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“Imagination is more important than knowledge.
For knowledge is limited, whereas imagination
embraces the entire world.”

- Albert Einstein, 1931



Abstract

In this thesis we investigate stochastic evolution equations of the form

AX () + AX(t)dt = F(t, X (£)) dt + i By(t, X (1)) dBn(t)

n=1

for random fields X: Q2 x [0,7] x U — R, where [0,7] is a time interval, (Q,F,P) a
measure space representing the randomness of the system, and U is typically a domain in
R? (or again a measure space). More precisely, we concentrate on the parabolic situation
where A is the generator of an analytic semigroup on LP(U). We look for mild solutions
so that X (w,-,-) has values in LP(U; L?]0,T]) for almost all w € Q under appropriate
Lipschitz and linear growth conditions on the nonlinearities F' and B, n € N. Compared
to the classical semigroup approach, which gives X (w,-,-) € L4([0,T]; LP(U)), the order of
integration is reversed. We show that this new approach together with a strong Doob and
Burkholder-Davis-Gundy inequality leads to strong regularity results in particular for the
time variable of the random field X (w,t,u), e.g. pointwise Holder estimates for the paths
t — X(w,t,u), P-almost surely. For less-optimal regularity estimates we only need the
relatively mild assumption that the resolvents of A extend uniformly to LP(U; L?[0,T7).
However, in the maximal regularity case the difficulty of the reversed order of integration
in time and space makes extended functional calculi results necessary. As a consequence,
we obtain suitable estimates for deterministic and stochastic convolutions. Using Sobolev
embedding theorems, we obtain solutions in L"(2; LP(U; C*[0,T1])). In several applications
where A is an elliptic operator on a domain in R% we show that for concrete examples of
stochastic partial differential equations our theory leads to stronger results as known in

the literature.
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Introduction

A historic sketch

The theory of stochastic (ordinary) differential equations started with the works of It6 in
1946 (cf. [47, 48]). His short paper [47] of four pages already contained many of the main
ideas future researchers would apply in generalizing his results. The It6 stochastic calculus
was born and it inspired the field of stochastic analysis in a fruitful way. Around 30 years
later, researchers looked beyond stochastic odinary differential equtations to stochastic
partial differential equations. In the fields of physics, biology, or control theory many
models were best described by stochastic evolution partial differential equations. A vivid
example was described by John B. Walsh in [86]:

"The general problem is this. Suppose one is given a physical system governed by a partial
differential equation. Suppose that the system is then perturbed randomly, perhaps by some
sort of a white noise. How does it evolve in time? Think for example of a guitar carelessly
left outdoors. If u(x,t) is the position of one of the strings at the point x and time t, then
in calm air u(x,t) would satisfy the wave equation Oyu = Orpu. However, if a sandstorm
should blow up, the string would be bombarded by a succession of sand grains. Let W(:r,t)
represent the intensity of the bombardment at the point r and time t. The number of
grains hitting the string at a given point and time will be largely independent of the number
hitting at another point and time, so that, after subtracting a mean intensity, W may be

approximated by a white noise, and the final equation is

O, t) = Opgu(x,t) + W(x,t)

where W is a white noise in both time and space, or, in other words, a two-parameter
white noise. One peculiarity of this equation - not surprising in view of the behavior of
ordinary stochastic differential equations - is that none of the partial derivatives in it exist.
However, one may rewrite it as an integral equation, and then show that in this form there

is a solution which is a continuous, though non-differentiable, function.

Similar models were applied to other equations in physics, biology, or most notably mathe-
matical finance. As the terminology suggests, the theory of stochastic partial differential
equations lies in the intersection of two fields: stochastic processes and partial differential

equations. Therefore, several approaches to these equations emerged. In particular for
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filtering equations (see e.g. [51]), the stochastic evolution equation can be regarded as an

‘ordinary’ It6 equation
dX(t) = A(t, X (¢))dt + B(t, X (t)) dB(t)

for processes X taking values in a function space. Depending on the dimension of this
space we could interpret this equation as a (finite or infinite) system of one-dimensional
ordinary stochastic differential equations. An introduction to this approach can be found
in [70]. There, the focus lies on deducing a counterpart to the scalar-valued It6 theory
for the function space-valued case. Omne should remark that by considering an infinite
set of independent Brownian motions 8 = (5, )nen, this also covers equations driven by

space-time white noise (see [54, Section 8.3]).

Another famous approach is that of Walsh [86]. He considered the solution of stochastic
partial differential equations as random variables, or more precisely, as random fields,
because the solution depends on more than one independent variable. The focus of this
theory lies on scalar-valued techniques and measures on infinite dimensional function spaces

regarding both space and time (see also [38, 69]).

As the title of this thesis suggests, we will somehow mix these approaches to create a new

one. More precisely, we will investigate the stochastic evolution equation

AX(t) + AX(t)dt = F(t, X(£)) dt + Y Bu(t, X(£))dBa(t), X(0) =z € LP(U),
n=1
in LP spaces for p € (1, 00), still thinking of the solution X as a random field, i.e. a function

X:Qx[0,T] x U — R, and concentrate on the regularity of the process X (¢, u).

Before explaining this in more detail, we give a short historical background on the develop-
ment of the theory of stochastic evolution equations. Early on, many of It6’s results could
be generalized to the Hilbert space case using the fact that the norm comes from an inner
product (see [22, 20]). In particular, the It6 isometry is still valid in the way we would

expect it:

1) 5] [ owrase [ == [ los)ias

for any Hilbert space (H, || - ||z) and each adapted process ¢: Q x [0,7] — H. Having a
well-defined stochastic integral is the starting point of a reasonable theory. However, in
this situation examples of stochastic evolution equations arose with very low regularity.
One famous result is the heat equation on R? with a stochastic disturbance of gradient

type, more precisely

d
AX(t) = 3AX(H) + Y 0:, X (1) dBu(t), X (0) = xo.

n=1



Introduction 3

Using the calculus of Ité, we can verify that for each 2o € W12(R?) the function

X(t,u) =zo(u+B;), tel0,T],ueR?,

is the unique (weak or mild) solution in L2([0, T] x R%), but, in general, X is not continuous
for d > 2. Therefore, better Sobolev embedding theorems for large p points towards an
LP theory for p # 2 and turn our attention to a Banach space-valued approach. However,
already in the construction of a stochastic integral difficulties appear which were not present
in the Hilbert space case. It turns out that L?([0,T]; E), where E is a general Banach
space, does not lead to two-sided estimates in (1). This means that L2([0,T]; E) does not
characterize the space of stochastically integrable functions. However, assuming additional
geometric properties of F, one gets at least one-sided estimates. For the case of stochastic
partial differential equations in M-type 2 Banach spaces, where the latter include all LP
spaces for p > 2, this was done by BrzezZniak in [12] (see also [10, 30]). Regarding stochastic
integration theory in general Banach spaces, van Neerven and Weis characterized in [84]
the space of reasonable integrands via y-radonifying operators. Intuitively speaking, since
L%([0,T); E) does not do the job, they considered the space with reversed order of norms
"E(L?[0,T])’, which is of course not defined in general. However, in the case of an L space
this turns out to be the right choice. The generalization of the ’square function norm’ in
"E(L?[0,T]) finally leads to the space of y-radonifying operators v(L?[0,T]; E). In [80]
van Neerven, Veraar, and Weis extended this to processes with values in a UMD Banach
space via a decoupling technique. These results were then used in a sequence of papers (see
[81, 83, 82]) to study stochastic evolution equations and their regularity in UMD spaces.

As indicated above, one can avoid vy-radonifying operators in the special case of an LP(U)
space E, since v(L%[0,T]; E) is isomorphic to the Bochner space LP(U;L?[0,T]). The
stochastic integration theory was then investigated in [3], where the author tries to exploit
the structural advantages one has compared to the abstract setting of UMD spaces. One

of the main results in [3] is a stronger version of Doob’s maximal inequality stating that
N r .
E|[max |My||[}, < CE|Myl|1,

for an LP-valued L" martingale (M,)"_,, p,r € (1,00). This leads to a stronger version of

the Burkholder-Davis-Gundy inequality for stochastic integrals:

= o | [ s asea| |7, =] ([ 170 as)

This then in turn gives rise to the question if such stronger regularity properties do not only

T

e

hold for stochastic It6 integrals in LP spaces, but also for solutions of stochastic evolution

equations. This is the topic of this thesis.
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Our approach in a nutshell

In many results regarding regularity of stochastic evolution equations of the form

AX(t) + AX (1) dt = F(t, X () dt + iBn(t,X(t)) dBalt), X (0) = o,

n=1

where — A is supposed to be the generator of an analytic semigroup (e_tA)tzo, the solution

is almost surely an element of spaces like
L0, T:E), WO, TEE),  or  C(0.TLE) ete.

(see [21, 81, 82] and the references therein). A typical way to deal with existence and
uniqueness for these equations is to consider mild solutions X, which are defined as func-

tions satisfying a fixed point equation such as

X(t) = e zg + / t e UmIAP (s, X (5))ds + Y / t e 94B, (5, X (5)) dBn(s),
0 ne1"0

where the spaces mentioned above serve as fixed point spaces. In order to get for such
evolution equations with E = LP(U) better regularity estimates in time, it is of advantage
(as suggested in the motivation above) to interchange the order of integration and choose

the spaces
LP(U; L]0, T7), LP(U; W20, T7), or  LP(U;CI0,T])

as fixed point spaces. Since the norm with respect to time is now inside of the space-norm,
we get pointwise for each u € U knowledge about the temporal behavior of the solution
process t — X (t,u). In particular, in regard of continuity results, these stated regularity
results are stronger than what we have known before. In order to apply Banach’s fixed
point theorem in L"(€Q; LP(U; L9[0,T7)), it is necessary to investigate the following three

maps in this space:
1) the orbit map t — e Az, 2 € LP(U);
2) the deterministic convolution t — fg e*(t*s)Aqﬁ(s) ds, ¢ € LP(U; L1]0,T));
3) the stochastic convolutiont — Yy 7, gef(t*S)A@L(s) dBn(s), ¢ € LP(U; L([0,T); £2)).

Using estimates of these maps, existence and uniqueness of mild solutions can be proven.
Once this is done, we turn to the study of more involved regularity results. However, even
in the case of orbit maps as in 1) one should notice that the usual estimates for analytic
semigroups used in the Banach space-valued case are not applicable now since we first have
to estimate with respect to time and then with respect to the space variable in U. This

brings up the question: Is there a way to bypass this obstacle?
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We make the following observation: Since —A is the generator of an analytic semigroup,

we have the representation

1

ey = — / e RN, Az dA
2711 T

for each fixed t € [0,T] and x € LP(U). Here, I = 9(X,UB(0, 9)) for a suitable angle o and

radius 0 > 0 (see e.g. [59, Illustration 9.9]). In particular, the product structure inside of

the complex line integral makes estimates in LP(U; L]0, T'|) accessible since we can handle

time and space separately. In the case of convolutions this is completely different. Here,

-4 4(5) = L / e =INR(A, A)g(s) dA
I

- 2mi
for a function ¢: [0,7] — LP(U) and every fixed s € [0,¢]. The separation of time and
space is no longer existent which makes additional requirements for the resolvents of A

necessary. In order to figure out these properties, observe that
e"TIR(N, A)d(s) = R(X, A) (7 0(s)).

Since we want to apply an LP(U; L]0, T]) norm to this integral, it is quite natural to assume
that the resolvents should extend to LP(U; L9]0, T']) having similar norm estimates as before
(by this we mean that the set {AR(\, A): X € ¥/} is still bounded in LP(U; L4]0,TY)). For
simple functions f = 2521 L1 40)n € LP(U; L0, T]), where 0 = tg < ... <ty =T

with ¢, — t,—1 = § and (x,))_; C LP(U), such a condition reads as

N Ny
IAR(A, A) fll o (u;a0,7]) = 5H ( > "IAR(A, A)ay | )
n=1

N g
e ()|
n=1

This leads us to the notion of ¢¢- and R,-sectorial operators. The second terminology was
first introduced by Weis in [87], and was further elaborated in [57, 79]. Estimating the

convolution terms in 2) and 3) now reduces to the estimation of the ’scalar’ convolutions

Le(U)

Le(U) = CHfHLP(U;Lq[O,T])-

| M) ds amd Y / 9, (5) d(s)
n=1 0

0

provided that the complex line integral still converges (which will always be the case in
this setting). However, in order to investigate further regularity properties, this will not

suffice. We are also interested in estimates of

t o ot
Aa/o e~ (=944 (s)ds and A’anl/o e~ (=340, (s) dBu(s)



6 Introduction

for certain values of o and B. If A is ¢%-sectorial, we obtain estimates of the form

! (t—s)A "

EH A / c o(s)ds ‘ Lr(U;L9[0,T7)
EHABZ/ 94, (5) au(s) ||

for & < 1 and 8 < 1/2. Note that the restriction for 3 is forced by the L?[0,T] norm in the

It6 isomorphism. The borderline cases & = 1 and 8 = 1/2 are in general false. Therefore,

< CTOE|$)| Lo, Lajo.17)-

< oT

B)r r
LP(U;L9[0,T]) — EWHL”(U;LQ([QT};W))’

we again need to impose additional assumptions on A, namely that the extension of A to
LP(U; L1]0,T]) has a bounded H*> calculus.

This concept was introduced by McIntosh in [65] and gives an answer to the question
whether the functional calculus for sectorial operators A is bounded for functions f € H*°.

Following the ideas of the Dunford calculus, this calculus is defined by

o(A) = 5 [ RO A
where ¢ € HG°, i.e. ¢ is a bounded and holomorphic function decaying polynomially to
0 as A tends to 0 and to co. For these functions the expression above is well-defined as
a bounded operator since the integral is absolutely convergent. However, for functions
f € H® this leads, in general, only to unbounded operators. Thus, a sectorial operator
A is said to have a bounded H®® calculus if f(A) defines a bounded operator for each
fe H™.

Assuming that the extension of A has a bounded H* calculus on LP(U; L?[0,T]), we can
also treat the cases & = 1 and = 1/2 by applying the following trick: We define the

analytic families of bounded operators
(Kxo)(t / Ae (s ds, A€ D, ¢ e L7(Q LP(U; L0, T))),
(Lo Z / N2 () dBa(s), A€ By 6 € L7(Q: LP(U: L0, T]; ))).

It is tempting to plug in A for A in these formulas and hope to obtain operators K4
and L4 which are still bounded on L"(; LP(U; L9]0,T))) and L"(Q; LP(U; LI([0,T); £2))),
respectively. This procedure can indeed be justified by the methods of the H* calculus.
It requires certain randomization properties of the families (K))aex, and (Lx)xex,,, and
the notion of an operator-valued functional calculus which will be explained in Section 2.2.
Writing out the boundedness of K 4 and L4 leads to

t r
EH A/o e_(t_s)Ad>(s) ds ’ < CEH¢HLP (U;La[0,T])>

LP(U;La[0,T7)

B4y / =94, (5) 45,5 ||
n=1

pwwipry = Ol e
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This case is often considered as the maximal or optimal regularity case. Furthermore, we
also consider some 'regularity swapping’ results. More precisely, we show that we can give
up space regularity (which is encoded in the domains of the fractional powers of A) to

obtain more time regularity, i.e.

T

EH Al=e /t e~ (=944 (s) ds
0

E| a¥2- i /0 G, (5) dBa(s) |
n=1

pwweapry = @0y, o €10,1)

r

wwaveapay = CEII @i ao ey, o €10,12).

The very important question as to which operators A have such an extension with a
bounded H* calculus is treated in Chapter 2. It is shown that many of the common

partial differential operators considered in applications do have this property.

These estimates are at the heart of our regularity theory. They also enable us to apply Ba-
nach’s fixed point theorem to get unique mild solutions in L"(€2; LP(U; L1[0,TY)), assuming
certain Lipschitz conditions on F' and B = (B,)nen. We emphasize that the regularity
with respect to time benefits from the ’swapping mechanism’. As a consequence, we get
those strong results announced in the beginning. For a complete presentation of this ap-

proach we refer to Chapter 3.

Outline of this thesis

The thesis is organized as follows. In Chapter 1 we lay the foundation of the stochastic
integration theory in mixed LP spaces. This is a continuation of [3], where the case of one
LP space was considered. Although in the subsequent chapters no mixed LP spaces explic-
itly appear in the main results, we will be reliant on these results in proofs of Section 3.4.
In Section 1.1 we start with the investigation of the stochastic integral for integrable pro-
cesses in LP(U; L9(V')) with respect to one Brownian motion, where (U, X, 1) and (V, E, v)
are o-finite measure spaces. Besides giving meaning to the expression fOT f(s)dp(s) for
adapted processes f € L"(Q; LP(U; L4(V; L?[0,T]))) and deducing many properties of this
integral, one of the main results of this section includes an extension of the stronger ver-
sions of Doob’s maximal inequality and the Burkholder-Davis-Gundy inequality for mixed
LP spaces. In contrast to [3] the latter now also includes the case r = 1. In Section 1.2 we
proceed in a classical way by extending the stochastic integral to processes without inte-
grability assumptions with respect to €. This is done by a localization argument involving
stopping time techniques. In particular, the Burkholder-Davis-Gundy inequality for » = 1
will lead to a general version of the stochastic Fubini theorem under minimal assumptions
on the process considered. In Section 1.3 we extend the results both of Section 1.1 and

1.2 to a stochastic integral with respect to an infinite sequence of independent Brownian
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motions, i.e. to an integral of the form

/ b(s) dB(s) = il / bu(s) dBas).

and formulate an appropriate version of It6’s formula. In the final Section 1.4 we briefly
illustrate how we can use the stochastic integration theory developed for mixed LP spaces

to obtain a stochastic integration theory in Sobolev and Besov spaces.

In Chapter 2 we shortly leave the stochastic territory and turn to some spectral theory
which will be important for Chapter 3. Section 2.1 provides a systematic introduction to
the concepts of R4-boundedness and R4-sectoriality. In Section 2.2 we will continue with a
short overview of the bounded H*° and RH* calculus. Based on these ideas, Section 2.3
is devoted solely to the concept of an R,-bounded H*® calculus. Here we will use a result
of Kunstmann and Ullmann (cf. [58]) to collect several examples of differential operators
in divergence and non-divergence form having such a functional calculus. In Section 2.4
we establish the important connection between A having an R,-bounded H> calculus and
having an extension on LP(U; L9]0,T]) with a bounded H* calculus. Finally, in Section 2.5
we introduce a new family of interpolation spaces obtained by the £¢ interpolation method.
As it turns out, these spaces are suitable for estimating orbit maps in LP(U; L?[0,T1).

Therefore, this section is closely connected to Section 3.2.

In Chapter 3 we will use the techniques announced and explained in the previous section
to treat stochastic evolution equations in LP spaces. After a short motivation in Section
3.1, Section 3.2 provides a systematic treatment of the orbit map ¢t — e~ 4z in the spaces
LP(U; L90,T]) and LP(U;W40,T]). In Sections 3.3 and 3.4 we turn to the study of
deterministic and stochastic convolutions, respectively. Here, many results of the previous
chapters come together to produce some of the main results of this thesis. In Section 3.5
we apply the tools of the previous three sections in a fixed point argument to obtain unique
mild solutions of abstract stochastic evolution equations in LP spaces, i.e. equations of the

form
dX(t)+ AX(t)dt = F(t,X(t))dt + B(t, X(t))dB(t), X(0)= xo.

Here, we will assume global Lipschitz and linear growth conditions for F' and B adjusted to
the fixed point space L"(§2; LP(U; L1[0,T7])). Moreover, the connection to strong and weak
solutions is considered. Subsequently, we treat the non-autonomous and locally Lipschitz

case in Subsections 3.5.3 and 3.5.4.

In the final Chapter 4 we will apply the abstract theory to several stochastic partial
differential equations. Here, we highly benefit from the fact that many differential operators

have an Rg-bounded H* calculus for all ¢ € (1,00). In cases where the domain of the



Introduction 9

operator coincides with a Sobolev space, we show that our regularity results imply Hoélder
regularity both in space and time. This will be compared to existing results in the literature
and reveals that in many situations our theory leads to stronger regularity results, which
then give a new insight into such equations. As one example, we consider the stochastic

heat equation

dX (t,u) — kALX (t,u)dt = f(t,u, X(t,u))dt + i by (t, u, X (t,w)) dBn(t),

n=1
X(t,u) =0, weol, te|0,T],
X(0,u) =xo(u), wuwel.

In this example we already see how our theory improves the results of others. On the whole

range of 7, p € (1,00) and for each g € (2,00) and y € [0, 1/2) we obtain the regularity result
X € LE(Q; H?0=2(U; 0740, T))), o € (Yg,9]-

This means that even the path ¢ — X (¢,u) is a-Ho6lder continuous for almost all u € U
and each « € (0,1/2).






Notational Conventions

In this introductory section we want to fix some notions and expressions used throughout
this thesis.

Miscellaneous

If not otherwise stated, the number 7" > 0 always stands for a fixed finite time, and

N € N for a fixed arbitrary integer.

If a < C(q) b for non-negative numbers a and b and a constant C'(q) > 0 depending
only on the variable ¢, we write a <, b. Additionally, we write a <, b if a <, b and
b <S4 a.

For real numbers = and y, we define z V y := max{xz,y} and z A y := min{z, y}.

Probabilistic setting

Let (2, F,P) always be a complete probability space equipped with a normal filtration

F := (Ft)t>0, i.e. F is right-continuous and Fy contains all P-null sets.
Let (B8(t))t>0 be a Brownian motion adapted to this filtration in the following way

1) pB(t) is F-measurable for all ¢ > 0;
2) pB(t) — B(s) is independent of F; for all s < ¢.

As an example, we may choose the Brownian filtration F? = (]—"f )t>0 given by
Fli=o({B(s): s <t}), t>0.

By (8n)nen we denote a sequence of independent Brownian motions such that each

Br is adapted to F in the way described above.

We call a random variable r: Q — {—1, 1} satisfying
P(r=1)=Pr=-1)=

a Rademacher (random) variable.
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e A random variable v: Q — R will be called standard Gaussian if its distribution has

density
fV:R%Rv f’Y(t):
with respect to the Lebesgue measure on R.

Normed spaces and linear operators

e For two normed spaces (E, || - |g) and (F, || - ||r), we denote by B(E, F') the set of all
linear and bounded operators T': E — F' equipped with the norm

Tx||p
ITl = sup |Tallr= swp |Talr= sup 12l
2] p<1 2] p=1 Izl ZlE

If E = F, then we let B(E) := B(E, E). In the case F = K, we define E' := B(E,K),
where K € {R,C}. For 2’/ € E’ we use the notation

(v,2") :=2'(x), z€E.

o We call a Banach space (E, || - ||g) a UMD space, if for some (equivalently for all)
r € (1,00) there exists a real constant C' = C(r, F) such that for all E-valued L"

martingales (M,,))_; and any sequence of signs (g,)_; we have

N N
T T
S PO FEH) U] I
n= n=

The expression UMD is an abbreviation for unconditional martingale differences.

Important examples of UMD spaces are Hilbert spaces and LP spaces for p € (1, 00).
Function spaces

e If not otherwise stated, (U,X, u) and (V,Z,v) are always o-finite measure spaces.
For p € [1,00) and any Banach space E we denote by LP(U; E) the space of all

(equivalence classes of ) strongly measurable functions f: U — E such that

l/p
1 fllr ) = (/U [ £ (w5, du(u)) < 0.

For p = oo we let L°(U; E) be the space of all (equivalence classes of) strongly
measurable functions f: U — E for which we have a number r > 0 such that u(u €
U: ||f(u)||g >r) =0. Then we endow L*(U; E) with the norm

1l ey = imf{r > 0: p(u € Us || f(w)]p > r) =0},
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If (Up,2n,pn), n € {1,...,N}, is a sequence of o-finite measure spaces and F =
LPr(Uy; LP? (Usg; . .. LPN (Uy)) is a mixed LP space, then for any Banach space F' we
let

E(F) = LP\(Uy; LP (Uy; . .. LPN (Un; F)),

i.e. F represents the innermost norm in the norm of E(F).

For any 7 € [1,00] we define the Holder conjugate of r by r' := L5 (with 1" := o0

and oo’ := 1). Moreover, for 1 < r < oo, we identify the duality space L"(U)" with
the space L' (U) via Ty(f) := T(f) = Jyy fgdp for any T € L"(U)'. Thus, by

(frg) = <fng> :Tg(f):/Ufng

we denote the duality pairing of the elements f € L"(U) and g € L" (U).

For any function f € LP(U) we introduce the notion

£l ey = Hf(t)HL‘(’t)(U)'

In the presence of a mixed LP space norm this terminology helps us to maintain an

overview which norm is taken with respect to which variable.






Chapter 1

Stochastic Integration in Mixed L*

Spaces

In this chapter, we develop the stochastic integration theory in mixed LP spaces E. We
closely follow the approach of [3]. More precisely, we start to define a stochastic integral
first for integrable adapted processes f € L"(Q); F) with respect to one Brownian motion
(B(t))tefo,r)- This will be further extended to measurable adapted processes f € L°(€; E).
Both of these integrals will then be generalized to an integral with respect to an infi-
nite sequence of independent Brownian motions. Central part in every section is the It6
isomorphism. Once this is available, properties of stochastic integrals will follow. Many

underlying concepts of this chapter were first introduced in [80, 84].

1.1 Basic Theory

In this section, we discuss the stochastic integration theory for processes with values in
mixed LP spaces like LP(U; LY(V)) for p,q € (1,00) and o-finite measure spaces (U, X, (1)
and (V,E,v). Mostly, this will be an enhancement of the LP(U)-valued case, which was

presented in more detail in [3].

In order to develop a meaningful integration theory, the first task is to figure out the correct
space of integrands. Before turning to general processes f: Q x [0,T] — LP(U; LY(V)) we

start with the simplest case and observe first 'step processes’.

DEFINITION 1.1.1. Let p,q € (1,00). A function ¢: Q x [0,T] — LP(U;L9(V)) is
called an adapted step process with respect to a filtration F = (F),c(o 1) if it is of the form

N Ky
f(w’ t) = Z ]]'(tnflytn](t) Z ]]'Ak,n (w)ka, (w) t) €Qx [07 T]v
n=1 k=1

where 0 =tg < ... <ty =T, T1p,...,TK,n € LP(U; LY(V)), and A1 p, ..., A0 € Ft,_y
forallmn e {1,...,N}.
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REMARK 1.1.2. In many proofs, we will abbreviate the ’stochastic’ sums in the defi-

nition above as

Z]]'Akn xkn, w € Q.

So vp: Q@ — LP(U;L4(V)) becomes an F, ,-measurable simple process satisfying v, €

LT(Q; LP(U; L4(V))) for any r € (1,00). Also, we can think of the step process f =

SN L4, t.)0n as a step function with values in L"(€2; LP(U; L4(V))). We should always

think about these sums in this way because it makes the presentation of many results

less complicated. The reason why we have chosen the sums as we did in Definition 1.1.1

is simply the fact that these simple processes are dense in L"(£2; LP(U; L4(V'))) for every
€ (1, 00).

For these basic processes we can define a stochastic integral very similar to the scalar case.

DEFINITION 1.1.3. Let f be an adapted step process with respect to the filtration
F as in Definition 1.1.1. Then we define the stochastic integral of f with respect to the

Brownian motion (5(t)).e(o,r) by

/ FAB) = 303 Lap (@)apn (B, tn) — B, ta 1)

n=1k=1

Op(w) (B(w, tn) — B(w, tn-1)).

I
WE

Il
—

n

In order to find the correct space of integrands, we first need the following lemma about

Gaussian sums in mixed LP spaces.

LEMMA 1.1.4 (Kahane). Let p,q,r € [1,00), (z,)N_; C LP(U; LY(V)), (rn))_; be a
sequence of independent Rademacher variables, and (v,)N_; be a sequence of independent

standard Gaussian variables. Then

N
T 1/2
EH;TN% Lp(U;La(V H (Z [l )

T

Lr(U;L4(V))

and

r

()

where C' and C' only depend on the maximum of p,q and r.

]S,

Lp(UsLa(V)) Lr(UsLa(V))
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The statement of this lemma can be deduced as in [3, Theorem 1.4] using the result for
R-valued Gaussian and Rademacher sums and the pV ¢ concavity of the space LP(U; L4(V'))

(or Minkowski’s integral inequality twice). We leave the easy calculations to the reader.

If a step process f were independent of €2, i.e. if it were just a step function f:[0,T] —
LP(U; LY(V)), f = Zgzl L(t,_,,t.)Tn, then the stochastic integral of f would be nothing
more than a Gaussian sum as in the previous lemma. Indeed, for any partition 0 = ty <

... <ty =T, the random variables

T = é(ﬁ(tn) — B(tp-1)), mne{l,...,N},

tn - tn—l

define a sequence of independent standard Gaussian variables and

T N
/ fd/B = Z Tn/ tp —th—1Zn.
0 n=1

Kahane’s inequality now leads to the estimate

T
g [ 7es]

r

r N 9 1/2
wwizavy ~C H (nz::l(t" ~ ta-1)lzn| )

- | (/OTrfu)Pdt)l/Q T

Using the decoupling property of the UMD space LP(U; L4(V')) (see [3, Theorem 2.23 and
Corollary 2.24]) we get the following result for step processes f: Q x [0,T] — LP(U; LY(V))
(see [3, Lemma 3.18]).

Lr(UsLa(V))

Lr(U;L9(V))

PROPOSITION 1.1.5 (It6 isomorphism for step processes). For p,q,r € (1,00)
and every adapted step process f:  x [0,T] — LP(U; LY(V')) we have

EH /Odeﬂ ;p(U;Lq(V)) ~par ]EH (/OT |f(t)|2dt) "

In this proposition we can see that the space for reasonable integrands is at most isomorphic

T

Ly(U;La(V))

to
L(Q; LP(U; LY(V; L2[0, T)))),

i.e. not a space of LP(U; L9(V'))-valued processes! For the moment, this may be unusual
and we should always be aware of this surprising fact. Although it is a little bit incorrect,
we will still call an LP(U; L9(V; L]0, T]))-valued 'random variable’ a process to signify the

time-dependence.
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REMARK 1.1.6. If we did not have any adaptedness assumptions on our step processes
with respect to a filtration, then the space above would indeed be the correct one. But by
taking the closure of all adapted step processes in L"(2; LP(U; LY(V; L?[0,T]))) we only get
a closed subspace of it. We recall that a function f: Q x [0,7] — LP(U; L4(V)) is adapted
to a filtration I if f(¢): Q@ — LP(U;L4(V)) is strongly Fi-measurable for all ¢ € [0,T].
For a process f € L"(Q; LP(U; L4(V; L2[0,T)))) we can not define adaptedness in this way,
since in general (u,v) — f(u,v,t) ¢ LP(U; L1(V)) for any fixed t € [0,T]. To bypass this
problem we note that at least (f, h) € LP(U; L4(V)) for every h € L?[0,T].

This then leads to the following definition of adaptedness.

DEFINITION 1.1.7. Let p,q,r € (1,00) and let f € L"(; LP(U;L4(V; L?[0,T)))).
Then we call f an adapted L" process with respect to a filtration F if

(f Lg)pe = /0 f(s)ds: Q = LP(U; L9(V)

is strongly Fj-measurable for every t € [0,7]. We denote by L&(Q; LP(U; L1(V; L2[0,TY))))
the closed subspace of L"(2; LP(U; L4(V; L?[0,T]))) of all F-adapted elements.

REMARK 1.1.8. If we assume that a function f: Q x [0,7] x U xV — Ris (A®
Bjp,m) ® ¥ ® E)-measurable such that additionally f(¢,u,v): @ — R is F;-measurable for
all t € [0,7] and

+) B ([ rora)”

then (f, L )p2: @ — LP(U;L9(V)) is well-defined for any ¢ € [0,7] and by Fubini’s

theorem

r

Lr(U;L9(V))

({fs Vo) 02y @ pr(sLavy) = / f(s,)gd(s®@pev)
[0,t]xUxV

is Fy-measurable. Thus, the Pettis measurability theorem yields the strong measurability
of (f,1jo4) 2. This means that measurable functions which are adapted to a filtration IF
in the classical way and fulfill (+) are elements of L% (Q; LP(U; L4(V; L?[0,T1))).

Moreover, if we define the linear space

Dp :={f:Qx[0,T] = LP(U; LY(V)): f is an adapted step process},
then we have the following density result.

PROPOSITION 1.1.9. Let p,q,r € (1,00). Then the closure of Dy with respect to the
norm of L"(Q; LP(U; LY(V; L2[0,TY))) is equal to L5(Q; LP(U; L9(V; L2[0,T)))).
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PROOF. 1) We start with some preliminary remarks. For § > 0 we define the shift

operator

h(t —9¢), forte (4,77,

Ss5: L*[0,T] — L*[0,T],  (Ssh)(t) := { 0 for ¢ € [0, 9]

Then [|Ssh — h[2(07) — 0 as 6 — 0. Now let f € L"(Q; LP(U; LY(V; L?[0,T)))). Then, by
the dominated convergence theorem (using the pointwise estimate |5 f||z2j0,71 < | £l £2j0,77)

we get

1Ss.f — fllr e :LaqviLepomy)) — 0 asd — 0.
Moreover, for N € N, we let Py be the orthogonal projection on lin{]l(o Ty5-es ]1((N—1)l T]}.
1N N7
Then ||Pxh — h| 219,7) — 0 as N — oo and each h € L?[0,T)]. Similar to the first case, the
dominated convergence theorem yields the convergence
1PN f = fllor e szaqvic2pomy)) — 0 as N — o0
for any f € L"(Q; LP(U; L4(V; L2[0,T)))).

2) Now let f € Li(Q; LP(U; L9(V; L*[0,TY))), and set ¢, := nL forn € {0,1,...,N}. Then

we define

tn
on (@, 1) = (PS5 ), 1) Z [ s s ds 1,0

tn—1

(tn—08)V

_ Z / flw,s)ds Ty, 1 (0).
¢

n—1— 6
Let € > 0. First, choose d. > 0 so small that

13
1f = Ss. fllrsrrv:naviL2o,m))) < 3

Then, take Ns(l) € N such that

13
1S5, f — PnSs. fll Lr(@oe ;e (viz2io.r)))) < 3 for N > NV

Next, take NE( ) € N such that (2) < 0. Now fix any N > N, maX{Ng(l),Ng(Q)}, then

tp —0c <tp_qpforn=1,...,N, i.e. the random variable
tn (tn—62)V0
Xow) i= / (Ss. @) ds = [ f(w,5)ds
tn—1 (tnflf‘ss)vo

is strongly F;, ,-measurable, by definition. As a consequence, the random variables X,
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are elements of L"(Q2, F,, s LP(U; L9(V))), n € {1,..., N}. Then, however, we can choose
Ft,_,-measurable simple random variables Y,,: Q — LP(U; L9(V)) such that

€
1Yo = XullLr@ize;Lagvy) < SN ne{l,...,N}.
Finally, define fy := Zi:/:l ]]'(tn—lytn}¥yn' By construction, fy is an adapted step process

satisfying

M) =

lgns. — Inllr@rr@avizziom)) < D Ty talllzo Ve = Xallor@rew;za vy

n=1
- N\Y/2 3
=Y (F) "IVn = Xull o @urwizavy) < 3
n=1
Collecting all estimates, we obtain for N > N,
”f - fN||LT(Q;LP(U;Lq(V;Lz[O’T]))) < €. O

REMARK 1.1.10. If we take a closer look at the previous proof, we see that the con-
structed sequence (fn)nen of adapted step processes also converges almost surely and in
LY(Q; LP(U; LY(V; L2[0,T)))) to f. In particular, this implies that limy oo fy = f in
LP(U; L4(V; L2[0,T))) in probability.

Using Proposition 1.1.9, we finally obtain the following extension to Proposition 1.1.5.

DEFINITION/THEROEM 1.1.11 (It6 isomorphism for adapted L" processes).
For every p, q,r € (1,00) the stochastic integral defined in Definition 1.1.3 extends uniquely

to a bounded linear operator
I Le(Q; LP(U; LUV LP[0,T)))) — L7(Q, Fr; LP(U; LY(V))),

which is an isomorphism onto its range and satisfies

T

Lr(U;L9(V))

EHILT(JC)HZP(U;LQ(V)) ~p.g.r EH (/OT |f(t)\2dt) ”

For a process f € LL(Q; LP(U; LY(V; L?[0,T]))) we then define the stochastic integral of f
by

T
/0 FdB = I (f)

and say that f is L"-stochastically integrable.
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REMARK 1.1.12. Observe that the map I;» depends on the Brownian motion and
the chosen filtration we fixed in the beginning. For example, if we choose the Brownian
filtration F¥ we get representation results for LP(U; L9(V))-valued random variables X as

in the scalar case (see [3, Theorem 3.27]), i.e.

T
X:EX+/0 FdB

for a unique f € Li, (Q; LP(U; LY(V; L*[0,T1))). The map I~ then leads to an isomorphism

of Banach spaces
b (4 LP(US L4V 1[0, T)))) = Ly(Q, Fps LP(U; LAV))),

where L (€2, fﬁ; LP(U; L1(V))) is the closed subspace of L"(£2, fﬁ; LP(U; L1(V))) consisting

of all elements with mean 0.

Having now finished the construction process of the stochastic integral for general processes
[ € LE(Q; LP(U; LY(V; L?[0,T7))), we collect some more or less elementary properties of it.

PROPOSITION 1.1.13 (Properties of the Ito integral). Let p,q,r € (1,00) and
fr9 € LE(Q; LP(U; L9(V; L2[0,T)))). Then the following properties hold:

a) The stochastic integral is linear, i.e. for a,b € R we have
T T T
/ af—i—bgdﬁ—a/ fdﬂ—i—b/ gdg.
0 0 0

b) fOT f dB is Fr-measurable and the expected value satisfies E fOT fdg=0.

¢) For S € B(LP(U;L4(V))), let SL* be the bounded extension of S on the space
LP(U; L4(V; L2[0,T))) (see Remark 2.4.1). Then, S° f € L(Q; LP(U; L9(V; L2[0, T1)))

and

/OTSLQde:S/Odeﬁ.

d) For every s,t € [0,T] with s < t it holds that

/:fdﬂ—/OTn[S,ﬂfdﬁ.

e) There exists a p-null set N,, € ¥ such that f(u) is LP""-stochastically integrable, i.e.
f(u) € LB (Q; L9(V; L2[0,T))), and

T T
/Of(u)d5=(/0 fdﬁ)(u) for each w € U\ N,.
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f) There exists a p ® v-null set N € ¥ ® = such that f(u,v) is LP""\"-stochastically
integrable, i.e. f(u,v) € LE """ (Q; L?[0,T]), and

T T
/0 Flu,v)dB = (/0 fdﬁ) (u,v) for each (u,v) € (U x V) \ N.

PROOF. a) is trivial. For adapted step processes the proof of b) for the LP case can be
found in [3, Proposition 3.17] and can be done for the mixed LP case in the same way. The

general case then follows by approximation. For part d) see [3, Corollary 3.25].

c) If f is an adapted step process, then Sf is obviously an adapted step process, too, and

/OTSfdﬂ:S/OdeB.

Now let f € LE(Q; LP(U; L4(V; L?[0,T)))). Then there exists a sequence of adapted step

processes (fn)nen such that

Hf - fn||LH?(Q;LP(U;LQ(V;LQ[07T]))) —0 as n — oQ.

Since SL° is continuous from LP(U; L4(V; L2[0,T))) to LP(U; Li(V; L2[0,T])) we immedi-
ately obtain

L2 LQ
||S f_Sf"‘|L]}(Q;Lﬁ(ﬁ;L‘7(‘7;L2[O,T}))) = ||S (f_fn)HL]}(Q;Lﬁ(ﬁ;La(ﬁ;LQ[O,T}))) — 0 asn— oo.
Thus, S¥° f € Li(; LP(U; LI(V; L2[0,T)))) and
T, T T T
/ SLde:lim/ Sfndf = lim S/ fndB:S/ fdg
using Theorem 1.1.11, the estimate for adapted step processes, and the continuity of S.

e) If f is an adapted step process, then by definition

T N T
() 738) e = e (3erta) = Sestas) =( [ 5009)

for all w € Q and u € U. Moreover, by Minkowski’s integral inequality (p > r) or Hoélder’s
inequality (p < r) we have

f € L7(Q; LP(U; LY(V; L2[0,T)))) C LP(U; LP"(; LU(V; L2[0, T))))

and there exists a sequence (f,,)nen of adapted step processes such that

| fr = flle@zear@inaqvizziom))) < Ifa = fllor@ior@szaqviepm))) — 0
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as n — 00. In any case, there exists a subsequence (fy, )ren and a p-null set Ny € 3 such
that

| fri (w) = f(u)l|Lorr(iravicepayy) — 0 ask — oo

for every u ¢ No. In particular, f(u) is adapted to the filtration F, i.e. f(u) € LE""(Q; L9(V; L?[0,T)))

for every u ¢ Np. As a consequence of this pointwise convergence we obtain

| [ tas= [ sas]

by Theorem 1.1.11. The same argument as above yields a p-null set Ny € 3 such that

T T
[([ $,08) )= (| ras)w]

for every u ¢ Nj;. Combining now the estimate for adapted step processes with these

—0 (k — o0)

LeAr(Q;L9(V))

o @tevy) U = o)

convergence results finally leads to

( / 7 48)( / f(u in LV (; L9(V))

for every u € U \ (No U Nyp).

f) The proof here is done in nearly the same way as e). First, observe that, without loss
of generality, we can assume that (U), v (V) < co. Then by Holder’s and/or Minkowski’s

inequality
L"(; LP(U; LY(V; L*[0,T)))) € LP (U x V; LPM(Q; L2[0,T)))
with corresponding norm estimates, i.e. we can follow the lines of the proof of e). O

REMARK 1.1.14.

a) In part c) of the previous proposition we also could have considered a bounded
operator mapping from one mixed LP space to another. More precisely, if p, ¢ € (1, 00)

and (U ) , i) and (V,H, v) are o-finite measure spaces, operators like
S € B(LP(U; LY(V)), LP(U; LY(V))) or S € B(LP(U; LY(V)), LP(D))

or other combinations can be considered.

b) IfT: LP(U;LY(V)) — Cis linear and bounded, then the Riesz representation theorem
gives a g € LP (U; LY (V)) such that

Tf= fgd(p@v), feLP(U;LI(V)).
UxV
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For every Hilbert space H we also have the extension TH: LP(U;L4(V;H)) — H

which is now again given by the function g above, i.e.

THf = fgd(p®v), feLP(U;LY(V;H)),
UxV

where now the integral takes values in H. This can be seen directly by computing
THf for f = 27]:[:1 fan®hy € LP(U; LY(V))® H and finally using that these functions
are dense in LP(U; L9(V; H)). In particular, we get
T T L2
([ 738.9) iy = | 0 Eozneny 06

where (f, g>£i(U;L4(V)) = [y f9d(p @ v) is now L2[0,T]-valued.

If f e LE(LP(U;LY(V;L?[0,T)))) such that (u,v) — f(u,v,t) € LP(U;LY(V))
almost surely for each ¢ € [0, 7], then in Proposition 1.1.13 ¢) we have (SX°*f)(t) =
S(f(t)) and the assertion there reads as

/OTSde:S/Odeﬁ.

In particular, we have for every g € LV (U; LY (V))

T T
d = . dg.
</0 f ﬁa9>Lp(U;Lq(V)) /0 (fs9) r(;La(vy) dB

In part e) and f) of Proposition 1.1.13 we have seen how the LP(U; L4(V))-valued
integral behaves in comparison to the L?(V)-valued and R-valued case. In the future
we will also be interested in the connection to the LP(U)-valued integral. Here, the
question is if there might exist a v-null set N, such that f(v) € LE(Q; LP(U; L2[0,T1))
for some 7 € (1,00) and v ¢ N,. In general, the answer here is no. Nevertheless,
there still exist positive results. E.g. if ¢ > p, then LP(U; LY(V)) C L4(V; LP(U)) by

Minkowski’s inequality which leads to
L7(Q; LP(U; LY(V; L2[0,T0))) C LU(V; L9 (Q; LP(U; L*[0, T1)))

and we can continue as in the proof of part e).

Another way to get the same result exists if we have more knowledge about the
process f. For example, if we assume that f € LE(Q; LP(U; LY(V; L*[0,T)))) such
that f(v) € LL(Q; LP(U; L*[0,T])) for some 7 € (1,00) and v-almost every v € V,

then we have

/OT fv)dg = (/OT fdﬁ) (v) for v-almost every v € V.
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This follows from Proposition 1.1.13 e) and f), since we can find a v-nullset NV, and
for each v ¢ N, and p-null set Ny, such that for each fixed v ¢ N, we have

([ smas)w= [ swnas=([ ras)wo

for u ¢ N# v, Where equality holds in L™(Q2) for 7 = 7 Ar A p A q. This implies that
fOT f(v) (fo fdp)(v) for v ¢ N, with equality in L"(Q; LP(U)).

A basic tool in the deterministic integration theory is to interchange the order of integration.
In the next theorem we will show under which condition we can interchange a stochastic
integral and a Lebesgue integral. Note that this condition is quite strong. In the next

section, we will see a beautiful generalization of this result using localization techniques.

THEOREM 1.1.15 (Stochastic Fubini theorem I). Letp,q,r € (1,00), (K, K,0) be
a o-finite measure space, and let f € L*(K; L5(Q; LP(U; LY(V; L?[0,T))))). Then

//fxsdﬁ ) dO(z //f:nsd@ )dB(s).

PROOF. By assumption, f(x) € L(€; LP(U; LY(V; L?[0,T)))) for almost every z € K
and by Theorem 1.1.11

T
- /0 f(x.8)dB(s) € LM L7 (9 P (U LI(V)))).

By Minkowski’s integral inequality (and Fubini’s theorem for adaptedness) we also have
S f( ) € LE(Q; LP(U; L4(V; L2[0,T1))). Now the estimate trivially follows from the

contmulty of the stochastic integral operator, i.e.

/K/OTf(ar,s)dﬂ(S)dH(x)—/KIer(x)dG(m)—ILT/Kf(w)dg(x)
:/OT/Kf(x,s)dG(az)dﬁ(s), -

In the last part of this section we want to collect properties of the stochastic integral process
t— fg fdg. For this reason we will need maximal inequalities for our stochastic integral.
In order to get these estimates we will use maximal inequalities arising from martingale

theory.

THEOREM 1.1.16 (Strong Doob inequality). Let p,q,r € (1,00) and (M,)N_; be
an LP(U; L9(V'))-valued L™ martingale with respect to F. Then we have

N
Bz 1Ml 2o 0y Spar BIMN o w00
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PROOF. The Li(V)-valued case was treated in [3, Section 2.2]. To extend this to the
LP(U; L9(V'))-valued case we proceed ’inductively’ and very similarly to the LI(V')-valued
case. The proof of this estimate consists of two steps. The first one is a reduction procedure
showing that it suffices to proof the estimate for a special class of martingales, so called

Haar martingales. The second step is then to show the estimate for these martingales.

1) The reduction process itself consists of three steps and can be done in exactly the same
way for the LP(U; L1(V))-valued case as for the L?(V)-valued case (cf. [3, Section 2.2.1]).
In the first step we show that we can limit ourselves to divisible probability spaces (€2, F,P),
where divisible means that for all A € F and s € (0,1) we can find sets Ay, Ay € F such
that A = A1 U Ay and

P(A;) = sP(A), P(As) = (1 — s)P(A).

The second and third step consist of reducing the assumptions on our filtration (fn)iyzl
which will lead to a special structure of the considered martingale. We first look at dyadic
o-algebras (.7:”),]:7:1, i.e. each o-algebra JF,, is generated by 2" disjoints sets of measure
27™n for some integer m, € N. In the final step we reduce this further to the class of
Haar filtrations. This is a filtration (F,)"_, where F; = {}, 2} and for n € N each F, is
created from F,_; by dividing precisely one atom of F,_; of maximal measure into two
sets of equal measure. By construction, each F,, is then generated by n atoms of measure

2k—1

275=1 or 27% where k is the unique integer such that < n < 2F. The main advantage

of a Haar martingale (Mn)N

n— (i-e. a martingale with respect to a Haar filtration) is that

|Mp+1 — M| ppw;za(v)) 18 Fp-measurable. This predictability condition will imply that a

special martingale transform is again a martingale.

2) By the reduction procedure it is sufficient to consider an LP(U; L4(V'))-valued L" mar-
tingale (M,,)_; with respect to a Haar filtration (F,))_;. Then we define

* N Iy N
M (w) := max | M (@) | owizaqvyy: M (w) = [|max [Ma@)I|| 1o s,y

For the moment let (V,))_, be an arbitrary LP(U;L9(V))-valued LP martingale. Then
(Vi (u))N_, is an L9(V)-valued martingale for u-almost every u € U. Thus, by the strong

n=1

Doob inequality for the L4(V)-valued case, we obtain
N
EH?}E{( !Vn(U)VHiq(m < cg,qEHVN(u)H]Z‘?(V)
Then, by Fubini’s theorem
W7o e

NP(V* > \) <E(V*P = / EHmj\%{W
U n=

< | BV, = BV
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for each A > 0. This weak estimate plays a central role in the proof of the following
good-A-inequality: For all § > 0, 5 > 20 + 1, and all A > 0 we have

P(M* > BA, M* < 5)) < a(8)PP(M* > )),

where () = cp,q#‘;_l — 0 as 0 — 0. This estimate is the heart of the proof of the
strong Doob inequality and can be shown in the same way as for the L4(V')-valued case (see
[3, Lemma 2.19]). The main idea is to construct a martingale transform (V,,)"_;, which
is again a martingale since we work with a Haar filtration, and using the estimate above.
Note that until this point everything we have proved is independent of r. In the final step

we bring this back into play. Using

P(M* > BA) < P(M* > A, M* < 8X) +P(M* > §))
< a(0)PP(M* > \) + P(M* > §)),

we obtain by Doob’s inequality
E|M*|" = /OOO rNTIP(M* > X) dX
Y /Ooo rATTIP(M* > BA) dA
< a(0)Pp" /OOO r)\r_l}P’(]\A]* > A)dA+ 8" /OOO rATTIP(M* > SA) dA
= a(8)PBE|M*|" + 5—:IE]M*|T

IR nIB Vadla r " r
< a(d)PBEIMT|" + y(m) EIMN 7o w;navy)-

Since lims_,0 a(d) = 0, we may take 6 > 0 small enough such that a(§)?3" < 1. By recalling
that (M,,)N

n—1 is an L™ martingale, we note that E|M*\T < 0o. Then we get

8 ()" ;
(1 — a(é)pﬁr)érEHMN||LP(U;L‘Z(V))'

E|M*[" < O

Using similar techniques we also obtain the following stronger version of the Burkholder-

Davis-Gundy inequality.

THEOREM 1.1.17 (Strong Burkholder-Davis-Gundy inequality). Letp,q € (1,00),
r € [1,00), and (M,)N_; be an LP(U; L(V))-valued L™ martingale with respect to F. Then

we have

T

N
N — 2 1/2
EHIZLEL{( |Mn|H2P(U;LQ(V)) ~p,g,r EH (;‘Mn o Mn*l‘ ) Lp(UsLa(V))
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PROOF. For the case r € (1,00) this estimate is a consequence of the strong Doob
inequality. In fact, using Kahane’s inequality for Rademacher sums as well as the UMD
property of the space LP(U; L1(V')), we obtain

s s

N s
B (18— M)

n=1

Lr(U;L4(V))

N
par BE|| > Fu(My — M-
" nz::l "l R P

T

N
- EEH M, — M,_

= ]EHMNHEP(U;L‘I(V)y

and Theorem 1.1.16 yields the claim. So we only have to take a closer look on the case

r = 1. Here we will proceed similarly to the proof of Theorem 1.1.16.

1) The reduction to Haar martingales can be done almost exactly as in the previous proof.
Only in the transition from dyadic filtrations to Haar filtrations we have to be a little bit
more careful. In this case we have to examine the structure of Haar martingales more

closely in order to prove the statement.

2) Having finished the reduction procedure, we let (M,))_; be an LP(U; L4(V))-valued

N

L™ martingale with respect to a Haar filtration (F;,);_;. Similar to the proof of Theorem

1.1.16 we obtain for M* and M* the same good-A-inequality as before, i.e.
P(M* > X, M* <)) < a(§)PP(M* > \)

for all § > 0, 8 > 25 + 1, and all A > 0, where «(d) := cp,qﬁg_l. Note that up to
now everything was independent of r. In the proof of Theorem 1.1.16 this inequality and
Doob’s maximal inequality yielded the claim. In the case » = 1 Doob’s inequality is no

longer available and we replace it with the Burkholder-Davis-Gundy inequality, i.e. we use

T

)

N
N r _ 2)"*
Eleixi{ Mol wsnavy) ~par EH (2:1‘M" — M| ) Lp(U;L9(V))

where this is true for any r € [1,00) (see [67, Poposition 5.36]). Using this, we then obtain
E|M*| :/ P(M* > )\)d\ = 5/ P(M* > BX) dA
0 0
< a(d)pﬁ/ P(M* > ) dA +5/ P(M* > 8X)dA
0 0

= (Y BEINT + DB

N
N /
< a(0)PBE[M™[" + ?Cp,q,lEH (Z‘Mn - M”‘1|2>1 2 Lr(UsLa(V))

n=1
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Again, we choose § > 0 small enough such that a(6)?5 < 1. We then finally get

e Bepgn al 2\ /2
BN < s (;‘Mn—Mn—ﬂ )

Lr(UsLa(V))

Having these inequalities at hand, we obtain the following regularity results for the stochas-

tic integral process t — fg fdg.
THEOREM 1.1.18 (Properties of the integral process). Let p,q,r € (1,00) and
f € Ly(Q; LP(U; LY(V; L?[0,T)))). Then the following properties hold:

a) Martingale property. The integral process ( fg [ dB)ejo,r is an L" martingale with
respect to the filtration IF.

b) Continuity. The integral process ( fg f d/B)te[O,T] has a continuous version satisfying

the maximal inequality

sup
t€[0 T]

) [
LP(U;La(V)) Spar LP(U;La(V))

¢) Burkholder-Davis-Gundy inequality. As a consequence of b) and Theorem
1.1.11 we have
T

sup
te[o T]

oy = B ([ o)

Moreover, this estimate also holds in the case r = 1. In particular, the process
X(t) = fot fdg, t €0,T], is again L"-stochastically integrable satisfying

E| / @) e | ( /OTlf(t)l2dt)1/2

PROOF. For the proofs of a) and b) see Proposition 3.30 and Theorem 3.31 in [3], and
observe that the LP(U; L1(V'))-valued case can be treated in the exact same way, now using
Theorem 1.1.16 for part b) instead of the Strong Doob inequality for the L(V')-valued case.

The first part of ¢) is an easy consequence of b) and It6’s isomorphism, and the last part

LP(U;La(V))

T

LP(U;La(V))

follows by an application of Holder’s inequality. So the only thing left to prove is the
Burkholder-Davis-Gundy inequality in the case r = 1. We first do this for an adapted step
process f = 25:1 L4,y ,tn)Vn, where 0 =19 < ... <ty =T and v, are F;, ,-measurable
simple random variables in L'(Q; LP(U; LY(V))), n € {1,...,N}. Before turning to the
estimate, we add an important remark. On the product space (2 x Q, F @ F,P @ P) we

define the processes

,Bgl)(w,w/) = Bi(w), t(Q)(w,w’) = B(w)), te€0,T].
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Then M) and 8? are Brownian motions adapted to the filtrations

FV=Re00, FY={0.0eFR tcT]

and S is an independent copy of ), in particular it is independent of J(]-}(Q),t € [0,7Y).
We also identify the predictable sequence (v,)_; with the random variables v, (w,w’) =
vp(w), n € {1,...,N}. Then by [19, Proposition 2 and Example 1] we have

N N
~ _ W) _ g0
EH;%(M") ’ (t”‘l))‘mw;m(v))_m n;vn(ﬁ () = (t"_l))‘mw;m(vn
N
_ / 2 _ 32
o B2 ;Un<ﬂ (tn) = B (tnil))‘LP(U;Lq(V))j

since LP(U; L9(V)) is a UMD space. Observe that in the last line of this estimate the
random variables v,, and the process 5(2) actually live on different probability spaces. This

decoupling plays an important role in this proof.

We let X(t) := fgfdﬁ, t € [0,T]. By a), X, := X(tn), n € {1,...,N}, is a martingale
with respect to the filtraion F,, := F;,, n € {1,..., N}. Moreover, we have

Xn—Xp—1 =1, (B(tn) - B(tn—l))a

and ), := \/ﬁ(ﬁm(tn) - 8@ (tn_l)), n € {1,..., N}, defines a sequence of indepen-

dent standard Gaussian variables. Now the strong Burkholder-Davis-Gundy inequality,

Kahane’s inequality for Rademacher sums, and the decoupling property above lead to

N
N — 2 i
E|[mac | Xl | o 1, 10vy) =paa E| (;‘X” = Xoaf?) Lo(UsLa(V))

—E| (évn(ﬁ(tn) ~ lta)?)”

Lr(U;L9(V))

pa BE| i~ (B(tn) = Blta-)) |
n=1

Lr(U;L9(V))

N
. o ~ (2) _ 32
~pq1 EEE H;rnvn(ﬁ (tn) — B (tn_l))’LP(U;Lq(V))

— EEE/

N
Z ?nvn(tn - tn—l)l/Q’Y;L
Z Lr(UiLa(V))

_ N, 1/
~p,q,1 EEH (;‘T"M (tn — tnfl)) Lp(U;La(V))

-] (] ra)”|

Lr(U;L9(V))
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Now let 0 = sg < ... < spr = T be any partition of [0,7]. Then, by the estimate above,

T ) 1/2
EHmaX|X Sm |HLp (U;La(V)) ~Parl EH (/0 £ dt) ’LP(U;L(](V))-

The pathwise continuity and the monotone convergence theorem now imply

T ) 1/2
EH Sup | X (¢ |HLp (U;La(V)) Pl EH (/0 £ dt) ’LP(U;L(](V))-

Finally, let f € Lg(; LP(U; LY(V; L?[0,T]))) € Ly(€%; LP(U; LY(V; L*[0,T1))). In the next
section we will see that the stochastic integral X of f is well-defined as an element of
LO(Q; LP(U; LY(V;C[0,T)))). By Remark 1.1.10 we can find a sequence (f,)nen of adapted
step processes converging to f in LL(Q; LP(U; L9(V; L?[0,T)))). Therefore, by the estimate
above, the sequence (fo(') fndB)nen is a Cauchy sequence in LY(Q; LP(U; LY(V; C[0,T1)))),

and the limit X equals X almost surely. Hence, we arrive at

E| sup |X(t)] zlimE sup‘/f
I g IXOwo:zoy = i B sup | |- Fo

o g #] ([ 1)
o] ([ e

We want to stress that these results are much stronger than in the usual Banach space set-

LP U;La(V))

Lp(U;L9(V))

O

Lr(U;La(V))

ting: here the supremum can be taken pointwise for each (u,v) € U x V. Basically, these

results were the starting point for a new regularity theory for stochastic evolution equations.

1.2 Stopping Times and Localization

The It6 integral itself has beautiful properties and many estimates from the scalar stochastic
integration theory can be generalized to the LP(U) or LP(U; L4(V'))-valued setting without
getting too technical. One of the main problems of this integral (both in the scalar and
vector-valued case) is the strong integrability condition we demand on our ’stochastically
integrable’ functions f. The thing is that even many continuous functions do not fulfill
this property. The usual way to bypass this problem is to stop those ’bad’ processes when

they get 'too big’ and somehow try to define a stochastic integral in this localized way.

As motivated above we cannot avoid stopping times in this construction procedure.

DEFINITION 1.2.1. Let I C [0,00). A random variable 7: Q@ — I U {oo} is called a
stopping time with respect to a filtration (G;)cs if

{r<i}teq for alli e I.
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In a first step we want to investigate how stopping times behave in the integral we already
know. Although the following proposition seems very natural, it is highly nontrivial to
prove (see [3, Proposition 3.35] for the LP-valued case and note that the proof can be done

in exactly the same way for the mixed case).

PROPOSITION 1.2.2 (Itd integral and stopping times I). Letp,q,r € (1,00) and
f € LE(Q; LP(U; LY(V; L2[0,T7)))). Then for every stopping time 7: £ — [0, T with respect
to F we have 1jo ) f € Li(Q; LP(U; L9(V; L*[0,T7]))), and for the continuous version of the
integral process it holds that

T T
/ fdg= / Lo fdB almost surely.
0 0

In the theory of stochastic integration, especially in the context of stochastic convolutions,

we are also interested in the way how stopping times behave in integral maps of the form

JMH%UQUWMWW%JW:Afwwzéf@WW%

where f: [0,T]x Q — LP(U; L4(V; L*[0,T])) has the property that f(t) is L"-stochastically
integrable for each ¢ € [0,7] and some p,q,r € (1,00). In this situation it seems natural
to write
tAT tAT
JANT) = fEAnT)dB = fenT, s)dB(s)
0 0

for a stopping time 7: Q — [0,7]. However, the expression on the right-hand side is
meaningless since the integrand is in general not adapted, and therefore the stochastic

integral is not well-defined. To cope with this inconvenience we consider the process J;

defined by

szénmmwwzémw@ﬂwMM$

PROPOSITION 1.2.3 (It integral and stopping times II). Letp,q,r € (1,00) and
7: Q — [0, T) be a stopping time with respect toF. Let f: [0,T] — L&(Q; LP(U; LY(V; L?[0,T))))
be such that

i) te f(t):[0,T] — L"(Q; LP(U; L9(V; L?[0,T)))) is continuous and
ii) J and J; have continuous versions.

Then the processes J and J, defined above satisfy almost surely

JAAT)=J(tAT) for t € [0, 7.
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In particular, we almost surely have

]l[o,T](t)/O f(t,s)dB(s) :]l[o,r](t)/o Lo, () f (£, 5) dB(s).

PROOF. By the previous proposition, 1y - f(t) € Lg(Q; LP(U; LY(V; L?[0,T1))), so J(t)
and J-(t) are well-defined for each ¢ € [0,7]. Thus, let us turn to the interesting part
of proving the stated equality. We first prove it for a finitely-valued stopping time. Let
0=ty <...<ty =T be a partition of the interval [0, 7] and 79: Q — {to,...,tn} be a
stopping time. For any fixed t € [0,7] and n € {0,..., N} we either have t > ¢,, or t < ty,.

In the first case we obtain

- tn tAtn
Hent) = ["re)as= [T pftas = [ tpn fent) a8 = g ent)

0

and in the second case we have

t t tAty
Tt Aty) = /0 f(t)dp = /0 T, f(£)dB = /0 Lo 1 F(EA t) dB = o, (£ A ).

Observe that by Proposition 1.2.2

N
Try() =Y gy, (t)  forall £ €[0,T].
n=0

This leads to

N N
JEAT) =D ey JEA ) =Y Lpryg I, (EA ) = Jr (t ATo).
n=1 n=1

Consider now for each k € N the time steps t,, ;, := ol oy =1

S ,...,2% and the sequence of

stopping times (7 )ren constructed by

Th(w) :=min{t € {tok, ... tor s }: t > 7(w)}, ke N.

Then limy_yoo 7 = 7 almost surely and 73(w) > Tp41(w) > 7(w) for all k € N, w € Q.
Next, for k € N, define the real-valued functions hy: [0,7] — R by

hi(t) = 10,7 f (8) — Lo, f Ol Lr (e wsLaviz2o,m))
= L7 r f Dl Lr@Lrw;La(v;L20,17)))-
Then hy, is continuous by assumption (i), and limy_, h(t) = 0 for each fixed ¢ € [0, 7] by

the dominated convergence theorem. Since the map & = ||1(o 5 f || (.20 (U;Le (v L20,1))) 18
monotonically increasing, we have hy(t) > hpy1(t) for all £ € N and any ¢ € [0,7]. Dini’s
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theorem now yields the uniform convergence of the sequence (hy)ken, i.e.,

klim sup || Lo, f(t') = Lo f ()l Lr@iesLaqviz2o,r))) = O-
— ¢ g0,T

As a consequence, we obtain for ¢ € [0, T

Jim [ 5 (8 A7) = Te(E AT L @ip iz vy))

< lim sup 1T7, (') = T () | (0o (0L (v)))
— ¢/ e0,T]

Spgr I sup L j0,m f (') = Lio)f () LruLe e (viz2po,m))) = 0-
0 ¢/¢[0,T]

Finally, using this and the continuity of J, together with the dominated convergence the-

orem, we obtain

[ Jre (8 A T1) — Jr (AT | e (szeUsza(v))

<[ Jr (A TR) = Jr (A )| e spavyy) + 197 (8 A T) — T (EAT) || e (i (e (v))

which converges to 0 as k — oo. The claim now follows from the continuity of J and the

already proven equality for each finitely-valued stopping time 7. O

REMARK 1.2.4.

a)

In general, we do not have continuous versions of J and J;. In [14], Brzezniak et al.
have proved that the class of continuous functions f: R — R with period 1 such that
the stochastic convolution ¢ +— f(f f(t—s)dp(s), t € [0,1], does not have a continuous

version is of the second Baire category.

However, there are many situations where J and J; have continuous (or even a-Holder
continuous) versions. For example, if A is the generator of an analytic semigroup on
L?(U), then the stochastic convolution t fg e(=9)4 dB(s) has a version with a-
Holder continuous paths for a@ < 1/2 (see [21, Theorems 5.14, 5.20 and 5.22]). In
case A is the generator of a contraction semigroup, and ¢ € LE(Q; L*(U x [0,17)),
the stochastic convolution ¢ fg e(t=9)44(s) dB(s) has a continuous version (see
[21, Theorem 6.10], and [21, Propositions 6.13 and 7.3] for the case of an analytic
generator and different integrability conditions for ¢). See also the appendix of [13].

If J has a continuous version, then by assumption i) and the Burkholder-Davis-Gundy

inequality J; also has a continuous version.

In case A is ¢9- or Rg-sectorial on LP(U) and ¢ € Lg(Q2; LP(U; L9]0,T7])) for some
q > 2, the function f: [0,T] — L§(Qs; LP(U; L*[0,TY))), f(t) = Ljpge =g, is
continuous. See Definition 2.1.8 and Remark 3.2.4 d).
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The natural, but surprisingly non-trivial fact presented in Proposition 1.2.2 allows us to
enhance the stochastic integral to processes f: [0, 7] xQ — LP(U; LY(V')) which only satisfy
the condition f(w) € LP(U; LY(V; L?[0,T])) for P-almost all w € €, i.e.,

P(f € LP(U; LY(V; L?[0,T]))) = 1.

Since the enhancement process is rather technical, we give a short sketch of it. In the
mixed LP space setting the idea is basically the same as in the scalar case: We want to
stop the process f such that the stopped process 1o - f: [0,T] x Q — LP(U;L4(V)) is
L"-stochastically integrable for some r € (1,00). More precisely, we do not only want to
do this with one, but with an increasing sequence of stopping times in order to get a ’'good’

approximation of f. The preferred localizing sequence (T,)nen is of course

Tn(UJ) =TA lnf{t S [O,T] ”]l[o,t]f(w)HLP(U;L‘](V;[?[O,T})) 2 Tl}, w € Q,

having the properties 1y .| f € Ly(; LP(U; LY(V; L2[0,T)))) for each n € N as well as
lim,, 00 7 = T almost surely. The principle idea is now to just define the localized stochas-

tic integral as

T T
| ras= tm [ ngn s,
0 n—oo 0

where the convergence holds almost surely in LP(U; L4(V)). However, we still have to
clarify how this limit is actually defined. In Section 1.1 this was done via It6’s isomor-
phism. Since this is no longer available, we would like to have a localized analogue of
that granting the well-definedness of the localized stochastic integral. Replacing the space
LL (% LP(U; L9(V; L?[0,T7))) of integrable functions with the vector space of strongly mea-
surable functions f: Q — LP(U; L9(V; L?[0,T])) leads to the search of a suitable metric.
Since almost sure convergence fails to coincide with any metric, we have to consider a close

relative of that convergence which does the job.

DEFINITION/PROPOSITION 1.2.5. For any Banach space F we denote by LY(£); F)
the vector space of all equivalence classes of strongly measurable functions on (2, F, P) with

values in F' which are identical almost surely. Together with the metric
dp: LO(Q; F) x L°(Q; F) — [0,00), dp(X,Y) :=E(|X —Y|r A1)

LY(£; F) turns into a complete metric space, and convergence with respect to this metric
coincides with convergence in probability (for this statement we refer to [50, Chapter 3], see
also [31, Theorems 9.2.2 and 9.2.3] or [3, Proposition 3.37]). For F = LP(U; LY(V; L?[0,T]))
we let L(S%; LP(U; L4(V'; L?[0,T)))) be the subspace of L°(Q; LP(U; LY(V; L*[0,T1))) con-

sisting of all elements which are adapted to the filtration F.
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One of the disadvantages of this enhancement process is the loss of the It6 isomorphism,
but a somewhat weaker Ito-isomorphism-type estimate still holds. The first step is to prove
it for processes in LL(Q; LP(U; LY(V; L?[0,TY))), 7 € (1,00).

LEMMA 1.2.6. Let p,q,r € (1,00) and f € LE(Q; LP(U; LY(V; L*[0,T)))). Then for

each § > 0 and ¢ > 0 we have for the continuous version of fg fdp the estimates

( sup ’/
te[0,7]

YA

1)
+ ]P)(Hf”LP(U;Lq(V;LQ[[),T])) Z (5)

> s) <
LP(U;Lq(V))

and

CT(ST t
P . . >e) < +P / d > 5),
(11l o Laqvsz2io.m) > €) . (H sup ‘ ; f ﬁ‘ ‘ LU (v))

€ te[0,7)

where C > 0 is the constant appearing in the It6 isomorphism.

If we carefully take a look on the estimates above we can interpret these inequalities as an

extension of the Burkholder-Davis-Gundy inequality from Theorem 1.1.18 for 'L%norms’.

PROOF. The proof closely follows the lines of [3, Lemma 3.36]. Since we will face this
type of proof again later, we include the details. By Proposition 1.2.2 and the Burkholder-
Davis-Gundy inequality, there exists a constant C' > 0 such that

/fd sup‘/ot/wfdﬁ”r

)=
Sup Lr(U;L9(V t€[0,T] Lr(U;La(V))

tEDT]

~C EH]1[O,T]fHEP(U;Lq(V;L2[O,T}))

for each stopping time 7: Q — [0, 7] with respect to F. For d,¢ > 0 fixed we define the

| [ as
s€[0,t]

7@ =T Ainf{t € [0,T]: [Lpgfllo@;zaviz2omy) > 6}

stopping times

(1) —T/\1nf{t€ [0,7]:

> e},
pr;m(v»

Now take 7 :=7(J) A7), Then 7 is a stopping time with respect to F and

tAT

sup

<e's ElLonflew;raqvizom) <90
te [0.7]

Lr(U;L4(V))

since ¢ — L4 f and t — supycoy ’ f(f fdg ‘ have continuous paths starting at zero. Now

<e€ su
/ Lr(U;L9(V)) } {teolzr]‘/f

observe that

al

{H sup < 6}
te[0,7 (D] Lr(U;L9(V))
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by the definition of 7}, and on the set

{[| s | [ sas]

we have 72 = T and therefore 7 = 7(1). Together with Markov’s inequality this leads to

([ s | s

Lp U.La(V)) > €, Htesgé%] ]l[oﬂ’f’HLP(U;Lq(V;Lz[O,T])) < 5)
< IP(H sup

d > < LE| su /
te[0,7] / ! B Le(U;L1(V)) ) Hte[OPT

< C"ZE| Lo A o wiraqvz2pmy) < C %

> g,

Lo(UsLa(v ok O oo iz <9 }

Le(UsLa(V))

Using this estimate, we finally obtain

a | [ 10
tGOT]

" 3
iy 6) SOt P(Hteb[%%] Lol lll o zoqvizpony = 9)
= C“sL: + P(HfHLp(U;Lq(V;Lz[QT])) > 5)7

where the last equality follows from the fact that

If @)l Lo ;Lo (vin2o,m)) = |l tS[upﬂ Lol f (W)l Lo ;Lav,L20,m))
(S

)

for each w € €. The second stated inequality is shown in exactly the same way by inter-

changing the two processes. ([

As mentioned above, for the general case we need a sequence of stopping times to extend
Lemma 1.2.6.

DEFINITION 1.2.7. Let p,q € (1,00), f € LY(; LP(U; LY(V; L?[0,T1))) and (7 )nen
be a sequence of stopping times with respect to F and with values in [0,77]. Then we call

the sequence (7, )nen a localizing sequence for f if

a) for all w € Q there exists an index N(w) € N such that 7,(w) =T for all n > N(w),

and

b) Ly f € Lp(Q; LP(U; L9(V; L2[0,T7))) for all n € N and some 7 € (1, 00).

REMARK 1.2.8. Forevery f € LY(Q; LP(U; L9(V; L?[0,T)))) alocalizing sequence (75, )nen
is given by

Tn((.U) =TA mf{t S [O,T] ”]l[(),t]f(w)HLP(U;L‘Z(V;L2[O,TD) 2 TL}, w € Q.

Let us prove this assertion. We first remark that 7, is a stopping time with respect to
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F for all n € N. To see that, note that the function t — [[1194.f(w)ll ze(w;re(v;r2(0,77)) 19

continuous and increasing for each w € €2, leading to

{m <t} ={lLpgfllzew;zaqvir2io,m)) > nt € Fr, t€[0,T7,

and by the usual conditions of F this is equivalent to {7, <t} € F, t € [0,T]. Additionally,
for any fixed w € 2 and each ¢ € [0, T] we have

||]1[o,t}f(w)||Lp(U;Lq(v;L2[0,T})) < Hf(w)”LP(U;L(I(V;L2[0,T})) < 00.

Therefore, there exists an integer N(w) € N such that
sup || Ljo,q.f ()l o w;avin2o,m) < N(w).
t€[0,T7]
But this just means that 7,(w) = T for n > N(w). Moreover, we have the estimate

]EH]I[O’T”]fHTLp(U§Lq(V;L2[07T])) < n’

for any r € (1,00) which combined with the fact that 1y 1f is adapted to F (see Propo-

sition 1.2.2) concludes the proof.

Using localizing sequences we can extend the results from Lemma 1.2.6 to measurable
processes f € LY(%; LP(U; L9(V; L?[0,TY))).

THEOREM 1.2.9 (Ité6 homeomorphism). Let p,q,r € (1,00). Then the It6 isomor-
phism Ipr: LE(Q; LP(U; LY(V; L2[0,T)))) — L"(Q; LP(U; L4(V))) has a unique extension

to a linear mapping
Ipo: Ly(Q; LP(U; LU(V; L2[0,T)))) — Ly (Q; LP(U; L(V; C[0, T))))

which is a homeomorphism onto its closed range. Moreover, the estimates from Lemma
1.2.6 extend to arbitrary processes f € LY(Q; LP(U; L4(V; L*[0,TY))).

PROOF. Let f € LY(%; LP(U; L4(V; L?[0,T)))) and (75,)nen be a localizing sequence for

f- Then f, := 1y f € Ly(Q LP(U; L9(V; L?[0,TY))) for some r € (1,00) and by Theorem
1.1.18 there exists a version of I (f,) = fo(.) frndp such that

/(') fndB € Lp(Q; LP(U; LU(V; C[0,T1))) € Lg($; LP(U; L9(V; C[0,T1)))
0

for all n € N. Since lim,, o fn, = f almost surely in LP(U; LY(V; L?[0,TY))), the sequence
(fn)nen is ’Cauchy in probability’ and by Lemma 1.2.6 we deduce that (Iz(fn))nen is a
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Cauchy sequence in L°(2; LP(U; L4(V;C[0,T]))). Since this is a complete metric space,
there exists a limit X € LO(Q; LP(U; LY(V;C[0,T)))). Now define

(

)
Ipo(f) =X = lim Ip(fn) = lim fadB in LY(Q; LP(U; LY(V; C[0,T)))).

n—o0 0

Then I;o is well-defined and linear. To extend the estimates from Lemma 1.2.6, note that
the convergence in LO(Q; LP(U; L4(V; L2[0,T)))) and L°(; LP(U; L4(V;C[0,T]))) implies
that

i P(|| L1 (fn) = Ipo(H)llo@;zavicpay) = p) =0

and

r}i_{TOIOP(an — fllr;Laqvsn2zpomy) = p) =0

for each p > 0. Now let £,6 > 0 and (pg)ken C (0, 5( A ) be a decreasing null sequence.
Then by Lemma 1.2.6

P(Ht:[%%] ’ILO(f)(t)H‘LP(U;L‘I(V)) > ¢)

< P(rr(fn) = Lo (Dl owspaviciorn) = k) + PO (fo)llLow;avicom)) = € = pr)
o — r
< Pz (fo) = Lo (D liawizavicomy) = or) + CrEe—Z:;T
+P(ILfall Lo zaqvizzioryy) = 0 = k)
= P(”ILr(fn) — Lo (Nllrwszavicory) 2 pk) + P(an — fllzeiLaqvizzm) 2 Pk)

(0 — pr)"
T+ P . . >5—=2 )
+C (5 — pk)r + (Hf|’LP(U,L4(V7L2[0,T])) > Pk)

If we take the limit n — oo in this estimate for each k € N, we obtain

7”(5 - pk)r
]P’(Htes&l)%] 1o (FY O o 0oy > €) <€ =) + P fllosnaqviczpom)) = 6 — 2pk)-

Using now the o-continuity of the probability measure P, we arrive at

57"

P(Hts[lépﬂ ’ILO(f>(t)’HLp(U;Lq(v)) > 5) < CTET +P(HfHLP(U;LQ(V;LQ[O,T])) > 5)
€ )

by letting k& — oco. The other inequality in Lemma 1.2.6 can be extended in exactly the

same way by interchanging the two processes. From this we infer that I;o is continuous

and has a continuous inverse. This also shows that the mapping I;0 has a closed range in
LO(Q; LP(U; LU(V; C[0,T7))). U
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Similar to the integrable case we can now define the localized stochastic integral as the

limit of stochastic integrals we already know.

DEFINITION 1.2.10. Let p,q,r € (1,00), f € L3(Q; LP(U; LY(V; L?[0,T)))), and let
(fn)nen C LE(S% LP(U; L9(V; L?[0,T)))) be an approximating sequence for f. Then we
define the stochastic integral of f by

) )
| £asi= [ £6)a8(s) = ro(1) = lim Tur(h)
0 0

where convergence holds in L°(Q; LP(U; LY(V;C[0,T]))). In this case, we call f L°-

stochastically integrable.

REMARK 1.2.11.

a) The L%stochastic integral is well-defined in the sense that it is independent of the
approximating sequence. Moreover, the localized integral has by definition continuous

paths and is again L%-stochastically integrable.

b) If f € LL(; LP(U; L9(V; L?[0,TY))) for some r € (1,00), then the integral process
which arises from the It6 integral coincides almost surely with the localized integral
process. From that point of view, the localized integral provides a true enhancement

of the It6 integral.

¢) The new stochastic integral is in general no longer a martingale, but as in the scalar

case a local martingale (see Theorem 1.2.15 below).

d) If we take a closer look on the proof of Theorem 1.2.9, we see that

T T
/ fdp = lim / Lio,5,1fdB in probability,
0 n—oo 0

where the It6 homeomorphism guarantees that this limit actually exists. This also
implies that fOT fdB = limp_s0 fOT Ljor,,]f dB almost surely for an appropriate sub-
sequence as was indicated in the motivation. In order to just define the stochastic
integral we also could have imitated the proof often appearing in the scalar-valued
case via a sequential consistency of the sequence ( fOT Lo, f dﬁ) with the disad-

neN’
vantage of not having the It6 homeomorphism.

We finally collect some properties of the new integral, where we mostly try to extend the

results we already know from the It6 integral.

PROPOSITION 1.2.12 (Properties of the localized integral). Letp,q € (1,00) and
fyg € LY(Q; LP(U; LY(V; L?[0,T)))). Then the following properties hold:
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a) The stochastic integral is linear, i.e. for a,b € R we have
) ) ¢)
/ af—i—bgdﬂza/ fdﬁ—i—b/ gdg.
0 0 0

b) The process (fg fdﬁ)te[o 77 18 adapted to F.
¢) For S € B(LP(U;L1(V))), let SL* be the bounded extension of S on the space

LP(U; L4(V; L2[0,T))) (see Remark 2.4.1). Then, S° f € LY(Q; LP(U; L4(V; L2[0, T))))

and
t 9 t
/SL fdﬁ—S/ fdg  forallte[0,T].
0 0

d) For every s,t € [0,T] with s < t it holds that

/:fdﬂ—/OTn[S,ﬂfdﬁ.

e) There exists a p-null set N, € ¥ such that f(u) is LO-stochastically integrable, i.e.
f(u) € LY(; LUV L?[0,T1)), and

/0(.) flu)dp = (/0(') JdB)(u) for cachu e U\ N,.

f) There exists a p@v-null set N € L®Z such that f(u,v) is L°-stochastically integrable,
ie. f(u,v) € L% L?[0,T)), and

/O(')f(u,v) dg = (/O(I)fdﬁ)(u,v) for each (u,v) € (U x V) \ N.

PROOF. a) and b) follow immediately from the definition.

¢) Since S&* is bounded, it follows that S¥°f € LY LP(U; L9(V; L?[0,TY))). Now take
an approximating sequence (fn)nen € L5(%; LP(U; L9(V; L?[0,T)))) for some r € (1, 00).
Then by Proposition 1.1.13 ¢) it holds that

t ¢
| s%nas=s [ f.as.
0 0
The boundedness of S~ also implies that

2 2
E(IS" fo =S¥ fllrwizavizioam A1) < (1SI1V DE(fn = Flle@wizaqvizzpamy A1) = 0

2

as n — 00, ie. limy, soo SE°f, = SU°f in LY(Q; LP(U; LI(V; L2[0,T]))). Similarly we
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obtain

n—oo

t t
lim S fn dg = S/ fdg  in LY(Q; LP(U; LY(V))).
0
The It6 homeomorphism then yields
to, b, t t

/ SE fdg = lim / SE f,dB = lim S/ fndB:S/ fdg
with convergence in L2(Q; LP(U; L4(V))).
d) This property follows from Proposition 1.1.13 d) and approximation.

e) Let (fn)nen € LE(Q; LP(U; L9(V; L?[0,T]))) be an approximating sequence for f for
some 7 € (1,00). We first want to show that limy, o0 fn, (u) = f(u) in LO(Q; L9(V; L20, T)))
for p-almost every u € U and an appropriate subsequence (fp, )ken. This then also im-
plies the assertion about the adaptedness of f(u). In order to do that, we can assume that
u(U) < oo using the o-finiteness of (U, ¥, p). Since lim,, o f, = f in LP(U; L4(V; L2[0, T)))
in probability we obtain by Proposition 1.2.5

NEfr = fllzaqvizzior) A 1)HLp(U) < E||Ifa = fllzaqvicziom A 1HLP(U)

<E(Ifa — fllow.poqv.c2iomy) A w(U)77)
= w(U)PE(||w(U) 7 (fn — erwsaqvizomy A1) =0 asn — oo,

using the fact that the integral of the minimum of two functions is less or equal than
the minimum of the integrals of these functions. Therefore, we can choose a subsequence
(fni )ken which converges p-almost everywhere to f in L0(€2; L9(V'; L?[0,T])). Similarly to

above we may choose another subsequence ( fnkj )jen such that

lim / o, 45) / Fa8)w) i LO(Q: L(V))

J—00

for p-almost every u € U. Using now Proposition 1.1.13 for every fnkj, we obtain the

desired result.

f) The proof here is done similarly to part e). Assuming that p(U), (V) < oo we deduce
that for C = M(U)I/PNIV(V)l/PAq

|E(Ifn = fll 20, A 1)HLPAQ(U><V) < CE(IE(fn = DHllperawxviczoy A1)

< CE(|&(fa = Dllerwizavizzomy A1) =0 asn — oo.

Now the proof can be finished as in e). g
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REMARK 1.2.13.

a) Observe that every property from Proposition 1.1.13 still holds except for the estimate
of the expected value. The reason for that is that we can not assume that this even

exists because of the missing integrability condition of f with respect to ).

b) With the same arguments, the results of Remark 1.1.14 a)-e) are still valid for the

case r = 0.

The behavior of stopping times in stochastic integrals we proved in the beginning of this
section enabled us to enlarge the class of possible integrands. In the next step we want
to extend these results to the localized case. For this purpose, let J and J- be defined as

before Proposition 1.2.3.

PROPOSITION 1.2.14 (Localized integral and stopping times). Letp,q € (1,00)
and 7: Q — [0,T] be a stopping time with respect to F.

a) Let f e Ly( LP(U; LUV L2[0,T)))). Then Lo f € Ly( LP(U; L9(V; L?[0,T1)))
and for every t € [0,T] it holds that

tAT t
/ fdg = / Lo fdB almost surely.
0 0

b) Let f:[0,T] — LY(Q; LP(U; L4(V; L?[0,T)))) be such that

i) tw f(t): [0,T] — L%(Q; LP(U; LY(V; L?[0,T)))) is continuous and

ii) J and J; have continuous versions.

Then the processes J and J, satisfy almost surely
JEANT)=J(tAT) for t € [0,T].

In particular, we almost surely have
t ¢
]l[o,T](t)/O f(t,s)dB(s) = ]l[(),T](t)/O Lio7(s)f(t,s)dB(s).

PROOF. The proof of a) can be done as in [3, Proposition 3.43]. To prove b) we define
for n € N the stopping time

Tn(W) =T A inf{s S [O,T] tS[léI;] ||]1[0,s]f(t’w)HLp(U;Lq(V;LQ[O,T])) 2 n}, w € Q.
€|0,

Then (7,,)nen is a localizing sequence for each f(t), t € [0,T]. In particular, for f,(t) :=

Lio,7, f(t), we have EHf"(t)HEP(U;L‘I(V;LQ[O,T])) <n" < oo as well as

lim fu(t) = () and N o falt) = Lo f(6) 0 LO(Q IP(U; L(V; 220, 7))

n—oo
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for all ¢ € [0,T]. The It6 homeomorphism implies that

t t t t
i [fmas= [ r0as and dn [ean008 = [ 0500

both in L°(; LP(U; L4(V))) and for each t € [0,7]. It remains to show that f,, fulfills
the requirements of Proposition 1.2.3. Let n € N be fixed. Above, we have seen that
fn: [0,T] — LE(Q; LP(U; L9(V; L2[0,T7)))) for some 7 € (1,00). Moreover, by the definition

of the localizing sequence, we have for every w € )

sup || fn(t, W)l e w,La(viz20,m)) < 7
t€[0,T)

which is integrable with respect to 2. Now let (hg)reny C R be a null sequence. Then, by

the continuity assumption of f we can choose a subsequence (hkj )jen such that
Ju(t + h;) — fo(t) almost surely in LP(U; L9(V; L*[0,T])) as j — oc.

Now the dominated convergence theorem yields the continuity of f,. Since 7 A 7, is also
a stopping time, the assumption about the continuous versions follows from the continuity

of J, part a), b) i), and the It6 homeomorphism. This concludes the proof. O

Having these results, we can show nearly the same properties for the localized stochastic

integral process as we did for the Ito integral process.

THEOREM 1.2.15 (Properties of the localized integral process). Letp,q € (1,00),
€ [1,00), and f € LY(Q; LP(U; LY(V; L?[0,T)))). Then the following properties hold:

a) Local martingale property. The integral process ( fot fdB)iecpo,1) is a local martin-
gale with respect to the filtration F.

b) Continuity and Burkholder-Davis-Gundy inequality. The integral process

( fg f dB)iejo, is almost surely continuous satisfying the maximal inequality

teS%pT]‘/f Loisa(vy) P H </ )1/2

where this is understood in the sense that the left-hand side is finite if and on]y if the
right-hand side is finite. If one of these cases holds, then the process X (t fo fdg,
t € (0,7, is again L"-stochastically integrable satisfying

g / xoPa) [ e (/OT\f(t)Ith)l/Q

r

Lr(UsLa(V))

r

Lp(UsLa(V))
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PROOF. a) Let (7,)nen be the localizing sequence from Remark 1.2.8. Then 7, is a

stopping time with respect to F, 7, < 7,41 and lim,_,o 7, = T almost surely. Moreover,

by Proposition 1.2.14 a) and Theorem 1.1.18 a) the process

tATh t
/ fd5=/ Lo, fdf. te0.T),
0 0

is a martingale with respect to F. Therefore, ( fot fdB)iejo,r) is a local martingale with
respect to FF.

b) The continuity assumption follows by definition. Assume first that the right-hand side
is finite. Then the assertion is trivial and follows from Theorem 1.1.18 c). If the left-hand

side is finite, we let (7, )nen be a localizing sequence for f, and define
fo =Nz f € LE(Q; LP(U; LY(V; L2[0, T)))).

Then lim,, ;o fn = f almost surely. Thus, Fatou’s lemma, Theorem 1.1.18 ¢), and Propo-
sition 1.2.14 a) yield

e () wrar)

' . <hm1nfEH (/ ]fn|2dt>
Lr(U;La(V)) n—00 LP(U;L1(V))

~p,qr lim IE sup ’/ Lior, f ﬁH

n—o0 te [0,7] Lr(U;L9(V))
tATh
- sl [ ]
i tgggpﬂ / P8 oz
< EH sup
te[0,T] Le(U;L9(V))

This shows that f € LL(€; LP(U; L9(V; L*[0,T1))), and the result again follows from The-
orem 1.1.18 c). O

In the last part of this section we want to give a beautiful generalization of the stochastic
Fubini Theorem 1.1.15. We closely follow the proof of [85], where this was elaborated for the

scalar-valued case and for stochastic integrals with respect to continuous semimartingales.

THEOREM 1.2.16 (Stochastic Fubini theorem II). Let p,q € (1,00), (K,K,0) be
a o-finite measure space, and f: K x Q — LP(U; LY(V; L?[0,T])) be strongly measurable
such that

f(-,w) € LYK; LP(U; LY(V; L*[0,T]))) for P-almost all w € Q,
f(x,-) € LYQ; LP(U; LY(V; L*[0,T)))) for 6-almost all z € K.

Then the following assertions hold:



46 Stochastic Integration in Mixed LP Spaces

a) For f-almost all z € K, f(x,-) is LO-stochastically integrable, the process

¢(z,w, 1) /fa:sdﬂ (w)

is measurable, and almost surely,

9 df(z) < oc.
KHtS[%pTﬂfl’ |HLP U;La(V)) (z) <00

b) For almost all (w,t,u,v) € Q x [0,T] x U x V the function x — f(z,w,t, u,v) is

integrable and the process

wew.t) = [ flow.t)d6(a)
K
is LO-stochastically integrable.

c) Almost surely, we have
t
[ e@tao@) = [ns)ases), e o)
K 0

PROOF. a) By assumption, f(x,-) is stochastically integrable for almost all z € K, i.e. £
is well-defined. To show the additional property of &, we first assume that f € L'(K) ® Dy
(in particular, Theorem 1.1.15 is valid for such f). Then by Fubini’s theorem and the
strong Burkholder-Davis-Gundy inequality for » = 1 we obtain

B[ 1 s 16O vy 49) = [ Bl 1 1601 o0y 09

< Cp,q/KEHfHLp(U;Lq(V;L?[o,T])) de

= Cp,qE</K £l e @La(v;20,m)) d9)

for some constant C) , > 0. In particular, we have

E/}(Hf(ﬂHLp(U;Lq(V)) df < Cp,qE</K L0, | Lo (u;zav;z20,7)) d9>

by Proposition 1.2.2 for any stopping time 7:  — [0,7]. Applying now the same technique
vy Y

| supseqo,g 1€ o nrwLaqvyyy and ([ Lo, fll e @;zavinzio)) bY o, fll Lt (ke winaqvic2o,m))))
we arrive at

as in the proof of Lemma 1.2.6 (just replace the processes Hsupse[oﬂ UOS f dﬁ! HLP(U,LQ(

Cpq0

B[ 1 s 601000y 90> ) < (11122 aesinavinsiomyy 2 9)
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for any €,0 > 0. Now take any f as stated in the Theorem. By Remark 1.1.10 we
can find a sequence (f,)neny € L'(K) ® Dp such that almost surely lim, oo fn = f in
LY(K; LP(U; LY(V; L*[0,T)))), in particular the sequence also converges in probability to
f. Define

n(z,w,t) /fna:sdﬂ )() n € N.

By the remark above, (£,),en is a Cauchy sequence in L°(; L1 (K; LP(U; L4(V; C[0,T))))),
i.e. there exists a limit §~ in this space. By considering a sufficient subsequence, we obtain
on the one hand limg_,o fn, (z) = f(z) in LP(U; L4(V; L?[0,T])) almost surely and for

almost all x € K, which implies

() )
lim / Jne(z)dB :/0 f(z)dB =¢&(z,)

k—00 0

in LP(U; LY(V;C[0,T7])) by 1t6’s homeomorphism. On the other hand,

Q) -
lim / Jop(z)dB = klggo Enp(2,7) = &(x, )

k—o00 0

in LP(U; L4(V; C[0,T])) almost surely and for almost all z € K. This implies that {(z, ) =
&(x,-) in LP(U; L9(V;C[0,T))). In particular, £ has the property stated in the Theorem

and

lim 5nd9_/ €dd  in LO(Q; LP(U; LY(V;C[0,T)))).
K

n—oo

b) The first statement follows by the triangle inequality. By the same argument, n €
LO(Sy; LP(U; LY(V; L2[0,TY))), i.e. 1 is LO-stochastically integrable.

¢) It remains to prove the integral equality. Let (f,)nen be the approximating sequence of

part a) and define

Nn(w, t) := /Kfn(:c,w,t) df(z), neN.

Then

ll7m — 77||LP(U;L4(V;L2[0,T])) <|[fn— f”Ll(K;LP(U;Lq(V;L?[O,T])))7

which converges to 0 almost surely as n — oo. By the Ito homeomorphism we obtain

) )
tiw [ nds= [ pds i L DALV CR.T)))
0

n—oo 0

Now the statement follows since fo N dB = [} &1 (t) dO by Theorem 1.1.15. O
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1.3 Ito Processes and Ito’s Formula

In the previous two sections we have already familiarized ourselves with the stochastic
integration theory with respect to a single Brownian motion. In this section we will extend
the theory given there to a ’stochastic integral’ with respect to an independent family of
Brownian motions. The main motivation for doing this is to have a more general approach

when applying this theory to stochastic partial differential equations of the form
AX(t) = F(t, X (1)) dt + Y Bu(t, X (1)) dBa(t),  X(0) = Xo,
n=1

which is defined as the integral equation

X(t):X(O)/ (s,X(s ds+2/ )) dBn(s).

Here and in the following we will assume that (8.(f)):cjor1, » € N, is a sequence of
independent Brownian motions adapted to F, i.e. each §,(t) is Fi-measurable and 3, (t) —

Bn(s) is independent of Fs for t > s and n € N.
To get solutions in spaces like L"(2; LP(U; L2[0,T])) or in L"(Q; LP(U; C10,T))) the minimal
requirements will be
f = F(, X(-)) € L"(; LP(U; L'[0, 1)),
Bn(, X () € Lp( LP(U; L*[0, 7)), mn €N,

and the series Y >, fot b, dB,, should converge in one of the spaces above. This is the

reason why we want to study processes of the form

/f ds—i—Z/ $)dBn(s

where we assume that f € LL(Q; LP(U; L'[0,T))) and b, € LE(Q; LP(U; L2[0,T))) for every
n € N.

DEFINITION 1.3.1. Let p,q,r € (1,00) and let Xo € L"(Q, Fo; LP(U; LY(V))), f €
L5 (Q; LP(U; LY(V; LY[0,T)))), and b, € LL(Q; LP(U; LY(V; L?[0,T1))) for every n € N. If

the series

t):X0+/0tf(s)ds+Z/0tbndﬂn, te0,7],
n=1

converges in L"(Q; LP(U; L1(V))), then X: Q x [0,T] — LP(U; L4(V)) is called an L" Ito
process with respect to F and (3, )nen. The integral fo s)ds is called the deterministic
part and >, fo b, A3, the stochastic part of the It6 process X.
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REMARK 1.3.2. For b := (by)nen and B := (5,)nen as in the previous definition we

will often use the shorthand notation

/Otbdﬁ::g:l/otbndﬁn

or symbolically

bdB:=> b,dB, and dX = fdt+bds.

n=1

The interesting question here is of course under which condition the series in the stochastic

part of an It6 process converges. The answer to that is given in the following theorem.

THEOREM 1.3.3 (Itd isomorphism for Ité6 processes). Let p,q,r € (1,00), t €
[0,T], and b, € L(Q; LP(U; LY(V; L*[0,T1))) for every n € N. Then the series

/Otbdﬁzg:l/otbndﬁn

converges in L™ (), Fy; LP(U; L4(V))) if and only if b € LL(Q; LP(U; L4(V; L2([0, ] x N)))),

ie.

r

;p(U;LQ(V)) - EH (/Ot ”b(s)HzQ dS) N ’

(] mera)”

In this case we have

EH/Otbdﬁ

For the proof of this theorem we need an ’It6 isomorphism’ for finite sums. This is the

Lr(U;L9(V))

T t r
Le(U;La(V)) ~par EH </0 Ll ds) N ’ Le(UsLa(V))

content of the next lemma. The proof can be done exactly as in [3, Lemma 4.3], where the
LP(U)-valued case is treated. We only need the UMD property of the space LP(U; L1(V'))

and Kahane’s inequalities for Gaussian sums.

LEMMA 1.3.4. Let p,q,r € (1,00) and (b,)Y_, C LE(; LP(U; L4(V; L2[0,T]))). Then
it holds

r t N 5 1o 7
Lp(U;La(V)) ~par EH (/0 ; bn] dt) ‘ Le(U;La(V))

N
EH;/OtbndBn

for each t € [0,T].
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PROOF (of Theorem 1.3.3). If b e LL(; LP(U; LY(V; L*([0,T] x N)))), then each b,

is L"-stochastically integrable, i.e. the random variables

N
:Z/ bpdB,, NeN, tel0,T)],
n=1 0

are well-defined. By Lemma 1.3.4, the sequence (Xy(¢))nen is a Cauchy sequence in
L™(Q, Fe; LP(U; L9(V'))), which gives the desired convergence result. Another application

of Lemma 1.3.4 and the dominated convergence theorem lead to

t T
EH bd ’ — i EH /b B,
/0 p Lp(U;La(V Noreo Z b Lp(U;La(V))

2 T
%w@wu/zww 1

Lr(U;L9(V))
~ | /||b 9lzas)” |

Now assume the converse. In this case we have

T ¢ T
Le(UiLa(V)) EH/O bdp

Lo(UsLa(V))

Lr(UsLa(V))’

N
S [ s

An application of Fatou’s lemma and Lemma 1.3.4 then yields

B (/1o as)”

2
oy <t ] ([ Z'b ) as)

=par 1%133513“7; /0 b Ay

LP(U;L9(V))
t r
:EH/O bd/@‘Lp(U;Lq(V))

Le(UsLa(V))

g

As a consequence of this theorem, the correct assumptions in Definition 1.3.1 for an Ito
process dX = fdt + bdB to be well-defined are

f e Ly(Q; LP(U; LY(V; LY0,T]))) and b€ LE(Q; LP(U; LY(V; L*([0,T] x N)))).

In other words, if we say that dX = fdt+bd3 is an L" It6 process we will always assume

these conditions.

The following properties of the stochastic part of an Itd process are now mostly immediate

consequences of Proposition 1.1.13 and Theorem 1.3.3.



1.3 It6 Processes and Ito’s Formula 51

PROPOSITION 1.3.5 (Properties of L" It6 processes). Let p,q,r € (1,00), t €
[0,T], and b, c € Li(Q; LP(U; L4(V; L2([0, T] x N)))). Then the following properties hold:

a) Fora,be R we have
(ab+bc)dB = a(bdB) + b(cdP).
b) bdp is adapted to F and

t
]E/ bdB = 0.
0

¢) For S € B(LP(U;L9(V))), let SL* be the bounded extension of S on the space
LP(U; LI(V; L2([0, T) x N))). Then, S¥°b € Li(Q; LP(U; LI(V; ([0, T] x N)))) and

t t
/SLzbdﬁ:S/ bdg.
0 0

d) For every s,t € [0,T] with s < t it holds that
t T
/ bdg = / 1(,4bdB.
s 0
e) There exists a pu-null set N,, € ¥ such that b(u) € LB (Q; LI(V; L2([0, T] x N))), and
t ¢
/0 b(u)dB = (/0 bdﬁ) (u) for eachu € U\ Ny.
f) There exists a p ® v-null set N € ¥ ® Z such that b(u,v) € LE"""(Q; L?[0,T]), and
t t
/ b(u,v)dB = (/ bdﬁ) (u,v) for each (u,v) € (U x V)\ N.
0 0

PROOF. a) The linearity follows from the convergence in Theorem 1.3.3 and the linearity
of the Ito integral.

b) Adaptedness follows from Theorem 1.3.3. Moreover, since Ezgzl fg b,dB, = 0 by
Proposition 1.1.13 b), we obtain

t t N o
J2 [ 063], 0, = |2 (08537 [0

< (IEH/Otbdﬁ—i::/otbndﬁn

which implies the claim.

Lo(UsLa(V))

—0 as N — o0,

r 1/
L”(U;Lq(V))>
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c¢) For finite sums we have

N t , N t
Z/ Sk bndﬁn:SZ/ by df,,
n=1 0 n=1 0

by Proposition 1.1.13 ¢). Moreover, we trivially have SX°b € LL (S LP(U; LY(V; L2([0, T x
N)))). Hence, Theorem 1.3.3 and the continuity of S imply

t N t N t t
S¥”bdB = lim /5L2bnd5n: lim S /bndﬁnzs/ bdg,
/0 N—)oo; 0 N—oo ; 0 0

where the limits take place in L"(Q; LP(U; L4(V))).

For the proof of d) and e), note that the estimates for finite sums again follow from
Proposition 1.1.13 d) and e). Then the proof can be concluded in the same way as in the

proof of this proposition by approximation and Theorem 1.3.3. U

REMARK 1.3.6. If we compare Proposition 1.1.13 and Proposition 1.3.5 we see that
we transferred every property from there to the It6 process case. The only additional
thing we actually needed was the convergence of the series in the stochastic part of the It6
process. As long as the property we demand of the Itd process gets not destroyed by this
convergence, everything carries over. In particular, the statements of Remark 1.1.14 still
hold true.

Similar to the Ito integral process, the stochastic part of an Itd process has some useful

regularity properties which we collect in the next theorem.

THEOREM 1.3.7 (More properties of L" Ité6 processes). Let p,q,r € (1,00) and
b e L(Q; LP(U; LY(V; L*([0,T] x N)))). Then the following properties hold:

a) Martingale property. The It6 process bd3 is a martingale with respect to the
filtration F.

b) Continuity. The It6 process bd3 has a continuous version satisfying the maximal

su < EH /
te[opT]V Le(U;La(V)) Spar

¢) Burkholder-Davis-Gundy inequality. As a consequence of b) and Theorem 1.3.3

inequality

T

Lr(UsLa(V))

we have

Lp(U;La(V')) ~par EH (/OT Lol dt) " ‘ T

Lp(U;La(V))

sup ‘/ bdg
te[OT
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Moreover, this estimate also holds true for r = 1. In particular, the It6 process
X(t) = fot bdg, t € [0,T], is again L"-stochastically integrable satisfying

]EH (/OT‘X(MQ dt) - ;P(U;Lq(V)) Spar TI/QEH </0T Bl dt) - ‘ T

Lr(UsLa(V))|
PROOF. For the proof of a) and b) we can proceed analogously to [3, Proposition 4.5].

In this case the martingale property carries over since the conditional expectation operator
is continuous in L"(Q; LP(U; L4(V))). However, once we have a), part b) follows in the

same way as in Theorem 1.1.18 using the strong Doob inequality.

c¢) For the case r € (1,00) there is nothing left to prove. If » = 1, we proceed similarly to

the proof of Theorem 1.1.18 ¢). We can use the same decoupling technique to show that

N
EHt:[%%]T;/Ob dﬁnHLPULq(V ~pal / Z‘b |2dt 2‘

first for adapted step processes and then for arbitrary b, € Li(Q; LP(U; L4(V; L*[0,T7)))

by approximation. Especially for the first part, the independence of the Brownian motions

)

Lp(U;La(V))

is important (see also the proof of [3, Lemma 4.3]).

Here again, we have to anticipate some results for the localized case. Since b is an element
of LL(Q; LP(U; L4(V; L([0,T] xN)))) we will see that fo(.) b dp3 is well-defined, at least as an
element of LO(Q; LP(U; L4(V; C[0,T]))). Additionally, by the estimate above, the sequence
(25:1 fo(.) bn, dﬁ”)NeN is a Cauchy sequence in L'(Q; LP(U; LY(V;C[0,T1]))). Hence, there
exists a limit X € L*(Q; LP(U; L9(V;C[0,T)))), and by considering subsequences we can
easily verify that X (t) almost surely coincides with fot bdB. This finally leads to

sup ‘/
tE[O )

= lim EH sup /bndﬁn

LP U;L1(V)) N—oo telo, T]

g1 Jim E| / Z|b ) 2(
= ([ Ioiar) /2]

Analogously to Section 1.2, we want to extend It6 processes to the localized case, i.e. we

Lr(UsLa(V))

Lr(U;Le(V))

LP(UsLa(V))

want to get rid of the integrability condition with respect to 2. In particular in regard to

an LP(U; L1(V'))-valued analogue of It6’s formula this is of huge interest.

DEFINITION 1.3.8. Let p,q € (1,00) and let Xy € L9%Q,Fo; LP(U; LY(V))), f €
LO(Q; LP(U; LY(V; LY0,T)))), and b € LY(Q; LP(U; L9(V; L3([0,T] x N)))). Then we call
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the process X: Q x [0,T] — LP(U; L4(V)) given by

t oo t t t
Xt):X0+/0 f(s)ds—i—Z/O bndﬁn:Xg+/0 f(s)ds—i—/o bds
n=1

an LY Ité process with respect to F and (8, )nen.

Looking at the first half of this section it should not be a big surprise that this definition
is indeed well-defined. Similar to L™ It0 processes, this follows from an extension of the
It6 homeomorphism. However, in this case we have to be careful since we now work in
a metric space. One problem in this setting is that in general summation is no longer
continuous and in many cases not even defined. In our case, the space LI%(Q; E) (where
E is any Banach space appearing here) is a vector space and, luckily, the metric on it is

translation invariant. These two facts suffice to obtain the following result.

THEOREM 1.3.9 (It6 homeomorphism for It6 processes). Let p,q € (1,00) and
let b € LY(Q; LP(U; L4(V; L3([0,T] x N)))). Then the process bd3 is well-defined as an
element of LY(Q; LP(U; LY(V;C[0,T)))). Moreover, we have for all § > 0 and € > 0 the

estimates

sup ‘/
teOT]

T "
LP(U;LQ(V)) > 5) < C" % + P[0l o LovL2 (o< = 0)

and

P11l Lo, Lo vir2 o,y > €) < C7 5% +P sup ‘/ bds ‘ ‘

,29)
tE[O T) LP(U;La(V

for some r € (1,00) and the constant C' > 0 appearing in Theorem 1.3.3.

REMARK 1.3.10.

a) Observe that the statement of Proposition 1.2.2 about stopping times in It6 integrals
carries over to the L" It process case without any problems. Indeed, for any stopping
time 7: Q — [0, 7] with respect to F and some b € LL(Q; LP(U; L4(V; L2([0, T]xN))))
we of course have 1 -1b € Li(€; LP(U; L9(V; L*([0, T] x N)))), and Proposition 1.2.2

almost surely implies

T 0 T oo T T
[eas=" [ 0nas, =Y [ tpqtudsn= [ 10004
0 n=1v0 n=1"0 0

b) Part a) and Theorem 1.3.7 can now be used to show that

t T
o sw [ 008,

~c Bl Lol e a(v;2(0,11x0))
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for some constant C' > 0 and r € (1,00). This fact extends Lemma 1.2.6 for processes
be LL(Q; LP(U; LY(V; L3([0,T] x N)))) using the same stopping time argument as in

the proof of this lemma. This means we obtain for all § > 0 and € > 0 the estimates

sup ‘/ deH
te[OT

Lp UL > CT +P(HbHLP(U LLI(V L2([0 T]XN))) Z 5)

and

P16l Lo (0 La(viz2(o <)) > €) < CT4 + sup }/

> 6).
tE[O T LP(U;L‘J(V))

PROOF (of Theorem 1.3.9). For each n € Nlet (7, 1)ren be a localizing sequence for
by € LYA(Q; LP(U; L4(V; L2[0,T)))). Then b, := Lio,r, 410n € Lp(2; LP(U; LI(V; L?[0,T))))
for some r € (1,00), and limg—o0 by = by in LA(Q; LP(U; L4(V; L2[0,T]))) for all n € N.
By Theorem 1.2.9 we have

lim .bn,kdﬁn:/. b, df, in LY(Q; LP(U; LY(V;C[0,T)))),
0 0

k—o00

and since the metric of LY(; LP(U; L1(V;C[0,T]))) is translation-invariant, we obtain

lim Z/ by dBn = Z/ bndB,  in L(Q; LP(U; LYV;C[0,T))))

k—o00

for each N € N. Using now Remark 1.3.10 b) similarly to the proof of Theorem 1.2.9, we

arrive at

(3 [ b

and

T N
Lo(UsLa(V:Cl0.TT) ) Cr & +P(|I(b w)n=1 | Lo (UsLa (VL2011 x))) = 6)

N T J
P(11(bn =1l Lo La (v L2 om0y = 8) < C" & +P H Z/ bndBull v taviciory) > 5)
for each ¢ > 0 and § > 0. Using now the assumption b € L%(Q; LP(U; LY(V; L*([0,T] x
N)))), we see that

MIJ{}E P (|| (bn)nar | Lo zaqviLz (o) = 8) =0
Thus, by the previous estimate, (27]:[:1 fo by, dﬁn) nen 18 a Cauchy sequence in the space
LY(S; LP(U; LY(V;C[0,T)))). By the completeness of this space we now obtain the conver-
gence of the series and the well-definedness of the process bd3. The extension of Remark

1.3.10 b) to bdpa follows by a limiting argument similar to the proof of Theorem 1.2.9. O
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Using this Theorem together with Proposition 1.2.12, we can derive the following list of

properties by arguing similarly to the proof of Proposition 1.3.5.

PROPOSITION 1.3.11 (Properties of L° It6 processes). Letp,q € (1,00),t € [0,T],
and b,c € LY(; LP(U; L9(V; L*([0,T] x N)))). Then the following properties hold:

a)

b)

d)

f)

For a,b € R we have
(ab+be)dB = a(bdB) + b(cdp).

bdg is adapted to F.

For S € B(LP(U;LY(V))), let SL® be the bounded extension of S on the space
LP(U; L9V L2([0,T] x N))). Then, S¥*b € LY(Q; LP(U; L9(V; L2([0, T] x N)))) and

t t
/SLdeﬂ:S/ bdg.
0 0

For every s,t € [0,T] with s < t it holds that
t T
/ bdB = / 1, 4bdB.
s 0
There exists a p-null set N, € ¥ such that b(u) € LY(Q; LI(V; L2([0,T] x N))), and
t t
/ b(u)dg = </ bd,@)(u) for each w € U\ N,.
0 0
There exists a p ® v-null set N € ¥ ® E such that b(u,v) € LY(; L?[0,T)), and

/0 b(u,v)dB = (/0 bdﬁ) (u,v) for each (u,v) € (U x V)\ N.

REMARK 1.3.12. As for the localized It6 integral, we generally can not say anything
about the expected value of fot bdB3. However, the results of Remark 1.1.14 adjusted to

the Ito process setting in the obvious way are still valid.

In Section 1.2 we proved several results regarding the behavior of stopping times in stochas-

tic integrals. Later, when dealing with existence and uniqueness results for stochastic evo-

lution equations, Itd6 processes like fg b(t)dB appear. Especially in the uniqueness part

for measurable initial values, we rely on these results since we will apply stopping times.

Let us recall (and slightly modify) the definition of J and J; from the previous section.
For any function b: [0,7] — L4(Q; LP(U; LY(V; L?([0,T] x N)))) and any stopping time
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7:Q —[0,7] let

JO (1) = /0 b(t)dB = /0 b(t,s)dB(s)

and

t t
IO = [ 10b0)d8 = [ o (0t.5)a8(0).
Then we get the following results.

PROPOSITION 1.3.13 (Ité processes and stopping times). Let p,q € (1,00) and
7:Q — [0,T] be a stopping time with respect to F.

a) Letbe LY(; LP(U; LY(V; L*([0, T]xN)))). Then T b € LY(Q; LP(U; LY(V; L*([0, T x
N)))) and for every t € [0,T] it holds that

tAT t
/ bdg = / Ljo-bdB almost surely.
0 0

b) Let b: [0,T] — LY%(Q; LP(U; LY(V; L*([0, T] x N)))) be such that

i)t by(t): [0,T) — LY LP(U; LY(V; L*[0,T)))) is continuous for each n € N

and

ii) J and J; have continuous versions.

Then the processes J and J, satisfy almost surely
JANT)=J(tAT) for t € [0,T].

In particular, we almost surely have

t

o) (8) | B(t:5)48() = 101 (0) | 110, (6)b(0,5)dB(5)

PROOF. The proof of a) follows immediately from Proposition 1.2.14, similarly to Re-
mark 1.3.10. For part b), we remark that by Proposition 1.2.14 we almost surely have

JO (@t ATy = Tt AT)

for each fixed n € N. Now the claim follows from the observation

TO(t) = /0 b(t)dB =" /0 bu(t) dBn(t) = > T (1),
n=1 n=1

and similarly J®(t) = Yoy I8 (4) for each t € [0, ). O



58 Stochastic Integration in Mixed LP Spaces

In the same manner as before, we turn to regularity properties of the localized It6 process.

THEOREM 1.3.14 (More properties of L? It6 processes). Let p,q € (1,00), r €
[1,00), and b € LY(Q; LP(U; LY(V; L2([0, T] x N)))). Then the following properties hold:

a) Local martingale property. The It6 process bdf is a local martingale with respect
to the filtration F.

b) Continuity and Burkholder-Davis-Gundy inequality. The It6 process bdf is

almost surely continuous satisfying the maximal inequality

T T r
EH tes[%%]‘/ot bdﬁ‘ Lp(U;La(V)) ~par EH (/0 [z dt) " ‘

Lp(U;L9(V))
where this is understood in the sense that the left-hand side is finite if and only if
the right-hand side is finite. If one of these cases hold, then the It6 process X (t) :=
fg bdpg is again L"-stochastically integrable satisfying

e ( ] OROM Soar TVE| ([ b ar)

Lp(U;L9(V))
PROOF. Let (7;)ren be defined by

9

T

Lp(UsLa (V)

Th(w) =T Ainf{t € [0, T]: [[L10,0b(w)]l Lo w;LeviL2(orxmy) = b}y w € Q.

As in Remark 1.2.8 we can show that 7 is a stopping time with respect to F satisfying 75, <
Tht1, UMp oo 7 = T almost surely, and by, := L ,1b € Li(Q; LP(U; L9(V; L([0, T] xN))))
for each k € N and some r € (1, 00).

Now the proof of a) and b) can be done by following the lines of the proof of Theorem
1.2.15, using Theorem 1.3.7 ¢) and Proposition 1.3.13 a). O

With very little effort we can now even prove a generalization of the stochastic Fubini
Theorem 1.2.16.

THEOREM 1.3.15 (Stochastic Fubini theorem for Itd processes). Letp,q € (1,00),
(K,K,0) be a o-finite measure space, and b: K x Q — LP(U; LY(V; L?([0,T] x N))) be

strongly measurable such that

b(-,w) € LYNK; LP(U; LY(V; L*([0,T] x N))))  for P-almost all w € ,
b(z,-) € LY%(Q; LP(U; LY(V; L*([0,T] x N))))  for f-almost all z € K.

Then the following assertions hold:



1.3 It6 Processes and Ito’s Formula 59

a) For 6-almost all x € K, b(x,-)dB3 is an L°-It6 process and

E(z,w,t) = (/Otb(x,s) aB(s) ) ()

is measurable satisfying almost surely

0 do(z) < oo.
KHts[lép]Mx |HLPUL‘7(V)) (z) <00

b) For almost all (w,t,u,v) € Q x [0,T] x U x V the functions x + b,(x,w,t,u,v) are
integrable for all n € N and for

n(w,t) ::/ b(x,w,t)dd(x)
K
the process ndB is an L-It6 process.

¢) Almost surely, we have
t
| €@t = [ n)dses), te .11
K 0

PROOF. By using the strong Burkholder-Davis-Gundy inequality from Theorem 1.3.7,
part a) can be shown in the same way as in the proof of Theorem 1.2.16. The statements

of b) and c) follow in the same way. O

As already announced earlier, we finally show It6’s formula, which can be thought of
as a counterpart of the chain rule in stochastic calculus. More precisely, we want to
determine a "Taylor expansion’ of the process ®(-, X): Q x [0,7] — LP(U; Li(V')), where
: [0,T) x LP(U; LYV)) — LP(U; L‘7(1~/)) is a sufficiently differentiable function, X is an

LY 1t6 process and (U, %, i) and (V, E,7) are o-finite measure spaces.

THEOREM 1.3.16 (Ité’s formula). Letp,q,p,q € (1,00), ®: [0, 7] x LP(U; L1(V)) —
LP(U; LA(V)) be an element of CV2([0,T] x LP(U; LI(V)); LP(U; LY(V))), (Bn)nen be a
sequence of independent Brownian motions, and X be an LP(U; L4(V'))-valued It6 process
given by dX = fdt + bdB. Further, let b € L°(Q; L?([0,T] x N; LP(U; L4(V)))). Then,
almost surely for all t € [0,T] we have

D(t, X(t)) :@(0,X(0))+/0 (s, X(s)) ds+/0 Dy®(s,X(s)) f(s)ds

N Z / Da® (5, X(5))bn(s) dBn(s)
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For the proof of this statement see [15, Theorem 2.4] or [3, Theorem 4.16]. As an immediate
consequence of this formula, we obtain the following product rule for Itd processes. For

the proof we refer to [15, Corollary 2.6] (see also [3, Corollary 4.18]).

COROLLARY 1.3.17 (Product rule). Letp,q € (1,00), X be an LP(U; LY(V))-valued
and Y be an LY (U; LY (V))-valued It6 process given by dX = fdt + bd3 and dY =
gdt + ¢dB, respectively. Let X and Y satisfy the assumptions of Theorem 1.3.16. Then,
almost surely for all t € [0,T] we have

(X(1),Y(t) = (X(0),Y(0)) +/O (X(s),9(5)) + (f(s),Y(s)) ds

+ Z/ (X (), cn(s)) + (ba(s), Y (s)) dBn(s)
n=1 0

—i—/o Z(bn(s),cn(s)>ds.

n=1

1.4 Stochastic Integration in Sobolev and Besov Spaces

When taking a closer look at Sections 1.1, 1.2, and 1.3, it is straightforward to show the

same results for other mixed L spaces like
E = LPY(Uy; LP*(Ug; ... LPN(UN)) .. .)
by induction. The key to everything is the integrability condition
be Lp(Q; E(L*([0,T] x N)))

for some r € {0} N (1, 00) and with the L?([0,T] x N) norm inside of the norm in E. This
is the reason that makes stochastic integration theory in LP spaces or more generally in

Banach spaces not as easy as deterministic integration theory.

Employing these results, we can treat the stochastic integration theory in (mixed) Sobolev
and Besov spaces very easily. We do not want to consider this in too much detail here.
However, we want to give an overview of how the integration theory in mixed LP spaces
can be used to characterize the integration theory in such spaces. Let U C R? be an open
set (with possibly non-smooth boundary), s > 0 and p € [1,00). For the case s € (0,1) we
recall that a function f € LP(U) is in the Sobolev-Slobodeckij space W*P(U) if and only if
the function dyys.»[f] given by

dwsr[f](z,y) = ’x_;’d/ﬁs(f(x) ~f()
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is an element of LP(U x U), and W*P(U) is a Banach space with respect to the norm

1
£ llwery = (LI + ldwor o) ™

In the case of a Banach space-valued Sobolev space W*P(U; E) the norms are given by

| Fllwerwiey = (1o + ldwen LG ) 7"

If s € N, the space W*P(U) is of course the usual Sobolev space, i.e. the space of all
functions f € LP(U) having LP-integrable weak derivatives up to order s; in other words,
D f exists in the weak sense and D*f € LP(U) for all |a| < s. If s > 1, then we can find
an integer m € N and o € (0,1) such that s = m + ¢. Here a function f € W™P(U) is in
W*P(U) if and only if D*f € WP (U) for each a € N4 satisfying |a| = m. In this case we

have the norm

1/p
1o = (I Wpmny + 20 1D fyongn) -

|a]=m

The first thing we want to know is the correct space of integrands. Looking at the previous
sections, it is no surprise that it is given by LL(S;W*P(U; L*([0,T] x N))), again with
the L?([0,T] x N) norm inside of the Sobolev norm. To prove that, we first consider
the case s € (0,1). If we want to estimate the integral fOde,B for "W#*P(U)-valued’ b
we have to estimate it in the LP(U) norm and dyys» [fOT bdg] in the LP(U x U) norm.
Observe that the stochastic integral is well-defined since W*P(U) C LP(U). In view of
dws.e[b] = (dwsw [bn])nen € LE(Q; LP(U x U; L2([0, T] x N))), Proposition 1.3.11 e) yields

dyyor [ /0 deﬁ} - /0 ! dyy+.0[b] dB.

Using the It6 isomorphism for the LP case we obtain the following It6 isomorphism for

Sobolev spaces:

EH/Odeﬂ

r

. T
LP(U)JrIEH /0 dy+»[b] dB

. T
- IEH/ bd
oy e B [ 038

~pr B0l Lo 0,22 (0,11xv)) T Elldwsr B0 s 2 10,77

Lr(UxU)

_ p P 7/
~p,r E(||bHLP(U;L2([O,T]><N)) + lldwsr [b]”LP(U><U;L2([O,T]><N))) ’
= E[1bl[\ a0 (17 L2 (10,77 x1))-
One interesting fact is that the constants appearing here are independent of s. In the case

s € Nor s> 1, we can see very similarly that the same It6 isomorphism holds. Here we

additionally use that

T T
Da/ bdﬂ:/ D°bdp3
0 0
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for any multi-index o € Ng. To see this, we use Proposition 1.3.11 ¢) and obtain for any

¢ CU)

/U/Odeﬁ D%pdx = </0deb, Da¢>m(y) = /OT<b, Da¢>§f,(U) a8
=l [ D.0) 5y 48 = (<) I/ " Dbag pdn.

Now the theory goes through without any problems. As a first result we obtain:

PROPOSITION 1.4.1 (Properties of the Sobolev space-valued integral). Lets >
0,p € (1,00), 7 € {0} U(1,00), and b,b € LE(S; WeP(U; L2([0,T] x N))). Then the fol-

lowing properties hold:

a) The stochastic integral is linear, i.e. for a,b € R we have
T _ T T _
/ ab+bbd,8:a/ bd,@+b/ bdg.
0 0 0

b) fOT bdpg is Fp-measurable and, if r € (1, 00), the expected value satisfies E f(;‘r bda =
0.

c) For S e B(WF(U)), let SL* be the bounded extension of S on W*»(U; L2(]0, T x
N)). Then, S¥°b € Li(Q; WP(U; L2(]0,T) x N))) and

T 9 T
/ Sk bdﬂ:S/ bdg.
0 0

d) For every s,t € [0,T] with 5 < t it holds that

t T
/bd,@:/ 15bdB.
s 0

e) There exists a null set N € By such that b(u) € LE'"(Q; L?[0,T)), and
T T
/ b(u) A8 = (/ bd,e)(u) for each u € U\ N,
0 0

The next step is to investigate the Sobolev space-valued integral process ¢t — fot bda. One
crucial property we needed in that part of the theory is the martingale property and the
strong Doob and Burkholder-Davis-Gundy inequalities. In order to extend the results from
the LP-valued case, we have to carefully check if the differences and derivatives appearing
in the Sobolev norms do not destroy any martingale structure. For this reason we need to

prove the following lemma.
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LEMMA 1.4.2. Let s >0, p,r € [1,00), and (M,)_; be a W*P(U)-valued L" martin-
gale with respect to the filtration (F,)N

n=1-

a) Ifs e (0,1), then (dws»[My,])N_,
to (Fn)N

n=1-

is an LP(U x U)-valued L" martingale with respect

b) Ifs €N, then (D*M,)N_, is an LP(U)-valued L™ martingale with respect to (F,)N_,
N

for any o € N¢ with |a| < s. In particular, (M,)N_, is an LP(U)-valued L" martingale.

PROOF. The strong measurability of dyys»[M,] and D*M,, with respect to F, is trivial.
Also, the integrability condition follows immediately from the assumption. Hence, the only

thing left to check is the projection property. In the following let n > m.

a) Since E[M,|F] = M, in W*P(U) almost surely, we obtain that E[M,|F,,| = M, in
LP(U) and dys» [E[My|Fp]] = dwsr[My] in LP(U x U) almost surely. The result now

follows from

dws» [E[Mp| Fin]] (z,y) = E[dwsr [My]|Fn] (2,9)

for almost every (z,y) € U x U.

b) By assumption we have D*E[M,,|F,,] = DM, in LP(U) almost surely. Additionally,
for A € F,, and ¢ € C°(U) we have

</ADC“MndR ¢>LP = /A<DaMn,¢>m dp = <—1)'a'/A<Mn,D“¢>>Lp P
_ (—1)|QI<AE[Mn\fm] dP, D)

Lpr

e’

- < /A DOE[M,|Fyy] dP, ¢>

where we used that M, E[M,|F,] € W*P(U). Thus, E[D*M,|F,,] = D*E[M,|Fn] =
D*M,, almost surely. ([

As a consequence we obtain, among other results, the following version of Doob’s maximal

inequality.

THEOREM 1.4.3 (Strong Doob inequality, IT). Lets > 0, p,r € (1,00), and (M,)

n=1

be an W*P(U)-valued L" martingale with respect to the filtration (F;,)\_,. Then we have

n=1-*

EH(Mn)nNZIH'r{;[/s,p(U;goo) gp,r E”MNH;Vs,p(U)-

. N
In particular, EHITILliLi( |Mn|HT‘;VS’p(U) Spor EHMNH;Vs,p(U)-
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PROOF. We first take a look at the case s € (0,1). Lemma 1.4.2 yields that (dyys.»[M,])Y_;
and (M,)N_| are LP-valued L" martingales with respect to (F,))_;. The Strong Doob in-

equality now leads to

EH pTIEHmaX|M |HLP +EHmaX|dWsp

T
Jn= IHWS P(U;£>) ””HLP(UXU)
Seor BIMN 2oy + Elldwss [MN 2o o)
~p.r EHMNHWSJ’(U)'
The case s > 1 now follows in the same way using that (D*M,))_; and (if s ¢ N)
(dwsp[D*M,])N_, are LP-valued L" martingales with respect to (F,)N_; by the previous

lemma. [l
With nearly the same methods we obtain:

THEOREM 1.4.4 (Strong Burkholder-Davis-Gundy inequality, II). Let s > 0,
p € (1,00), r € [1,00), and (M,)N_, be an W¥P(U)-valued L" martingale with respect to
the filtration (F,)N_,. Then we have

EH n 1HWsp (U3£2) ~p,r EH(M — M- 1)n 1”Wsp(Ug2)
. N T _ N r
In particular, EHrTrngc | M, | HWSm(U) ~pr E||(M,, — Mn_l)n:1||ws,p(U;eg).

These maximal inequalities were the heart of the regularity results for stochastic integrals.
Analogously to the previous sections, these results may now be used to obtain corresponding
properties for the Sobolev space-valued integral process. Alternatively, we can also use the

results of the LP-valued case.

THEOREM 1.4.5 (Properties of the integral processes). Let s > 0, p € (1,00),
r € {0}U(1,00), and b € LL(Q;W*P(U; L*([0,T] x N))). Then the following properties
hold:

1) In the caser € (1,00):

a) Martingale property. The It6 process bd(3 is a martingale with respect to
the filtration F.

b) Continuity. The It6 process bd3 has a continuous version satisfying the max-

imal inequality

t , T
IEHt»—)/ <o IEH/
0 Ws.p(U;C[0,T7) 0

In particular, IEHsupte[QT} Ug bdﬁ‘ H;Vs,p(U) Spor E“fgbdﬁmvs,pw)'

wer(U)
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¢) Burkholder-Davis-Gundy inequality. As a consequence of b) and the It6

isomorphism we have

t
IEHtr—>/ bdg
0

where this also holds for r = 1. In particular, the process X(t) := fg bdg,
t € [0,T], is again L"-stochastically integrable satisfying

r

Wen(U;C[0,T]) ~p,r Blblyysn .22 (10,17

B X Sysnr2omn Sor TEIB e w02 o0y
2) In the case r = 0:
a) Local martingale property. The It6 process bd3 is a local martingale with

respect to the filtration IF.

b) Continuity and Burkholder-Gundy inequality. The It6 process bd3 is

almost surely continuous satisfying the maximal inequality

~por Elblyysn .22 (101750

IEHt»—>/tbd,El
0

Wep(U;C[0,T])

where this is understood in the sense that the left-hand side is finite if and only
if the right-hand side is finite. If one of these cases holds, then the process
X(t) := fg bdg is again L"-stochastically integrable satisfying

E| X lysaw:r2i0.17) Sor T EIBIsnw.20.01x0)-

PROOF. These results follow by applying the results of Theorems 1.3.7 and 1.3.14 to b
(as an element of LP(U; L%([0, T] xN))) and dyys.» [b] separately, similarly to the calculations

of the It6 isomorphism above. O

At this point we conclude the discussion about Sobolev space-valued stochastic integration

theory, and turn to the case of Besov spaces. Here we define for | € Ny and h € R? the set

l
Upi:=({z€U:a+jheU}CU
§=0

and the difference operator

(ALS)(z) = f(az+1h) = f(z+ (1~ 1)h).

Let s > 0 and p,q € (1,00). Choose k,l € Ny such that k¥ < s and | > s — k (e.g. if
s € Ry \ N, then we could take k = [s] < sand l =1, and if s € N then £ = s — 1 and
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I =2 would suffice). Then we define the function dps»[f] by

dpg»[f](h, ) == 1y, (@)|h] =7~ C7P (A ) ().

Therewith we define the space By*(U) as the set of all functions f € LP(U) such that
dgs»[Df] € Li(R4; LP(U)) for each o € N¢ with |a| < k. Then By?(U) is a Banach space

with respect to the norm

1/p
I lsgewy = (1150 0) + 2 Idago D Al sory) -
loo| <k

We now get ezactly the same results for Besov spaces as for Sobolev spaces by replacing
dws»[-] with dgs»[-] and LP(U x U) by the mixed L space LR LP(U)).

As a consequence of the remark given in the beginning of this section, we can also extend
this theory to mixed Besov and/or Sobolev spaces. The only thing we have to remind
ourselves of is that the L?([0, 7] x N) norm is always inside of the mixed space in order to

have a well-defined stochastic integral.

This theory is now perfect to study time regularity for stochastic convolutions. Until this

point we have only discussed regularity of the stochastic integral process

Fis /0 "b(s) dB(s)

of IP-valued processes f. As in the deterministic case, integrals of the form

L / 94 (5) dB(s)
0

will appear in the formulation of mild solutions for stochastic evolution equations, where

(—A) is the generator of an analytic semigroup. Since

t T
s /0 e~ (=9)4p(s) dB(s) = /0 Lo (s)e=94b(s) dB(s)

by Proposition 1.4.1, investigating regularity of stochastic convolutions in LP(U; L?[0,T1)
or LP(U; W#*1[0,T]) reduces to the estimation of the function

]l[o,t](s)ef(tfs)Ab(S)

in LP(U; L2, ([0,T); L?

® ) [0,77)) or LP(U; W ([0,T]; L%s) [0,7T])), respectively.

®)



Chapter 2

Functional Analytic Operator

Properties

In Chapter 3 we want to use functional calculi results to deduce regularity properties of
deterministic and stochastic convolutions. These in turn will lead to new regularity results
for stochastic evolution equations. In the following sections we introduce several notions
which appear in this context. The basic question here is: How can we define the expression
f(A) for a linear operator A and some function f? And which conditions do we have to

impose on A or f to get nice properties of f(A)?

2.1 'R,-boundedness and R, -sectorial Operators

In this section we concentrate on basic notions coming into focus when dealing with func-
tional calculi results. To give a short motivation, we recall Cauchy’s integral formula for
holomorphic functions f, stating that

RO

2mi Jp 2z — A

) =

where I' is a closed path around the singularity A. If we ’plug in’ an operator A in this

equation, we would end up with

f(4) Z;m/rf(z)R(z,A) dz,

where now I' should circumvent the ’singularity’ of R(z, A), i.e. the spectrum o(A4). Of
course, this is just a motivation. In the next section we will give a reasonable definition of
this idea. However, this already indicates the necessity of some characteristic features the

resolvent function of A should have.
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Before turning to that, we start with a special randomization property for a set of bounded

operators.

DEFINITION 2.1.1. For any Banach spaces E and F' we call a set of operators 7 C
B(E,F) R-bounded if

N
F SEBRT EH Z nn ||
n=1

N
IEH Z T Tnn
n=1

C E, (T,)_, € T, and each Rademacher sequence
(7,)N_, on some probability space ((NZ, F , ﬁ’)

for each finite sequences (x,)"_;

R-boundedness is a generalization of a square function estimate. In the special case of a
mixed LP space E, like E = L"(Q; LP(U; L4(V))), this is particularly obvious since we have

here the following characterization.

PROPOSITION 2.1.2. Let E and F be two mixed LP spaces. Then T C B(E,F) is
R-bounded if and only if

N o\ 12 N o 12
|, e | (16

for each (f,)N_; C E and (T,,)N_, C T.

E

PROOF. This is a consequence of the special form Kahane’s inequality has in this par-
ticular case. Let G € {E, F'}. Using the estimate for K-valued Rademacher sums, i.e.

N p/2
=5 (2 loal’)

n=1

P

N
E‘ E anTn
n=1

for any p € [1,00) and (a,,)Y_; C K, as well as the g-concavity of the space G for some

q € [1,00), we obtain

G

_ N N N ) 1/
7|3, = (Sl

for any sequence (g,,)_; C G. O
In his paper [87] Lutz Weis extended the concept of R-boundedness and introduced the

notion of R4-boundedness in the special case of LP spaces. In [79] this was elaborated in

detail in the setting of Banach function spaces (see also [57]).
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DEFINITION 2.1.3. For any mixed L? spaces E and I we call a set of operators 7 C
B(E, F) Rq-bounded for some g € [1, 00] if

N a N /q
) serra] (30

for each finite sequences (f,,))_; C E and (T},)Y_; C T (with the obvious modification for
g = 00). We call a single operator T' € B(E, F') Rqy-bounded if {T'} is R4-bounded.

E

REMARK 2.1.4.

a) The boundedness assumption 7 C B(E, F') is not necessary since any linear operator
in an Rg-bounded set 7 is automatically bounded. This can easily be seen by taking
N =1 in the definition.

b) By Proposition 2.1.2 R-boundedness is equivalent to Re-boundedness in the case of
mixed LP spaces. In particular, this implies that every single bounded operator is

automatically Re-bounded. For g # 2, this is in general not the case (see [32, Chapter
8]).

¢) By Fatou’s lemma, one can replace the finite sums in the definition by infinite series.
In particular, a single operator T' € B(E, F') is R4-bounded if and only if the diagonal

operator

T: E(t7) — F(69), T(xp)n = (Txn)n,
defines a bounded operator.

There also exists a continuous version of R,-boundedness (cf. Lemma 4 a) in [87] and in

particular Proposition 2.12 in [57]).

PROPOSITION 2.1.5. Let E,F be mixed LP spaces, q € [1,0), (V,Z,v) be a o-
finite measure space, and S: V — B(E,F) be strongly measurable such that S(V) is
Rg-bounded. Then for all measurable f: V — E we have

|([ tsroraw)”], <] (] rorew)”

for a constant C = C(E, F,S,q) > 0.

E

The last comment in Remark 2.1.4 already indicates the connection to classical harmonic
analysis, where the terminology of R,-boundedness is mostly replaced by (7 extensions
or ¢?-valued estimates. Nevertheless, there are many classical results for special classes of
operators showing R,-boundedness. See e.g. the monographs [36] or [37] for Banach space-

valued singular integral operators. Famous examples which happen to be R,-bounded
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include the Hilbert transform and the Riesz transform on LP for p,q € (1,00) (see [11]
or [39, Corollary 5.6.3]). Another famous result is the Fefferman-Stein-inequality for the

(uncentered) Hardy-Littlewood maximal function

1
(M) = sup o J1slan, £ e L 0.0 e R,

where the supremum is taken over all balls B C R? containing 2. Here, |B| denotes the

Lebesgue measure of B. For the proof of the following result see [35] or [39, Theorem 5.6.6].

THEOREM 2.1.6 (Fefferman-Stein). Let p,q € (1,00). Then the Hardy-Littlewood
maximal operator M is R,-bounded on LP(R?).

REMARK 2.1.7. This result is also true if we replace R by a metric measure space
(U,d, p) of homogeneous type (cf. [40]), i.e. (U,d) is a metric space and yu is a o-finite
regular Borel measure on U with the doubling property which in turn means that there

exists a constant C' > 1 such that

w(B(x,2r)) < Cu(B(z,r)) zeUr>0,

where B(z,r) denotes the ball with center x and radius r.

With the concepts of R-boundedness and R,-boundedness we can now focus on some
notions for resolvents as indicated in the beginning. For this purpose we need open sectors

in C, which we abbreviate as

Yo :={2€C\{0}: |arg(z)| < o}, o€ (0,7,

and Yo := (0, 00).

DEFINITION 2.1.8. Let E be a Banach space and let A: D(A) C E — E be a closed

linear operator.

a) A is called a sectorial operator of angle o € [0, ) if its spectrum o(A) is contained

in the closed sector ¥, and there exists a constant C,, > 0 such that
IAR(N\, A)||E < Cq for all A € C\ X,.
The infimum over all such « is denoted by w(A).

b) Ais called an R-sectorial operator of angle « € [0, 7) if its spectrum o (A) is contained
in the closed sector 3, and the set {AR(\, A): A € C\ X,} is R-bounded, i.e. there
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exists a constant C,, > 0 such that

N N
E| 3 Fda RO, Az, < CaE[| > Fun HE
n=1 n=1

C C\ Za, (w0)N

for each finite sequence (\,)Y i

n=1

C FE, and each Rademacher
sequence (7,)N_; on some probability space (ﬁ,]:: ,IP). In this case, we denote by

wr (A) the infimum over all such «.

Let E be a mixed LP space and g € [1,00]. Then we call A an ¢9-sectorial operator
of angle a € [0, ) if its spectrum o (A) is contained in the closed sector X, and there

exists a constant C,, > 0 such that

| (i!AR(A,A)wn!q)l/q < Ca| (i |xn|q)l/q | foranxec\s,
n=1 E el E

and each finite sequence (x,))_; C E (with the obvious modification for ¢ = o).

The infimum over all such « is denoted by wya (A).

Let E be a mixed L” space and ¢ € [1,00]. Then we call A an R,-sectorial operator
of angle o € [0, 7) if its spectrum o(A) is contained in the closed sector 3, and the
set {AR(\, A): A € C\ X,} is R -bounded, i.e. there exists a constant C, > 0 such
that

N Y N /q
(S pttn ), =) (it

for each finite sequence (\,)Y_; C C\ %, and (z,)"_, C E (with the obvious modi-

fication for ¢ = o0). The infimum over all such « is denoted by wr,(A).

E

REMARK 2.1.9.

2)

In the case of mixed LP spaces, Proposition 2.1.2 directly yields that R-sectoriality

is equivalent to Ro-sectoriality.

The difference between part c¢) and d) is the following: If A is and ¢%-sectorial op-
erator, then every single operator set {AR(X, A)}, A € X4, is Ry-bounded with a

uniform constant C,. In particular, every R,-sectorial operator is £9-sectorial.

Remark 2.1.4 already indicates the connection to a diagonal operator (see [57, Proposition

3.2)).

Looking closely at the proof of this statement, one sees that we only need ¢9-

sectoriality to get the following result.
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PROPOSITION 2.1.10. Let q € [1,00], E be a mixed LP space, and A be {?-sectorial.
Then we define

D(A) := {(xn)nen € E(0?): 2, € D(A) for allm € N and (Axy)nen € E(09)}

and Az = (Azp)nen, for & € D(A). Then A is a sectorial operator with w(A) < wy(A)

and
R\ A)z = (RN, A)zp)nen  for A ¢ 5, (a) and © € E(¢9).

In Section 2.3 we will see more results on the connection of these notions.

2.2 H* and RH®* Calculus

Using the terminology of the previous section, we can define a functional calculus for
sectorial operators. In this section we will always assume that A: D(A) — E is a closed
operator on some Banach space E with dense domain and dense range. By the sectoriality,
A is then already injective (cf. [43, Proposition 2.11]). This assumption is not really
restrictive, since we mostly work in LP spaces for p € (1,00), i.e in the reflexive case. In
this situation A always has dense domain, and the injectivity is equivalent to A having

dense range.

Let in the following be a € (w(A),n]. For functions f: ¥, — C we define the norm

HfHOO,a = sup |f(N)]
AEX

e

and the space

H>®(3,) := {f: Zq — C: f is analytic and || f||sc,a < 0},

as well as
H(30) == {f € H®(Za): sup (]A]F V[N 7%)|f(N)] < oo for some € > 0},
A€X,
Now let 0 € (w(A), @). Then we define the path

I(0) :={\€C: A =~(t) = [t|le” ™87 ¢ ¢ R}.

As indicated in the beginning of the previous section, we define for functions ¢ € H (%)

the expression p(A) as the integral

1
A) = — A)d
o= gz [ RO A
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which is well-defined as a Bochner integral in B(E) since [[¢(y(-))R(7(-), A)|5r) is inte-
grable in R. Note that the algebra homomorphism

v = ¢(A): Hy®(Ya) — B(E)

is independent of o € (w(A), &) by Cauchy’s integral formula. Following [59], we can extend
this functional calculus to functions f € H*>(X,) and even larger classes of functions (for
more details in this direction see e.g. [43, Section 2.2]). However, without any additional

assumptions on A, these extended functional calculi only yield closed operators.

One of the most important features of this calculus is the following convergence property
(see [43, Proposition 5.1.4]).

PROPOSITION 2.2.1. Let (fy)n>1 € H>®(3,) with the following properties
a) I fo(\) :=1lim, oo fn(N) for all X\ € Sy;

b) SUPpeN anHOO,a < 00;
c) fu(A) € B(E) for alln € N and M := sup,,cy || fn(A4)]] < 0.

Then fo € H*®(X,) and fo(A) € B(FE), satisfying || fo(A)|| < M. Moreover,
le fa(A)x = fo(A)z, z€E.
Now let us proceed to the definition of a bounded H*(X%,,) calculus.

DEFINITION 2.2.2. Let € (w(A),n]. Then A has a bounded H>*(X,) calculus if

there is a constant C,, < oo such that

[F (AN < Callflloca  for all f e H®(Eq).

In this case we define
wpe(A) == inf{a € (w(A4),7]: A has a bounded H>(%,) calculus}.

Following [59, Remark 9.11] or [43, Proposition 5.3.4], the convergence property and the

closed graph theorem imply a slightly different characterization of a bounded H*° calculus.

COROLLARY 2.2.3. The operator A has a bounded H*(3,) calculus if and only if

there is a constant C,, > 0 such that

le(A)] < Callplloca  for all ¢ € Hg(Xa).
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In [52] the authors extended this calculus to operator-valued functions with R-bounded
range, the so called R H-functional calculus. Under some geometric assumptions on the
underlying Banach space they proved that this calculus is again R-bounded. The following
notions are taken from [52] and [59, Chapter 12]. We denote by

A:={B € B(E): B commutes with the resolvents of A},

and for a € (w(A), x| the set

RH*(X,) :={F: X4 — A: F is analytic and F(X,) is R-bounded}

as well as
RH{(Zq) = {F € RH®(Z4): sup (|A]° V [A|%)|F(V)|| < oo for some & > 0}.
AES,

In the same way as above we can define for o € (w(A), o) and F' € RH{®(X,) the integral

1
F(A) = — F A

as a Bochner integral in B(E). The mapping

D4: RH (X) — B(E)
defines a functional calculus which can be extended to

G : RH*®(Xy) — B(E)

for some o’ > « if A has a bounded H*(X,) calculus (see [52, Theorem 4.4] or [59,
Theorem 12.7]). If E has additional geometric properties, namely Pisier’s property («),

this can be used to self-improve the H* calculus.

DEFINITION 2.2.4. Let (r)n>1 and (7,)n>1 be two independent Rademacher sequences.
Then E has property («) if there is a constant C' < oo such that for all N € N, (aj,k)éykzl C
{+1, -1}, and all (:Um)é\szl C E we have

N N
EEH Z Oéj7k7“j}’vk$j7k HE S CEEH Z erka:%k HE
7,k=1 7,k=1

As an example, g-concave Banach function spaces possess this property. Therefore, espe-
cially LP spaces do have the property («). Putting these facts together, we obtain the
following remarkable result (see [52, Theorem 5.3 and Corollary 5.4] or [59, Theorem 12.8
and Remark 12.10]).
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COROLLARY 2.2.5. Assume that E has property («) and A has a bounded H*®(%,)
calculus. Then for each o' > « it holds that

{f(A): | flloo,er <1} is R-bounded,
ie. A has an R-bounded H*(X,/) calculus. Moreover, also the set
{F(A): Fe REZ(Zw), | Fllra~(s,) < 1}
is R-bounded, i.e. A even has an R-bounded RH>(X,/) calculus.

In particular, if A has a bounded H*(3,) calculus, then A is R-sectorial with wg(A) <
wiee(A) (for this assertion see also [52], where this was proved under much weaker condi-

tions on F).

Looking now at the previous section again, we have seen that in mixed LP spaces, R-
boundedness is equivalent to Ro-boundedness. Therefore, it is quite natural to ask which
operators have an Rg-bounded H*(X,) calculus for some ¢ € [1,00]. This is the content

of the next section.

2.3 R, -bounded H™ Calculus

In the following let E' be any mixed LP space with exponents p € [1,00) and A: D(A) — E

be a sectorial operator.

DEFINITION 2.3.1. Let a € (w(A),n]. Then A has an Ry-bounded H*>(3,) calculus
if the set

{F(A): f € H*(Za), | flloc.a <1}

is R4-bounded, which is equivalent to the existence of a constant C' > 0 such that

(St o), < e (3 )

is valid for each sequence (f,)N_; € H*(X,) and (z,)Y_; C E. In this case, we define
wrge(A) == inf{a € (w(A),7]: A has an R4-bounded H™(X,) calculus}.

REMARK 2.3.2. Trivially, any sectorial operator with an R,-bounded H*°-calculus has
automatically a bounded H calculus. In the special case of ¢ = 2 the converse was proven
in Corollary 2.2.5. Moreover, if A has an R,-bounded H*°-calculus, then A is also Rg-
sectorial with wr, (4) < wre(A).
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Analogously to Section 2.1 we emphasize the connection between A and its diagonal oper-

ator A as defined in Proposition 2.1.10. The next result is taken from [57, Lemma 3.20].
LEMMA 2.3.3. Let q € [1,00], A be an Ry-sectorial operator, and o € (wr,(A),7].
Then the following conditions are equivalent:

a) For each f € H>*(X,) the operator f(A) is R4-bounded.

b) The diagonal operator A has a bounded H>(3,) calculus in E({9).
In [57, Theorem 3.21] it was also proven that the statement a) in the previous lemma, i.e.

the R4-boundedness of each single operator f(A), already implies an R,-bounded H*(X/)

calculus for all o’ > a.
THEOREM 2.3.4. Letq € [1,00], A be an Ry-sectorial operator, and a, o’ € (wg,(A), 7).
Consider the following assertions:

a) A has an R,-bounded H*(X,) calculus.

b) For each f € H*(X,) the operator f(A) is R4,-bounded.

c) For each ¢ € H{°(X,) the operator p(A) is R4-bounded, and there is a constant
C > 0, independent of ¢, such that

(i |xn‘q)l/q
n=1

H(Z\@ ) || < Cliglon

for each (z,)N_; C E.

Then a) = ¢) = b) if a > o and b) = a) if &' > «a.

Combining Lemma 2.3.3 and Theorem 2.3.4 (and slightly neglecting the angles) we see
that A has an R,-bounded H* calculus on FE if and only if the diagonal operator A has
a bounded H* calculus on E(¢?). Since this extension result is quite important for our

purposes, we will return to this property again in the next section.

The standard example of an operator having an R4-bounded H* calculus is the Laplace

operator on R? (see [57, Proposition 3.22]).

EXAMPLE 2.3.5. Let d,m € N and p,q € (1,00). Then the Laplace operator A :=
(—=A)™ has an R,-bounded H™ calculus in LP(R?) with wrge(A) = 0.

Actually, many operators have an R,-bounded H*° calculus. For some elliptic operators in
divergence and non-divergence form as well as Schrédinger operators with singular poten-

tials this was elaborated in [58]. To establish this property the authors used (generalized)
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Gaussian estimates of the corresponding operators. Below we will recall and expand the
existing list using the same tools they did. To formulate the main result we have to in-
troduce some notions. Let in the following be (U, d) be a metric space and p be a o-finite
regular Borel measure on U such that (U, d, u) is a space of homogeneous type in the sense
of Coifman and Weiss (see [17], [18]), i.e. there exists a constant C' > 1 such that

u(B(x,2r)) < Cu(B(z,r)), xe€Ur>0,

where B(x,r) denotes the ball with center z and radius r. This then implies the existence
of constants D > 0 and Cp > 1 such that

w(B(z,\r)) < CpAPu(B(z,r)), zeU r>0,A>1.
We also define the annulus
Ag(z,7r) := B(z,(k+ 1)r)\ B(z,kr), ze€U, r>0,keN.
The main result then reads as follows (see [58, Theorem 2.3]).

THEOREM 2.3.6. Let 1 < py <2 < p; < oo and wy € (0,7/2). Let A be a sectorial
operator in L?(U) such that A has a bounded H*® calculus in L*(U) with wys(A) < wo.

A

Assume that the generated semigroup T'()\) := e~ satisfies the following weighted norm

estimates for each 0 > wy:
B . .
14, ooy TOVL g gy s o 0y, 01 ) S Com(Blar, NP po (14 k)=,

11 »
HﬂB(x’p\ll/m)T()\)]lAk(m7|)\|l/m)HB(LPO(U)’Lpl %)) < Cyu(B(z, |)‘|1/m))p1 po (14 k)~",

for allz € U, k € No, A € Xr/,_g, and some constants m > 0, kg > max{pi0 + p—l?, pi/ + p%}
1 1
and Cg > 0. Then for all p,q € (po,p1) and o > wy the operator A has an R4-bounded

H>(X%,) calculus in LP(U).

This statement should be understood in the way that the semigroup 7" induces a consistent
Co-semigroup T}, on LP(U) with generator (—A,) and for all ¢ € (po, p1) the operator A,
has an Rg-bounded H* calculus with wgge(A) < wo.

REMARK 2.3.7.

a) The assertion of Theorem 2.3.6 is still true if we replace L?(U) by a general LP(U)
space where 1 < pg < p < p; < 0o (see [58, Remark 2.4]).

b) Note that the off-diagonal estimates of Theorem 2.3.6 are equivalent to classical
pointwise kernel estimates if the operators T'(t) are integral operators with operator-

valued kernels and pg := 1, p; := oo (see [58, Lemma 2.2] and [59, Lemma 8.5]).
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In the next part of this section we collect examples of operators having an R4-bounded H*
calculus. More precisely, we consider elliptic operators in divergence and non-divergence

form. Some of these cases were already mentioned in [58].

Example A: Elliptic operators in divergence form
Let U C R? be an arbitrary open set. Then we shall consider elliptic operators in divergence

form given formally by
Af =Y (-1 DY(aqsD’f),
laf,|8]<m

with coefficients a3 € L>(U,C). Since we want to apply Theorem 2.3.6, we have to
check two properties. Firstly that there is a realization of A in L?(U) having a bounded
H*® calculus, and secondly that the semigroup generated by this realization satisfies the

off-diagonal estimates of Theorem 2.3.6.

We define the realization Ay of the operator A in L?(U) as the operator associated to the

form
alf.9)i= [ S aup@)D?f(a)Dog(a) da.
/(]a|7ﬁ|<m

The natural domain V' of this form of course depends on U and the boundary conditions.

Here, we will consider two different situations:

1) U C R?is an arbitrary domain and we impose Dirichlet boundary conditions on A:
Here we take V := W (U).

2) U C R?is an arbitrary domain and we consider Neumann boundary conditions for
A: Then we let V := W™2(U).

In all situations we assume that the form a is sectorial, i.e. there exists an w € [0,7/2) such
that

Ima(f, f)| < tan(w)Rea(f, f) for feV.
Moreover, we require the following ellipticity condition/Garding’s inequality for a to hold:
mfa p)|2
Rea(f, [) > aol| (=A)"f ||y for feV

and some ag > 0. Note that in the case of m = 1 both of these conditions are a consequence

of the following uniform strong ellipticity condition:

d
Re Z e, e (2)EE > aplé?, forall ¢ € C¢ and z € U.
k=1
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With these assumptions the operator A, associated to the form a is sectorial and has a
bounded H> calculus with wge(As2) < ag (see [59, Chapter 11]). To show the off-diagonal

estimates we make the following distinctions:

2)

Let U C R? be an arbitrary domain, m = 1, and consider A with Dirichlet boundary
conditions. If the coefficients (aq,g)ja|,|g<1 are real-valued, then by [23, Theorem
6.1] the semigroup generated by As has a kernel k; which satisfies classical Gaussian
bounds, i.e. there exist wy > 0, we > 0 such that for all € € (0, 1] there is a constant
C: > 0 satisfying

|z —y|?

k < Ctm e ()l exp (- ——— =L
ki(z,y)| < Ce € exp< Atwy (1 + ¢€)

) for all 2,y € U, t > 0.

Therefore, the operator wi(1 + ¢) + Az has an R,-bounded H* calculus on LP(U)
for all p,q € (1,00). If we do not have any lower order terms (i.e. if aqg = 0 for
la| + || < 2), then we can set w; = 0. In the symmetric case without lower order
coefficients this can also be found in [24, Corollary 3.2.8]. In [4] similar results where
shown under stronger conditions. However, in the case (aa,3)|a|,j51=1 € W (U) the

authors included complex-valued lower order terms.

Let U € R be a (bounded or unbounded) domain satisfying an interior cone condi-
tion (see [1, Definition 4.6]), let m = 1, and assume Neumann boundary conditions.
In the case of real-valued coefficients (aq,)a|,|5<1 [23, Theorem 6.1] implies the same
Gaussian estimate as in a), with the difference that we have to take w; = « in the
absence of lower order terms (for this case see also [24, Theorem 3.2.9]). In partic-

ular, the operator w;(1 + ¢) + Ay has an R,-bounded H* calculus on LP(U) for all
p,q € (1,00).

Note that in [23] also the time-dependent case and Robin boundary conditions were studied.

For complex-valued coefficients the situation is very different.

c)

Consider first U = R? m = 1, and let (aa,8)|a),8/<1 be complex-valued. In dimension
d =1 and d = 2 Theorems 2.36 and 3.11 in [6] imply the existence of constants
C, B,w1 > 0 such that the kernel k; of the semigroup of A, satisfies

Blz—yP

()| < O et exp (-2

) for all z,y € RY, ¢ > 0,

According to [6, Theorems 2.21 and 3.5], we can choose w; = 0 if we do not have
any lower order terms. This means that w; + Az has an R ,-bounded H* calculus
on LP(U) for all p,q € (1,00). For d > 3 there are examples of operators failing
to have pointwise Gaussian bounds (see [44, Corollary 2.19]). In this case there are
only positive results if we have additional assumptions on the coefficients. Moreover,
even in the absence of lower order terms we have to consider v + A for some v > 0

to obtain Gaussian estimates. This was done in [5, Theorem 4.8] for uniformly
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continuous coefficients (aq,5)[al,|5)<1- In this case, v + Az has an R;-bounded H
calculus on LP(U) for all p,q € (1, 00).

d) In [8] similar results as in c¢) were obtained by considering Lipschitz domains U C R?

where the Lipschitz constant is small enough (see [8, Theorem 7]). If the Lipschitz
constant is too large, A might fail to have Gaussian bounds even in the case of

constant coefficients (see [8, Proposition 6]).

Let U C R? be an arbitrary domain, m = 1, and let (aa,8)|a),8/<1 be complex-
valued. Consider A with Dirichlet boundary conditions. In this case we get Gaussian
estimates for A under further assumptions on the imaginary part of the coefficients.

More precisely, if

d
ZDjImae,ﬁej € L>®(U) and Im(ae,e; + Geje,) =0 for 1 <jk <d,
j=1

then the semigroup of A, is given by a kernel k; which satisfies the Gaussian bound

|z —yl?

< 7d/2 51t _
e, y)| < O e exp (T

) forallz,y e U, t >0,
and some constants 01,02 > 0 (see [66, Theorem 6.10]), i.e. 61+ A3 has an R,-bounded
H® calculus on LP(U) for all p,q € (1, 00).

Let U C R? be a domain having the extension property (i.e. there exists a bounded
linear operator P: W12(U) — W12(RY) such that Pf is an extension of f from U to
RY), m = 1, and let (aa,8)|a),8/<1 be complex-valued. Consider now A with Neumann
boundary conditions. Under the same assumption on the coefficients as in part e)
(66, Theorem 6.10] implies the same Gaussian bound, leading also to an R4-bounded
H® calculus of 6; + Ay on LP(U) for all p,q € (1, 00).

In the general case m € N we make the following distinction: If d < 2m then we
define py := oo, and if d > 2m we let p; := dfd . Then by [59, Remark 8.23] (see

2m

also [25], [27], and [7]) we obtain a v > 0 such that the semigroup 7' generated by
—(v + Ag) in L?(R?) satisfies Gaussian bounds of the form

d 1 1

—5 -7 —7- r—yl2m 1
) S C’)\’ 2m(p1 pO)exp(_b(l |:’){‘| )Qm—l

H]lB(:c,|)\|1/27")T(>\)]lB(y,\Ml/z’”) B(LPo (U),LP1(U)

for all A € X, for some constants C,b,d > 0, and for py := p}. In particular, the
estimates of Theorem 2.3.6 hold for all kg > 0 and some 6 € (0,7/2). This then
implies that v + A3 has an R4-bounded H* calculus on L? (R9) for all p,q € (po, p1).
In [26] it is shown that the range for p here is optimal. More precisely, for each
p ¢ [po,p1] we can find an operator A of the form above such that the generated

semigroup does not extend to LP(R%).
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Example B: Elliptic operators in non-divergence form
We only consider the case U = R%. Let m € N, D(A,) := W?mP(R?), and A, be the

realization in LP(RY) of the elliptic differential operator

Af = Z aa D,

|| <2m

where a,, € L®(R%, C) for each || < 2m. As in the case of elliptic operators in divergence
form, we first have to check that A, has a bounded H*° calculus and then that the generated
semigroup satisfies (generalized) Gaussian estimates. For this purpose we assume that there
exist o € (0,7/2) and § > 0 such that

> @)t e, and | aa@)| = ol

|oo|=2m |a|=2m

for all z,¢ € R To proceed further, we will make the following distinction:

a) Assume that the coefficients of the principal part are bounded and uniformly con-
tinuous, i.e. a, € BUC(RY C) for |a] = 2m. Then [33, Theorem 6.1] implies that
v + Ay has a bounded H* calculus for some v > 0. Moreover, by [55, Theorem
6.1] there exists an v € (0,7/2) such that —(v + A2) generates an analytic semigroup

(T'(2))2ex, satisfying the estimates of Theorem 2.3.6 for any py > 1 and p; := oo.

b) Let m =1, aq =0 for |a| < 2 and for |a| = 2 let a, be of vanishing mean oscillation,
i.e. ap € VMO(RY,C). Then by [34] there is a v > 0 such that v+ A has a bounded
H*® calculus. And by [55, Section 6.1] (here we do not need the restriction m = 1 and
aq = 0 for |a| < 2) there is an w € (0,7/2) such that —(v + A2) generates an analytic
semigroup (7'(2)).ex,, satisfying the estimates of Theorem 2.3.6 for any py > 1 and

p1 = OQ.

In both cases Theorem 2.3.6 yields that v + A has an R,-bounded H* calculus for all
P, q € (po, 00).

2.4 Extension Properties

In this section we deal with the problem of extending a bounded or unbounded operator
A on LP(U) to the Banach space-valued LP space LP(U; E) for some Banach space E.

In the following let p,q € [1,00) and E be a Banach space. For any function f: U — C

and any x € E we define the function

fz:U—E by (fez)(u)=f(uz.
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For any linear subspace D, C LP(U) we let

N
DyoE = {Z Jn @ xy: (fn)nNzl C Dy, (fn)r]yzl CE,Nc¢ N}'

n=1
Note that D, ® E is dense in LP(U; F) if D), is dense in LP(U).

For any closed linear operator T': D(T') C LP(U) — L%(V') we now define

N N
T@ly: DT) @ E = LV E), (T21p)(Y fa@wn) =Y Tfo@on.
n=1 n=1

In the special case of T' € B(LP(U), L4(V')) we want to know if T'® I can be extended to
a bounded operator in B(LP(U; E); LY(V; E)). In general this is not the case. A prominent
example is the Hilbert transform, which is bounded on LP(R), but only has a vector-valued
bounded extension on LP(R; E) if E is a UMD space. For more counterexamples see [60,
Theorem 6.1 and 6.2].

On the other hand, there are a few notable positive results.

REMARK 2.4.1.

a) If T € B(LP(U)) and E = LP(V), then T ® Ir always has a bounded extension on
LP(U; LP(V)) by Fubini’s theorem.

b) If T € B(LP(U),L%(V)) is positive (i.e. Tf > 0 almost everywhere if f > 0 almost
everywhere), then T'® I i always extends to a bounded linear operator from LP(U; E)
to L1(V; E) for every Banach space E (see [39, Proposition 5.5.10]).

c) If E is a Hilbert space, then every bounded operator T € B(LP(U), L1(V)) extends
to a bounded operator from LP(U; E) to LI(V; E) (see [39, Theorem 5.5.1]).

Next we will turn to the definition of an F-valued extension of a closed linear operator
A: D(A) C LP(U) — LP(U). In this setting, we define for f,g € LP(U; E)

f € D(AF) with AP f =g <« (f,2') € D(A) and A(f,z') = (g,2') Va' € E'.
Then AP is well-defined, and moreover we have the following properties:
PROPOSITION 2.4.2. The following assertions are true:

a) The operator AF is closed and A ® Iy C AE, i.e. A® Ig is closable.

b) If A is densely defined, then A is also densely defined.
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c) Let A€ C, then
A€ p(AF) <= X e p(A) and R(\, A)F € B(LP(U; X)),
and in this case R(\, A)F = R(\, A) ® I = R(\, AF).

d) If p(AF) # (), then A¥ = A® Ig. In particular, if D C D(A) is a core for A, then
D ® E is a core for AF.

e) If E:=L4(V) and f: V — D(A) satisfies f, Af € LP(U;L4(V)), then f € D(AF)
and (AP f)(v) = Af(v) for almost every v € V.

PROOF. For the proof of a)-d) see [78, Propositions 5.1.2 and 5.2.1]. To show e), take
any h € LY (V). Then

) = | @) € D),
since A is closed, i.e. f € D(A¥). Moreover,
(P11 = AU = A [ f0)h)dvt) = | Af@H@) ) = (ALR)
which implies the claim. O
REMARK 2.4.3. If we define the set
D:={f:V = D(A): f,Af € LP(U; L1(V))},
then Proposition 2.4.2 e) implies that D C D(AX). Moreover, since D(A) ® L4(V) C D,
part d) of Proposition 2.4.2 yields that D is a core for AX. In the case that ¢ > p we even
obtain
D = D(AM).
In fact, since ¢ > p, we know by Minkowski’s integral inequality that
LP(U; L9(V)) € LYV LP(U)).
Hence, each function f € D(AM) is actually a function f: V — LP(U) such that f €

LP(U; LY(V)). Since D is a core for A, the closedness of A finally yields f(v) € D(A)
and Af(v) = AM f(v) for v-almost every v € V, which means that f € D.

For the special case that A is sectorial, Proposition 2.4.2 implies that A¥ is densely defined,
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and if A% is also sectorial, then part c) yields for o > w(A) V w(AF) the identity
P(AP) = p(A) @ Ip = p(A)"  for ¢ € H5* (o).

A proof of this result for a larger class of functions ¢ can be found in [78, Theorem 5.2.2].
If we additionally assume that A is ¢9-sectorial and E = (%, then Remark 3.2.4 in [79] says
that A = g, where A is the diagonal operator from Proposition 2.1.10. Note that the
assumption of R,-sectoriality in [79] can be weakened to ¢?-sectoriality. Using the same
proposition we derive that A* is a sectorial extension of A on LP(U;¢%). Now Proposition

2.4.2 immediately yields the following results (see also [79, Corollary 3.2.5]).

COROLLARY 2.4.4. Let A be an (?-sectorial operator on LP(U). Then we have

a) ng@ng

b) IfA¢ 5,4 then RO\, A) = R(\, A) @ I;s = R(), A).

—

¢) Foro > wu(A) and f € HP(E,) we have f(A) = f(A) ® In = f(A).

The main result of this section is now the following generalization of this corollary to the
space LI(V).
THEOREM 2.4.5. Let A: D(A) C LP(U) — LP(U) be a closed operator.

a) If A is (9-sectorial, then the extension AL on LP(U; L9(V)) is sectorial with w(A™) <
Wea (A)

b) If A has an Rq-bounded H* (%) calculus on LP(U) for some a € (wrge(A), 7], then
the extension A" has a bounded H*® (%) calculus on LP(U; L4(V)) for each o/ > .

PROOF. a) Let f = 27]:7:1 14,2, € LP(U; L9(V)), where x,, € LP(U) and A, € Z are
pairwise disjoint with finite measure. Such functions are dense in LP(U; L%(V)), and for

these functions we obtain

N
INROL AV Flliowizaney = || D2 14, AR, A)a
n=1

Lr(U;L9(V))

N 1q
- H (Z V(An)|AR(A,A)xn\‘1)

< o[ (S rantsat))” [, = CWlsanry
n=1

Le(U)

This means that R(X, A)L" € B(LP(U; LY(V))). Now Proposition 2.4.2 implies that p(A) =
p(AY") and R(\, A¥") = R(\, A)L". The estimate above finally concludes the proof of a).



2.4 Extension Properties 85

b) By part a), AX" is sectorial. The remark after Proposition 2.4.2 then leads to
O(AY") = (A" for each p € HS®(Xa).

Applying this in the same manner as in part a), we obtain for simple functions f the

estimate

Y L q
HSO(ALq)fHLP(U;LQ(V)) - H (Z V(An)W(A)xn}q) /

n=1 Lr(U)
N Ve
<t (S8 ],
n=1
= Cllplloo,all fllr(w;Lavy)- O

REMARK 2.4.6. Similar to Proposition 2.4.2 e) we obtain for any function ¢g: V' —
LP(U) satisfying g € LP(U; L4(V)) the identity

(f(AF)g)(t) = f(A)g(t)

for each f € H>®(X,).

EXAMPLE 2.4.7. Let 8 € Ng, U C R? be open, A = DP be a differential operator of
order k = |B| with domain D(A) = W*P(U), and B = D? be the vector-valued differential
operator of order k with domain D(B) = W*P(U; E) (please note that these operators are
in general not closed). Then B = A¥ | in particular D(A¥) = WkP(U; E).

In fact, if f € D(B), then g := Bf = D®f € LP(U; E) and (f, ') € W*P(U). Moreover,
' _ N f—1)8l B !
/U<g,a:>¢du—</Ug¢du,x>—<( 1) /UfD ¢du,x>
= (1) ,2"YDP ¢ du.
(0 [ (D% du
for each ¢ € C®(U) and 2’ € E'. Hence, A(f,2') = D?(f,2') = (g,2') for each 2’ € E’,

and f € D(AF). Conversely, assume that f € D(AP). Then for any 2’ € E’ we have
(f,x"y € WFP(U) and (AF f,2') = A(f,2'). Therefore,

</UAEf¢du,x/>:/U<AEf7$/>¢du:/UD5<f’x/>¢du
=) [ (1) Dodu
= <(_1)B|/UfD’B¢du,:L">.

Since this holds for each 2’ € E’, we infer that f € D(B) and AP f = D?f = Bf.
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2.5 /(7 Interpolation Method

In the subsequent chapter we will be faced with the question about the ’correct’ space
of initial values for stochastic evolution equations, and in this context real interpolation
spaces come into focus in a natural way. In our setting, we will need a new family of
interpolation spaces obtained by the so called ¢ interpolation method first introduced
by Kunstmann in [56] for closed subspaces of Banach function spaces. In this section
we concentrate on the ¢¢ interpolation of an LP space and the domain D(A) of a closed
operator A: D(A) C LP(U) — LP(U).

Let in the following
Li(a,b) := L((a,b), %) and L{ = LI(0,00)

for 0 <a<b< oo, qe(l,o0).

DEFINITION 2.5.1. Let 0 € (0,1), p,q € [1,00), and A: D(A) C LP(U) — LP(U) be a

closed operator. Then we let

@ ll,e0 == llll(Lr (), D(A))g.0a
— jnf{||t_9u(t)||Lp(U;LZ(t>) + ||t1_9v(t)||Lp(U;Lg(t)) + IItl‘eAv(t)HLp(U;Lg(t)):

z=u(t) +o(t),t>0,u(t) € LP(U),v(t) € D(A)}

for x € LP(U) and define
(LP(U),D(A))ga :=={x € LP(U): ||z|lg.ea < c0}.

REMARK 2.5.2.

a) It is now straightforward to show that (LP(U), D(A))g e is a Banach space (see also
[56, Proposition 2.10]).

b) In the definition above we may replace the half-line (0,00) by any interval (0,7),
T > 0. To see this, let

0,1) ,_ (0,1)
”95H9,m = |’xH(Lp(U)7D(A))0,M

= inf{Ht_eu(t)HLP(U;LZ<t)(O,T)) + ”tl_ev(t)HLP(U;Lq o1) T ||t1_6Av(t)HL,,(U;LZ“)(O’T));

#(t)
z = u(t) +v(t),t € (0,T),u(t) € LP(U),v(t) € D(A)}

First observe that

1= 000 — ooy ([t ar)

a
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for 0 < a < b < co. For any T > 0 this then leads to
0 T ba1 )\
. —6g—
lellnw) = int Nl = CoaT" inf | ([ e ta) |
< C@,q 0”1‘”0 fa >
where Cy, := (0q(2%9 — 1))"/2. Using this inequality, we arrive at
(0,7 _
lzl§se) < Nzl < Mzl + It eHLz(t)(O,T)H:EHLP(U)
< (14 @7 =17 gy,
0,T) . : .
ie. |||y is an equivalent norm in (LP(U), D(A))g,a-
To obtain a different characterization of these spaces, we define
Vo,ea([0,T), D(A)) = {w: [0,T) = D(A): w € LP(U; W0, T]) and [w]gea < o0},
where
[w]g e := Htl_ew/(t)HLP(U%LZ“)(O:T))—i_Htl_ew(t)”LP(U;L‘i,(t)(O,T))_'_Htl_ w(t)|| Lo L7, (01))"
With these notions we let
Joll3e = Wl op,panese =, inf_lulo

and define

(LP(U), D(A) = { € LP(U): Fw € Vi ([0, T], D(A)) with w(0) = z}.

With these notion we obtain the following connection between ¢ interpolation theory and

trace theory.

PROPOSITION 2.5.3 (Trace method). Let 6 € (0,1), p,q € [1,00), and A: D(A) C

LP(U) — LP(U) be a closed operator. Then
(LP(U), D(A))g,ea = (LP(U), D(A)) s
with equivalent norms. More precisely, we have
- 1gs <4+ - lloga < 5L+ D - llgea-

PROOF. Here we closely follow the lines of Proposition 1.13 in [63].



88 Functional Analytic Operator Properties

First let x € (LP(U), D(A))gfgq and w € Vp4a([0,T], D(A)) satisfying w(0) = x. Then
t
r=x—w(t)+w(t) = / w'(s)ds +w(t), tel0,T).
0
By Remark 2.5.2 and Hardy’s inequality (see e.g. [63, Corollary A.13]) we obtain

t
lelloss Soair | 6704 [ w/(s)as]
0

+ Htl_eAw

10wt

(t) HLP(U;LZ(t) (0.1))

—0 —0
< gt 0 Ol o, 0y + 11 WO oo

*,(t) *(t) (OrT))

+ Htl—eAw(t)||LP(U;LZY“)(0,T))'
Taking now the infimum over all such w € Vp ¢4([0,T], D(A)) we arrive at
lzllo.ex < Gllzlgh-
Now let x € (LP(U), D(A))ga. For t > 0 and x € LP(U) we define the function

K(t = inf tb t(Ab .
()= inf o fa()] + )]+ [HAD )], wE U

Then, by definition,

||t_0K(t»33)||LP(U;Lq o) <z

q.
") 0.0

Now choose for each n € N elements a,, € LP(U) and b,, € D(A) such that a,, + b, = = and
|an(uw)] + 3 1bn(w)] + 5 Abn(u)] < 2K (3, 2, u).
Since
K (t, z,u) < (eq)l/qut—eK(t,x,u)”% and %t—%(t,x,u) =0

by [63, (1.7)], it holds that lim, . |an(u)| = 0. Now define

v(t,u) == anﬂ(u)]l(nil’%](t) = Z(aj(u) - an+1(u))]l(ni17%}(t) and
n=1 n=1

Then
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which means that v(0) = w(0) = x. Moreover, by [63, (1.26) and (1.27)]
111700 (t,u)| < 47K (t,z,u) and [0 u)| 4+ [0 Au(t, u)| < ATOK(t, @, ).

These estimates and Hardy’s inequality imply that

|13 < NIt~ )]l Lo oy + 1w ()| oo

( 0,7)) T ¢ Aw(t Ol e LY (0.1)
< ¢ ew'(t)HLP(U;Lz,(t)m,T))+%Ht1 ’ ()”LP

)

)

(t)( (t)(

9
¢ ,(07)) +§Ht1 Av(t)HLP(U;Li(t)(o,T))

<401+
<41+

[t K (¢, x) HLP(U;LZ<t)(O,T))

42
0
+ )zl O

In the case of an R4-sectorial operator we have the following additional results.

THEOREM 2.5.4. Let§ € (0,1), p,q € [1,00), @ > 0, and A be an R,-sectorial opera-
tor. We let

Xjpao={x € LP(U): [2]f 00 = Htﬂ—@)ame—t%uLP(U.Lq ) < oo},
Xi 0o = {2 € LP(U): [2]§ a0 = [N [AN+ A)7] | 1 wiL1,) < oo},
Xjpo = A{z € LP(U): [a]j o = [t (72 = 2) || Ly o, 11,) <0
Then
(LP(U), D(A))o,00 = Xg 400 = X5 43,0
and || - || e ), D(a2))p000 | 16.00.0 5= |- |22y + [1g00.00 @0 |13 g0 = 11 Loy + 5 .00 0

are equivalent norms.

Additionally, if « = 1, we have
(LP(U), D(A))gea = X3
and || - || o@),0(4))g0 a0 |- 115 00 = I - [ ooy + [13 40 are equivalent.

REMARK 2.5.5.

a) For sectorial operators A and interchanged LP and LI norms these results are well-
known (see e.g. [53, 42] or [64, Section 11.3]). Since we first apply the norm with
respect to time and then with respect to space, the assumption of sectoriality is now
replaced by R,-sectoriality. The latter property deals with this new situation in order

to obtain the results we would expect from the reversed situation.

b) In the definition of [} ,, , we can replace L{ by L¥(0,T) for any T > 0. In fact,
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using R,-boundedness of the set {(tA)%~4: ¢ > 0} (see Corollary 3.7 in [57]) we
obtain by Proposition 2.1.5

< Ht(l—ﬂ)aAoze—tA

[:L']é,fq,a = xHLP

ajHLPULq (0,7)) +Ht(1 Dopcetd

*(t) L 1(T,00))

< Ht(lfe)aAae*tAxHLp Wi, (0.1)) + ||t “lrw L1, (1:00))
= Ht(l_‘g)aAo‘e_tA + (HOéQ)_l/qT_a /| Lo ury-

xHLP U;LY, (0,T))

(f)(

This implies that

0)
Xpno = {2 € LU): (o oz = 17" A%T 0] g 0y < 0}
and || - ||é7£q’a and || - ”é,eq,mT = ”LP(U) + Hé,(‘l,a,T are equivalent norms. Similarly
we obtain
Xopo0={z € LP(U): [@]f g0 07 = [|N*[AN+ A)_l]al‘HLp (UsLY,, (Ti00)) < oo},
—0( —tA
Xg,zq = {z e LP(U): [x]g,fq,T = [t (e e~ x)HLP UsLe,, (0,1)) < oo},

*(t)

with corresponding equivalent norms.

PROOF (of Theorem 2.5.4). We show that
(LP(U), D(A))o.en € Xg a0 © Xia o S (LP(U), D(AY))g 0.

First let « € (LP(U),D(A%))gea, and u(t) € LP(U) and v(t) € D(A) such that x =
u(t) + v(t) for all t > 0. Then we also have = = u(t"/*) + v(t/*), t > 0. Moreover, since A
is R4-sectorial, Corollary 3.7 in [57] implies the R,-boundedness of the set

{tPAPe ™t >0}, B>0.

Therefore, by Proposition 2.1.5 we obtain constants Cy > 0 and C, > 0 such that

Ht(lfG)aAaeftAxHLp WL )
< Ht—OatOcAae—tA + Ht (1-9) aAa —tA

HLP ULq HLP

)T CoHt (1=0)a gog,(

(t))

< CaHtiea“(t)HLp(U;L‘j(t) HLP U;L?

= Caa_l/th_eu(tl/a)HLP(U;Lz(t)) + C(]a_l/QHtl—QAa ( )HLP

<t>)
L)

Taking now the infimum over all such u and v, we arrive at

_ ”t(l—ﬁ)aAae—tA

[%]§ 44,0 ﬂ?HLp vie ) < (CaV CO)a_l/qHxH(LP(U),D(Aﬁ))g,gq-

(t))
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Now let z € X, 91 1o We use the representation

[AA+A) %z = I’(loz) /0 t9 et A% My dt.

Additionally, observe that
/ )\Oata 1 —t/\Aa _tA.CL‘ dt = / t)\ O —t)\ [t(l—G)aAae—tAx] B
t
0 0
o0
_ s d
/ 904 fs %)(1 G)QAaefox]is'
0
Applying norms on both sides and using triangle inequality lead to
[2]5 0.0 = [|]A%* [AA + A) 717 2| oz i)

1 oo
- H / AOata—le—t)\Aoae—tAx dt ‘
L) Il o

LP(U;LY )

1 > (] s\(1=-0)a 4o _—=
Sl“(a)/o s%e | ()" ame S /| o, 1o

_ > fa—1_—s (1-0)a qa,—pA
- F(a)/o s e ds H,u Afe xHLP(UL )

['(fa)
“w) T T() .00

ds
i) s

I'(fa)

_ 1—\ H (1— G)aAa —pA

"EHLP(U;L
which is finite by assumption.

In the next step, we assume that x € Xg va o We first remark that

(AP [AN+ A) 7 = ||t A(L +tA) 1"

xHLP(U;Lq

xHLP UsLY I

(>\>

Let

w(t) = (1+t7*A)~ %z, t>0.

Then w(0) = z and w'(t) = —t"*"TA(1 + t/*A)~*"'z. Proposition 2.5.3 and Proposition
2.1.5 (together with Corollary 3.7 in [57], similarly as in the first part) imply that

1]l (e (), D(A))g a

-0 —0
< ||t w,(t)HLp(U;LZ’(t)(QT)) + [|¢! w(t)HLP(U;Lzy(t)(

o[ (7 AT (1 + e A) T (( D (AL + tA) T Y

o)) + HtlfoAaw(t)HLP(U;LZv(t)(o,T))

)HLP(U LY, (0.T))

+ a/a|[t1=0 (1 4 £4) 1] xHLp 1, 0)

1/ 1-0)c -
+a|t [A(L +tA) ] xHLP(ULq(t)( T))

<a'i(1+ C’a)“t(lfe)a [A(1+tA)~ } xHLP (UsLY 1) + O&’THt(lio)aHLZ(t)(O’T)”x”Lp(U)

= a1 CIN AN+ AT g,y + Coir (1= 0)aq) ™ Ty
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To prove the last part of this proposition, we will show that X 91 w1 Xg’ u C Xg a1 For

the moment assume that = € Xel sa1- Then on U we have

et =~ [ /

*(t)
/‘/ (s—v) 1 G)UA —e“Axdv‘ ds

_H/ (s—v) (1 G)vAeeAde‘q

L (R)

Now Young’s inequality yields
Ht—e (e—tAx - a:) HLza) < ||e—9(~)||L1(0’OO) H6(1—9)(-)Ae—e<<>AxHLq(R)
o G

Applying LP norms on both sides leads to [z]} , < %[m] beaq-

Finally, we assume that x € X g”eq. Using that
o
AN+ A =z - A0+ A= / e Mz — e M) dt,
0

we derive

H/\GA()\ + A)_l‘anLP(U;LZ(A)) = H/ /\6+le_/\t(6_mfn —x) dt‘ Lz,

| [ (7 e as ]|
< [ e e = ) g,

‘)

»)

[e.9]
_/O e ds ||p 0 (e e —a:)HLp(U;LZ(H))

=T+ 1)H,u79(e*’“4:1; - x)HLp

)

q
(W3 )

ie. 2§y ST(0+ 1], O

The g-power function norms appearing in the previous proposition were already investi-
gated by Kunstmann and Ullmann in [57]. As an application of their results we obtain

that these spaces are in fact intermediate spaces in the classical sense.

PROPOSITION 2.5.6. Let 6 € (0,1), p,q1,q2 € [1,00) with ¢; < q2, and A be an Ry, -

and R,-sectorial operator. Then

(LP(U), D(A))o1 = (LP(U), D(A))gear = (LP(U), D(A))g a2 = (LP(U), D(A))p,00-
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PROOF. By Theorem 2.5.4 and [57, Proposition 4.2] (see also [57, Example 3.13]) we

have
ol = lelinn + 100 A6~ ] g o
~ HxHLp(U) * H (jezzp(l_e)jAe_Qij‘ql)l/ql Lr(U)’
Using that
llor = lellow) + 2077 A A, ey € oo,

)

(see e.g. the proof of [57, Proposition 4.16]) and ¢ < (9 < (92 — {*° we obtain

—0)j —27A
lelloco < lallzo) + lsup 12009 A=A 0
JEZ

v o Yay
< H.fHLp(U)‘i‘ (2‘2(1 9)]Ae 2JA;L-‘Q1> )
JEZ
IV g
< HxHLp(U)-i- (Z‘z(l 9)i Ae 2JAx‘f12> .
JEZ
< lelzoqwy + || D220 4e=2 44| oy S Izl O
jez

In the proof of the preceding proposition we can see why it is reasonable to call the spaces

(LP(U), D(A))g,a €1 interpolation spaces. Another interesting application is the following.

PROPOSITION 2.5.7. Let § € (0,1), a > 0, p,q € [1,00), and A be an Ry-sectorial

operator. Then
(LP(U), D(A%))ojapa = (LP(U), D(A))g,¢a-
PROOF. Since a > 6, [57, Proposition 4.2] implies that

||t79(tA)a€7tA$HLP(U;LZW ~ HtiatAeitAxHL”(U;LZM).

Now the result follows from Theorem 2.5.4, because

Ja po,—tA
A%e xHLP(U;LZm)

= ll#llzowy + £ @A e e

”x||(Lp(U)’D(AD‘))0/a,zq ~ 2l ey + Ht(l—e/a

~ llLew) + Ht_etAe_tAxHLP(U;L‘im)

= llzloq) + [t Ae™ || ) = llallzo@),piansm O

(®)
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If we interchange the LP and LI norm in the definition of the ¢¢ interpolation spaces,
we get the usual real interpolation spaces as we have seen in the proof of Proposition
2.5.6. If we take as an example the Laplace operator A = (—A) on LP(R?), then the real
interpolation space (LP(R?), D(A))g,, is the Besov space Bga’p(Rd) (see e.g. [63, Example
1.10]). To characterize the spaces (LP(R?), D(A))g ¢ in this particular case, we would
expect to obtain those spaces we get by interchanging the LP and L? norm in the definition

of the Besov space norm, and this turns our attention to Triebel-Lizorkin spaces.

EXAMPLE 2.5.8. We first give a short introduction of Triebel-Lizorkin spaces. There
are, of course, many ways to characterize them (see e.g. [76]). Analogously as for Besov

spaces in Section 1.4 we will define them via differences (see [76, Section 2.5.10]). Let s > 0
and M > s. We let

dpgo[f1(h, ) := dpgo[f](h, ) = |h]~ (A} f) (),

where we have chosen k = 0 in the definition of dgs»[f] (see Section 1.4). Then FjP .=
F7P(R?) is the set of all functions f € LP(R?) such that dpsv[f] € LP(R%; L9(R%)), and
FJ*? is a Banach space with respect to the norm
[ lzgw == 1 fllzr(way + 1dpse [f1l Lo (ra;La(may)-
Moreover, we let 3" be the homogeneous counterpart of Fy*, i.e. the completion of Fy**
with respect to the norm
Hf||F;ﬂP = HdF;*P [ﬂ”LI’(Rd;Lq(Rd))'
a) Let 6 € (0,1) and A = (—A) on LP(R?) with D(A) = W2*P(RY). Then by [75,

Corollary 1 in Section 3.3] we have

£l 200 ~ Ht(lie)AeitAfHLP(U'Lzm)'

)

Hence, by Theorem 2.5.4 we obtain
_ 20,
(LP(U), D(A))g,ea = FP.

b) Let m € N, A = (—=A)™, and D(A) = W?™P(R%). Then Theorem 2.5.4 and [57,
Proposition 4.13] show that

(LP(U), D(A))o,0a = Xel,em = Fque’p-

c¢) Similarly, if m € N, D(A,) = W?™P(R9), and A, is the realization of an elliptic

differential operator A in non-divergence form as considered in Example B of Section
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2.3, then
(LP(U)7D(AP))9,€‘1 — Fque,p'
The equality XJ ,, ; = F? m0P was also shown in Theorem 3.6.3 of [79].

d) In [79, Section 3.6.2] Ullmann also treated elliptic differential operators A of second
order in divergence form. If As is the operator associated to the form of A, then he

proved that

Xjpaq = F20P.

This also follows from part a) and Theorem 2.5.4, since
(LP(U), D(A2))p 00 = (L(U), D(=A))p 0 = F3".

To have a more sophisticated formulation of the next result we introduce a new space. Let
here A: D(A) C LP(U) — LP(U) be a closed operator. Then we define

D(A; L90,T]) :=={v: [0,T] = D(A): v, Av € LP(U; L?[0,T])}
and equip it with the norm
vl peaszao,r) = lollee@w;zapo, ) + 1A Leipapo,m), v € D(A; LU0, TY).

THEOREM 2.5.9. Letp,q € [1,00), o € (1/q,141/q), and A be an R,-sectorial operator.

Then we have the continuous embedding
D(A®, L0, T]) N LP(U; W*1[0,T]) — C’([O, T); (LP(U), D(A))a,l/q’gq).

PROOF. Letv e D(A%, L10,T))NLP(U; W*1]0,T]). Central to this proof is the repre-

sentation
v(0) = t_l/ T)dr —/ / )) dpdr.

Then

t
"tl_a+1/qA€_tA HLP LY, (0.1)) = H t_aAe_tA/o ?(7) dT‘

+Ht1 “Ae” tA/ 2/ d,U,dT‘

LP(U; LY, (0,7))

Lp(U;LY
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We estimate the first summand. Using Proposition 2.1.5 and Corollary 3.7 in [57], as well

as Hardy’s inequality we obtain

H t=Ae 4 /t v(T) dT‘ = || (tA) et /t A%(T) dT’
0 0

Lr(UsLE, (0,1)) Lr(U3L{, (0,T))

t
< —1/ A%u(r)dr |
0 LP(U; LY, (0,T))
t
= t_H'l/q/ TA(T)— dr
0 T Lr(U; (t)( T))
1 “141/g+1 g
= 1— 1/qHS T A%(s HLP(U;LZ(S)(O,T))

1 (0%
1= 1/q||A UHLP(U;L‘Z[O,T])-

For the second summand we first remark that

|v
fiwes o sgoroy =2 [ [ A2 s

Then we again use Proposition 2.1.5 together with Corollary 3.7 of [57] and Hardy’s in-

equality, as well as Holder’s inequality to get

Htl OéAe—tA/ —2/ d,ud ’

Lp(U;L{, (0,T))
— |t a)e tA/ —2/ )) dpdr }
< / / dudT‘
= ||+ a+1/q/ / d,ug

< 1 —oH—l/q 1/ (’U(S)—'U M‘

(X—l/q

- [ - )
gl [

1
< r/qHUHLP(U;WO‘vLI[O,T})-

LP(U; LY, (0,7))

Lo(U3LY, (0,T)

Lp(U3L, (0,T))

Lr(U:LY,,(0.T)

Lr(U)

Lp(U)

Now Theorem 2.5.4, Remark 2.5.5 b), and Sobolev’s embedding theorem imply

10(0)la=1/g,00 S 1AV o @;napo,m)) + 1Vl Lo (s wesajo ) -

The claim now follows by the strong continuity of the translation group. O



Chapter 3

Stochastic Evolution Equations

In this chapter we are concerned with ’abstract’ results regarding stochastic evolution
equations in LP spaces with an emphasis on existence, uniqueness, and regularity of their
solutions. Here, we pursue a completely new approach by interchanging the usual order of
integration. Since we want to apply a fixed point argument, we first study mild solutions,

i.e. functions of the form

X(t) = e o + /D e 94 P(s, X (s)) ds + /0 e~ =94 B(s, X (s)) dB(s).

Therefore, we study orbit maps, deterministic convolutions, and stochastic convolutions.
In the final section, we apply these results via a fixed point argument. As a consequence,

existence, uniqueness, and regularity results follow.

3.1 Motivation

To motivate the study of stochastic evolution equations we present some examples arising

from from physics or other applied sciences.

Stochastic population growth

Assume that X (¢,u) models the population of a species in a random environment on an
island U C R? with finite resources. Then the competition between the members of that
species will limit the population growth. Modeling this scenario leads to the following

reaction diffusion equation

WX (t,u) = vAX(t,u) + X (t,u) (aW(t, u) — BX(t,u)),
asz‘aU = Oa
X(07 U) = xo(U),

wher «, 8 > 0 and W(t,u) is a white noise.
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Turbulence
Let X (t,u) be the concentration of a substance, v be the diffusion coefficient and V =
(V)2 _; be the random turbulent velocity field. Then the mixing of the substance forced

through the turbulence in a domain U C R3 can be described as

3
QX (t,u) = vAX (t,u) = > Vilw, t,u)0 X (t,u) + q(t, u),

n=1
81/X|('9U = 07
X(O’ u) - l’o(u),

where ¢ is given. If the random field V fluctuates rapidly, it may be approximated by a

Gaussian white noise.

In both examples, the white noise could be modeled as

d
W(t,u) =Y ho(u)Ba(t), uwel, tel0,T],
n=1
where (51,...,0,) is an R?-valued Brownian motion. For more examples, see e.g. [16, 21].

Motivated by these examples, we want to investigate ’abstract’ stochastic evolution equa-

tions in LP spaces, i.e. equations of the form
(3.1) dX(t)+ AX(t)dt = F(t, X (t))dt + B(t, X (t))dB(t), Xo= zo,

which is the shorthand notation for the integral equation

X(t)—i—/o AX(s)ds:onr/O F(s,X(s))ds—i—Z/o By (s, X (s)) dBn(s).
n=1

Here, (—A) is the generator of an analytic semigroup (e~*4)

¢>0 on some space LP(U) and
F:Qx[0,T] x LP(U) — LP(U) and B: Q x [0,T] x N x LP(U) — LP(U) are functions
defined in such a way that at least everything in (3.1) is well-defined. In this case, we
can choose a number v > 0 such that the semigroup generated by —A, := —(v + A) is
uniformly exponentially stable and 0 € p(A,). In particular, the fractional powers A},

v € R, are well-defined and the space
D, := D(A})

is a Banach space with respect to the norm |z||p, := [|A}z||»). Up to an equivalent
norm, this definition is independent of v. In this context, we use the following notions for

solutions.
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DEFINITION 3.1.1. Let v >0, r € {0} U(1,00) and p,q € (1, 00).

1) We call a process X: Q x [0,T] — D a strong (r,p,q) solution of (3.1) with respect
to the filtration F if
a) X is measurable and A} X € LE(Q; LP(U; L]0, T)));

b) almost surely, X € D(A), AX € LP(U; L'[0,T)), and F(-, X(+)) € LP(U; L'[0,T7)),
and B(-, X(-)) € LY(%; LP(U; L*([0,T] x N))), i.e. everything in (3.1) is well-
defined;

c) almost surely, X solves the equation
t t 0 ot
X(t) +/ AX(s)ds =z +/ F(s,X(s))ds + Z/ By, (s, X(s))dBn(s).
0 0 =1 /0

2)  We call a process X: Q x [0,T] — Dy a weak (r,p,q) solution of (3.1) with respect
to the filtration F if
a) X is measurable and A} X € LL(Q; LP(U; L]0, T)));

b) (F(-,X(-)),¢) € L'[0,T] almost surely, and (B(-, X(-)),%) € L%(; L%([0, T] x
N)) for each ¢ € D(A');
c) almost surely and for all ¢ € D(A’), X solves the equation
t

(X (1)) + /0 (X (s), A'p) ds = 20 + /0 (F(s, X(5)), ) ds

o0 t . < L2 s
+;/o (Bu(s, X (s)), 0) dBa(s).

3) We call a process X: Q x [0,T] — D, a mild (r,p,q) solution of (3.1) with respect
to the filtration F if
a) X is measurable and AJX € LL(Q; LP(U; L9[0,TY));
b) e AR X (1) € LP(U; L'[0,t]) almost surely and e=¢—(DAB(. X () €
LY(Q; LP(U; L2([0, 1] x N))) for every t € [0,7];

c) almost surely, X solves the equation
t o
X(0) = ag [P X () ds Y [ IMB (5, X(5)) (o)
0 =170

REMARK 3.1.2.

a) Looking at the assumptions in the definition of solutions, we see that we do not
consider the deterministic integrals as LP(U)-valued Bochner integrals. Instead we
assume that the integrands are integrable for almost every u € U. The integrals are
then still elements of LP(U).
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b) One should also notice, that in the case of a mild and weak solutions we do not
assume that X € D(A). In some situations this will be true, but in general it is not

reasonable to assume that.

We will see in Section 3.5 that under some assumptions on the operator A and the nonlin-
earities F' and B these definitions are equivalent. This is the reason why we have a huge
interest in estimates for deterministic and stochastic convolutions (see Sections 3.3 and

tA

3.4). Before turning to that we investigate the regularity of the orbit map ¢t — e "z for

suitable generators (—A) and initial values z¢ € LP(U).

3.2 Orbit Maps

We start with a lemma, which also implies well-definedness results for deterministic and
stochastic convolutions. At the moment this does not seem to be relevant for orbit maps.

However, this already includes some ideas and problems of this approach.

LEMMA 3.2.1. Let p,q € (1,0), ¢ € (1,q), and A: D(A) C LP(U) — LP(U) be (4-
sectorial of angle wys < 7/2 with 0 € p(A). Then for any 3 < 1 we have

. —=7_
1A%~ O4D ()| Lo Lao, a2y < CT Pl owLao 1162y

for ¢ € LP(U; L9([0,T]; ¢?)), where C = C () and lim 7 C(B) = oo. In particular,

e s
€™ 0(5) 17, oy < O Nbllowisaonesy

for each ¢ € LP(U; L4([0,t]; £2)).

PROOF. First let ¢ € LP(U; L?[0,T]) and 8 > 0. For 6 € (wp(A),7/2) we define the

path T(0) := {~(p) := |ple ™8"r): ) € R} = §%y. Then, by the functional calculus for

sectorial operators we have

APe ™t Ag(t) = / Me RN, A)p(t)dN, te[0,T],

2mi

where the representation is independent of §. Now observe that for each A € T'() we have
Re A = cos(#)|A|. For r € [1,00) we therefore obtain

OREN| o = (TRle)\(l _ efTrRe,\))l/T - (T N TR16)\>1/T _ (T . M)l/r~

Now choose r such that % = %—i—% (ie. 7= qu) Holder’s inequality and the #9-sectoriality

e
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then lead to

Ve RO AV rgatoiry < ColAZ e O ol RO Al oo aopocry

< Oy NPT ! "
< CylA| ( Aw) 91l e (;Laj0,77)-

Hence, we have

2Cy [ 1 Yr
(VA 0 -1
||Aﬁe ¢) Cb(‘)”LP(U;LfY[O,T]) < o ; pﬁ (T/\ m) dp ||¢”LP(U;LQ[07T])
1
. Ce rcos(0)T B—1 1/7‘ 1 &0 ﬁfl/rfl
= 7r(/0 pP T dp + rl/rcos(e)l/f/ ) P dP)”¢HLP(U;Lq[0,T])

reos()T
Co 1 -;
w(rcos(e))ﬁ B(1 —’I”,B)T H(ﬁHLI)(U;Lq[o,T]).

If 8 =0, we have to add a circle around 0 in the path I'(#) (see also Example 9.8 in [59]).
Here we take I(0) := 0(Z9 U B(0, 7)). Similar calculations as above then lead to

le™ SO Lo wr.zato. 1

20y [ e 1 Gy [¥ e
< (5 [, o) oo+ 2 [ () a0 ol

/1 T
o C@ T 1/'r C@ 271- - 29 1/7‘
a (7’1/7" cos(0)"/r 7TT * r'/rcos(9)/r 2w r ) 19l 2o wszato,y
Coy

= W(% + )T |G|l Lo nao17)-

For the general case ¢ € LP(U; L4([0,T]; ¢?)), we use Kahane’s inequality and the estimate

above to deduce

/
14%e=OAB| Lowaoryeny = H (ZMBQ—(.)A%‘QY 2
n>1

Lr(U;L2[0,T])
pa E| S FudPe g, |
D,q ZT € ¢ Lr(U;L2[0,T])
n>1
< Tl/T*ﬁEH Trn®n
~C ;T ¢ Lr(U;L2[0,T1])

~pa T PUB Lo a0, 1102

where (7, )nen is @ Rademacher sequence on some probability space (SN),JE , IF’) Since r =

%, the claim follows. 0

REMARK 3.2.2. If we assume that A is ¢-sectorial in the previous lemma, then we
obtain the same result by interchanging the application of Hoélder’s inequality and the

estimate of the /?-sectoriality.
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If we assume R -sectoriality of A instead of ¢/?-sectoriality, we obtain the following result.

LEMMA 3.2.3. Let p,q € [1,00), 8 >0, t € [0,T] be fixed, and A: D(A) C LP(U) —
LP(U) be Ry-sectorial of angle wr,(A) < 7/2 with 0 € p(A). Then there exists a constant
C > 0 such that

1(-A)Pe™ O oo oy < CllDllow;Laqo.ye))

for ¢ € LP(U; L4([0,];¢?)). In particular,

He_(t_s)A(b(S)HLP(U;L‘(ZS)([O,t];é?)) < Cll@l e w;La(o,q:e2))

for each ¢ € LP(U; L4([0,t]; £2)).

PROOF. Let ¢ € LP(U; L?]0,T]). The general case follows by an application of Kahane’s
inequality as in Lemma 3.2.1. By Corollary 3.7 of [57], the R,-sectoriality of A implies the
R,-boundedness of the set {(sA)%e~*4: s > 0}. Therefore, also the set {(sA)%e™54: s €
[0, T} is Rq-bounded as a subset of the first one. By Proposition 2.1.5 we obtain a constant
C > 0 such that

H </OT‘(8A)BQ_SA¢<S>}qd8>1/q‘

g

Lr(U)

i =Xl ([ ras)”

REMARK 3.2.4.

a) A comparison of Lemma 3.2.1 and Lemma 3.2.3 shows that R,-sectoriality might be

needed if one wants to stay on the same function space.

b) Note that the assumption 0 € p(A) is only required such that the fractional powers
of A are well-defined. For any result without these fractional powers we can ignore

this assumption.

c¢) Inparticular, if 4 is f4-sectorial and ¢ > 2, then for any ¢ € LL(€; LP(U; L9([0,t]; £2)))

the process

5 e*(t*s)Ag‘b(s), s € (0,77,

is deterministically and stochastically integrable, since, by Holder’s inequality, we

have

< Tl_l/aHe_(t_s)A(ﬁ(s)‘

—(t—s)A
le= =4S oz, omen) LA (LP (UL, (0.45:2)))

< CrT 9|l 1 (.1 (UL ((0.0:42))
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and

e~

< T1/2_1/,3H€—(t—s)A¢(S) ‘

LT (LP(U; L2, ([0,4]XN))) LT (P (USLY, ([0,4]:62)))

< CrT* 9@ (oo L (0.0:2)))

where 2 < ¢ < q and Cp is the constant from Lemma 3.2.1. If A happens to

be Rao-sectorial (i.e. R-sectorial), then we obtain a similar result also for ¢ €
Ly (9 LP(U; L2([0, £];.£2))).-

If A is f9-sectorial and g > 2, then the function f: [0,7] — L% (Q; LP(U; L%([0, T); £2))),
ft) = ]l(oﬂe*(t*('))A(b, is continuous for any ¢ € Li(Q; LP(U; L4([0,T); £2))). Let us
prove this. For any s,t € [0,7], s < t, we have for 2 < 7 < ¢

1£() = F($)|lLr e :L2(0,17:62)))

= 1 ege D4 11 (- DA _ ~(s=(DA) g

L (sLP(U;L2([0,T1]5¢2)))

< T2 e O 1) L .z (:La(0.0:2))
+ Tl/z—l/qH@—(s—(-))A(e—(t—s)A . I)¢‘

LT (S LP(U;L9([0,5];42)))

< TP7CN Lyl e s (o))
TG (94 — 1)g)

L (QsLP(U;L9([0,s]502)))"

Now, if s — ¢, the first part converges to 0 by the dominated convergence the-

orem. Since the semigroup e *4

can be extended to a strongly continuous semi-
group on LP(U; L4([0,T]; £%)), the second summand also converges to 0 for s — t.
This proves the claim. As in part b), Re-sectoriality of A would include the case

¢ € Li(Q LP(U; L2([0,T); £%))).

After this short excursion, we turn to the actual topic of this section and start to investigate

the orbit map t + e %4z, 2 € LP(U). We start with an elementary observation using the

same technique as in Lemma 3.2.1.

PROPOSITION 3.2.5. Let p,q € [1,00), B € [0,1/q), and A: D(A) C LP(U) — LP(U)
be sectorial of angle w(A) < 7/2 with 0 € p(A). Then there exists a constant C' > 0 such

that

147~ 20 Lo oo,y < CTYV* |0l oo

for xg € LP(U).
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PROOF. Observe that

[N e~ 2RO, Aol Lor.paozy = MTIROS Aol o lle™ ooz

[0,77)

1 Y
< P T A —
= 69‘)“ ( N QCOS(Q)‘)\‘) ”xOHLP(U)

Now the result can be deduced in the same way as in Lemma 3.2.1. O

As indicated in the beginning of Section 2.5, ¢¢ interpolation spaces will play an impor-
tant role in connection with initial values for stochastic evolution equations, and by the
reformulation as a fixed point equation also for orbit maps. The key result is Theorem
2.5.4.

LEMMA 3.2.6. Let p,q € [1,00), /g < a < <, and A: D(A) C LP(U) — LP(U)
be Ry-sectorial of angle wr,(A) < 7/2 with 0 € p(A). Then there exists a constant C' > 0
such that

1A= 0| oy < T+ TP By o 1r
for each xg € (LP(U), D(A))g—1/,0a and
o)1 _1/pg00. 5.0 = 1A%~ a0l ooy < CTY PN AY 20| Loy
for xg € D(AY="9). In particular, we have

ol 2oy + 1A% 0]l Loy S Nzoll oy + AP e~ a0l Lo, zaporyy = 170l g—1/4,en
S lzoll oy + 1A @0 1oy

PROOF. To show the first result we use the representation formula

. 1 o0
A Vg, = s1n(7r(a/q))A/ )\afl/rl()\ + A)"tagdA.
0

™

Then, by the sectoriality of A and Holder’s inequality we have
1440 | ooy

So H/ XA+ A) g +H/ AN A\ 4+ A) g

o

< [t bl + X g XA+ A 0l iy
_ 1 a—1/q 1 a—[f3 2
T a— 1/qT HxOHLP(U) + ‘(<5 _ a)q’i)l/q'T [x0]5,1/q,gq71,T-

The second estimate follows from the definition of []1 \/3a,09,3.T and Proposition 3.2.5.
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Finally, the last assertion follows from the estimates above, Proposition 2.5.7, and Theorem
2.5.4. (Il

The next result is an immediate consequence of Lemma 3.2.6.

COROLLARY 3.2.7. Letp,g€[l,0),0<a<f<vy<1,and A: D(A) C LP(U) —
LP(U) be Ry-sectorial of angle wg (A) < 7/2 with 0 € p(A). Then

D(AY) — (LP(U),D(A))gea — D(A%).

REMARK 3.2.8. Corollary 3.2.7 can also be deduced by using results of Section 2.5 and
real interpolation theory. Applying [63, Proposition 1.3], Proposition 2.5.6, Proposition
2.5.7, again Proposition 2.5.6, [63, Proposition 1.4] and [63, Proposition 4.7] we obtain

D(AY) = (LP(U), D(A"))s/,1 = (LP(U), D(A)) 3,00 = (LP(U), D(A)) g s
= (LP(U), D(A))p,00 = (LP(U), D(A))a,1 = D(A%).

In Lemma 3.2.6 we are also interested in the case =  which corresponds to 5 = 1/ in
Proposition 3.2.5. Unfortunately, this is, generally, not correct. To bypass this problem, we
need to assume more on the operator A. However, even if we assume that A is R -sectorial

in Proposition 3.2.5, then Lemma 3.2.3 leads to

HAﬁe_(A)AwOHLP(U;L‘Z[O,T]) = ||(tA)ﬁ€_tA(t_ﬁﬂCo)HLP(U;LEQ) [0,77)
< CHt_BlfOHLP(U;L‘(It) [0,77)
C

=gt Tl

for p < 1/q. This suggests that we have to assume even more.

THEOREM 3.2.9. Letp€ [1,00), q € [2,00), and let A: D(A) C LP(U) — LP(U) have
an Rg-bounded H*(X,) calculus of angle a € (wrge(A),7/2) with 0 € p(A). Then there

exists a constant C > 0 such that

A7 O4%0 | Lo, zap.1)) < Cllzoll Lo
for xy € LP(U). In particular, if § € R,
HA’Be_(')AfCO||LP(U;Lq[0,T]) < CHA’B_V%OHLP(U)

for zg € D(AP9),
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PROOF. Let v € (a,7/2) and define the multiplication operator
My: LP(U) — LP(U; L0, T)), (Myx)(t) := \/7%e Pz,

for A € ¥,. Then

—(. _ e 1
[IX7e ()’\HLq[OT ‘)\‘l/q(qRe/\ qR1€A€ TqR /\) /a

|Al Y/ _.
< 11/q(Re>\) QSW—-C

for each A € 3,,. Using this, we want to show that {My: X\ € ¥, } is R-bounded. For this
purpose, let (A\,)M_; C %, (:cn)N C LP(U), and let (7,))_; be a Rademacher sequence
on some probablhty space (Q, F , IP’). Then

N N7
Lp(U;L9[0,T)) ~pa H (; | M, 2] ) ‘ LP(U;L9[0,T))
< (5 M) |
n=1

N "

se || (Xleal’)

) n;l

~p EH z:l?nxn )

Now define the operator M) j: LP(U; L90,T]) — LP(U;L4[0,T]) by My ¢ := M)J¢,

where

N
IEH Z My, Tn
n=1

Lr(U)

J: LP(U; L0, T]) — LP(U) / o(t)
Since, by Holder’s inequality,

17Nl Loy < T~ Lo Lajo.)):

it is easy to see that the operator family {M) j: A € ¥, } is R-bounded on LP(U; L9[0,T7)
with constant CT~"4. Moreover, by Theorem 2.4.5 the operator A has an extension AL
on LP(U; L9]0, T]) such that A" has a bounded H>(%,) calculus on LP(U; L4[0,T}]). Since
each operator M, ; obviously commutes with R(\, AL"), Theorem 4.4 of [52] implies that

(+) by /a _ROLAP)M, oy

21

defines a bounded operator on LP(U; L%[0,T]) for o/ € (a,v). For any zo € LP(U) let
¢ = 1jor0. Then J¢ = xo and ||¢| Lo (s a0, = T /q||$0|\Lp . Using the boundedness
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of (+), this leads to

RO\ ALY M y¢ dA ‘

1
— AYYMm
H 211 /82& RO )Mo d)\‘ LP(U;L9]0,T7])

1
Lo (UiLa0,T)) H 27i o,

< CT )¢l o Lapo.1)) = Cllwoll Lo

Observe that A is by definition also sectorial, and that ¢ — fi()) := X%~ € H§(%,)

for t > 0. For t fixed, the functional calculus for sectorial operators implies

1 1
Aae Mgy = — MR, A)zgdh = —— A, A)(Myzo)(t) dA.
e wg = 5 s, JtQ)R(A, A)zo 277 Jo,, R(X, A)(Myxo)(t)
Together with the boundedness result above this concludes the proof. (I

COROLLARY 3.2.10. Let p € [1,00), ¢ € (1,00), 8 € (0,1), and let A: D(A) C
LP(U) — LP(U) have an Ry-bounded H*(X,) calculus of angle a € (wprge(A),7/2) with
0 € p(A). Then

D(AP) < (LP(U),D(A))pee,  ifq>2,
and

(LP(U), D(A)) g — D(AP),  ifqg<2.

PROOF. The first embedding follows from Theorem 3.2.9. To show the second estimate
we use a duality argument. First observe that A’: D(A’) C L¥ (U) — L” (U) has an R,-
bounded H*® calculus and that Theorem 3.2.9 also holds for T' = oo because the constant
C is independent of T'. Then for any y € LPI(U ) Holder’s inequality and Theorem 3.2.9

imply

o0 _ S _1 ;1 !
() Ao, [ =] [ @ (e bty
< 2/(]/0 |Al/qe—tAxO(A/)l/q,e_tA/y’dtd,u

< 2] A% o]l Louriago.con | (A) e Y Lot .1 10,00y

< 20 Ae” 0| Lo 90,000 191 2o (1)
Now we use that o = [;° Ae t4 2, dt to obtain
2ol Loy < 2C1AY%e™ 20| Lo pajo,00) -

This concludes the proof. O
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For the rest of this section we want to study Sobolev regularity in time. Again we start

with an elementary estimate using a similar approach as in Proposition 3.2.5.

PROPOSITION 3.2.11. Let p,q € [1,00), 0 € (0,1), 8 € R such that 0 < 4+ 0 < 1/q,
and A: D(A) C LP(U) — LP(U) be sectorial of angle w(A) < =/2 with 0 € p(A). Then

there exists a constant C' > 0 such that

HABe_(')AHCO||Lp(U;W0»q[0,T]) <C(T/P + Tl/q_ﬁ_a)HﬂUOHLP(U)

for xy € LP(U).

PROOF. We first prove it for § > 0. If we take any ¢t € [0,7], then the functional

calculus for sectorial operators implies

1
— / Me P R(N, Az d,
82(1/

Aﬁe*tAa:o = -
21

for some o/ € (w(A),7/2), in particular,

dyoa [APe™ O] (h,t) = 1 / Mdyoale”ON(h, t)R(X, A)zg dA.
%

i

Therefore, we first compute ||dyo.a[e™ ]| pqpo 72. Since

1
hYato

dweale” (R, t) = Lo, 7—p) (1) e Me M —1),

we have

—hA

ldweale™ O Lao.y2 < lle™ | pajo 1yl s (¢ = 1)||L§’h>[o,ﬂ

We take ¢ = ¢; o := max{2 }. Using that [e™"* — 1| < ¢ A |h)|, we estimate

1
’ g cos(a’)

T 1 T/\ﬁ T
/ e — 19 dh < / e WA VRS / hot et dh
0 0

1
hltoq T/\ﬁ

1 c \(1—o cf c \—0o —0
zqu(T/\W)( )‘1+U—q((T/\W) ¢ 7o),

Moreover, we have

(0 I 1 _—TRe\ 1y 1
leOM 0z = (s — e M) < (T A zy) = (T A sasstirym) < (T A )

where we used that Re A = cos(a/)|A] if A € 9X/. For |A| > £ the calculations above yield

1+1/q
duo.qle™ A " AoV,
ldwe.ale™ | Lapo,rp2 < ((1_0>0q)1/q| |
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And for [A| < % we obtain

L

(1 —0)q)s

ldweale” | Lajo.rp2 <
Using the parametrization 93, = {|ple~®#1)a": 5 € R} we finally get
ldwer [APe Y0 || o, Lajo,rp2)

2 [T 2 [ o
Saloq %Tl/q 0/ PP Hlzoll 2o (1) dP+27T// phro=ta Yol Loy dp
0 c/T

—1
= (CBTl/qﬁa o

Y/g—B—0
3 v g | EO PG

Together with Proposition 3.2.5 this leads to the claim.

If B < 0 we cannot use the representation formula of the functional calculus. Instead we
define the paths

Fl(R79) = {)‘ €eC: A= 71(:0> = _peva S (-OO, _R)}a

I5(R,0) :={A€C: A =m(p) = Re™™, ¢ € (—6,0)},

[3(R,0) :={\ € C: A =13(p) = pe ™", p € (R,0)},

and I'(R,0) :=T'1(R,0) + T'y(R,0) + I's(R,0). Then, by Example 9.8 in [59] we have

1
e Mgy = — e_t/\R()\,A)xo d\, t>0,
2 I'(R,9)
as long as R is small enough. Moreover, the representation is independent of R and
0 € (w(A),7/2). We choose R = %, for € > 0 sufficiently small. Then

1

L'(=5) Jo
1
(—

oo
/ sB e
o0
1
[
0 2mi

APe gy = —sAe=t Az, ds

/ e CHOAR(N, A)wo dA ds,
r I

B)

and

dWU,q [Aﬁe_(')Aﬂfo] (h, t)

1 /00 s 1 . on
— S -— e d o,q|€ h,tR)\,AQC d)\ds
I'(=8) Jo 2mi Jr(= 0) wo| J(h, t)R(A, A)o

Using the same computation as above as well as

1
I'(=p)

/ s lemsReA 45 = (Re A)? = cos(arg(N))? N[,
0
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we arrive at
(. 2 [ 45 (.
ldwea [APe™ O 4%0] || Lo (. Lao.rp2) So 277/ PP dweale™ OO oo 12 dp ol Loy
T

I -1 _(
+ /(9(%)ﬁ ldwoale™ 2| Lagg 712 5 dep (|l Loqory

1 [ i 1 /? o
Sog 7T/E prrotaldp ||a70||LP(U)+27T/956T1/q 7P de ||lzoll 1o o)

T
1 gBto—Ya
- B\ Y a—o—B
= (Wl/q—5—0+€ )T ' lzoll o w)- =

If we assume slightly more on the operator A than sectoriality, we obtain stronger results
similar to Lemma 3.2.6. In the following we will say that a sectorial operator A has
bounded imaginary powers or property BIP, if A%, t € R, are bounded operators and there

are constants c,w > 0 such that
|A®)| < ce®ll teR.

Operators having this property are, for example, operators with a bounded H°° functional

calculus.

PROPOSITION 3.2.12. Let p,q € [1,00), 8> 1/q, 0 € (0,1), and A: D(A) C LP(U) —
LP(U) be Rg-sectorial of angle wg,(A) < 7/2 with 0 € p(A) and such that A*" has BIP.
Then

|47 Ol Lo waweoapry S 1A% Ol Lo zap.r) S 2ol s— /g a

for each xg € (LP(U), D(A))g—1/qa-

PROOF. On LP(U;L%0,T]) we define B = -$ with D(B) = LP(U; W4(0,T]. Then B

has property BIP (this follows e.g. from [63, Proposition 4.23]). Now [68, Theorem 2.1],
the mixed derivative theorem due to Sobolevskii (see [73]), and Remark 2.4.6 imply

|AP=7e= O || Lorwoap ) = A7 B (AP e O%%0) || 1o (w7 ajo.1)
< C||APe= O + AP Be= O Lo wr.2aj0.1))

< 2C||A*B€_(')Al'0||LP(U;L!1[0,T])'

The final estimate follows from Lemma 3.2.6. O

As a consequence of Proposition 3.2.12 and Theorem 3.2.9 we obtain even stronger results

assuming an R,-bounded H° calculus.
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THEOREM 3.2.13. Letp € [1,00), g € [2,00), B8 > 1/q, 0 € (0,1), and let A: D(A) C
LP(U) — LP(U) have an Ry-bounded H*(X,) calculus of angle a € (wgr,(A),™/2) with
0 € p(A). Then

1A%~ O || powoapy S 1A% O Loz S 1A% 20| o)

for each xg € D(AP~Y9).

PROOF. Since A" has a bounded H* calculus by Theorem 2.4.5, A" also has property
BIP. Therefore, the first estimate follows from Proposition 3.2.12, and the second one from
Theorem 3.2.9. O

3.3 Deterministic Convolutions

We start with a more or less easy result, but this already indicates the problems we face

by giving strong estimates for convolution terms.

PROPOSITION 3.3.1. Let p,q,r € [1,00) and € [0,1). Let A: D(A) C LP(U) —
LP(U) be ¢4-sectorial of angle wya(A) < 7/2 with 0 € p(A), and ¢: Q x [0,T] — LP(U) be
such that ¢ € Lg(Q2; LP(U; L9]0,T1)). Then the convolution process

t
O(t) :—/ e =94(s)ds, te[0,T],
0
is well-defined, takes values in D(AP) almost surely and

EIl AP ipaory) < €T BN w:p0j0. 1)

where C' = C(3) and limg_,; C(f8) = oo.

PROOF. We define for 6 € (wg(A),7/2) the path T'(0) := {y(p) := |ple" ™). ) ¢
R} = 0%p. We only show the case § € (0,1). For 8 = 0 we proceed similarly to Lemma
3.2.1 by using the path I'(0) := 9(ZgUB(0, 1)) instead of I'(§). By the functional calculus

for sectorial operators we have

1 / MemE=ARN, A)p(s)dN, s €]0,],
r(6)

A,B —(t—s)A _
€ o(s) 211

where the representation is independent of §. Now observe that for each A € I'(f) we have
Re A\ = cos(#)|A| and therefore

1 1 1
l—e TR <A —— =TAN———

—()Re A -
e ety = g =~ " Re) cos(9)|A]”
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We also have

) / tAﬁe_(t_S)AgZ)(s) ds| = ‘ / t;m, / Ne==AR(N, A)g(s) dAds‘
0

/%/ (p)7e™ =R R(y(p), A)é(s)| dpds
B /0 /O (p)|Pe =R R(y(p), A)é(s)| ds d.

By Young’s inequality we thus arrive at

B_— t S A B — t s )\
H/ Ave 9(s)ds ‘ L, 10,7] _H/ 27rz/ e R, A)o(s) d)\dSH 4, 00.7]
<2 [Toleo HW]HR ) )6l 00
1 o
= WA pB(T/\ cos(9 )HR )¢HLq[0,T} dp

Using now the ¢9-sectoriality of A, we obtain

Lp(U;LY

H /t Aﬁe_(t_S)Aqb(s) ds‘
()
- H/ 27?2/ el )\R()\ A)p(s) dAds ) LP(U;LY, [0,T))

Ce TcosG ,8—1 CQ e 5_2
< P 0
< ( - /0 PP dp + p—r) / P dp>||¢|!L (U;La[0.T])

T cos 6
Cy 1 g
o ﬂcos(Q)ﬁ (1 _ B)ﬁT ”(ZS”LP(U;LQ[QT]).

[0,77)

Applying these estimates pointwise for each w € Q we finally obtain a constant C' = C(3)
such that

E|A%®| 5w paory < O T P ENS o paomy- O
In a similar way we deduce a Sobolev regularity result.

PROPOSITION 3.3.2. Let p,q,r € [1,00) and o, B € [0,1) such that o+ < 1. Let
A: D(A) C LP(U) — LP(U) be ¢i-sectorial of angle w(A) < m/2 with 0 € p(A), and
¢: Q x [0,T] — LP(U) be such that ¢ € Ly(%; LP(U;L%[0,T])). Then the convolution
process ® of Proposition 3.3.1 has the following property:

E|A°®|| ooy < O (T + TPV E| o(;Lapory)-

where C = C(a, 3) > 0 and limy -1 C(a, ) = oc.
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PROOF. We use the same path I'(6) for some 6 € (wpa(A),™/2) as in the proof of Propo-
sition 3.3.1. In particular, we have the same formula for A%e=(t=5)44(s). For the moment
let ¢» € L0, T] be arbitrary (later it will be replaced by R(\, A)¢). Then

Lo 1 Hshesn Lo
dyyaa {/0 e~ (= (s) ds} = W(/O e= (=92 (s) ds—/o e~ (= (s) ds)

1 PR o L (t+hos) (t—s)A
= — e TN (s ds+/ e \WThTSIA T UM (s) ds
el st [ i(s) ds)

_ 1 —hx (=) “ha /t —(t—s)A
G /R Lt = 9)e™ P pn(s)(s) s+ = 1) | e b(s)ds).

An application of Young’s inequality therefore gives

e[ [ oce]

L4, [0,7]

1 rmrexn (. _ ¢
= hY/ata (e MR AH€ ()/\”Ll[—h,o] + le A 1le ()/\HLl[o,T})||¢||Lq[0,T]
1 1 —hRe A —hAX —TReA
= W@((l—e )+ le ™ —=1](1—e DIl Lago, -
If we set ¢ := max{2, COSIW}, we use

~hReA —hA —TReA
=N <hag, Mo <aAe gr-e TN < g AT,

for A € I'(0) to estimate the following integrals:

T ‘—il/\T 4
/ raya (1 — e MReyap=lmaaqp < / pa~1meq qp +/ ——h~t"dh
0

0 SAT RYK

T

1 c (1-a)q ii Cc - -«
Toag A o (i AT) ™ =770),

and similarly

T
/ ‘e—h)\ o Hq 1 (1 o e—TRe/\)qh—l—ocq dh
0

Re A4
q ﬁAT —1- r —1—
<(mAT) (/ e aquqdh+/ cn1modn)
0 AT
— 1 c (2—a)q c? c (1—a)q c Ir—a
=T _agWAT) |A|q+a—q((mAT) (g AT) T ).

With these calculations we obtain for T' < ﬁ the estimate

< (14 ¢)ct—
Lao11? ~ ((1—a)g)'s

Hdwa’q [/Ot e hy(s) ds] ’ (I "l papo.mys
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C
and for T > I

T | I e

Sl B} —(1-a) ‘
L2 = ((1— a)aq)l/q’ | 19]] Lago, 7y

Here we finish our preliminary calculations. Since

1 t
dyyaa[APD] = — /F o My [ /0 e AR\, A)g(s) ds] dA,

21

the work above yields a constant C,, such that

2 [ 1—
HdW”’q[AB(I)]||LP(U;L‘1[O,T]2) < 277/0 Caﬂ'g(% N %) a||R(’Y(P),A)éf?HLP(U;Lq[o,T]) dp

CoCo ( [T" o\ iia 4 Sl
<= 9(/ Tt Pﬁ 1dp+/ p o 2dP>H¢HLP(U;Lq[O,T})
T 0 /T
CQCH l—a—
= cl—a—ﬂﬂ.(% + 1—(olz+6))T BWHL”(U;L‘?[O,T])'

Finally, applying this pointwise for each w € Q and using Proposition 3.3.1 we can choose
a constant C' = C'(a, ) > 0 such that

HAﬁ(I)||LT(Q;LP(U;Wavq[O,T})) < HAﬂ(I)HLT(Q;LP(U;LQ[O,T})) + [[dwea [Aﬁ(b]HLT(U;LP(U;L‘I[O,T]?'))
< C(TVP 41727

O Lr(@;Lr(U;Laj0,1]))- O
Using Sobolev embedding results (see e.g. [72, Corollary 26]), we obtain:

COROLLARY 3.3.3 (Hélder regularity). Assume the assumptions of the previous
proposition and let o € (1/¢,1), then there exists a constant C' = C(«, ) > 0 such that

E|| AP®| < (TP + T PY | Lo . afo -

,
Lr(U;ce—Va[0,T])

The next result is a consequence of Theorem 2.5.9.

COROLLARY 3.3.4. In addition to the assumptions of the previous corollary, we as-
sume that A is R,-sectorial. Then there exists a constant C' = C(«, 8) > 0 such that

EHA/B(I)"TC([O,T};(LP(U),D(A))ail/q) < CT(Tl—/B + Tl_a_ﬁ)TEH¢HEP(U;LQ[O,T])'
PROOF. Since a+ 3 < 1, Theorem 2.5.9, Proposition 3.3.1 and 3.3.2 imply

EHA’BCI)"8([0,T];(LP(U),D(A))Q_I/q) S EHA/BCI)HEP(U;Wa,q[O,T]) + EHAQ-FﬂCI)HZP(U;LQ[O,T])
< (TP + Tl_a_B)TEH¢\|Ep(U;Lq[o,T1)' -
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To obtain stronger estimates for deterministic convolutions (i.e. the borderline cases =1
or a+ 8 = 1, respectively) we therefore have to approach in a different way. In doing this,

the following lemma will play the central role.

LEMMA 3.3.5. Let g € (1,00), o € (0,1), and (§,)22; € (0,00). Then the following

n=1

assertions hold:

a) The operator

t

As: Lq([OaT];ZQ) — Lq([OaT];£2)7 (Aéf)(t n) Jnds

bn Ji—s,)v0

is well-defined and
1 As fll aqo,m502) Sq 1 lnaqo,7);e2)-

b) Let q > 2. The operator B : L1([0,T]; ¢*) — L4([0, T)?; ¢*) given by

1

(B f)(h,t,n) = Lo 1_y (t)dlghl/qw/o | Litn—5,)v0,t+h) — Li(t—s, v g | fn ds

is well-defined and
1B fllLaqo,mz:e2) Sao 1 | Lago,rye2)-
PROOF. Let us start with a small remark. If we define by

M: LYR) — LYR), Mg(t):=sup — /
B>t |B]

the Hardy-Littlewood maximal operator, then M is bounded (see e.g. [74, Theorem 4.1]).
By Theorem 2.1.6, M is also Ro-bounded which implies that M has a bounded extension
on Li(R;¢?), q € (1,00). Using this powerful tool, there is nearly nothing to prove.

a) We have for any f € L9([0,T]; ¢?)

lAsFlzagomyen = || (32 (

t
/(t o fndS‘Q)I/Q
<2H< (?12325/]l[o’T”f”'ds)Z)l/Z‘

= 2| M (Lo 11/ ) | awsezy < 2Cqll fll Lago,r;2)5

La[0,T]

La(R)

for some constant C; > 0 only depending on g. Here, the supremum is taken over all

intervals I5 of length 20 containig t.
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b) In this case we first observe that

Liirn—bn,n) T Lj—s,,9,  if R > 0On,

Lirn—s, 40 = Lt—s,,0| = .
I o ] L5, 6,40 + Ligan, < n

Using this, we obtain pointwise on [0, T]? x N

1 1 t—0n+h t+h
B2 )0t = s tosa Wz ([ ol as+ [ 1f01as)

t—dn

T M%?L{ s+ [ [fa(s)|ds)
— ]]' n 1 / n S S / n S S
on Bn T b ¥ato t t—6n

+h—6n

<48, Lo 5,y (MR (M fal )(8) + 467 L5, 2y (MR 7= (M| £l ) (0).
Applying now the L?[0,T] norm with respect to h, we have

On q T 1/
15 1t mlsor < 455 g ([ net-eran) ™ s asgani g ([ oran)’
4 4
< T oyge D@ + s (MAD).

We now use the same argument for M as in the first case. This finally leads to

HBngL‘?([O,TP;EQ) < H ”(Bgf)(h7 * ')HL?h)[D,T] HL‘Z([QT];@Q)

4 4
= M|f, |
'_QG—GMWV+w@%>”‘fWM@ﬂﬁ>

4 4
= Cq(((l —a " (UQ)VJ 1 lzaqio.r15e2)- O

The next step is now to use these bounded operators to show an R-boundedness result for
the following (deterministic) operator families

1 t
0 Ju—svo

(D5 ) (h,t) := Lo rp) ()07

(Ds)(2) : ¢ds, te[0,T],§>0,

h% ((Ds)(t +h) = (Dsg)(t)),  (h,t) € [0, T, 6 >0,

where o € (0,1).

PROPOSITION 3.3.6. For q € (1,00), p,r € [1,00), and o € (0,1) the following asser-
tions hold:

a) The operator family (Ds)s>0 is R-bounded on L (€2; LP(U; L1]0,T7)).

b) For q > 2, the operator family (D )s-o is R-bounded from Ly (€; LP(U; L4[0,T])) to
L (Q; LP(U; L7[0, T]?)).
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PROOF. Let (6,)N_; C (0,00), (¢n)N_, C LL(; LP(U; L0, T1)), (22, F,P) be a proba-

bility space, and (’fn)ﬁzl be a Rademacher sequence defined on this space.

a) Applying Lemma 3.3.5 a), we arrive at

EH ZT"D6 On L (LP(U3L4[0,T1)) ~pa <Z‘D5 onl ) Lr(LP(U3L4[0,T1))
= [[As(én)n-] L (L7 (U;L9([0,T1;62)))
f,q H ¢” fzv—l‘ L7 (;LP(U;L9([0,T;62)))

[ ()]
g IEH ZF"(%
n=1

b) Using now Lemma 3.3.5 b) we obtain

Lr(Q;Lr (U;La[0,T)))

L7 (Q;LP(UsLa[0,T)))

Np7q7r

N ) 12
(>2105,nl°)
n=1
S HBg(d)n)rijl‘

Sqo [|(@n)h1]

N
IEH S 7.5, én
n=1

Lr(Q;Lp(U;L4[0,T]?)) Lr(Q;LP(U;L4[0,T12))

Lr(;Lr(U;L9([0,T123£2)))

LT (Q;LP(U;L9([0,T7;£2)))

N 12
-S|
n: N
~p,q,r EH Z anbn ‘

n=1

LT (;LP(U;L42[0,TY)))

Lr(;Lr (U;L9[0,T]))

Using this proposition we can use functional calculi results to deduce estimates for deter-
ministic convolutions. We first prove it for the scalar-valued case. For this purpose we
define for o € [0,1) the set

Ay :={f:[0,00) = C: fis abs. continuous, tli}m f(t) =0, and / o ()] dt < 1}
© 0
In particular, we have f(t) = — [ f'(s) ds for each f € A,.

PROPOSITION 3.3.7 (The scalar-valued case). Let g € (1,00), p,r € [1,00), and
€ (0,1). Then we have:

a) The operator family (Cqet(f)) tea, given by

[Caet(f) / flt—s)¢ t € 10,77,

is R-bounded on Ly (§Y; LP(U; L9[0,TY)).
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b) Let q > 2. The operator family (C9,,(f))tea, given by

[C5(£)8] (1) = Loy () ([Caee(1)8] (t+h)— [Caee(F)E](8)),  (hrt) € [0, TP,

hYato

is R-bounded from L%(Q; LP(U; L4[0,T1)) to LE(Q; LP(U; L9[0, T)?)).

PROOF. By Proposition 3.3.6 the maps § — Ds: (0,00) — B(L(€; LP(U; L9]0,T7)))
and 6 — DF: (0,00) — B(LR(Q; LP(U; L2[0,T))), Li(S%; LP(U; L9[0,T]%))) have an R-
bounded range. Corollary 2.14 of [59] now implies that the operator families {7}, ||h|/;1 <
1} and {7 : ||h|[pr < 1} defined by

Tioi= [ hO)Dsodd, 6 € Ll U L0, ),
170 [ HODSods, 0 € LEO (U L0.T),

for h € L1(0,00) are also R-bounded. The results a) and b) finally follow from the obser-

vations

[Caet ()] (t) = —/0 :0 f'(6)p(s)ddds

:_/Ooof'(a)/ 6(s)dsds

(t—6)V
. /0 51'(8)(Dsé)(t) o,

and similarly

[CSet(f)@] (hyt) = L p_p) (ﬂ#([cdet(f)(b] (t+h) — [Caet(f) D] (1))
1 [e'e) , t+h t
N 7]1[0’T_h} (t)W/o ) (/(t+h—5)v0 Pls)ds - /(t—d)vo #ls) ds> a0
—— [ e Dge)h s O

COROLLARY 3.3.8. Let g € (1,00), p,7 € [1,00), and v € (0,7/2). For o € [0,1) and
i € X, we define the function

f7:0,00) = €, £(E) = e,
Then C%S((QVEZG fi, € As. As a consequence, the set { K, := Cdet(fg): w € X, } is R-bounded
on Ly(S%; LP(U; L9[0,T1)), and for o € (0,1) and g > 2 the set { K[, := O3, (f7): p € Ly}
is R-bounded from L% (Q; LP(U; L9]0,T1)) to LE(Q; LP(U; L4[0,T)?)).




3.3 Deterministic Convolutions 119

PROOF. Since Rep >0 for p € ¥,, we have

1f7(8)] = |ul' e ™ -0 for t — oo.

Moreover,

(o) (o)
[Tkl ar= [Tt

1 o0
< cos()T7 / (tRe ) ""Re pe MeH dt
0

cos(v
1 o I'2 -
~ cos(v)2 / s ds = co(s(y);i)o'7
0

where we used that Re u = cos(arg(u))|u] > cos(v)|p| in the second line. This implies the
first claim. The R-boundedness results finally follow from Proposition 3.3.7. O

To extend these results to the operator-valued case (i.e. if the function f in Proposition
3.3.7 is replaced by a semigroup), we need the assumption that A has an R,-bounded H*

calculus.

THEOREM 3.3.9 (Deterministic maximal regularity). Letq € (1,00),p,r € [1,00),
and 0 € (0,1). Let A: D(A) C LP(U) — LP(U) have an R4-bounded H*(X,) cal-
culus of angle o < 7/2 with 0 € p(A), and let ¢: Q x [0,T] — LP(U) be such that
¢ € Lp(2; LP(U; L9]0,TY)). Then the process

is well-defined, takes values in D(A) almost surely, and

Bl Ao w;ra0,17) Spar BISI Lo w;za0,1-
Moreover, for ¢ > 2, we have the following Sobolev regularity result
E|l A @ 1 rweapory Spare (L+T)" ElSl 70w, capm)-
PROOF. By Theorem 2.4.5 the extension A’ of A has a bounded H* calculus, and by

Corollary 3.3.8 the function p +— K, is analytic on ¥,, v € («,7/2), has an R-bounded
range, and obviously commutes with R(u, AY"). By Theorem 4.4 of [52] the map

1 a
— R(u, A¥ K 6 d
¢ — 5.7 /aza, (u, A" ) K o dp

defines a bounded operator on Lg(Q2; LP(U; L9(0,T1])) for o’ € (a,v). For the moment let
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d(w) = 25:1 Up (W) ® Yy (w) € LP(U) ® L2[0,T]. Then, by Fubini’s theorem, we obtain

N
1 1
— R(p, A¥" K, pdp = 9 Z/z Kb R(p, A)vy, dp

271 aza/
2m2/82 / pe My, (5)R(p, A)vp ds dp
= Z/ / ue*”(t*S)R(u, A)vy, dpds
27rz o%,,
/Z¢n Ae (t=s)4,, ds

_ /O Ae==94(4(s)) ds.

Using the boundedness result we get

T
Spar Bl zew,Lapom)

IEH t— /t Ae(t=9)4 (¢(s)) ds
0

Lr(U;La[0,T))

The general case then follows by approximation and the convergence property of the R H*®

functional calculus.

For the second part of the theorem, we remark that A can also be extended to an operator
A" on LP(U; L9)0,T]?) such that AY" has a bounded H*(X,) calculus. Moreover, we

define on this space the following operator
(Biw)(h,t) == (K JY)(h,t), 4 € Lp(Q; LP(U; L0, T)?)),

where (J)(s) = TfO s)dr. Observe that J¢ € L"(Q; LP(U; L%0,T])) for ¢ €
Ly (Q; LP(U; Lq [0, T]?)), since by Holder’s inequality we have

1T £ (@sre@spapory) < T~ 710N Lr @un0 s Lajo,112)) -

Then, by Corollary 3.3.8 there exists a constant C' > 0 such that

N N
E| S 7 B Sy,
;Tn Mnﬁ}n LT (S;LP(U;L4[0,T]2)) Zrﬂ In i,Z)n

L (S0P (U;L4[0,T)2))

< CIEH Zrann

Lr(Q;Le(U;La[0,T]))

_l/q = ~
=t EH;W” LA (QLr(U:La0.1]2))]

for each finite sequences (,un)fy L € 3y, (), C LE(Q; LP(U; L90,T]%)), and each
Rademacher sequence (7,)_,. In other words, the set {B]: 1 € Xy} is also R-bounded.
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Again, by Theorem 4.4 of [52] the linear map

1 g
— R(u, A¥" B2y d
g /820/ (1, A% ) By dp

defines a bounded operator on LE(Q; LP(U; L]0, T)?)). Now take ¢ € LE(S; LP(U; L9[0,TY))
such that ¢(w) € LP(U) ® LI0,T], and let ¢(7,s) := L 7(7)¢(s). Then, of course,
Y € LL(Q; LP(U; L9[0,T)?)) and (Jv)(s) = ¢(s). Looking at the equality proven in the

first case, we see that the operators By, p € Xy, have been chosen in such a way that

1
dn A77U) = o [ RGu AT B
0%,

211
Using now the boundedness result as well as Proposition 3.3.1 we arrive at

IA 7| o wsweaior))) < AR s s Lapo,r)) + ldwea[A 7P| ooy Lo Lafo772))

Y 1 o
= |A"7®|| 1 (.o (v Lap0,17)) + H 27”'/@ R(u, A¥")Bg4p dM’

D Lr(@;LP(U;L9[0,T]?))
Spare TN e w:paorny) + T~ 70| Lrourr - Lajo.12))

= 1+ TSl o :Lrw;La0,17)5

The general case again follows by approximation. O

As in Corollary 3.3.3 we can apply Sobolev’s embedding theorem to obtain:

COROLLARY 3.3.10 (Holder regularity). Under the assumptions of the previous
theorem, we obtain for each a € (1/q,1), q¢ € [2,00), a constant C = C(p,q,r,a) > 0
such that

BIA™ R L co-vapry < €A+ TV EIN Loz,

By replacing Proposition 3.3.1 and 3.3.2 with the results of Theorem 3.3.9 in the proof of
Corollary 3.3.4 we get the following result.

COROLLARY 3.3.11. Under the assumptions of Theorem 3.3.9, we obtain for each
a € (Yq,1], g € [2,00), a constant C = C(p,q,r,a) > 0 such that

Bl AT @G 0,13 (1o, 004)), ) S €A+ TV EIS10izajo,y-

REMARK 3.3.12. The results concerning Sobolev regularity (especially the second part
of Theorem 3.3.9) might also be true for ¢ € (1,2). The problem lies in the R-boundedness
of certain multiplication operators. Following [41, Satz 4.4.4], this could be further ob-
served. Since we do not need the case ¢ € (1,2) in the following part, we do not pursue

this any further.
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3.4 Stochastic Convolutions

By investigating the time regularity of stochastic evolution equations we started to study
stochastic convolutions first. The ideas for the proofs in the previous section actually arose
from the stochastic part. Here we saw how we should compare these two convolutions and
that they are nearly the same. For easier reading we of course wanted to start with the
more common Lebesgue integral. The case of the stochastic convolution is now very similar
to the proofs of the previous section, but the reader should be aware of the fact that we

started with this part and transferred it to deterministic convolutions much later.

We start to prove regularity results assuming only ¢9-sectoriality of the operator A. One
advantage is that we can familiarize with the stochastic convolution and recognize the
differences to the deterministic case. The basis of the following result is the It6 isomorphism

for mixed LP spaces.

PROPOSITION 3.4.1. Let p,r € (1,00), q € (2,00), and € [0,1/2). Let A: D(A) C
LP(U) — LP(U) be ¢i-sectorial of angle wya(A) < /2 with 0 € p(A), and ¢p,: Q x [0,T] —
LP(U), n € N, be such that ¢ = (¢n)nen € L5(; LP(U; LI([0,T); ¢%))). Then the convolu-

tion process

(t) = /0 t e~ =94 (s)dB(s), te[0,T],

is well-defined, takes values in D(AP) almost surely and

EIl A" ooy < C T ENSI oo iy

where C' = C(p, q,7, 8) and limg_,./, C(p, q, 7, B) = oo.

REMARK 3.4.2. In comparison to Proposition 3.3.1 we see that two changes have been
made. More precisely, we have the restrictions ¢ > 2 and § < 1/2. If we assume that
A is R4-sectorial, the previous results would stay true even for ¢ > 2 by Remark 3.2.4.
However, if ¢ € (1,2) the stochastic integral is no longer well-defined by 1t6’s isomorphism.
This makes the requirement for ¢ > 2 necessary. In return, this condition is responsible

that we can only assume 3 < 1/2 as we will see in the proof.

PROOF (of Proposition 3.4.1). By Remark 3.2.4 the process ¥(t) is well-defined for
each fixed t € [0,T]. Moreover, by Itd’s isomorphism for mixed LP spaces (see Theorem
1.3.3) we have

r

T
EHAB\IJHEP(U;LQ[O,T]) :EH/O Lo,(s)A%e™ =g (5) dB(s)

Ly (U3 LY, [0T))

_ _(t—s)A r
~par Bl Loq(s)A% = d)(s)HLP(U;L‘&)([O,T};L?S>([0,T]XN)))'
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We now want to take a closer look on the innermost norm, i.e. the L2([0,7] x N) norm
with respect to s and n. Assume that 5 > 0 (the case f = 0 can then be shown in the same
way as in Lemma 3.2.1). We define for 6 € (wpa(A),7/2) the path I'(#) as in Proposition

3.3.1, and recall that by the functional calculus for sectorial operators we have

WG, () = o [ AU RRO Agn(s) AN s € 0,8 ne
T (0)

21

where the representation is independent of #. By Minkowski’s inequality we deduce that

1/2
[10,9(s)A% g HL2 ,(10,T]xN) Z/ |APem =944, (8)|2d$)
) 0o oo t v
— B —2(t—s)Re~(p) 2
<o [ b (; | e 10| R(3(p). A (s)[* ds) " ap
— 1/00 H(p”g (/t 6_2(t—s)Re’Y(P)i’R(’y(p),A)qbn(s)‘QdS)l/z a.
™o 0 n=1

Now we apply Minkowski’s inequality again for the L?[0,7] norm and then Young’s in-
equality to obtain
[10.0(s) A% p(s)

HL‘(It) ([o, T]'LQS)([O T]xN))

1/2

1 ﬁ 2(t—s)Re 2

< / p)l H/ e Z\R n(s)|" ds ’ LY2p0T 7
1 o 1 1/2
1 )[8[e200Re(p) /2 2

SW/O (o) P e 20Re 0|12 OT]H;\R('y(p),A)qﬁn\ ]mﬂdp

1 o0
_ W/ I (p)P[le2Re p)Hl/2OT]HR(fY(p),A)(,bHLq([O’T];EQ)dp
0

Next, we apply the L"(Q; LP(U)) norm on both sides. But first we make two remarks.
1) Note that A can be extended to a sectorial operator on LP(U; L4[0,T]) by Theorem
2.4.5. Since £? is a Hilbert space, we can extend it again to a sectorial operator on
LP(U; L9([0, T): €2)).

2)  We compute

—2(-)Re 1/2 _ 1 —2TRe V2 1
He v ’Y(p)HLl[O,T] - (2Re’y(p)(1 —€ 7(p))) — (QRe»Y( )) /2 AT /2
Applying these remarks we obtain
(t—s)A
H]l Ot AB (s )} Lr (L (U; L,y ([0,T]:LE,, ((0,T]xN))))
< / ()P ((2Rey(p))~ 1/2/\711/2) dp |® Lr ;e ;e (0,17562)))
=2 T it g 4 L2 dp) |6 2
T \Jo P o NOM P NP L (@sLr ;L (fo,732)))
2 cos(0
Cy 1

- (2 B 1/2_6||¢HL""(Q;LP(U;Lq([07T];g2))).
cos(0))Pm 26(1/2 — B)
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Together with the estimate in the beginning, we obtain a constant C' = C(p,q,r,5) > 0
such that

||Aﬁ\IfHLT(Q;Lp(U;Lq[o,T})) ~p.g,r

}ﬂ[07t](s)A56_(t_s)A¢(s)’ L7 (Q;LP(U3LY,,

< CT" P\ @l 1 (Lo (v La(o.17:42))) - O

(0.7):2,, ((0.T]xN)))

Of course, we also want to study the case of a Sobolev norm instead of an L4 norm. If we
compare the results of Proposition 3.3.1 and 3.4.1, and take again a look on Proposition
3.3.2 it is no surprise that in the case of stochastic convolutions the restriction on o and 8
will be a + 5 < 1/2.

PROPOSITION 3.4.3. Let p,r € (1,00), ¢ € (2,00), and «, € [0,1/2) such that
a+ B < Y2 Let A: D(A) C LP(U) — LP(U) be ¢%-sectorial of angle w(A) < 7/2
with 0 € p(A), and ¢,: Q x [0,T] — LP(U), n € N, be such that ¢ = (¢n)nen €

LE (% LP(U; L9([0,T]; £2))). Then the convolution process ¥ of Proposition 3.4.1 has the
following property:

E”Aﬁ\PHEP(U;W%q[O,T]) <P+ Tl/QiaiB)TEH¢H2p(U;Lq([0,T];Z2))7
where C' = C(pv q,7, &, B) >0 and hmoc-‘rﬁ—)l C(p’ q,7,«, /B) = o0

PROOF. Let I'(f) be the path of Proposition 3.3.1 for some 6 € (wgr,(A),7/2). Then

T
dyea [AB\II] = /0 dwe.q []1[0775] (S)A’Be_(t—s)Aqb(s)] dﬁ(s)
_/0 2m/ )\Bdwaq [0 i(s)e (t_s))\R()‘aA)d)(s)} dAdpB(s).

For the moment imagine to take the L"(2; LP(U;L4[0,T]?)) norm on both sides, then
apply the It6 isomorphism and Minkowski’s inequality on the last term. It will be natural

to estimate the term

[dwe.a [Lo,c(s)e™ O PR, A)op(s)] (1, 1)

L7 (QuLp(U; LY

o (0TI%L2 ([0,T]xN)))"

To keep this calculation simple, we let ¥ := R(\, A)p € L"(Q; LP(U; L4([0,T]; £?))). Let

us start with the innermost norm:

H]I[O,Hh](3)67(“}175»1#(3)—]1[0, (s)e” = SA¢ HLQ)(OT]XN)

o0 T
=3 [ (s — 1 (e Pl (o) as
n=1

T
< /0 (ieen(s) = T e)le™ IR 4 g 5) =9 — o) (len
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t+h t
=/ e Ol +/ e e 1 (O[T
t 0

T
= e [T g0 = e () s

¢
e 12 [ eI ()2 ds.
0
An application of Young’s inequality now leads to

—(t+h—s)A _ —(t—8)A 2
H]I[O,tJrh}(S)e 1/)(8) ]l[O,t](s)e Ilp(s)HL?t)([07T}9L?5)([07T]XN))

T
< Jersmer [ ng e = s)em 2 g s

L3 l0.T]

a/2

()

t
+ H ‘e—h)\ _ 1|2/ 6—2(t—S)Re)\”¢(S)H?2 ds ‘ .
0

[0,7]
< 6_2hReA||€—2(')Re>‘HLl[_hp} H H¢(5)”§2HL‘1/2[0,T}
+ ’€_h>\ - 1|2||e_2(')Re>\HL1[O,T] H ||'¢(5) H?Q HLq/Q[O,T]

= (21:{16/\ (1 o 672hRe)\) + 21:{16)\’67]1)\ B 1|2(1 o 672TR6)\)> ||¢”%‘1([0,T];€2)‘

In the next step we apply the second L4[0,T] norm with respect to h. For this purpose we

use ¢ := max{2, m}, and

1—e 2Redy < o Ap e =1 < |hA| A,

|>\| 1 _ e—QTRGA) S _Cc /\T’

1 1
ST ( SR ( A

for A € I'(#). Then we obtain

(V—s 2
ldwea (10,0 ()™ O™ ()] (D1, qomi2asz, torimy

(h,t)

1/2 (12
< H h,l/qfa(ﬂge/\(l _ 672hRe)\) I 2R1“’64"\ _ 1|2(1 _ eﬁTReA)) ’

”@bH%q([O,T];E?)

L4, 0.]
—2/g-2 —2hRe —hA _ 42 —2TRe A 2
- Hh : a<2R1e)\(1 — e ) + Rexle ™ = 1P (1—e ) )> ’ L0 T]”ip”Lq([O’T];KZ)
(!>

< A2 (5 1) (A A )5 AT o 16 o

1 ¢ (1/2—a)q 1 ¢ c —aq —a Ya 2
< (e AT L (AT ™ = T70) el e

1 c (3/2—a)q cf c (1/2—a)q c 92—y 2/q 9
+ (qu(W /\T) + qu(QT /\T) — (W /\T) T q)) ”¢HL«1([0,T];122)-
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In the last inequality we used the computations

290/ o ‘—il/\T Cw T Cq/2 e 2/,
|h=2 (W/\h)HLq/Q[Qﬂ = (/0 po/2—1 qdh+/c . |>\|q/2h 1 qdh>

h <
(h) N

_ 1 c (1/2—a)q 1 C/ aq  m—aq %/a
= ((1/2—a)q(w AT) TN ((gam) o =17))
and
Hh—2/q—2a(’h)\|2 A 02) (\TC| A T) HL?{E[O,T]
S AT T
AT ([ AR eaan + cip=10a g5 7"
P\I
0 AT
¢ @p-a)g (. (1/2—a) ¢ /2 aq) ) /4
- ((17)|)\|‘1(7/\T) 2 Q+@((WAT) T (G AT) ) )
Since this looks a little bit overwhelming, we consider the cases T < 5 and T > -5
Y [Al
separately. If T < Iil then
—(()—s 1+c¢ o
HdW“’q [1[07(-)](5)6 © )A ]HL‘? ([0,712%;,L2,, ([0,T]xN)) < W 2 H"»bHLq([O,T];ZQ)a
and if T' > £ I we have
“(()—s 1+c¢ e \2—a
[[dwaa [Ljo,(s)e™ =g (s) ]HLq (10T12L2, ([0,7]xN)) < (2 — a)2aq) s (IT) Tl o re2y-

Now we can go back to the beginning. By using It0’s isomorphism, Minkowski’s inequality
as well as the calculations above and the sectoriality of A in LP(U;L4([0, T]; ?)) we find
constants C, 4 > 0 and Cg > 0 such that

| dweoa[APU] || 1 (.10 (17 1010.772))

— 1 —((-)—s)A
~p,g,r H 2m’/p(9) Ndyraa[Lpg oy (s)e” O9AR(N, A)gp(s) d)\‘

L7 (L2 (U3La([0,T1%;L2, ) ([0,T]xN))))

Ca OO c —a
< 22(1/0 P (T A ;)1/2 [R(v(p), A) @ Lr(srr (;La(j0,1:2))) AP

™

CodCo ( [T 4 irifa o pra—
< - (/0 pPIT e dp +/ clfrmopfta=if dp) &l Lr ;10 (U Lo ([0,17:02)))
e/T

™

Ca qC@Cﬁ

s

1 1/9—oq—
( +1/2_ _ ) /2 ﬁH¢HLT(Q;LP(U;LQ([QT];KQ))).

Together with Proposition 3.4.1 the claim follows for 8 > 0. If 3 = 0 take I(0) =
9(X9 U B(0, 7)) instead of I'(f) and proceed similarly to Lemma 3.2.1. O
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Using Sobolev embedding results, we obtain:

COROLLARY 3.4.4 (Hélder regularity). Under the assumptions of the previous propo-
sition, we obtain for each « € (1/¢,1/2) a constant C' = C(r,p,q,«, 3) > 0 such that

E|A%W|| < CT(T* 8 4 Tl/z_a_ﬂ)rEH¢”2P(U;L‘1([O,T];Z2))'

T
Lr(U;C*=/a[0,T))

Similarly as in Corollary 3.3.4, Propositions 3.4.1 and 3.4.3 together with Theorem 2.5.9
imply the following result.

COROLLARY 3.4.5. In addition to the assumptions of the previous corollary, we as-
sume that A is Ry-sectorial. Then there exists a constant C = C(r,p,q,«,3) > 0 such
that

Bl A o 110 ). D04, ) < O+ TPV BN o o1y

As in the case of deterministic convolutions we want to improve these results for the cases
B =12 and a+ 8 = 1/2, respectively. By comparing Proposition 3.3.1 and 3.4.1 as well as
Proposition 3.3.2 and 3.4.3 we see that the methods used there are very similar. Roughly
speaking, the L' norm in time of the deterministic case is replaced by an L? norm in time
in the stochastic setting. So the strategy to prove maximal regularity results will be again

quite similar. Central to everything is the following lemma.

LEMMA 3.4.6. Let q € [1,00),0 € (0,1), and (6,)52; € (0,00). Then the following

n=1

assertions hold:
a) The operator

As: LU([0,T); €Y) — LI([0,T]; £1),  (Asf)(t,n) = (% (:_5 : Ofnds

is well-defined and

1 As Nl aqo,rp;01) Sa 1 lLaqo, 101y

b) The operator B : L([0,T); ¢*) — L4([0,T)?; ¢') given by

Y 11 T
(B§ f)(h,t,n) = Lo 1_p) (t)él"hl/‘DL"/O | Litn—5,)v0,4h) — Li(t—s,)vo,q | fn ds

is well-defined and

B3 fllLago,r12:01) Sae 1 lLago,ry:01)-
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PROOF. To simplify the notion we will assume that any function defined on the interval
[0,T7] is actually defined on R with the value 0 outside of [0, 7.

We start with the much simpler proof of a). It also gives some hint how to proceed in part
b). Let g € L9 ([0, T],£>°). Then with Fubini’s theorem

(Asf,g) = / Fals) ds ga(t) dt
—/Tmé/‘ (1)t fufs) ds
= <f» 59>,

where A%: L9([0,T], %) — L9 ([0,T],£>) is given by

s5+6
(Aig)(sm) = 5 [

To conclude the proof of a), it certainly suffices to check the boundedness of Aj§. So, let
g € L7([0,T],£°), then we obtain for each fixed s € [0, 7]

s+0n s+0

1
sup |(A59)(s,n)| < sup — 5 lgn ()| dt < 2sup 55 sup [gn(t)| dt.
neN neN s—3§ neN

Using that sup,cy [gn] € LY (R) as well as the boundedness of the Hardy-Littlewood max-

imal operator, we obtain a constant C;, > 0 such that

HA(;gHLq ([0,T];¢°°) < QHSUP Sup ’gn]dtH
s—0 mneN
< 2Cq[sup lgnll| o gy

= QCquHLq’([o,T];gw)-

b) Similar to the proof above we show the boundedness of the adjoint operator
(BR)': LY ([0, T1%: ) — L7 ([0, T}; ),

which is given by

IO S Y
(BYallom) = 55 [ ss [ hinenes )= Lioars (Ol (h0) de

Observe that

]l[sfh,s] + ]l[sfh+5n,s+5n]7 if h < dn,

]1 87h,87h+5n - ]1 575+6n = 1
‘ [ ] [ ” Lis—n,s—nts8,) + Lis,st6,)> if h > oy,

such that in any case the intervals appearing on the right-hand side have the length h A §,,.
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Using this we obtain

1 On 1 S s+0n
(b, 1) dt (k1) dt) dh
s [ ([ s [ g nar)

1 T 1 s—h+6n 546,
+ 51_0/5 Diato (/ , Ign(h,t)!dt+/ |gn(h,t)|dt> dh

= Bl(s, TL) + B2(37 n)

|((BF) gl (s,m)]

IN

We estimate each summand separately. First we remark that

S S+§n
/ ga(h )] dt + / gn(h, )| dt

s—h+on
1 s+e s+0n+e
< 2hsup — lg(h,t)||¢e dt + 2hsup —— lg(R, )] ds
e>0 2e s—e e>0 2e s+0n—¢

1
< 4hsup — Hg(h t)]| geo dt,
I:5s 2e

where the supremum in the last line is taken over all intervals I. C R of length 2¢ containing

s. With this estimate Holder’s inequality leads to

By(sm) = /énhl_l/q—0<1/s‘ (ht)\dt+1/s+6n lgn(h, )] dt) dh
s, n _5717470- 0 h o h gn\ll, h i gn 11,

—h+dn
L ([ -
< POt an ) || sup - ~ di|
<= ( )" asuw - [ a0t at]
1
s o & [ ot
(o) ™ |lsp g [ oGOl ]

Similarly we estimate the second summand. Using that

s—h+0n s+0n 1
/ |gn(h,t)|dt+/ |gn(h,t)| dt < 46, sup2— Hg(h t)]|¢eo dt,
s—h s I.5s 4€

and Holder’s inequality, we obtain

sup o2 [ ot )l ]
IBS

p o= [ ot )
up o= [ ot ) )

In both cases the right-hand side is now independent of n. We set Cy, := 4(i)1/q +

Y 74
4( (l—lcr)q) "

B < 46° h1i ”qdh
2(S>n)— n(/(sn Lq OT]

6n0q 1 T Uq 1/q

=467 (-

79 La'[0,T)

<4(372)

L7[0,7)
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Then Fubini’s theorem and the boundedness of the Hardy-Littlewood maximal operator

yield
a\/
T / ot et
N [ T
< GGy QHLq’([o,T]Q;eoo)a
which proves the desired estimate. O

As a first step we want to prove an R-boundedness result for the following (stochastic)

operator families

1 t
S590) = 5 [ eds rel01) 50

(SF@)(h. 1) = -1y ()= (S58)(¢ + 1) — (Ss)(0)), (ht) € 0, T, 6> 0,

where o € [0,1/2). Apart from the stochastic integral as one difference to the deterministic
case, we also notice that the exponent of the fraction in front of it has changed from 1 to
1/2 and from 1 — o to 1/2 — o, respectively. This coincides with the changes made in the

previous results.

PROPOSITION 3.4.7. For q € [2,00), p,r € (1,00), and o € (0,1/2) the following

assertions hold:
a) The set (Ss)s=0 is R-bounded from Ly (Q; LP(U; L4([0, T); £2))) to Ly (€; LP(U; L9[0,T7)).
b) Theset (S7)s0 is R-bounded from L (2; LP(U; L([0, T); £%))) to Ly (€2 LP(U; L0, T]%)).

PROOF. Let (0,)Y_; C (0,00), ()| C LE(Q; LP(U; L9([0,T]; £2))), and (7,)2_; be a
Rademacher sequence defined on some probability space (§~2, F , @)

a) Define ¥, (w, s,t,u) := ﬁﬂ[(t_(gn)vo’ﬂ(s)(bn(w,s,u). Then by Proposition 1.3.5 d) and

It6’s isomorphism for mixed LP spaces (see Theorem 1.3.3) we have

~ TN
Q;Lp(U;L9[0,17)) :EH/ mendﬂ‘

Npqr EH Z rn’lpn

IEH Zrm% an

LT (S0P (U;L4[0,T)))

L7 (LP(U3L2(0,T);L2([0,T] xN))))
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An application of Kahane’s inequality and Lemma 3.4.6 now leads to
E ”
H Z Tntn ‘ L (L (U;La([0,T);L2([0,T]xN))) (Z [#nl )

- | (Z;/t el ds)”\

= H HA& ”d’n”ﬂ n= 1H1L/§/2 ([0,77;¢1)

1/2
< HZ X - |

-| (Z’% )"
Sp.ar IEH Z Tn®dn
n=1

L (L (U;La([0,T);L2([0,T] xN))))

LT (;LP(U;L4[0,T)))

Lr(;Lr(U))

Lr(LP (V)

L7 ($;Le(U;L9([0,T1:£2)))

Lr (L2 (UsLa([0,T1:¢2)))
b) As in part a) we obtain by It6’s isomorphism
N
IEH 3 ST bn
n=1

_INEH/ Zrn 1/2 dwea[Lit—5,)v0,0]@n ﬁ‘

LT (Q;LP(U;L4[0,T]2))

L™ (Q;LP(U;L9[0,T]?))

~ 1
= TIEH o dyealL ; .
o nzlr o "0l ®n | s oo miezao oy

By Kahane’s inequality and Lemma 3.4.6 b) we finally arrive at

EH Z 1/2 dW”q[]l[(t 5n)VO t]]¢n

Lr(&;LP(U;L4([0,T1%,L2([0,T]xN))))

~p,q,r

(5 st L lgnl) "]
L a2 §I2 [(t+h=6n)V0,t+h] — L[(t=0n)v0,][[|Prll2 Lr(LP(USLY,

1/
- H | B5°( H¢n”£2 n= 1HL§/2(0T]2€1) LT (LP(U))

[z

~4q,0

-| <zw¢n )"
=par IEH Z T
n=1

LY2[0,T)] ‘ Lr(Lp(U))

LT (Q;LP(U;Le([0,T);£2)))

Lr(QLP(UsLa([0,T];¢2)))

(0.712:L2, [0.T])))
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As in the previous section we first prove an R-boundedness result for the scalar-valued

convolution. Here we need the set
oo
By :={f:[0,00) = C: fis abs. continuous, tlim f(t) =0 and / £ f1(8) | dt < 1},
—00 0
where o € [0,1/2). In particular, we again have f(t) = — [ f’(s) ds for each f € B,.

PROPOSITION 3.4.8 (The scalar-valued case). Let ¢ € [2,00), p,7 € (1,00), and
o € [0,1/2). Then we have

a) The operator family (Cstoch(f))feB, given by

[(Catoen(£)8] (£) = /0 f(t - 5)p(s)dB(s), € [0,T],

is R-bounded from L4 (§%; LP(U; L9([0,T1; €%))) to Ly(S%; LP(U; L9[0,TY)).

b) The operator family (C%, .. (f))feB, given by

[ gtoch(f)d)] (h‘ﬂt) = dWJ’q[CStOCh(f)d)](hat)a (hvt) € [OaT]z
is R-bounded from L4 (§%; LP(U; L1([0,T); €2))) to Li (% LP(U; L9]0,T)?)).
PROOF. By Proposition 3.4.7 the maps § — S5 and § — S¢ have an R-bounded

range. Corollary 2.14 of [59] now implies that the operator families {1},: [|h||;1 < 1}
and {T: ||h||zr < 1} defined by

oo

Thep:= [ h(6)Sspdd, ¢ € Lp(; LP(U; LU([0,T);£%))),
0

16— [ h(6)S§Hds, ¢ e Ly LP(U; L([0,T): 2),
0

for h € L'(0,00) are also R-bounded. The results finally follow from

t o]
[Canan N0 = [ [~ 7180 d5a8(s)
0 Jt—s
[ee) t
——[ro [ e
0 (t—6)VO
S AR GICIOL:
and in the same way we can show that

[Céoen()B] (R, 1) = — /0 h 5277 £1(5)(SZ ) (h, ) d. 0
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COROLLARY 3.4.9. Let g€ [2,00), p,7 € (1,00), and v € (0,7/2). For o € [0,1/2) and
1 € X, we define the function

o [0.00) 5 €, gp(t) = e,

3/2—0
Then %gg € B,. As a consequence, the set {L, := Cstoch(92)1 p € 3,} is R-

bounded from L4 (% LP(U; L1([0,T]; £2))) to LL(; LP(U; L9]0,T7)), and for o € (0,1/2)
the set {Lf, = Cg,,(97): n € ¥y} is R-bounded from L5 (Q; LP(U; L1([0,T7); £2))) to

stoch

L (Q; LP(U; L7[0, T]?)).
PROOF. Since Rep > 0 for u € ¥, we have

195(0)| = |u] *~7e7ReE 50 for t — oo,

Moreover,

| dapla = [T oot
0 0
<———— | (tRep) “Repe Berdt
- cos(y)3/20/0 (tRe p) ehe
(e 9] 3 _
_ 1 / 51/2—06—5 ds = F( /2 U)
0

cos(v)¥/2—7 cos(v)¥/2=o’

where we used that Re u = cos(arg(u))|u| > cos(v)|u| in the second line. This implies the
first claim. The R-boundedness results finally follow from Proposition 3.4.8. (I

In the final step we extend these results to the operator-valued case.

THEOREM 3.4.10 (Stochastic maximal regularity). Let g € [2,00), p,7 € (1,00),
and o € (0,1/2). Let A: D(A) C LP(U) — LP(U) have an R,-bounded H*(X,) calculus
of angle a € (0,7/2) with 0 € p(A), and let ¢,: Q x [0,T] — LP(U), n € N, be such that
¢ € LE(Q; LP(U; L9(]0,T); £2))). Then the process

t
W(t) = / e~ (94 (s)dB(s), te0,T],
0
is well-defined, takes values in D(A"?) almost surely, and

ENA U ooy Spar BN wsnaqoryeny-

Moreover, we have the following Sobolev regularity result

E| AU ooy Spare BIONLsw;agoe)-
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PROOF. By Theorem 2.4.5 the extension A" of A has a bounded H* calculus on
LP(U; L900,T]). And since £? is a Hilbert space, we can extend A" one more time to
an operator AL"(®) which also has a bounded H* calculus (see Remark 2.4.1, and [60,
Proposition 5.1, Theorem 5.2] as well as [61, Theorem 4] for more information on this topic).
By Corollary 3.4.9 the function p — L, is analytic on X,, v € («,7/2), and R-bounded
from LEL(Q; LP(U; L9([0,T); €%))) to LE(Q; LP(U; L4[0,T))). To view this as an R-bounded
operator family on the space L5 (2 LP(U; L1([0,T]; £2))) we define

L = (Lu,0,0,...) € LE(; LP(U; L9([0, T); £2))),

Obviously, {Z#: p € ¥,} is now R-bounded on L4 ($%; LP(U; LI([0,T; £2))) and commutes
with R(u, AL"*)). By Theorem 4.4 of [52] the linear map

¢ — R(u, AN, ¢ dp

21 82(:/

defines a well-defined and bounded operator on L% (Q; LP(U; L4([0, T; £2))) for o € (v, v).
Then by Theorem 4.5 of [52] the operator

1
O o /@E R(p, A¥" )L, p dps

is also well-defined and bounded from L4 (§%; LP(U; L9([0, T; €2))) to LE(Q; LP(U; L9[0, T1)).

By the stochastic Fubini theorem we obtain

1

1
2mi Jox,,

21

t
Ry, A ) L, dp = /a . /0 V2 R, A)(s) dB(s) dp

_ ! V2o=ult=s)R(1. A dud
_ /O o /8 s (11, A)p(s) Ay dB(s)
:/ e DA () AB(s).

0

Using the boundedness result we get

Sear BID e w;nao,11:02))

IEH £ /Ut A= t=940(5) 48(s) )

Lr(U;Le[0,T1)

For the second part of the theorem, we remark that, by assumption, A can also be ex-
tended to an operator AX'*) on LP(U; L9([0,T)%; %)) such that AL(®) has a bounded

H*® calculus. Moreover, we define on this space the following operator
(Mp)(t, h) == (L) (h,t), b € LE(Q; LP(U; LU([0, T £2))),

where (Jtp),(s) == =+ fOT Yn(1,5)d7, s € [0,T], n € N. Observe that Ji € L"(Q; LP(U; L1([0, T); £2)))
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since by Holder’s inequality we have

Tl L ;20 ;L (0, 17:2))) < T~"4||4p | 2r (@ Lr (s La(j0,112:02)))

Then, by Corollary 3.4.9 there exists a constant C' > 0 such that

_ N
2 PILRAN
n=1

N
IEH P L0 J ’
LT (;LP(U;L41[0,T)?)) ZT" J Pn,

Lr(Q;LP(U;L1[0,T]2))

< CIEH ZrnJ¢n

L7 (;LP(U;L4([0,T];62)))

< CT_l/qIEH prn

L7 (L7 (U;L4([0,712:62)))

for each finite sequences (11,)Y_; C %, (¥n)N_; C LE(; LP(U; L4([0, T)?; £%))), and each
Rademacher sequence (7,,)"_;. In other words, the set {M7: € 8,} is also R-bounded
from L4 (% LP(U; L9([0, T ,62))) to LL(Q; LP(U; L4[0,T)?)). Again, by Theorem 4.4 of [52]

and a similar argument as in the first case the linear map

21

Y= 1/ R(p, A¥" ) M7 dps
03

defines a bounded operator from L%L($%; LP(U; L9([0,T)%; %)) to L&(Q; LP(U; L1]0, T)?)).
Now take any ¢ € Li(Q; LP(U; L([0,T1;42))), and let (7, s) := Ljg11(7)$(s). Then, of
course, we see that ¥ € LL(Q; LP(U; L9([0,T)%;¢%))) and (J)(s) = ¢(s). By the definition

of the operators M o 1 € Xy, and the equality proven above we obtain

1

dwea A0 = 5 | R AP

21

Using now the boundedness result as well as Proposition 3.4.1 we arrive at

|A2=0W | ooy < AW s powspajory) + dwea[A* U || 1o Lo Lajo,7)2)

—0 1
= | AW o @ r i apo,ry) + H m/

R, AV ) Map du‘
0%

Lr(Q:LP(U3L4[0,T)2))
Spare TN Lr ;e ;e o, m502))) + T_l/q”'(/’”L”“(Q;LP(U;L‘I([O,TP;Z?)))

= (1 + Tl o (sp (;La(0,17:02)))- 0

In [83, Theorem 1.1 and 1.2] the authors investigate stochastic maximal regularity in the
space L1(Q x [0,T); LP(U)) for p € [2,00) and q € (2,00) (where ¢ = 2 is allowed if p = 2).
In these spaces they obtain the corresponding result to Theorem 3.4.10 and present a
counterexample for the case ¢ = 2 (see Section 6 in [83]), which means that maximal
regularity results in these spaces seem to have some unexpected limits. In our approach

we can include all values p € (1,00) and g > 2.
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Similar to the previous cases, an application of Sobolev’s embedding theorem yields the

following result:

COROLLARY 3.4.11 (Hélder regularity). Under the assumptions of the previous
theorem, we obtain for each a € (1/q,1/2) a constant C' = C(p, q,r, ) > 0 such that

EJ AU, g camvappay S €T+ TV EIDI L sagorye:

If we apply the results of Theorem 3.4.10 closely following the proof of Corollary 3.3.4 we

obtain:

COROLLARY 3.4.12. Under the assumptions of Theorem 3.4.10, we obtain for each
a € (/q,1/2) a constant C' = C(p, q,r,«) > 0 such that

EI| AW &0, 320 @), 041,y S €O+ T ENBIEow:z0(0.17:02)-

3.5 Existence and Uniqueness Results

The previous three sections form the basis to investigate the existence and uniqueness as
well as the regularity of solutions for stochastic evolution equations in LP spaces. Before
turning to that, we first give a short introduction of the Lipschitz notions we will need in

this context.

3.5.1 Lipschitz Notions

This section is devoted to some preliminary notions which appear in the following sections
of this chapter. In the usual theory of stochastic evolution equations in Banach spaces one
assumes Lipschitz continuity of the nonlinearities involved (see (3.1)). The reason for that
is the application of fixed point arguments in the proof of existence and uniqueness of mild

solutions. In our case we need a different type of Lipschitz continuity.

DEFINITION 3.5.1. Let p,q € [1,c].
a) We call a function B: [0,7] x N x LP(U) — LP(U) L9-Lipschitz continuous if

HB(7 ¢()) - B('v ¢()) HLP(U;LQ([(LT];[?)) < LH¢ - wHLP(U;Lq[O,T])

for some constant L > 0 and all ¢,v: [0,7] — LP(U) satistying ¢, € LP(U; L9]0,T1).
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b) We call a function B: [0,T] x N x LP(U) — LP(U) locally Li-Lipschitz continuous if
for each R > 0 there exists a constant L > 0 such that

HB(, ¢()) - B(‘a ¢()) HLP(U;LQ([O,T];ZZ)) < LRHCZ) - wHLP(U;LEI[O,T})

for all ¢,+: [0,T] — LP(U) satistying ||| s v;zep0,17): 1¥[l e 0:Lap0.17) < B-

REMARK 3.5.2. By Fubini’s theorem every (locally) Lipschitz continuous function B: LP(U) —

LP(U) is (locally) LP-Lipschitz continuous.

EXAMPLE 3.5.3 (Nemytskii maps). Let b: R — R be Lipschitz continous, and de-

fine
B: LP(U; L90,T]) — LP(U; L90,T]) by B(¢)(u,t) :=b(¢(u,t)).

Then B is L?-Lipschitz continuous with the same Lipschitz constant as b. This easily

follows by estimating B pointwise and by the monotonicity of the norms involved.

3.5.2 The Globally Lipschitz Case

Let us shortly recall the considered equation in this subsection. On the space LP(U) we

want to investigate the equation
(3.2) dX(t)+ AX(t)dt = F(t, X(t))dt + B(t, X (t))dB(t), X(0)= xo,

and analyze the existence and uniqueness of solutions as well as their regularity. To do
this we will assume the following hypothesis for the operator A, the nonlinearities F' and

B, and the random initial value zg. For this we introduce the abbreviation

DY (0) = (LP(U). D(A)gsa, 0 (0,1).

HYPOTHESIS 3.5.4. Let r € {0} U (1,00), p € (1,00), q € [2,00), and 7,7r, 7B € R.

(HA) Assumption on the operator A: The linear operator A: D(A) C LP(U) — LP(U)
is closed and there exists a v > 0 such that A, := v + A has an R,-bounded H*(X,)
calculus for some « € (0,7/2) with 0 € p(4,).

(HF) Assumption on the nonlinearity F: The function F': Q x [0,7] x D(A}) —
D(A,7") is strongly measurable and

a) for all t € [0,7] and x € D(A}) the random variable w — F(w,t,r) is strongly

Fi-measurable;
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b) there exist constants Lp, EF, Cr > 0 such that for all w € Q and ¢,v: [0,T] —
D(A}) satistying Ao, AJyp € LP(U; L1)0,T)),

|47 (F(w,,¢) = Flw, 1)) HLP(U;Lq[O,T}) < Lp||A%(¢ - w)HLP(U;L‘Z[O,T])
+ LFHA;VFW - w)HLP(U;Lq[O,T])

and

A, F(w, - &)l ze;zapr) < Cr(1+[|AYS Lo w;Lajo,))-

(HB) Assumption on the nonlinearity B: The function B: Q x [0, T] x N x D(A}) —

D(A, ") is strongly measurable and

a) forallt € [0,7], n € N, and z € D(A}) the random variable w + B, (w,t, ) is

strongly JF;-measurable;

b) there exist constants Lp, Lg, Cp > 0 such that for all w € Q and ¢,1: [0,T] —
D(A)) satisfying A)¢, AJyp € LP(U; L1[0,T]),

HAZVB (B(W= 5 @) — B(w, 'ﬂp)) HLP(U;Lq([o,T];eQ)) < LBHAZ@ - w)HLP(U;Lq[QT])
+Lp HA;WB (¢ =) HLP(U;LQ[U,T])

and

4,7 B(w, -, &) Le:na(o,me2)) < C(1 + A0 Le;naj0,17))-

(Hzp) Assumption on the initial value zy: The initial value zg: Q — foy (v —1/q) is

strongly Fg-measurable.

REMARK 3.5.5.

a) Assuming this hypothesis and certain values of v, yp,v5 we note that the definition
of strong, weak, and mild (r, p, ¢) solutions we made in Section 3.1 thins down a little
bit. If ¥ > 1, then v < 0, and (HF) implies that

IFCXOMowsiory < T IFCXO)lwwwisap.m)
=T AYF AP X erw;zao,m)
< CT AP F (L X () pe (s pajor)
< CCpT"™ (1 + || AL X || o apo,r))

which means that F(-, X(-)) € LP(U; L'[0,T]) almost surely. Similarly, one shows
that B(-, X(-)) € LY(Q; LP(U; L*([0,T] x N))). Moreover, AX € LP(U;L0,T])

almost surely since A has a closed extension on LP(U; L?[0,T]).
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For weak solutions, we assume that yg,vg < 1. Then

T
P CX Doy = [ 1Az P X0, (4370
T
< [ ([ 14w rex @) a0yl an

<|| [ 1Az e xwlar],, 147 b0,

< T A7 F (X () o astoap IA™) 9l o
< CpT' Y1+ HAZX”LP(U;LQ[O,T]))H(AVF)/"ﬁHLP’(U)

for each ¢ € D(A'), i.e. (F(-, X(-)),%) € L*[0,T] almost surely. In the same way, it
follows that (B(-, X(-)),¢) € LA(Q; L?([0,T] x N)) for each 1) € D(A’).

For mild solutions and vr,vg < 0 we obtain

e =ODA R | = [|etmOemt=tn A

'7X('))HL1)(U;L1[O¢])
< Cel/THe—(t—(~))AVA;’YFF(.7X(.))HLP(U’Ll

XM o210

[0,¢])
< CCre" | A, F(-, X () o Lapo.m)

< CCrCre’ (1 + |A) X || Lo zap017))

by Remark 3.2.4. Similarly, we have e~ *=()AB(. X (-)) € LY(Q : LP(U; L*([0,¢]xN))
for every t € [0, 7.

b) Observe that

—AX()+ F(t, X)) =—-(v+A)X([1) + (vX(t) + F(t, X(1))).

Moreover, the function F), defined by

Fy(t, X (1)) = vX(t) + F(t, X (1))

satisfies assumption (HF) if and only F satisfies (HF') with slightly modified Lipschitz
and linear growth constants. Therefore, in the following we may replace A and F' by

v+ A and F, and assume, without loss of generality, that v = 0 and 0 € p(A) in
(HA).

PROPOSITION 3.5.6. a) If Hypothesis 3.5.4 is satisfied for some vy > 1, a process
X:Qx[0,T] = D(AY) is a strong (r,p, q) solution of (3.2) if and only if it is a mild
(r,p, q) solution of (3.2).

b) If Hypothesis 3.5.4 is satisfied for some yp,vp < 0, a process X : Q x [0,T] — D(A"7)
is a weak (r,p, q) solution of (3.2) if and only if it is a mild (r,p, q) solution of (3.2).
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PROOF. a) Let X be a mild (r,p, q) solution. Then by Theorems 3.3.9 and 3.4.10 the

process X takes values in D(A) almost surely. Therefore, we have
xo—/o AX(S)—l—F(S,X(s))dS-I—/O B(s, X (s))dB(s)
=20 — /O A[e*”‘xﬁ /0 T DAR(r, X (7)) dr /0 " -DAB(r, X(r)) dB(r)
—l—F(s,X(s))ds—i—/O B(s, X (s))dB(s)
=xzy— t e Ay ds — r e TAR(r, X (1)) dr ds
_O/OA od /O/OA F(r,X(r))drd
—/ / Ae(ST)AB(T,X(T))dﬁ(T)dS—i-/ F(s,X(s))ds+/ B(s, X (s))dB(s)
0 Jo 0 0
=e gy — e CTAR(r, X (7)) dsdr s, X (s))ds
_ O/O/TA F(,X())dd+/0F(,X())d
—/0 / Ae(ST)AB(T,X(T))de,B(T)-i-/O B(s, X(s)) dB(s)
= e Mg + /0 t e AR (7, X (7)) dr + /0 t e "IAB(r, X (1)) dB(T) = X (),

ie. X(¢),t€0,T], is a strong (r,p, q) solution.

Now assume the converse. For any fixed g € D(A") we define the function
f[0,8] x LP(U) = C as  f(s,x) = (z,e )4 g).
Then f € C%2([0,t] x LP(U)) and
0sf(5,7) = (3, Ale~ IV gy f(s,2) = (-, e =g 02f(s,3) =0,
By It6’s formula we obtain for the It6 process X
£t X(8)) — £(0,X(0)) = /0 0.5, X (5)) ds + /0 00 f(s X()) dX (9).
In other words
(X(09) — (e r0.g) = [ (XA I+ [CAX()+ Fs X)) g
+ [ Bl XM g ase)
= [ X)) as + [ e IBG, X(9),00 a8,

0 0

And therefore,

X(t) = e Hug+ /0 e (945, X (s)) ds + /0 e~ (94 B(s, X (s)) dB(s),

ie. X(t),t€[0,7T],is a mild (r,p,q) solution.
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b) Let X be a mild (r,p, q) solution. Then we use the identities

t
et = _/ Ae 4y ds + 9,
0
e =) Ay = / Ae= =Yy dr + vy,

for ¢ € D(A’). Then we obtain by the deterministic and stochastic Fubini theorem

(X(t),9) = <e‘“*xo,w>+/ (e TIF (s, X (5)), ¥) d5+/ (eI B(s, X (s)), )" dB(s)

0 0

= (0, ¥) — / g, Al ) ds
0

+/< ds—// (s, X(s)), Ae” =94y drds

+/0t<B(s X(s / / (s, X(s)), Ale= =94 1/J>L2 drdpB(s)
~ o) - [ t<e* ro, A4 ds

t ° t r
+ /0 (F(s,X(s)), 1) ds — /0 < /O e*“*s)AF(s,X(s))ds,A’@ dr
+ [ B xen. 0 s - ([ B X6 gt v ) ar

0 0
t

— (w0, 0) - /0 (X(s), A) ds + /0 (F(s, X(5)), ) ds + /0 (B(s, X(s)),0)¥* dB(s),

which means that X is a weak (r, p, q) solution.

Let X be a weak (r, p, q) solution and z € C*([0,T]; D(A’)) of the form

2(t) = (), e C0,T], v € D(A).

Using that () )+ f s) ds, we obtain by It6’s formula (see Corollary 1.3.17)

+ /0 (B(s, X (s)),2(s)) dB(s)

Since linear combinations of such functions are dense in C'*([0, T]; D(A’)), this equality also
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holds for general z € C1([0,T]; D(A’)). Now take
2(s) = e 94 e D(A).

Then 2/(s) = A’z(s) and the identity above is equivalent to

t t
<X(t),2(t)>=(X(U),Z(0)>+/0 <F(57X(8)),Z(5)>d8+/0 (B(s, X(s)),2(s)) dB(s),

which in turn is

2

t t

(X(8),9) = (6tAxoﬂ/1>+/ (e TMAF (s, X (s)),¥) d8+/ (e =4 B(s, X (s)), )" dB(s).
0 0

This implies that X is a mild (r, p, q) solution. O

To prepare the next results, let us denote by Kyt > 0 and K ((1;) > 0, as well as Kgiocn > 0

and K(U)

stoch
to the Sobolev estimates). By proceeding as in Remark 3.5.5 one should note that these

> 0 the constants from Theorems 3.3.9 and 3.4.10 (where the index o refers

constants depend on v, in general.

THEOREM 3.5.7 (Existence and Uniqueness). Let Hypothesis 3.5.4 be satisfied,
and yp,vp < 0 such that v+ vp € [0,1] and v+ vyp € [0,1/2]. If the Lipschitz constants
L and Lp satisfy

LFKdet + LBKstoch < 1a

in the case of ¥ +yp = 1 or 7y + yg = 1/2, then the following assertions hold true:

a) Ifzy € L’”(Q,}"O;foy (v — 1/q)), then (3.2) has a unique mild (r,p,q) solution X

satisfying the a-priori estimate
AT X (e izaporyy) < CQL+ 120l 1008t (-170)))-

b) Ifxy € LO(Q,}"O;Dﬂ]V(V — 1/q)), then (3.2) has a unique mild (0,p,q) solution X
satisfying AJX € LY(Q; LP(U; L]0, T))).

PROOF. We split the proof in two parts, one for the maximal regularity case v +~vr = 1
and v 4+ vp = 1/2 and the other, if one of these conditions is not satisfied. As indicated in
Remark 3.5.5 we will assume, without loss of generality, that v = 0. Moreover, we assume

that L F= L B = 0, since it follows from a combination of part I and II below.

I.1) We start with the seemingly ’easier’ case of maximal regularity. The proof here is a

little bit shorter, but we need some smallness assumption on our constants. Moreover, we



3.5 Existence and Uniqueness Results 143

should not forget, that the hard work in this case was done in the previous sections. So let
v+vr=1and v+ g = 1/2 and set 0 := LpKget + L Kstoch € [0,1). Then we define the

operators

L(X)(t) := e ¥z + /O t e 4 P(s, X (s)) ds + /0 t e"=94B(s, X(s))dB(s) and

LI(Y)(1) = ATe—tAgg + A7 / L9 (s Ay () ds + / L 9B (s A7V () dB(s).
0 0

We will now show that L7 is a well-defined contraction on the fixed point space £ :=
Lp(Q; LP(U; L90,T7)). If Y is the unique fixed point of L7, then X := A77Y is the unique
fixed point of L, making X the unique mild (r,p, q) solution of (3.2).

By Proposition 3.2.12, Theorem 3.3.9 and Theorem 3.4.10, and our assumptions we have

| A7e™ D Azg]| , < Cllzoll r (008 (y—1/a))>
| | 7 O E (s, A7V () ds || < Kaw AT G ATY ()
< KaaCr(1+ [Yl5),
| | 7 09 B(5, AV () 4B(5) | < Kol AT B AV Ol
< KstoeCe(1+ Y || ),

for some constant C > 0 and any ¥ € E, so L7: E — FE is well-defined. It is also a
contraction since by Theorems 3.3.9 and 3.4.10, and the Lipschitz properties of F' and B
we have
ILY(Y) = L (Z)|g < Kaet|[ A" (F(-,ATY) = F(, A7 2)) ||
+ KstochHAi'YB (B(a Ai'yy) - B(? A*’YZ)) HE(W)
< KdetLF”Y - Z”E + KstochLBHY - ZHE
=0|Y - Z|e.

By the Banach fixed point theorem, L7 has a unique fixed point ¥ € E, and as stated
above X := A77Y is the unique mild (r, p, q) solution we were looking for. To obtain the

a-priori estimate we use the contractivity of L7. Then
A7 X||5 = ¥z = I27(Y)]l5 < |L(Y) = L0z + |L(0)]1
<O|Y|e+ CHxOHLT(Q;Dﬁf(fy_l/q)) + Kaet Cr + Kstoch OB
= 01 47X | + O+ 70l 82 (i)

Since 0 € [0, 1), this is equivalent to

C
147 Xle < 35 1+ [oll Lr 08 (v-1/2))-
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1.2) Now let zg € LO(€, Fo; DY (v — 1/q)), and define the set

U= {llzoll orupte (-1 <1ty mEN,

as well as g, := Ip, 20 € L"(Q, Fo; DY (v — 1/q)). By the first step we obtain a unique
mild (r, p, q) solution X,, of (3.2) such that Y,, := A7X,, € E. Since I,;, € Fy we obtain for

m<n

e, (Yo = Y[ p = e, (7 (i) = L7(Ya)) | p = [[2r,, (27 (A, Vi) = L7 (11, Y2)) || o
< |[L7(Ar,, V) = L7 (1, Ya) |
< 6||1r,, (Y — Ya)|| -

Hence, Y, =Y, (and X,, = X,,) on I';,, for m < n. Now we define
X:=X, onl,.

Then X is well-defined and X = L(X) almost surely. Moreover, X € D(A”) almost surely
and satisfies A7X € L2(Q; LP(U; L4[0,T])). This proves the existence of a mild (0,p,q)
solution. It remains to prove its uniqueness. So let X and Z be two solutions for the same

initial value xg. Then we define the stopping times

(W) =T Ainf{t € [0,T]: |10 gA" X ()| rw:zapo,y) = 1}
77 (w) =T Ainf{t € [0,T]: |10 gA" Z (W) Lrw;Lspory) > 7'}

n
and 7, := 7.X A7Z. Then it suffices to show that the processes
Up =11, )A7X and V, =1, A7
are equal almost surely for each n € N. By Proposition 1.3.13 we have
Un(t) = Loy (DATX () = Lo 1 (DATL(X) (1)

t
=19, () ATe 2o + Ly, (£) A /0 i (s)e 9P (s, AU, (5)) ds
t
+ 1o, () / L., (s)e 4 B(s, A7U,(s)) dB(s),
0
and similarly for V,,. This implies that

||Un - Vn”E < KdetH]]-[O,Tn]A_’YF (F(¢A_7Un) - F(a A_A/Vn)) HE
+ KstochH]l[O,Tn]A_’YB (B(7 A_’YUTL) - B(? A_’YV”)) HE(W)

< QHUn - VnHE

Since 0 < 1, this yields U,, = V,, almost surely.
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IL1) If y4+vp < 1 or v+ v < 1/2 we get similar estimates as in the first case. Here
we have the opportunity that the parameter 7' is still in play. (However, observe that if
one of the parameter sums satisfies 7 + vr = 1 or v + yp = 1/2, then we still need the
smallness assumption on LpKge; + L Ksioch, where these constants now might depend on
T'). Therefore, we only consider the case v+ vr < 1 and v + v < 1/2 here. Let L and L7

be the same mappings as in I.1), but this time we define as the fixed point space
E, := Lp(Q; LP(U; L0,k])), k€]0,T].

Then, of course, L7: E,, — Ey is still well-defined by Proposition 3.2.12, and Propositions
3.3.1 and 3.4.1. And by these results we also obtain constants cget, Cstoch > 0 such that

ILY(Y) = LY(2)|| 5, < et AT (F(LATY) = F(,ATZ)) |,
N CstochKl/z—v—wBHA—vB (B(-, A7Y) — B(-vA—WZ))HEH(ZZ)
< Caet LERTF|Y = Z| |, + cstoan e P T Y = Z)| g,

=0R)Y = Z| &

where 0(k) := caet LER' ™77 + csoenLpk”’> =7, In this case, we can choose k € [0, 7]
small enough such that 6(x) < 1, or in other words L7: E,, — E, is a contraction. Then
we get a unique fixed point Y € E,, and X; := A77Y] is the unique mild (r, p, ¢) solution
of (3.2) on [0, k]. Restricted on this interval the first part of this proof can now be repeated

in the exact same way giving us for one thing the a-priori estimate

1A X1, < CONA+ 201l 8 (117

and A7X; € LY(Q; LP(U; L9]0, k])) constructed as in part 1.2) is the unique mild (0, p, q)
solution if zg € LO(€2, Fo; DY (v — /q)). Before we continue, we want to remark that the
constant C'(k) of the a-priori estimate, derived as in the first part, depends on the Lipschitz
constants Ly and Lp. For later reference, we want to point out that this is not necessary
in this case. By Proposition 3.2.12, and Propositions 3.3.1 and 3.4.1 we obtain a constant
C > 0 such that

A" X, = [ L7(AYX)]| 5,
< Cllzoll r(qupet (o170 + (KaetCra 777 + Koo Cps'* 778 ) (1 + | AV X|5,)

= CHxOHLT(Q;Dﬁl(y—l/q)) +c(k) + c(w) A X ]|, -

We may choose x even a little bit smaller as above, such that

C(’i) = KdetCFﬁl_,y_’YF + KstochCBl‘ﬁl/Q_’y_’YB <L
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Then the estimate above leads to

CVc(k
147X 15, < T2+ Bolar g o)

I1.2) In the next step, we extend the solutions found in II.1) on some interval [0, ] to the
next interval [k, 2k]. If we continue to do this procedure finitely many times, we will finally
get a solution on the whole interval [0, T]. Let g := X1(k) € LO(Q, F; DY (v — /q)) and
define

F(s,¢(s)) = F(s + r,¢(s)),  B"(s,0(s)) := B(s + &, 6(s)),

as well as

BK(S) = (55(5))%&1 = (ﬁn(s + ﬁ) - /Bn(/i))neN‘

Then F* and B* still satisfy (HF) and (HB) on [0, k] with the same constants as before.
Also, 8% is a sequence of independent Brownian motions adapted to the filtration F* =
(Fi)ez0 = (Feqn)t>0. If we replace g by zo, F' by F*, B by B®, 8 by 8%, and F by F*
in our fixed point operators L and LY we can construct an (r,p, q) solution X on [0, k] as

before. Then we define

Xo(t) := X4(t) fort € [0,x],

Xo(t) := X(t — k) fort e [k, 2k|

The process X3 is then an element of Es,, which also satisfies Xo(t) = X;(t) = L(X1)(t) =
L(X3)(t) for t € [0,x] and
Xo(t) = X(t — k) = L(X)(t — k)

t—kK

t—k . .
= e Ay + / el=r=9ARR (s X (s))ds + / e~ =9ABR (s X (5)) dB%(s)
0 0

= ef(t*R)AeaniEo + e(tﬁ)A/ ei(ﬁis)AF(Sv Xl(s)) ds
0

+g=(mm4 / T B, X, (5)) dB(s) + / AR (s, (s — ) ds
0 K
t
+ / e =9 B(s, X (s — ) dB(s)
= etz + / " e~ D4R (s, Xo(s)) ds + / K e "IAB(s, Xs(s)) dB(s)
0 0

+ / t e =IAR (s, Xo(s)) ds + / t e =4 B(s, Xo(s)) dB(s)

K

= L(X2)(t), t € [k, 2K],
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i.e. X is mild (0, p, q) solution on [0, 2x]. Iterating this till we reach [0,7] we get a mild
(0,p, q) solution X. In the next part of the proof we will show that this solution is indeed
unique. So let Z € LY(%; LP(U; L9]0,T])) be another solution. By the uniqueness result
on [0, k] we have X ) = Z|[o,x], in particular X (k) = Z(x) almost surely. By uniqueness
on the interval [k, 2k] we then obtain that the mild solutions X ||, o, and Z|j;; o, are equal
almost surely. Again, iterating this finitely many times, we get X = Z on [0, T]. It remains
to check the a-priori estimate in this case for the whole interval. We recall that by I1.1) we

have

147X B < C(R)(A + llzoll 0028 (y-17)-

In the following theorem we will show that

XN rseqo.01:0% (-7 < CA A+ [2oll r (0,08 (y—170))>

in particular,

X ) 000 (v 17y < C A+ Noll L pt (3 -174)))-

Using X (k) as the new initial value for X on [k, 2k], we obtain in the same way

A7 X |, < CQU+ X ()| Lr (008 (- 1/0))) < C(1+ 1zl Lr ;08 (y—17a))-

Repeating this till we arrive at the interval [0, 7], this implies the claim. O

REMARK 3.5.8.

a) In the case v > 1, in particular in the very important case v = 1, Proposition 3.5.6
and Theorem 3.5.7 imply that (3.2) has a unique strong (r, p, ¢) solution X satisfying
the estimates of Theorem 3.5.7.

b) We want to remark, that in the case of v+ vr < 1 and v + vp < 1/2, £%-sectoriality
and a stronger assumption on the initial value (e.g. xog € D(A}) almost surely) would

suffice to obtain similar results.

Now that we have found our solution we want to prove higher regularity properties. Here
we benefit highly from the ’'regularity swapping results’ we proved for deterministic and

stochastic convolutions.

THEOREM 3.5.9 (Regularity). Under the assumptions of the previous theorem the
mild (r,p,q) solution X of (3.2) satisfies the following regularity properties:

A)7°X € LY(Q; LP(U; W40, T))), o €[0,12), o <.



148 Stochastic Evolution Equations

In particular,
X € Lg(; O([0, T]; DY, (v — Y/a))),
and if ¢ > 2 we have
AYOX € LY(Q; LP(U5 67700, 7)), o € (Yo, Y/2), o <.
If zg € L (2, Fo; fou (v — q)) for some r € (1,00), we find a constant C' > 0 such that
142~ X e @urr wsweso,ryyy < O+ 2ol propg () 0 €10,Y2), 0 <,

HXHLT(Q;C([O,T];foV(’yfl/q))) <C@+ ”330||U(Q;Dﬁfu(vfl/q)))’

HAZ_UXHLT(Q;LP(U;CU—l/Q[(),T])) <C(l+ HxOHLT(Q;foV(y—l/q)))a o€ (Ya,1/2), 0 <7, ¢>2.

Moreover, in the case of y+vp < 1l and y+vp < Y2 let e, :== (1 —v—~vr) A (Y2—~v—7B).
Then we have for each € € [0,e) and zg € L°(, Fo; DY (v + ¢ — 1/q)) the estimate

AYTETOX € LY LP(U; W400,T))), o €1[0,1/2), 0 < +e.
In particular,

X € Lg(2;C([0,T); DY, (v + £ — a))),
Al X € L%(Q;LP(U;C"A/‘Z[O,T])), o€ (Yq,1/2), 0 <vy+e, qg>2.

And if xg € L™ (82, Fo; foy (v 4+ e —1/q)) for some r € (1,00) we have for o <y +¢

1A= X L @szr iwosiorn) < Cr(L+ [@oll r@ipgt (142-yap)» @ € 10,7/2),
||X||L1"(Q;C([0,T];foy(7+s—1/q))) <Cp(l+ HxO||L”(Q;Df4qy(’7+5*1/q)))’

HAZJFE_UXHLr(Q;Lp(U;co—l/q[o,T])) <Cr(1+ ”xoHLT(Q;foV(yJ,-g—l/q)))a o€ (Yo, 1/2), ¢> 2.

PROOF. Without loss of generality let v = 0, and let X be the unique mild (r,p, q)
solution of (3.2). Then by Proposition 3.2.12, 3.3.9, 3.4.10 and the a-priori estimate of the
previous theorem the following estimates hold
A7 X Lr e ,weafor))) = A7 LX) L sze (0sweafo,1]))
< Clzoll praupts () + K Cr(1+ A" X | o wizao )
+ K O+ 1A X || 1o wspafo )

<C(1+ HxOHLr(Q;D"Afz (r=1/a)))-
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Now if v+ vp < 1 and v + v < !/2, choose any ¢ € [0,e,). Then similar calculations as
above using Proposition 3.2.12, and Propositions 3.3.2 and 3.4.3 lead to

1A= X @y @sweago,my) = 1A LX) | (spe sweapp )
< Clleoll 08 (r4e—17a)) + A CpT e (1 4 AT X (@ Le (iLaj0,11))
+ P CBT P72 (14 AT X | (e (uizafoa))
< Or(L+ llzoll o ;08 (ve—1/a)))-
If v < 1/2, Theorem 2.5.9 implies that
XUz @coming -y S 1A X er@sre@w;zato, ) + 1X |l ;e wvao ry)
<C(1+ HxOHLT(Q;Df(’yfl/q)))‘

If v > 1/2 we use ||- ||Dg‘1(7—1/q) ~ HAVf’B'HDtAq (5—1/,) for some B < 1/2 and the same argument
as above. The Holder regularity results are a direct consequence of the Sobolev regularity
and the appropriate Sobolev embedding. The first statements for the cases r = 0 follow

by applying these estimates to X on each set I';, as in the previous proof. ([

REMARK 3.5.10.

a) As a consequence, if v+ vyr < 1 and v+ v < 1/2, besides losing the smallness
condition on our constants we also get some additional regularity for our solutions.

More precisely, for each € € [0, A (1/2 — 1/¢)) we obtain

HAZ*l/qXHLT(Q;LP(U;CE[O,T])) < CT(1 + on”LT(Q;DQIV(W-i-a—I/q)))'
Observe that this is always possible if ¢ > 2.

b) In general, we cannot assume this type of continuity for the case ¢ = 2. On L?(R%)

consider the equation
d
AX(t) = $AX(H)dt+ > 0, X (t)dBa(t), X(0) = xo.
n=1

For zg € W12(R9), the function

X(t,u) =zo(u+B(%)), tel[0,T], uel,

is the (unique) weak solution of this equation. To see this, let ¢ € D(3A) = W22(R?).
Then, by Itd’s formula
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Therefore,

(X(8),0) = / zo(u)p(u — (1)) du

Rd

d t t
— g =3 /0 (0, Ouip(- — B(5))) dBu(s) + } /0 (0, (Ap)(- — B(s))) ds

d t t
=) + Y / (OnX(3), 0) dBu(s) + L / (X(s), Ag) ds.

Moreover, in this situation one actually knows that Kgocn = % (see [82, Section 5.3]).

Therefore, we can apply Theorem 3.5.7 to this equation for v = 1/2 and v = 0. Note
that (—A) fulfills assumption (HA) of Hypothesis 3.5.4 by Section 2.3. In particular,
this implies that our solution is unique. However, for d > 2 the function X is in

general not continuous.
Finally, we collect results regarding continuous dependence of the initial values.

THEOREM 3.5.11 (Continuous dependence of data). Under the assumptions of The-
orem 3.5.7, we find a constant C' > 0 such that for all xg,yo € L"(Q, Fo; DY (v — 1/q)) and

the corresponding solutions X and Y the following statements hold
IAZ(X = V)l r(@szew:zafor)y) < Cllwo = yoll et (v-1/a)):
142~ (X = V)l r@Lrwweapor)) < Cllzo = vollpriptg (-1y0> @ € [0,7/2);
X =Yl @seqorip (r-ya < Cllzo = vollzr@ing (v-1/a)
[A) 7 (X — Y)”LT(Q;LP(U;CG—l/Q[(LT])) < Cllwo — yOHLT(Q;foV(W—l/q))7 o € (Yq,1/2),

for o <~ and q > 2 in the last estimate.

PROOF. Without loss of generality, let » = 0. By Theorem 3.5.7 and Theorem 3.2.9 we

obtain for L = L, in the first case
IAY(X = Y)lzr@spr@:zap.ry) = IAY(L(X) = LY)) + Ae™ O (ug — v0)l| 10 1r (v 2.000,17))
< QHA’Y(X - Y)HL"(Q;LP(U;LQ[O,T])) + CHxO - yOHLT(Q;fo(’Y_Vq)y

which is equivalent to

C
[AY(X = YY) r(@sze:Lajo,m) < T 120 = yoll L0 Dt (- 170

In the second case we proceed similarly as in the previous theorem. By Proposition 3.2.12
and Theorems 3.3.9, 3.4.10 and the first result we have
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[AT(X = Y) | r e w:weajo,))
= AT (L(X) — L(Y)) + A7~ O%(ug — v0) || 1 (10 weao. 7))
< Col| AY(X = Y) | @sLewssap ) + Cllzo = voll r @0 (v—1/a)

< Cllwo = yoll ;089 (y=174))-

The last statements finally follow from the second one and Theorem 2.5.9 or Sobolev’s

embedding theorem, respectively. O

REMARK 3.5.12. In many applications it happens that the operator A will depend on
w € Q. In this case, one has to adjust the assumption of A in Hypothesis 3.5.4 appropriately.

More precisely, we will assume that

(HA (w)) Assumption on the operator A: Each operator A(w): D C LP(U) — LP(U),
defined on the same domain D(A(w)) = D is closed. The operator function A: Q —
B(D, LP(U)) is strongly Fp-measurable and there exists a v > 0 such that for each w € Q
the operator v + A(w) has an R4-bounded H*(X,) calculus for some a € (0,7/2), where
a and v are independent of w € ). Moreover, there is a constant C' > 0 (independent of
w € Q) such that

1f (v + Al w;Lepor1)) < Cliflloc,a for all f € H™(Xa).

Since the R4-bounded H* calculus is 'independent’ of w € €2, the relevant Theorems 2.5.9,
3.3.9, and 3.4.10, as well as Propositions 3.3.1, 3.3.2, 3.4.1, and 3.4.3 all remain true in this
case. Therefore, the results of Theorems 3.5.7, 3.5.9, and 3.5.11 follow in exactly the same

way.

3.5.3 The Time-dependent Case

In this subsection we consider the stochastic partial differential equation
(3.3) dX; + A(t) X, dt = F(t, Xy)dt + B(t, Xy)dB:, Xo = zo.

The difference to (3.2) is that we consider instead of the operator A the operator family
(A(t))tefo,r]- In this case we will assume the following hypothesis.

HYPOTHESIS 3.5.13. Let r € {0} U (1,00), p € (1,00), q € [2,00), and 7,vF, VB € R.
Let (HF), (HB) and (Hz) from Hypothesis 3.5.4 be satisfied. Instead of (HA) we assume

(HA(t)) Assumptions on the operator A: The map A: Qx[0,7] — B(D(A(0)), LP(U))
is strongly measurable and adapted to F. Each operator A(w,t): D(A(0)) — LP(U), de-
fined on the same domain, is closed, invertible (i.e. 0 € p(A(t,w))) and has an R,-bounded
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H>(X,) calculus for some a € (0,7/2), where « is independent of w and t. There is a
constant C' > 0 (independent of w and t) such that

£ (Alw, ) B(ze@:Lajo,m)) < Cllflloc,e  for all f € H®(5,).

Moreover, we assume the following continuity property: Let 0 = tg < ... < ty =T
such that for all € > 0 there is a 6 > 0 such that for all w € Q, n € {1,..., N} and all
$,t € [tn—1,tn] and ¢: Q x [0,T] — D(A(0)7) satistying A(0)7¢ € LP(U; L]0, T]) we have
for |t — s| < 0 the estimate

[4(0) 77 (A()e() = A 1ovr:agsyy < EIAO) Gl Lo Lags -

In this setting it is not possible to define a mild solution of (3.3) since the evolution family
e=5AM of A(t) becomes Fi-measurable and therefore e=*4(®) B(s, X (s)) is no longer F,-
measurable for s € [0,7]. Due to this loss of adaptedness we would need an anticipating
integral, which we do not consider here (see [62] for more information in this direction).

But we can extend the definition of a strong solution to this case.

DEFINITION 3.5.14. Let Hypothesis 3.5.13 be satisfied. Then we call a process X : Q2 x
[0,T] — D(A(0)7) a strong (r,p,q) solution of (3.3) with respect to the filtration F if

a) X is measurable, X € D(A(0)) almost surely, and A(0)"X € Ly(2; LP(U; L9]0,T1));

b) X solves the equation (3.3) almost surely, i.e.
t t ¢
X(t) +/ A(s)X(s)ds =z —I—/ F(s,X(s))ds+ / B(s, X (s))dB(s).
0 0 0

In the statement of the main result in this section we need the following constants

KQX [0,T] —

Qx[0,T
dot : sup Kyet(w,t) and Kst:C[h (- sup Kstocn(w, ).

(w,t)€Qx[0,T] (w,t)€Q%[0,T

where the constants Kget(w,t) and Kgtoen(w,t) are from Theorems 3.3.9 and 3.4.10 with

respect to A(w,t) for any fixed (w,t) € Q x [0,T]. Then Kc?ef 01T and Kg:c[}?’ﬂ are finite

since we assumed that the constants appearing in the H* calculus were uniform with
respect to (w,t) €  x [0, 7.

THEOREM 3.5.15. Let Hypothesis 3.5.13 be satisfied, and v > 1, vp,vyg € R such

that v+ vyp € [0,1] and v+ yp € [0,1/2]. If the constants ngf[o’ﬂ and K0T and the

stoch
Lipschitz constants Ly and Lp satisfy

Qx[0,T] Qx1[0,T]
det + LBK

stoch

LK <1,

in the case of y+~yp = 1 or v+~ = 1/2, then the assertions of Theorems 3.5.7, 3.5.9, and
3.5.11 remain true for (3.3).
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PROOF. Let 0 := LpK T 4 g0 T]

d > 0 such that foralln € {1,..., N}, all s,t € [t,—1,t,], and all ¢: Q x [ T] — D(A(0)7)
satisfying A(0)Y¢ € LP(U; L]0, T]) we have

1(1-0
€ [0,1), and for ¢ := ;éx[m%] we choose a

JA©) 7 (AC)SC) ~ A | owspageag) < ENAOT Gl ourzafesy

if |t —s| < 0. Then fix 0 = sop < ... < sy = T such that {to,...,tn} is a subset of
{s0,...,sm} and |y, — sm—1] < 0 for each m € {1,...,M}. On [0,s;] we define the map
Fao: Qx[0,T] x D(A(0)Y) — D(A(0)~"F) by

Faolt, o(t) == F(t, 6(t)) — A)p(t) + A(0)¢(t)-

Then

|A0) ™" (Fa0(-,¢) — Faol(-,1)) HLP(U;Lq[o s1))
< A (F(0) = FC O powrzapp,sngy + 14O (AC) = A0) (6 = )| o7, papo.en
< LpllA(0)"(¢ — )l owzao,s1)) + € A0) (¢ = )| 2o Lap0,5))
= (Lr +2)[[A(0)" (¢ — )| Lo La(0,51))

i.e. the map Fy o satisfies hypothesis (HF) with F' replaced by F4 and L replaced by
Lp,, = Lp+e. Since Lp, , satisfies

Lryo Koo "+ LpKgoa " =0+ KM = 50 +1) <1,

we can now apply Theorem 3.5.7 to this case (with a particular attention to Remark 3.5.8
and Remark 3.5.12), and get a unique strong (r, p, ¢) solution X on [0, s1] of (3.2) satisfying
A(0)YX € Lyp(Q; LP(U; L20, 51])), i.e

X(t)+/0 A(O)X(s)ds:$o+/0 FA70(3,X($))dS—|—/O B(s, X(s))dB(s),

which is equivalent to

t t
/ A(s dS—CL’o+/ F(s,X(s))ds—}—/ B(s, X(s))dB(s),
0 0
i.e. X is the unique strong (r,p,q) solution of (3.3) on [0, s;]. Additionally, all the state-

ments of Theorems 3.5.9 and 3.5.11 remain true for X on the interval [0, s1].

Now we continue by induction. If the statements of Theorem 3.5.7, 3.5.9, and 3.5.11 are
true for equation (3.3) on the interval [0, s,,,] for some m € {1,..., M —1}, then we consider

the problem

AY (1) + A(sm)Y (£) dt = F52 (8, Y (1)) dt + B (£, Y (1) dB{™,  Y(0) = X (sm),
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on the interval [0, $;m+1 — sm], where Fy7 (t,¢) := F(t + sm, ) — A(t + sm)¢ + A(sm) 9,
B®*™(s,¢) = B(s + $m, ¢), and B°™ is the family of shifted Brownian motions adapted to
the shifted filtration F*™ as considered in the proof of part I1.2) of Theorem 3.5.7. Exactly
as before, we get a unique strong (r,p, q) solution Y € Lp(Q2; LP(U; L0, sppt1 — Sm))) of
(3.3) having all the properties of Theorem 3.5.7, 3.5.9, and 3.5.11. Then we extend the
solution X on [0, s,,,] to the interval [0, s,,+1] by taking

X)) =Y({t—5m), t€EI[Sm,Smt1]-

X is then an element of Ly (2; LP(U; LY]0, $pm+1])). Calculations similarly to the the proof
of Theorem 3.5.7 and above, and the induction hypothesis imply that X is a strong (r, p, q)
solution of (3.3) on [0, $;+1]. Also the results of Theorems 3.5.9 and 3.5.11 are now true
on the interval [0, s,,,] and [Sy,, Sm+1], and by the triangle inequality also on [0, s;,41]. We
continue by showing that X is also the unique solution of (3.3) on [0, S;41]. For this let
Z € Ly(Q; LP(U; L90, spy41])) be another strong (7, p, ¢) solution of (3.3). The induction
hypothesis then implies that X = Z in Ly (Q; LP(U; L0, s,,])), especially X (sm) = Z(sp).

Since Z is a strong solution, one can now easily show that

Z(t):Z(sm)—/ A(s)Z(s)ds—i—/ F(s,Z(s))ds—l—/ B(s, Z(s))dB(s),

i.e. Z is a strong solution on [Sp, Sm+1] of (3.3) with initial value Z(sy,) = X (sn,). Since
the solution is also unique on [S;,, S;m+1] by the construction process above, we obtain
X =Zin Lyp(Q; LP(U; LY, sm+1])). Together with the uniqueness on [0, s,,,] this implies
X =Z on Lp(Q; LP(U; LY0, smm41]))- O

3.5.4 The Locally Lipschitz Case

In this subsection we extend the results of the global Lipschitz case to the case where the
nonlinearities F' and B only satisfy local Lipschitz conditions. Therefore, we change the

assumptions of Hypothesis 3.5.4 to the following

HYPOTHESIS 3.5.16. Let » € {0} U (1,00), p € (1,00), ¢ € [2,00), ¢ > 0, and
v, vr,vB € R. Let (HA(w)) and (Hzo) from Hypothesis 3.5.4 and Remark 3.5.12 be
satisfied. Assumption (HF) and (HB) are replaced by

(HF)joc Assumptions on the nonlinearity F: The function F': Q x [0,T] x D(A}) —
D(A, ") given by F = Fy + F; is strongly measurable. Moreover,

a) for all t € [0,7] and z € D(A}) the random variable w — Fj(w,t,x) is strongly

Fi-measurable;
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b)

(globally Lipschitz part) there are constants Lg,, Lg,, Cp, > 0 such that for all
w € Qand ¢,¢: [0,T] — D(A)) satisfying A}, AJy € LP(U; L1[0,T)),

|47 (Fi(w, - ¢) = Fi(w, 1)) HLP(U;L‘?[O,T]) < Li || A%(0 - w)HLP(U;Lq[&T])
+ Lp || A7 (¢ — 1) HLP(U;L‘J[QT])

and
| A F(w, - Ol ow;zap) < Cr (14 1ALl Lo Lafo,m)))-

for all ¢ € [0,7] and = € D(A)) the random variable w — Fh(w,t,z) is strongly

Fi-measurable;

(locally Lipschitz part) for all R > 0 there is a constant Lg, g > 0 such that for all
w € Qand ¢,9: [0,T] = D(A}) satistying || AJ¢| ow;rapo,))> A2V Lo Lapo. ) < R
it holds that

|4, 754 (Fy(w, -, ¢) — Fa(w, -, 1)) HLp(U;Lq[o,T}) < Lp, rIIAY (& — V)| e aj0,1))-

Moreover, we assume that there is a constant Cg, o > 0 such that for all w € £ we

have

|4, 7% Fy(w, -, )| oo (v 1900,77) < CRy0-

(HB)joc Assumptions on the nonlinearity B: The function B: Q x [0,T] x N x
D(A)) — D(A, %) given by B = By + By is strongly measurable. Moreover,

a)

b)

for all t € [0,7] and z € D(A}) the random variable w — Bj(w,t,x) is strongly

Fi-measurable;

(globally Lipschitz part) there are constants Lp,, L By, Cp, > 0 such that for all
w e Qand ¢,¢: [0,T] — D(A)) satisfying Ao, AJy € LP(U; L1[0,T]) we have

HA;w (Bl (W, ¢) = Bi(w,, w) HLP(U;L‘Z([O,T};@)) < L, HAZ(Q5 B w)HLP(U;L‘Z[O,T])
+ Lp, HA;WB (¢ — 1) HLP(U;L‘?[O,T])

and
A, "5 B(w, - &)l Lr;Lao,m)ie2)) < Coy (1 + A Lo Lapo,))-

for all t € [0,7] and z € D(A}) the random variable w — Bs(w,t,x) is strongly

Fi-measurable;
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d) (locally Lipschitz part) for all R > 0 there is a constant Lp, g > 0 such that for all
w e Qand ¢,9: [0,T] = D(A)) satisfying | AJ¢|| v Laj0,17)> A2 Lo 0:Laj0,17) < R
it holds that

| A, 75+ (Ba(w, -, ¢) — Ba(w, -, v)) HLP(U;L‘I[O,T}) < L, rl|AY(¢ — V)| Le(v;Laf0,1))-

Moreover, we assume that there is a constant Cp, o > 0 such that for all w € €2 we

have
||A;’YB+€B2(W7 ) O)HLP(U;Lq[O,T}) < CB2,0'

REMARK 3.5.17. We note that we assume here F' and B to be a little bit more regular
in the locally Lipschitz case. The reason for that is that we can not assume any smallness
condition for Kyt L r + KstochL,gr and simultaneously let R — co. In most cases this

will be not reasonable. We need another parameter making this constant small enough.

As we know from the deterministic case, locally Lipschitz conditions do, in general, not
lead to global solutions, i.e. there is the possibility that the solution might only exist on
some limited time interval. In the case of stochastic evolution equations this explosion time
will depend on each w € 2. Therefore, we introduce the following notion. If 7: Q — [0, 7]

is a stopping time, then

QA x1[0,7):={(w,t) €2 x[0,T]: t €[0,7(w))},
and similarly

Qx[0,7] :=={(w,t) € 2 x[0,T]: t €[0,7(w)]}

This leads to the following definition of local solutions.

DEFINITION 3.5.18. Let Hypothesis 3.5.16 be satisfied and 7:  — [0,7] be a stop-

ping time.

a) We call a process X: Q x [0,7) — D(A}) a local mild (r,p,q) solution of (3.2) with
respect to the filtration F if there exists a sequence of increasing stopping times

Tn: Q —[0,7], n € N, with lim,,_,o, 7, = 7 almost surely, such that

1) X is measurable and 1 . 1A X € Li(Q; LP(U; L9[0, T1));
2) X solves the equation

X(t) = e My + /Ot e*(t*S)AF(s,X(s)) ds + /Ot e*(t*S)AB(s,X(s)) dB(s)

almost surely on [0, 7,,] for each n € N.
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b) We call a process X: Q x [0,7) — D(A)) a local strong (r,p,q) solution of (3.2)
with respect to the filtration [F if there exists a sequence of increasing stopping times

Tn: Q= [0,T], n € N, with lim,,_,o 7, = 7 almost surely, such that

1) X is measurable, X (t) € D(A) almost surely, and 1o A} X € L (% LP(U; L9[0, T1));

2) X solves the equation (3.2) almost surely on [0, 7;,] for each n € N.

c) We call a local solution X : Qx[0,7) = D(A}) mazimal on [0, T} if for every stopping
time 7': Q — [0,7] and every other local solution V': Q x [0,7') — D(A}) we have
7>7"and U =V on [0,7).

d) We call a local solution X: Q x [0,7) — D(A)) a global solution if 7 = T almost
surely and A} X € L(; LP(U; L1)0,TY)).

e) We say that 7 is an explosion time if for almost all w € Q with 7(w) < T we have

limsup || L1094} X || o ;e j0,17) = 0©-
t—7(w)

We should remark that 7(w) = T is an explosion time by definition. However, in this

case the blow up condition does not have to be true.

Motivated by this definition, we define the space Ly (§; LP(U;L4[0,7))) as the space of
functions ¢ € Ly(§; LP(U; L2]0,T])) for which we have an increasing sequence of stop-
ping times 7,: @ — [0,7], n € N, with lim, o 7, = 7 almost surely and 1 ¢ €
L(Q; LP(U; L90,T7)). Similarly, we make the same definition for spaces like

Lp(Q; LP(U; W210,7))) and  Lp(Q2; LP(U; C*[0,7))).
Note that, if 7,,(w) = T for almost all w € 2 and n large enough, then
Ly (€ LP(U; L0, 7))) = Lp(Q; LP(U; L0, T1)).
In the following we will only consider local and global mild (7, p, q) solutions. It can be

shown similarly to Proposition 3.5.6 that mild and strong solutions are still equivalent if

we assume v > 1. In this situation we have the following result.

THEOREM 3.5.19. Let Hypothesis 3.5.16 be satisfied and let yp,vp < 0 such that
v+ vr €0,1] and v+ yp € [0,1/2]. Further assume that

LFleet + LBletoch < 17

Then the following assertions hold true:
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a) Ifxy € LO(Q,]:O;foU (v — 1/q)) then (3.2) has a unique maximal local mild (0, p, q)
solution (X (t))e[o,) satisfying

AYX € Ly(Q; LP(U; L0, 7))).

b) If additionally to a) we assume that Fy and By satisfy linear growth conditions, i.e.

1A, 7 Fy(w, -, )l o napor)) < Cr(1+ 1AL Lo, Lafo, 1))
14,757 Bo(w, -, )| Lo La(o,r1e2)) < Ca(1+ 1Al Lo Lofo,r))

for some constants Cr,, Cp, > 0 independent of w € ), then the solution X in a) is
a global mild (0, p, q) solution.

c) If additionally to a) and b) we have xo € L" (2, Fo; ngu (v—1/q)) for somer € (1,00),
then the global solution X of b) satisfies

AJX € Lp(Q; LP(U; L0, T1))
and
1A X N e urwizaory) < CA ol r@upgy -1/

Before turning to the proof of the theorem we will show the following lemma about local

uniqueness.

LEMMA 3.5.20. Under the assumptions of Theorem 3.5.19 let X1: Q x [0,71) — D(A})
and Xo: Q x [0,72) — D(A}) be local mild (0,p,q) solutions of (3.2) with initial values

x0,1 and xg 2. Then on the set Qg := {x01 = xo2} we almost surely have

Xl ‘ [O,Tl/\Tz) = XQ’[O,’Tl/\TQ)'

Moreover, if 71 is an explosion time for Xy then almost surely on g we have 71 > o. If
both 1 and 19 are explosion times for X1 and X, respectively, then almost surely on )

we have 11 = 7 and X1 = Xs.

PROOF. This is a light modification of [71, Lemma 5.3] (see also [81, Lemma 8.2]).
Let (T1n)nen and (72,,)nen be the sequences of increasing stopping times for 71 and 7,

respectively, as required in the definition. Then define

pra =T Anf{t € [0,T]: | gAY X1l Lo saj0,7) = 70}
pan = To Anf{t € [0, T]: |10 A} Xoll Lo w;Lapp.ry) > 7},

and pp := p1n A p2n, n € N.
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Let n be fixed for a while. Since the set )y is Fy measurable and p, is adapted to F, we
have by Proposition 1.3.13

H]IQOX[Oan]AZ(Xl N X2)‘ L7 (Q;LP(U;L9[0,T1))
- H]IQOX[O,PTL]L7 (]lﬂoX[O,pn] A)(Xq1 - X2))‘
<L (Lagujo,pn] AZ(X1 — X))

LT (Q;LP(U;L2[0,17)))

Lrm(Q;LP(U;L2[0,T]))
S C(TL,T)H]IQ()X[OJ)”] AZ(Xl — XQ)‘

L'r'(Q;LP(U;Lq[OyT}))

for some constant C(n,T") having the property limyp_,o C'(n,T) < 1 (see the proof of Theo-
rem 3.5.19 below). For T” small enough, we obtain that To,x[o,5,]42 X1 = Loy x[0,p,] A2 X2
in LL(Q; LP(U; L70,7"])). Similar as in the proof of Theorem 3.5.7 we can extend this

equality to the whole interval [0, T] by induction. Therefore, we obtain
1o, X1(t) = Lo, Xa(t)

almost surely on the set {t < p,,} for arbitrary n € N. By passing n — oo we finally get
1o, X1(t) = Lo, Xa(t)

on the set {t < 7 AT}

Now let 71 be an explosion time and assume that 7 (w) < 72(w) for some w € Qy. Then
we can find an integer n € N such that 71(w) < p2n(w), but X;(w,t) = Xo(w,t) for
0 <t <pipti1(w) < 7i(w). This implies

n+1=|1y, A X1(W)| Lo@;Lapr)) = |L0ms11 A0 X2 (W) Lo La10,1))

< 0,00, A3 X2 (@) 0 1 900,77) = 74

which is a contradiction. If both stopping times are explosion times, we obtain by the

previous part that 71 = 7 almost surely on €2g. Therefore, X7 = X5 on . O

PROOF (of Theorem 3.5.19). Without loss of generality, we assume that v = 0.
Moreover, for the sake of simplicity, we only consider the case F' = F5 and B = By. The
general case then follows as a combination of this case and Theorem 3.5.7. The following

proof contains ideas of [71].

a) Let E := LP(U; L?[0,T]). We start with a small observation. For N € N we define the

function

N .

Rn(9) == {

Then, for [[A7¢| g, [A7¢|p < N we trivially have |A7(Ry(¢)—Rn(¥))|g = [[A7(¢0—4)| &-
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If |A7¢||lg < N and ||[A"Y||g > N we use that

AV(Ry (@) — Ry ()) = AV(6 — ) + (1 = ) ATy

to obtain

|47 (R () — Rv()lz < 1476 ¥l + | (1 — ) A7
— [ 47(6 - ¥)llz + |AWlls - N
< 2476 — ) .

Finally, in the case that ||[A7¢||g > N and ||[A"¢||g > N we have

N N N
Rvt9) = B () = g @~ O g~ Tl
_ N NOA - A7)
el Y T el Al

This then leads to

IAY(Ry(6) = Rv ()l < [A7(6 = )& + |47l 5 — |47 6] ]
<2[[A7(¢ =)l

Therefore, we obtain in any case |AY(Rn(¢) — Rn(¥))||e < 2||A7(¢ — ¢)| . Having this

at hand, we define the functions

Fn(w,t,¢) := F(w,t,Rn(¢)) and By(w,t,¢) := B(w,t, Ry(¢)).

By assumptions (HF)j,. and (HB)j,. we then obtain

| A7 (Fy(w, -, ¢) — Fx(w, - ¥)) ||z < Ll A (Ry(¢) — Ry () |e
<2LpN|AY (¢ =)k,

and similarly

A= Fy(w, - @)|le < |[AT" e (Fy(w, -, ¢) — Fn(w, -, 0))|| 5 + [[A777 Y Fy(w, -, 0)| e
<2LpN||A"||E + Crp,
< Crn(1+|A7¢|R)

with no restriction on the norms of A¥¢ or A%y. Similar results hold for By in place
of Fy. Hence, Fy and By satisfy the assumptions (HF) and (HB) of Hypothesis 3.5.4
with Lipschitz constants LF = 2Lp N, LB = 2Lp N, linear growth constants CF = CFN,
C’B = CB,N, and Yp = yp — &, Y = 7B — €. Note that v +7p < 1 and v+ < 1/2, so
we do not need any smallness assumption on our constants. By Theorem 3.5.7 it follows
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that there exists a unique mild (0, p, ¢) solution X of the modified equation (3.2) (with

nonlinearities Fiy and By ) satisfying
A" Xy € LY(Q; LP(U; L0, T))).

In particular, Xy is a solution of the original equation (3.2) on the restricted interval

[0, 7], where
TN((U) =TA inf{t S [O,T]I H]l[o,t]Aﬂ/XN(W)HE > N}, w € Q.

By Lemma 3.5.20 we then have Xy = Xjs on [0,75 A 7as] for M < N. In particular,

v < 7N Since (7n(w))nen is a bounded and increasing sequence, we can define

T(w) == lim 7y(w), w €,
N—o00
and X (w,t) := Xy (w,t) for t € [0,7n(w)]. By definition, A7X € L(Q; LP(U; L4[0, 7)),
and X is a local mild (0, p, ¢) solution. Uniqueness follows in the same way as in the proof
of Theorem 3.5.7, part 1.2). X is also maximal, since 7 is an explosion time. In fact, if
T(w) < T, then

limsup [[1jp g A" X (w)||g > limsup |1 7, @) A" X (w)| < limsupn = occ.
t—7(w) n—o0 n—o0

b) We define for any fixed § > 0 the set

Qs := {H»’UOHDQ"(WA/Q) <4},

and x5 = lLo,xo, which is an element of L%(Q,]:O;foy(fy — 1/q)) for some r € (1,00).
Similar as above, we obtain for each § > 0 a local mild (r,p,q) solution X satisfying
AYX? € LE(Q; LP(U; L9]0,7%))) for some stopping time 7°. On the set (s, the uniqueness
of the solution X found in a) implies that X % = X and 7% = 7 almost surely. Moreover,

since we additionally assume linear growth conditions, the definition of Fy and By implies

sup AT Fy(w, -, ¢) e < Cr(l+ A7) ),
S

sup AT By (w, - ¢)|e < Ca(1+ A7) ).
S

Now observe that in the case of yp + v < 1 and Ap + v < 1/2 the constant C' of the
a-priori estimate can be chosen independent of the Lipschitz constants. In particular, by

the property above, it is independent of N. Then we obtain for (7x)nen as in a)

P({rn < T} x Q5) =P({|[A7 XNl = N} x Q) < N "E|1o, A XN |5
S NTTCT(1 A [[wo,s

LT'(Q;DQZ(’Y—I/q)))T — O as N — OQ.
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This implies

P({r < T} x Q) = P({ lin 70 < T} x O5) = P({sup 7 < T} x %)

P(ﬂ {rn < T} x (25) = lim P({ry < T} x Q5) =0,
neN

i.e. 7 =T almost surely on each set {25. This implies that X is a global solution.

¢) Moreover, if we have zg € L"(Q, Fo; DY (7 —1/q)), then we do not need any construction
involving the sets Qs in part b). Then, the same a-priori estimate applied to each X and

Fatou’s lemma yield

147 X | (@) < liminf [AYX N[ 2rp) < O+ l[2oll 10,08 (-174)))- O

REMARK 3.5.21. By restricting the solution X of the previous theorem on each interval
Loy, NV € N, it immediately follows that the regularity results of Theorem 3.5.9 stay true
for r = 0 up to the random time 7. In particular, under the assumptions of b) (r = 0)
and/or ¢) (r € (1,00)) we obtain the corresponding results of Theorem 3.5.9 on the whole

time interval [0, T7].



Chapter 4

Applications to Stochastic Partial

Differential Equations

In this chapter we apply the theory developed in Chapter 3 to stochastic PDE’s. In
contrast to existing results, we achieve stronger regularity results with respect to time
simply because the corresponding norms are now inside of the other norms. Although
the assumptions we made in the abstract theory might be more restrictive than usual, we
will see that in many concrete cases they still hold. The following examples are chosen to
illustrate different aspects of our regularity theory. Other combinations of nonlinearities
and operators are of course possible. We also would like to point out that the theory
we developed is quite new. Since we change the ’space-time’ order of the usual regularity
theory, we do not have the extensive research basis of the existing literature, which connects
the abstract theory to partial differential equations. Nevertheless, this also means that

there is still a lot of potential for further research.

4.1 Bounded Generators

Let us start with the case of a bounded generator A on LP(U), where (U, X, 1) is an arbitrary
o-finite measure space. Even in this case we have to make some additional assumptions on

A. We consider the equation
(4.1) dX(t)+ AX(t)dt = F(t,X(t))dt + B(t, X(t))dB(t), Xo= xo,
with the following assumptions for A, F', B, and zg.

HYPOTHESIS 4.1.1. Let r € {0} U (1,00), p € (1,00), and ¢ € [2,00).

(HA) Assumptions on the operator: The linear operator A: LP(U) — LP(U) is
bounded and has a bounded extension AX" € B(LP(U; L?(0,TY)).
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(HF) Assumptions on the nonlinearity F: The function F': Q x [0,T] x LP(U) —
LP(U) is strongly measurable, adapted to F, and is L9-Lipschitz continuous and of linear
growth, i.e. there exist constants Ly, Cr > 0 such that for all w € Q and ¢,¢: [0,T] —
LP(U) satisfying ¢, € LP(U; L1]0,T]), we have

HF(W, 5 0) — Fl(w, -,w)HLp(U;Lq[O,TD < LFH¢ - ¢HLp(U;Lf1[0,T])

and
1F(w, - )l rw;rapry) < Cr(1+ 9]l Lo, Lajo,r)))-

(HB) Assumptions on the nonlinearity B: The function B: Qx [0, T] xNx LP(U) —
LP(U) is strongly measurable, adapted to F, and is also L?-Lipschitz continuous and
of linear growth, i.e. there exist constants Lp, Cp > 0 such that for all w € Q and
¢, [0,T] — LP(U) satistying ¢, ¢ € LP(U; L1[0,T)),

HB(W, ¢) — B(w, 'ﬂ/’)HLp(U;Lq([o,T};ﬁ)) < LBH¢ o dJHL?’(U;LQ[O,T])

and
| B(w, -, &) Lo ;Lao,mze2)) < C(1+ (|0l Le;naj0,7))-

(Hzp) Assumptions on the initial value zo: The initial value xzo: Q@ — LP(U) is

strongly Fg-measurable.

Then we obtain the following results.

THEOREM 4.1.2. Under the assumptions of Hypothesis 4.1.1, we obtain for each xg €
L"(Q, Fo; LP(U)) a unique strong and mild (r, p, q) solution X : Q2 x [0,T] — LP(U) of (4.1)
in Ly(€%; LP(U; L9[0,TY))). Moreover, X has a version satisfying

X € Lp(Sy; LP(U; W240,T])), o €[0,1/2),
X € Ly(Q; LP(U; C°~Y1[0,T))), o € [Yq,1/2), if ¢ > 2,

with corresponding a-priori estimates

1 X zr ;e ;weapor))) < C(L+ |lzollrszey)), o € [0,1/2),

1
||X||LT(Q;LP(U;C’G—I/Q[(],T])) < 0(1 + H$0||LT(Q;LP(U)))> OIS [1/‘17 1/2)7

in the case r € (1,00).
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PROOF. Since A" is bounded, we have D(A") = LP(U) for all n € N, and the function
F:Qx[0,T] x LP(U) = LP(U), F(w,t,¢) = —A"¢ + F(w,t,¢),

is L7 Lipschitz continuous. In particular, F and B satisfy assumptions (HF) and (HB) of
Hypothesis 3.5.4. Therefore, it suffices to consider the case A = 0, which clearly satisfies
Hypothesis (HA). Since we can choose v € R as large as we want to, Theorems 3.5.7, 3.5.9,
and 3.5.11 (see also Proposition 3.5.6 and Remark 3.5.8), imply the stated results. (]

REMARK 4.1.3. There are several situations where A has a bounded extension for
every space L1[0,T], e.g. for ¢ € [2,00) (or in a larger interval). One important example
is the case of a positive operator A. Here, A always has a bounded extension A" (see
also Remark 2.4.1). Since we can choose ¢ arbitrarily large, this leads to solutions in
L5(Q; LP(U; CA0,T7)) for all A € [0,1/2). Another example is the Hilbert transform H on
LP(R), which has a vector-valued bounded extension H” if and only if E is a UMD space.
In particular, this includes every L?[0,T] space for g € (1, 00).

4.2 Stochastic Heat Equation

Let U C R? be an open domain. Then we consider the stochastic heat equation with

Dirichlet boundary conditions

dX (t,u) — kALX (t,u)dt = f(t,u, X(t,u))dt + i by (t, u, X (t,w)) dBn(t),

n=1
(4.2) X(t,u) =0, wedl,tel0,T],
X(0,u) =xo(u), wuweUl.

for some thermal diffusivity x > 0. On the space LP(U) for some p € (1,00) we let A, be
the Dirichlet Laplacian with domain D(A,). If, e.g., U is a bounded domain with bound-
ary OU € C?, then we can identify D(A,) = Wol’p(U) NW2P(U) (cf. [20, (A.44)]). In this

situation we make the following assumptions about f, b,, n € N, and xg.

HYPOTHESIS 4.2.1. Let r € {0} U (1,00), p € (1,00), and ¢q € (2, 00).

(Hfb) Assumptions on the nonlinearities f,b,: The functions f,b,: Q x [0,7] x U x
R — R, n € N, are measurable, adapted to F, and are globally Lipschitz continuous, i.e.
there exist constants Ly, Ly, > 0 such that for allw € Q,t € [0,7], w € U, and 2,y € R



166 Applications to Stochastic Partial Differential Equations

we have
’f(CU,t, U,CU) - f(w7t7u7y)’ S Lf‘.f(} - y‘7
|bn(w7t7u7x) - bn(w7t7u7y)’ < Lbn|x - y‘
Moreover,
oo 1/2
Ly=(Y13) " <o,
n=1
and

1F (w, t,u, 0)ller wizg, 0.1 < O

[b(w, t,u,0) Hqu>(U;L‘(1t)([0,T];e2)) < Gy,
for all w € Q and constants Cy, C, > 0 independent of w.

(Hzp) Assumptions on the initial value zo: The initial value xzo: Q@ — LP(U) is

strongly Fg-measurable.

Under these assumptions the abstract regularity theory of Section 3.5 leads to the following

results.

THEOREM 4.2.2. Let Hypothesis 4.2.1 be satisfied, U be an open domain in R¢, and
n € [0,1/2). For xy € L"(Q2, Fo; DfiAp)(n —1/q)) there exists a unique mild (r,p, q) solution
X:Qx[0,T] = D((—A)") of (4.2) in L (S LP(U; LI[0, T))) satisfying
(=Ap)"77X € Lg(Q; LP(U; W0, TT)), o € [0,7],
X € Ly(:C([0,T); D s (n = Y/a))),
(—Ap)" X € Ly( LP(U; €70, T))), o € (Ya, 1),

and having the following a-priori estimates

[(=8p)" " X[ Lr (e weapor)) < CL+ 2ol pruper  (n=17a))> @ € [0,7],

(=Ap)

HX||LT(Q;C([0,T];D5‘1AP)(n—l/q))) <O+ on”LT(Q;DEEAZ))(n—l/q)))’

H(_AP)TFUXHLT(Q;LP(U;C"J/‘?[O,TD) <O+ Hl’oHLT(Q;foaw(n—l/q)))’ o € (a1,

in the case r € (1,00).

PROOF. We check the assumptions of Hypothesis 3.5.4. By Section 2.3, the Dirichlet
Laplacian —A, has an R,-bounded H> calculus in LP(U) for all p,q € (1,00). This
implies (HA). To model f and b,, n € N, we define for w € Q, t € [0,T], u € U, and
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¢ € LP(U; L0, T))

F(wv t (;S(t))(u) = f(w7 t,u, (;5(75)),
B(w,t,n,¢(t))(u) := by (w,t,u,p(t)), neN.

Then the pointwise estimates of Hypothesis 4.2.1 imply

1E(0) = F( ) eenapo,r) < Lille — ¥l oe@,Lapo ),

[e’e] 1/2
1B(,6) = B0 lswsmsqomyey < || (30 1,16 - o)
n=1

LP(UsLa[0,T])
= Lyll¢ — ¥l r(w;Laj0,17)5

as well as

IFC @iy < IFC6) = FC Ol wrwiaaioy +I1FC Ol rwizapory
< Lylléll o ;zapo,m)) + C
< (Ly vV Cp) (1 + Il o pao,m))
1B O)lrw:zapr)) < 1B(s @) = B, 0)llow:zaqoryezy) + 1B 0)l Lo wizao.ryey)
< Lollll e s Lapo,ry) + Co
< (Lo Vv C) (1 + 16l o szoo.n)

for all ¢,¢ € LP(U;L%0,T]). These calculations finally show (HF) and (HB) for vp =
v = v = 0. Now the claim follows from Theorems 3.5.7 and 3.5.9, where in the latter we

may choose € = 7. O

REMARK 4.2.3.

a) If we assume that the Lipschitz constants L; and L are small enough, we can also

include the maximal regularity case n = 1/2 by Theorem 3.5.7.

b) Assuming that U C R? satisfies an interior cone condition (see [1, Definition 4.6]),
Example A b) of Section 2.3 implies that the Laplace operator with Neumann bound-
ary conditions has an R,-bounded H calculus. Therefore, the results of Theorem

4.2.2 also hold for the Neumann Laplacian.

¢) If U C R?is bounded domain with C2? boundary, then the estimates imply that
X € Li(Q; H2*=2)2(7; W0, 1)), o € [0,7),

where H*P(U; L1]0,T]), a > 0, are the Bessel potential spaces (cf. [76]). To see this,
observe that (—Aﬁq) has property BIP, which yields

D((—=ALy1=9) = [LP(U; L9)0, T]), D(— AL,
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by [77, Theorem 1.15.3]. Now Example 2.4.7 and [46, Theorem 5.93] further lead to

H(_Azgq)n_gfHLP(U;Lq[QT}) ~ |l g2m-ore@;rapo,ry,  f € H21=9)P (U L9[0, T)).

We conclude with a comparison to other results in the literature.

DISCUSSION 4.2.4. In [49], Jentzen and Rockner considered the same equation (4.2)
in the Hilbert space setting L?(U) for U = (0,1)¢, and assuming a particular structure of
the functions b,, n € N (see equation (32) in [49]). More precisely, they assumed that

bn(w,t,u,a:) =V Hnb(uu x)gn(u)7 w € Q7 te [07T]) u € U7 T e Rv

for a globally Lipschitz function b: U xR — R (in both variables), and sequences (pin)nen C
[O’ OO), (gn)neN - LQ(U) Satisfying

sup [|gnllco@y <00 and Y pnllgnllgs ) < o0, 8 € (0,1].
neN neN

As aresult they obtain for each initial value zo € C?(U) C D((—Ap)"_l/q) C qu—Ap) (n—1/q)

a unique mild solution X satisfying

X e ([0, T); L' (s W2=202(U))), o € [0, A1/,

for r > 2 and n € [0, W). This means that the regularity of the coefficients (g )nen

improves the regularity in space, at least for § € (0,1/2].

In our case, we obtain for a bounded domain U C R? with C? boundary and § = 0 (or,

more generally, coefficients in L>°(U)) the estimate

X € Ly(Q; H2=)(U; ¢?[0,T))), o € [0,7),

for n € [0,1/2), p € (1,00), and r € (1,00) by choosing ¢ sufficiently large. This means that
our theory leads to pointwise Holder continuity. More precisely, for allmost every (fixed)
point in space, the path ¢ — X(¢,u) is Holder continuous. Besides having a stronger
estimate on a general domain U and for a larger class of initial values, we also include the
cases r € (1,2) and p # 2. Note that Jentzen and Rockner can consider the borderline case
o = 1/2 because the Holder regularity is true for the moments of the solution X and not

the solution itself (see also Remark 6.5 in [9]).
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4.3 Parabolic Equations on R?

In this section we consider on U = R? the equation

3) dX (t,u) + A(w) X (t,u)dt = f(t,u, X (t,u))dt + i b (t, u, X (t,u)) dBn(t),
. n=1

X(0,u) = zo(u), ueRY

where

Alw,u) = Z o (w, u)D*

ja|<2m

is an elliptic differential operator of order 2m in non-divergence form, m € N, and with
bounded coefficients a, € L>®(Q x R?, C) for |a| < 2m. Let A, be the realization of v+ A
in LP(RY) with domain D(A,) = W?™P(R%). The spectral shift v > 0 will be introduced
later to guarantee that A, has an R4-bounded H* calculus. Then we make the following

additional assumptions about the nonlinearities f and b,,, and the initial value xg.

HYPOTHESIS 4.3.1. Let r € {0} U (1,00), p € (1,00), and ¢ € [2,00).

(Ha) Assumptions on the coefficients: Let a,: Q x R? — C be Fy ® Bga-measurable.

Furthermore, let

ae € L®(Q; BUC(RY)), |a| = 2m,
e € L®(Q x RY), |af < 2m,

satisfying
max [|aa(w, o = max [aa(w, )]|e + sup a0 (w, u) — ag(w,v)| _ M, weq,
|a|=2m |a|=2m wtv h(|u - 1}|) B

where M > 0 is independent of w € Q and h: Ry — R, is a modulus of continuity. That
is, an increasing function which is continuous in 0 with ~(0) = 0 and A(t) > 0, and satisfies
h(2t) < ch(t), t > 0 (see [2, Section 4]). As an example, this assumption is satisfied if the
coefficiants aq, |a| = 2m, are Holder continuous with uniform Holder norm independent of

w € Q. We also assume that
1
/ t R dt < oo,
0

and there exist an angle o € (0,7/2) and ¢ > 0 such that for all w € Q

Z aa(w7u)£aeza and ’ Z aa(wvu)éa 25|£|2m

lo|=2m |or|=2m

for all u, & € R%.
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(Hf) Assumptions on the nonlinearity f: The function f: Qx [0, T]xRIxW?2™P(RY) —
L? (]Rd) is measurable and adapted, and there exist constants Ly, C'y > 0 such that for all
w € Qand ¢,¢: [0,T] — W2mP(R?) satisfying ¢, € W2mP(RY; L0, T]) we have

Hf(“% 5 ¢) = flw, "w)HLP(]Rd;Lq[O,T}) < LfH¢ - ¢HW2WP(]REI;LQ[0,T])

and

1f(w, &) Lowa;nao,r)y < Cr(1+ (|0llwempwa;Lao,r))-

(Hb) Assumptions on the nonlinearities b,: The function b,: Q x [0,7] x R¢ x
W2mp(RY) — W™P(R?) is measurable and adapted for each n € N, and for b := (b, )nen
there exist constants Ly, Cp > 0 such that for all ¢,+: [0,7] — W?™P(RY) satisfying
¢, € W2mP(R%; L]0, T]) we have

[b(w, . ¢) = b(w, '71/})HWmaP(]Rd;LQ([O,T];éQ)) < Lyfl¢ - wHWQmm(Rd;LQ[O,T])

and

16w, s @) lwm.pwesago,r1e2y) < Co(L+ [|@llw2m.n e Lafo,r)))-

2

(Hzp) Assumptions on the initial value zg: Let z: Q — Fj m_Qm/q’p(]Rd) be strongly

JFo-measurable.

Since the nonlinearity f is allowed to lose regularity of order 1 and b of order 1/2, this is
an example of the maximal regularity case. In particular, for m = 1, this setting includes
nonlinearities b of gradient type. As a consequence of the abstract theory of Chapter 3 we

have the following results.

THEOREM 4.3.2. Assume Hypothesis 4.3.1 and
Ldeet + Lsttoch <1

Then for each initial value xy € L”(Q,}"O;Fgm_m/q’p(Rd)) equation (4.3) has a unique
mild and strong (r,p,q) solution X: Q x [0,T] — W2™P(R?) in LE(Q; LP(U; L4[0,TY)).
Additionally, the solution X satisfies

X € Ly(Q; H*™=) (R, W90, 7)), o € [0,1/2).

In particular

X € LE(Q; C([0, T]; F2m="/2P(RY))),
X € Lp(Q; H¥ =) (RE, ¢~ Y1[0,T))), o € (Yq,1/2), if ¢ > 2.
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Moreover, if r € (1,00), the solution X has the properties

HXHLT(Q;HQm(l—U)(]Rd;WUvq[O,T])) < C(l + HxOHLr(Q Fqu—Qm/qy:D(Rd)))7 = [07 1/2)7

3

)

HXHL"(Q;C([O,T};Fqu_2m/q’p(Rd))) (1 + ”ZEOHLT(Q Fqu_Qm/va(Rd)))7

<C
g C(l + ||x0||L’"(Q F;m—Qm/%P(Rd)))? g E (1/(], 1/2)7 q > 2

)

10 L (s r2m-o) (oo 1/apo, 17

PROOF. We check the conditions of Hypothesis 3.5.4. By Example B of Section 2.3
there exist values pg € (1,p A ¢) and v > 0 such that the differential operator v + A in
non-divergence form has an Rgz-bounded H* calculus for all p,q € (po,o0). In particular,
this is true for p = p and ¢ = q. The coefficiants of A are chosen in such a way that the
constants of the Ry-bounded H> calculus are independent of w € Q (see [56, Theorem
3.1] and in particular [2, Theorem 9.6]). Moreover, by Example 2.4.7 we have D(AL") =
W2mp(R%; 4]0, T]). Hence, [77, Theorem 1.15.3] and [46, Theorem 5.93] imply

D((A")?) = [LP(R% L9[0, T), D(AL")lg = [LP(R%; L0, 7)), W2™P(R%; L9[0, T))]y

= H>™9P(RY; 1900, ).

We also have H¥P(RY; L0, T]) = WhP(R?; LI0,T]), k € N (see [46]), in particular it
holds that D((AL")"/2) = W™ (R¢; L0, T]). By Example 2.4.7 we additionally get

D, (1= Ya) = = en ().

With these results in mind we define F': Q x [0,7] x D(4,) — LP(R%) and B: Q x [0,T] x
N x D(A,) — D(A)*) by

F(w,t,x)(u) = f(w,t,u,z) and B(w,t,n,z)(u):= by(w,t, u,x)

for each w € Q, t € [0,7], v € R% and x € D(A,). Then F and B clearly satisfy
assumptions (HF) and (HB) for v = 1, v = 0, and v = —1/2. Thus, the results finally
follow from Theorems 3.5.7 and 3.5.9. O

REMARK 4.3.3.

a) For m = 1, coefficients independent of €2, and without lower order terms, we also

could have assumed that
ao € VMORY), |a| =2.

In this case, Example B of Section 2.3 implies that we can choose py € (1,p A q)
and v > 0 such that v + A also has an Rg-bounded H> calculus on LP(R?) for all

ﬁa E]VE (p()a OO)
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b) Instead of elliptic operators in non-divergence form, also operators in divergence form
could have been considered. In this case, the assumptions on the coefficients can be

further weakened (see also Section 2.3 and 4.4).

With a slight modification of Hypothesis 4.3.1 the non-autonomous case can also be treated.

More precisely, we consider the equation

dX(t,u) + A(t,u) X (t,u)dt = f(t,u, X (¢t,u))dt + i by (t,u, X (t,u))dBn(t),

n=1

(4.4)
X(0,u) =zo(u), ue Rda

for the differential operator

Alw, t,u) = Z ao(w,t,u)D*

lal<2m

with time-dependent coefficients a,, |a| < 2m, m € N. In this case we have to change (Ha)

of Hypothesis 4.3.1 to the following;:

(Ha(t)) Assumptions on the coefficients: Let a,: Q x [0,T] x R? — C be measurable
and adapted, and let

ae € L®(Q; BUC(RY C[0,T))), |of =2m,
ae € L®(Q x R C0,T)), |af < 2m.

satisfying

max |laa(w,t,)lcm <M, weQ, tel0,T],

|a|=2m

where M > 0 is independent of (w,t) € Q x [0,7] and h: Ry — R, is a modulus of

continuity with
1
/ t ()2 dt < oo,
0

We also assume that there exist o € (0,7/2) and ¢ > 0 such that for all w € 2 and all
te[0,7T)

Z ao(w,t,u)f* € ¥, and ‘ Z ao(w, t,u)e| > 8|¢[*™
|a|=2m |a|=2m

for all u,& € R,

Then the realization A,(t) of v+ A(t) in LP(U) with time-independent domain D(A,(t)) =
W2mP(RY) has the same properties as the operator A, in Theorem 4.3.2 for each fixed
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t € [0,T]. In particular, A,(¢) has an R,-bounded H*> calculus on LP(R?) for each p,q €
(1,00) and the constants of the R,-boundend H* calculus are independent of w € §2 and
t € [0,7]. To apply Theorem 3.5.15 instead of Theorem 3.5.7 we still have to show a
continuity property of A,(-). For this purpose let € > 0. By assumption, the function

a:[0,T] = C, a(t)= Z aq(w,t,u)z = Z M(V—i—aa(w,o,u))z,

v+ aq(w,0,u
lo|<2m |lo|<2m a(w,0,u)

is uniformly continuous for each fixed w € Q, u € R, and z € C. Hence, we can find an
n > 0 (independent of w € Q, u € RY, and z € C) such that for s,¢ € [0,T] with [t —s| <7

we obtain

ao(w, t,u) — aq(w, s,u)

a(t) =a(s)| = | >

(v + aq(w,0,u))z

ol <om v+ aq(w,0,u)
<e| 3 v+ aalw,0,u)z|
la<2m

This immediately implies the desired continuity, more precisely, for each s,t € [0,7] with
|t — s| < nand each ¢: [0,7] = D(A,(0)) we have

HAp(')¢(') - Ap(3)¢(')HLp(Rd;Lq[S,tD < 5||Ap(0)¢”LP(Rd;Lq[0,T])-

Then, (HA(t)) of Hypothesis 3.5.13 is satisfied, and by Theorem 3.5.15 we obtain a unique
strong (r,p,q) solution X: Q x [0,T] — W?2™P(RY), having the same properties as in
Theorem 4.3.2.

DISCUSSION 4.3.4. The same problem (4.4) was considered by van Neerven, Veraar,
and Weis in [82, Section 6] (see also [54, Theorem 5.1]). Basically, they assumed the
same assumptions for the differential operator A, but slightly different Lipschitz and linear
growth conditions of the nonlinearities f and b. In contrast to our theory, they choose
Lipschitz conditions with respect to the space norm only and with ¢ € [0,T] fixed. Both
in [82] and here, these conditions were chosen to fit the respective abstract theory. In [82,
Theorem 6.3] the authors obtain a strong solution X : Q x [0, 7] — W?2™P(R?) such that

X € LL(Q x [0, T); W22 (R%)).

Moreover, the solution has trajectories in C'([0, T'; Bgm(l_l/q)’p(Rd)) for r = q € {0}U(2, 00)
and p > 2. In our situation, we obtain a strong (r, p, ¢) solution X : Qx [0, 7] — W?"™P(R%)
satisfying

X € L(S: W*mP(R?; LU0, T1))

for all ¢ € [2,00) and p,r € (1, 00) without any relation of r and ¢q. Without that connection
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of the exponents r and ¢, we can choose ¢ larger to open more possibilities for the time

regularity. In particular, we also have the continuity properties

X € LE(; C([0, T]; F2m( =02 (RY)))
X e Ly(Q; H¥ =) (R, ¢~ Y1[0,T))), for o € (Vq,1/2), ¢ > 2.

The latter is stronger than the one above, since we have pointwise Holder regularity. How-

ever, we also had to assume more restrictive Lipschitz and linear growth conditions.

4.4 Second Order Parabolic Equations on Domains

In this part we investigate regularity properties of second order elliptic equations on an
open domain U C R? with Dirichlet boundary conditions. In contrast to the examples

above, we also include the locally Lipschitz case. More precisely, we consider the problem
dX (t,u) + A(u) X (t,u)dt = f(t,u, X (t,u), VX (t,u))dt

57 bt u, X (8 w), VX (£ 1)) dBa(t),
(4.5) ;

X(t,u)=0, wedl, tel0,T],
X(0,u) =zo(u), uweUl.
Here, A(w,u) is a second order differential operator in divergence form, formally given by

d d
A(w,u) = — Z Dj(a; j(w,u)D;) + Zai(w, w)D; + ag(w,u),

ij=1 i=1

see also Section 2.3. To apply the abstract theory of Chapter 3 we will make the following

assumptions.

HYPOTHESIS 4.4.1. Let r € {0} U (1,00), p € (1,0), and g € [2,00).

(Ha) Assumptions on the coefficients: Let a,: Q x U — R be Fy ® By-measurable.

Furthermore, let
ai7j,ai,a0€L°°(Q><U,R), i,jE{l,...,d},

and assume that the principal part of A satisfies the uniform strong ellipticity condition

d
D aij(w &&= alé? forall § €RY, wel, we

1,j=1
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Denote by A, the realization of A in LP(U), where the domain is given by

D(4,) = W[%’p(U) = {feW?P(U): f=00ndU}
assuming that the boundary of U is smooth.

(Hf) Assumptions on the nonlinearity f: The function f = f; + f2, where fi: Q X
[0,T] x U x RxR? — R and fo: Q x [0,T] x U x R — R, is measurable and adapted.
Moreover, f] is globally Lipschitz continuous and of linear growth, i.e. there exist constants
L¢,Cy > 0 such that

’fl(wataua$av) - fl(wat7uvyaw)’ < Lf1("r - y’ + |U - U}|)
and
Hfl(w7 K "7¢)HL1’(U;LL1[O,T}) < Cfl(l + H¢HLP(U;L‘1[O,T]))

forallw e Q,t€[0,T],u € U, z,y € R, v,w € RY, and ¢ € LP(U; LI[0,T]). Regarding
fo we assume a local Lipschitz condition as well as boundedness at 0. That means, there

exists a constant Cp, > 0, and for each R > 0 there is a constant Ly, g > 0 such that

| folw, t,u,2) = folw, t,u,y)| < Ly, rlz —yl
and
Hfz(w, g "’O)HLP(U;LQ[O,T]) < Cp
forallw e Q, ¢t €[0,T], u € U, and z,y € R satisfying |z|, |y| < R.

(Hb) Assumptions on the nonlinearities b,: For each n € N let b, = b, 1 + by, 2, where
bn1: 2 x[0,T] x U xR xR — R and by2: Q x [0,7] x U x R — R are measurable and
adapted. We also assume that b, is globally Lipschitz continuous and of linear growth,

i.e. there exist constants Ly, ,,Cp, ; > 0 such that
‘bnyl(w,t,u,:c,v) — bml(w,t,u,y,w)‘ < Ly,, (\:U —y|+|v— w\)
and
o021, )| Lorpaoryy < Coun (1 + 101 Lo;Lajo,))

forallwe Q,t€[0,T],uc U, z,y € R, v,wc R and ¢ € LP(U; LI]0,T]). The function
bp2 is assumed to be locally Lipschitz continuous and bounded in 0, i.e. there exists a
constant C, , > 0, and for each R > 0 there is a constant L;, , g > 0 such that

}bm?(wa t,u, SU) - bn,Q(W’ t,u, y)' < Lbn,2,R’x - y|
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and
(PG O)HLP(U;L‘I[O,T]) < Cbno

for all w € Q, t € [0,T], u € U, and z,y € R satisfying |z|, |y| < R. For the sequences

(Lby 1 )nens (Ch, 1 )neNs (L, o, R)nen, and (Ch,, ,)nen we assume that
- 2)"/? S 2\ /2
B 1= (10, ) " < o0 G o= (L1017 <o,
n=1 n=1

e 9 1/2 e 9 1/2
Lipy,r = (Z |Lbn,27R‘ ) <00, Cp, = (Z |Cbn,2‘ ) < 0.
n=1

n=1

(Hzp) Assumptions on the initial value zg: Let zg: Q — Wé’p (U) be strongly Fo-

measurable.
Then we obtain the following result.
THEOREM 4.4.2. Under the assumption of Hypothesis 4.4.1 and

Lfleet + Ly, Kstoen < 1,

we obtain for each xo € L°(Q, Fo; Wé’p(U)) a unique maximal local mild (0, p, q) solution
X:Qx[0,7) = WYEP(U) for (4.5) in LY(%; LP(U; L9]0,7))). Moreover, we have:

1) If we additionally assume that fo and by = (b, 2)nen satisfy the linear growth condi-

tions

| f2(w, s+ D)l LoLapo.r) < Cr(1 + 0l Lowszapom)))s
|b2(w, -, -+ &) | Lo(wsLa(o,r1se2)) < Con (1 + €Ml Lo L970,77))

for all ¢ € LP(U;L?[0,T]) and some constants Cf,,Cy, > 0 independent of w € £,
then the solution X above is a global mild (0, p,q) solution.

2) If, in addition to that, we have xy € L"(Q, Fo; Wll)’p(U)) for some r € (1,00), then
the global solution X of part 1) satisfies

X € Lp(Q WP (U; L9)0, 7))
and
| X | zr @wre@;zap,ryyy < C+ 2ol rwre@y))-

PROOF. We want to apply Theorem 3.5.19 and therefore have to check the condi-
tions of Hypothesis 3.5.16. The assumption on A, is fulfilled by Section 2.3, see Ex-
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ample A. Note that the constants of the R,-bounded H*® calculus only depend on o and
max{||a; j| oo, ||@illoos |a0|loc: 2,7 € {1,...,d}}. Moreover, we have by Example 2.4.7, [77,
Theorem 1.15.3], and [46, Theorem 5.93]

D((AE")V2) = [LP(Us L]0, 7)), WP (U; L[0, )]sy = W5 (U3 L0, T)).
To model the nonlinearities f and b,, we let

F(wat7¢)(u) = Fl(wvta (b)(U) + FQ(w7t7 ¢)(u)
= fl(w7t7u7¢a V(ﬁ) +f2(w7t7u7¢)

and

B((/J, t7 n, Cb)(u) = Bl(wa t? n, ¢)(U) + B2(w7 t7 n, gb)(“)
=bp1(w, t,u, 0, V@) + by 2(w, t, u, d)

forweQ,t€[0,T],uc€U,n€N, and ¢: [0,T] — WIP(U). Then the remark above and
the assumptions of fi and fs lead to

HFl(w7 ) QS) - Fl(w7 "w)HLP(U;L‘I[O,T}) S Lfl (H@b - 1/}HLP(U;LQ[O,T]) + HA;/Q((Z) - ¢)HLP(U;L0[O,T]))7

HFz(W, H0) — Fa(w, -, Q'Z))HLP(U;L‘I[O,T}) < sz,RM) - ¢||LP(U;LQ[0,T])»
and

|1 (w, - ) e szapry) < Cp (1 + 10l Lo :najo,1))
[ F2(w, - 0)l| o zapo.17) < Cf-

Therefore, (HF),. is satisfied for v = 1/2 and v = 0. In almost the same way we can
verify (HB)jo. for B and v = 0. Finally, since z¢ € Wé’p (U) almost surely, Corollary
3.2.10 implies that

o € D(A)*) = DY (1/2—1/q)

Hence, the claim follows from Theorem 3.5.19. ([

We finally compare these results to already existing results in the literature.

DISCUSSION 4.4.3. Similar equations to (4.5) have been considered by many authors
(see e.g. [9, 29, 28, 45, 81, 82]). In [9] Beck and Flandoli investigated the regularity of

weak solutions of

N
dX(t) = div(a(u, ) DX (t)) dt + > bu(DX(£)) dBu(t), X (0) = o,

n=1
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on a regular and bounded domain U C R¢. They assumed globally Lipschitz conti-
nuity of b = (b,)Y_, with a sufficiently small Lipschitz constant and coefficients a €
L>=([0,T); CH(U; R**%)). For each g € W'P(U), p > d, and every weak solution X,
it was proved that X € C*(U x [0,T]) for some o > 0 with probability 1 (see [9, Theorem
1.4]). Existence and uniqueness results were not considered. In the non-autonomous case,

the results of Theorem 4.4.2 lead to a solution X: Q x [0,T] — Wll)’p(U) such that
X € Lg( H' ™2 (U; W20, ), o €[0,1/2).
If we choose ¢ € (1/¢,1/2) and p > ﬁ and use Sobolev’s embedding theorem, we obtain
X € LSy C'72 (U5 7700, T))) € Lg(% C*(U x [0, T1)),

where av = (1 — 20 — d/p) A (6 —1/q) > 0. Therefore, we arrive at the same regularity result
as Beck and Flandoli. In particular, since this result is an implication of our theory, this

means that the stated regularity of X is indeed sharper.

We also want to emphasize that there are some limits of our theory. In [28] Denis, Matoussi,
and Stoica considered equation (4.5) in L>(U) for an arbitrary open domain U C R? of
finite measure and initial values xo € L>°(U). This particular case can not be treated using

our results since L*°(U) is not a UMD space.

4.5 The Deterministic Case

In this section we shortly summarize the case if there are no stochastic terms in the abstract

setting, i.e. if B = 0. In this case we also get new results for the equation
(4.6) X'(t)+AX(t)=F(t,X (), X(0)= .

Assuming the same assumptions as in Hypothesis 3.5.4 for the operator A and the nonlin-

earity F', we obtain in the same way as in Section 3.5.2 the following theorem.

THEOREM 4.5.1 (Deterministic case). Let p,q € (1,00). Let (HA) and (HF) of
Hypothesis 3.5.4 be satisfied, and yp < 0 such that v+ vp € [0,1]. In the case v +vyp =1
we additionally assume that LpK g < 1. Then the following assertions hold true:

a) Existence and uniquenes: If zo € DY (y — 1/q), then (4.6) has a unique mild

solution X satisfying the a-priori estimate

AT X o izao, o)) < O+ ll2oll pes (y—yy))-
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b) Regularity I: For q > 2 the mild solution of a) has the following properties:
A7TOX € LP(U; W40, T]), o €0,1), 0 <n.
In particular,

X € C([()?T];Dﬁ(V - 1/q>),
AX € LP(U;C°770,T)), o€ (Yg,1), 0 <.

In addition to a) we have the following a-priori estimates

1A Xllrwswoapa < CA+ 20l pgy-1y9), @ €10,1), 0 <,
HXHC([O,T];DQI(W—l/q)) <C(1+ HxOHDﬁl(v—l/q))’
147X oy < OO+ loll s yg)e o € (/ar1), 0 <7,
¢) Regularity II: If v + yvp < 1, we have for each ¢ € [0,1 — v — vp) and xy €

DY (v +e = 1/a)

AT X e LP(U;WPI0,T)), o €0,1), 0 <v+e,
X € C([0,T]; DY (v +& — 1/a)),

and
AVTETOX e LP(U; 70, T)), o€ (Yq,1), 0 <7y +e.
satisfying

A7 X | Lo (s weapo,ry) < Cr(1+ ||$0||D§1(«,+€_1/q))7 o€(0,1), o <v+e,

HXHC([O,T];DQJ('y+z—:71/q)) < Cp(l+ ||930||ng(~,+5,1/(1))7

A XN ooty < CT(L+ 2ol pea i), 0 € (Va,1), 0 <y +e.

d) Continuous dependence of data: For initial values z¢,yo € DY (v — 1/q) and the
corresponding solutions X and Y we have
[AY(X = Y)llzr@;Lapo,r) < Cllzo = yoll pes (- /4
[AT7(X = Y) [ o@wiweapory) < Cllzo = vollper g vy, 0 €10,1), 0 <,
”X - Y”C([O,T};Dﬁ](’y—l/q)) < CHxO - yOHDf(’y_l/qy

1A (X =Y Lo sco-vapomyy < Cllzo = ollpgt -1y, 0 € (o 1), 0 <.

Similarly, we obtain the corresponding versions for the time-dependent and locally Lipschitz
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case, and if v > 1 we obtain strong solutions. One should note that the restrictions in the
regularity theorems for values of o, i.e. o < 1/2 (see e.g. Theorem 3.5.9), is only attributed
to the properties of the stochastic convolution, not the deterministic one. This improves
all regularity results to the case 0 < 1. In particular, we obtain a new regularity theory
for deterministic evolution equations in LP spaces with stronger results regarding time

regularity.
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