KIT | KIT-Bibliothek | Impressum | Datenschutz

Lowregularity exponential-type integrators for semilinear Schrödinger equations

Ostermann, Alexander; Schratz, Katharina

Abstract:

We introduce low regularity exponential-type integrators for nonlinear Schrödinger equations for which first-order convergence only requires the boundedness of one additional derivative of the solution. More precisely, we will prove first-order convergence in H$^r$ for solutions in H$^r$$^+$$^1$ (r > d/2) of the derived schemes. This allows us lower regularity assumptions on the data than for instance required for classical splitting or exponential integration schemes. For one dimensional quadratic Schrödinger equations we can even prove first-order convergence without any loss of regularity. Numerical experiments underline the favorable error behavior of the newly introduced exponential-type integrators for low regularity solutions compared to classical splitting and exponential integration schemes.


Volltext §
DOI: 10.5445/IR/1000069444
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2017
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-694449
KITopen-ID: 1000069444
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 24 S.
Serie CRC 1173 ; 2017/11
Schlagwörter nonlinear Schrödinger equations, exponential-type time integrator, low regularity, convergence
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page