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Abstract. Strain response of FBG sensors are investigated at various temperatures from 298 K 

to 4.2 K. Numerical modelling is carried out for acrylate coated, substrate-free fiber Bragg 

grating (FBG) sensors at room temperature of 298 K and cryogenic temperatures of 77 K, 10 K 

and 4.2 K. A 1550 nm Bragg wavelength (λB) FBG sensor is modelled and simulated for 

applied strain (ε) ranging from 0 to 800 µm/m. The Bragg wavelength shifts (ΔλB) thus 

obtained are compared with the experimentally investigated values obtained by subjecting the 

FBG sensor to axial strain, with its sensing part not being bonded to any surface. The MTS25 

tensile machine with a cryostat under vacuum conditions (10-4 mbar pressure) is used for the 

experiments and the required temperatures are maintained using liquid Nitrogen (LN2) and 

compressed Helium gas (He). The Bragg wavelength shift (ΔλB) versus induced strain (ε) is 

regressed with a linear polynomial function and the strain sensitivity obtained in both the cases 

are discussed. 

1. Introduction 

Fiber Bragg gratings (FBG) are considered one of the most reliable sensors to monitor crucial process 

parameters like pressure, temperature, flowrate, concentration, etc [1-4], thanks to their miniature size, 

high sensitivity, electrical and magnetic immunity, and multiplexing capabilities. FBG sensors prove 

to be a good replacement for the conventional sensors, especially for measurements at cryogenic 

temperatures [5-8]. As well documented in literature [9-11], FBG is a short segment in the core of an 

optical fiber which has a periodic variation of refractive index. The gratings are inscribed into the 

optical fiber using UV interferometer [12]. Due to the varying refractive index of the FBG, one 

particular wavelength of the incident light is reflected and the others are transmitted, as depicted in 

Figure 1. This reflected wavelength (central wavelength of the reflected band) is called the Bragg 

wavelength (λB) and it satisfies the following condition [13]: 

      
effB

n 2     (1) 

where Ʌ and neff are the grating period and effective refractive index of the FBG, respectively. 

 

 Any thermal or mechanical strain caused on the FBG will alter its Bragg wavelength due to 

photo-elastic and thermo-optic effects, thus enabling its application in measurement technology. The 

change in wavelength is called the Bragg wavelength shift (ΔλB) and is expressed as [13]: 
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Figure 1. Principle of Fiber Bragg Gratings. 

 

where ΔT is the temperature difference, ε the strain, αs the thermal expansion coefficient  

(0.55x10-6 for silica), αe the thermo-optic coefficient (8.6x10-6 for silica), and pe the effective strain-

optic coefficient of the fiber which can be calculated using [13]: 

       
121112

2

2
ppp

n
p

e
     (3) 

where p11 and p12 are the components of strain-optic tensor, n the fiber core refractive index, and ν the 

Poisson’s ratio. For a typical FBG sensor (p11 = 0.113, p12 = 0.252, ν = 0.16 and n = 1.482), pe is 0.22. 

For a Bragg wavelength ~1550 nm, the expected strain sensitivity is 1.2 pm/µε, i.e., for an applied 

strain of 1 µε, the change in Bragg wavelength will be 1.2 pm. The expected temperature sensitivity is 

13.7 pm/K. The strain and temperature sensitivities of the FBG, however, vary from sensor to sensor, 

thus requiring a calibration before any measurement. 

 

 Strain and temperature response of FBG sensors are investigated and reported regularly [14-16]. 

The reported strain sensitivities, however, vary depending on many factors like the type of FBG 

sensor, strain transfer efficiency, gluing techniques used, etc., making it difficult to draw conclusions 

on the actual sensor response. This leads to the importance of studying the strain response without 

attaching the FBG sensing part to any surface. To the best of our knowledge, investigations of un-

bonded or substrate-free FBG sensors at cryogenic temperatures have not been reported so far. This 

paper discusses the numerical and experimental investigation of a substrate-free FBG sensor at various 

temperatures whose sensing part is not attached to any surface. 

2. Numerical Investigation 

Numerical simulation is performed to study the strain response of an acrylate coated single mode FBG 

sensor using COMSOL 4.4, a commercial finite element analysis software. A 3D linear elastic solid 

mechanics model of the FBG sensor is assumed as the strain range to be studied (0 to 800 µm/m) is 

well within its elastic limit. The purpose is to obtain the Bragg wavelength shift (ΔλB) for the given 

strain (ε) and it is done based on Equation 2 and 3, which are fed to the solver. The values of αs, αe, p11 

and p12 are obtained from the solver’s database based on the material properties of the optical fiber. 

 

 The geometry of the model considered consists of two concentric cylinders (Figure 2) which 

represent the core and coating of the FBG optical fiber respectively, whose specifications are given in 

Table 1. The physical properties tabled are at 298 K and the solver calculates for the other 

temperatures depending on the material. As silica is a fragile material with high Young’s modulus of 

7.33 x 1010, a more elastic acrylate polymer coating with Young’s modulus 2.5 x 109 is provided 

around the core to provide high strength and flexibility to the FBG.   
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Figure 2. Optical fiber 

schematic. 

 Figure 3. Tetragonal meshing drawn on the 

core and coating. 

 

 A tetrahedral mesh (Figure 3) with non-uniform grid spacing is generated for the geometry. At 

the region near the core, the grid spacing is much finer than the region away from it. This is done to 

ensure high accuracy as the material properties change between the core and the coating.  

 

 

Table 1. FBG core and coating specifications. 

 

 

 

 

Core 

Material Silica 

Shear modulus (G1) 3.01 x 1010 Pa 

Young’s modulus (E1) 7.33 x 1010 Pa 

Thermo-optic coefficient (αe) 8.60 x 10-6 K-1 

Thermal expansion coefficient (αs) 5.50 x 10-7 K-1 

Strain-optic coefficient (Pe) 0.22 

Bragg wavelength (λB) 1550 nm 

Diameter (d1) 9.00 x 10-6 m 

 

Coating 

Material Acrylate polymer 

Shear modulus (G2) 1.30 x 109 Pa 

Young’s modulus (E2) 2.50 x 109 Pa 

Diameter (d2) 1.95 x 10-4 m 

 

 Numerical investigation is performed by prescribing a displacement to one end and assuming 

the other end to be stationery. The displacement values (∆L) to be provided correspond to the user-

required strain values (ε) which are calculated by: 

      
L

L
      (4) 

where L is the length of the sensor subjected to strain. For the given strain values ranging from 0 to 

800 µm/m, steady state simulation is carried out for the temperatures of 298 K, 77 K, 10 K and 4.2 K. 

The Bragg wavelength shift data obtained from the numerical simulation are plotted against the 

corresponding strain and compared with those obtained from the experiment. The numerical 

simulation results are discussed along with the experimental results in the 4th section. 

3. Experimental investigation 

A commercial polyamide coated single mode fiber (SMF 28) consisting of two FBG sensors is used in 

this investigation. Each FBG has a different spatial period, thus having different Bragg wavelengths, 

r1 

r2 

Core 

Coating 
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namely, λB1 and λB2. The ends of one sensor (FBG 1) are glued firmly to two stainless steel structures, 

making sure that the FBG sensing part is free and does not have any contact with any surface (Figure 

4). FBG 1 can sense both strain and temperature. The other sensor (FBG 2) is let to hang freely to 

ensure that there is no strain felt in it and is used to sense only temperature. 

 

 

Figure 4. FBG 1 glued to metal structures with the central sensing 

part not touching any surface. 

 

 The ends of FBG 1 are glued to the metal structures using epoxy-phenol adhesive. This type of 

adhesive requires a heat treatment at about 160 0C for 2 hours. The heated sample is allowed to cool 

naturally till it reaches the room temperature. The spectra of FBG 1 before and after the heat treatment 

is plotted in Figure 5. It can be seen that the spectral pattern is almost the same and there is no 

significant change in the initial Bragg wavelength. Thus, the chosen heat treatment has not affected the 

FBG sensor properties. 

 

Figure 5. Spectral comparison of FBG before heat treatment, after heat treatment 

(same for pre-installation) and after installation. 

 

 The sample is then transferred to the MTS25 tensile machine with cryostat available at 

Cryogenic Material tests Karlsruhe (CryoMaK) [17], ITeP, KIT. The tensile machine consists of an 

extensometer (also called top load cell) and a bottom load cell. An extensometer is a device that is 

used to measure the distance between two distinct points on the surface of the attached specimen [18, 

19]. A calibrated extensometer is used as a reference sensor for the tests. The metal structures with 

fiber are installed by attaching to the load cells (Figure 6) of the tensile machine, which has an 

accuracy of ±1 µm displacement. A pre-strain is given to the sensor to avoid errors in measurement 

due to bending of the sensor. To ensure that the installation has not affected the FBG properties, the 

spectral data before and after installation are also compared. Figure 5 shows that the Bragg wavelength 

of the sensor is almost equal before the installation (same as post-heat treatment) and after the 

installation of the sensor between the load cells.  

 

Free sensing part 
(FBG) 

Glued non-sensing part 
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 Keeping the top load cell (extensometer) fixed, the bottom load cell is moved by the 

displacement bellow (works on hydraulic mechanism) under it for the given displacement values in the 

command. The given displacement is completely transferred to the FBG sensor, i.e., the change in 

length of the sensor is equal to the displacement. This induces a strain in the FBG sensor (FBG 1), 

which in turn causes a Bragg wavelength shift in it. Any temperature changes around it also adds to its 

Bragg shift (∆λB1). On the other hand, the Bragg wavelength shift of FBG 2 (∆λB2) which hangs freely 

in the cryostat is caused only due to the temperature changes. Hence, temperature effects on FBG 1 

can be nullified using FBG 2. After each displacement command it is necessary to wait for about five 

minutes for the bellow to settle down to the desired displacement. The calibration tests are first 

performed at room temperature for both straining (downward displacement of bottom load cell) and 

de-straining (upward movement of bottom load cell). The experiment is performed 3 times to test the 

repeatability of the sensor. For calibration tests at the desired cryogenic temperature (77 K), the test 

chamber (cryostat) is cooled down by the attached Liquid Nitrogen (LN2) pipe up to 100 K. The 

temperature inside the chamber is monitored using a Si diode (Omega Inc., CYD 208 thermometer). 

To further cool the cryostat down to 77 K, compressed Helium (He) flow is started inside the pipe 

attached to the Cu-heat exchanger in the cryostat. Once the temperature reaches 77 K, the He flow is 

reduced to maintain the temperature constant. 

 

 

 

 
 

Figure 6. The sample loaded in the calibration device MTS 25 in a 

cryostat (left) and the FBG sensor attached to the metal structures is 

zoomed in for a clear view. 

 

 As there are a lot of sources of heat transfer in the cryostat, the temperature might increase if He 

flow is stopped. Hence, it is important to make sure He flow is continuously regulated to maintain a 

constant temperature of 77 K. The pressure in the cryostat is maintained at 10-4 mbar during the 

cooling down process. The investigation/calibration procedure used at 298 K is repeated for 

measurements at 77 K. The values of Bragg wavelength shift, displacement, extensometer voltage and 

temperature are recorded for each given displacement for both 298 K and 77 K. An industrial 

Braggmeter (FS22 Industrial BraggMETER SI) [20] is used to read the signal from FBGs. It has a 

very good resolution of 1.0 pm and absolute accuracy of ± 2.0 pm. In other words, temperature can be 

measured with an accuracy of 0.2 K and strain with 1.7 µε. The Braggmeter also has good 

repeatability of ± 1.0 pm, showing that the error in measurement due to the measuring device is 

negligible. 

4. Results & discussion 

The respective results from the simulation and experiment are individually discussed first and then a 

comparison is made to describe the reliability of the FBG sensor.  

Extensometer 

Bottom load cell 

FBG sensor 1  

Displacement bellow 

FBG sensor 2  

Cryostat  
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 For the given strain values, the Bragg wavelength shifts obtained from the simulation for 

temperatures of 298 K, 77 K, 10 K and 4.2 K are plotted in Figure 7. The results obtained converged 

with a tolerance of 10-3. As it can be observed, all the values fall on a near-linear line, proving the 

linear dependence of Bragg shift with respect to strain. It can also be seen that the Bragg shift is 

almost the same for all the temperatures up to 250 µm/m strain. A negligible difference occurs for 

strain greater than that which could be due to small changes in the material properties at different 

temperatures. 

  

Figure 7. Numerical results of Bragg wavelength shift for corresponding induced strain 

values at 298 K, 77 K, 10 K and 4.2 K.  

  

 The response observed from the experiment is discussed herewith. For each given displacement, 

the corresponding mechanical strain is calculated based on the attached length of the fiber (L) using 

Equation 4. The initial length of the sensor and the corresponding initial Bragg wavelength are taken 

after providing the sensor with some pre-strain, to ensure that there is no error in the length due to 

bending of the sensor. The purely strain-dependent Bragg wavelength shift (∆λB) is given by the 

difference of Bragg shift of FBG 1 and FBG 2 as follows: 

     
21 BBB

      (5) 

This Bragg wavelength shift is taken on the y-axis and the induced strain is taken on the x-axis as 

shown Figure 8. The displacement is increased (straining) in steps of 4 µm up to 16 µm, with each step 

being held constant for 5 minutes. The sensor is then de-strained by decreasing the displacement in the 

steps of 4 µm back to 0 µm. Three runs for straining and de-straining were performed and the average 

is considered for the plot. It can be observed that the plot is almost linear with little hysteresis effect, 

i.e., for the same induced strain, the wavelength shifts during straining and de-straining phases are 

slightly different. The repeatability test showed that the Bragg wavelength shifts of all the three runs 

were in good agreement with each other. The average of straining and de-straining wavelength shifts 

for the corresponding strain values can be safely considered for comparison with the numerically 

obtained results.  
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Figure 8. Bragg wavelength shift (nm) of FBG corresponding to 

induced strain values at 298 K and 77 K. The legends “Straining” 

and “De-straining” refer to the measurements performed during 

straining and de-straining respectively. 

  

 

Figure 9. Experimental and simulated results of Bragg wavelength shift for corresponding 

induced strain values at 298 K and 77 K. Linear polynomial regression is described for all the 

conditions and represented by different types of line for different cases. The regression equations 

for Bragg wavelength shift (y in the graph) as a function of induced strain (x in the graph) are 

displayed. 

 

 Figure 9 gives an insight comparison of these results which has Bragg shift versus strain plots 

for both simulated and experimental data at 298 K and 77 K. Linear regression of all these cases are 

performed and it can be observed that the residual (R2) value is very close to unity in all the cases, 

proving the linear dependence of Bragg shift on strain. The Bragg wavelength shift as a function of 
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induced strain is the same (ΔλB=0.0009ε for experimental and ΔλB=0.001ε for simulative) for both the 

cases of temperature with slightly different regression coefficients. In other words, the strain 

sensitivity of the FBG sensor is found to be 1 pm/µε numerically, and 0.9 pm/µε experimentally. This 

minute difference could be attributed to the strain transfer coefficient, i.e the given strain might not get 

completely transferred to the FBG sensor in the real case due to the presence of glue between the fiber 

and the metal structure. 

 

 The standard deviation between the experimentally obtained values and the regressed values is 

depicted in Figure 10 in the form of error bars for both the temperatures. The FBG sensor shows less 

error at 77 K than at 298 K. This can be attributed to the material properties of the optical fiber. It is 

expected to be more rigid at cryogenic temperatures, as there will be negligible vibrations in the 

sensor, which in turn reduces the error in measurements. 

 

  

Figure 10. Error plots of FBG strain sensor between fitted and obtained values of Bragg shift at 298 

K and 77 K. 

 

 As the errors obtained are negligible, the linear equation obtained by regression can be reliably 

used for this particular sensor. The unknown strain values can be calculated for the observed Bragg 

wavelength shift and thus, the strain related measurands can be estimated. 

5. Conclusions 

An effective numerical investigation of strain response is carried out for an FBG sensor at room 

temperature of 298 K and cryogenic temperatures of 77 K, 10 K and 4.2 K. Experimental test cum 

calibration is also done at 298 K and 77 K. This is a unique and reliable method of calibration because 

the sensing part of the FBG sensor is not attached to any structure or surface. The strain sensitivity of a 

free, acrylate coated standard FBG sensor is found to be 0.9 pm/µε experimentally and 1 pm/µε 

numerically for both the temperatures. A couple of conclusions can be drawn based on the results 

obtained. As reported in earlier works [14], the strain sensitivity of the FBG sensor did not depend on 

the temperature. The obtained results also show that the error in measurement is much less at the 

cryogenic temperature when compared to room temperature, thus showing that FBG sensor is highly 

reliable at cryogenic temperatures. This method of strain calibration of substrate-free FBG sensor has 

proved successful and it can be used for FBG standardization procedures. 
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