KIT | KIT-Bibliothek | Impressum | Datenschutz

Comparison of the Holomorphic Embedding Load Flow Method with Established Power Flow Algorithms and a New Hybrid Approach

Sauter, Patrick S.; Braun, Christian A.; Kluwe, Mathias; Hohmann, Sören

Abstract (englisch):

This paper presents the results of a comparison of the well-established power-flow algorithms Gauss-Seidel, Newton-Raphson, Dishonest Newton-Raphson, Decoupled Load Flow, Fast Decoupled Load Flow, DC Power-Flow and the new Holomorphic Embedding Load Flow Method (HELM). The algorithms are assessed using 21 PQ-powerflow test cases with numbers of nodes ranging from 2 to 3120. The focus of the analysis is on the precision of the solutions of the algorithms and the required computation time. The comparison shows some disadvantages of HELM and motivates a new Adaptive Hybrid Approach that combines the Holomorphic Embedding Load Flow Method and iterative algorithms to merge the benefits of both techniques. The Adaptive Hybrid Approach is able to calculate precise solutions for every test case without starting values and is on average faster than the Newton-Raphson method while being more flexible than every other algorithm considered here. It is also shown that the Adaptive Hybrid Approach yields the correct solution like HELM if it exists.

DOI: 10.1109/GreenTech.2017.36
Zitationen: 13
Zugehörige Institution(en) am KIT Institut für Regelungs- und Steuerungssysteme (IRS)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2017
Sprache Englisch
Identifikator ISBN: 978-1-5090-4536-5
KITopen-ID: 1000069891
Erschienen in 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 29-31 March 2017
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 203 - 210
Schlagwörter Load flow analysis, power system simulation, power-flow calculation, Matpower , Mathematical model, Load flow, Iterative methods, Algorithm design and analysis, Newton method, Silicon, Jacobian matrices
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page