t(v) coincide. Using (4.15), (4.16) and (4.19)
we already have

Φ′t(χv)χw = ∂2ϕ(t, v)w = Φl
t(v)χw for t ≥ 0 and v, w ∈ U.

By linearity we infer that Φ′t(χv)u = Φl
t(v)u for all piecewise constant functions u ∈ Ω0. Since

Φ′t(χv) and Φl
t(v) both belong to L(Lp([0,∞), U), X−1) and Ω0 is dense in Lp([0,∞), U) the

operators Φ′t(χv) and Φl
t(v) are equal. From Proposition 4.31 we deduce

Φ′t(χv)u = Φl
t(v)u =

∫ t

0
Tt−sBl(v)u(s) ds =

∫ t

0
Tt−sB′(v)u(s) ds (4.20)

for all t ≥ 0 and u ∈ Lp([0,∞), U). Due to uniqueness, B′(v) is the control operator associated
to (T,Φ′(χv)). In particular, this means that B′(v) ∈ L(U,X−1) is Lp–admissible for T.
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We mention that under the conditions of the last proposition using (4.10) in the same
induction as in the proof of Theorem 4.9 we obtain

Φ′t(u)w =
∫ t

0
Tt−sB′(u(s))w(s) ds

for each step function u ∈ Ω0 as well as all w ∈ Lp([0,∞), U) and t ≥ 0.

It is now easy to verify also part B) of the linearization principle. Recall that for x0 ∈ X
and u ∈ Lp([0,∞), U) we denoted the strong solution of (4.11) by z( � , x0, u).

Corollary 4.34. To the conditions of Proposition 4.33 add the existence of an equilibrium
point (x∗, v∗) ∈ X × U . We write u∗ = χv∗. Then for every x̃0 ∈ X and ũ ∈ Lp([0,∞), U)
the strong solution zl( � , x̃0, ũ) ∈ C([0,∞), X) of the linearized problem (4.12) is given by

zl(t, x̃0, ũ) = Ttx0 + Φ′t(χv∗)ũ.

Moreover, for T > 0 the map X × Lp([0,∞), U)→ C([0, T ], X); (x0, u)→ z( � , x0, u)|[0,T ] is
differentiable at (x∗, u∗) with derivative given by (x̃0, ũ) 7→ zl( � , x̃0, ũ).

Proof. The first part is a direct consequence of Proposition 4.16 and (4.20). Let T > 0. Take
x̃0 ∈ X and ũ ∈ Lp([0,∞), U). Plugging in the definition of z and zl, we obtain

‖z(t, x∗ + x̃0, u∗ + ũ)− z(t, x∗, u∗)− zl(t, x̃0, ũ)‖X
= ‖Ttx∗ + Ttx̃0 + Φt(u∗ + ũ)− Ttx∗ − Φt(u∗)− Ttx̃0 − Φ′t(u∗)ũ‖X
= ‖Φt(u∗ + ũ)− Φt(u∗)− Φ′t(u∗)ũ‖X for all t ∈ [0, T ].

Let ε > 0. Lemma 4.26 yields some δ > 0 with ‖Φ′t(χv∗ + u) − Φ′t(χv∗)‖L(Lp,X) ≤ ε for all
t ∈ [0, T ] provided u ∈ B(0, δ) ⊆ Lp([0,∞), U). With the fundamental theorem we derive

‖z( � , x∗ + x̃0, u∗ + ũ)− z( � , x∗, u∗)− zl( � , x̃0, ũ)‖L∞([0,T ],X)

= sup
t∈[0,T ]

‖Φt(u∗ + ũ)− Φt(u∗)− Φ′t(u∗)ũ‖X = sup
t∈[0,T ]

∥∥∥∥∫ 1

0
(Φ′t(u∗ + σũ)− Φ′t(u∗))ũdσ

∥∥∥∥
X

≤ sup
t∈[0,T ]

sup
u∈B(0,δ)

‖Φ′t(u∗ + u)− Φ′t(u∗)‖L(Lp,X) ‖ũ‖Lp ≤ ε‖ũ‖Lp ≤ ε(‖ũ‖Lp + ‖x̃0‖X)

for all x̃0 ∈ X and ũ ∈ Lp([0,∞), U) with ‖x̃0‖X + ‖ũ‖Lp ≤ δ.

Before we can show the last part of the linearization principle, we have to introduce
some notions. There are several controllability concepts in the literature. See e.g. Chapter
11 of [49] for the linear case. We follow the definitions in Section 3.1 of [11] which treats
finite dimensional systems. The lineariziation principle relates the global property ‘exact
controllability’ of the linearized system to the ‘local controllability’ of the original problem.
It relies on the general fact that derivatives describe the local behavior of functions.

Definition 4.35. A linear control system (T,Φ) on X and Lp([0,∞), U) is called exactly
controllable in time T > 0 if Ran ΦT = X.
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In the situation of this definition, for all x1, x2 ∈ X we find an input u ∈ Lp([0,∞), U)
such that ΦTu = x1−TTx0 and therefore TTx0+ΦTu = x1. This means that the state can be
steered from arbitrary initial states to arbitrary final states. The last definition has particular
importance if U is a Hilbert space and p = 2, since then Lp([0,∞), U) is a Hilbert space. In
this case ΦT ∈ L(Lp([0,∞), U), X) has a bounded right inverse Φ#

T ∈ L(X,Lp([0,∞), U)).
In fact, let P ∈ L(H,X) be a linear operator mapping a Hilbert space H to the Banach space
E. Assume that P is onto, i.e., RanP = E. Then there exists an operator P# ∈ L(E,H)
with PP#x = x for all x ∈ E. Such an operator is called bounded right inverse of P . See
Appendix C for more details. This is the reason we need a Hilbert space in the theorem
below, which is the main result of the section.

Definition 4.36. Let (T,Φ) be an additive control system on X and Lp([0,∞), U). Assume
that (T,Φ) has an equilibrium point (x∗, v∗) ∈ X×U . We write u∗ = χv∗ . Then (T,Φ) is called
locally controllable at (x∗, u∗) in time T > 0 if for every R > 0 there are radii r1, r2 ∈ (0, R]
such that for all x0 ∈ B(x∗, r1) and x1 ∈ B(x∗, r2) we find an input u ∈ Lp([0,∞), U) with
z(T, x0, u) = x1 and ‖z(t, x0, u)− x∗‖X ≤ R for all t ∈ [0, T ].

Letting R go to zero, we see that we can consider local controllability only at equilibrium
points (x∗, v∗) ∈ X × U .

Theorem 4.37. Let X be a Banach space and let U be a Hilbert space. Assume that (T,Φ) is
an additive control system on X and L2([0,∞), U) which has an equilibrium point (x∗, v∗) ∈
X×U . We write u∗ := χv∗. Further let Φt : L2([0,∞), U)→ X be continuously differentiable
for every t ≥ 0. Finally, assume that (T,Φ′(χv∗)) is exactly controllable in some time T > 0.
Then (T,Φ) is locally controllable at (x∗, u∗) in time T > 0.

Proof. As a preparation, we first transform the problem. For that we need the ‘remainder’
Φrem
t : L2([0,∞), U)→ X given by

Φrem
t (ũ) = Φt(u∗ + ũ)− Φt(u∗)− Φ′t(u∗)ũ

for t ≥ 0. By assumption, Φrem
t is continuously differentiable with derivative

(Φrem
t )′(w) = Φ′t(u∗ + w)− Φ′t(u∗) for w ∈ L2([0,∞), U).

For x0, x1 ∈ X and u ∈ L2([0,∞), U) set x̃j := xj − x∗ for j = 0, 1 and ξ := x̃1 − TT x̃0
as well as ũ := u− u∗. The identity x1 = z(T, x0, u) is equivalent to the identity

x̃1 = z(T, x∗ + x̃0, u∗ + ũ)− z(T, x∗, u∗) = TT (x̃0 + x∗) + ΦT (u∗ + ũ)− TTx∗ − ΦT (ũ)
= TT x̃0 + Φrem

T (ũ) + Φ′T (u∗)ũ, (4.21)

and thus to the equation

Φ′T (u∗)ũ = x̃1 − TT x̃0 − Φrem
t (ũ) = ξ − Φrem

t (ũ). (4.22)

Let Q := (Φ′T (u∗))# ∈ L(X,L2([0,∞), U)) be a bounded right inverse of Φ′T (u∗), cf.
Corollary C.11. Surely Q 6= 0. If we find a fixed-point ũ ∈ L2([0,∞), U) of

ũ = Q(ξ − Φrem
T (ũ)) = Qξ −QΦrem

T (ũ) =: C(ũ),
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then (4.22) is satisfied. Clearly an operator C : L2([0,∞), U) → L2([0,∞), U) is defined by
the above equation. Hence the next step is to check that C is strictly contractive on a ball
B(0, ρ) ⊆ L2([0,∞), U) for some ρ > 0.

Let R > 0. Lemma 4.26 yields a number ρ0 > 0 with

‖Φ′t(u∗ + u)− Φ′t(u∗)‖ ≤
1

2‖Q‖

for all u ∈ L2([0,∞), U) with ‖u‖L2 ≤ ρ0 and each t ∈ [0, T ]. On the one hand, we thus have

‖Φrem
t (ũ)‖X =

∥∥∥∥∫ 1

0

(
Φ′t(u∗ + σũ)− Φ′t(u∗)

)
ũdσ

∥∥∥∥
X

≤ sup
ū∈B(0,ρ0)

‖Φ′t(u∗ + u)− Φ′t(u∗)‖‖ũ‖L2 ≤
1

2‖Q‖‖ũ‖L2 ≤
1

2‖Q‖ρ0. (4.23)

for all t ∈ [0, T ] and every ũ ∈ L2([0,∞), U) with ‖ũ‖L2 ≤ ρ0. On the other hand, it follows
that

‖(Φrem
T )′(w)‖ ≤ ‖Φ′T (u∗ + w)− Φ′T (u∗)‖ ≤

1
2‖Q‖ (4.24)

for all w ∈ L2([0,∞), U) with ‖w‖L2 ≤ ρ0. We can now fix the constants

ρ = min
{
ρ0, R

( 3
4‖Q‖ + ‖Φ′T (u∗)‖

)−1
}
, r0 = ρ

4‖Q‖mT,T
and r1 = ρ

4‖Q‖ .

Note that r0 ≤ r1. Let x̃0 ∈ B(0, r0) and x̃1 ∈ B(0, r1). The choice of r0 and r1 yields

‖ξ‖X ≤ ‖x̃1‖X + ‖TT ‖‖x̃0‖X ≤
ρ

4‖Q‖ + ‖TT ‖
mT,T

ρ

4‖Q‖ ≤
ρ

2‖Q‖ . (4.25)

By the chain rule, C is continuously differentiable with C′(w) = −Q(Φrem
T )′(w) for all

w ∈ L2([0,∞), U). From (4.24) we deduce

‖C′(w)‖ ≤ ‖Q‖‖(Φrem
T )′(w)‖ ≤ 1

2 < 1

if ‖w‖L2 ≤ ρ0. For ũ1, ũ2 ∈ B(0, ρ) we thus have

‖C(ũ1)− C(ũ2)‖L2 =
∥∥∥∥∫ 1

0
C′(ũ2 + σ(ũ1 − ũ2)) · (ũ1 − ũ2) dσ

∥∥∥∥
L2

≤ sup
w∈B(0,ρ)

‖C′(w)‖‖ũ1 − ũ2‖L2 ≤ 1
2‖ũ1 − ũ2‖L2 .

Further, the estimate (4.23) with t = T and (4.25) lead to the bound

‖C(ũ)‖L2 ≤ ‖Q‖
(
‖ξ‖X + ‖Φrem

T (ũ)‖
)
≤ ‖Q‖ ρ

2‖Q‖ + ‖Q‖ ρ

2‖Q‖ = ρ.

Of course, B(0, ρ) as a closed subset of L2([0,∞), U) is a complete nonempty metric space.
The contraction mapping principle yields the existence of a fixed-point ũ of C in B(0, ρ).
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For x0 ∈ B(x∗, r0) and x1 ∈ B(x∗, r1), as above let x̃j = xj − x∗ for j = 1, 2. The fixed
point ũ ∈ B(0, ρ) found above fulfills equation (4.22) and therefore also z(T, x0, u∗+ ũ) = x1.
Moreover, formulas (4.21) and (4.23) imply that

‖z(t, x∗ + x̃0, u∗ + ũ)− z(t, x∗, u∗)‖X ≤ ‖Tt‖‖x̃0‖X + ‖Φrem
t (ũ)‖X + ‖Φ′t(u∗)‖‖ũ‖L2

≤ mT,T ‖x̃0‖+ ρ

2‖Q‖ + ‖Φ′T (u∗)‖ρ ≤
( 3

4‖Q‖ + ‖Φ′T (u∗)‖
)
ρ ≤ R

for all t ∈ [0, T ] due to the choice of r0 and ρ. Here we also used that ‖Φ′t(u∗)‖ is non
decreasing in t.

Remark 4.38. The proof of the last theorem works if Φ′T (u∗) has a bounded right inverse
Q. If we know that such Q exists then we do not need that (T,Φ) is a control system on
L2([0,∞), U), we can take any other exponent p ≥ 1 instead. However, in general it is not
easy to find a bounded right inverse in the non–Hilbert case. ♦

4.4 Applications

Let us start with a description of the structure of the examples in this section. Take Banach
spaces X, Ul and let A be the generator of a strongly continuous semigroup T on X. Further
let Bl ∈ L(Ul, X−1) be an Lp-admissible control operator for T. We denote the corresponding
input maps by Φl

t ∈ L(Lp([0,∞), Ul), X).
Let U be another Banach space. We introduce a measurable map M : U → Ul and aim

to replace the input maps Φl
t by the operators

Φt(u) =
∫ t

0
Tt−sBlM(u(s)) ds.

Clearly they correspond to the control operator B : U → X−1; B(v) = BlM(v). In order
to really obtain an additive control system (T,Φ), we need further assumptions. Let M be
continuous and assume that there is a constant c ≥ 0 and an exponent η ≥ 1

p such that

‖M(v)‖Ul ≤ c(‖v‖
η
U + 1) for all v ∈ U. (4.26)

Note that if this is true for one η > 0, then it also holds for all larger expontents η̃ > η. We
will now frequently use the following type of estimate without further comments

(a+ b)e ≤ (2 max{a, b})e = 2e max{ae, be} ≤ 2e(ae + be) for a, b, e ≥ 0.

For brevity, as before, we write ‖ � ‖Lpη := ‖ � ‖Lpη([0,∞),U) and ‖ � ‖Lp := ‖ � ‖Lp([0,∞),Ul).
Fix any u ∈ Lpη([0,∞), U). We first show that M ◦u lies in Lploc([0,∞), Ul). To this end,

take t > 0. From (4.26) we infer that

(∫ t

0
‖M(u(s))‖pUl ds

)1/p
≤
(∫ t

0
cp(‖u(s)‖U + 1)pη ds

)1/p
= c‖‖u( � )‖U + 1‖ηLpη([0,t],R)

≤ c(‖u‖Lpη + t
1
pη )η ≤ c2η(‖u‖ηLpη + t

1
p ) ≤ c2η(t

1
p + 1)(‖u‖ηLpη + 1).
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This means that M ◦ u ∈ Lp([0, t], Ul). We define N : Lpη([0,∞), U) → Lploc([0,∞), Ul);
N(u) = M ◦ u. The last estimate then reads

‖N(u)‖Lp([0,t],Ul) ≤ ct(‖u‖
η
Lpη + 1) for all t > 0, u ∈ Lpη([0,∞), U), (4.27)

where ct = c2η(t
1
p + 1). As already announced above, for every t ≥ 0 we now define Φt :

Lpη([0,∞), U)→ X through

Φt(u) = Φl
tN(u) =

∫ t

0
Tt−sBlM(u(s)) ds.

We shall prove that (T,Φ) is a continuous additive control system on X and Lpη([0,∞), U),
where Φ = (Φt)t≥0. Since B ◦ u ∈ L1

loc([0,∞), X−1) for all u ∈ Lpη([0,∞), U), it then follows
that B is Lpη–admissible for T.

As argued after Definition 4.19, the family Φ is causal and satisfies the composition
property for T. To verify condition (i) of Definition 4.3, take v ∈ U . Because (T,Φl) is a
linear control system, we obtain

‖Φt(χv)‖X =
∥∥∥∥∫ t

0
Tt−sBlM(v) ds

∥∥∥∥
X

= ‖Φl
tχM(v)‖X → 0 as t→ 0+,

see Proposition 2.3 of [52]. Also condition (ii) of Definition 4.3 is satisfied. We easily deduce
this from the fact that M is continuous. Indeed, let v ∈ U and T > 0. Then for all t ∈ [0, T ]
and ṽ ∈ U we have

‖ϕ(t, v)− ϕ(t, ṽ)‖X ≤ ‖Φl
t‖L(Lp,X)‖PtN(χv)− PtN(χṽ)‖Lp

≤ ‖Φl
T ‖L(Lp,X)‖χM(v)−M(ṽ)‖Lp([0,T ],Ul)

≤ ‖Φl
T ‖L(Lp,X)T

1
p ‖M(v)−M(ṽ)‖Ul .

Obviously for ε > 0 there is a δ > 0 such that ‖M(v)−M(ṽ)‖Ul ≤ ε(‖Φl
T ‖L(Lp,X)T

1/p)−1.
We next show that the family {Φt : Lpη([0,∞), U)→ X | t ∈ [0, T ]} is equicontinuous for

each T > 0. Let u, h ∈ Lpη([0,∞), U), T > 0 and t ∈ [0, T ]. We then compute

‖Φt(u+ h)− Φt(u)‖X ≤ ‖Φl
t‖‖PtN(u+ h)− PtN(u)‖Lp

≤ ‖Φl
T ‖‖M(u( � ) + h( � ))−M(u( � ))‖Lp([0,T ],Ul). (4.28)

To estimate the right-hand side we need the following lemma. This type of expression will
now appear several times here and in Sections 5.3 and 6.3.

Lemma 4.39. Let V and W be Banach spaces and p ∈ [1,∞). Assume that G : V → W is
continuous and satisfies

‖G(v)‖W ≤ c1‖v‖ηV + c2 for all v ∈ V, (4.29)

where c1, c2 ≥ 0 and η ≥ 1
p are fixed numbers. Set q := pη. Further let (J, µ) be a measure

space. If c2 6= 0 require that J is finite.
Then G◦f ∈ Lploc(J,W ) for every f ∈ Lq(J, V ), Moreover, for all f ∈ Lq(J, V ) and ε > 0

there is a number δ > 0 such that for h ∈ Lq(J, V ) with ‖h‖Lq(J,V ) ≤ δ we have

‖G(f( � ) + h( � ))−G(f( � ))‖Lp(J,V ) ≤ ε.
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Proof. The first claim can be shown as in the preceding text. To verify the second, let
f ∈ Lq(J, V ). Let (hk) be any sequence in Lq(J, V ) with ‖hk‖Lq → 0 as k → ∞. Then
we find a subsequence (hkl) with ‖hkl(t)‖V → 0 for almost all t ∈ J . The subsequence can
further be chosen such that there is a function g ∈ Lq(J,R) with ‖hkl(t)‖ ≤ g(t) for almost
every t ∈ J . For simplicity let us write (hk) again. Observe that

‖G(f( � ) + hk( � ))−G(f( � ))‖pLp(J,V ) =
∫
J
‖G(f(t) + hk(t))−G(f(t))‖pW dt.

Using the continuity of G, we infer that the integrand converges to zero pointwise almost
everywhere on J . On the other hand we have

‖G(f(t) + hk(t))−G(f(t))‖W ≤ c1‖f(t) + hk(t)‖ηV + c1‖f(t)‖ηV + 2c2

≤ c1(2η + 1)‖f(t)‖ηV + 2ηc1‖hk(t)‖ηV + 2c2

≤ c1(2η + 1)‖f(t)‖ηV + 2ηc1g(t)η + 2c2.

The right-hand side as a function of t is p–integrable (recall that µ(J) < ∞ if c2 6= 0). By
the dominated convergence theorem we have

‖G(f( � ) + hk( � ))−G(f( � ))‖pLp(J,V ) → 0 as k →∞.

Now assume the claim is false. Then there is an ε0 > 0 and for every k ∈ N a function
hk ∈ Lq(J, V ) with ‖hk‖Lq(J,V ) ≤ 1

k and ‖G(f( � ) + hk( � ))−G(f( � ))‖pLp(J,V ) ≥ εp0. But this
contradicts the existence of the subsequence of (hk) constructed above.

Applying this lemma to (4.28), we finish the proof of the fact that (T,Φ) is an equicon-
tinuous additive control system on X and Lpη([0∞), U). As we already said, by Remark 4.20
(b) the map B is an Lpη–admissible control operator for T because B ◦ u = BlM(u( � )) is
locally integrable.

In the following let η > 1. We add the condition that M is continuously R–differentiable
and satisfies the estimate

‖M ′(v)‖LR(U,Ul) ≤ c(‖v‖
η−1
U + 1) for all v ∈ U, (4.30)

where c ≥ 0. The value of c is not important, so we took the constant from (4.26). Again we
drop the R in LR(U,Ul) to keep the formulas simple. In the same way as above we infer that

M ′(u( � )) ∈ L
pη
η−1
loc ([0,∞),L(U,Ul))

for every u ∈ Lpη([0,∞), U). Using Hölder’s inequality, we deduce that M ′(u( � ))w( � ) is
contained in Lp([0, T ], Ul) for all u,w ∈ Lpη([0,∞), U) and T > 0, and that

‖M ′(u( � ))w( � )‖Lp([0,T ],Ul) ≤ ‖M
′(u( � ))‖

L
pη
η−1 ([0,T ],L(U,Ul))

‖w‖Lpη([0,T ],U)

≤ ‖M ′(u( � ))‖
L
pη
η−1 ([0,T ],L(U,Ul))

‖w‖Lpη .

Hence for fixed u ∈ Lpη([0,∞), U) the linear mapping w 7→M ′(u( � ))w( � ) from Lpη([0,∞), U)
to Lp([0, T ], Ul) is bounded.
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We can now prove that PtN : Lpη([0,∞), U) → Lp([0, t], Ul) is R–differentiable for
each t > 0 with derivative given by (PtN)′(u)w = M ′(u( � ))w( � ). To this end, fix u ∈
Lpη([0,∞), U) and t > 0. Using the fundamental theorem, we then write

‖N(u+ h)−N(u)−M ′(u( � ))h( � )‖Lp([0,t],Ul)

=
(∫ t

0
‖M(u(s) + h(s))−M(u(s))−M ′(u(s))h(s)‖pUl ds

)1/p
≤
(∫ t

0

(∫ 1

0
‖M ′(u(s) + σh(s))−M ′(u(s))‖L(U,Ul)‖h(s)‖U dσ

)p
ds
)1/p

for h ∈ Lpη([0,∞), U). Minkowski’s and Hölder’s inequalities yield

(∫ t

0

(∫ 1

0
‖M ′(u(s) + σh(s))−M ′(u(s))‖L(U,Ul)‖h(s)‖U dσ

)p
ds
)1/p

≤
∫ 1

0

(∫ t

0
‖M ′(u(s) + σh(s))−M ′(u(s))‖pL(U,Ul)‖h(s)‖pU ds

)1/p
dσ

≤
∫ 1

0
‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖

L
pη
η−1 ([0,t],L(U,Ul))

dσ ‖h‖Lpη([0,t],U)

≤
∫ 1

0
‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖

L
pη
η−1 ([0,t],L(U,Ul))

dσ ‖h‖Lpη .

Let ε > 0. We apply Lemma 4.39 (with η − 1 instead of η and pη
η−1 instead of p) to the term

under the integral on the right-hand side to obtain a number δ > 0 with

‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖
L
pη
η−1 ([0,t],L(U,Ul))

≤ ε

for all σ ∈ [0, 1] and h ∈ Lpη([0,∞), U) with ‖σh‖Lpη ≤ ‖h‖Lpη ≤ δ. Hence we have proved the
claimed differentiability of PtN . Finally with σ = 1 it also follows that (PtN)′ is continuous.
Indeed, for u, h ∈ Lpη([0,∞), U) and ε, δ > 0 as above as well as arbitrary w ∈ Lpη([0,∞), U)
we have

‖(M ′(u+ h( � ))−M ′(u( � )))w( � )‖Lp ≤ ‖M ′(u+ h( � ))−M ′(u( � ))‖
L
pη
η−1 ([0,∞),L(U,Ul))

‖w‖Lpη

≤ ε‖w‖Lpη ,

showing that the map PtN is even continuously R–differentiable. As a consequence, Φt is
continuously R–differentiable for every t ≥ 0. In fact, from the linearity of Φl

t we derive

‖Φt(u+ h)− Φt(u)− Φl
t(PtN)′(u)h‖X

= ‖Φl
t(PtN(u+ h)− PtN(u)− (PtN)′(u)h)‖X

≤ ‖Φl
t‖L(Lp,X)‖PtN(u+ h)− PtN(u)− (PtN)′(u)h‖Lp

≤ ‖Φl
t‖L(Lp,X)‖N(u+ h)−N(u)− (PtN)′(u)h‖Lp([0,t],Ul)

for u, h ∈ Lpη([0,∞), U). Thus the derivative of Φt at u is given by Φ′t(u)w = Φl
tM
′(u( � ))w( � )

for w ∈ Lpη([0,∞), U).
We summarize the preceding results in a lemma.
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Lemma 4.40. Let X, Ul and U be Banach spaces. Assume that (T,Φl) is a linear control
system on X and Lp([0,∞), Ul) for an exponent p ∈ [1,∞). Denote by Bl ∈ L(Ul, X−1)
the control operator of (T,Φl). Let M : U → Ul be a continuous map satisfying (4.26), i.e.,
assume that there exist constants η ≥ 1

p and c ≥ 0 such that

‖M(v)‖Ul ≤ c(‖v‖
η
U + 1) for all v ∈ U.

Then the family Φ = (Φt)t≥0 of maps Φt : Lpη([0,∞), U)→ X given by

Φt(u) =
∫ t

0
Tt−sBlM(u(s)) ds

yield a equicontinuous additive control system (T,Φ) on X and Lpη([0,∞), U).
Further assume that η > 1, thatM is continuously R–differentiable and that the derivative

satisfies the growth bound

‖M ′(v)‖LR(U,Ul) ≤ c(‖v‖
η−1
U + 1) for all v ∈ U.

Then Φt is continuously R–differentiable for every t ≥ 0 with derivative given by Φ′t(u)w =
Φl
tM
′(u( � ))w( � ) for u,w ∈ Lpη([0,∞), U).

Let (x∗, v∗) ∈ X×U be an equilibrium point of (T,Φ). Then by a little abuse of notation
we write Φ′t(χv∗) = Φl

tM
′(v∗). Whenever the linear control system (T,Φl) is exactly control-

lable in some time T > 0 and we find a bounded right inverse for M ′(v∗) ∈ L(U,Ul), we can
apply Theorem 4.37, also see Remark 4.38. This requires that M ′(v∗) is onto. In view of
Proposition C.10 it is rather promising to look for invertible derivatives M ′(v∗).

The case p = 2 and η = 1
Obviously the above argumentation is not valid for η = 1. Note that for our linearization
result Theorem 4.37 we need pη = 2 which is equivalent to p = 2

η . Moreover, I am only
aware of linear L2–admissible control operators Bl that yield exactly controllable systems for
infinite dimensional X and Ul. Thus we also have to take p = 2 which results in η = 1.

Let Ul = U be a Hilbert space. So far we have not used the special form of Φl
t in this

section. This is mainly because Bl is possibly unbounded. However, if Bl ∈ L(U,X) is
bounded, we can directly verify that Φt is R–differentiable, even if N is not differentiable. It
helps that we can pull the norm ‖ � ‖X under the integral.

Lemma 4.41. Let X be a Banach space and U be a Hilbert space. Assume that (T,Φl) is a
linear control system on X and L2([0,∞), U). Denote by Bl ∈ L(U,X) the control operator
of (T,Φl). Assume that M : U → U is Lipschitz, i.e., assume that there is a constant c ≥ 0
such that

‖M(v)−M(ṽ)‖U ≤ c‖v − ṽ‖U for all v, ṽ ∈ U.
Further, let M be continuously R–differentiable with ‖M ′(v)−M ′(ṽ)‖LR(U) ≤ c‖v − ṽ‖U for
all v, ṽ ∈ U . Then for every t ≥ 0 the map Φt : L2([0,∞), U)→ X given by

Φt(u) =
∫ t

0
Tt−sBlM(u(s)) ds

is continuously R–differentiable with derivative given by Φ′t(u)w = Φl
tM
′(u( � ))w( � ) for u,w ∈

L2([0,∞), U). Moreover, the derivative is Lipschitz.
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Proof. Clearly (4.26) is satisfied with η = 1. In the last section we saw thatM◦u : [0,∞)→ U
is locally square integrable for all u ∈ L2([0,∞), U). Moreover, in the same way we derive
that M ′ ◦ u ∈ L2

loc([0,∞),LR(U)) as well as that

‖
(
M ′(ũ( � ))−M ′(u( � ))

)
w( � )‖L1 ≤ ‖M ′(ũ( � ))−M ′(u( � ))‖L2([0,∞),LR(U))‖w‖L2

≤ c‖ũ− u‖L2‖w‖L2

for all u, ũ ∈ L2([0,∞), U). Let t ≥ 0, u ∈ L2([0,∞), U) and ε > 0. For all h ∈ L2([0,∞), U)
with ‖h‖L2 ≤ 2(cmT,t‖B‖)−1ε we can estimate

∥∥∥∥Φt(u+ h)− Φt(u)−
∫ t

0
Tt−sBlM ′(u(s))h(s) ds

∥∥∥∥
X

≤
∫ t

0

∫ 1

0
‖Tt−sBl(M ′(u(s) + σh(s))−M ′(u(s))

)
h(s)‖X dσ ds

≤ mT,t‖Bl‖L(U,X)

∫ 1

0

∫ t

0
‖M ′(u(s) + σh(s))−M ′(u(s))‖LR(U)‖h(s)‖U ds dσ

≤ mT,t‖Bl‖L(U,X)

∫ 1

0
‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖L2([0,∞),U) dσ‖h‖L2

≤ cmT,t‖Bl‖L(U,X)‖h‖2L2 ≤ ε‖h‖L2 ,

showing that Φt is R–differentiable at u. Very similar on sees that the derivative is Lipschitz
and thus Φt is continuously R–differentiable.

The last paragraph of the previous subsection holds accordingly. More precisely, if
(x∗, v∗) ∈ X × U is an equilibrium point of (T,Φ) and M ′(v∗) ∈ LR(U) is invertible, then
exact controllability of the underlying linear system (T,Φl) passes over to (T,Φ).

In case Bl is not bounded, we consider “smooth” inputs. We mention that U as a Hilbert
space satisfies the Radon-Nikodym property. This means that every absolutely continuous
function u : [0,∞)→ U is differentiable almost everywhere. The vector-valued Sobolev space

H1([0,∞), U) = {u ∈ L2([0,∞), U) |u is absolutely continuous and u′ ∈ L2([0,∞), U)}.

is a Hilbert space. The closed subspace H1
L([0,∞), U) consists of those u ∈ H1([0,∞), U)

with u(0) = 0. In contrast to L2([0,∞), U) this Sobolev space is continuously embedded
in L∞([0,∞), U). This means that there is a constant d ≥ 0 with ‖h‖L∞ ≤ d‖h‖H1 for
h ∈ H1

L([0,∞), U). We will drop the constant and write ‖ � ‖L∞ . ‖ � ‖H1 .
Let Z be the solution space for (T,Φl) introduced in Section 3.3. From Theorem 11.3.6

in [49] (see also Section 2 of [51], especially Theorem 2.5) we know that

Φl
T (H1

L([0,∞), U)) = Z

provided that (T,Φl) is exactly controllable in time T > 0. In the following we want to
replace L2([0,∞), U) in our reasoning by H1

L([0,∞), U). Consequently, X has to be replaced
by Z. In Remark 3.14 we derived that Φl

t ∈ L(H1
L([0,∞), U), Z). Unfortunately, Z might

not be invariant under T, see e.g. Example 10.1.9 of [49]. Hence we can not directly translate
Theorem 4.37 to this situation. However we have the following result.
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Proposition 4.42. Let U be a Hilbert space and B ∈ C(U,X−1) be an L2–admissible con-
trol operator for T with the corresponding input maps Φt : L2([0,∞), U) → X. Assume
that B(0) = 0. Moreover, let the restrictions Φt : H1

L([0,∞), U) → Z be continuously R–
differentiable for all t ≥ 0. Finally, assume that Φ′T (χ0)(H1

L([0,∞), U)) = Z for some
T > 0. Then we find radii r1, r2 > 0 such that for all x0 ∈ X1, x1 ∈ Z with ‖x0‖1 ≤ r1 and
‖x1‖Z ≤ r2 there is an input u ∈ H1

L([0,∞), U) with

x1 = TTx0 + ΦT (u).

Since χv does not belong to H1
L([0,∞), U) (not even locally) for v 6= 0, we are committed

to the equilibrium point (0, χ0). The proof the above proposition is similar to the one of
Theorem 4.37. So we think an outline is sufficient.

Proof. Note that B(0) = 0 implies that (0, χ0) ∈ X × U is an equilibrium point of z′(t) =
Az(t) + Bu(t). Moreover, in this case Φt(χ0) = 0 for all t ≥ 0. Again one considers the
remainder Φrem

T : H1
L([0,∞), U)→ Z. In this situation it is given by

Φrem
T (u) = ΦT (u)− ΦT (χ0)− Φ′T (χ0)u = ΦT (u)− Φ′T (χ0)u,

so that ΦT (u) = Φ′T (χ0)u+ Φrem
T (u) for u ∈ H1

L([0,∞), U). By our assumptions, Φrem
T is con-

tinuously differentiable with derivative (Φrem
T )′(u) = Φ′T (u) − Φ′T (χ0) for u ∈ H1

L([0,∞), U).
In particular, we have (Φrem

T )′(χ0) = 0.
Let Q ∈ L(Z,H1

L([0,∞), U)) be a bounded right inverse of Φ′T (χ0) ∈ L(H1
L([0,∞), U), Z).

Take x0 ∈ X1 and x1 ∈ Z. If we find an input u ∈ H1
L([0,∞), U) satisfying

u = Q(x1 − TTx0 − Φrem
T (u)) =: C(u),

then we get Φ′T (χ0)u = x1 − TTx0 − Φrem
T (u) or equivalently

x1 = TTx0 + Φ′T (χ0)u+ Φrem
T (u) = TTx0 + ΦT (u).

The existence of such an element u can be shown with the contraction mapping principle
applied to the restriction of C : H1

L([0,∞), U)→ H1
L([0,∞), U) to a certain ball. The following

estimates are essential. Let u1, u2 ∈ H1
L([0,∞), U). We then obtain

‖C(u1)− C(u2)‖H1
L
≤ ‖Q‖‖Φrem

T (u1)− Φrem
T (u2)‖Z

≤ ‖Q‖
∫ 1

0
‖(Φrem

T )′(u2 + σ(u1 − u2))(u1 − u2)‖Z dσ

≤ ‖Q‖ sup
ũ∈B(0,ρ)

‖(Φrem
T )′(ũ)‖L(H1

L,Z)‖u1 − u2‖H1 .

Due to the continuity of (Φrem
T )′ the factor supũ∈B(0,ρ)‖(Φ

rem
T )′(ũ)‖L(H1

L,Z) can be made small
by choosing ρ > 0 small. On the other hand, for u ∈ H1

L([0,∞), U) we compute

‖C(u)‖H1
L
≤ ‖Q‖

(
‖x1 − TTx0‖Z + ‖Φrem

T (u)‖Z
)

≤ ‖Q‖
(
‖x1‖Z + ‖TTx0‖1 + ‖Φrem

T (u)‖Z
)

. ‖Q‖
(
‖x1‖Z + ‖TT ‖‖x0‖1 + ‖Φrem

T (u)‖Z
)
,

by means of the embedding X1 ↪→ Z from (3.10). The right-hand side can be controlled
using that ‖Φrem

T (u)‖Z tends to zero as ‖u‖H1 → 0, and by keeping ‖x1‖Z and ‖x0‖1 small,
which yields the radii r1, r2 > 0.
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We are now looking for assumptions under which N maps H1
L([0, T ], U) to itself for all

T > 0 and the restriction is continuously R–differentiable. If this is the case, Φt is R–
differentiable on H1

L([0,∞), U) for all t ≥ 0 with Φ′t(u) = Φl
tN
′(u) for u ∈ H1

L([0,∞), U).
Then the differentiability conditions of Proposition 4.42 are satisfied. In contrast to Lemma
4.41 we do not need global Lipschitz bounds here.

Lemma 4.43. Assume that M ∈ C2
R(U,U) and let M as well as M ′ be Lipschitz on bounded

sets, i.e., for every ρ > 0 there is a constant cρ > 0 such that for all v, ṽ ∈ U with
‖v‖U , ‖ṽ‖U ≤ ρ the inequalities

‖M(v)−M(ṽ)‖U ≤ cρ‖v − ṽ‖U and ‖M ′(v)−M ′(ṽ)‖LR(U) ≤ cρ‖v − ṽ‖U .

hold. Further assume that M(0) = 0. Then N maps H1
L([0,∞), U)) to itself. Moreover, for

every T > 0 the restriction N : H1
L([0, T ], U)→ H1

L([0, T ], U) is continuously R–differentiable.

For a clear notation we again suppress the R in LR(U) and LR(U,LR(U)).

Proof. Note that the derivative of a Lipschitz and differentiable map is bounded. We infer
the bounds ‖M ′(v)‖L(U) ≤ cρ and ‖M ′′(v)‖L(U,L(U)) ≤ cρ for all v ∈ U with ‖v‖U < ρ.

Fix any u ∈ H1
L([0,∞), U) and take ρ > ‖u‖L∞ so that u(t) ∈ B(0, ρ) ⊆ U for all t ≥ 0.

From the assumption we derive

‖M(u(t))‖U = ‖M(u(t))−M(0)‖U ≤ cρ‖u(t)‖U

for almost all t ≥ 0. This shows that N(u) lies in L2([0,∞), U).
Because M is Lipschitz on B(0, ρ), the function M ◦ u is still absolutely continuous.

Indeed, for arbitrary m ∈ N and 0 ≤ a1 ≤ b1 ≤ . . . ≤ am ≤ bm we can estimate

m∑
k=1
‖M(u(bk))−M(u(ak))‖U ≤ cρ

m∑
k=1
‖u(bk)− u(ak)‖U .

Using that u is absolutely continuous, for every ε > 0 we find a δ > 0 such that the right-hand
side is less or equal ε provided that

∑m
k=1(bk − ak) ≤ δ.

If u is differentiable at t ≥ 0, then by the chain rule (M ◦ u)′(t) = M ′(u(t))u′(t). Hence
this is true almost everywhere on [0,∞). The boundedness of ‖M ′(v)‖L(U) for v ∈ B(0, ρ)
implies that

‖M ′(u(t))u′(t)‖U ≤ ‖M ′(u(t))‖L(U)‖u′(t)‖U ≤ cρ‖u′(t)‖U

for almost all t ≥ 0 so thatM ′(u( � ))u′( � ) belongs to L2([0,∞), U). Since finally (M ◦u)(0) =
M(0) = 0, we deduce that M ◦ u lies in H1

L([0,∞), U).
Next, let h ∈ H1

L([0,∞), U). We claim that the truncation of M ′(u( � ))h( � ) to [0, T ] is
the derivative of PTN at u applied to h. Let us first show that M ′(u( � ))h( � ) belongs to
H1

L([0,∞), U). We can clearly bound

‖M ′(u( � ))h( � )‖L2 ≤ ‖M ′(u( � ))‖L∞([0,∞),L(U))‖h‖L2 ≤ cρ‖h‖H1 ,

and linearity implies that M ′(u(0))h(0) = M ′(0)0 = 0.
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Again we have to make sure that M ′(u( � ))h( � ) is absolutely continuous. Similar to the
above procedure this is derived from the fact that M ′ is Lipschitz on B(0, ρ). The central
estimate is

m∑
k=1
‖M ′(u(bk))h(bk)−M ′(u(ak))h(ak)‖U

≤
m∑
k=1
‖M ′(u(bk))‖L(U)‖h(bk)− h(ak)‖U +

m∑
k=1
‖M ′(u(bk))−M ′(u(ak))‖L(U)‖h(ak)‖U

≤ cρ
m∑
k=1
‖u(bk)− u(ak)‖U + cρ‖h‖L∞

m∑
k=1
‖u(bk)− u(ak)‖U .

Now we use that u, h are absolutely continuous and that h is bounded. Applications of the
product rule as well as the chain rule next yield that

d
dt
[
M ′(u(t))h(t)

]
= [M ′′(u(t))u′(t)]h(t) +M ′(u(t))h′(t),

whenever u and h are differentiable at t ≥ 0. For almost all t ≥ 0 we have

‖[M ′′(u(t))u′(t)]h(t) +M ′(u(t))h′(t)‖U
≤ ‖M ′′(u(t))‖L(U,L(U))‖h‖L∞‖u(t)‖U + ‖M ′(u(t))‖L(U)‖h′(t)‖U
≤ cρ‖h‖L∞‖u(t)‖U + cρ‖h′(t)‖U .

Since the right-hand side is square integrable as a function of t, we deduce that the function
[M ′′(u( � ))u′( � )]h( � ) + M ′(u( � ))h′( � ) belongs to L2([0,∞), U). This in turn means that
M ′(u( � ))h( � ) is contained in H1

L([0,∞), U). Moreover, we obtain

‖[M ′′(u( � ))u′( � )]h( � ) +M ′(u( � ))h′( � )‖L2 ≤ cρ‖h‖L∞‖u′‖L2 + cρ‖h′‖L2

. (cρ‖u′‖L2 + 1)‖h‖H1 .

Note that we have also shown that ‖M ′(u( � ))h( � )‖H1 is bounded by a constant times ‖h‖H1

and consequently the linear operator H1
L([0,∞), U) → H1

L([0,∞), U); h 7→ M ′(u( � ))h( � ) is
bounded for fixed u ∈ H1

L([0,∞), U).
Now let T > 0. We still have to prove that PTM ′(u( � ))h( � ) yields the derivative of

PTN at u. To keep the following estimates as simple as possible, here we deviate from our
habit to abbreviate ‖ � ‖L2([0,∞),U) by ‖ � ‖L2 . Instead, for the rest of the section we write
‖ � ‖L2 := ‖ � ‖L2([0,T ],U). Similarly let ‖ � ‖H1 denote ‖ � ‖H1([0,T ],U). We can then also drop the
truncation PT .

Clearly, the expression ‖N(u+ h)−N(u)−M ′(u( � ))h( � )‖H1 is less or equal
√

2 times

‖M ′(u( � )+h( � ))(u′( � )+h′( � ))−M ′(u( � ))u′( � )−[M ′′(u( � ))u′( � )]h( � )−M ′(u( � ))h′( � )‖L2

+ ‖M(u( � ) + h( � ))−M(u( � ))−M ′(u( � ))h( � )‖L2 . (4.31)

We treat both summands separately. The reasoning is analog to what we did before, so we
decided to be rather brief. The second summand is the easy part. With Minkowski’s and
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Hölder’s inequalities we derive that

‖M(u( � ) + h( � ))−M(u( � ))−M ′(u( � ))h( � )‖L2

=
∥∥∥∥∫ 1

0

(
M ′(u( � ) + σh( � ))−M ′(u( � ))

)
h( � ) dσ

∥∥∥∥
L2

≤
∫ 1

0

∥∥(M ′(u( � ) + σh( � ))−M ′(u( � ))
)
h( � )

∥∥
L2 dσ

≤
∫ 1

0
‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖L2([0,T ],L(U)) dσ ‖h‖L∞

.
∫ 1

0
‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖L2([0,T ],L(U)) dσ ‖h‖H1 .

Let ε > 0 and σ ∈ [0, 1]. Surely for δ ≤ ε c−1
ρ+1 and all h ∈ H1

L([0,∞), U) with ‖h‖H1 ≤ δ
we have ‖h‖L2 ≤ ‖h‖H1 ≤ δ. On the other hand we can choose δ so small that ‖h‖L∞ < 1
provided that ‖h‖H1 ≤ δ. Then u(t) + σh(t) ∈ B(0, ρ + 1) ⊆ U for all t ≥ 0. We can thus
estimate

‖M ′(u( � ) + σh( � ))−M ′(u( � ))‖2L2([0,T ],L(U)) =
∫ T

0
‖M ′(u(t) + σh(t))−M ′(u(t))‖2L(U) dt

≤ c2
ρ+1

∫ T

0
σ2‖h(t)‖2U dt ≤ c2

ρ+1‖h‖2L2 ≤ ε2.

Now we consider the other summand in (4.31). The same techniques as above yield that
for all h ∈ H1

L([0,∞), U) with ‖h‖H1 < 1 we have

‖M ′(u( � )+h( � ))(u′( � )+h′( � ))−M ′(u( � ))u′( � )−[M ′′(u( � ))u′( � )]h( � )−M ′(u( � ))h′( � )‖L2

≤ ‖M ′(u( � ) + h( � ))h′( � )−M ′(u( � ))h′( � )‖L2

+ ‖M ′(u( � ) + h( � ))u′( � )−M ′(u( � ))u′( � )− [M ′′(u( � ))u′( � )]h( � )‖L2

≤
∫ 1

0
‖[M ′′(u( � ) + σh( � ))h( � )]h′( � )‖L2 dσ

+
∫ 1

0
‖[M ′′(u( � ) + σh( � ))u′( � )−M ′′(u( � ))u′( � )]h( � )‖L2 dσ

≤
∫ 1

0
‖[M ′′(u( � ) + σh( � ))‖L(U,L(U)) dσ ‖h‖L∞‖h′‖L2

+
∫ 1

0
‖[M ′′(u( � ) + σh( � ))u′( � )−M ′′(u( � ))u′( � )]h( � )‖L2 dσ

. cρ+1‖h‖2H1

+
∫ 1

0
‖[M ′′(u( � ) + σh( � ))u′( � )−M ′′(u( � ))u′( � )]‖L2([0,T ],L(U)) dσ ‖h‖L∞ .

To treat the second part of the right-hand side let (hk) be a sequence in H1
L([0,∞), U)

with ‖hk‖H1 → 0 as k → ∞. Note that ‖hk(t)‖U ≤ ‖hk‖L∞ . ‖hk‖H1 converges to zero for
all t ≥ 0. Choosing a subsequence (again denoted (hk)) we can assume that ‖hk‖L∞ < 1 for
all k ∈ N. We shall show that by the dominated convergence theorem

‖[M ′′(u( � ) + σhk( � ))u′( � )−M ′′(u( � ))u′( � )]‖2L2([0,T ],L(U))

=
∫ T

0
‖[M ′′(u(t) + σhk(t))u′(t)−M ′′(u(t))u′(t)]‖2L(U) dt
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converges to zero as k → ∞. Clearly, the integrand tends to zero for almost all t ≥ 0 as
k → ∞. On the other hand, it can be estimated by 2c2

ρ+1‖u′(t)‖2U for almost every t ≥ 0.
As in the proof of Lemma 4.39 we conclude that for arbitrary ε > 0 we find a radius δ > 0
such that for all h ∈ H1

L([0,∞), U) with ‖h‖H1 < δ the expression in the last display is less
or equal ε2 for all σ ∈ [0, 1].

It remains to prove that N ′ is continuous. Once more we use that M ′ is Lipschitz on
bounded sets. Let u, h, w ∈ H1

L([0,∞), U) and choose ρ > max{‖u+h‖L∞ , ‖u‖L∞}. We infer
that

(
√

2)−1‖M ′(u( � ) + h( � ))w( � )−M ′(u( � ))w( � )‖H1

≤ ‖[M ′(u( � ) + h( � ))−M ′(u( � ))]w( � )‖L2

+ ‖[M ′′(u( � ) + h( � ))(u+ h)′( � )−M ′′(u( � ))u′( � )]w( � )‖L2

+ ‖[M ′(u( � ) + h( � ))−M ′(u( � ))]w′( � )‖L2

≤ cρ‖u+ h− u‖L∞(‖w‖L2 + ‖w′‖L2) + ‖[M ′′(u+ h( � ))h′( � )]w( � )‖L2

+ ‖M ′′(u+ h( � ))u′( � )−M ′′(u( � ))u′( � )‖L2([0,T ],L(U))‖w‖L∞
≤ cρ‖h‖L∞(‖w‖L2 + ‖w′‖L2) + cρ‖h′‖L2‖w‖L∞

+ ‖M ′′(u+ h( � ))u′( � )−M ′′(u( � ))u′( � )‖L2([0,T ],L(U))‖w‖L∞ .

The term ‖M ′′(u + h( � ))u′( � ) −M ′′(u( � ))u′( � )‖L2([0,T ],L(U)) is of the same type as the one
the last step. Hence the right-hand side tends to zero as ‖h‖L2 ≤ ‖h‖H1 → 0.

4.4.1 The Dirichlet Laplacian

To prepare our examples with the wave equation, we collect some known facts on Sobolev
spaces and the Dirichlet Laplacian. In this paragraph we follow Sections 3.6 and 3.7 of [49].
We shall also frequently use notation and results from Appendix A.

Let O ⊆ Rn be an open and bounded set. Every f ∈ L1
loc(O) can be considered as the

distribution (a “continuous” linear functional on C∞c (O)) via

C∞c (O)→ C; h 7→ 〈h, f〉 :=
∫
O
h(x)f(x) dx.

For α ∈ Nn0 , the distributional derivative of f is the distribution given by

〈h, ∂αf〉 := (−1)|α|〈∂αh, f〉 = (−1)|α|
∫
O
∂αh(x)f(x) dx.

By saying e.g. ∂αf ∈ L2(O), we mean that there is another function g ∈ L2(O) such that
the distribution determined by g equals ∂αf , i.e.,

〈h, g〉 =
∫
O
g(x)h(x) dx = (−1)|α|

∫
O
f(x)∂αh(x) dx = 〈h, ∂αf〉

for every h ∈ C∞c (O). Let us collect some facts on the Sobolev spaces

Hm(O) = {f ∈ L1
loc(O) | ∀α ∈ Nn0 with |α| ≤ m : ∂αf ∈ L2(O)}.

where m ∈ N0. Choosing α = 0, we see that Hm(O) is a subset of L2(O). Actually it
is a dense subset, because C∞c (O) is contained in Hm(O). This follows from the fact that
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if f ∈ L1
loc(O) is continuously differentiable in the classical sense the distribution defined

by the classical derivative coincides with the distributional derivative. More precisely, for
f ∈ C |α|(O) we have ∂αf ∈ C(O) ⊆ L1

loc(O) and partial integration yields∫
O
h(x)∂αf(x) dx = (−1)|α|

∫
O
∂αh(x)f(x) dx = 〈h, ∂αf〉 for all h ∈ C∞c (O).

The Sobolev space Hm(O) is a Hilbert space, when equipped with the norm given by
‖f‖2Hm(O) =

∑
α∈Nn0
|α|≤m

‖∂αf‖2L2(O).

For m = 1 this reads
‖f‖2H1(O) = ‖f‖2L2(O) +

n∑
j=1
‖∂jf‖2L2(O).

Where no confusion is to be expected, we write ‖ � ‖Hm instead of ‖ � ‖Hm(O) and similar with
‖ � ‖L2 . We shall further need the completion of C∞c (O) with respect to ‖ � ‖H1 , that is

H1
0 (O) := C∞c (O)‖ � ‖H1 ⊆ H1(O).

Finally, H−1(O) is defined as the dual space of H1
0 (O).

Let f ∈ L1
loc(O). Then ∆f denotes the distribution defined by

〈h,∆f〉 :=
n∑
j=1
〈h, ∂2

j f〉 =
n∑
j=1

(−1)2〈∂2
j h, f〉 =

n∑
j=1

∫
O
∂2
j h(x)f(x) dx for h ∈ C∞c (O).

Moreover, the symbol ∇f stands for the “vector of distributions” ∇f = (∂1f, . . . , ∂nf).
Assume that f ∈ H1(O) and let j ∈ {1, . . . , n}. Since then ∂jf belongs to L2(O) the

distributional derivative ∂2
j f = ∂j(∂jf) is given by

〈h, ∂2
j f〉 = −〈∂jh, ∂jf〉 = −

∫
O
∂jf(x)∂jh(x) dx = −(∂jf | ∂jh)L2

for h ∈ C∞c (O), where ( � | � )L2 denotes the inner product on L2(O). Note that in this
situation ∇f ∈ (L2(O))n. It follows that

〈h,∆f〉 = −
n∑
j=1

(∂jf | ∂jh)L2 = −(∇f | ∇h)(L2)n (4.32)

for f ∈ H1(O) and h ∈ C∞c (O).
Next we show that f ∈ H1(O) with ∆f ∈ L2(O) and g ∈ H1

0 (O) satisfy
(∆f | g)L2 = −(∇f | ∇g)(L2)n . (4.33)

In fact, we find a sequence (hk) in C∞c (O) with ‖g − hk‖H1 → 0 as k → ∞. Using Hölder’s
inequality, the claim follows from∣∣∣(∆f | g)L2 − (−1)(∇f | ∇g)(L2)n

∣∣∣ ≤ ∣∣∣(∆f | g)L2 − 〈hk,∆f〉
∣∣∣+ ∣∣∣(∇f | ∇g)(L2)n + 〈hk,∆f〉

∣∣∣
= |(∆f | g − hk)L2 |+

∣∣∣(∇f | ∇g)(L2)n − (∇f | ∇hk)(L2)n
∣∣∣

≤ ‖∆f‖L2‖g − hk‖L2 +
n∑
j=1
‖∂jf‖L2‖∂jg − ∂jhk‖L2

≤ (‖∆f‖L2 + ‖f‖H1) ‖g − hk‖H1 → 0 as k →∞.
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The Dirichlet Laplacian on O is −A0, where A0 is the linear operator in L2(O) with
domain D(A0) = {f ∈ H1

0 (O) |∆f ∈ L2(O)} defined as A0f = −∆f . Hence the graph is

{(f, g) ∈ L2(O)× L2(O) | f ∈ H1
0 (O) and −∆f = g}.

Equation (4.33) yields

(A0f | g)L2 = −(∆f | g)L2 = (∇f | ∇g)(L2)n = (f |A0g)L2 (4.34)

for f, g ∈ D(A0), showing that A0 is symmetric. To prove that A0 is self-adjoint and even
strictly positive, we need Poincaré’s inequality.
Theorem 4.44 (Poincaré inequality). Let O ⊆ Rn open and bounded. Then there is a
constant c > 0 such that for all f ∈ H1

0 (O) we have

‖f‖L2(O) ≤ c‖∇f‖(L2(O))n .

For a proof we refer to Proposition 13.4.10 of [49]. See Theorem 3 in Section 5.6.1 of
[16] for a version of this result on general Sobolev spaces W 1,p

0 (O). Note that the special
version for L2(O) has an elementary proof. Further note that this result also holds for some
unbounded sets O. For example it suffices that O is bounded in one direction, actually
Proposition 13.4.10 cited above only assumes this.

The first consequence of Poincaré’s inequality is that ‖ � ‖H1 on H1
0 (O) is equivalent to

the norm given by ‖∇f‖(L2)n , since we have

‖∇f‖(L2)n ≤ ‖f‖H1 =
(
‖f‖2L2 + ‖∇f‖2(L2)n

)1/2 ≤ √c2 + 1‖∇f‖(L2)n

for all f ∈ H1
0 (O). We mention that this norm corresponds to the scalar product defined by

(∇f | ∇g)(L2)n for f, g ∈ H1
0 (O), which we already encountered.

If we can prove that A0 is onto, then it follows that 0 ∈ ρ(A0) and that A0 is self-adjoint
(see Lemma A.7). To this end, let g ∈ L2(O). From the Cauchy-Schwarz inequality we derive

|(g | f)L2 | ≤ ‖g‖L2‖f‖L2 ≤ ‖g‖L2‖f‖H1 . ‖g‖L2‖∇f‖(L2)n for all f ∈ H1
0 (O).

Hence f 7→ (g | f)L2 is a bounded functional on H1
0 (O). Therefore the Riesz representation

theorem yields a function f0 ∈ H1
0 (O) with (g | f)L2 = (∇f0 | ∇f)(L2)n for every f ∈ H1

0 (O).
Using (4.33) we conclude

〈h, g〉 = (g |h)L2 = (∇f0 | ∇h)(L2)n = (−1)〈h,∆f0〉 for every h ∈ C∞c (O).

This means −∆f0 = g ∈ L2(O) and thus f0 ∈ D(A0) as well as A0f0 = g.
The second consequence of Poincaré’s inequality is that A0 is strictly positive. Indeed,

set m = c−1 > 0 where c > 0 is from Theorem 4.44. Then we have

(A0f | f)L2 = (∇f | ∇f)(L2)n ≥ m‖f‖2L2 for all f ∈ D(A0).

We emphasize that from (4.33) it follows that ‖ � ‖1/2 actually equals ‖∇( � )‖(L2)n , see
(A.6). Clearly C∞c (O) is a subspace of D(A0) ⊆ H1

0 (O). On the other hand C∞c (O) is dense
in H1

0 (O). Since [D(A0)]1/2 is the closure of D(A0) with respect to ‖ � ‖1/2 we get

[D(A0)]1/2 = H1
0 (O).

73



4.4.2 A wave equation with distributed control

This example is based on Example 11.2.2 of [49]. Assume that O ⊆ Rn is open and bounded
with boundary ∂O of class C2. It can be shown that in this case D(A0) = H2(O) ∩H1

0 (O),
see Theorem 3.6.2 in [49]. Further let Oc ⊆ O be open and nonempty. A linear wave equation
with inner control and zero Dirichlet boundary condition is

∂2
t ω(t, ξ) = ∆ω(t, ξ) + µ(t, ξ), (t, ξ) ∈ (0,∞)×O
ω(t, ξ) = 0, (t, ξ) ∈ (0,∞)× ∂O
ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ O

(4.35)

for some initial values f0, g0 : O → C and a control µ : [0,∞) ×O → C. To model that the
control µ only acts on Oc, let µ(t, ξ) = 0 for almost all ξ ∈ O \ Oc and every t ≥ 0.

Via z(t) = (ω(t, � ), ∂tω(t, � )), x0 = (f, g) and u(t) = µ(t, � ) for t ≥ 0 this problem can
be written formally equivalent in the form (4.9), that is

z′(t) = Az(t) +Blu(t); z(0) = x0. (4.36)

More precisely, to satisfy the boundary condition (see below) set X = H1
0 (O) × L2(O) =

[D(A0)]1/2 × [D(A0)]0. Further let

A : D(A)→ X; A(f, g) = (g,−A0f),

where D(A) = [D(A0)]1 × [D(A0)]1/2 = (H2(O) ∩H1
0 (O)) ×H1

0 (O). Finally set U = L2(Oc)
and define the linear operator

Bl : U → X; Blv = (0, v).

In this we consider L2(Oc) as a subset of L2(O) where v(ξ) = 0 for almost every ξ ∈ O \ Oc
for elements v ∈ L2(Oc). Obviously Bl is bounded, i.e., Bl ∈ L(U,X). Thus this operator is
L2–admissible for every strongly continuous semigroup on X.

We shall see that A is the generator of a unitary group T on X. Indeed, one easily checks
that A is skew-symmetric using that X is a Hilbert space with inner product given by(

(f1, g1)
∣∣∣ (f2, g2)

)
X

=
(
A

1/2
0 f1

∣∣∣A1/2
0 f2

)
L2

+ (g1 | g2)L2

for (f1, g1), (f2, g2) ∈ X. The calculation is omitted because we do a similar calculation in
the example of Subsection 4.4.4. Using that −A0 : D(A0) → L2(O) is onto we deduce that
A is onto. It follows that 0 ∈ ρ(A) and that −A is skew-adjoint. Stone’s theorem (see e.g.
Theorem II.3.24 in [15]) yields the claim.

As usual, let T be the group generated by A and let Φl be the family of input maps
corresponding to Bl. In Example 11.2.2 of [49] the authors provide sufficient conditions under
which (T,Φl) is exactly controllable in some time specified below. They read as follows. If
there exists a reference point ξ0 ∈ Rn and a radius ε > 0 such that

{ξ ∈ O | d(ξ,Γξ0) < ε} ⊆ Oc where Γξ0 = {ξ ∈ ∂O | (ξ − ξ0) · ν(ξ) > 0},

then (T,Φl) is exactly controllable in any time T > 2 sup{|ξ − ξ0| | ξ ∈ O}.
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We take the system (4.36) as our starting point. In this example, let us explain the
connection between the abstract problem (4.36) and the partial differential equations (4.35).
Let z ∈ C([0,∞), X) be a strong solution of (4.36) and for t ≥ 0 let ω(t, � ) be the first
component of z(t). Then ω(t, � ) lies in H1

0 (O) for each t ≥ 0, which means that it satisfies
the Dirichlet boundary conditions of (4.35) in the sense of traces. From the corresponding
properties of z it follows easily that [0,∞) → L2(O); t 7→ ω(t, � ) is absolutely continuous
and differentiable almost everywhere on [0,∞), see the text after Definition 3.2. Since (4.36)
holds for almost all t ≥ 0 we can further infer the equations

∂tω(t, � ) = g(t) and ∂tg(t) = −A0ω(t, � ) + u(t)

for almost every t ≥ 0, where g(t) denotes the second component of z(t). From the first
equation we derive that t 7→ ω(t, � ) belongs to the Soblev space H2

loc([0,∞), H−1(O)). By
the second equation, we then see that ω satisfies also the first line of (4.35) in a generalized
sense, that is ∂2

t ω(t, � ) = −A0ω(t, � ) + u(t) holds in H−1(O) for almost all t ≥ 0.
Take a function m ∈ C2(R,R) with m(0) 6= 0 and m(a) = 0 for all a ∈ R with |a| > R

for some radius R > 0. We set M(v) = m(‖v‖2U )v for v ∈ U . Since m is bounded on R, this
defines a map M : U → U .

One could think of M being a fuse that blows if the energy ‖u‖2U gets to large. In this
case m would be something like a cut-off function, that is constant on a neighborhood of the
origin and then rapidly decreasing to zero near R. However, this is only an interpretation.

Using that U → R; v 7→ ‖v‖2U = (v | v) is R–differentiable, with the product rule we infer
that M is R–differentiable. The derivative is given by

M ′(v)w = m(‖v‖2U )w +m′(‖v‖2U )2 Re(v |w)v for v, w ∈ U.

ClearlyM ′ is continuous. From the fact that m(a) = m′(a) = 0 for |a| > R we further deduce
that it is bounded. Indeed,

‖M ′(v)‖LR(U) ≤ |m(‖v‖2U )|+ 2|m′(‖v‖2U )| ‖v‖2

≤
{
‖m‖L∞(R) + ‖m′‖L∞(R)R, ‖v‖2U ≤ R
0, ‖v‖2U > R

(4.37)

for all v ∈ U . It follows that M is Lipschitz. Applying the product rule once more, we see
that M is two times R–differentiable with

[M ′′(v)w]h = 2m′(‖v‖2U ) Re(v |h)w + 2m′(‖v‖2U ) Re(v |w)h
+ 2m′(‖v‖2U ) Re(h |w)v + 4m′′(‖v‖2U ) Re(v |h) Re(v |w)v.

As before we infer that M ′′ is bounded and conclude that M ′ is Lipschitz.
Note that M(0) = m(0)0 = 0. Therefore (0, 0) ∈ X ×U is an equilibrium point of (T,Φ).

We further have
M ′(0)w = m(0)w + 2m′(0) Re(0 |w)v = m(0)w.

Because m(0) 6= 0 the operator M ′(0) ∈ LR(U) is invertible and we may apply Theorem 4.37
provided that the linear system is exactly controllable. For every R > 0 it then yields radii
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r1, r2 > 0 such that for all x0, x1 ∈ X with ‖x0‖X ≤ r1 and ‖x1‖X ≤ r2 we find a function
u ∈ L2([0,∞), U) with

x1 = TTx0 + ΦTu as well as ‖Ttx0 + Φtu‖X ≤ R for all t ∈ [0, T ].

Using that 0 ∈ ρ(A), it is easy to construct other equilibrium points (x∗, v∗) ∈ X × U .
Indeed, take any v∗ ∈ U . Then for x∗ ∈ X the identity Ax∗ + B(v∗) is equivalent to
x∗ = −A−1B(v∗) = −A−1BlM(v∗). Due to the interpretation, we should then consider
M(v) = m(‖v − v∗‖2U )v.

We further remark that we can replace M with the map given by M(v) = M0(v)v, where
M0 ∈ C2(U,LR(U)) has bounded support and M0(0) ∈ LR(U) is invertible. More generally,
instead of the bounded support it suffices to assume that the operator norm ‖M0(v)‖ is
bounded and that ‖M ′0(v)‖ as well as ‖M ′′0 (v)‖ decay sufficiently as ‖v‖ → ∞.

4.4.3 An example with the transport equation

One of the most elementary linear control systems with an unbounded control operator is
the one dimensional transport equation with input on the left boundary. To get an exactly
controllable system, the space domain has to be bounded. We choose the interval [0, 1]. Then
the system is described by

∂tω(t, ξ) = − d
dξω(t, ξ), t ≥ 0, ξ ∈ [0, 1]

ω(t, 0) = u(t), t ≥ 0
ω(0, ξ) = x0(ξ), ξ ∈ [0, 1].

(4.38)

This problem but with infinite space domain [0,∞) can be found in Example 10.1.9 of [49].
We proceed analogously and formulate (4.38) as ‘boundary control system’. For this concept
see Appendix C. We have to check the conditions of Definition C.2.

Set X = L2[0, 1], U = C and Z = H1(0, 1). Clearly Z is continuously embedded in
X. Further set Gx = x(0) and Lx = −x′ for x ∈ Z. Since |Gx| ≤ ‖x‖L∞ . ‖x‖H1 and
‖Lx‖L2 = ‖x′‖L2 ≤ ‖x‖H1 this defines bounded operators G ∈ L(Z,U) and L ∈ L(Z,X).
Formally system (4.38) is equivalent to

z′(t) = Lz(t); z(0) = x0,

Gz(t) = u(t).

Obviously kerG = H1
L(0, 1) = {f ∈ H1(0, 1) | f(0) = 0} is dense in L2[0, 1] and has a

bounded right inverse. Hence we consider the restriction of L to H1
L(0, 1), that is Ax = −x′

with domain D(A) = H1
L(0, 1). It is well-known that A generates the strongly continuous

semigroup T on X given by

(Ttf)(s) =
{

0, s ∈ [0, t)
f(s− t), s ∈ [t, 1],

which is called the vanishing right shift semigroup. So (L,G) is a boundary control system.
Further we know that the dual semigroup T∗ is formed by the vanishing left shift operators

(T∗t f)(s) =
{
f(s+ t), s ∈ [0, 1− t)
0, s ∈ [1− t, 1]
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for t ∈ [0, 1) and T∗t = 0 for t ≥ 1. It is generated by A∗f = f ′ with domain

D(A∗) = H1
R(0, 1) = {f ∈ H1(0, 1) | f(1) = 0} = X1,d.

See e.g. Examples 2.3.7 and 2.8.7 in [49]. In particular we can apply Proposition C.5 and
obtain an operator Bl ∈ L(U,X−1) with Lx = (A|0)x + BlGx for x ∈ Z. For a better
description of Bl we identify X−1 = (X1,d)∗. Then for x ∈ Z and f ∈ H1

R(0, 1) we have

−
∫ 1

0
f(ξ)x′(ξ) dξ −

∫ 1

0
f ′(ξ)x(ξ) dξ = 〈f, Lx〉 − 〈A∗f, x〉 = 〈f, Lx− (A|0)x〉X1,d

= 〈f,BlGx〉C = 〈(Bl)∗f,Gx〉 = x(0)(Bl)∗f.

Integration by parts applied to the first integral on the left-hand side now yields that

x(0)(Bl)∗f = −f(1)x(1) + f(0)x(0) +
∫ 1

0
f ′(ξ)x(ξ) dξ −

∫ 1

0
f ′(ξ)x(ξ) dξ

= f(0)x(0).

We obtain the identity (Bl)∗f = f(0) for f ∈ H1
R(0, 1). Note that Bl ∈ L(C, X−1) is

determined by Bl1, so 〈f,Bl1〉 = 〈(Bl)∗f, 1〉 = (Bl)∗f = f(0). This means that Blv = vδ0
with the delta functional δ0 ∈ (H1

R(0, 1))∗. By an easy calculation one verifies that 〈f,Ttδ0〉 =
〈f, δt〉 = f(t) for f ∈ H1

R(0, 1). Let u ∈ L2([0,∞). It is still simple but tedious to check that
the input maps defined by T and Bl can be expressed as

(Φl
tu)(s) =

{
u(t− s), s ∈ [0, t)
0, s ∈ [t, 1]

if t < 1 and (Φl
tu)(s) = u(t − s) for s ∈ [0, 1] if t ≥ 1. We see that Φl

tu ∈ X for all t ≥ 0
and so Bl is L2–admissible for T. Further note that Φl

1 equals the time-reflection operator
R1 from (2.10). We conclude that the control system (T,Φl) is exactly controllable in time

1. In fact, for x ∈ L2[0, 1] we have Φl
1 R1x = P1x = x and thus Φl

1 is onto.
Let us finally introduce the mapM : U → U . To this end, choose a non-negative function

ṁ ∈ C1
c (R) with ṁ(0) > 0, supp ṁ = [−1, 1] and ṁ(−a) = ṁ(a) for all a ∈ R. For simplicity

assume that
∫ 1
−1 ṁ(s) ds = 1. We define m ∈ C2(R) by

m(a) = 2
∫ a

−∞
ṁ(b) db− 1 for a ∈ R.

Then m is increasing and we have m(a) = −1 for a ∈ (−∞,−1) as well as m(a) = 1 for
a ∈ (1,∞). Clearly m′ = 2ṁ and m(0) = 2

∫ 0
−1 ṁ(b) db− 1 = 0. For v ∈ U = C we define

M(v) =
(
m(Re v),m(Im v)

)
.

More precisely M(v) = ι ◦M0 ◦ ι−1v where ι : R2 → C is the isometric R–linear invertible
map given by (a, b) 7→ a + ib and M0 : R2 → R2; M0(a, b) = (m(a),m(b)). However, here
and in the following we suppress ι and its inverse. Obviously M0 is two-times continuously
(partially) differentiable. It follows that M is two-times continuously R–differentiable. We
identify M ′(v) with

M ′0(v) =
(
m′(Re v) 0

0 m′(Im v)

)
.
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Note thatM ′(0) is invertible. We shall now prove thatM andM ′ are Lipschitz. Let v, ṽ ∈ C.
By the mean value theorem there are a, b ∈ R with

|M(v)−M(ṽ)| =
√

(m(Re v)−m(Re ṽ))2 + (m(Im v)−m(Im ṽ))2

=
√

(m′(a))2(Re v − Re ṽ)2 + (m′(b))2(Im v − Im ṽ)2

≤ ‖m′‖L∞(R)|v − ṽ|.

In the same way, using equivalent matrix norms, we get

‖M ′(v)−M ′(ṽ)‖L(U) .

∥∥∥∥∥
(
m′(Re v)−m′(Re ṽ) 0

0 m′(Im v)−m′(Im ṽ)

)∥∥∥∥∥
L(R2)

= |m′(Re v)−m′(Re ṽ)|+ |m′(Im v)−m′(Im ṽ)|
. ‖m′′‖L∞(R)|v − ṽ|.

Recall that B(v) = BlM(v) and Φt(u) = Φl
tM ◦ u. Since M(0) = 0, it follows that (0, 0) ∈

X×U is an equilibrium point for (T,Φ). Thus the conditions of Proposition 4.42 are satisfied.
This means that we find radii r1, r2 > 0 such that for all x0 ∈ B(0, r1) ⊆ X1 and x1 ∈
B(0, r2) ⊆ Z we find an input u ∈ H1

L([0,∞), U) with

x1 = TTx0 + ΦTu.

We mention that we can get rid of some simplifying assumptions. Instead of the special m
constructed above, we can take any function m ∈ C2(R,R) with the property that m(0) = 0,
m′ and m′′ are bounded and m′(0) 6= 0. More generally we can also take two different such
functions m1,m2 acting on the real and imaginary part.

4.4.4 A wave equation with boundary control

We continue to use the notation of Subsection 4.4.1. In this example we discuss the wave
equation with a forcing term on the boundary. To this end, assume that O ⊆ Rn is a bounded
domain with boundary ∂O of class C2. Consider an open subset Γ ⊂ ∂O of the boundary
(open relative to ∂O). Denote by σ the surface measure on ∂O. We remark that σ(∂O) <∞
due to the regularity of ∂O and the fact that O is bounded.

Following Section 10.9 of [49], we repeat some known linear results. A linear wave equation
with Dirichlet boundary control is

∂2
t ω(t, ξ) = ∆ω(t, ξ), (t, ξ) ∈ (0,∞)×O
ω(t, ξ) = 0, (t, ξ) ∈ (0,∞)× ∂O \ Γ
ω(t, ξ) = µ(t, ξ), (t, ξ) ∈ (0,∞)× Γ
ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ O.

(4.39)

Here f0, g0 : Ω→ C are (probably given) initial values and µ : [0,∞)× Γ→ C is the input.
We can think of ω being the displacement of an object over O. Then ∂tω and ∂2

t ω are
velocity and acceleration, respectively. The differential operator ∆ acts only on the space
variable ξ. The object is kept in place on one part of the boundary – namely ∂O \ Γ – while
it is forced to a displaced position µ on the other part Γ.
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Equation (4.39) is in the form of a ‘boundary control system’. In Appendix C we described
a transformation of such systems to a control problem of the form (4.9), i.e,

z′(t) = Az(t) +Blu(t); z(0) = x0. (4.40)

As to be expected, we then have z(t) = (ω(t, � ), ω′(t, � )), x0 = (f0, g0) and u(t) = µ(t, � ).
The transformation is carried out in Section 10.9 of [49]. Let us depict the outcome of this
procedure, the operators A and Bl. We mention that under natural conditions, solutions of
problem (4.40) yield solutions of (4.39). See Proposition C.7 for more details.

Set X := [D(A0)]0× [D(A0)]−1/2 = L2(O)×H−1(O). In the last identity we used Remark
A.12 to identify [D(A0)]−1/2 with ([D(A0)]1/2)∗. Note that X is a Hilbert space with inner
product given by (

(f1, g1)
∣∣∣ (f2, g2)

)
X

= (f1 | f2)L2 +
(
A
−1/2
0 g1

∣∣∣A−1/2
0 g2

)
L2
.

Further consider the subspace D(A) := [D(A0)]1/2 × [D(A0)]0 = H1
0 (O) × L2(O) as well as

the linear operator
A : D(A)→ X; A(f, g) = (g,−A0f).

The extension A0 : H1
0 (O)→ H−1(O) is onto because 0 ∈ ρ(A0), see (A.4). It follows that A

is onto. Moreover, this map is skew-symmetric. Indeed, for (f1, g1), (f2, g2) ∈ D(A) we have(
A(f1, g1)

∣∣∣ (f2, g2)
)
X

= (g1 | f2)L2 +
(
A
−1/2
0 (−A0)f1

∣∣∣A−1/2
0 g2

)
L2

= (−1)
(
g1
∣∣∣ (−1)A−1

0 A0f2
)
L2
−
(
A
−1/2
0 A

−1/2
0 A0f1

∣∣∣ g2
)
L2

= (−1)
[(
A
−1/2
0 g1

∣∣∣A−1/2
0 (−A0)f2

)
L2

+ (f1 | g2)L2

]
= (−1)

(
(f1, g1)

∣∣∣A(f2, g2)
)
X
.

This shows that 0 ∈ ρ(A) and that A is skew-adjoint. As in the example of Subsection 4.4.2,
from Stone’s theorem we infer that A generates a unitary group T on X.

Set U := L2(Γ). As usual, elements v ∈ L2(Γ) are seen as members of L2(∂O) via zero
extension on ∂O \ Γ. It is shown in Section 10.9 of [49] that

Bl : U → X−1; Blv = (0, A0Dv)

is an L2–admissible control operator for T. Here A0 stands for the extension to L2(O) =
[D(A0)]0 and D ∈ L(L2(∂O), L2(O)) is the Dirichlet map for O. The latter is constructed in
Section 10.6 of [49]. This operator yields the unique solution z = Dv of the Dirichlet problem
∆z = 0, tr z = v for every v ∈ L2(∂O). We remark that tr is an extension of the common
trace operator tr ∈ L(H1(O), L2(∂O)). For more details we refer to the reference above.

In Corollary 11.6.4 of [49] we find sufficient conditions for exact controllability of the
linear control system (T,Φl) associated to (4.39) which we repeat here. Let ν ∈ L∞(∂O,Rn)
be the outward normal vector field on ∂O. If there is a point ξ0 ∈ Rn such that

{ξ ∈ ∂O | (ξ − ξ0) · ν(ξ) > 0} ⊆ Γ,

then (T,Φl) is exactly controllable in any time T > 2 sup{|ξ − ξ0| | ξ ∈ O}. We remark that
this follows by duality from Theorem 7.2.4 in [49], also see Theorem 11.2.1 therein.
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For the nonlinearity M we choose the same map as in the example with the distributed
control, see Subsection 4.4.2, namely

M : U → U ; M(v) = m(‖v‖2U )v,

where m ∈ C2(R,R) was a function with m(0) 6= 0 and m(a) = 0 for |a| greater than a
number R > 0. It makes no difference that there we had U = L2(Oc) for a subset Oc ⊆ O
and here we have U = L2(Γ). We saw that in order to apply Proposition 4.42 we need that
M ∈ C2

R(U,U), M(0) = 0 and that M as well as M ′ are Lipschitz. All this conditions were
verified in Subsection 4.4.2. The conclusion of the previous example holds accordingly.

We shall introduce another interesting nonlinearity M . Take any measurable function
b : Γ× Γ× R2 → R2 with the property that b( � , � , 0) ∈ L2(Γ× Γ). Moreover, let there be a
nullset N ⊆ Γ and function κ ∈ L2(Γ× Γ, [0,∞)) with

∀ξ, ζ ∈ Γ \ N ∀α, β ∈ C : |b(ξ, ζ, α)− b(ξ, ζ, β)| ≤ κ(ξ, ζ)|α− β|. (4.41)

We aim to define a nonlinear operator M : L2(Γ)→ L2(Γ) via

M(v)(ξ) :=
∫

Γ
b(ξ, ζ, v(ζ)) dσ(ζ). (4.42)

where v ∈ L2(Γ) and ξ ∈ Γ. We first check that for fixed ξ ∈ Γ \ N and every v ∈ L2(Γ) the
function Γ→ C; ζ 7→ b(ξ, ζ, v(ζ)) belongs to L1(Γ). This follows from the estimate

|b(ξ, ζ, v(ζ))| ≤ |b(ξ, ζ, v(ζ))− b(ξ, ζ, 0)|+ |b(ξ, ζ, 0)|
≤ κ(ξ, ζ)|v(ζ)|+ |b(ξ, ζ, 0)| for ζ ∈ Γ \ N , (4.43)

since the right-hand side is integrable as a function of ζ. If κ is also bounded, then the map
Γ× Γ→ C; (ξ, ζ)→ b(ξ, ζ, v(ζ)) belongs to L2(Γ× Γ).

Next we prove that M(v) lies in L2(Γ) for v ∈ L2(Γ). Using that Γ has finite measure,
the case v = 0 follows from standard estimates. For arbitrary v, ṽ ∈ L2(Γ) we have

∫
Γ
|M(v)(ξ)−M(ṽ)(ξ)|2 dσ(ξ) ≤

∫
Γ

(∫
Γ
|b(ξ, ζ, v(ζ))− b(ξ, ζ, ṽ(ζ))| dσ(ζ)

)2
dσ(ξ)

≤
∫

Γ

(∫
Γ
κ(ξ, ζ)|v(ζ)− ṽ(ζ)|dσ(ζ)

)2
dσ(ξ) ≤ ‖κ‖2L2(Γ×Γ)‖v − ṽ‖

2
L2(Γ).

This shows that M(v) − M(ṽ) is contained in L2(Γ) for all v, ṽ ∈ L2(Γ). Consequently
M(v) = (M(v) −M(0)) + M(0) belongs to L2(Γ) for every v ∈ L2(Γ). On the other hand
we see that M is Lipschitz, more precisely we obtain

‖M(v)−M(ṽ)‖L2(Γ) ≤ ‖κ‖L2(Γ×Γ)‖v − ṽ‖L2(Γ) for all v, ṽ ∈ L2(Γ). (4.44)

Hence (4.26) is satisfied with c = ‖κ‖L2(Γ×Γ) and η = 1.
Via B(v) = BlM(v) for v ∈ U , this “convolution map” M yields an example for an

L2–admissible control operator B : U → X−1 for T.
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Chapter 5

Control for semilinear state
equations

In this chapter let X and U be Banach spaces and let T be a strongly continuous semigroup
on X with generator A. Further let p ∈ [1,∞). Again, we use the abbreviation ‖ � ‖Lp :=
‖ � ‖Lp([0,∞),U). Later we will focus on the case where U is a Hilbert space and consider only
p = 2 so that L2([0,∞), U) is a Hilbert space.

Given maps B : U → X−1 and F : X → X, we are now looking at the problem

z′(t) = Az(t) + F (z(t)) +B(u(t)); z(0) = x0, (5.1)

where u ∈ Lp([0,∞), U) and x0 ∈ X. As it was discussed in Section 3.2, every strong solution
z ∈ C(J,X) of (5.1) satisfies the fixed-point equation

z(t) = Ttx0 +
∫ t

0
Tt−sF (z(s)) ds+

∫ t

0
Tt−sB(u(s)) ds for t ∈ J. (5.2)

Here J ⊆ [0,∞) is an interval with min J = 0. Other than in the case F = 0 it is not clear
whether such ‘mild solutions’ exist, even for small times. For B = 0 such existence results
are well-known, see Section 6.1 in [33]. In the first part of this chapter we extend this theory
to infinite dimensional control theory with unbounded operators.

5.1 Existence and uniqueness of mild solutions

Throughout assume that B ∈ C(U,X−1) is Lp–admissible for T. Among other things, this
means that Bu ∈ L1

loc([0,∞), X−1) for all u ∈ Lp([0,∞), U) and for each t ≥ 0 the integral

Φt(u) =
∫ t

0
Tt−sB(u(s)) ds for u ∈ Lp([0,∞), U)

defines a continuous map Φt : Lp([0,∞), U)→ X. In Lemma 4.14 we saw that for every fixed
u ∈ Lp([0,∞), U) the map t 7→ Φt(u) belongs to C([0,∞), X).

The following result guarantees the existence of mild solutions for every pair x0 ∈ X and
u ∈ Lp([0,∞), U). In addition to that, it yields a minimal existence time T > 0 which is
uniform for data in closed balls around the origin. For technical reasons we take T ≤ 1.
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Lemma 5.1. Assume that F : X → X is Lipschitz on bounded sets. Further assume that Φt

is bounded on bounded sets for each t ≥ 0. Then for all r, ρ > 0 there is a time T > 0 (see
(5.3) below) such that for all initial values x0 ∈ B(0, r) ⊆ X and all inputs u ∈ B(0, ρ) ⊆
Lp([0,∞), U) there exists a function z ∈ C([0, T ], X) satisfying

z(t) = Ttx0 +
∫ t

0
Tt−sF (z(s)) ds+ Φt(u) for t ∈ [0, T ],

i.e., z is a mild solution of (5.1) on [0, T ].
Proof. Due to Lemma 4.23, Φt is bounded on bounded sets uniformly for t ∈ [0, 1], that is

∀ρ > 0 ∃cρ,1 > 0 ∀u ∈ Lp([0,∞), U), t ∈ [0, 1] : ‖u‖Lp ≤ ρ =⇒ ‖Φt(u)‖X ≤ cρ,1.

The assumption on F means that for each R > 0 there is a Lipschitz constant L(R) > 0
such that for all x1, x2 ∈ X with ‖x1‖X , ‖x2‖X ≤ R we have

‖F (x1)− F (x2)‖X ≤ L(R)‖x1 − x2‖X .

Let r, ρ > 0. Take x0 ∈ B(0, r) ⊆ X and u ∈ B(0, ρ) ⊆ Lp([0,∞), U). For T ∈ (0, 1] and
z ∈ C([0, T ], X) we consider the function Cx0,u(z) ∈ X [0,∞) given by

Cx0,u(z)(t) = Ttx0 +
∫ t

0
Tt−sF (z(s)) ds+ Φt(u) for t ≥ 0.

One easily sees that this defines a map Cx0,u : C([0, T ], X) → C([0, T ], X). Clearly, if z is a
fixed-point of Cx0,u then it is a mild solution. We will show that Cx0,u maps the closed ball
B(0, R) ⊆ C([0, T ], X) contractively to itself, provided that R > 0 is chosen large enough
and T > 0 is small enough.

Recall that we wrote mT,t = supσ∈[0,t]‖Tσ‖ for t ≥ 0. The continuity of the map

[0,∞)→ R; t 7→
∥∥∥∥∫ t

0
TsF (0) ds

∥∥∥∥
X

implies that it has a maximum c ≥ 0 on [0, 1]. We set

R := max{4cρ,1, 4c, 4mT,1r} and T := min
{

1, 1
4mT,1L(R)

}
. (5.3)

Then for all z ∈ B(0, R) we estimate

‖Cx0,u(z)(t)‖X ≤ mT,t‖x0‖X +
∫ t

0
mT,t‖F (z(s))− F (0)‖X ds+ ‖Φt(u)‖X +

∥∥∥∥∫ t

0
TsF (0) ds

∥∥∥∥
X

≤ mT,1r +mT,1L(R)
∫ t

0
‖z(s)‖X ds+ cρ,1 + c

≤ R

4 +mT,1L(R)TR+ R

4 + R

4 ≤ R for all t ∈ [0, T ].

This means that Cx0,u(z) lies in B(0, R). On the other hand, for z1, z2 ∈ B(0, R) we obtain

‖Cx0,u(z1)(t)− Cx0,u(z2)(t)‖X =
∥∥∥∥∫ t

0
Tt−s

(
F (z1(s))− F (z2(s))

)
ds
∥∥∥∥
X

≤ mT,1L(R)T‖z1 − z2‖L∞([0,T ],X) ≤ 1
4‖z1 − z2‖L∞([0,T ],X)

for all t ∈ [0, T ]. The contraction mapping principle yields a fixed-point z ∈ B(0, R) of Cx0,u.
As argued above, z is a mild solution of (5.1).
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We point out that for all x0 ∈ X and u ∈ Lp([0,∞), U) there is a mild solution of (5.1)
and it is even unique in a specific ball B(0, R). In the following lemma we show a stronger
form of uniqueness, namely that whenever two solutions exist, then they are equal on their
common domain.

Lemma 5.2. Let F : X → X be Lipschitz on bounded sets as in Lemma 5.1. Further let
x0 ∈ X and u ∈ Lp([0,∞), U). Assume there are functions z1 ∈ C(J1, X) and z2 ∈ C(J2, X)
(where J1, J2 ⊆ [0,∞) are intervals with min J1 = min J2 = 0) satisfying

zj(t) = Ttx0 +
∫ t

0
Tt−sF (zj(s)) ds+ Φt(u) for t ∈ Jj (j = 1, 2).

Then we have z1(t) = z2(t) for all t ∈ J1 ∩ J2.

Proof. Assume T = {t ∈ J1 ∩ J2 | z1(t) 6= z2(t)} was not empty and set t0 = inf T ≥ 0. By
definition of t0 we have z1(t) = z2(t) for all t ∈ [0, t0) provided that t0 > 0. Since z1 and z2
are continuous, it follows that z1 = z2 on [0, t0]. The latter is also true if t0 = 0, because
z1(0) = z2(0) = x0.

The assumption T 6= ∅ implies that [0, t0] 6= J1 ∩ J2. Hence there is a δ > 0 with
[0, t0 + δ] ⊆ J1 ∩ J2. We find a radius R ≥ 0 such that ‖z1(t)‖X , ‖z2(t)‖X ≤ R for all
t ∈ [0, t0 + δ]. We can thus estimate

‖z1(t)− z2(t)‖X =
∥∥∥∥∫ t

0
Tt−s

(
F (z1(s))− F (z2(s))

)
ds
∥∥∥∥
X

≤ mT,t0+δL(R)
∫ t

0
‖z1(s)− z2(s)‖X ds for t ∈ [0, t0 + δ].

Gronwall’s inequality (see e.g. Lemma 6.1 and Corollary 6.2 in [3]) now yields the bound

‖z1(t)− z2(t)‖X ≤ 0 exp(mT,t0+δL(R)t) = 0 for t ∈ [0, t0 + δ].

This means that z1 = z2 on [0, t0 + δ] and thus contradicts t0 = inf T .

Standing assumption: Let F ∈ C(X,X) be Lipschitz on bounded sets and assume
that Φt is bounded on bounded sets for every t ≥ 0.

For x0 ∈ X and u ∈ Lp([0,∞), U) define the maximal existence time

t∞(x0, u) = sup{T > 0 | ∃z ∈ C([0, T ], X) mild solution of (5.1)}.

Due to Lemma 5.1 we have t∞(x0, u) > 0 for all x0 ∈ X and u ∈ Lp([0,∞), U). It might be
that t∞(x0, u) =∞, e.g. for x0 = x∗ and u = χv∗ with Ax∗ + F (x∗) +B(v∗) = 0.

Next, for all x0 ∈ X and u ∈ Lp([0,∞), U) we construct a mild solution z( � , x0, u) on
[0, t∞(x0, u)). Here we shortly write t∞ := t∞(x0, u).

For t ∈ [0, t∞) take any T ∈ (t, t∞). Then there is a solution zT ∈ C([0, T ], X) of
(5.1). Set z(t, x0, u) = zT (t). Lemma 5.2 implies that z( � , x0, u) is well-defined and that
z(s, x0, u) = zT (s) for all s ∈ [0, T ]. Hence z( � , x0, u) is continuous and it satisfies (5.2) for
every t ∈ [0, t∞). This means that z( � , x0, u) is a mild solution of (5.1) on [0, t∞).

We call z( � , x0, u) the maximal mild solution of (5.1) (for the data x0 and u). It is
maximal in the sense that for every mild solution z̃ ∈ C(J,X) for the data x0 and u we have
J ⊆ [0, t∞) and z̃ = z( � , x0, u) on J .

The uniqueness shown above also implies that the maximal mild solution satisfies a com-
position property as in the next lemma.
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Lemma 5.3. Assume that the conditions of Lemma 5.1 are satisfied. Let u ∈ Lp([0,∞), U)
and x0 ∈ X. Then for all τ ∈ [0, t∞(x0, u)) we have

t∞(z(τ, x0, u), S∗τu) = t∞(x0, u)− τ and S∗τ z( � , x0, u) = z( � , z(τ, x0, u), S∗τu).

This means that the shifted function S∗τ z( � , x0, u) ∈ C([0, t∞(x0, u)− τ), X) is the maxi-
mal mild solution of

z′(t) = Az(t) + F (z(t)) +B((S∗τu)(t)); z(0) = z(τ, x0, u).

Proof. Abbreviate t∞ := t∞(x0, u) and xτ := z(τ, x0, u). For t ∈ [0, t∞ − τ) we compute

S∗τ z( � , x0, u)(t) = z(τ + t, x0, u) = Tτ+tx0 +
∫ τ+t

0
Tτ+t−sF (z(s, x0, u)) ds+ Φτ+tu

= TtTτx0 +
∫ τ

0
TtTτ−sF (z(s, x0, u)) ds

+
∫ t+τ

τ
Tt−(s−τ)F (z(s, x0, u)) ds+ TtΦτu+ ΦtS

∗
τu

= Tt
(
Tτx0 +

∫ τ

0
Tτ−sF (z(s, x0, u)) ds+ Φτu

)
+
∫ t

0
Tt−sF (z(s+ τ, x0, u)) ds+ ΦtS

∗
τu

= Ttz(τ, x0, u) +
∫ t

0
Tt−sF ((S∗τ z( � , x0, u))(s)) ds+ ΦtS

∗
τu.

Hence S∗τ z( � , x0, u) is a mild solution of (5.1) for the data xτ and S∗τu on [0, t∞−τ). It follows
that t∞(xτ , S∗τu) ≥ t∞−τ and S∗τ z( � , x0, u) = z( � , xτ , S∗τu) on [0, t∞−τ). Reading the above
identity backwards also yields t∞(xτ , S∗τu) ≤ t∞−τ . We thus have t∞(xτ , S∗τu) = t∞−τ .

The maximality of z( � , x0, u) is equivalent to a ‘non-extendability’ expressed in the fol-
lowing statement.

Lemma 5.4. Under the assumptions of Lemma 5.1 we can show that if t∞ := t∞(x0, u) <∞
for some x0 ∈ X and u ∈ Lp([0,∞), U), then ‖z(t, x0, u)‖X →∞ as t→ t∞

−.

Proof. Assume that this was not the case. Then we find a sequence (tn) in [0, t∞) with
tn → t∞ as n→∞ and some r > 0 with ‖z(tn, x0, u)‖X ≤ r for all n ∈ N.

We set xn := z(tn, x0, u) for n ∈ N. Note that ‖S∗tnu‖Lp ≤ ‖u‖Lp =: ρ for every n ∈ N.
Lemma 5.3 yields that t∞(xn, S∗tnu) = t∞− tn → 0 as n→∞. This contradicts the fact that
by Lemma 5.1 there is some T > 0 (depending only on r and ρ) such that t∞(xn, S∗tnu) > T
for all n ∈ N.

The inversion of this “blow-up result” yields a condition for global existence. In short,
if the norms ‖z(t, x0, u)‖X can be bounded for all t ≥ 0, then the maximal existence time
t∞(x0, u) can not be finite. A simple example is the following corollary. Note that it can be
applied especially if F is (globally) Lipschitz.

Corollary 5.5. In addition to the conditions of Lemma 5.1 assume that there is a constant
c ≥ 0 with ‖F (x)‖X ≤ c(‖x‖X + 1) for all x ∈ X. Then t(x0, u) = ∞ for all x0 ∈ X and
u ∈ Lp([0,∞), U).
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Proof. The claim follows by a contradiction argument. Assume we had t∞ := t∞(x0, u) <
∞ for a some data x0 ∈ X and u ∈ Lp([0,∞), U). Since (T,Φ) is a continuous additive
control system, the function [0,∞) → X; t 7→ Ttx0 + Φt(u) is continuous by Lemma 4.14.
Consequently the term ‖Ttx0 + Φt(u)‖X is bounded for t ∈ [0, t∞]. We can thus estimate

‖z(t, x0, u)‖X ≤ ‖Ttx0 + Φt(u)‖X +
∫ t

0
‖Tt−sF (z(s, x0, u))‖X ds

≤ sup
s∈[0,t∞]

‖Tsx0 + Φs(u)‖X + cmT,t∞t∞ + c

∫ t

0
‖z(s, x0, u)‖X ds

for all t ∈ [0, t∞]. Set c1 := sups∈[0,t∞]‖Tsx0 + Φs(u)‖X + cmT,t∞t∞. Then Gronwall’s
inequality yields

‖z(t, x0, u)‖X ≤ c1 exp(ct) for all t ∈ [0, t∞].

This contradicts the assumption that ‖z(t, x0, u)‖X →∞ for t→ t∞
−.

In the addendum of the next result we will assume that Φt is Lipschitz on bounded sets
for every t ≥ 0. Due to Lemma 4.21 we can choose a uniform Lipschitz constant for t in
compact subsets of [0,∞). It is clear that in this situation Φt is bounded on bounded sets
for every t ≥ 0 and that (T,Φ) is equicontinuous. Recall that Φt is globally Lipschitz if

∃Mt > 0 ∀u, ũ ∈ Lp([0,∞), U) : ‖Φt(u)− Φt(ũ)‖X ≤Mt‖u− ũ‖Lp .

We mention that one can choose a uniform Lipschitz constant for t in compact sets, see
Lemma 4.21 and Remark 4.24.

Let us assume that we know the existence time t1 := t∞(x∗, u∗) of some data x∗ ∈ X and
u∗ ∈ Lp([0,∞), U). We shall need that for any τ ∈ [0, t1) the maximal existence time of data
“close to” x∗ and u∗ can be bounded from below by τ . We also show continuous dependence
on the data.

Lemma 5.6. As in Lemma 5.1 assume that F is Lipschitz on bounded sets and that Φt is
bounded on bounded sets for all t ≥ 0. Further let (T,Φ) be equicontinuous. Then for all
x∗ ∈ X, u∗ ∈ Lp([0,∞), U) and every τ ∈ [0, t∞(x∗, u∗)) there are radii r, ρ > 0 such that for
all x0 ∈ B(x∗, r) and u ∈ B(u∗, ρ) we have t∞(x0, u) > τ .

Let Φt be Lipschitz on bounded sets for all t ≥ 0. Then there is a constant Kτ > 0 such
that for all x, x̃ ∈ B(x∗, r) and u, ũ ∈ B(u∗, ρ) we have

‖z( � , x, u)− z( � , x̃, ũ)‖L∞([0,τ ],X) ≤ Kτ (‖x− x̃‖X + ‖u− ũ‖Lp).

If Φt is globally Lipschitz for all t ≥ 0, then ρ can be chosen independently of x∗ and u∗.

Proof. 1) Let τ ∈ [0, t∞(x∗, u∗)). Due to continuity, z( � , x∗, u∗) is bounded on [0, τ ]. Set
c := maxt∈[0,τ ]‖z(t, x∗, u∗)‖X exists. Consider the radii

r0 := 2 + c and ρ0 := ‖u∗‖Lp + 1.

Lemma 5.1 yields a time T ∈ (0, 1] such that t∞(x̃, ũ) > T for all x̃ ∈ B(0, r0), ũ ∈ B(0, ρ0).
Let x̃, x ∈ B(0, r0) and ũ, u ∈ B(0, ρ0). Recall from the proof of Lemma 5.1 that z( � , x̃, ũ)|[0,T ]
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and z( � , x, u)|[0,T ] are fixed-points of the contractive maps Cx̃,ũ and Cx,u respectively. The
Lipschitz constant was 1

4 . We obtain the estimate

‖z(t, x̃, ũ)− z(t, x, u)‖X = ‖Cx̃,ũ(z( � , x̃, ũ))(t)− Cx,u(z( � , x, u))(t)‖X
≤ ‖Cx̃,ũ(z( � , x̃, ũ))(t)− Cx̃,ũ(z( � , x, u))(t)‖X + ‖Cx̃,ũ(z( � , x, u))(t)− Cx,u(z( � , x, u))(t)‖X
≤ ‖Cx̃,ũ(z( � , x̃, ũ))− Cx̃,ũ(z( � , x, u))‖L∞([0,T ],X) + ‖Tt‖‖x̃− x‖X + ‖Φt(ũ)− Φt(u)‖X
≤ 1

4‖z( � , x̃, ũ)− z( � , x, u)‖L∞([0,T ],X) +mT,1‖x̃− x‖X + sup
σ∈[0,1]

‖Φσ(ũ)− Φσ(u)‖X

for all t ∈ [0, T ]. It follows that

‖z( � , x̃, ũ)− z( � , x, u)‖L∞([0,T ],X) ≤ 2mT,1‖x̃− x‖X + 2 sup
σ∈[0,1]

‖Φσ(ũ)− Φσ(u)‖X (5.4)

for all x̃, x ∈ B(0, r0) and ũ, u ∈ B(0, ρ0), where for convenience we estimated 4
3 ≤ 2. The

supremum exists because t 7→ Φt(u) is continuous for u ∈ Lp([0,∞), U).
2) In case T > τ the proof of the first part is finished. Else take (the minimal) N ∈ N

with NT ≥ τ . Set tj = j τN and abbreviate u∗,j := S∗tju∗ for j = 0, . . . , N .
For each j ∈ {0, . . . , N − 1} the equicontinuity of Φt yields a number lj > 0 with

sup
σ∈[0,1]

‖Φσ(ũ)− Φσ(u∗,j)‖X ≤ ε :=
(

2
N−1∑
k=0

(2mT,1)k
)−1

for all ũ ∈ B(u∗,j , lj). (5.5)

Now set
r := (2mT,1)−N > 0 and ρ := min{1, l0, . . . , lN−1} > 0.

Since r, ρ ≤ 1 it follows that r0 ≥ ‖x∗‖X + r and ρ0 = ‖u∗‖Lp + 1 ≥ ‖u∗‖Lp + ρ. We thus
have the inclusions B(x∗, r) ⊆ B(0, r0) and B(u∗, ρ) ⊆ B(0, ρ0).

Let x0 ∈ B(x∗, r) and u ∈ B(u∗, ρ). We inductively show that for all j ∈ {0, . . . , N} we
obtain t∞(x0, u) > tj as well as

‖z(t, x0, u)− z(t, x∗, u∗)‖X ≤ (2mT,1)j‖x0 − x∗‖X + 2

j−1∑
k=0

(2mT,1)k
 ε

for all t ∈ [0, tj ]. For j = 0 this is trivial, since ‖z(0, x0, u)− z(0, x∗, u∗)‖X = ‖x0 − x∗‖, and
t∞(x0, u) > t0 = 0 by Lemma 5.1.

Assume that the claim is true for some j ∈ {0, . . . , N − 1}. Using the choice of r and ρ,
we calculate

‖z(tj , x0, u)‖X ≤ ‖z(tj , x0, u)− z(tj , x∗, u∗)‖X + ‖z(tj , x∗, u∗)‖X

≤ (2mT,1)j‖x0 − x∗‖X + 2

j−1∑
k=0

(2mT,1)k
 ε+ c

≤ 1 + 1 + c = r0.

Observe that ‖S∗tju‖Lp ≤ ‖u‖Lp ≤ ρ0 and in the same way ‖u∗,j‖Lp ≤ ‖u∗‖ ≤ ρ0. Lemma 5.3
and the first step then imply the inequality

t∞(z(tj , x0, u), S∗tju) = t∞(x0, u)− tj > T ≥ τ

N
,
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which means that t∞(x0, u) > tj + τ
N = tj+1. On the other hand we clearly have

‖z(tj , x∗, u∗)‖X ≤ c ≤ r0 and ‖Stju− u∗,j‖Lp ≤ ‖u− u∗‖Lp ≤ ρ ≤ lj .

From Lemma 5.3, (5.4) and the induction hypotheses we deduce

‖z(tj + s, x0, u)− z(tj + s, x∗, u∗)‖X = ‖z(s, z(tj , x0, u), S∗tju)− z(s, z(tj , x∗, u∗), S∗tju∗)‖X
≤ 2mT,1‖z(tj , x0, u)− z(tj , x0, u)‖X + 2 sup

σ∈[0,1]
‖Φσ(S∗tju)− Φσ(u∗,j)‖Lp

≤ 2mT,1

(2mT,1)j‖x0 − x∗‖X + 2

j−1∑
k=0

(2mT,1)k
 ε
+ 2ε

= (2mT,1)j+1‖x0 − x∗‖X + 2

 j∑
k=1

(2mT,1)k
 ε+ 2ε

for all s ∈ [0, τN ]. The induction hypotheses further implies the estimate

‖z(t, x0, u)− z(t, x∗, u∗)‖X ≤ (2mT,1)j‖x0 − x∗‖X + 2

j−1∑
k=0

(2mT,1)k
 ε

≤ (2mT,1)j+1‖x0 − x∗‖X + 2

 j∑
k=0

(2mT,1)k
 ε.

for t ∈ [0, tj ]. In particular we have shown that t∞(x0, u) > tN = τ .

3) We still have to prove the addenda. Assume that Φt is Lipschitz on bounded sets for
every t ≥ 0. Then automatically Φt is Lipschitz on bounded sets uniformly for t in compact
sets by Lemma 4.21. We thus find a constant Mρ0,τ > 0 such that

‖Φt(u)− Φt(ũ)‖X ≤Mρ0,τ‖u− ũ‖Lp for all u, ũ ∈ B(0, ρ0), t ∈ [0, τ ]. (5.6)

Let x, x̃ ∈ B(x∗, r) and u, ũ ∈ B(u∗, ρ) ⊆ B(0, ρ0). Above we have shown that ‖z(t, x, u)‖X
and ‖z(t, x̃, ũ)‖X are less or equal to r0 for all t ∈ [0, τ ]. The assumption on F yields a
number L(r0) ≥ 0 with

‖z(t, x, u)− z(t, x̃, ũ)‖X

≤ mT,τ‖x− x̃‖X +
∫ t

0
mT,τ‖F (z(s, x, u))− F (z(s, x̃, ũ))‖X ds+ ‖Φt(u)− Φt(ũ)‖X

≤ mT,τ‖x− x̃‖X +Mρ0,τ‖u− ũ‖Lp +mT,τL(r0)
∫ t

0
‖z(s, x, u)− z(s, x̃, ũ)‖X ds

for every t ∈ [0, τ ], where we also used (5.6). With Gronwall’s inequality, we derive

‖z(t, x, u)− z(t, x̃, ũ)‖X ≤ (mT,τ‖x− x̃‖X +Mρ0,τ‖u− ũ‖Lp) exp(mT,τL(r0)t)
≤ max{mT,τ ,Mρ0,τ}(‖x− x̃‖X + ‖u− ũ‖Lp) exp(mT,τL(r0)τ),

for all t ∈ [0, τ ]. This means that

‖z( � , x, u)− z( � , x̃, ũ)‖L∞ ≤ Kτ (‖x− x̃‖X + ‖u− ũ‖Lp),
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where Kτ = max{mT,τ ,Mρ0,τ} exp(τmT,τL(r0)).

4) In case Φt is globally Lipschitz for all t ∈ [0, 1], as before deduce that the property
holds uniformly for t ∈ [0, 1] (see Remark 4.24). Estimate (5.4) then directly implies

‖z( � , x̃, ũ)− z( � , x, u)‖L∞([0,T ],X) ≤ 2mT,1‖x̃− x‖X + 2 sup
σ∈[0,1]

‖Φσ(ũ)− Φσ(u)‖X

≤ 2mT,1‖x̃− x‖X + 2M1‖ũ− u‖Lp (5.7)

for all x̃, x ∈ B(0, r0) and ũ, u ∈ B(0, ρ0). Choosing ρ =
(
2M1

∑N−1
k=0 (2mT,1)k

)−1
, the

induction in step 2) works in the same way if we replace ε with M1‖ũ − u‖Lp and use (5.7)
instead of (5.4).

Remark 5.7. Let the conditions of the first part of Lemma 5.6 be satisfied. A close inspection
of step 2) in the proof shows that the map

B(x∗, r)×B(u∗, ρ)→ C([0, τ ], X); (x0, u)→ z( � , x0, u)

is continuous at (x∗, u∗). To see this, one only has to replace ε in (5.5) by an appropriate
smaller number. ♦

We summarize the results of this section in a theorem.
Theorem 5.8. Let X and U be Banach spaces and let T be a strongly continuous semigroup
on X with generator A. Assume that B ∈ C(U,X−1) is an Lp–admissible control operator for
T with p ∈ [1,∞) and denote the corresponding input maps by Φt for t ≥ 0. Let F : X → X
be Lipschitz on bounded sets and assume that Φt is bounded on bounded sets for each t ≥ 0.

Then for every pair (x0, u) ∈ X × Lp([0,∞), U) there exists a maximal existence time
t∞(x0, u) ∈ (0,∞] and a unique maximal mild solution

z( � , x0, u) ∈ C([0, t∞(x0, u)), X)

of (5.1). If t∞(x0, u) is finite, then ‖z(t, x0, u)‖X →∞ as t→ t∞(x0, u).
Additionally assume that (T,Φ) is equicontinuous. Then the maximal existence time is

lower semi-continuous in the sense that for every pair (x∗, u∗) ∈ X ×Lp([0,∞), U) and each
time τ ∈ [0, t∞(x∗, u∗)) there are radii r, ρ > 0 such that for all (x0, u) ∈ B(x∗, r)×B(u∗, ρ)
we have t∞(x0, u) > τ . Moreover, the map

B(x∗, r)×B(u∗, ρ)→ C([0, τ ], X); (x0, u)→ z( � , x0, u)

is continuous at (x∗, u∗). Finally, this map is Lipschitz if Φt is Lipschitz on bounded sets for
every t ≥ 0.

5.2 Linearization
For convenience, we repeat problem (5.1). Let A be the generator of a strongly continuous
semigroup T onX and letB ∈ C(U,X−1) be Lp–admissible for T. As usual, the corresponding
input maps are denoted by Φt : Lp([0,∞), U)→ X. Further let F : X → X be Lipschitz on
bounded sets. We are looking at the inhomogeneous Cauchy problem

z′(t) = Az(t) + F (z(t)) +B(u(t)); z(0) = x0. (5.8)

88



Assume that Φt is bounded on bounded sets for all t ≥ 0. Then Lemma 5.1 yields the existence
of the unique maximal mild solution z( � , x0, u) for all x0 ∈ X and u ∈ Lp([0,∞), U).

We next derive a linearization principle very similar to the one in Section 4.3. To this
end, assume that (5.8) has an equilibrium point (x∗, v∗) ∈ X × U , i.e.,

Ax∗ + F (x∗) +B(v∗) = 0.

As before, we abbreviate u∗ := χv∗ . The maximal mild solution corresponding to the data
(x∗, u∗) is given by z(t, x∗, u∗) = x∗ for all t ≥ 0.

Moreover, we assume that F and B are differentiable at x∗ and v∗ respectively. The
linearized problem of (5.8) at (x∗, u∗) then reads

z′l(t) = (A+ F ′(x∗))zl(t) +B′(v∗)ũ; zl(0) = x̃0. (5.9)

As in part A) of the linearization principle on page 51 of the thesis we claim that this linear
problem is well-posed. We have to show that B′(v∗) is Lp–admissible for the semigroup
generated by A + F ′(x∗). Indeed, due to Proposition 4.33 the linear operator B′(v∗) is
Lp–admissible for T. Corollary 5.5.1 in [49] (a far more general result) then yields the claim.

We shall establish a perturbation theory for our nonlinear problem. To this end, we
first collect some properties that the “perturbed control system” (5.8) inherits from the
unperturbed one, namely (5.8) with F = 0. For the time being we replace the perturbation
F ′(x∗) by an arbitrary bounded operator P ∈ L(X). Other properties of F ′(x∗) are not
important here.

To have a proper spectral theory at hand, vector spaces are mostly assumed to be complex.
In the text before Remark 4.25 we already mentioned that this seems to cause problems in
applications: Sometimes nonlinear terms are not differentiable in the common sense, but
merely R–differentiable. Clearly the generator of a semigroup T in L(X) has to be C–linear.
The perturbation results refereed to below are based on Hille–Yosida generation theorem,
see Theorem II.3.8 in [15]. The latter, although formulated for complex vector spaces, is
valid if we consider T as a family in LR(X). We simply have to exclude part (c) of the
cited theorem. Thus again every appearance of the word “differentiable” can be replaced by
“R–differentiable”.

Admissibility under bounded perturbations of the generator

It is well known that A+P : D(A)→ X is the generator of a strongly continuous semigroup
S on X. For every τ ≥ 0 the operator Sτ ∈ L(X) satisfies the equations

Sτx = Tτx+
∫ τ

0
SσPTτ−σx dσ = Tτx+

∫ τ

0
Sτ−σPTσx dσ. (5.10)

Moreover, the norms on X given by ‖R(λ,A)x‖X and ‖R(λ,A + P )x‖X are equivalent if
λ > ω + 2M‖P‖. Here, as usual, ω ∈ R and M ≥ 1 are numbers with ‖Tt‖ ≤ Meωt for all
t ≥ 0. As a consequence, we can say that “the spaces X−1 for both A and A+ P coincide”.
With our notation from Appendix A this means [D(A)]−1 = [D(A + P )]−1. For a proof of
these statements we refer to Theorem III.1.3, Corollary III.1.4 and Corollary III.1.7 of [15].
As for T we use the symbol mS,t := supσ∈[0,t]‖Sσ‖.
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Proposition 5.9. Let B ∈ C(U,X−1) be Lp–admissible for T and assume that Φt is bounded
on bounded sets for all t ≥ 0. Further let P ∈ L(X). Then B is also Lp–admissible for S.
The corresponding input maps Φt,ΦP

t ∈ C(Lp([0,∞), U), X) are related by

ΦP
t (u) = Φt(u) +

∫ t

0
St−sPΦs(u) ds for all u ∈ Lp([0,∞), U) and t ≥ 0. (5.11)

Proof. Let u ∈ Lp([0,∞), U). Since B is Lp–admissible for T, the function Bu : [0,∞)→ X−1
is locally integrable. Thus for t ≥ 0 and u ∈ Lp([0,∞), U) we may define

ΦP
t : Lp([0,∞), U)→ X−1; ΦP

t (u) =
∫ t

0
St−sB(u(s)) ds.

We have to show that (S,ΦP ) is a continuous additive control system on X and Lp([0,∞), U).
The needed properties can be derived from (5.11). Hence, we first verify this equation. Let
u ∈ Lp([0,∞), U). Using the representation (5.10) and Fubini’s theorem, we infer

ΦP
t (u) =

∫ t

0
St−sB(u(s)) ds =

∫ t

0

[
Tt−sB(u(s)) +

∫ t−s

0
SσPTt−s−σB(u(s)) dσ

]
ds

= Φt(u) +
∫ t

0
SσP

∫ t−σ

0
Tt−σ−sB(u(s)) ds dσ = Φt(u) +

∫ t

0
SσPΦt−σ(u) dσ

= Φt(u) +
∫ t

0
St−sPΦs(u) ds

for all t ≥ 0. Note that by Lemma 4.14 the map [0,∞) → X; s 7→ Φs(u) is continuous.
Therefore the last integral exists in X and consequently ΦP

t (u) ∈ X for all t ≥ 0. Proposition
1.3.4 in [5] further yields that

[0,∞)→ X; t 7→
∫ t

0
St−sPΦs(u) ds

is continuous. We deduce that [0,∞)→ X; t 7→ ΦP
t (u) is continuous for all u ∈ Lp([0,∞), U).

Similarly one checks this properties for u = χv where v ∈ U is arbitrary.
Let T > 0. We next show that the family {U → X; v 7→ ΦP

t (χv) | t ∈ [0, T ]} is equicon-
tinuous. To this end, let v0 ∈ U and ε > 0. Because {U → X; v 7→ Φt(χv) | t ∈ [0, T ]} is
equicontinuous, we find a number δ > 0 such that

‖Φt(χv)− Φt(χv0)‖X ≤ ε1 := ε

1 +mS,T ‖P‖T

for all v ∈ U with ‖v − v0‖U ≤ δ and every t ∈ [0, T ]. For such v and t it follows that

‖ΦP
t (χv)− ΦP

t (χv0)‖X ≤ ‖Φt(χv)− Φt(χv0)‖X +
∫ t

0
‖St−sP (Φs(χv)− Φs(χv0))‖X ds

≤ ε1(1 +mS,T ‖P‖T ) = ε.

It remains to verify that ΦP
t : Lp([0,∞), U) → X is continuous for all t ≥ 0. Let t ≥ 0 and

u0 ∈ Lp([0,∞), U). For h ∈ Lp([0,∞), U) consider

Φt(u0 + h)− Φt(u0) = Φt(u0 + h)− Φt(u0) +
∫ t

0
St−sP

(
Φs(u0 + h)− Φs(u0)

)
ds.

90



Due to the continuity of Φt, we only have to show that the integral on the right-hand side
converges to zero as ‖h‖Lp → 0. Let (hk) be any sequence in Lp([0,∞), U) with ‖hk‖Lp → 0
as k → ∞. Taking a subsequence, we may assume that ‖hk‖Lp ≤ 1 for all k ∈ N. Choose
ρ := ‖u0‖Lp + 1, so that ‖u0 + hk‖Lp ≤ ρ for all k ∈ N.

Again the continuity of Φs yields that ‖St−sP (Φs(u0 +hk)−Φs(u0))‖X → 0 as k →∞ for
each s ∈ [0, t]. On the other hand, Lemma 4.23 yields a constant cρ,t > 0 with ‖Φs(u)‖X ≤ cρ,t
for all u ∈ Lp([0,∞), U) with ‖u‖Lp ≤ ρ. Thus we obtain the estimate

‖St−sP (Φs(u0 + hk)− Φs(u0))‖X ≤ mS,t‖P‖2cρ,t

for all k ∈ N. The claim now follows from the dominated convergence theorem.

Assuming that Φt : Lp([0,∞), U) → X is continuously differentiable, we can now show
the well-posedness of (5.9) without referring to Corollary 5.5.1 of [49]. In fact, if B is Lp–
admissible for T then it is Lp–admissible for S by the last proposition. Proposition 4.33 then
shows that B′(v∗) is Lp–admissible for S.
Remark 5.10. The last step of the preceding proof simplifies considerable if we assume that
the additive control system (T,Φ) is equicontinuous. It is easy to see that in this case also
(S,ΦP ) is equicontinuous. ♦

In the addendum of Lemma 5.6 the condition appeares that Φt is Lipschitz on bounded
sets. This is another property that translates over to ΦP

t .

Lemma 5.11. Let B be Lp–admissible for T and let the input maps Φt : Lp([0,∞), U)→ X
be Lipschitz on bounded sets for all t ≥ 0. Then ΦP

t : Lp([0,∞), U) → X is Lipschitz on
bounded sets uniformly for t in compact subsets of [0,∞).

Proof. Take any T > 0 and ρ > 0. From Lemma 4.21 we know that the Φt are Lipschitz on
bounded sets uniformly for t in compact subsets of [0,∞). We use the notation introduced
in this lemma. Let t ∈ [0, T ] and u1, u2 ∈ Lp([0,∞), U) with ‖u1‖Lp , ‖u2‖Lp ≤ ρ. Once more
using (5.11), we then obtain

‖ΦP
t (u1)− ΦP

t (u2)‖X ≤ ‖Φt(u1)− Φt(u2)‖X +
∥∥∥∥∫ t

0
St−sP (Φs(u1)− Φs(u2)) ds

∥∥∥∥
X

≤MT,ρ(1 +mS,T ‖P‖T )‖u1 − u2‖Lp .

Assume that Φt is continuously differentiable for all t ≥ 0. Then ΦP
t is differentiable at

constant functions. More importantly, we can express the derivative of ΦP
t at such points

through the derivative of Φt.

Lemma 5.12. Let B be Lp–admissible for T. Further assume that the corresponding input
maps Φt : Lp([0,∞), U) → X are continuously differentiable for all t ≥ 0. Then for every
v ∈ U the perturbed input map ΦP

t : Lp([0,∞), U) → X is differentiable at χv for all t ≥ 0.
The derivative is given by

(ΦP
t )′(χv)ũ = Φ′t(χv)ũ+

∫ t

0
St−sPΦ′s(χv)ũds for ũ ∈ Lp([0,∞), U). (5.12)

Proof. Let v ∈ U , t ≥ 0 and ε > 0. Lemma 4.26 yields a radius δ > 0 such that

‖Φ′s(χv + u)− Φ′s(χv)‖L(Lp,X) ≤ ε(1 +mS,t‖P‖t)−1.
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for all u ∈ B(0, δ) and every s ∈ [0, t]. For ũ ∈ B(0, δ) ⊆ Lp([0,∞), U) formula (5.11) yields∥∥∥∥ΦP
t (χv + ũ)− ΦP

t (χv)− Φ′t(χv)ũ−
∫ t

0
St−sPΦ′s(χv)ũds

∥∥∥∥
X

≤ ‖Φt(χv + ũ)− Φt(χv)− Φ′t(χv)ũ‖X

+
∥∥∥∥∫ t

0
St−sP

(
Φs(χv + ũ)− Φs(χv)− Φ′s(χv)ũ

)
ds
∥∥∥∥
X

≤
∥∥∥∥∫ 1

0

(
Φ′t(χv + σũ)ũ− Φ′t(χv)ũ

)
dσ
∥∥∥∥
X

+mS,t‖P‖t sup
s∈[0,t]

∥∥∥∥∫ 1

0

(
Φ′s(χv + σũ)ũ− Φ′s(χv)ũ

)
dσ
∥∥∥∥
X

≤ (1 +mS,t‖P‖t) sup
s∈[0,t]

sup
u∈B(0,δ)

‖Φ′s(χv + u)− Φ′s(χv)‖L(Lp,X)‖ũ‖Lp ≤ ε‖ũ‖Lp .

Hence the claim is shown.

Remark 5.13. Under the conditions of the last lemma, for v ∈ U and t ≥ 0 we define the maps
Φrem
t : Lp([0,∞), U)→ X and (ΦP

t )rem : Lp([0,∞), U)→ X by

Φrem
t (ũ) = Φt(χv + ũ)− Φt(χv)− Φ′t(χv)ũ,

(ΦP
t )rem(ũ) = ΦP

t (χv + ũ)− ΦP
t (χv)− (ΦP

t )′(χv)ũ.

Using (5.11) and Lemma 5.12 we easily deduce the identity

(ΦP
t )rem(ũ) = Φrem

t (ũ) +
∫ t

0
St−sPΦrem

s (ũ) ds for ũ ∈ Lp([0,∞), U). ♦

Remark 5.14. To the assumptions of Lemma 5.12 we add that (T,Φ′(χv)) is exactly control-
lable in some time T > 0, see Definition 4.35. Then (T, (ΦP )′(χv)) is also exactly controllable
in time T > 0 provided ‖P‖L(X) is “small enough”. Indeed, this follows from Remark C.12
and equation (5.12) since∥∥∥∥∥

∫ T

0
ST−sPΦ′s(χv) ds

∥∥∥∥∥
L(L2,X)

≤ TmS,T ‖Φ′T (χv)‖L(L2,U)‖P‖L(X).

Note that the smallness condition in Remark C.12 involves the norm of a right inverse of the
unperturbed operator Φ′T (χv). ♦

We come back to problem (5.8). Recall that (x∗, v∗) is an equilibrium point for this
equation. We assumed that F : X → X is differentiable at x∗. Consider the remainder
F rem : X → X given by

F rem(x̃) = F (x∗ + x̃)− F (x∗)− F ′(x∗)x̃.

Clearly, if F is differentiable at x∗ + x̃, then F rem is differentiable at x̃ ∈ X with derivative

(F rem)′(x̃) = F ′(x∗ + x̃)− F ′(x∗).

In particular this implies that (F rem)′(0) = 0. We shall see that a mild solution of

z̃ ′(t) = (A+ F ′(x∗))z̃(t) + F rem(z̃(t)) +B(u∗ + ũ)−B(u∗); z̃(0) = x̃0. (5.13)
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is given by z̃ := z( � , x∗ + x̃0, u∗ + ũ) − z( � , x∗, u∗). Let S be the semigroup generated by
A+F ′(x∗). For the sake of a short notation we denote P := F ′(x∗) ∈ L(X). By Proposition
5.9 the control operator B is admissible for S. Let ΦP

t : Lp([0,∞), U) → X for t ≥ 0 be
the corresponding input maps. Further let x̃0 ∈ X, ũ ∈ Lp([0,∞), U) and t ∈ [0, t∞) where
t∞ := t∞(x∗ + x̃0, u∗ + ũ). We first mention that z(s, x∗ + x̃0, u∗ + ũ) = x∗ + z̃(s) for all
s ∈ [0, t∞) since z( � , x∗, u∗) = x∗. On the other hand, we may write

z̃(t) = z(t, x∗ + x̃0, u∗ + ũ)− z(t, x∗, u∗)

= Ttx∗ + Ttx̃0 +
∫ t

0
Tt−sF (x∗ + z̃(s)) ds+ Φt(u∗ + ũ)

− Ttx∗ −
∫ t

0
Tt−sF (x∗) ds− Φt(u∗)

= Ttx̃0 +
∫ t

0
Tt−sF ′(x∗)z̃(s) ds+

∫ t

0
Tt−sF rem(z̃(s)) ds

+ Φt(u∗ + ũ)− Φt(u∗) for t ∈ [0, t∞). (5.14)

We emphasize that this is a fixed-point equation for z̃. From (5.10) we easily obtain the
following identities for the two integral terms on the right-hand side.∫ t

0
Tt−sF ′(x∗)z̃(s) ds =

∫ t

0
St−sF ′(x∗)z̃(s) ds−

∫ t

0
St−sF ′(x∗)

∫ s

0
Ts−σF ′(x∗)z̃(σ) dσ ds,∫ t

0
Tt−sF rem(z̃(s)) ds =

∫ t

0
St−sF rem(z̃(s)) ds−

∫ t

0
St−sF ′(x∗)

∫ s

0
Ts−σF rem(z̃(σ)) dσ ds.

Plugging them into the last identity for z̃ and using once more (5.10) together with (5.11),
by a tedious but easy calculation, we derive

z̃(t) = Stx̃0 +
∫ t

0
St−sF rem(z̃(s)) ds+ ΦP

t (u∗ + ũ)− ΦP
t (u∗) for all t ∈ [0, t∞). (5.15)

The calculation is carried out at the end of this section on page 96. Equation (5.15) means
that z̃ is a mild solution of (5.13). We additionally assume that Φt is continuously differen-
tiable for every t ≥ 0. Then by Lemma 5.12 the derivative (ΦP

t )′(u∗) exists, and with the
operator (ΦP

t )rem defined in Remark 5.13 we may write

z̃(t) = Stx̃0 +
∫ t

0
St−sF rem(z̃(s)) ds+ (ΦP

t )rem(ũ) + (ΦP
t )′(u∗)ũ. (5.16)

We nee the following adaption of Definition 4.36. The system (5.8) is called locally
controllable at (x∗, u∗) if

∀R > 0 ∃r0, r1 ∈ (0, R] ∀x0, x1 ∈ X with ‖x0‖X ≤ r0, ‖x1‖ ≤ r1 ∃u ∈ L2([0,∞), U) :
z(T, x0, u) = x1 and ‖z(t, x0, u)− x∗‖ < R for all t ∈ [0, T ].

The main result of this section is the following linearization theorem. In short, it says
that (5.8) is locally controllable near the equilibrium point if the linearized problem (5.9) is
exactly controllable. The latter notion was introduced in Definitions 4.35.
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Theorem 5.15. Let X be a Banach space and let U be a Hilbert space. Assume that A
is the generator of a strongly continuous semigroup T on X and let B : U → X−1 be an
L2–admissible control operator for T. Denote by Φt : L2([0,∞), U) → X, t ≥ 0 the corre-
sponding input maps. Let F : X → X be Lipschitz on bounded sets. Assume that we have an
equilibrium point (x∗, v∗) ∈ X × U satisfying

Ax∗ + F (x∗) +B(v∗) = 0.

Write u∗ := χv∗. Assume that Φt is continuously differentiable and Lipschitz on bounded sets
for every t ≥ 0. Let F be continuously differentiable on a neighborhood O ⊆ X of x∗ and set
P := F ′(x∗). Let S be the strongly continuous semigroup generated by A+P and let ΦP

t be the
perturbed input maps from (5.11). Finally, assume that the linearized system (S, (ΦP )′(u∗))
is exactly controllable in time T > 0. Then the system (5.8) is locally controllable at (x∗, u∗).

Proof. From Lemma 5.12 we infer that ΦP
T is differentiable at u∗. Thus the last condition

makes sense. Since L2([0,∞), U) is a Hilbert space and by assumption the bounded linear
operator (ΦP

T )′(u∗) is onto, it has a bounded right inverse

Q :=
(
(ΦP

T )′(u∗)
)# ∈ L(X,L2([0,∞), U)).

We use the notation F rem, Φrem
t and (ΦP

t )rem introduced above. As remarked there, F rem is
continuously differentiable on Õ := O − x∗.

Lemma 5.6 yields radii r > 0 and ρ > 0 such that t∞(x0, u) > T for all x0 ∈ B(x∗, r) ⊆ X
and u ∈ B(u∗, ρ) ⊆ Lp([0,∞), U). We may assume that B(x∗, r) ⊆ Õ. Moreover, there is a
constant KT > 0 with

‖z( � , x1, u1)− z( � , x2, u2)‖L∞([0,T ],X) ≤ KT (‖x1 − x2‖X + ‖u1 − u2‖L2)

for all x1, x2 ∈ B(x∗, r) and all u1, u2 ∈ B(u∗, ρ). Let x̃0 ∈ B(0, r) and ũ ∈ B(0, ρ). Instead
of the mild solution z, we first treat the shifted function z̃( � , x̃0, ũ) ∈ C([0, T ], X) given by

z̃( � , x̃0, ũ) = z( � , x∗ + x̃0, u∗ + ũ)− z( � , x∗, u∗).

Observe that z̃( � , 0, 0) = 0. From the above Lipschitz estimate we obtain

‖z̃( � , x̃1, ũ1)− z̃( � , x̃2, ũ2)‖L∞([0,T ],X) ≤ KT (‖x̃1 − x̃2‖X + ‖ũ1 − ũ2‖L2) (5.17)

for all x̃1, x̃2 ∈ B(0, r) and ũ1, ũ2 ∈ B(0, ρ). In particular, we have

‖z̃(t, x̃0, ũ)‖X ≤ KT (‖x̃0‖X + ‖ũ‖L2)

for all t ∈ [0, T ]. As a consequence, we can choose r > 0 and ρ > 0 so small that z̃(t, x̃, ũ) ∈ Õ
for all t ∈ [0, T ]. In (5.16) we saw that z̃ satisfies the equation

z̃(T, x̃0, ũ) = ST x̃0 +
∫ T

0
ST−sF rem(z̃(s, x̃0, ũ)) ds+ (ΦP

T )rem(ũ) + (ΦP
T )′(u∗)ũ.

Let x̃1 ∈ X and set ξ := x̃1 − ST x̃0. If we find an input ũ ∈ B(0, ρ) with

ũ = Q

(
ξ −

∫ T

0
ST−s(FP )rem(z̃(s, x̃0, ũ)) ds− (ΦP

T )rem(ũ)
)

=: C(ũ),
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then we obtain

z̃(T, x̃0, ũ) = ST x̃0 +
∫ T

0
ST−sF rem(z̃(s)) ds+ (ΦP

T )rem(ũ) + (ΦP
T )′(u∗)ũ = x̃1.

Hence we are looking for a fixed-point of the map C : B(0, ρ0) → B(0, ρ0) defined through
the equation above. We will find a radius ρ0 ∈ (0, ρ] such that C is strictly contractive on
B(0, ρ0) provided x̃0 ∈ B(0, r0) and x̃1 ∈ B(0, r1) for some r0, r1 > 0. To this end, we need
several estimates.

Let R > 0. Lemma 4.26 yields a radius ρ1 > 0 with

‖(Φrem
t )′(u)‖L(X,L2) = ‖Φ′t(u∗ + u)− Φ′t(u∗)‖L(X,L2) ≤

1
4‖Q‖(1 +mS,T ‖P‖T )−1

for all u ∈ L2([0,∞), U) with ‖u‖L2 ≤ ρ1 and each t ∈ [0, T ]. Using Remark 5.13, for
ũ1, ũ2 ∈ L2([0,∞), U) with ‖ũ1‖L2 , ‖ũ2‖L2 ≤ ρ1 we estimate

‖(ΦP
T )rem(ũ1)− (ΦP

T )rem(ũ2)‖X
≤ ‖Φrem

T (ũ1)− Φrem
T (ũ2)‖X +mS,T ‖P‖T sup

t∈[0,T ]
‖Φrem

t (ũ1)− Φrem
t (ũ2)‖X

≤ (1 +mS,T ‖P‖T ) sup
t∈[0,T ]

∥∥∥∥∫ 1

0
(Φrem

t )′(ũ2 − σ(ũ1 − ũ2))(ũ1 − ũ2) dσ
∥∥∥∥
X

≤ (1 +mS,T ‖P‖T ) sup
t∈[0,T ]

sup
u∈B(0,ρ1)

‖(Φrem
t )′(u)‖L(L2,X)‖ũ1 − ũ2‖L2 .

For such ũ1 and ũ2 we thus obtain

‖(ΦP
T )rem(ũ1)− (ΦP

T )rem(ũ2)‖X ≤
1

4‖Q‖‖ũ1 − ũ2‖L2 . (5.18)

Since (ΦP
T )rem(0) = 0 for ũ ∈ B(0, ρ1), it follows

‖(ΦP
T )rem(ũ)‖X ≤

1
4‖Q‖‖ũ‖L2 . (5.19)

Further, because F is differentiable at x∗, we find a number R1 > 0 such that

‖F rem(w)‖X = ‖F (x∗ + w)− F (x∗)− F ′(x∗)w‖X ≤
1

8‖Q‖mS,TTKT
‖w‖X (5.20)

for all w ∈ B(0, R1) ⊆ X. We may assume that R1 ≤ R. Moreover, as F ′ is continuous, we
may choose R1 so small that w ∈ Õ and

‖(F rem)′(w)‖L(X) = ‖F ′(x∗ + w)− F ′(x∗)‖L(X) ≤
1

4‖Q‖mS,TTKT
(5.21)

for all w ∈ X with ‖w‖X ≤ R1. We can now fix the constants. Set

ρ0 = min
{
ρ, ρ1,

R1
2KT

}
, r0 = min

{
r, ρ0,

ρ0
4‖Q‖mS,T

,
R1

2KT

}
and r1 = ρ0

4‖Q‖ .
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Let x̃0 ∈ B(0, r0) and x̃1 ∈ B(0, r1). For all ũ ∈ B(0, ρ0) from (5.17) we infer

‖z̃(t, x̃0, ũ)‖X ≤ KT (‖x̃0‖X + ‖ũ‖L2) ≤ R1 ≤ R for all t ∈ [0, T ]. (5.22)

Therefore we can use (5.19) and (5.20) to deduce

‖C(ũ)‖L2 ≤ ‖Q‖
(
‖x̃1‖+ ‖ST ‖‖x̃0‖X +

∫ T

0
‖ST−sF rem(z̃(s, x̃0, ũ))‖X ds+ ‖(ΦP

T )rem(ũ)‖X

)

≤ ρ0
4 + ρ0

4 + ‖Q‖mS,T

∫ T

0
‖F rem(z̃(s, x̃0, ũ))‖X ds+ 1

4‖ũ‖L2

≤ ρ0
2 + ‖Q‖mS,T

8‖Q‖mS,TTKT

∫ T

0
‖z̃(s, x̃0, ũ)‖X ds+ ρ0

4

≤ 3ρ0
4 + T

8TKT
‖z̃( � , x̃0, ũ)‖L∞([0,T ],X) ≤

3ρ0
4 + 1

8(‖x̃0‖X + ‖ũ‖L2) ≤ ρ0

for all ũ ∈ B(0, ρ0). As a result, C maps B(0, ρ0) to itself. To show that C is strictly
contractive on this ball, take ũ1, ũ2 ∈ B(0, ρ0). We abbreviate z̃j := z̃( � , x̃0, ũj) for j = 1, 2.
Employing (5.18) and (5.21), we derive

‖C(ũ1)− C(ũ2)‖L2 ≤ ‖Q‖
∫ T

0

∥∥ST−s(F rem(z̃1(s))− F rem(z̃2(s))
)∥∥
X

ds

+ ‖Q‖‖(ΦP
T )rem(ũ1)− (ΦP

T )rem(ũ2)‖X

≤ ‖Q‖mS,T

∫ T

0

∫ 1

0
‖(F rem)′

(
z̃2(s) + σ[z̃1(s)− z̃2(s)]

)
(z̃1(s)− z̃2(s))‖X dσ ds

+ 1
4‖ũ1 − ũ2‖L2

≤ ‖Q‖mS,T
4‖Q‖mS,TKTT

∫ T

0
‖z̃1(s)− z̃2(s)‖X ds+ 1

4‖ũ1 − ũ2‖L2

≤ KTT

4KTT
‖ũ1 − ũ2‖L2 + 1

4‖ũ1 − ũ2‖L2 = 1
2‖ũ1 − ũ2‖L2 .

Of course, B(0, ρ) as a closed subset of L2([0,∞), U) is a complete nonempty metrical space.
The contraction mapping principle yields the existence of a fixed-point ũ of C in B(0, ρ).

Finally we translate the results back to the original problem. Let x0 ∈ B(x∗, r0) and
x1 ∈ B(x∗, r1) and set x̃j := xj − x∗ for j = 1, 2. Take the corresponding fixed point
ũ ∈ L2([0,∞), U) obtained above. Then for u := u∗ + ũ we infer the identity

z(T, x0, u) = z̃(T, x̃0, ũ) + x∗ = x̃1 + x∗ = x1.

Moreover, in (5.22) we saw that ‖z(t, x0, u) − x∗‖X = ‖z̃(t, x0 − x∗, u − u∗)‖X ≤ R for all
t ∈ [0, T ]. Thus the proof is finished.

Proof of equation (5.15)

Using (5.14), we have to verify the identity

Ttx̃0 +
∫ t

0
Tt−sF ′(x∗)z̃(s) ds+

∫ t

0
Tt−sF rem(z̃(s)) ds+ Φt(u∗ + ũ)− Φt(u∗)

= Stx̃0 +
∫ t

0
St−sF rem(z̃(s)) ds+ ΦP

t (u∗ + ũ)− ΦP
t (u∗).
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As announced in the text above, on the left-hand side we plug in∫ t

0
Tt−sF ′(x∗)z̃(s) ds =

∫ t

0
St−sF ′(x∗)z̃(s) ds−

∫ t

0
St−sF ′(x∗)

∫ s

0
Ts−σF ′(x∗)z̃(σ) dσ ds,∫ t

0
Tt−sF rem(z̃(s)) ds =

∫ t

0
St−sF rem(z̃(s)) ds−

∫ t

0
St−sF ′(x∗)

∫ s

0
Ts−σF rem(z̃(σ)) dσ ds.

On the right-hand side we use (5.10) in the form Stx̃0 = Ttx̃0 +
∫ t

0
St−sF ′(x∗)Tsx̃0 ds as well

as (5.11), more precisely

ΦP
t (u∗ + ũ) = Φt(u∗ + ũ) +

∫ t

0
St−sF ′(x∗)Φs(u∗ + ũ) ds,

ΦP
t (u∗) = Φt(u∗) +

∫ t

0
St−sF ′(x∗)Φs(u∗) ds.

We end up with the equation

Ttx̃0 +
∫ t

0
St−sF ′(x∗)z̃(s) ds−

∫ t

0
St−sF ′(x∗)

∫ s

0
Ts−σF ′(x∗)z̃(σ) dσ ds

+
∫ t

0
St−sF rem(z̃(s)) ds−

∫ t

0
St−sF ′(x∗)

∫ s

0
Ts−σF rem(z̃(σ)) dσ ds

+ Φt(u∗ + ũ)− Φt(u∗)

= Ttx̃0 +
∫ t

0
St−sF ′(x∗)Tsx̃0 ds+

∫ t

0
St−sF rem(z̃(s)) ds

+
∫ t

0
St−sF ′(x∗)Φs(u∗ + ũ) ds−

∫ t

0
St−sF ′(x∗)Φs(u∗) ds

+ Φt(u∗ + ũ)− Φt(u∗).

After deleting all terms that are equal on both sides, this is

∫ t

0
St−sF ′(x∗)

[
z̃(s)−

∫ s

0
Ts−σF ′(x∗)z̃(σ) dσ −

∫ s

0
Ts−σF rem(z̃(σ)) dσ

]
ds

=
∫ t

0
St−sF ′(x∗) [Tsx̃0 + Φs(u∗ + ũ)− Φs(u∗)] ds.

It remains to show that the brackets under the integral are equal, that means

z̃(s)−
∫ s

0
Ts−σF ′(x∗)z̃(σ) dσ −

∫ s

0
Ts−σF rem(z̃(σ)) dσ − Tsx̃0 − Φs(u∗ + ũ) + Φs(u∗) = 0.

But this is just (5.14) again.

5.3 Applications

Due to the structure of the space X = [D(A0)]0 × [D(A0)]−1/2 the wave equation behaves
relatively well under polynomially bounded perturbations of the state equation. We shall see
this in two examples.
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5.3.1 The wave equation with Dirichlet boundary control

As in the example of Subsection 4.4.4 we consider the wave equation with Dirichlet boundary
control. Here we leave the input unmodified but we add a nonlinear term to the state
equation. First recall the following notation and facts. Let n ∈ N and let O ⊆ Rn be a
bounded open domain with boundary ∂O of class C2. The Dirichlet Laplacian on O was
−A0, where A0 is the strictly positive operator in L2(O) given by

D(A0) = {f ∈ H1
0 (O) |∆f ∈ L2(O)} and A0f = −∆f.

We had X = L2(O)×H−1(O) and D(A) = H1
0 (O)×L2(O) ⊆ X. The skew-adjoint operator

A : D(A)→ X was defined as
A(f, g) = (g,−A0f).

It is the generator of a unitary group T on X. Further we fixed a relatively open part Γ ⊆ ∂O
of the boundary and set U = L2(Γ). The linear operator Bl ∈ L(U,X−1) given by

Bl(v) = (0, A0Dv)

is L2–admissible for T. Here D ∈ L(L2(∂O), L2(O)) is the Dirichlet map for O. See Section
10.6 of [49] for details. We treat the nonlinear wave equation

∂2
t ω(t, ξ) = ∆ω(t, ξ) + F0(ω(t, ξ)), (t, ξ) ∈ (0,∞)×O
ω(t, ξ) = 0, (t, ξ) ∈ (0,∞)× ∂O \ Γ
ω(t, ξ) = µ(t, ξ), (t, ξ) ∈ (0,∞)× Γ
ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ O

(5.23)

In Subsection 4.4.4 we discussed that the linear version (4.39) of this equation (with F0 = 0)
can be transformed to the control problem

z′(t) = Az(t) +Blu(t); z(0) = x0.

with z(t) = (ω(t, � ), ω′(t, � )), u(t) = µ(t, � ) and x0 = (f0, g0). We do not deal with the
question in which sense the solutions this problem or our modified problem yield solutions of
(5.23). However, in Subsection 4.4.2 we made comments on that.

Adding F0(ω(t, ξ)) to the state equation in (4.39) clearly corresponds to adding a term
F (z(t)) to the last problem, where we put F (f, g) = (0, F0 ◦ f) for (f, g) ∈ X. Therefore
(5.23) corresponds to the system

z′(t) = Az(t) + F (z(t)) +Blu(t); z(0) = x0. (5.24)

We shall show that we can apply the theory developed in the previous sections. In the
following we assume that F0 : R2 → R2 is continuously differentiable. Moreover, let there be
a number α ∈ (1, 2] with

|F0(a)| . |a|α and |F ′0(a)|L(R2) . |a|α−1 for all a ∈ R2. (5.25)

We emphasize that in this case F0(0, 0) = (0, 0) and F ′0(0, 0) ∈ L(R2) is the zero operator.

98



Remark. It is only a matter of calculation to see that conditions (5.25) are satisfied for the
standard nonlinearity F0(a) = |a|α−1a. Actually, in this situation we have

F ′0(a) =
(
|a|α−1 + (α− 1)|a|α−3a2 (α− 1)|a|α−3ab

(α− 1)|a|α−3ab |a|α−1 + (α− 1)|a|α−3b2

)

for a = (a, b) ∈ R2 \ {(0, 0)}. To verify the bound for F ′0(a) use that L(R2) can equivalently
be seen as R4 with the maximum norm and estimate each entry separately. We will not use
this special form. Note that F ′0(a) belongs to L(C) if and only if a = (0, 0), since only then
the entries on the anti-diagonal are additive inverse to each other. ♦

Recall that writing F0 ◦f for a function f : O → C we actually mean ι◦F0 ◦ ι−1 ◦f where
ι : R2 → C is the isometric R–linear invertible map given by (a, b) 7→ a + ib. However, for
the sake of a simple notation we suppress ι and its inverse.

It is easy to verify that F0 ◦ f belongs to L2/α(O) for all f ∈ L2(O). The arguments were
given in Section 4.4. Indeed, F0 ◦ f is measurable due to the continuity of F0. So choosing
a representative f : O → C, the claim follows from the estimate |F0(f(ξ))|2/α . |f(ξ)|2 for
almost all ξ ∈ O. We also see that

‖F0 ◦ f‖
L

2
α (O)

. ‖f‖L2(O) for every f ∈ L2(O).

This in turn shows that the map G : L2(O) → L2/α(O); f 7→ F0 ◦ f is bounded on bounded
sets. Next we prove that G is R–differentiable with derivative given by

G′(f)g = F ′0(f( � ))g( � ) for f, g ∈ L2(O).

It is obvious that this defines a R–linear map G′(f) on L2(O) for every f ∈ L2(O). In order
to see that it is also bounded with values in L2/α(O), let f ∈ L2(O) and note that due to the
growth bound (5.25) we have

F ′0 ◦ f ∈ L
2

(α−1) (O,L(R2)) and ‖F ′0 ◦ f‖
L

2
(α−1) (O,L(R2))

. ‖f‖α−1
L2(O).

Now using Hölder’s inequality with exponents α > 1 and α′ = α
α−1 , we obtain

‖F ′0(f( � ))g( � )‖
L

2
α (O)

≤
(∫
O
‖F ′0(f(ξ))‖

2
α

L(R2)|g(ξ)|
2
α dξ

)α/2
≤ ‖F ′0 ◦ f‖

L
2

α−1 (O,L(R2))
‖g‖L2(O) . ‖f‖α−1

L2(O)‖g‖L2(O).

Therefore G′(f) belongs to LR(L2(O), L2/α(O)) and satisfies

‖G′(f)‖
LR(L2(O),L

2
α (O))

. ‖f‖α−1
L2(O). (5.26)
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Again with Hölder’s inequality and using also Minkowski’s inequality, we derive the estimate(∫
O
|F0(f(ξ) + h(ξ))− F0(f(ξ))− F ′0(f(ξ))h(ξ)|

2
α dξ

)α/2
≤
(∫
O

∣∣∣∣∫ 1

0

(
F ′0(f(ξ) + rh(ξ))− F ′0(f(ξ))

)
h(ξ) dr

∣∣∣∣2/αdξ
)α/2

≤
∫ 1

0

(∫
O
|F ′0(f(ξ) + rh(ξ))− F ′0(f(ξ))|

2
α

L(R2)|h(ξ)|
2
α dξ

)α/2
dr

≤
(∫ 1

0
‖F ′0(f( � ) + rh( � ))− F ′0(f( � ))‖

L
2

α−1 (O,L(R2))
dr
)
‖h‖L2(O)

for all h ∈ L2(O). For ε > 0 Lemma 4.39 (with to J = O) yields a number δ > 0 such that
for h ∈ L2(O) with ‖h‖L2(O) < δ the right-hand side is less or equal to ε‖h‖L2(O). In the
very same way we show that G′ is continuous. In fact,

‖G′(f)−G′(f̃)‖
LR(L2(O),L

2
α (O))

≤ ‖F ′0 ◦ f − F ′0 ◦ f̃‖
L

2
α−1 (O,L(R2))

for f, f̃ ∈ L2(O).

We have shown that G is continuously R–differentiable. From (5.26) we easily deduce
that G′ is bounded on bounded sets. As a consequence, G is Lipschitz on bounded sets.
Indeed, let r > 0. Then for all f, f̃ ∈ L2(O) with ‖f‖L2(O), ‖f̃‖L2(O) ≤ r we have

‖G(f)−G(f̃)‖
L

2
α (O)

≤
∫ 1

0
‖G′(f̃+s(f−f̃))‖LR(... )‖f−f̃‖L2(O) ds . rα−1‖f−f̃‖L2(O). (5.27)

As announced we now define F (f, g) = (0, F0 ◦ f) = (0, G(f)) for (f, g) ∈ X. In order
to check that F (f, g) is contained in X for every pair (f, g) ∈ X, we need an embedding of
L2/α(O) into H−1(O). Since the existence of such embeddings depends on the dimension n of
O we distinguish the cases n ∈ {1, 2} and n ≥ 3. The standard Sobolev embedding theorem
(see Theorem 4.12 in [2]) yields1

H1
0 (O) ↪→ Lp(O) for all p ∈

{
[2,∞), n ∈ {1, 2}
[2, 2n

n−2 ], n ≥ 3.

Thus by duality we have the embedding

Lq(O) ↪→ H−1(O) =
(
H1

0 (O)
)∗ for all q = p′ ∈

{
(1, 2], n ∈ {1, 2}
[ 2n
n+2 , 2], n ≥ 3.

(5.28)

Plugging in q = 2
α , we see that F maps X to itself if α ∈ (1, 2] in case n ∈ {1, 2} and

if α ∈ (1, n+2
n ] in case n ≥ 3. For the remainder of the example let us assume that these

conditions are fulfilled.
To see that F is Lipschitz on bounded sets, we take r > 0 and (f, g), (f̃ , g̃) ∈ X with

‖(f, g)‖X , ‖(f̃ , g̃)‖X ≤ r. Then ‖f‖L2(O), ‖f̃‖L2(O) ≤ r and (5.27) together with the embed-
ding (5.28) yield

‖F (f, g)− F (f̃ , g̃)‖X = ‖G(f)−G(f̃)‖H−1 . ‖G(f)−G(f̃)‖
L

2
α (O)

. rα−1‖f − f̃‖L2(O) ≤ rα−1‖(f, g)− (f̃ , g̃)‖X .
1Indeed, we have H1

0 (O) ↪→ L∞(O) in case n = 1. However this doesn’t make a difference in the following.
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Since G is differentiable, it follows that F is continuously R–differentiable with derivative

F ′(f, g) = (0, G′(f)) for (f, g) ∈ X.

To verify this, take (f, g), (h, o) ∈ X and let ε > 0. There is a radius δ > 0 such that
‖G(f + h) − G(f) − G′(f)h‖L2/α(O) ≤ ε‖h‖L2(O) provided ‖h‖L2(O) ≤ δ. Let ‖(h, o)‖X ≤ δ.
Since ‖h‖L2(O) ≤ ‖(h, o)‖X we can deduce

‖F (f + h, g + o)− F (f, g)− (0, G′(f)h)‖X = ‖G(f + h)−G(f)−G′(f)h‖H−1(O)

. ‖G(f + h)−G(f)−G′(f)‖
L

2
α (O)

≤ ε‖h‖L2(O) ≤ ε‖(h, o)‖X .

Clearly, for each fixed (f, g) ∈ X the mapping X → X; (h, o) 7→ (0, G(f)h) is R–linear and
bounded. We skip the elementary proof which as a side product also gives

‖F ′(f, g)‖LR(X) . ‖G′(f)‖
LR(L2(O),L

2
α (O))

. ‖f‖α−1
L2(O) ≤ ‖(f, g)‖α−1

X (5.29)

for all (f, g) ∈ X, see (5.26).
Since F (0, 0) = (0, 0), with the linearity of A and Bl we conclude that an equilibrium

point of (5.24) is given by
x∗ = (0, 0), v∗ = 0.

Because F ′(x∗) is the zero operator, it trivially belongs to L(X). The theory of the previous
sections can be applied. In this example we have P = 0. Therefore the semigroup S generated
by A+P from (5.10) equals T. Consequently also the perturbed input maps ΦP from (5.11)
coincide with the unperturbed input maps Φl. Thus whenever (T,Φl) is exactly controllable
in some time T > 0, then the assumptions of Theorem 5.15 are satisfied. We gave a sufficient
condition for that in Subsection 4.4.4. In this case, for every R > 0 there are radii r1, r2 > 0
such that for all x0 ∈ B(0, r1) ⊆ X and x1 ∈ B(0, r2) ⊆ X we find an input u ∈ L2([0,∞), U)
with

x1 = z(T, x0, u) as well as ‖z(t, x0, u)‖X ≤ R for all t ∈ [0, T ].

5.3.2 The wave equation with mixed boundary control

As a second example we study the wave equation with mixed boundary control. Let O ⊆ Rn
be a bounded domain with Lipschitz boundary ∂O. Take nonempty relatively open disjoint
subsets Γ0,Γ1 ⊆ ∂O of the boundary such that Γ0∪Γ1 = ∂O. Further assume that ∂Γ0 = Γ0\Γ0
and ∂Γ1 are nullsets. Note that then ∂O \ (Γ0 ∪ Γ1) = ∂Γ0 ∪ ∂Γ1 is a nullset. According to
Section 7 in [47] the system (for simplicity we chose b ≡ 1)

∂2
t ω(t, ξ) = ∆ω(t, ξ), (t, ξ) ∈ (0,∞)×O
ω(t, ξ) = 0, (t, ξ) ∈ (0,∞)× Γ0

∂

∂ν
ω(t, ξ) + ∂tω(t, x) =

√
2µ(t, ξ), (t, ξ) ∈ (0,∞)× Γ1

ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ O.

(5.30)

can be formulated as control system of the form (4.9). The operators A and B are not easy
to grasp. Therefore we repeat their construction in detail.
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We can see L2(Γ1) is a subspace of L2(∂O) as follows

L2(Γ1) = {h ∈ L2(∂O) |h = 0 almost everywhere on ∂O \ Γ1}
= {h ∈ L2(∂O) |h = 0 almost everywhere on Γ0},

where we used that ∂O \ (Γ0 ∪ Γ1) is a nullset for the second equation. With the Dirichlet
trace operator tr ∈ L(H1(O), L2(∂O)) we define

H1
Γ0(O) = {f ∈ H1(O) | tr f = 0 almost everywhere on Γ0}.

It is easy to see that H1
Γ0

(O) is the closed subspace of H1(O). We mention that H1
0 (O) =

H1
∂O(O). Clearly we have tr(H1

Γ0
(O)) ⊆ L2(Γ1). Remark 13.6.14 in [49] says that tr(H1

Γ0
(O))

is dense in L2(Γ1). For our interpretation of ∂
∂ν we recall Green’s formula

( ∂
∂ν f | tr g)L2(∂O) = (∆f | g)L2(O) + (∇f | ∇g)(L2(O))n (5.31)

for f ∈ H2(O) and g ∈ H1(O), see Lemma 1.5.3.7 in [17]. Here ∂
∂ν ∈ L(H2(O), L2(∂O)) is

the continuous extension of ∂
∂ν f(ξ) = ∇f(ξ) · ν(ξ) defined on C2(O). We shall now extend

this definition. To this end, let f ∈ H1
Γ0

(O) with ∆f ∈ L2(O). We say that ∂
∂ν f |Γ1 exists2 in

L2(Γ1) if there is a function h ∈ L2(Γ1) with

(h | tr g)L2(Γ1) = (∆f | g)L2(O) + (∇f | ∇g)(L2(O))n for all g ∈ H1
Γ0(O).

Due to the fact that tr(H1
Γ0

(O)) is dense in L2(Γ1), there is at most one such h ∈ L2(Γ1). We
can thus define ∂

∂ν f |Γ1 := h. Instead of saying ∂
∂ν f |Γ1 exists and equals h ∈ L2(Γ1) we simply

write ∂
∂ν f |Γ1 = h. From (5.31) it is clear that ∂

∂ν f |Γ1 = ∂
∂ν f · 1Γ1 for f ∈ H2(O).

We now consider the operator A1 in L2(O) defined as A1f = −∆f with domain

D(A1) = {f ∈ H1
Γ0(O) |∆f ∈ L2(O) and ∂

∂ν f |Γ1 = 0}.

We emphasize that the last condition ∂
∂ν f |Γ1 = 0 ensures that (4.33) holds for all f ∈ D(A1)

and g ∈ H1
Γ0

(O), i.e.,
(∆f | g)L2 = −(∇f | ∇g)(L2)n .

Moreover, it is proved in Theorem 13.6.9 that the Poincaré inequality is valid for f ∈ H1
Γ0

(O),
meaning that there is a number cp > 0 such that

‖f‖L2 ≤ cp‖∇f‖(L2)n for all f ∈ H1
Γ0(O).

For this reason we can argue exactly as for the Dirichlet Laplacian in Section 4.4 and obtain
that A1 is strictly positive. Further ‖ � ‖H1 is equivalent to the norm ‖∇( � )‖(L2)n which is
induced by the inner product given by (∇f | ∇g)(L2)n for f, g ∈ H1

Γ0
(O).

Next we construct the so called Neumann map N ∈ L(L2(Γ1), H1
Γ0

(O)). Let v ∈ L2(Γ1).
Then for all g ∈ H1

Γ0
(O) we have

|(v | tr g)L2(Γ1)| ≤ ‖v‖L2(Γ1)‖tr‖‖g‖H1 ≤ ‖v‖L2(Γ1)‖tr‖‖∇g‖(L2)n ,

2Actually ∂
∂ν
f |Γ1 can be defined as a functional on tr(H1

Γ0 (O)) for all f ∈ H1
Γ0 (O) with ∆f ∈ L2(O) if the

space tr(H1
Γ0 (O)) is normed properly, but this is not important here.
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showing that (v | tr ( � ))L2(Γ1) is a bounded functional on H1
Γ0

(O). The Riesz representation
theorem yields an element Nv of H1

Γ0
(O) with

(v | tr g)L2(Γ1) = (∇Nv | ∇g)(L2)n for all g ∈ H1
Γ0(O). (5.32)

Thus a map N : L2(Γ1)→ H1
Γ0

(O) is determined. We claim that ∆Nv = 0 for all v ∈ L2(Γ1).
In fact, for g ∈ C∞c (O) from the last equation, (4.32) and the fact that tr g = 0 we infer

〈g,∆Nv〉 = (−1)(∇Nv | ∇g) = (−1)(v | tr g)L2(Γ1) = 0.

From (5.32) we derive that ∂
∂νNv|Γ1 = v ∈ L2(Γ1). We set X = H1

Γ0
(O)× L2(O) and

D(A) = {(f, g) ∈ X | g ∈ H1
Γ0(O),∆f ∈ L2(O), ∂∂ν f |Γ1 = − tr g}.

It is shown in Section 7 of [47] that the operator A : D(A) → X; A(f, g) = (g,A1f)
is m-dissipative and therefore generates a semigroup of contractions T on X. Further
let U = L2(Γ1). An L2–admissible control operator Bl ∈ L(U,X−1) for T is given by
Bv = (0,−

√
2A1Nv).

We add a nonlinear term F0(ω(t, ξ)) to the state equation in (5.30), i.e.,

∂2
t ω(t, ξ) = ∆ω(t, ξ) + F0(ω(t, ξ)), (t, ξ) ∈ (0,∞)×O
ω(t, ξ) = 0, (t, ξ) ∈ (0,∞)× Γ0

∂

∂ν
ω(t, ξ) + ∂tω(t, x) =

√
2µ(t, ξ), (t, ξ) ∈ (0,∞)× Γ1

ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ O.

(5.33)

As in the previous example, this corresponds to the problem

z′(t) = Az(t) + F (z(t)) +Blu(t); z(0) = x0,

where F (f, g) = (0, F0 ◦ f) for (f, g) ∈ X. Under the assumption that F0 : R2 → R2 satisfies
(5.25) we proceed as above and derive that G(f) := F0 ◦ f belongs to Lp/α(O) for f ∈ Lp(O).
Due to the regularity of the boundary ∂O we have the Sobolev embedding

H1(O) ↪→ Lp(O) for all p ∈
{

[2,∞), n ∈ {1, 2}
[2, 2n

n−2 ], n ≥ 3.

Recall that α > 1 and choose p = 2α. We infer that G(H1
Γ(O)) ⊆ G(L2α(O)) ⊆ L2(O) if{

α ∈ (1,∞), n ∈ {1, 2}
α ∈ (1, n

n−2 ], n ≥ 3.

In this case F maps X to itself.
From Theorem 1.3 of [48] we know that the linear control system defined by A and Bl is

exactly controllable if the semigroup T is exponentially stable. Sufficient conditions for that
are given in Section 7.6 of [49], see especially Corollary 7.6.4. The assumptions are that the
boundary ∂O is of class C2 and that there is a reference point ξ0 ∈ Rn such that Γ0, Γ1 can
be represented as

Γ0 = {ξ ∈ ∂O | (ξ − ξ0) · ν(ξ) < 0} and Γ1 = {ξ ∈ ∂O | (ξ − ξ0) · ν(ξ) > 0}.
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Further it is assumed that Γ0, Γ1 are nonempty, open and closed. Hence these conditions only
allow a disconnected boundary ∂O. The conclusion of the previous example holds accordingly.

In Theorem 1.2 of [29] the authors prove exponential boundedness under conditions in-
cluding the case

{ξ ∈ ∂O | (ξ − ξ0) · ν(ξ) > 0} ⊆ Γ1.

Here Γ0 = ∅ is possible and ∂O must not be connected. However, they assume that the
boundary is smooth.
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Chapter 6

Observation systems

We now turn our attention to the output. The first three sections are devoted to nonlinear
observation systems without inputs. In the final section we consider regular systems with
both inputs and outputs.

In this chapter let X,U and Y be Banach spaces and p ∈ [1,∞] be fixed. The space U
only appears in Section 6.4.
Definition 6.1. Let T = (Tt)t≥0 be a strongly continuous semigroup on X and assume the
map Ψ∞ : X → Lploc([0,∞), Y ) is continuous. Then the pair (T,Ψ∞) is called an observation
system on X and Lploc([0,∞), Y ) if Ψ∞ satisfies the composition property

S∗τΨ∞(x) = Ψ∞(Tτx) for all x ∈ X and τ ≥ 0. (6.1)

The operator Ψ∞ is called (extended) output map of (T,Φ).
Note that Lploc([0,∞), Y ) is a Fréchet space. Thus Ψ∞ is continuous if and only if

‖PtΨ∞(x) − PtΨ∞(x̃)‖Lp([0,∞),Y ) converges to zero as ‖x − x̃‖X → 0 for each t ≥ 0. Equiv-
alently one considers the family (Ψt)t≥0 of operators Ψt : X → Lp([0,∞), Y ) defined by
Ψt(x) := PtΨ∞(x) for t ≥ 0 and x ∈ X. Then one requires that Ψt is continuous for every
t ≥ 0. For this operators the composition property translates to

S∗τΨt+τ (x) = Ψt(Tτx) for all x ∈ X and t, τ ≥ 0. (6.2)

We work with Ψ∞ most of the time.

6.1 Representation of observation systems
Definition 6.2. Let (T,Ψ∞) be an observation system on X and Lploc([0,∞), Y ). The Lebesgue
extension associated to the system (T,Ψ∞) is the operator CL in X with the graph{

(x,w) ∈ X × Y
∣∣∣∣ ∀ε > 0 ∃δ > 0 ∀τ ∈ (0, δ] :

∥∥∥∥w − 1
τ

∫ τ

0
Ψ∞(x)(s) ds

∥∥∥∥
Y
≤ ε

}
.

By definition a vector x ∈ X belongs to D(CL) if and only if 1
τ

∫ τ
0 Ψ∞(x)(s) ds has a limit

in Y as τ tends to zero from above. In this case we define CLx as the limit. Thus x ∈ D(CL)
if Ψ∞(x) has a right Lebesgue point at 0, cf. Appendix B.
Standing assumption: For the time being let (T,Ψ∞) be an observation system on X and
Lploc([0,∞), Y ).
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Proposition 6.3. For x ∈ X and t ≥ 0 we have Ttx ∈ D(CL) if Ψ∞(x) has a right Lebesgue
point at t and then CL(Ttx) = Ψ∞(x)(t). Hence for every x ∈ X we have

Ψ∞(x)(t) = CL(Ttx) for almost all t ≥ 0.

Proof. The composition property (6.1) yields

1
τ

∫ t+τ

t
Ψ∞(x)(s) ds = 1

τ

∫ τ

0
Ψ∞(x)(t+ s) ds = 1

τ

∫ τ

0
Ψ∞(Ttx)(s) ds .

This immediately proves the first claim. The last statement follows from Lebesgue’s differ-
entiation theorem, see Theorem B.2.

Remark 6.4. From the last result we derive that D(CL) is dense in X. Indeed, for each x ∈ X
we can find a sequence (tn) in [0,∞) with tn → 0 as n→∞ and Ttnx ∈ D(CL) for all n ∈ N.
Since T is strongly continuous, we deduce ‖Ttnx− x‖X → 0 as n→∞. ♦

At this point it is not clear why CL is called an ‘extension’. Recall from Chapter 2
that in the linear theory the operator CL is defined as the extension of an Lp–admissible
observation operator C ∈ L(X1, Y ). In turn we shall find that the restriction of CL to X1 is
continuous, see Theorem 6.8. To prove this result, we will add one more assumption on Ψ∞.
It is automatically satisfied if the system (T,Ψ∞) is linear, cf. Remark 6.13.

As in Section 4.1, a first step is to apply the Laplace transform. Of course have to make
sure that (Ψ∞(x))̂ (λ) exists. In this regard we state a special case of Lemma B.8.

Lemma 6.5. Let x ∈ X and λ ∈ C. Then (Ψ∞(x))̂ (λ) exists if and only if (Ψ∞(Tτx))̂ (λ)
exists for one and hence all τ ≥ 0. In this case we have

(Ψ∞(x))̂ (λ) =
∫ τ

0
eλsΨ∞(x)(s) ds+ e−λτ (Ψ∞(Tτx))̂ (λ) for all τ ≥ 0. (6.3)

Proof. Let x ∈ X, λ ∈ C and τ ≥ 0. Further let N > τ . The composition property (6.1) and
a change of variables imply∫ N

0
e−λsΨ∞(x)(s) ds =

∫ τ

0
e−λsΨ∞(x)(s) ds+

∫ N−τ

0
e−λ(s+τ)Ψ∞(x)(s+ τ) ds

=
∫ τ

0
e−λsΨ∞(x)(s) ds+ e−λτ

∫ N−τ

0
e−λsΨ∞(Tτx)(s) ds.

The left hand side converges as N → ∞ if and only if the right-hand side does. This
calculation also shows the identity (6.3).

As a consequence, we obtain a characterization of D(CL), see Proposition 6.7. Let us first
state a lemma that simplifies the proof of the latter.

Lemma 6.6. Let f ∈ L1([0, 1], Y ) and g ∈ C1([0, 1],C). Then we have

1
τ

∫ τ

0
g(s)f(s) ds− 1

τ

∫ τ

0
g(0)f(s) ds→ 0 as τ → 0+.

Consequently, 1
τ

∫ τ
0 g(0)f(s) ds converges if and only if 1

τ

∫ τ
0 g(s)f(s) ds converges as τ → 0+

and then the limits are equal.
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Proof. Due to the mean value theorem, 1
s |g(s)− g(0)| is bounded by maxσ∈[0,1]|g′(σ)| for all

s ∈ (0, 1]. We thus obtain∥∥∥∥ 1
τ

∫ τ

0
g(s)f(s) ds− 1

τ

∫ τ

0
g(0)f(s) ds

∥∥∥∥
Y
≤
∫ τ

0
s
τ

1
s |g(s)− g(0)|‖f(s)‖Y ds

≤ max
σ∈[0,1]

|g′(σ)|
∫ τ

0
‖f(s)‖Y ds.

Since f ∈ L1([0, 1], Y ) the right-hand side converges to 0 as τ → 0+.

Proposition 6.7. Let x ∈ X and λ ∈ C be such that (Ψ∞(x))̂ (λ) exists. Then x belongs to
D(CL) if and only if the “difference quotient”

1
τ

(
(Ψ∞(Tτx))̂ (λ)− (Ψ∞(x))̂ (λ)

)
=
(

1
τ

(
Ψ∞(Tτx)−Ψ∞(x)

))̂(λ)

converges to some y in Y as τ → 0+. In this case we have CL(x) = λ(Ψ∞(x))̂ (λ)− y.

Proof. From (6.3) we easily deduce

1
τ

(
(Ψ∞(Tτx))̂ (λ)−(Ψ∞(x))̂ (λ)

)
= 1

τ (eλτ−1)(Ψ∞(x))̂ (λ)−eλτ 1
τ

∫ τ

0
e−λsΨ∞(x)(s) ds. (6.4)

Clearly limτ→0+
1
τ (eλτ − 1) = λ and limτ→0+ eλτ = 1. An application of the last lemma with

f = Ψ∞(x) and g = e−λ( � ) yields that the limit of 1
τ

∫ τ
0 Ψ∞(x)(s) ds as τ → 0+ exists if

and only if it does for 1
τ

∫ τ
0 e−λsΨ∞(x)(s) ds. This means that x ∈ D(CL) if and only if the

right-hand side of (6.4) converges if and only if the left-hand side of (6.4) converges.

We saw that x ∈ X is contained in D(CL) if and only if Ψ∞(x) is “differentiable under
the Laplace transform”, provided abs(Ψ∞(x)) < ∞. To put this into a correct framework,
we consider weighted Lp–spaces. In Appendix B on page 142 we introduce the space

Lpµ([0,∞), Y ) := {f ∈ L1
loc([0,∞), Y ) | e−µ( � )f ∈ Lp([0,∞), Y )},

where µ ∈ R. It is a Banach space when equipped with the norm given by

‖f‖Lpµ := ‖e−µ( � )f‖Lp([0,∞),Y ) =
∫ ∞

0
‖e−µsf(s)‖pY ds.

If a locally integrable function f : [0,∞) → Y belongs to Lpµ([0,∞), Y ), then f̂(λ) con-
verges absolutely for all λ ∈ C with Reλ > µ. Moreover, we can estimate ‖f̂(λ)‖Y ≤
‖e−(Reλ−µ)( � )‖Lp′‖f‖Lpµ . Obviously ‖e−(Reλ−µ)( � )‖L∞ = 1. Further for all τ ≥ 0 the left shift
operator S∗τ maps Lpµ([0,∞), Y ) to itself. In fact, for every f ∈ Lpµ([0,∞), Y ) we have

‖S∗τ f‖Lpµ =
(∫ ∞

τ
e−µpseµpτ‖f(s)‖pY ds

)1/p
≤ eµτ‖f‖Lpµ .

We can now state and prove the main result of this section. Recall that “differentiable”
in applications often means “R–differentiable”. We made comments on that in the previous
chapters, see e.g. the text before Remark 4.25.
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Theorem 6.8. Let X and Y be Banach spaces, p ∈ [1,∞] and let (T,Ψ∞) be an observation
system on X and Lploc([0,∞), Y ). Assume that we have Ψ∞ ∈ C1(X,L1

µ([0,∞), Y )) for some
µ ∈ R. Then D(A) ⊆ D(CL) and the restriction C := CL

∣∣
D(A) : X1 → Y is continuous. For

x ∈ D(A) we have the formula

C(x) = µ(Ψ∞(x))̂ (µ)− (Ψ′∞(x)Ax)̂ (µ).

Proof. The first step is to show the inclusion D(A) ⊆ D(CL). To this end, take x ∈ D(A).
The orbit [0,∞) → X; t 7→ Ttx is differentiable at t = 0. By the chain rule also the
map g : [0,∞) → L1

µ([0,∞), Y ); t 7→ Ψ∞(Ttx) is differentiable at t = 0 with derivative
Ψ′∞(x)Ax ∈ L1

µ([0,∞), Y ). Let ε > 0. Due to the differentiability of g, there is a number
δ > 0 such that for τ ∈ (0, δ] we have

‖ 1
τ

[
(Ψ∞(Tτx))̂ (µ)− (Ψ∞(x))̂ (µ)

]
− (Ψ′∞(x)Ax)̂ (µ)‖Y

≤ ‖ 1
τ

[
Ψ∞(Tτx)−Ψ∞(x)

]
−Ψ′∞(x)Ax‖L1

µ
= ‖ 1

τ (g(τ)− g(0))− g′(0)‖L1
µ
≤ ε.

Proposition 6.7 now yields that x is contained in D(CL) and that

C(x) = CL(x) = µ(Ψ∞(x))̂ (µ)− (Ψ′∞(x)Ax)̂ (µ) for all x ∈ X1.

In the second step we now show that C is continuous. To this end, let x ∈ X1. We may
assume that µ > 0. For all x̃ ∈ X1 with ‖x− x̃‖1 ≤ 1 we have ‖x̃‖1 ≤ ‖x‖1 + 1 and thus

‖C(x)− C(x̃)‖Y ≤ µ‖(Ψ∞(x))̂ (µ)− (Ψ∞(x̃))̂ (µ)‖Y + ‖(Ψ′∞(x)Ax)̂ (µ)− (Ψ′∞(x̃)Ax̃)̂ (µ)‖Y
≤ µ‖Ψ∞(x)−Ψ∞(x̃)‖L1

µ
+ ‖Ψ′∞(x)Ax−Ψ′∞(x̃)Ax̃±Ψ′∞(x)Ax̃‖L1

µ

. µ‖Ψ∞(x)−Ψ∞(x̃)‖L1
µ

+ ‖Ψ′∞(x)‖ ‖x− x̃‖1 + ‖Ψ′∞(x)−Ψ′∞(x̃)‖ ‖x̃‖1
≤ µ‖Ψ∞(x)−Ψ∞(x̃)‖L1

µ
+ ‖Ψ′∞(x)‖ ‖x− x̃‖1

+ ‖Ψ′∞(x)−Ψ′∞(x̃)‖ (‖x‖1 + 1).

In the third line we used the equivalence of ‖ � ‖1 and the graph norm of A. Let ε > 0. Since
Ψ∞ : X → L1

µ([0,∞), Y ) is continuously differentiable, we find a number δ1 > 0 such that
for all x̃ ∈ X with ‖x− x̃‖X ≤ δ1 we have

‖Ψ∞(x)−Ψ∞(x̃)‖L1
µ
≤ ε and ‖Ψ′∞(x)−Ψ′∞(x̃)‖L(X,L1

µ) ≤ ε.

Recall that ‖x− x̃‖X ≤ c‖x− x̃‖1 for some c ≥ 0. Thus if ‖x− x̃‖1 ≤ min{1, δ1c , ε} then

‖C(x)− C(x̃)‖Y . µε+ ‖Ψ′∞(x)‖ε+ ε(‖x‖1 + 1) = ε(µ+ ‖Ψ′∞(x)‖+ ‖x‖1 + 1),

which implies that C is continuous at x and thus on X1.

Remark 6.9. The first step of the preceding proof works if we only assume that Ψ∞ maps X
to L1

µ([0,∞), Y ) and that it is differentiable in D(A) equipped with ‖ � ‖. In fact, the chain
rule can still be applied if we merely have

∀x ∈ D(A) ∃Ψ′∞(x) ∈ L(X,L1
µ([0,∞), Y )) ∀ε > 0 ∃δ > 0 ∀h ∈ D(A) :
‖h‖X ≤ δ =⇒ ‖Ψ∞(x+ h)−Ψ∞(x)−Ψ′∞(x)h‖L1

µ
≤ ε‖h‖X .

Hence also this weaker assumptions imply that D(A) ⊆ D(CL). Certainly, for the continuity
of C it suffices that

∀x ∈ D(A), ε > 0 ∃δ > 0 ∀x̃ ∈ D(A) : ‖x− x̃‖X ≤ δ =⇒ ‖Ψ′∞(x)−Ψ′∞(x̃)‖L(X,L1
µ) ≤ ε. ♦
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Under the conditions of Theorem 6.8, for all x ∈ X1 the mapping [0,∞)→ Y ; t 7→ CTtx
is continuous and coincides with Ψ∞(x) almost everywhere on [0,∞). Thus Ψ∞(x) has a
continuous representative.

Clearly C is linear if Ψ∞ is linear. Then, due to continuity, we even have C ∈ L(X1, Y ).

Definition 6.10. Let (T,Ψ∞) be an observation system on X and L1
µ([0,∞), U) as in Theorem

6.8. The continuous map C : X1 → Y is called the observation operator associated to (T,Ψ∞).

We shall give a sufficient condition for Ψ∞(x) ∈ L1
µ([0,∞), Y ) for all x ∈ X for some

µ ∈ R. For better readability we write ‖ � ‖Lp instead of ‖ � ‖Lp([0,∞),Y ).

Lemma 6.11. Let γ > 0 and M ≥ 1 be such that ‖Tt‖ ≤Meγt for all t ≥ 0. Further assume
there exist η > 0 and c ≥ 0 with

‖Ψ1(x)‖Lp ≤ c(‖x‖ηX + 1) for all x ∈ X. (6.5)

Then we have

‖Ψt(x)‖Lp ≤ cMη eγη

eγη − 1‖x‖
η
X eγηt + c(t+ 1) for all x ∈ X, t ≥ 0.

Estimating t+ 1 ≤ (1 + 1
γη )eγηt for t ≥ 0, we see that there is a constant c̃ ≥ 0 such that

‖Ψt(x)‖Lp ≤ c̃(‖x‖ηX + 1)eγηt for all x ∈ X, t ≥ 0. (6.6)

Proof. Let x ∈ D(A). In an easy induction we first show that for all n ∈ N we have

Ψn(x) =
n−1∑
k=0

SkΨ1(Tkx).

The case n = 1 is trivial. Assume the claim holds for some n ∈ N. Then the composition
property (6.2) and the induction hypothesis yield

Ψn+1(x) = PnΨn+1(x) + SnS
∗
nΨ1+n(x) = Ψn(x) + SnΨ1(Tnx)

=
n−1∑
k=0

SkΨ1(Tkx) + SnΨ1(Tnx) =
n∑
k=0

SkΨ1(Tkx).

From the condition (6.5) we now derive

‖Ψn(x)‖Lp ≤
n−1∑
k=0
‖SkΨ1(Tkx)‖Lp =

n−1∑
k=0
‖Ψ1(Tkx)‖Lp ≤ c

n−1∑
k=0

(1 + ‖Tkx‖ηX)

≤ cn+ cMη
n−1∑
k=0

eγηk‖x‖ηX = cMη‖x‖ηX
eγηn − 1
eγη − 1 + cn

≤ cMη 1
eγη − 1 ‖x‖

η
Xeγηn + cn.
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Now let t ≥ 0. Take n ∈ N with t ∈ [n− 1, n) and set τ = t− n+ 1. The above estimate
and (6.2) imply

‖Ψt(x)‖Lp ≤ ‖Pn−1Ψt(x)‖Lp + ‖Sn−1S
∗
n−1Ψτ+n−1(x)‖Lp ≤ ‖Ψn−1(x)‖Lp + ‖Ψτ (Tn−1x)‖Lp

≤ ‖Ψn−1(x)‖Lp + ‖Ψ1(Tn−1x)‖Lp

≤ cMη 1
eγη − 1 ‖x‖

η
Xeγη(n−1) + c(n− 1) + cMη‖x‖ηXeγη(n−1) + c

= cMη eγη

eγη − 1‖x‖
η
Xe

γη(n−1) + cn ≤ cMη eγη

eγη − 1 ‖x‖
η
Xeγηt + c(t+ 1).

Corollary 6.12. Under the assumptions of the Lemma 6.11 for all ω > max{ω0(T), 0} the
function Ψ∞(x) belongs to L1

ωη([0,∞), Y ) ∩Lpωη([0,∞), Y ) for every x ∈ X. Moreover, there
are constants c1, cp ≥ 0 with ‖Ψ∞(x)‖Lqωη ≤ cq(‖x‖

η
X + 1) where q ∈ {1, p}.

Proof. Let x ∈ X and ω > max{ω0(T), 0} =: a. Fix any γ ∈ (a, ω). For n ∈ N, from (6.6)
we derive the estimate

‖Ψn(x)‖p
Lpωη

=
∫ n

0
‖e−ωηsΨ∞(x)(s)‖pY ds =

n∑
k=1

∫ k

k−1
e−ωηps‖Ψ∞(x)(s)‖pY ds

≤
n∑
k=1

e−ωηp(k−1)‖Ψk(x)‖pLp([k−1,k],Y ) ≤ eωηp
n∑
k=1

e−ωηpk‖Ψk(x)‖pLp

≤ eωηpc̃p(‖x‖ηX + 1)p
∞∑
k=0

(
e−(ω−γ)ηp)k.

The geometric series on the right-hand side converges. Hence Lemma B.9 yields that Ψ∞(x)
belongs to Lpωη([0,∞), Y ) as well as the claimed estimate for ‖Ψ∞(x)‖Lpωη . On the other
hand, using also Hölder’s inequality, we obtain

‖Ψn(x)‖L1
ωη

=
∫ n

0
‖e−ωηsΨ∞(x)(s)‖Y ds =

n∑
k=1

∫ k

k−1
e−ωηs‖Ψ∞(x)(s)‖Y ds

≤
n∑
k=1

e−ωη(k−1)‖Ψk(x)‖L1([k−1,k],Y ) ≤ eωη
n∑
k=1

e−ωηk‖Ψk(x)‖Lp([k−1,k],Y )

≤ eωη
n∑
k=1

e−ωηk‖Ψk(x)‖Lp ≤ eωη c̃(‖x‖ηX + 1)
∞∑
k=0

(
e(γ−ω)η)k.

As above, it follows from Lemma B.9 that Ψ∞(x) lies in L1
ωη([0,∞), Y ).

Remark 6.13. Let (T,Ψ) be a linear observation system on X and Lp([0,∞), Y ). Since
Ψ1 ∈ L(X,Lp([0,∞), Y )) the assumptions of Lemma 6.11 are satisfied with η = 1 and
c = ‖Ψ1‖L(X,Lp). Consequently Ψ∞(x) is contained in L1

ω([0,∞), Y ) ∩ Lpω([0,∞), Y ) for any
ω > ω0(T). See also Proposition 2.3 in [53]. It is further easy to prove that we actually have

Ψ∞ ∈ L(X,L1
ω([0,∞), Y )) ∩ L(X,Lpω([0,∞), Y )).

Because Ψ∞ : X → L1
µ([0,∞), Y ) is linear, it clearly is continuously differentiable. Con-

sequently also the assumptions of Theorem 6.8 are satisfied in this situation. The Lebesgue
extension CL is linear in this case. Therefore we have C ∈ L(X1, Y ). ♦
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Remark 6.14. Let γ > 0 andM ≥ 1 be as in Lemma 6.11. Further assume that ‖Ψ1(x)‖Lp ≤ c
for all x ∈ X. Then with the same technique we derive the estimate ‖Ψn(x)‖Lp ≤ cn for
n ∈ N. A reasoning analog to Corollary 6.12 yields Ψ∞(x) ∈ L1

µ([0,∞), Y ) ∩ Lpµ([0,∞), Y )
for all µ > 0, since

‖Ψn(x)‖p
Lpµ
≤ cp

n∑
k=1

kpe−µp(k−1), ‖Ψn(x)‖L1
µ
≤ c

n∑
k=1

ke−µ(k−1).

Again the series on the right-hand sides converge. ♦

6.2 Linearization

As before let (T,Ψ∞) be an observation system on X and Lploc([0,∞), Y ) for Banach spaces
X, Y and some p ∈ [1,∞]. Denote by A the generator of the semigroup T.

Take x∗ ∈ X1 with Ax∗ = 0, i.e., an equilibrium point of the problem z′(t) = Az(t).
Then Ttx∗ = x∗ for every t ≥ 0. Assume that Ψt : X → Lp([0,∞), Y ) is differentiable at x∗
for all t ≥ 0. Let us check that the family Ψ′(x∗) = (Ψ′t(x∗))t≥0 of linear operators Ψ′t(x∗) ∈
L(X,Lp([0,∞), Y ) together with T yield a linear control system on X and Lploc([0,∞), Y ).

To this end, for t, τ ≥ 0 consider the map Ft,τ : X → Lp([0,∞), Y ); Ft,τ (x) = S∗τΨt+τ (x) =
Ψt(Tτx). By the chain rule Ft,τ is differentiable at x∗ and we get

S∗τΨ′t+τ (x∗) = F ′t,τ (x∗) = Ψ′t(Tτx∗)Tτ = Ψ′t(x∗)Tτ .

Very similarly one verifies that PτΨ′t(x∗) = Ψ′τ (x∗) for all t ≥ τ ≥ 0.

As for controllability, there are several observability concepts. Some of the most important
linear concepts are discussed in Section 6.1 of [49]. We repeat one of Definition 6.1.1 therein.
Definition 6.15. A linear observation system (T,Ψl

∞) onX and Lploc([0,∞), Y ) is called exactly
observable in time T > 0, if Ψl

T ∈ L(X,Lp([0,∞), Y ) is bounded from below. This means that
there is lower bound kT > 0 such that

‖Ψl
Tx‖Lp ≥ kT ‖x‖X for all x ∈ X. (6.7)

For the moment, let X be reflexive and recall the notion of the dual system (T∗,Φd) from
the end of Section 2.2. We saw that Ψ∗τ = Φd

τ Rτ for all τ ≥ 0. Standard arguments on dual
operators yield that a linear observation system (T,Ψ) is exactly observable if and only if
(T∗,Φd) is exactly controllable, see Theorem 11.2.1 of [49].

The following definition is taken from [8]. Obviously a linear observation system is locally
exactly observable if and only if it is exactly observable.
Definition 6.16. An observation system (T,Ψ∞) on X and Lploc([0,∞), Y ) is called locally
exactly observable around x∗ in time T > 0 if there is a radius ρ > 0 and a lower bound lT > 0
such that

‖ΨTx1 −ΨTx2‖Lp ≥ lT ‖x1 − x2‖X for all x1, x2 ∈ B(x∗, ρ).

It is clear that the linear system (T,Ψl
∞) from Definition 6.15 is exactly controllable in

time T > 0 if and only if Ψl
T is one-to-one and the left inverse Q : Ran(Ψl

T )→ X is bounded.
Moreover, Ran(Ψl

T ) is a closed subspace of Lp([0,∞), Y ).
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Compared to this, from the condition in Definition 6.16 we can merely deduce that ΨT
is one-to-one on B(x∗, ρ) and that the left inverse Q : ΨT (B(x∗, ρ)) → B(x∗, ρ) is Lipschitz.
However, it is easy to see that a linear observation system is exactly observable in time T > 0
if and only if it is locally exactly observable around 0 in time T .

Once more the exact observability of the linearized system implies the exact local ob-
servability of the original system. Note that the proof of the following theorem only uses
elementary arguments. Compared to that, the structure of the proof of Theorem 4.37 is
notably more complicated.
Theorem 6.17. Let X and Y be Banach spaces, p ∈ [1,∞] and let (T,Ψ∞) be an observation
system on X and Lploc([0,∞), Y ). Assume that we have Ψt ∈ C1(X,Lp([0,∞), Y )) for all
t ≥ 0. Moreover, let there be some x∗ ∈ D(A) with Ax∗ = 0 such that (T,Ψ′∞(x∗)) is exactly
observable in time T > 0. Then (T,Ψ∞) is locally exactly observable around x∗ in time T .

Proof. The assumption yields a lower bound kT > 0 with

‖Ψ′T (x∗)x‖Lp ≥ kT ‖x‖X for all x ∈ X.

Define Ψrem
T : X → Lp([0,∞), Y ); Ψrem

T (x) = ΨT (x)−ΨT (x∗)−Ψ′T (x∗)(x− x∗) so that

ΨT (x) = ΨT (x∗) + Ψ′T (x∗)(x− x∗) + Ψrem
T (x) for all x ∈ X. (6.8)

It is clear that Ψrem
T is continuously differentiable with derivative given by (Ψrem

T )′(x) =
Ψ′T (x)−Ψ′T (x∗). Note that we have (Ψrem

T )′(x∗) = 0.
Since the map X 7→ L(X,Lp([0,∞), Y )); x 7→ (Ψrem

T )′(x) is continuous, we find a radius
ρ > 0 with ‖(Ψrem

T )′(x)‖L(X,Lp) ≤ 1
2kT for all x ∈ B(x∗, ρ). Let x1, x2 ∈ B(x∗, ρ). By the

fundamental theorem we have

ΨT (x1)−ΨT (x2) = Ψ′T (x∗)(x1 − x2) + Ψrem
T (x1)−Ψrem

T (x2)

= Ψ′T (x∗)(x1 − x2) +
∫ 1

0
(Ψrem

T )′(x2 + σ(x1 − x2))(x1 − x2) dσ.

Since xσ := x2 + σ(x1 − x2) is contained in the ball B(x∗, ρ) for all σ ∈ [0, 1] we obtain

kT ‖x1 − x2‖X ≤ ‖Ψ′T (x∗)(x1 − x2)‖Lp

≤ ‖ΨT (x1)−ΨT (x2)‖Lp +
∫ 1

0
‖(Ψrem

T )′(xσ)‖L(X,Lp) dσ‖x1 − x2‖X

≤ ‖ΨT (x1)−ΨT (x2)‖Lp + sup
x∈B(0,ρ)

∥∥(Ψrem
T )′(x)

∥∥
L(X,Lp) ‖x1 − x2‖X

≤ ‖ΨT (x1)−ΨT (x2)‖Lp + 1
2kT ‖x1 − x2‖X .

(6.9)

Subtracting 1
2kT ‖x1 − x2‖X the claim follows.

6.3 Applications
Let X and Yl be Banach spaces and let A be the generator of a strongly continuous semigroup
T on X. Further assume that C l ∈ L(X1, Yl) is an Lp–admissible linear control operator for
T. Denote by Ψl

∞ : X → Lploc([0,∞), Yl) the extended output map defined by C l and T.
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Let Y be another Banach space. We are looking at a class of continuous mapsM : Yl → Y
with the property that there are constants η ∈ (0, p] and c ≥ 0 such that

‖M(y)‖Y ≤ c(‖y‖ηYl + 1) for all y ∈ Yl. (6.10)

As in Section 4.4 we will frequently use the fact that for a, b, e ≥ 0 we have

(a+ b)e ≤ (2 max{a, b})e = 2e max{ae, be} ≤ 2e(ae + be).

For x ∈ X we set Ψ∞(x) = M ◦Ψl
∞x. Then for almost every t ≥ 0 we have

‖Ψ∞(x)(t)‖
p
η

Y = ‖M(Ψl
∞x(t))‖

p
η

Y ≤ c
p
η (‖Ψl

∞x(t)‖ηYl + 1)
p
η ≤ (2c)

p
η (‖Ψl

∞x(t)‖pYl + 1).

The right-hand side as a function of t is locally integrable. Hence Ψ∞(x) lies in Lp/ηloc([0,∞), Y )
for all x ∈ X. We obtain a map

Ψ∞ : X → L
p
η

loc([0,∞), Y ).

We shall show that (T,Ψ∞) is an observation system on X and Lp/ηloc([0,∞), Y ). First, let us
verify the composition property (6.1). Take τ ≥ 0 and x ∈ X. Using (6.1) for Ψl

∞, we derive

S∗τΨ∞(x)(t) = M
(
Ψl
∞x(t+ τ)

)
= M

(
Ψl
∞Tτx(t)

)
= Ψ∞(Tτx)(t)

for almost all t ≥ 0.
We next prove that Ψτ = PτΨ∞ : X → Lp/η([0,∞), Y ) is continuous. Note that Ψτ =

PτM ◦Ψl
τ . (Clearly the latter equals M ◦Ψl

τ if and only if M(0) = 0.) We proceed as in the
second step of the proof of Proposition 4.17. Let (xn) be a sequence in X with xn → x as
n→∞. We apply the dominated convergence theorem to

‖Ψτ (x)−Ψτ (xn)‖
L
p
η

=
(∫ τ

0
‖M(Ψl

τx(t))−M(Ψl
τxn(t))‖

p
η

Y

)η/p
.

Due to the boundedness of Ψl
τ , we then have ‖Ψl

τ (xn − x)‖Lp → 0 as n → ∞. Passing to
a subsequence we may assume that Ψl

τxn converges to Ψl
τx pointwise almost everywhere on

[0, τ ]. Since M is continuous, it follows that ‖M(Ψl
τx(t)) −M(Ψl

τxn(t))‖Y → 0 as n → ∞.
Moreover, the subsequence can be chosen such that we find a function f ∈ Lp([0, τ ],R) with
‖Ψl

τxn(t)‖Yl ≤ f(t) for almost all t ∈ [0, τ ]. By (6.10) we obtain

‖M(Ψl
τx(t))−M(Ψl

τxn(t))‖Y ≤ ‖M(Ψl
τx(t))‖Y + ‖M(Ψl

τxn(t))‖Y
≤ c‖Ψl

τx(t)‖ηYl + c‖Ψl
τxn(t)‖ηYl + 2c ≤ c‖Ψl

τx(t)‖ηYl + f(t)η + 2c

for almost every t ∈ [0, τ ]. Each of the summands on the right-hand side defines a function
in Lp/η([0, τ ],R). Thus the conditions of the dominated convergence theorem are satisfied.
With a reasoning similar to the final step of Lemma 4.39 we conclude that Ψt is continuous.

It is easy to see that Ψ∞ satisfies the assumption of Lemma 6.11. Indeed, let x ∈ X and
τ > 0, then with (6.10) we can estimate

‖Ψτ (x)‖
L
p
η
≤
(∫ τ

0
c
p
η (‖Ψl

τx(t)‖ηYl + 1)
p
η dt

)η/p
≤ 2c

(∫ τ

0
max{‖Ψl

τx(t)‖Yl , 1}
p dt

)η/p
= 2c‖max{‖Ψl

τx‖Yl , 1}‖
η
Lp([0,τ ],R) ≤ 2η+1c(‖Ψl

τx‖
η
Lp + τη)

≤ 2η+1cmax{τη, 1}(‖Ψl
τx‖

η
Lp + 1).
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Plugging in τ = 1 we infer

‖Ψ1(x)‖
L
p
η
≤ 2η+1c

(
‖Ψl

1‖
η
L(X,Lp)‖x‖

η
X + 1

)
≤ 2η+1cmax{‖Ψl

1‖
η
L(X,Lp), 1}(‖x‖

η
X + 1).

With Corollary 6.12 we conclude that Ψ∞(x) ∈ L1
ωη([0,∞), Y )∩Lp/ηωη ([0,∞), Y ), where ω > 0

is such that ‖Tt‖ ≤Meωt for some M ≥ 1 and all t ≥ 0.
In our example below we have p = 2 so that η ∈ (0, 2] and L1

ωη([0,∞), Y ) is contained in
L1

2ω([0,∞), Y ). Hence, in the following we assume that (6.10) holds with η = 2.
Additionally, let M be continuously R–differentiable and assume that the derivative M ′

satisfy the growth bound

‖M ′(v)‖LR(Yl,Y ) ≤ c(‖y‖Yl + 1) for all y ∈ Yl. (6.11)

As before, we drop the R. The constant c ≥ 0 has no special importance and without loss
of generality, we may assume it is as in (6.10). In the same way as before we deduce that
M ′ ◦Ψl

∞x ∈ L2([0,∞),L(Yl, Y )) as well as

M ′ ◦Ψl
∞x ∈ L2

ω([0,∞),L(Yl, Y ))

for all x ∈ X. We briefly write ‖ � ‖L2
ω ,L for ‖ � ‖L2

ω([0,∞),L(Yl,Y )). Let x, h ∈ X and recall from
Remark 6.13 that Ψl

∞ ∈ L(X,L2
ω([0,∞), Y )). It follows that

‖M ′(Ψl
∞x( � ))Ψl

∞h( � )‖L1
2ω
≤
∫ ∞

0
e−ωt‖M ′(Ψl

∞x(t))‖L(Yl,Y )e−ωt‖Ψl
∞h(t)‖Yl dt

≤ ‖M ′(Ψl
∞x( � ))‖L2

ω ,L‖Ψ
l
∞h‖L2

ω

≤ c2(‖x‖X + 1)‖Ψl
∞‖L(X,L2

ω)‖h‖X .

HenceM ′(Ψl
∞x( � ))Ψl

∞h( � ) is contained in the space L1
2ω([0,∞), Y ) and the linear map X →

L1
2ω([0,∞), Y ); h 7→M ′(Ψl

∞x( � ))Ψl
∞h( � ) is bounded. We next prove that Ψ∞ is continuously

R–differentiable with derivative given by

Ψ′∞(x)h = M ′(Ψl
∞x( � ))Ψl

∞h( � ) for x, h ∈ X.

We argue as in Section 5.3. Using Fubini’s theorem and Hölder’s inequality we infer the
estimate

‖Ψ∞(x+ h)−Ψ∞(x)−M ′(Ψl
∞x( � ))Ψl

∞h( � )‖L1
2ω

=
∫ ∞

0
e−2ωt‖M(Ψl

∞(x+ h)(t))−M(Ψl
∞x(t))−M ′(Ψl

∞x(t))Ψl
∞h(t)‖Y dt

≤
∫ ∞

0
e−ωte−ωt

∫ 1

0
‖M ′(Ψl

∞x(t) + rΨl
∞h(t))−M ′(Ψl

∞x(t))‖L(Yl,Y )‖Ψl
∞h(t)‖Yl dr dt

≤
∫ 1

0
‖M ′(Ψl

∞x( � ) + rΨl
∞h( � ))−M ′(Ψl

∞x( � ))‖L2
ω ,L dr‖Ψl

∞h‖L2
ω

≤
∫ 1

0
‖M ′(Ψl

∞x( � ) + rΨl
∞h( � ))−M ′(Ψl

∞x( � ))‖L2
ω ,L dr‖Ψl

∞‖L(X,L2
ω)‖h‖X .

It remains to show that ‖M ′(Ψl
∞x( � )+rΨl

∞h( � ))−M ′(Ψl
∞x( � ))‖L2

ω ,L can be made arbitrarily
small for all r ∈ [0, 1] by choosing ‖h‖X small. This mainly follows from Lemma 4.39 with
η = 1 and p = 2 there. We have to make sure it can be applied.
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Set f := Ψl
∞x and fh := Ψl

∞h. Then ‖fh‖L2
ω
≤ ‖Ψl

∞‖‖h‖X decreases with ‖h‖X . On the
other hand we have ‖fh‖L2

ω
= ‖e−ω( � )fh‖L2 . Minor modifications of the proof of Lemma 4.39

show that

‖M ′(Ψl
∞x( � ) + rΨl

∞h( � ))−M ′(Ψl
∞x( � ))‖2L2

ω ,L

=
∫ ∞

0
e−2ωt‖M ′(f(t) + rfh(t))−M ′(f(t))‖2L(Yl,Y ) dt

can be controlled by ‖fh‖L2
ω
and thus by ‖h‖X . Let us summarize these results in a lemma.

Lemma 6.18. Let X, Yl and Y be Banach spaces and let (T,Ψl
∞) be a linear observa-

tion system on X and Lp([0,∞), Yl). Denote by C l ∈ L(X1, Yl) the observation opera-
tor of (T,Ψl

∞). Let M : Yl → Y be a continuous map satisfying (6.10). Then the map
Ψ∞ : X → L

p/η
loc([0,∞), Y ); Ψ∞(x) = M ◦ Ψl

∞x yields an observation system (T,Ψ∞) on X

and Lp/η([0,∞), Y ). Moreover, Ψ∞ maps X to L1
ωη([0,∞), Y ) ∩ Lp/ηωη ([0,∞), Y )

Additionally let η = 2 and assume that M is continuously R–differentiable and that the
derivative satisfies the growth bound (6.11). Then Ψ∞ is continuously R–differentiable as a
map from X to L1

2ω([0,∞), Y ) with derivative given by Ψ′∞(x)h = M ′(Ψl
∞x( � ))Ψl

∞h( � ) for
x, h ∈ X.

6.3.1 A wave equation with Neumann boundary observation

We repeat some known results from Section 7.1 of [49]. Let O be a bounded domain with
boundary ∂O of class C2. The surface measure on ∂O is denoted σ. Since O is bounded and
∂O is continuous, it is clear that σ(∂O) < ∞. In Subsection 4.4.2 we already encountered
the linear wave equation

∂2
t ω(t, ξ) = ∆ω(t, ξ), (t, ξ) ∈ (0,∞)×O
ω(t, ξ) = 0, (t, ξ) ∈ (0,∞)× ∂O
ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ O

(6.12)

with initial values f0, g0 : Ω → C, see (4.35). The difference is that there is no input µ. We
saw that setting z(t) = (η(t, � ), ∂tη(t, � )) and x0 = (f0, g0) this problem can be written as

z′(t) = Az(t); z(0) = x0.

The state space was X = H1
0 (O)× L2(O) so that the boundary condition is satisfied in the

sense of traces. Moreover, we had D(A) = (H2(O) ∩H1
0 (O))×H1

0 (O) ⊆ X and

A : D(A)→ X; A(f, g) = (g,−A0f),

where −A0 is the Dirichlet Laplacian also defined in Section 4.4. We argued that A is
skew-adjoint and thus the generator of a unitary group T on X.

In Subsection 4.4.2 we discussed how the abstract equation and the partial differential
equation are connected. We do not repeat the arguments because they work analogously in
the present situation.

Let ν ∈ L∞(∂O,Rn) be outward normal vector field on ∂O. Recall that the normal
derivative ∂

∂ν is the continuous extension of the map
∂
∂ν : C2(O)→ L2(∂O); ∂

∂ν f(ξ) = ∇f(ξ) · ν(ξ).
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to an operator ∂
∂ν ∈ L(H2(O), L2(∂O)). Consider an open subset Γ ⊂ ∂O of the boundary.

Set Y = Yl = L2(Γ) and define C l ∈ L(X1, Y ) by

C l(f, g) := ∂
∂ν f |Γ := ∂

∂ν f · 1Γ.

It is shown in Theorem 7.1.3 of [49] that C l is an L2–admissible observation operator for T.
We can choose M as in the example of Subsection 4.4.2. More precisely, we define

M(y) = m(‖y‖2Y )y for y ∈ Y,

where m ∈ C2(R,R) was a function with m(0) 6= 0 and m(a) = 0 for |a| greater than a
number R > 0. We saw that M is two-times continuously R–differentiable with bounded
derivatives and thus M as well as M ′ are Lipschitz. As a consequence, (6.10) is satisfied
with η = 1 and hence with η = 2. Also (6.11) holds. With Theorem 6.8 we infer that
D(A) ⊆ D(CL) and that the restriction C := CL|D(A) is continuous as a map from X1 to Y .

Let us briefly show that in this example Theorem 6.17 can be applied with p = 2 and
the equilibrium point x∗ = 0. However, we have to adapt the proof, more precisely, we have
to replace the estimate (6.9). First note that with a reasoning analog to Section 4.4 one
can show that Ψt : X → L1([0,∞), Y ) is continuously R–differentiable for all t ≥ 0 with
derivative given by

Ψ′t(x)h = M ′(Ψl
tx( � ))Ψl

th( � ) for x, h ∈ X.
Here we only use that M : Y → Y is continuously R–differentiable and both M and M ′ are
Lipschitz. Plugging in x∗ = 0 we obtain

Ψ′t(0)h = M ′(0)Ψl
th = m(0)Ψl

th.

Recall that in the proof of Theorem 6.17 we used the identity

Ψ′T (0)(x1 − x2) = ΨT (x1)−ΨT (x2)−
∫ 1

0
(Ψrem

T )′(xσ)(x1 − x2) dσ, (6.13)

for x1, x2 ∈ X where xσ = x2 + σ(x1 − x2). Here we have

(Ψrem
T )′(xσ)(x1 − x2) = [Ψ′t(xσ)−Ψ′t(0)](x1 − x2) = [M ′(Ψl

txσ( � ))−M ′(0)]Ψl
t(x1 − x2)( � )

The left-hand side of (6.13) equals m(0)Ψl
T (x1 − x2). Let us assume that (T,Ψl

∞) is exactly
observable in time T > 0. Theorem 7.2.4 of [49] yields that this is the case if there is a vector
ξ0 ∈ Rn such that {ξ ∈ ∂O | (ξ − ξ0) · ν(ξ) > 0} ⊆ Γ. Then we find a constant kT > 0 with

‖m(0)Ψl
T (x1 − x2)‖L2 ≥ |m(0)|kT ‖x1 − x2‖X .

As in (6.9) we want to bound the L2–norm of the integral on the right-hand side of (6.13)
by q|m(0)|kT ‖x1 − x2‖X for some number q ∈ (0, 1). Using (4.37) we can estimate(∫ T

0

(∫ 1

0
‖(Ψrem

T )′(xσ)(x1 − x2)‖Y dσ
)2

dt
)1/2

=
(∫ T

0

(∫ 1

0
‖M ′(Ψl

Txσ(t))−M ′(0)‖LR(Y )‖Ψl
T (x1 − x2)(t)‖Y dσ

)2
dt
)1/2

≤ (‖m‖L∞ + ‖m′‖L∞R+ |m(0)|)‖Ψl
T (x1 − x2)‖L2([0,∞),Y )

≤ (‖m‖L∞ + ‖m′‖L∞R+ |m(0)|)‖Ψl
T ‖L(X,L2)‖x1 − x2‖L2([0,∞),Y ).

Hence, the condition on m is that ‖m‖L∞ + ‖m′‖L∞R+ |m(0)| < |m(0)|kT .
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Above we made heavy use of the special structure. In view of the efforts made in Section
4.4 it becomes clear that it does not suffice to assume that M : Y → Y is continuously
R–differentiable and that M , M ′ are Lipschitz. We can then still prove differentiability of
Ψt : X → L1([0,∞), Y ), but we have to apply Theorem 6.17 with p = 1. However, even if
M ′(0) is invertible, we can not derive the lower bound (6.7) for Ψ′t(0) with p = 1, because Ψl

∞
satisfies (6.7) with the stronger norm ‖ � ‖L2 . We emphasize that there is no Hilbert space
assumption in Theorem 6.17.

One alternative is to consider bounded observation operators C l ∈ L(X,Y ). In this case
the output Pty = Ψl

tx = PtC
lT( � )x is a continuous function and therefore we can infer that

Ψt is differentiable with values in L2([0,∞), Y ).

6.4 Regular additive well-posed systems
To complete the text we now discuss the dependence of the output on the input. We saw in
Section 2.3 that the additive structure is only justifiable if the output map is linear. Hence,
the nonlinearity resides in the input.
Definition 6.19. Let X, U and Y be Banach spaces and p ∈ [1,∞). An additive well-posed
system on X, Lp([0,∞), U) and Lp([0,∞), Y ) is a quadruple Σ = (T,Φ,Ψ∞, F∞) consisting of

(i) a strongly continuous semigroup T on X,

(ii) a family Φ = (Φt)t≥0 of maps Φt : Lp([0,∞), U) → X such that (T,Φ) is a continuous
additive control system on X and Lp([0,∞), U),

(iii) a linear operator Ψ∞ : X → Lploc([0,∞), Y ) such that (T,Ψ∞) is a linear observation
system on X and Lploc([0,∞), Y ),

(iv) a map F∞ : Lploc([0,∞), U)→ Lploc([0,∞), Y ) satisfying the composition property

S∗t F∞(u) = Ψ∞Φt(u) + F∞(S∗t u) (6.14)

as well as the causality PtF∞(u) = PtF∞(Ptu) for all u ∈ Lploc([0,∞), U) and t ≥ 0.

The operators Φt are called output maps, the map Ψ∞ is the (extended) output map and
we call F∞ the (extended) input-output map.

Let v ∈ U . In the definition below we consider the output F∞(χv). It is called the step
response of Σ corresponding to v. To provide a motivation, for the moment assume that Σ
is a finite dimensional linear system given by matrices A, B, C and D. It is well-known that
in this situation yv can be represented

yv(t) = C

∫ t

0
eAsBv ds+Dv for t ≥ 0. (6.15)

Obviously, this function is continuous and thus has a Lebesgue point at 0, namely yv(0) = Dv.
Definition 6.20. An additive well-posed system Σ = (T,Φ,Ψ, F∞) on X, Lp([0,∞), U) and
Lp([0,∞), Y ) is called regular if there exists a map D : U → Y such that for all v ∈ U the
integral

1
τ

∫ τ

0
F∞(χv)(s) ds

converges to D(v) in Y as τ → 0+. The operator D is called feedthrough operator of Σ.
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We shall now see that for regular systems the analog of (6.15) is valid. In fact, also the
output corresponding to inputs from Ω0 can be represented accordingly. The space of step
functions Ω0 was introduced at the beginning of Chapter 4.
Theorem 6.21. Let Σ = (T,Φ,Ψ, F∞) be a regular additive well-posed system on the spaces
X, Lp([0,∞), U) and Lp([0,∞), Y ) for an exponent p ∈ [1,∞). Then for each u ∈ Ω0 and
almost every t ≥ 0 we have Φt(u) ∈ D(CL) as well as

F∞(u)(t) = CLΦt(u) +D(u(t)). (6.16)
Proof. For all u ∈ Lploc([0,∞), U), t ≥ 0 and τ > 0 the composition property (6.14) yields

1
τ

∫ t+τ

t
F∞(u)(s) ds = 1

τ

∫ τ

0
F∞(u)(t+ s) ds =

∫ τ

0
(S∗t F∞(u))(s) ds

= 1
τ

∫ τ

0

(
Ψ∞Φt(u)

)
(s) ds+ 1

τ

∫ τ

0
F∞(S∗t u)(s) ds. (6.17)

Fix u ∈ Ω0 ⊆ Lploc([0,∞), U). There are 0 = t0 < t1 < . . . < tm and v1, . . . , vm ∈ U with

u =
m∑
k=1

1[tk−1,tk)vk.

Since F∞(u) belongs to L1
loc([0,∞), U), Theorem B.2 yields a nullset N ⊆ [0,∞) such that

for all t ∈ [0,∞) \ N we have

1
τ

∫ t+τ

t
F∞(u)(s) ds→ F∞(u)(t) as τ → 0+

with convergence in Y .
Let t ∈ [0,∞) \ N . If t < tm there is exactly one k ∈ {1, . . . ,m} with t ∈ [tk−1, tk)

and we set δ0 := tk − t. If t ≥ tm we set δ0 = 1. Then for all s ∈ [0, δ0) it follows
S∗t (u)(s) = u(t+ s) = u(t). To express it differently, we have Pδ0S∗t (u) = Pδ0χu(t).

Let ε > 0. There is some δ ∈ (0, δ0) such that for all τ ∈ (0, δ] we have∥∥∥∥ 1
τ

∫ t+τ

t
F∞(u)(s) ds− F∞(u)(t)

∥∥∥∥
Y
≤ ε

2 .

Choosing δ small enough, causality and regularity yield∥∥∥∥ 1
τ

∫ τ

0
F∞(S∗t u)(s) ds−D(u(t))

∥∥∥∥
Y

=
∥∥∥∥ 1
τ

∫ τ

0
Pδ0F∞(S∗t u)(s) ds−D(u(t))

∥∥∥∥
Y

=
∥∥∥∥ 1
τ

∫ τ

0
Pδ0F∞(Pδ0S∗t u)(s) ds−D(u(t))

∥∥∥∥
Y

=
∥∥∥∥ 1
τ

∫ τ

0
F∞(χu(t))(s) ds−D(u(t))

∥∥∥∥
Y
≤ ε

2 .

For sufficiently small τ > 0 it follows∥∥∥∥ 1
τ

∫ τ

0
Ψ∞(Φt(u))(s) ds− F∞(u)(t) +D(u(t))

∥∥∥∥
X

=
∥∥∥∥ 1
τ

∫ t+τ

t
F∞(u)(s) ds− F∞(u)(t)−

(
1
τ

∫ τ

0
F∞(S∗t u)(s) ds−D(u(t))

)∥∥∥∥
Y

≤
∥∥∥∥ 1
τ

∫ t+τ

t
F∞(u)(s) ds− F∞(u)(t)

∥∥∥∥
Y

+
∥∥∥∥ 1
τ

∫ τ

0
F∞(S∗t u)(s) ds−D(u(t))

∥∥∥∥
Y

≤ ε
2 + ε

2 = ε.
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This means that Φt(u) ∈ D(CL) and that CL(Φt(u)) = F∞(u)(t)−D(u(t)).

Imposing further continuity assumptions on F∞ we can extend (6.16) to larger subspaces
of Lploc([0,∞), U). To this end, as for the output map Ψ∞, we consider truncations of the
input-output map. For t ≥ 0 define the operator Ft : Lp([0,∞), U) → Lp([0,∞), U) by
Ftu := PtF∞u for u ∈ Lp([0,∞), U).

We say that Ft is Lipschitz on bounded sets if for every radius ρ > 0 there is a constant
cρ ≥ 0 such that

‖Ft(u)− Ft(ũ)‖Lp([0,∞),Y ) ≤ cρ‖u− ũ‖Lp([0,∞),U)

for all u, ũ ∈ Lp([0,∞), U) with ‖u‖Lp , ‖ũ‖Lp ≤ ρ. If the set {cρ | ρ > 0} is bounded, then we
call Ft (globally) Lipschitz.

Of course we can plug u ∈ Lploc([0,∞), U) into the definition Ft(u) := PtF∞(u). By
that we obtain an extension of Ft to Lploc([0,∞), U). We then have Ft(u) = Ft(Ptu) due to
causality. In case Ft : Lp([0,∞), U)→ Lp([0,∞), U) is e.g. Lipschitz, it follows that

‖Ft(u)− Ft(ũ)‖Lp([0,∞),Y ) ≤ c‖Ptu− Ptũ‖Lp([0,∞),U)

for all u, ũ ∈ Lploc([0,∞), U).
Without proof we repeat Lemma 6.1 of [44] which is a corollary of Lebesgue’s differenti-

ation theorem, see Theorem B.2. The generalization to p ∈ [1,∞) is immediate.

Lemma 6.22. Let W be a Banach space, p ∈ [1,∞) and u ∈ Lploc([0,∞),W ). Then for
almost every t ≥ 0 we have(

1
τ

∫ τ

0
‖u(t+ s)− u(t)‖pW dt

)1/p
→ 0 as τ → 0+.

Theorem 6.23. Let Σ = (T,Φ,Ψ, F∞) be a regular semi-linear well-posed system on X,
Lp([0,∞), U) and Lp([0,∞), Y ) for an exponent p ∈ [1,∞). Further assume that Ft0 is
Lipschitz on bounded sets for a time t0 > 0. Then for each u ∈ L∞([0,∞), U) and almost
every t ≥ 0 we have Φt(u) ∈ D(CL) as well as

F∞(u)(t) = CLΦt(u) +D(u(t)).

If Ft0 is Lipschitz, the assertion is true for all u ∈ Lploc([0,∞), U).

Proof. We continue equation (6.17) from the last proof. For all u ∈ Lploc([0,∞), U), t ≥ 0
and τ > 0 the composition property (6.14) yields

1
τ

∫ t+τ

t
F∞(u)(s) ds = 1

τ

∫ τ

0
F∞(u)(t+ s) ds =

∫ τ

0
(S∗t F∞(u))(s) ds

= 1
τ

∫ τ

0

(
Ψ∞Φt(u)

)
(s) ds+ 1

τ

∫ τ

0
F∞(S∗t u)(s) ds

= 1
τ

∫ τ

0

(
Ψ∞Φt(u)

)
(s) ds+ 1

τ

∫ τ

0

[
F∞(S∗t u)(s)− F∞(χu(t))(s)

]
ds

+ 1
τ

∫ τ

0
F∞(χu(t))(s) ds. (6.18)
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At first, let Ft0 be Lipschitz on bounded sets. Take any u ∈ L∞([0,∞), U) and set
ρ := t

1/p
0 ‖u‖L∞ . Then ‖Pt0S∗t u‖Lp([0,∞),U) = ‖S∗t u‖Lp([0,t0],U) ≤ t

1/p
0 ‖u‖L∞ ≤ ρ and clearly

also ‖Pt0χu(t)‖Lp([0,∞),U) ≤ t
1/p
0 ‖u‖L∞ ≤ ρ for all t ≥ 0.

We claim that the first summand on the right-hand side of (6.18) converges. To prove
this we show the convergence of each of the other terms. For the last expression on the
right-hand side this follows from the fact that Σ is regular, more precisely,∥∥∥∥ 1

τ

∫ τ

0
F∞(χu(t))(s) ds−D(u(t))

∥∥∥∥
Y
→ 0 as τ → 0+.

Since F∞(u) belongs to L1
loc([0,∞), U), Theorem B.2 yields a nullset N1 ⊆ [0,∞) such

that for all t ∈ [0,∞) \ N1 we have

1
τ

∫ t+τ

t
F∞(u)(s) ds→ F∞(u)(t) as τ → 0+

with convergence in Y . For the remaining term, assume that τ ≤ t0. Using the Lipschitz
property of F∞ we then infer the estimate∥∥∥∥ 1

τ

∫ τ

0

[
F∞(S∗t u)(s)− F∞(χu(t))(s)

]
ds
∥∥∥∥
Y
≤ 1

τ

∫ τ

0
‖F∞(S∗t u)(s)− F∞(χu(t))(s)‖Y ds

= 1
τ τ

1
p′

(∫ τ

0
‖F∞(S∗t u)(s)− F∞(χu(t))(s)‖

p
Y ds

)1/p
= τ

− 1
p ‖Pτ (Ft0(S∗t u)− Ft0(χu(t)))‖Lp([0,∞),Y )

≤ cρτ−
1
p ‖Pτ (S∗t u− χu(t))‖Lp([0,∞),U)

= cρ

(
1
τ

∫ τ

0
‖(S∗t u)(s)− u(t)‖pU ds

)1/p
.

By Lemma 6.22 there is another nullset N2 ⊆ [0,∞) with

cρ

(
1
τ

∫ τ

0
‖(S∗t u)(s)− u(t)‖pU ds

)1/p
→ 0, as τ → 0+

for all t ∈ [0,∞) \ N2. Let t ∈ [0,∞) \ N , where N := N1 ∪N2. From (6.18) we obtain

1
τ

∫ τ

0

(
Ψ∞Φt(u)

)
(s) ds = 1

τ

∫ t+τ

t
F∞(u)(s) ds− 1

τ

∫ τ

0

[
F∞(S∗t u)(s)− F∞(χu(t))(s)

]
ds

−
∫ τ

0
F∞(χu(t))(s) ds → F∞(u)(t)−D(u(t))

as τ → 0+ for all with convergence in Y . By the definition of the Lebesgue extension CL this
means that Φt(u) ∈ D(CL) and that CLΦt(u) = F∞(u)(t)−D(u(t)).

If F is Lipschitz, then all arguments remain valid even for u ∈ Lploc([0,∞), U) since then
we do not need estimates for ‖Pt0S∗t u‖Lp([0,∞),U) and ‖Pt0χu(t)‖Lp([0,∞),U).

The output of the system Σ corresponding to the initial state x0 ∈ X and the input
u ∈ Lp([0,∞), U) is defined as

y := Ψ∞x0 + F∞(u).
Combining the last two propositions with Proposition 6.3, we obtain that y is represented by
the Lebesgue extension CL and the feedthrough operator D.
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Corollary 6.24. Let Σ = (T,Φ,Ψ, F∞) be a regular semi-linear well-posed system on X,
Lp([0,∞), U) and Lp([0,∞), Y ) for an exponent p ∈ [1,∞). Then for all x0 ∈ X and u ∈ Ω0
as well as almost all t ≥ 0 we have the identity

Ψ∞x0(t) + F∞(u)(t) = CLTtx0 + CLΦt(u) +D(u(t))
= CL(Ttx0 + Φt(u)) +D(u(t)). (6.19)

The nullset depends on x0 and u.
If Ft0 is Lipschitz on bounded sets for a time t0 > 0, then the assertion is true for all

u ∈ L∞([0,∞), U). Finally, if Ft0 is Lipschitz, then (6.19) holds for all u ∈ Lploc([0,∞), U).

6.4.1 A wave equation with point control and point observation

In this example we revisit the linear wave equation with zero Dirchlet boundary conditions
from Subsection 4.4.2, but with the one dimensional domain (0, 1). Moreover, we consider
different control and observation operators, namely a ‘point control’ and a ‘point velocity
observation’. Formally the system can be described by

∂2
t ω(t, ξ) = ∂2

ξω(t, ξ) + µ(t)δξ0(ξ), t ≥ 0, ξ ∈ (0, 1)
ω(t, 0) = ω(t, 1) = 0, t ≥ 0
ω(0, ξ) = f0(ξ), ∂tω(0, ξ) = g0(ξ), ξ ∈ (0, 1)
γ(t) = −∂tω(t, ξ0) t ≥ 0.

(6.20)

Here ξ0 ∈ (0, 1) is a fixed point in the domain, µ : [0,∞)→ C is the input and γ : [0,∞)→ C
is the output.

To show that these equations can be described by a well-posed linear system, we use
the Dirichlet Laplacian A0 defined in Subsection 4.4.1. Set X := H1

0 (0, 1) × L2[0, 1] and
U := Y := C. Note that in then X = [D(A0)]1/2 × [D(A0)]0 with the notation introduced in
Appendix A.

With the framework developed in [4] it can be seen, that a well-posed linear system on
X, L2([0,∞), U) and L2([0,∞), Y ) is determined by the operators A, Bl and C l constructed
as follows. As in the example of Subsection 4.4.2 the generator of a unitary group T on X is
given by

A(f, g) = (g,−A0f)

with domain D(A) = H2(0, 1)∩H1
0 (0, 1)×H1

0 (0, 1). Recall that X−1 = L2[0, 1]×H−1(0, 1) =
[D(A0)]0 × [D(A0)]−1/2. The observation operator C l ∈ L(X1, Y ) and the control operator
Bl ∈ L(U,X−1) are defined as

C l(f, g) = δξ0g = g(ξ0) and Bl(v) = (0, vδξ0).

Here δξ0 ∈ L(H1
0 (0, 1), Y ) is the delta functional given by δξ0(h) = h(ξ0). Its boundedness is

clear due to the continuous embedding H1
0 (0, 1) ↪→ C[0, 1].

We mention that C l and Bl can be identified with the operator matrices C l = [0, δξ0 ] and
Bl = [0, δ ∗ξ0 ]>. Formally problem (6.20) is equivalent to the system

z′(t) = Az(t) +Blu(t); z(0) = x0

y(t) = C lz(t),
(6.21)
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where z(t) = (ω(t, � ), ∂tω(t, � )), x0 = (f0, g0), u(t) = µ(t) and y(t) = γ(t). As before we do
not discuss the question in which sense solutions of the last equation are solutions of (6.20).

The regularity of the system under consideration is shown in Proposition 5.9 of [50]. It is
remarkable that in this example a ‘transfer function’ can be determined explicitly. Let ω0 :=
ω0(T) be the growth bound of T. A transfer function is an analytic map G : Cω0 → L(U, Y )
linking the Laplace transform of the input with the Laplace transform of the output via the
equation

ŷ(s) = G(s)û(s) for s ∈ Cω0 .

It is unique up to an additive constant. For more details on transfer functions we refer to
[55]. In our case we have

G(s) = sinh(sξ0) sinh(s(ξ0 − 1))
sinh(s) for Re s > 0.

Note that G(s)→ −1
2 as s→∞. By Theorem 5.8 of [55] it follows that our system is regular

with feedthrough operator D = −1
2 ∈ L(U, Y ) = C.

Denote the well-posed linear system on X, L2([0,∞), U) and L2([0,∞), Y ) associated to
(6.21) by (T,Φl,Ψl

∞, F
l
∞). Let M be the nonlinear map introduced in Subsection 4.4.3, i.e.,

M : C→ C given by
M(v) =

(
m(Re v),m(Im v)

)
,

where m is a function in C2(R) with the properties that m′ and m′′ are bounded, m(0) = 0
and m′(0) 6= 0. Further recall that M is Lipschitz. Since M(0) = 0, it follows that the
map N given by N(u) = M ◦ u maps the space L2([0,∞), U) to itself and obviously also
L2

loc([0,∞), U). Moreover, N is Lipschitz.
As before we replace the input u by N(u). More precisely, we consider the nonlinear maps

Φt : L2([0,∞), U) → X for t ≥ 0 as well as F∞ : L2
loc([0,∞), U) → L2

loc([0,∞), Y ) given by
Φt(u) = Φl

tN(u) and F∞(u) = F l∞N(u) respectively.
In Section 4.4 we already saw that (T,Φ) is a continuous additive control system on

X and L2([0,∞), U), where Φ = (Φt)t≥0. Hence, in order to verify that the quadruple
(T,Φ,Ψl

∞, F∞) is an additive well-posed system, it remains to check F∞ is causal and satisfies
the composition property (6.14). To this end, let t ≥ 0 and u ∈ L2

loc([0,∞), U). It is clear
that PtM(u( � )) = PtM(Ptu( � )) and S∗tM(u( � )) = M(S∗t u( � )). The claim now follows from
the fact that F l∞ is causal and fulfills (6.14). For convenience we carry out the calculation

PtF∞(u) = PtF
l
∞M(u( � )) = PtF

l
∞PtM(u( � )) = PtF

l
∞PtM(Ptu( � ))

= PtF
l
∞M(Ptu( � )) = PtF∞(Ptu),

S∗t F∞(u) = S∗t F
l
∞M(u( � )) = Ψl

∞Φl
tM(u( � )) + F l∞S

∗
tM(u( � ))

= Ψl
∞Φt(u) + F l∞M(S∗t u( � )) = Ψl

∞Φt(u) + F∞(S∗t u).

Next, from the fact that (T,Φl,Ψl
∞, F

l
∞) is regular we infer that (T,Φ,Ψl

∞, F∞) is regular
with the feedthrough operator given by D(v) = DlM(v) for v ∈ U . Indeed, we have∣∣∣∣ 1τ∫ τ

0
(F∞(χv))(s) ds−DlM(v)

∣∣∣∣ =
∣∣∣∣ 1τ∫ τ

0
(F l∞(χM(v))(s) ds−DlM(v)

∣∣∣∣→ 0, as τ → 0+.

for all v ∈ U . Finally, note that Ft is Lipschitz for every t ≥ 0 because N is Lipschitz.
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Let x0 ∈ X and u ∈ L2
loc([0,∞), U) and set y := Ψl

∞x0 +F∞(u). Then, by Corollary 6.24

y(t) = CL(Ttx0 + Φt(u)) +DlM(u(t))

holds for almost every t ≥ 0, where CL is the Lebesgue extension of C l.

123



124



Appendix A

Extrapolation spaces

This chapter was written on basis of Paragraph 3 in [52] and Section 6 of [53]. Another
source is Section II.5a of [15]. In this an the following appendices, we collect known facts
from the literature and fix some notation. For the convenience of the reader we give several
shorter proofs of statements that are crucial for the thesis.

Let X be a Banach space with norm ‖ � ‖X . Further let A : D(A)→ X be a linear operator
in X. Recall that the graph norm on D(A) is given by

‖x‖A := ‖x‖X + ‖Ax‖X .

It is known that operator A is closed if and only if (D(A), ‖ � ‖A) is a Banach space. In any
case A : D(A)→ X is bounded when D(A) is equipped with the graph norm.

In the following we assume that A is closed and has nonempty resolvent set ρ(A) 6= ∅.
For µ ∈ ρ(A) we use the abbreviation Rµ := (µ − A)−1 ∈ L(X). We fix some λ ∈ ρ(A). If
0 ∈ ρ(A), the choice λ = 0 is convenient. Another norm ‖ � ‖1 on D(A) is defined through

‖x‖1 := ‖x‖1,λ := ‖(λ−A)x‖X .

The straightforward proof is omitted. We write X1 for D(A) endowed with ‖ � ‖1. Let us
prove that ‖ � ‖1 and ‖ � ‖A are equivalent. To this end, take x ∈ D(A). From

‖x‖1 ≤ |λ|‖x‖X + ‖Ax‖X ≤ (1 + |λ|)‖x‖A

we see that ‖ � ‖1 is dominated by ‖ � ‖A. On the other hand we have

‖x‖A = ‖x‖X + ‖(λ−A)x− λx‖X ≤ (1 + |λ|)‖x‖X + ‖(λ−A)x‖X
= (1 + |λ|)‖Rλ(λ−A)x‖X + ‖x‖1 ≤ (1 + |λ|)‖Rλ‖ ‖x‖1 + ‖x‖1.

As a consequence, X1 is a Banach space and we have

A ∈ L(X1, X).

Note that these properties are independent of the choice of λ ∈ ρ(A). Let x ∈ X1. From the
estimate

‖x‖X = ‖Rλ(λ−A)x‖X ≤ ‖Rλ‖ ‖x‖1 for x ∈ X1 (A.1)
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we infer that X1 is continuously embedded in X. It is clear that λ − A ∈ L(X1, X) and
Rλ ∈ L(X,X1) are isometric isomorphisms.

Set D(A0) := X. Then for m ∈ N the iterated domain D(Am) is defined recursively by

D(Am) := {x ∈ X |x ∈ D(A) and Ax ∈ D(Am−1)}.

Due to the linearity of A, this is a vector space. Obviously we have D(Am) ⊆ D(Am−1) for
every m ∈ N. As we shall see, it is consistent to denote X0 := X and ‖ � ‖0 := ‖ � ‖X . Unless
we say otherwise, the following statements are verified by straightforward inductions.

For µ ∈ ρ(A) and m ∈ N the operator µ−A maps the space D(Am) onto D(Am−1). Since
clearly every restriction of µ−A is one-to-one it follows that

µ−A|D(Am) : D(Am)→ D(Am−1)

is an isomorphism. Now for all m ∈ N we may recursively define the norms ‖ � ‖m = ‖ � ‖m,λ
on D(Am) by

‖x‖m := ‖x‖m,λ := ‖(λ−A)x‖m−1.

Where a distinction between the different restrictions is necessary or leads to a better under-
standing, we shortly write A|m := A|D(Am). We further write Xm for D(Am) equipped with
‖ � ‖m.

Let m ≥ 2. Due to the definition of ‖ � ‖m, the operator λ − A|m : Xm → Xm−1 is an
isometric isomorphism. Inductively it follows that Xm is a Banach space. Clearly A maps
Xm to Xm−1. Using also that A commutes with λ − A, we infer that A|m ∈ L(Xm, Xm−1).
In fact, using the definition of ‖ � ‖m we even have

‖A|m‖L(Xm,Xm−1) = sup
x∈Xm,
‖x‖m=1

‖(A|m)x‖m−1 (A.2)

= sup
{
‖(λ−A|m−1)(A|m)x‖m−2

∣∣∣x ∈ Xm with ‖(λ−A|m)x‖m−1 = 1
}

= sup
{
‖(A|m−1)(λ−A|m)x‖m−2

∣∣∣x ∈ Xm with ‖(λ−A|m)x‖m−1 = 1
}

= sup
ξ∈Xm−1,
‖ξ‖m−1=1

‖A|m−1ξ‖m−2 = ‖A|m−1‖L(Xm−1,Xm−2) = ‖A‖L(X1,X).

From an estimate analog to (A.1), we infer that Xm is continuously embedded in Xm−1.
Again let m ∈ N. We consider B := A|m+1 : D(Am+1)→ Xm as an operator in Xm. The

corresponding graph norm is given by ‖x‖B = ‖x‖m + ‖Bx‖m for x ∈ D(Am+1). Essentially
with the same proof as above we see that ‖ � ‖B and ‖ � ‖m+1 are equivalent. It follows that B
is closed. We already argued that for µ ∈ ρ(A) the map µ−B : D(Am+1)→ Xm is one-to-one
and onto and hence µ ∈ ρ(B). But this means that for each m ∈ N we have

ρ(A) ⊆ ρ
(
A|m

)
.

Let T ∈ L(X) and assume that T leaves Xm invariant, that is T (Xm) ⊆ Xm. Using the
completeness of Xm and the closed graph theorem we deduce that T |Xm belongs to L(Xm).
If T even commutes with A, then as in (A.2) one derives the identity

‖T |Xm‖L(Xm) = ‖T‖L(X).
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We apply these results to the case where A is the generator of a strongly continuous
semigroup T on X. Let us write Tt|m := Tt|Xm and T|m := (Tt|m)t≥0.

Proposition A.1. Let A be the generator of a strongly continuous semigroup on X. Then
for all m ∈ N the family T|m is a strongly continuous semigroup on Xm. Its generator is
A|m+1, the restriction of A to D(Am+1). Moreover, ‖Tt|m‖L(Xm) = ‖Tt‖L(X) for all t ≥ 0.

Proof. We only treat the case m = 1. The other cases follow inductively. Clearly, restricting
semigroups to subspaces preserves the semigroup laws. The strong continuity of the family
follows from the estimate

‖Thx− x‖1 ≤ |λ|‖Thx− x‖X + ‖ThAx−Ax‖X

and the strong continuity of T. Denote the generator of T|1 by B : D(B) → X1. Let
x ∈ D(A2). Then we have w := (λ−A)x ∈ D(A) and consequently∥∥∥ 1

h(Thx− x)−Ax
∥∥∥

1
=
∥∥∥(λ−A) 1

h(Thx− x)− (λ−A)Ax
∥∥∥
X

=
∥∥∥ 1
h(Thw − w)−Aw

∥∥∥
X

converges to zero as h → 0+. This means A|D(A2) ⊆ B. It is standard to conclude that
A|D(A2) = B from ρ(A2) ∩ ρ(B) ⊇ ρ(A) ∩ ρ(B) 6= ∅.

Now additionally let A be densely defined, meaning that D(A) is dense in X. Then for
all m ∈ N the space D(Am) is dense in Xm−1. Indeed, assume that the claim is true for some
m ∈ N and take x ∈ Xm. Then for w := (λ−A)x ∈ Xm−1 there is a sequence (wk) in D(Am)
converging to w with respect to ‖ � ‖m−1. Setting xk := Rλwk for k ∈ N we obtain a sequence
(xk) in D(Am+1) with

‖x− xk‖m = ‖(λ−A)(x− xk)‖m−1 = ‖w − wk‖m−1 → 0 as k →∞.

We remark that A|m ∈ L(Xm, Xm−1) is the continuous extension of A|m+1 with respect to
‖ � ‖m on Xm+1 and ‖ � ‖m−1 on Xm respectively.

Let µ ∈ ρ(A|m+1). Then µ−A|m is the continuous extension of µ−A|m+1. Consequently
µ − A|m is one-to-one and onto, as it is easy to see using the equivalence of ‖ � ‖m,λ and
‖ � ‖m,µ. Therefore we have µ ∈ ρ(A|m). Together with our previous results, we conclude that

ρ(A) = ρ(A|m) for all m ∈ N. (A.3)

The denseness of D(Am) is equivalent to the fact that the space Xm−1 is the completion
of D(Am) with respect to ‖ � ‖m−1. Note that for x ∈ D(Am−1) we have Rλx ∈ D(Am) as
well as x = (λ−A)Rλx and we thus derive that

‖x‖m−1 = ‖(λ−A)Rλx‖m−1 = ‖Rλx‖m.

This motivates the construction of the spaces X−m with negative index. Formally inserting
m = 0, for x ∈ X we set

‖x‖−1 := ‖x‖−1,λ := ‖Rλx‖X .

Again it is easy to see that this yields a norm ‖ � ‖−1 on X. We define X−1 as the completion
of X with respect to ‖ � ‖−1. Note that as topological space X−1 is independent of the choice
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of λ ∈ ρ(A) since the norms ‖ � ‖1,λ and ‖ � ‖1,µ are equivalent for each µ ∈ ρ(A). This follows
immediately from the resolvent equation

Rλ −Rµ = (µ− λ)RλRµ for µ ∈ ρ(A).

We shall see that X−1 has very similar properties as Xm for m ∈ N0. Indeed, in the
following paragraphs we frequently refer to arguments given earlier.

First, X−1 is a Banach space by definition. Moreover, from the estimate

‖x‖−1 ≤ ‖Rλ‖L(X)‖x‖X for all x ∈ X.

we see that X is continuously embedded in X−1. Next the operator λ− A : D(A) → X has
an isometric extension to X. For x ∈ D(A) we have (λ−A)x ∈ X and the claim follows from

‖(λ−A)x‖−1 = ‖Rλ(λ−A)x‖X = ‖x‖X .

Extending the notation above, we write λ − A|0 ∈ L(X,X−1). From the fact that λ − A is
onto we deduce that λ−A|0 is onto and hence is an isometric isomorphism.

With the same arguments, using also the equivalence of ‖ � ‖1,λ and ‖ � ‖1,µ, we see that
µ − A has a continuous extension µ − A|0 ∈ L(X,X−1) for any other µ ∈ ρ(A), which is an
isomorphism between X and X−1.

Also the resolvent Rλ : X → D(A) has a continuous extension Rλ|−1 ∈ L(X−1, X) which
is an isometric isomorphism. This is clear, because ‖Rλx‖X = ‖x‖−1 for x ∈ X. It is only
a matter of calculation to verify that λ− A|0 and Rλ|−1 are inverse to each other. Since X
is continuously embedded in X−1, we may interpret Rλ|−1 as an element of L(X−1). More
precisely, for x ∈ X−1 we have (Rλ|−1)x ∈ X and thus

‖(Rλ|−1)x‖−1 = ‖Rλ(Rλ|−1)x‖X ≤ ‖Rλ‖L(X)‖(Rλ|−1)x‖X = ‖Rλ‖L(X)‖x‖−1.

Now successively for all m ∈ N we introduce a norm ‖ � ‖−m on X−m+1 via

‖x‖−m := ‖x‖−m,λ := ‖(Rλ|−m+1)x‖−m+1 for x ∈ X−m+1

Then we define the Banach spaceX−m as the completion ofX−m+1 with respect to ‖ � ‖−m. As
above, we see that X−m+1 is embedded continuously in X−m. Further the maps λ−A|−m+2
and Rλ|−m+1 posses continuous extensions denoted

λ−A|−m+1 ∈ L(X−m+1, X−m) and Rλ|−m ∈ L(X−m, X−m+1).

Actually these operators are isometric isomorphisms. Finally we may consider Rλ|−m as
an element of L(X−m). Inductively one easily verifies that for µ ∈ ρ(A) the operators
µ−A|−m : X−m → X−m−1 are one-to-one and onto. We already discussed the case m = 0.

Let m ∈ Z, m ≤ 0. Unless 0 ∈ ρ(A), we set

A|m := λ− (λ−A|m) ∈ L(Xm, Xm−1).

With symbolically the same identity as (A.2) (there we had m ≥ 2) we derive

‖A|m‖L(Xm,Xm−1) = ‖A‖L(X1,X).
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Combined with (A.2), we obtain this identity for every m ∈ Z. Moreover, for all k, l ∈ Z we
have A|k = (A|l)|Xk if k ≤ l. Hence the notation is justified. On the other hand A|k is the
continuous extension of A|k+1 : Xk+1 → Xk.

Again let m ∈ Z with m ≤ 0 and consider B := A|m as an operator in Xm−1. Using that
λ−A|−m isometrically maps X−m to X−m−1 we see that the operator norm corresponding to
B is equivalent to ‖ � ‖−m. The completeness of X−m implies that B is closed. As mentioned
earlier, for µ ∈ ρ(A) the operator µ − B = µ − A|−m is one-to-one and onto. We conclude
that the statement of (A.3) can be extended to

ρ(A) = ρ(A|m) for all m ∈ Z. (A.4)

Again assume that some T ∈ L(X) commutes with A. Then clearly T also commutes
with Rλ. In particular, for x ∈ X we have

‖Tx‖−1 = ‖RλTx‖X = ‖TRλx‖X ≤ ‖T‖L(X)‖x‖−1.

We infer that T has a continuous extension T |−1 ∈ L(X−1) with ‖T |−1‖L(X−1) ≤ ‖T‖L(X).
It is easy to see that T |−1 commutes with λ − A|0 and with Rλ|−1. As in (A.2) we deduce
the identity ‖T |−1‖L(X−1) = ‖T‖L(X). For convenience we give the proof. From the fact that
λ−A|0 ∈ L(X,X−1) is an isometric isomorphism we deduce

‖T‖L(X) = sup
x∈X
‖x‖X=1

‖Tx‖X = sup
x∈X
‖x‖X=1

‖(λ−A|0)Tx‖−1 = sup
x∈X
‖x‖X=1

‖(T |−1)(λ−A|0)x‖−1

= sup
ξ∈X−1
‖ξ‖−1=1

‖(T |−1)ξ‖−1 = ‖T |−1‖L(X−1).

Iterating this procedure, for all m ∈ N we construct extensions T |−m ∈ L(X−m) of
T |−m+1 and thus of T . Each extension satisfies

‖T |−m‖L(X−m) = ‖T‖L(X).

Once more we apply the previous results to the case when A generates a strongly contin-
uous semigroup T on X. Let m ∈ N. For t ≥ 0 let us denote the extension of Tt to X−m by
Tt|−m. Then the latter operators form a family T|−m := (Tt|−m)t≥0 in L(X−m).
Proposition A.2. Let A be the generator of a strongly continuous semigroup T on X. Then
for all m ∈ N the family T|−m in L(X−m) is a strongly continuous semigroup on X−m. Its
generator is A|−m+1 seen as a densely defined operator in X−m.
Proof. As in Proposition A.1 we only treat the case m = 1 since the other cases follow
inductively. The semigroup laws are verified in a straight forward calculation. Proposition
I.5.3 in [15] yields the strong continuity of T|−1. Indeed, we only need that X is dense in
X−1 and that T is the restriction of T|−1 to X.

Now let B : D(B) → X−1 be the generator of T|−1. We shall show that A|0 ⊆ B, that
is X ∈ D(B) and Bx = (A|0)x for x ∈ X. To this end, take x ∈ X. Then Rλx ∈ D(A).
Because Rλ|−1 ∈ L(X−1, X) is isometric and Tt commutes with Rλ for each t ≥ 0, it follows∥∥∥ 1

h(Thx− x)− (A|0)x
∥∥∥
−1

=
∥∥∥Rλ 1

h(Thx− x)− (Rλ|−1)(A|0)x
∥∥∥
X

=
∥∥∥ 1
h(ThRλx−Rλx)−ARλx

∥∥∥
X
→ 0 as h→ 0+.

Now the claim follows from the fact that ρ(A|0) ∩ ρ(B) = ρ(A) ∩ ρ(B) 6= ∅.
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Note that from a theoretical viewpoint the spaces Xm together with the semigroup T are
all equal in the sense that starting from Xm0 where m0 ∈ Z is arbitrary, any other space and
corresponding semigroup can be constructed. We can summarize this in a diagram

. . . // Xm+1
λ−A //

Tt
��

Xm
λ−A //

Tt
��

Xm−1 //

Tt
��

. . .

. . . Xm+1oo Xm
Rλ
oo Xm−1

Rλ
oo . . .oo

It is common to denote by [D(A)] the Banach space D(A) equipped with the graph
norm. So, we sometimes use the notation [D(A)]1 for X1 especially if the variable X is used
otherwise. In generalization of that we define [D(A)]m as Xm for all m ∈ Z. In particular
[D(A)]0 is X.

Let us now examine the dual space X∗ = L(X,C) of X. Because A is densely defined,
we have its dual operator A∗, which is closed. Further it is known that ρ(A) = ρ(A∗) and
R(µ,A∗) = R(µ,A)∗ for µ ∈ ρ(A). (See e.g. Theorem 2 of Section VIII.6 in [56])

Assume that A∗ is densely defined. Thus A∗ has all the properties needed to repeat the
above construction. We obtain the spaces (X∗)k for k ∈ Z. To avoid confusion we write
Xk,d := (X∗)k. The respective norms are denoted ‖ � ‖k,d. In particular we write ‖ � ‖0,d for
the norm on X∗.

Recall that X1,d is continuously embedded in X∗. It is easy to see that hence X∗∗ is
continuously embedded in (X1,d)∗.

With the following result we connect the extrapolation spaces to their counterparts on
the side of the dual operator. Especially for reflexive spaces it yields a crucial identification
to establish duality results.

Proposition A.3. The canonical embedding J : X → X∗∗; x 7→ 〈x, � 〉X extends to an
isometric operator J : X−1 → (X1,d)∗. For x ∈ X−1 it is given by

〈ϕ, Jx〉X1,d = lim
n→∞

〈xn, ϕ〉X , ϕ ∈ X1,d, (A.5)

where (xn) is any sequence in X with ‖xn − x‖−1 → 0 as n → ∞. If X is reflexive, the
extension of J is an isometric isomorphism.

Proof. Fix x ∈ X. For ϕ ∈ X1,d ⊆ X∗ we have ϕ = R(λ,A∗)(λ−A∗)ϕ. We infer the estimate

|(Jx)(ϕ)| = |〈x, ϕ〉X | = |〈x,R(λ,A∗)(λ−A∗)ϕ〉X | = |〈Rλx, (λ−A∗)ϕ〉X |
≤ ‖Rλx‖X‖(λ−A∗)ϕ‖X∗ = ‖x‖−1‖ϕ‖1,d .

It follows that Jx ∈ (X1,d)∗ and ‖Jx‖(X1,d)∗ ≤ ‖x‖−1. To see that actually ‖Jx‖(X1,d)∗
equals ‖x‖−1 take y ∈ X∗ such that ‖y‖X∗ = 1 and ‖Rλx‖X = |〈Rλx, y〉|. Since then
R(λ,A∗)y ∈ D(A∗) = X1,d and ‖R(λ,A∗)y‖1,d = ‖(λ − A∗)R(λ,A∗)y‖X∗ = ‖y‖X∗ = 1 we
obtain

‖x‖−1 = ‖Rλx‖X = |〈Rλx, y〉| = |〈x,R∗λy〉| ≤ sup
ϕ∈X1,d,
‖ϕ‖1,d≤1

|(Jx)(ϕ)| = ‖Jx‖(X1,d)∗ .
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We have shown that J : X → (X1,d)∗ is bounded where X is equipped with ‖ � ‖−1.
Because X is dense in X−1, the claimed bounded extension J : X−1 → (X1,d)∗ of J exists
and satisfies (A.5) as well as

‖Jx‖(X1,d)∗ = lim
n→∞

‖Jxn‖(X1,d)∗ = lim
n→∞

‖xn‖−1 = ‖x‖−1 for x ∈ X−1,

where (xn) is any sequence in X with ‖xn − x‖−1 → 0 as n→∞.
Let us now assume that X is reflexive, i.e., J(X) = X∗∗. We have to prove that the

extension J : X−1 → (X1,d)∗ is onto. It suffices to show that X∗∗ is dense in (X1,d)∗.
First recall that X is reflexive if and only if X∗ is reflexive. Furthermore X1,d is reflexive,

because λ−A∗ ∈ L(X1,d, X
∗) has a bounded inverse. In fact, if j1,d and j∗ are the canonical

embeddings, the following diagram is commutative.1

X1,d
λ−A∗ //

j1,d
��

X∗

j∗
��

(X1,d)∗∗ X∗∗∗
R∗∗λ

oo

Let Ψ ∈ (X1,d)∗∗ be such that 〈x,Ψ〉 = 0 for all x ∈ X∗∗. There is some ψ ∈ X1,d
representing Ψ, i.e., Ψ = j1,d ψ. In particular, we have

0 = 〈x,Ψ〉 = 〈ψ,x〉 for all x ∈ X∗∗.

Thus ψ = 0 (as an element of X∗ ⊇ X1,d) and therefore Ψ = 0. This shows that X∗∗ is dense
in (X1,d)∗.

Let k ∈ Z. Since (λ − A)k ∈ L(Xk, X) is an isomorphisms, the space Xk are reflexive if
and only if X is reflexive. Further X is reflexive if and only if X∗ is reflexive. Therefore X
is reflexive if and only if Xk,d is reflexive.

Let X be reflexive. In the same way as above we can identify X−1,d with X∗1 . Shifting
these results from the level k = 1, inductively we obtain

X−k ∼= X∗k,d and X−k,d ∼= X∗k

for all k ∈ N0. Finally, using that Xk,d and Xk are reflexive we obtain the identifications for
every k ∈ Z.

In Corollary A.5 below we will assume that the family of duals (T∗t )t≥0 is again a strongly
continuous semigroup, which in general is not true. In any case we write T∗ := (T∗t )t≥0. We
repeat Corollary 1.10.6 of [33] without a proof.

Proposition A.4. Let X be reflexive and let T be a strongly continuous semigroup on X.
Then the family of duals T∗ is a strongly continuous semigroup on X∗.

1 Let P := λ−A∗, then (P ∗∗)−1 = (P−1)∗∗ ∈ L(X∗∗∗, (X1,d)∗∗). For ψ ∈ X1,d and w ∈ (X1,d)∗ we calculate
〈w, (P−1)∗∗j∗(Pψ)〉 = 〈(P−1)∗w, j∗(Pψ)〉 = 〈Pψ, (P−1)∗w〉 = 〈P−1Pψ,w〉 = 〈ψ,w〉 = 〈w, j1,d(ψ)〉. Thus
j1,d = (P ∗∗)−1 ◦ j∗ ◦ P . Because (P ∗∗)−1, j∗ and P are onto, so is j1,d.
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The dual operator A∗ of A is the generator of T∗. In fact, let y ∈ X∗ be such that
1
h(T∗hy − y) converges in X∗ to some z as h→ 0. Then for all x ∈ D(A) the identity

〈x, z〉 = lim
h→0

〈
x, 1

h(T∗hy − y)
〉

= lim
h→0

〈 1
h(Thx− x), y

〉
= 〈Ax, y〉

shows that y ∈ D(A∗) and that A∗ is an extension of the generator of T∗. Since a half-plane
is included in the resolvent set of both of these operators, they actually coincide.

Corollary A.5. Let T be a strongly continuous semigroup on X and assume that also T∗
is strongly continuous on X∗. For t ≥ 0 we set St = T∗t |X1,d. Then S∗t coincides with Tt on
X−1 via

JTtx = S∗tJx for x ∈ X−1,

where S∗t is the dual of St with respect to ‖ � ‖1,d and J is from Proposition A.3.

Proof. Let x ∈ X and ϕ ∈ X1,d. In view of the calculation

〈ϕ,S∗tJx〉X1,d = 〈Stϕ, Jx〉X1,d = 〈x, Stϕ〉X
= 〈Ttx, ϕ〉X = 〈ϕ, JTtx〉X1,d ,

the assertion follows from the density of X in X−1 as well as the boundedness of the operators
Tt ∈ L(X−1), J ∈ L(X−1, (X1,d)∗) and S∗t ∈ L((X1,d)∗).

The intermediate space X1/2

Now let X be a Hilbert space with inner product ( � | � ). We still assume that A is a densely
defined linear operator in X. Note that in this case one usually defines the graph norm via

‖x‖2A,2 = ‖x‖2X + ‖Ax‖2X .

since then (D(A), ‖ � ‖A,2) is an inner product space too. However, ‖ � ‖A,2 is equivalent to
‖ � ‖A and thus all statements in this chapter are also valid for ‖ � ‖A,2. Recall that the relation

A′ = {(y, z) ∈ X ×X | ∀x ∈ D(A) : (Ax | y) = (x | z)}

defines an operator A′ in X, the adjoint of A. We mention that A′ is closed. The following
well-known statement will be needed. For a proof see e.g. Proposition 2.8.4 in [49].

Lemma A.6. Let B be a densely defined closed operator in X. For all λ ∈ ρ(B) we have
λ ∈ ρ(B′) as well as

(λ−B′)−1 =
[
(λ−B)−1]′.

Assume that B is a self-adjoint operator in X, which means that it coincides with its
adjoint, i.e., B = B′. The last lemma yields σ(B) = ρ(B)c ⊆ R. Moreover, if 0 ∈ ρ(B) then
B−1 is self-adjoint since then

(B−1)′ = (B′)−1 = B−1.

A (densely defined) operator B in X is called symmetric if we have B ⊆ B′. In the
following lemma we give a simple condition under which this weaker property implies self-
adjointness. This is a special case of Proposition 3.2.4 in [49].
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Lemma A.7. Let B be a densely defined symmetric operator in X. Further assume that B
is onto. Then 0 ∈ ρ(B) and B is self-adjoint.

The space X1/2 is defined as the domain of the ‘square root’ A1/2 of A. In order to
construct the operator A1/2, it is necessary that A has the following property.
Definition A.8. A self-adjoint operator B in X is called positive if we have (Bx |x) ≥ 0 for
all x ∈ D(B). We then write B ≥ 0. If there even is a number m > 0 with

(Bx |x) ≥ m‖x‖2X for all x ∈ D(B)

we say that B is strictly positive and we write B > 0.
It is possible to characterize the (strictly) positive operators among the self-adjoint in

terms of the spectrum. We combined Proposition 3.3.3 and Remark 3.3.4 of [49].

Lemma A.9. A self-adjoint operator B in X is positive if and only if σ(B) ⊆ [0,∞). It is
strictly positive if and only if σ(B) ⊆ (0,∞).

The construction of the square root of a strictly positive unbounded operator is based on
the existence of the square root of a bounded positive operator. Without a proof we repeat
Theorem 12.3.4 of [49].
Theorem A.10. Let T ∈ L(X) be positive. Then there is exactly one positive operator
S ∈ L(X) with S2 = T .

We write T 1/2 := S and call T 1/2 the square root of T . Note that for x ∈ X with T 1/2x = 0
we also have Tx = T 1/2T 1/2x = T 1/20 = 0 and hence ker(T 1/2) ⊆ kerT . Very similarly one
sees that Ran(T 1/2) ⊇ RanT .

Proposition A.11. Let A be a strictly positive operator in X. Then there is exactly one
strictly positive operator A1/2 in X with (A1/2)2 = A.

Proof. Lemma A.9 yields that 0 ∈ ρ(A). We saw that A−1 ∈ L(X) is self-adjoint. For all
y ∈ X there is a vector x ∈ D(A) with Ax = y. We obtain the inequality

(A−1y | y) = (A−1Ax |Ax) = (x |Ax) = (Ax |x) ≥ 0

showing that A−1 is positive. Theorem A.10 yields the square root A−1/2 := (A−1)1/2 ∈ L(X)
of A−1. From the inclusion

ker(A−1/2) ⊆ ker(A−1) = {0}

we derive that A−1/2 has a (probably unbounded) inverse

A
1/2 := (A−1/2)−1 : Ran(A−1/2)→ X.

Note that A1/2 is onto. Further we have D(A) = Ran(A−1) ⊆ Ran(A−1/2) = D(A1/2). Next
we prove that

D(A) = D((A1/2)2) := {x ∈ X |x ∈ D(A1/2) and A1/2x ∈ D(A1/2)}.

Let x ∈ D(A). Then for w := Ax ∈ X we have x = A−1w = A−1/2A−1/2w and thus

A
1/2x = A

1/2A−
1/2A−

1/2w = A−
1/2w ∈ Ran(A−1/2) = D(A1/2).
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This fact also implies that A1/2A1/2x = w = Ax and hence A ⊆ (A1/2)2. Conversely let
x ∈ D((A1/2)2). Since then A1/2x belongs to D(A1/2) = Ran(A−1/2) we find some w ∈ X with
A1/2x = A−1/2w. Applying A−1/2 to this equation yields

x = A−
1/2A−

1/2w = A−1w ∈ Ran(A−1) = D(A).

We have thus shown that D(A) and D((A1/2)2) coincide.
To see that A1/2 is symmetric, we take x1, x2 ∈ D(A1/2) and set wj := A1/2xj . Then we

have xj = A−1/2wj where j ∈ {1, 2}. Using that A−1/2 is self-adjoint we deduce

(A1/2x1 |x2) = (w1 |A−
1/2w2) = (A−1/2w1 |w2) = (x1 |A

1/2x2).

As mentioned earlier, A1/2 is onto. Therefore by Lemma A.9 the square root A1/2 is
self-adjoint and 0 lies in ρ(A1/2). Taking x1 = x2 = x in the last equation yields

(A1/2x |x) = (A−1/2w1 |w1) ≥ 0.

This means that A1/2 is positive. Since 0 ∈ ρ(A1/2), with Lemma A.9 we infer that A1/2 is
even strictly positive.

It remains to show the uniqueness of A1/2. Assume B is another positive and particularly
closed operator in X with B2 = A. As above, from the facts that

kerB ⊆ kerA = {0} and RanB ⊇ RanA = X

it follows that 0 is contained in ρ(B). Consequently B must be strictly positive and the
inverse B−1 ∈ L(X) is positive. For x ∈ X we further derive

B−1B−1x = B−1B−1AA−1x = B−1B−1BBA−1x = A−1x.

Thus B−1 is the square root of A−1. Due to uniqueness, we have B−1 = A−1/2 and conse-
quently also B = A1/2.

Let A be strictly positive. As in the bounded case, the operator A1/2 constructed in the
preceding theorem is called the square root of A. Note that due to the self-adjointness, A is
densely defined and closed. Moreover, since A is strictly positive, at least C \ (0,∞) belongs
to its resolvent set ρ(A). Hence we may apply the theory developed in the first part of the
chapter. Let us choose λ = 0 so that

‖x‖1 = ‖Ax‖X for x ∈ D(A).

Still X1 denotes D(A) endowed with ‖ � ‖1. It is obvious, that ‖ � ‖1 is induced by the inner
product defined via

(x | y)1 = (Ax |Ay) for x, y ∈ D(A).

Also the square root A1/2 is strictly positive. Thus we can construct corresponding inter-
polation and extrapolation spaces. We discuss in detail what that means. First,

‖x‖1/2 := ‖A1/2x‖X for x ∈ D(A1/2)

defines a norm on D(A1/2) corresponding to the scalar product ( � | � )1/2 on D(A1/2) given by

(x | y)1/2 = (A1/2x |A1/2y) for x, y ∈ D(A1/2).
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We use the symbol X1/2 for D(A1/2) equipped with ‖ � ‖1/2. Hence X1/2 is a Hilbert space,
continuously embedded in X. On the other hand, it is dense in X since D(A) ⊆ X1/2.

Successively, for m ∈ N we obtain the spaces Xm/2 as D((A1/2)m) endowed with the norm
‖ � ‖m/2 given by

‖x‖m/2 := ‖A1/2x‖(m−1)/2 = ‖(A1/2)mx‖X .
It becomes clear that X2k/2 = Xk. As a consequence, X is dense in X1/2 with continuous
embedding. We know that

A
1/2 ∈ L(X1/2, X) and A

1/2|1 := A
1/2|X ∈ L(X1, X1/2).

These operators are actually isometric isomorphisms.
Using the inverse A−1/2 ∈ L(X) we also define X−1/2 as the completion of X with respect

to the norm given by
‖x‖−1/2 := ‖A−1/2x‖X for x ∈ X.

As before we see that X−1/2 is a Hilbert space and that X is dense in X−1/2 with continuous
embedding. Moreover, A1/2 has a bounded extension

A
1/2|0 ∈ L(X,X−1/2).

In fact, the latter is an isometric isomorphism.
The inverse is A−1/2|−1/2 ∈ L(X−1/2, X) the extension of A−1/2 to X−1/2. Inductively we

define X−m/2 as the completion of X−(m−1)/2 with respect to the norm given by ‖x‖−m/2 =
‖A−1/2|−(m−1)/2x‖−(m+1)/2. As above, we infer that X−2k/2 = X−k for k ∈ N. Again, we shall
sometimes write [D(A)]m/2 for Xm/2 = [D(A1/2)]m, where m ∈ Z. Summing things up we have
the chain of continuous embeddings

X1 ↪→ X1/2 ↪→ X ↪→ X−1/2 ↪→ X−1.

Each of these space is dense in the subsequent.

There is a way to define X1/2 and X−1/2 without referencing A1/2. Nevertheless, we still
need that A is strictly positive. Since A1/2 is self-adjoint, for x ∈ D(A) we have

‖x‖1/2 =
√

(A1/2x |A1/2x) =
√

(Ax |x). (A.6)

Thus X1/2 is the completion of D(A) with respect to this norm. We can also take this property
as the definition of X1/2. Similarly, we have ‖x‖−1/2 =

√
(A−1x |x) for x ∈ X.

This facts at hand it is easy to verify that A has continuous extension to X1/2. Indeed,
for x ∈ D(A) we have Ax ∈ X, and the claim follows from

‖Ax‖−1/2 =
√

(A−1Ax |Ax) =
√

(x |Ax) =
√

(Ax |x) = ‖x‖1/2.

Let us denote this extension (which actually is an isometric isomorphism) by

A|1/2 ∈ L(X1/2, X−1/2). (A.7)

Remark A.12. In Proposition A.3 applied to A1/2 we consider ([D((A1/2)∗)]1)∗. Luckily we can
forget about this nasty notation, because A1/2 is self-adjoint and hence ([D((A1/2)∗)]1)∗ =
([D(A1/2)]1)∗ = X∗1/2. Since as a Hilbert spaces X is reflexive, we obtain an isometric isomor-
phism between X−1/2 and X∗1/2. ♦
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Appendix B

Laplace transforms

In this section we recall the definition of the Laplace transform of vector-valued functions.
We also repeat some of its main properties. For an extensive treatment of this topic see [5].

We assume that the reader is familiar with the theory of the Lebesgue-Bochner integral
as it is introduced e.g. in [25]. However we shortly repeat some results on antiderivatives.
Throughout, let V be a Banach space over the field K where K = R or K = C, J ⊆ R be an
interval and f : J → V be a locally integrable function.

Antiderivatives and integration by parts

The classical rule of integration by parts is based on the fundamental theorem of calculus.
In this subsection we repeat generalizations of these results. The following notion plays a
crucial role. A function F : J → V is called antiderivative of f , if

F (t) = F (t0) +
∫ t

t0
f(s) ds for all t0, t ∈ J.

In other words: the formula in the fundamental theorem of calculus holds for F and f .
Recall that a function G : J → V is called absolutely continuous on [a, b] ⊆ J if

∀ε > 0 ∃δ > 0 ∀m ∈ N, a ≤ a1 ≤ b1 ≤ . . . ≤ am ≤ bm ≤ b :
m∑
k=1

(bk − ak) ≤ δ =⇒
m∑
k=1
‖G(bk)−G(ak)‖ ≤ ε.

The function G is called absolutely continuous, if it is absolutely continuous on every compact
subinterval of J . Clearly absolutely continuous functions are continuous (take m = 1).

A scalar function is an antiderivative of a locally integrable function if and only if it is
absolutely continuous, see Theorem 7.20 in [37]. Example 1.2.8 in [5] shows that this is not
true for vector-valued functions. The validity depends on a property of V called the “Radon-
Nikodym property”. We don’t go into details. Nevertheless we have the somewhat weaker
statement Proposition B.4. We only comment on the proofs, because they would go beyond
the scope of this text.

Lemma B.1. Let F : J → V be an antiderivative of f . Then F is absolutely continuous.
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The proof is quite easy using the following fact. If [a, b] ⊆ J is a compact subinterval,
then ‖f‖ : [a, b] → R is integrable and thus for every ε > 0 there is a δ > 0 such that∫
M‖f(s)‖ds ≤ ε for all measurable sets M ⊆ [a, b] with |M | ≤ δ.

Antiderivatives are differentiable almost everywhere on J with derivative f . This follows
from Lebesgue’s differentiation theorem repeated below. A point t in the domain of f is
called right-Lebesgue point of f if

1
δ

∫ t+δ

t
‖f(s)− f(t)‖ ds→ 0 as δ → 0+.

Similarly left-Lebesgue points are defined by integrating from t− δ to t. The point t is called
Lebesgue point of f if it is a left- and a right-Lebesgue point of f . This is the case if and only
if

1
2δ

∫ t+δ

t−δ
‖f(s)− f(t)‖ ds = 1

2δ

∫ t+δ

t
‖f(s)− f(t)‖ ds+ 1

2δ

∫ t

t−δ
‖f(s)− f(t)‖ds→ 0 as δ → 0+.

Using uniform continuity on compact sets we easily deduce that for continuous f every
point of J is a Lebesgue point. This is part of the fundamental theorem of calculus. As-
tonishingly, for arbitrary locally integrable f almost the same holds. This is the claim of
Lebesgue’s differentiation theorem:

Theorem B.2 (Lebesgue). Let f : J → V be locally integrable. Then for almost all t ∈ J
we have

1
δ

∫ t+δ

t
‖f(s)− f(t)‖ ds→ 0 as δ → 0.

In particular f has a right-Lebesgue point at almost every t ∈ J .
The addendum simply follows from the estimate∥∥∥∥∥1

δ

∫ t+δ

t
f(s) ds− f(t)

∥∥∥∥∥ =
∥∥∥∥∥1
δ

∫ t+δ

t
(f(s)− f(t)) ds

∥∥∥∥∥ ≤ 1
δ

∫ t+δ

t
‖f(s)− f(t)‖ ds

valid for all t ∈ J and δ ∈ R \ {0} such that t+ δ ∈ J . The rest is based on the scalar version
of this result, see Theorem 1.4 in Chapter 3 of [46].

Note that t ∈ J is a Lebesgue point of f if and only if some antiderivative of f is differ-
entiable at t and its derivative is f(t). As immediate consequence we obtain the following.

Corollary B.3. Let F : J → V be an antiderivative of f . Then F is differentiable almost
everywhere on J with derivative f .

As already remarked, not every absolutely continuous function with values in V is an
antiderivative unless V has the “Radon-Nikodym property”. The following weaker implication
is correct for every Banach space V .

Proposition B.4. Let G : J → V be absolutely continuous and differentiable almost every-
where on J . Denote its derivative1 by G′ : J → V . Then G′ is locally integrable and G is an
antiderivative of G′.

1If G is not differentiable in t ∈ J , then G′(t) can be defined arbitrarily
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Since this is not easy as 1-2-3, we refer to Proposition 1.2.3 of [5]. The purpose of the
next lemma is to prepare a technical detail in the proof of the rule of integration by parts.

Lemma B.5. Let F : J → V and g : J → K be absolutely continuous. Then Fg : J → V is
absolutely continuous.

Proof. Recall that absolutely continuous functions are continuous and therefore bounded on
compact sets. Let [a, b] ⊆ J be compact and setmF = maxt∈[a,b]‖F (t)‖,mg = maxt∈[a,b]|g(t)|.
For m ∈ N and points a ≤ a1 ≤ b1 ≤ . . . ≤ am ≤ bm ≤ b we then estimate

m∑
k=1
‖g(bk)F (bk)− g(ak)F (ak)‖ ≤

m∑
k=1
|g(bk)| ‖F (bk)− F (ak)‖+

m∑
k=1
‖F (bk)‖ |g(bk)− g(ak)|

≤ mg

m∑
k=1
‖F (bk)− F (ak)‖+mF

m∑
k=1
|g(bk)− g(ak)|.

Let ε > 0. Using the assumptions, we can now choose a number δ > 0 such that the inequality∑m
k=1(bk − ak) ≤ δ implies that the right-hand side of the above displayed estimate is less or

equal ε.

The rule of integration by parts is an essential tool for dealing with integrals over an-
tiderivatives.

Proposition B.6 (integration by parts). Let f : J → V be locally integrable and g : J → K
absolutely continuous and differentiable almost everywhere. Moreover, let F : J → V be an
antiderivative of f . Then gf as well as g′F are locally integrable and for all t0, t ∈ J we have∫ t

t0
g(s)f(s) ds = g(t)F (t)− g(t0)F (t0)−

∫ t

t0
g′(s)F (s) ds,

where g′ : J → K is the derivative of g.

Proof. The last lemma yields that the function gF : J → V is absolutely continuous. With
the product rule we infer, that gF is differentiable almost everywhere with derivative gf+g′F .
By Proposition B.4 the latter function is locally integrable and gF is one of its antiderivatives.
In particular we have

g(t)F (t) = g(t0)F (t0) +
∫ t

t0
(g(s)f(s) + g′(s)F (s)) ds for all t0, t ∈ J.

Proposition B.4 further yields, that g′ is locally integrable. Because g and F are continuous,
these functions are locally bounded. Hölder’s inequality therefore implies that gf and g′F
are locally integrable. Thus we may split the integral in the last equality and reorganize it
to obtain the claim.

Definition and properties of the Laplace transform

In this section we consider locally integrable functions of the type f : [0,∞)→ V .
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The scalar function e−λ( � ) belongs to L∞([0, N ],K) for all λ ∈ K and N > 0. Hölder’s
inequality implies that [0, N ]→ V ; t 7→ e−λtf(t) is integrable. In case the family of integrals(∫N

0 e−λtf(t) dt
)
has a limit

f̂(λ) := lim
N→∞

∫ N

0
e−λtf(t) dt

in V , then f̂(λ) is called the Laplace transform of f at λ. The domain of convergence of f̂ is
the set of all λ ∈ K for which f̂(λ) exists. We say that f is Laplace transformable if this set
is nonempty.

In the most comfortable situation the function [0,∞)→ V ; t 7→ e−λtf(t) is integrable for
some λ ∈ K. By means of the dominated convergence theorem we then infer that f̂(λ) exists
and equals the Bochner integral ∫ ∞

0
e−λtf(t) dt.

We say that f̂(λ) converges absolutely.
Due to Hölder’s inequality, this is the case for all λ ∈ K with Reλ > 0 if f ∈ Lp([0,∞), V )

for some p ∈ [1,∞], because then e−λ( � ) lies in Lp
′([0,∞),K). As usual p′ ∈ [1,∞] is the

dual exponent of p. If f ∈ L1([0,∞), V ), then f̂(λ) converges absolutely whenever Reλ ≥ 0.
Of course f̂(λ) converges absolutely for all λ ∈ K if f has support in some compact interval
[0, T ].

The most important condition for the existence of f̂(λ), is ‘exponential boundedness’:
Assume there are ω ∈ R and M ≥ 0 such that ‖f(t)‖ ≤Meωt for almost all t ∈ [0,∞). The
dominated convergence theorem then yields that f̂(λ) converges absolutely for every λ ∈ K
with Reλ > w. We define the exponential growth bound of f as

ω0(f) = inf{ω ∈ R | ∃M ≥ 0 ∀t ≥ 0 : ‖f(t)‖ ≤Meωt},

where by convention inf ∅ = ∞ and inf R = −∞. See Example 1.4.4 in [5] for a function f
with ω0(f) =∞ and nonempty domain of convergence.

Lemma B.7. Assume that f̂(λ0) exists for some λ0 ∈ K. Then f̂(λ) exists for every λ ∈ K
with Reλ > Reλ0.

In preparation of the proof, for µ ∈ K let Gµ : [0,∞)→ V be the antiderivative of e−µ( � )f
with Gµ(0) = 0. That is

Gµ(t) =
∫ t

0
e−µsf(s) ds for t ≥ 0.

As an antiderivative, Gµ is continuous. If f̂(µ) exists, then Gµ has the limit f̂(µ) =
limN→∞Gµ(N), in particular Gµ is then bounded.

Proof. Let λ ∈ K, Reλ > Reλ0. Then for arbitrary N > 0 integration by parts yields∫ N

0
e−λtf(t) dt =

∫ N

0
e−(λ−λ0)te−λ0tf(t) dt

= e−(λ−λ0)NGλ0(N) +
∫ N

0
(λ− λ0)e−(λ−λ0)tGλ0(t) dt.
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Because we assumed that f̂(λ0) exists, the antiderivative Gλ0 is bounded. On the other hand
e−(λ−λ0)( � ) belongs to L1([0,∞),K), since Re(λ − λ0) = Reλ − Reλ0 < 0. Using Hölder’s
inequality and the dominated convergence theorem, we conclude that the limit of the above
integrals as N →∞ exists and equals

f̂(λ) = (λ− λ0)
∫ ∞

0
e−(λ−λ0)tGλ0(t) dt.

This completes the proof.

We can now deduce that the domain of convergence is an open right half-plane together
with some (possibly empty) subset of its boundary. Let

abs(f) = inf{Reλ |λ ∈ K : f̂(λ) exists},

where we put inf ∅ =∞ and inf R = −∞. This quantity is called the abscissa of convergence
of f . Assume that abs(f) ∈ R. Then clearly f̂(µ) does not exist if Reµ < abs(f). In turn,
by Lemma B.7, the Laplace transform of f at λ exists for all λ ∈ K with Reλ > abs(f).

Operational properties

We are interested in the behavior of the Laplace transform under certain operations. Linearity
of integral and limit imply that the Laplace transform is linear. To be more precise, let
f, g ∈ L1

loc([0,∞), V ) and α, β ∈ K. If f̂(λ) and ĝ(λ) both exist for some λ ∈ K, then also
(αf + βg)̂ (λ) exists and equals αf̂(λ) + βĝ(λ).

Let τ ≥ 0. Recall that left shift S∗τ g ∈ V [0,∞) and right shift Sτg ∈ V [0,∞) of some
g ∈ V [0,∞) where given by (S∗τ g)(t) = g(t+ τ) for t ≥ 0 as well as (Sτg)(t) = 0 for t ∈ [0, τ)
and (Sτg)(t) = g(t− τ) for t ∈ [τ,∞). Obviously S∗τ and Sτ map L1

loc([0,∞), V ) to itself.

Lemma B.8. Let f ∈ L1
loc([0,∞), V ) and τ ≥ 0. Then for all λ ∈ K the Laplace transform

f̂(λ) exists if and only if (S∗τ f )̂ (λ) exists. If this is the case, then

(S∗τ f )̂ (λ) = eλτ f̂(λ)− eλτ
∫ τ

0
eλsf(s) ds. (B.1)

Proof. Let λ ∈ K and N > τ . A change of variables yields∫ N

0
e−λtS∗τ f(t) dt =

∫ N

0
eλτe−λ(t+τ)f(t+ τ) dt = eλτ

∫ N+τ

τ
e−λsf(s) ds

= eλτ
∫ N+τ

0
e−λsf(s) ds− eλτ

∫ τ

0
e−λsf(s) ds .

The left-hand side has a limit as N → ∞ if and only if the right-hand side converges. This
fact shows the claim and also proves the given formula for (S∗τ f )̂ (λ).

In case f̂(λ) exists for some λ ∈ K, by reorganizing (B.1) we obtain

f̂(λ) = e−λτ (S∗τ f )̂ (λ) +
∫ τ

0
e−λsf(s) ds for all τ ≥ 0.
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Weighted Lebesgue spaces and absolute convergence of the Laplace transform

By definition the Laplace transform f̂(λ) converges absolutely if and only if f belongs to a
‘weighted L1–space’. More generally, for p ∈ [1,∞) we set

Lpλ([0,∞), V ) :=
{
f ∈ L1

loc([0,∞), V )
∣∣∣ e−λ( � )f ∈ Lp([0,∞), V )

}
.

Clearly Lpλ([0,∞), V ) is a vector space and ‖f‖Lp
λ

:= ‖e−λ( � )f‖Lp defines a norm ‖ � ‖Lp
λ
on it.

It is further easy to see that Lpλ([0,∞), V ) equipped with this norm is complete. Bochner’s
theorem implies that Lpλ([0,∞), V ) = LpReλ([0,∞), V ). Hence it suffices to consider weights
µ ∈ R. Hölder’s inequality yields that the spaces are ordered as follows. For µ1, µ2 ∈ R with
µ1 ≤ µ2 we have

Lpµ1([0,∞), V ) ⊆ Lpµ2([0,∞), V ) and ‖f‖Lpµ2
≤ ‖f‖Lpµ1

for all f ∈ Lpµ1([0,∞), V ).

(Compare the case p = 1 to Lemma B.7.) Let f ∈ Lpµ([0,∞), V ) and λ ∈ K with Reλ > µ.
Then f̂(λ) converges absolutely and we obtain the estimate

‖f̂(λ)‖V ≤
∫ ∞

0
e−Reλt‖f(t)‖V dt =

∫ ∞
0

e−(Reλ−µ)te−µt‖f(t)‖V dt

≤ ‖e−(Reλ−µ)( � )‖Lp′ ([0,∞),R)‖f‖Lpµ .

If p = 1 we might as well take Reλ ≥ µ. Then we have ‖f̂(λ)‖V ≤ ‖f‖L1
Reλ
≤ ‖f‖L1

µ
. At the

beginning of this chapter we argued that Lp([0,∞), V ) ⊆ L1
µ([0,∞), V ) for all µ > 0. Now

we have seen that Lp([0,∞), V ) = Lp0([0,∞), V ) ⊆ Lpµ([0,∞), V ) for µ ≥ 0.

Lemma B.9. Let f ∈ L1
loc([0,∞), V ) and µ ∈ R. Assume that the sequence of the norms

‖Pnf‖Lpµ is bounded, i.e., ‖Pnf‖Lpµ ≤ c for some c ≥ 0 and all n ∈ N, Then f belongs to
Lpµ([0,∞), V ) and we have ‖f‖L1

µ
≤ c.

Proof. For simplicity we write ‖g‖V for the function [0,∞) → R; t 7→ ‖g(t)‖V , where g is a
map from [0,∞) to V .

Obviously the functions Pn(e−µ( � )f) = e−µ( � )Pnf converge to e−µ( � )f pointwise almost
everywhere on [0,∞) as n → ∞. Hence also Pn‖e−µ( � )f‖pV → ‖e−µ( � )f‖pV as n → ∞
pointwise for almost everywhere on [0,∞). The assumption further implies that∥∥∥Pn‖e−µ( � )f‖pV

∥∥∥
L1([0,∞),R)

= ‖Pnf‖Lpµ ≤ c
p for all n ∈ N.

Corollary VI.5.10 in [25] yields that ‖e−µ( � )f‖pV belongs to L1([0,∞), V ) which in turn means
that f ∈ Lpµ([0,∞), V ). The last claim follows from the fact that ‖‖e−µ( � )f‖pV ‖L1 = ‖f‖p

Lpµ

Laplace transforms of antiderivatives

As a continuous function an antiderivative F of f is locally integrable. Its exponential growth
bound is closely related to the abscissa of convergence abs(f).

Preceding the proof of Lemma B.7, we defined Gλ as the antiderivative of e−λ( � )f with
Gλ(0) = 0. For convenience set F0 = G0, i.e.,

F0(t) =
∫ t

0
f(s) ds for t ≥ 0.
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Also recall that Gλ is bounded if f̂(λ) exists. In this case let

Cλ = sup
t∈[0,∞)

‖Gλ(t)‖.

Lemma B.10. Assume that ω0(F0) <∞. Then abs(f) ≤ ω0(F0). If this is the case, then

f̂(λ) = λF̂0(λ) for all λ ∈ K with Reλ > ω0(F0).

Proof. Let λ ∈ K with Reλ > ω0(F0). Then for every N > 0, integration by parts gives∫ N

0
e−λtf(t) dt = e−λNF0(N) +

∫ N

0
λe−λtF0(t) dt.

Because F̂0(λ) exists and e−λNF0(N) → 0 due to the exponential boundedness of F0, the
left-hand side converges as N →∞. Hence f̂(λ) exists and satisfies the claimed identity.

The next lemma shows, that the assumption ω0(F0) <∞ is not artificial.

Lemma B.11. Assume that abs(f) < ∞. Then ω0(F0) ≤ max{0, abs(f)} < ∞. More
precisely, this means that

∀ω > max{0, abs(f)} ∃M = Mω ≥ 0 ∀t ≥ 0 : ‖F0(t)‖ ≤Meωt.

Proof. Let ω > abs(f) and additionally ω ≥ 0. Then f̂(ω) exists, and hence Gω is bounded.
The case ω = 0 follows from the inequality

‖F0(t)‖ = ‖G0(t)‖ ≤ C0 = Cωeωt for all t ≥ 0.

Let ω > 0. For every t ≥ 0 an integration by parts yields

F0(t) =
∫ t

0
eωse−ωsf(s) ds = eωtGω(t)−

∫ t

0
ωeωsGω(s) ds

Obvious estimates lead to

‖F0(t)‖ ≤ eωt‖Gω(t)‖+
∫ t

0
ωeωs‖Gω(s)‖ ds ≤ Cωeωt + Cω

∫ t

0
ωeωs ds

= Cωeωt + Cω(eωt − 1) ≤ 2Cωeωt for all t ≥ 0.

Corollary B.12. Let F : [0,∞) → V be an antiderivative of f . If abs(f) < ∞, then F̂ (λ)
exists for every λ ∈ K with Reλ > max{0, abs(f)} and we have

F̂ (λ) = 1
λ

(
f̂(λ) + F (0)

)
.

Proof. Let λ be as in the claim and N > 0. Integration by parts yields∫ N

0
e−λtF (t) dt = − 1

λe−λNF (N) + 1
λF (0) +

∫ N

0
1
λe−λtf(t) dt

= − 1
λe−λNF0(N)− 1

λe−λNF (0) + 1
λF (0) + 1

λ

∫ N

0
e−λtf(t) dt.

From Lemma B.11 we derive that e−λNF0(N) → 0 as N → ∞. Moreover, Reλ > 0 and
Reλ > abs(f) imply that e−λNF (0) → 0 as N → ∞ and f̂(λ) exists. Hence the left-hand
side converges as N →∞, which means that F̂ (λ) exists. Also the claimed identity for F̂ (λ)
now is obvious.
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We saw in Lemmas B.10 and B.11 that f is Laplace transformable if and only if F0 is
exponentially bounded, i.e., abs(f) <∞ if and only if abs(F0) ≤ ω0(F0) <∞. More precisely
we know that

abs(f) ≤ ω0(F0) ≤ max{0, abs(f)}.

Thus, if abs(f) ≥ 0, then we have abs(f) = ω0(F0).
In case abs(f) < 0, the antiderivative F0 has the limit f̂(0) = limt→∞ F0(t). Thus

we can not expect that ‖F0(t)‖ decreases exponentially as t → ∞. Instead we then have
abs(f) = ω0(F0− f̂(0)). We won’t use this fact. For a proof we refer to Theorem 1.4.3 in [5].

Laplace transforms of strongly continuous operator families

Let W be another Banach spaces and let (Tt)t≥0 be a strongly continuous family of operators
Tt ∈ L(V,W ). In this subsection we define the Laplace transform T̂ (λ) of (Tt)t≥0.

Later we will focus on a strongly continuous semigroup T on a Banach space X, as this
is our most important example. Moreover, we will see that its Laplace transform can be
identified with the resolvent of its generator. Let us also start with this example to motivate
the approach.

It is known that strongly continuous semigroups are exponentially bounded. Regarding
T as a map T : [0,∞) → L(X), one might expect that T̂(λ) ∈ L(X) is obtained as before,
at least for Reλ > ω0(T). However we do not know if T : [0,∞)→ L(X) is measurable. To
avoid this problem, we make use of the strong continuity.

For x ∈ V consider the function fx : [0,∞) → W ; t 7→ Ttx. It is continuous and hence
locally integrable. In case f̂x(λ) exists for some λ ∈ K and x ∈ V , we set

T̂ (λ)x := f̂x(λ) = lim
N→∞

∫ N

0
e−λtTtx dt.

If λ ∈ K is such that T̂ (λ)x exists for all x ∈ V , then a mapping T̂ (λ) : V →W is determined.
We call T̂ (λ) the Laplace transform of (Tt)t≥0 at λ. As before, we define the quantity

abs((Tt)t≥0) = inf{Reλ |λ ∈ K : T̂ (λ) exists}

= inf{Reλ |λ ∈ K : ∀x ∈ V : f̂x(λ) exists} = sup
x∈V

abs(fx).

Lemma B.7 yields that T̂ (λ) exists for all λ ∈ K with Reλ > abs((Tt)t≥0).
Assume that T̂ (λ) exists for some λ ∈ K. We show that T̂ (λ) ∈ L(V,W ). Clearly, the

linearity of Tt for every t ≥ 0 implies that T̂ (λ) is linear. Let N > 0. Using the uniform
boundedness principle, one easily sees that {‖Tt‖ | t ∈ [0, N ]} is bounded. Therefore we have∥∥∥∥∥

∫ N

0
e−λtTtx dt

∥∥∥∥∥ ≤
∫ N

0
e−Reλt dt sup

t∈[0,N ]
‖Tt‖ ‖x‖ .

This means that the linear mapping V →W ; x 7→
∫N

0 e−λtTtx dt is bounded for each N > 0.
A corollary to the uniform boundedness principle then yields that T̂ (λ) as the pointwise limit
of these bounded operators is itself bounded.
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Let us now assume that (Tt)t≥0 is exponentially bounded. Obviously the exponential
bounds pass over to fx, more precisely abs(fx) ≤ ω0(fx) ≤ ω0((Tt)t≥0). As expected, we can
thus estimate

abs((Tt)t≥0) ≤ ω0((Tt)t≥0).

There is an estimate for ‖T̂ (λ)‖, which is of special importance in the case (Tt)t≥0 = T.

Lemma B.13. Let λ ∈ K with Reλ > ω0((Tt)t≥0). Moreover, choose ω ∈ R, M = Mω ≥ 0
with ω0((Tt)t≥0) < ω < Reλ and ‖Tt‖ ≤Meωt for all t ≥ 0. Then we have

‖T̂ (λ)‖ ≤ M

Reλ− ω .

Proof. Let x ∈ V . Observe that e−λ( � )fx ∈ L1([0,∞),W ) and ‖e−λtTtx‖ ≤Me−(Reλ−ω)t‖x‖
for t ≥ 0. It follows that

‖T̂ (λ)x‖ =
∥∥∥∥∫ ∞

0
e−λtTtx dt

∥∥∥∥ ≤ ∫ ∞
0

Me−(Reλ−ω)t‖x‖ dt = M

Reλ− ω‖x‖.

Let A be the generator of T. To obtain an identification of T̂(λ) as the resolvent of A,
we need the elementary (but important) lemma stated below. We further make use of the so
called ‘rescaled semigroup’. For µ ∈ K and t ≥ 0 consider Sµt = eµtTt. Simple calculations
show that this defines a strongly continuous semigroup Sµ on X with generator µ+A.

Lemma B.14. For all x ∈ X and N > 0 we have∫ N

0
Ttx dt ∈ D(A) and A

∫ N

0
Ttx dt = TNx− x.

If x ∈ D(A), we even have∫ N

0
TtAx dt = TNx− x = A

∫ N

0
Ttx dt.

For a proof see Lemma II.1.3 in [15]. We remark that the first part can be checked using
the definition of the generator. The second part follows from the fundamental theorem of
calculus.

Proposition B.15. Let λ ∈ K. Assume that T̂(λ)x converges absolutely for all x ∈ X. Then
λ ∈ ρ(A) and R(λ,A) = T̂(λ).

Proof. Let x ∈ X. First we show that T̂(λ)x ∈ D(A) and that (λ − A)T̂(λ)x = x. Set
St = S−λt = e−λtTt for t ≥ 0. Recall that S is a strongly continuous semigroup with generator
−λ+A and that D(−λ+A) = D(A). For δ > 0 a change of variables leads to

1
δ

(
SδT̂(λ)x− T̂(λ)x

)
= 1

δ Sδ
∫ ∞

0
Stx dt− 1

δ

∫ ∞
0

Stx dt

= 1
δ

∫ ∞
δ

Stx dt− 1
δ

∫ ∞
0

Stx dt = −1
δ

∫ δ

0
Stx dt.

Since the function t 7→ Stx is continuous, the right-hand side converges to −x as δ → ∞.
This shows that T̂(λ)x ∈ D(A) and that (−λ+A)T̂(λ)x = −x. Hence (λ−A)T̂(λ)x = x.
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Now let x ∈ D(A). We have to prove that T̂(λ)(λ−A)x = x. Lemma B.14 yields

(−λ+A)
∫ N

0
Stx dt =

∫ N

0
St(−λ+A)x dt

for every N > 0. By the assumption the right-hand side converges to T̂(λ)(−λ + A)x as
N →∞. Because on the other hand

∫N
0 Stx dt converges to T̂(λ) as N →∞ and −λ+ A is

closed, we obtain (−λ+A)T̂(λ)x = T̂(λ)(−λ+A)x. The first steps now finishes the proof.

Note that the assumption of Proposition B.15 is satisfied for λ ∈ K with Reλ > ω0(T).
As a corollary we obtain the following basic result from semigroup theory.

Corollary B.16. Let λ ∈ K with Reλ > ω0(T). Then λ ∈ ρ(A) and ‖R(λ,A)‖ ≤ M
Reλ−ω for

every pair ω ∈ R, M ≥ 1 such that ω0(T) < ω < Reλ and ‖Tt‖ ≤Meωt for all t ≥ 0.
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Appendix C

Boundary control systems

The contents of this chapter are taken from Section 10.1 of [49] except for the last section
which is standard. Some control problems obtained from partial differential equations such
as the ones in Subsections 4.4.3 and 4.4.4 naturally lead to ‘boundary control systems’. These
are equations of the form

z′(t) = Lz(t); z(0) = x0,

Gz(t) = u(t)
(C.1)

Here z(t) is the state of the system at time t ≥ 0, x0 is the initial state and u is the control.
We shall see that the following solution concept for (C.1) is justified.

Definition C.1. Let X, U , Z be Banach spaces and let Z ⊆ X be continuously embedded in
X. Further let L ∈ L(Z,X) and G ∈ L(Z,U) as well as x0 ∈ X and u ∈ L1

loc([0,∞), U). Then
a solution of (C.1) is a function

z ∈ C([0,∞), Z) ∩ C1([0,∞), X)

which satisfies (C.1) in the classical sense.
Next we give conditions under which problem (C.1) can be transformed to control systems

in the common form
z′(t) = Az(t) +Bu(t); z(0) = x0. (C.2)

Definition C.2. Let X, U , Z be Banach spaces where Z ⊆ X is continuously embedded in X.
Further let L ∈ L(Z,X) and G ∈ L(Z,U). We define the linear operator A in X by its graph

A = {(x, y) ∈ X ×X |x ∈ Z and Gx = 0 and y = Lx}.

Then the pair (L,G) is called boundary control system on X, U and Z if the following conditions
are satisfied.

(i) The subspace kerG is dense in X.

(ii) The operator G has a bounded right inverse G# ∈ L(U,Z)

(iii) The map A is closed and ρ(A) 6= ∅.
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Observe that the operator A is the restriction of L to kerG. It is densely defined due
assumption (i). Hence A satisfies all conditions necessary for the construction of the spaces
X1 and X−1 as described in Appendix A and we have the extension A|0 ∈ L(X,X−1).

We first show that ‖ � ‖Z is equivalent to ‖ � ‖1 on D(A). As a closed subspace the domain
D(A) = kerG endowed with ‖ � ‖Z is complete. Let x ∈ D(A). Using the boundedness of L
and the equation Ax = Lx we obtain

‖x‖1 ≤ |λ|‖x‖X + ‖Lx‖X ≤
(
c|λ|+ ‖L‖L(Z,X)

)
‖x‖Z ,

where c ≥ 0 is such that ‖w‖X ≤ c‖w‖Z for all w ∈ Z. Since also X1 is complete, the open
mapping theorem yields the claim.
Remark C.3. It is possible formulate Definition C.2 only in terms of L and G. To this end,
replace condition (iii) by

(iii’) ∃λ ∈ C : λ− L|kerG : kerG→ X is one-to-one and onto.

It is clear that (iii) implies (iii’). To show the other implication, let λ ∈ C be as in (iii’).
Using the equivalence of ‖(λ−A) � ‖X , ‖ � ‖1 and ‖ � ‖Z on D(A) we get

‖(λ−A)x‖X . ‖x‖1 . ‖x‖Z for all x ∈ D(A).

Thus the bounded inverse (λ−A)−1 ∈ L(X, (D(A), ‖ � ‖Z)) exists. Because Z is continuously
embedded in X, the operator (λ − A)−1 belongs to L(X) which in turn means that A is
closed as well as that λ ∈ ρ(A). ♦

Remark C.4. Note that in order to satisfy (ii) it is necessary that G is onto. However, if Z is
a Hilbert space then this is also sufficient. We have put this and related statements at the
end of the chapter. ♦

Proposition C.5. Let (L,G) be a boundary control system on X, U and Z. Then there is
a unique operator B ∈ L(U,X−1) such that

Lw = (A|0)w +BGw for all w ∈ Z.

For each λ ∈ ρ(A) we further have R(λ,A)B ∈ L(U,Z) and GR(λ,A)B = IdU .

Proof. Let G# ∈ L(U,Z) be the bounded right inverse of G from (ii) of Definition C.2. We
define a linear map B : U → X−1 via

Bv := (L−A|0)G#v for v ∈ U.

In order to prove that B is bounded, let λ ∈ ρ(A). We may assume that ‖x‖−1 is given by
‖R(λ,A)x‖X for x ∈ X. Now for all v ∈ U we estimate

‖Bv‖−1 ≤ ‖LG#v‖−1 + ‖(A|0)G#v‖−1

≤ ‖R(λ,A)‖L(X)‖LG#v‖X + ‖A|0‖L(X,X−1)‖G#v‖X
. (‖L‖L(Z,X) + 1)‖G#v‖Z . ‖G‖L(Z,U)‖v‖U .

This shows that B is bounded.
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Let w ∈ Z. It is easy to see that (IdZ −G#G)w ∈ kerG. Because L and A|0 coincide on
kerG, we thus have

BGw = (L−A|0)G#Gw ± (L−A|0)w
= −(L−A|0)(IdZ −G#G)w + (L−A|0)w = Lw − (A|0)w.

This however implies the first identity in the claim. Moreover, by inserting w = G#v for
v ∈ U it becomes evident that B is unique. Now let v ∈ U . We compute

Bv = LG#v − (A|0)G#v ± λG#v = (λ IdX −A|0)G#v − (λ IdZ −L)G#v.

From the fact that (λ− L)G#v belongs to X we infer

R(λ,A)Bv = G#v −R(λ,A)(λ− L)G#v ∈ Z. (C.3)

This identity implies that R(λ,A)B ∈ L(U,Z). Since R(λ,A)(λ−L)G#v lies in X1 = kerG,
we finally obtain

GR(λ,A)Bv = GG#v −GR(λ,A)(λ− L)G#v = v.

Although the notation suggests that (A,B) defines a linear control system, it is in general
not clear whether this is true. Nevertheless A and B are called generator and control operator
corresponding to (L,G) respectively. Further Z is the solution space for (L,G). As usual X
is called state space and U is called input space.

Take any λ ∈ ρ(A). Then the solution space Z has a remarkable decomposition. For all
w ∈ Z there exist unique x ∈ X1 and v ∈ U with w = x+R(λ,A)Bv. That is

Z = X1 +R(λ,A)B(U).

Indeed, X1 is a subspace of Z. From (C.3) we know that R(λ,A)Bv ∈ Z for all v ∈ U . On
the other hand let z ∈ Z and set v = Gz. Proposition C.5 yields that GR(λ,A)B = IdU and
therefore

Gz = GR(λ,A)Bv ⇐⇒ G(z −R(λ,A)Bv) = 0.
This means that x := z−R(λ,A)Bv is contained in kerG = X1 and clearly z = x+R(λ,A)Bv.
In order to show uniqueness, let xa, xb ∈ X1 and va, vb ∈ U satisfy

xa +R(λ,A)Bva = xb +R(λ,A)Bvb ⇐⇒ xa − xb = R(λ,A)B(vb − va)

Note that the left hand side of the last equation belongs to D(A) = kerG. Thus applying G
and using GR(λ,A)B = IdU again yields 0 = G(xa − xb) = vb − va, which in turn implies
xa − xb = R(λ,A)B0 = 0.

We see that Z equals the solution space introduced in Section 3.3. There the decompo-
sition w = x+R(λ,A)Bv is not necessarily unique, so we are in a special situation here.

In Section 3.3 a norm on Z was given by w = x + R(λ,A)Bv 7→ (‖x‖21 + ‖v‖2U )1/2. We
easily see that it is equivalent to ‖ � ‖Z . In fact, let w = x + R(λ,A)Bv ∈ Z. Then we have
x = w − R(λ,A)Bv as well as v = Gw. Hence, using the equivalence of ‖ � ‖1 and ‖ � ‖Z on
D(A) we derive

‖x‖21 + ‖v‖2U = ‖w −R(λ,A)Bv‖21 + ‖Gw‖2U
. ‖w −R(λ,A)BGw‖2Z + ‖G‖2L(Z,U)‖w‖

2
Z

≤
(
‖w‖Z + ‖R(λ,A)B‖L(U,Z)‖G‖L(Z,U)‖w‖Z

)2 + ‖G‖2L(Z,U)‖w‖
2
Z .
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The other way around we have

‖w‖Z = ‖x+R(λ,A)Bv‖Z ≤ ‖x‖Z + ‖R(λ,A)Bv‖Z
. ‖x‖1 + ‖R(λ,A)B‖L(U,Z)‖v‖U ≤ 2(1 + ‖R(λ,A)B‖)(‖x‖21 + ‖v‖2U )1/2.

Now assume that (A,B) define a linear control system on X and Lp([0,∞), U) for some
p ∈ [1,∞). Recall that by Proposition 3.13 the strong solution z ∈ C([0,∞), X) of z′(t) =
Az(t) +Bu(t); z(0) = x0 actually is the classical solution and even satisfies

z ∈ C([0,∞), Z) ∩ C1([0,∞), X).

provided that u ∈W 1,p
loc ([0,∞), U) and x0 ∈ X satisfy Ax0 +Bu(0) ∈ X.

Note that leaving out the information that z ∈ C([0,∞), Z), this statement does not refer
to Z. Nevertheless for x0 ∈ X, v ∈ U and λ ∈ ρ(A) the following equivalences hold

Ax0 +Bv ∈ X ⇐⇒ λx0 −Ax0 −Bv ∈ X ⇐⇒ x0 −R(λ,A)Bv ∈ X1

⇐⇒ ∃x ∈ X1 : x0 = x+R(λ,A)Bv ∈ Z.

We emphasize that in this situation we have Gx0 = v.
Definition C.6. Let (L,G) be a boundary control system on X, U and Z as in Definition C.2.
Then (L,G) is called Lp–well-posed if the corresponding generator A and the control operator
B define a linear control system on X and Lp([0,∞), U) for some p ∈ [1,∞).

Now we can state and prove the main result of the chapter.
Proposition C.7. Let X, U and Z be Banach spaces where Z ⊆ X is continuously embedded
in X. Further let p ∈ [1,∞) and let (L,G) be an Lp–well-posed boundary control system on
X, U and Z. Then for all x0 ∈ Z and u ∈ W 1,p

loc ([0,∞), U) with Gx0 = u(0) problem (C.1)
has a solution z. It is the classical solution of z′(t) = Az(t) + Bu(t); z(0) = x0, where A is
the generator and B is the control operator corresponding to (L,G).
Proof. In a first step we check that the conditions of Proposition 3.13 are satisfied. Since
x0 ∈ Z, there are x ∈ X1 = kerG and v ∈ U with x0 = x+R(λ,A)Bv. Because GR(λ,A)B =
IdU , it follows

u(0) = Gx0 = Gx+GR(λ,A)Bv = v.

Therefore we have

Ax0 +Bu(0) = Ax± λR(λ,A)Bu(0) +AR(λ,A)Bu(0) +Bu(0)
= Ax+ λR(λ,A)Bu(0)− (λ−A)R(λ,A)Bu(0) +Bu(0)
= Ax+ λR(λ,A)Bu(0) ∈ X.

Now let z ∈ C([0,∞), Z)∩C1([0,∞), X) be the classical solution of z′(t) = Az(t)+Bu(t);
z(0) = x0 from Proposition 3.13. The differential equation is fulfilled pointwise and we derive

z(t) = R(λ,A)(λ−A|0)z(t) = R(λ,A)
(
λz(t)− z′(t) +Bu(t)

)
for all t ≥ 0.

Note that R(λ,A)(λz(t)− z′(t)) ∈ X1 = kerG. Applying G we thus get

Gz(t) = GR(λ,A)
(
λz(t)− z′(t)

)
+GR(λ,A)Bu(t) = u(t) for all t ≥ 0.

With the representation of L from Proposition C.5 we finally infer the equation

Lz(t) = (A|0)z(t) +BGz(t) = (A|0)z(t) +Bu(t) = z′(t) for all t ≥ 0.

This means that z is a solution of (C.1).
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Bounded right inverse
In this section let V,W be Banach spaces and let T ∈ L(V,W ). A map S : W → V is a right
inverse of T , if TS = IdW . In case S is linear and bounded, i.e., S ∈ L(W,V ), it is called
bounded.

Clearly, a right inverse exists if and only if T is onto. However, unless T is one-to-one
and onto, right inverse are never unique. For example consider the map

T : C2 → C; T (a, b) = a.

Here, for each c ∈ C a right inverse Sc : C → C2 is given by Sca = (a, c). Note that S0 is
bounded. Another bounded right inverse is given e.g. by a 7→ (a, a).

We shall characterize the existence of a bounded right inverse. To this end, we need the
following notation. Let V0, V1 ⊆ V two subspaces. Then we write

V = V0 ⊕ V1

if V0 ∩ V1 = {0} and for all x ∈ V there are x0 ∈ V0 and x1 ∈ V1 with v = v1 + v2. In this
case V0 is called a complement of V1 in V (and vice versa).

Lemma C.8. Let T ∈ L(V,W ) and assume that T has a bounded right inverse S ∈ L(W,V ).
Then we have

V1 := RanS = ker(IdV −ST ),

so that V1 is a closed subspace of V . Moreover, V can be decomposed into V = V1 ⊕ kerT .

Proof. Let x ∈ V . Then x− STx = 0 is equivalent to x = S(Tx). Since T is onto, we infer
that x ∈ ker(IdV −ST ) if and only if x ∈ RanS.

We set x1 = STx and x0 = x− x1. Clearly x1 ∈ V1 and x = x0 + x1. We further have

Tx0 = Tx− TSTx = Tx− Tx = 0.

This means x0 ∈ kerT . For x ∈ kerT∩V1 the first statement yields 0 = x−STx = x−S0 = x.
We conclude that kerT ∩ V1 = {0}.

Lemma C.9. Assume that T ∈ L(V,W ) is onto and that kerT has a closed complement V1
in V . Then T has a bounded right inverse S with RanS = V1.

Proof. In the first step we show that T |V1 is onto and one-to-one. Let y ∈ W . Using that T
is onto, we find a vector x ∈ V with Tx = y. Moreover, there are x0 ∈ kerT and x1 ∈ V1
with x = x0 + x1. It follows that

(T |V1)(x1) = Tx1 = T (x0 + x1) = Tx = y.

Thus T |V1 is onto. Next take x1 ∈ V1 with (T |V1)(x1) = Tx1 = 0, i.e., x1 ∈ kerT . Since
kerT ∩ V1 = {0} by assumption, we deduce that x1 = 0 and hence T |V1 is one-to-one.
Therefore the open mapping theorem yields a bounded inverse S ∈ L(W,V1) of T |V1 . In
particular we obtain

TSy = (T |V1)(Sy) = y

for all y ∈W . We consider S as an element of L(W,V ). Then clearly RanS = V1.
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Summing things up, we have shown the following result.

Proposition C.10. Let V and W be Banach spaces and let T ∈ L(V,W ) be onto. Then the
following assertions are equivalent.

(i) ∃S ∈ L(W,V ) ∀y ∈W : TSy = y.

(ii) kerT has a closed complement in V .

Despite the fact that bounded right inverse of T ∈ L(V,W ) are not unique we denote
them by T# whenever such operators exist.

In Hilbert spaces the orthogonal complement of any subspace is also a closed complement.
This fact lets us simplify the last proposition.

Corollary C.11. Let V be a Hilbert space and W be a Banach space. For T ∈ L(V,W ) the
following are equivalent

(a) ∃T# ∈ L(W,V ) ∀y ∈W : TT#y = y.

(b) T is onto.

Let V be a Hilbert space and assume that T is onto. Let T# be the bounded right inverse
of T constructed in Lemma C.9 corresponding to V1 = (kerT )⊥, i.e., T# is (T |(kerT )⊥)−1

seen as an operator in L(W,V ).
Take any other right inverse S : W → V of T . Using Pythagoras’s theorem one easily

deduces ‖T#y‖V ≤ ‖Sy‖V for all y ∈ Y . In case S is linear and bounded it follows that
‖T#‖L(W,V ) ≤ ‖S‖L(W,V ).

Remark C.12. Assume that T ∈ L(V,W ) has a bounded right inverse T# ∈ L(W,V ). Further
let R ∈ L(V,W ). Then T +R ∈ L(V,W ) is onto if

‖R‖L(V,W ) < ‖T#‖−1
L(W,V ). (C.4)

Indeed, in this case the Neumann series for (T + R)T# = IdW +RT#, since in particular
‖RT#‖L(W ) < 1. Denote the inverse of (T+R)T# by S ∈ L(W ), so that (T+R)T#S = IdW .
It follows that T#S ∈ L(W,V ) is a bounded right inverse of T +R.

With the notation of Lemma C.9 and the reasoning above, the largest possible bound for
‖R‖L(V,W ) in (C.4) is ‖(T |V1)−1‖−1

L(W,V1). ♦
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