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1 Motivation

1.1 Overview

Currently, the focus on using image processing techniques and methods as a powerful analysis
has become quite alluring. Tools are devised in order to develop adequate comprehension of
technical and natural processes and to solve challenging tasks therewith. While manual image
analysis in general delivers good results, it is inadequate in understanding parametric effects
on the outcome and quite hectic when dealing with large datasets containing a diversity of in-
formation. Automatic image analysis in this context is both imperative and challenging for an
efficient and meaningful image analysis. Therefore, the appeal of fulfilling desired goals in im-
age analysis incorporating user-interactive software applications with improved results is all the
more rising. The aim of this doctoral thesis is to introduce a new methodology of automatic
feedback based image analysis routines using feedback concepts. Consequently, developing
user-interactive tools to facilitate time-efficient and improved image analysis is the aim in this
research work. The incorporation of statistical data mining analysis into feedback based image
processing routines is also a subject of investigation. Image pre-processing (shading correction
etc.) and segmentation are integral procedures for eventual image objects classification and other
similar image analysis goals. In comparison to automatic feed-forward methods, feedback based
automatic image normalization, object segmentation, feature calculation and consequent object
type classification have the potential to adapt involved parameters in an iterative and automatic
fashion. Therefore, an optimal parameter set is obtained resulting in an optimal object classifica-
tion based on given a priori knowledge. The automatic feed-forward methods with the manual
feedback is the state-of-the-art. Each image processing step could be handled iteratively through
a feedback to produce optimal parameters for that step. The evaluation criteria for the rectitude
and effectiveness of each procedure as well as a priori knowledge are formulated using fuzzy
logic to induce a range of confidence of included object features and variables.

Image processing has always been the driving technique in order to manipulate and interpret the
acquired images in such a fashion that resulting information could be used in a very efficient
manner. Image processing is a means for automatically extracting the image content, often used
in science (e.g. biological readouts (mouse [157], fish [82], insect [100]) surveying and map-
ping [19], particle accelerator [12] and man-machine interaction [53, 99]) or industry (nutrition
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industry [14, 31], quality supervision [70] or pick-and-place applications [106, 150], an overview
of image processing in industry is given in [88].).

In computer vision applications, image processing routines need to be developed for image
datasets containing a set of similar images. This happens in many real-time acquisition sys-
tems (surveillance camera etc.), lab equipment (high-throughput microscopic imaging etc.) or
offline analysis of big databases containing similar images (objects in satellite images, human
blood cells analysis in laboratory etc.).

Image analysis is done usually by employing different image processing steps in what constitutes
a pipeline a.k.a image processing/analysis pipeline. Each step has a specific function depending
upon the goals of image analysis. Image data riddled with artifacts may require additional pro-
cessing steps. Therefore, first step is the structural design of an image processing pipeline. For
each individual image processing step, algorithms are performed with certain amount of param-
eters. These parameters may be chosen manually or automatically. Consequential, after the
design of image processing pipeline, parameters have to be selected that produce desired out-
come with respect the set targets. The main aim in this research work is to propose exemplary
image processing/analysis pipelines and select the optimal parameters for the employed algo-
rithms automatically. This is proposed to be done on challenging datasets in order to establish
the usefulness of automatic parameter selection through feedback mechanism.

1.2 Related work

A typical workflow of an image processing pipeline consists of different steps and is shown in
Fig. 1.1. Different step involved in an image processing pipeline are:

• Image pre-processing (image normalization, shading correction etc.)

• Image segmentation,

• Feature extraction,

• Feature selection and

• Image object classification.

The most important of the above mentioned steps are handled in detail in the following sections.
As an input raw image, a grayscale image is used. In the first step, image filtering is done in order
to remove background noise and illumination such that it is more convenient to discern objects
from the background scene. In the next step, useful objects in the image are segmented using
various techniques discussed in the following section. Using the segmented objects, features are
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calculated in order to perform some analysis (e.g. classifying object types etc.), based on these
features. Finally, a classifier is used to find the best features that would enable it to differentiate
between different object types.

Figure 1.1: A basic image processing and analysis pipeline (adapted from [93])

1.2.1 Image pre-processing

Digital images are subject to a diversity of unwanted distortions that are inevitably linked to the
acquisition conditions, pre-processing and storage of images. In the realm of image processing
and image analysis, normalization alludes to retrieval of original inherent information (i.e. in-
tensity values) in an image. This is achieved by manipulation of pixel values (i.e. corresponding
image intensity values) in order to obtain a desired range of pixel values satisfying certain de-
sired image processing goals. In case of a single image, objectives of a normalization process,
for one, can be rescaling of pixel values to a desired range while disregarding outliers and noisy
background pixels.

The optimal parameters of an image segmentation procedure are often affected by side effects
(e.g. blurriness, noise, inconsistent background illumination etc.) [114]. These side effects cause
distortions in image intensities, which in turn causes loss of targeted information present in an
image. For instance, microscopic images are often corrupted by erroneous intensity variation on
account of inherent shortcomings of the image formation process. This phenomenon of intensity
variation in literature is described using terms such as shading, intensity inhomogeneity, intensity
non uniformity, bias field and gain field [147, 83]. While manual image analysis maybe less
prone to invalid interpretation of images in presence of such spurious intensity variation effects,
automatic image analysis is likely to get riddled with such effects [144]. Shading is generally
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assumed to be a smooth spatially varying function for 2D images that corrupts intensities of the
imaged objects. In absence of such a shading, image intensities of the imaged objects would be
the same irrespective of the location of imaged objects in an acquired image.

Currently, there are a myriad of shading correction methods on the horizon. Shading can be
roughly categorized as either object-independent or object-dependent [83]. The former is orig-
inated from certain shortcomings in the image acquisition process and is independent of the
imaged object while the latter is caused by imperfectly prepared objects to the acquisition device
such as staining inhomogeneity etc. [147]. Shading correction methods are basically categorized
as prospective and retrospective, depending upon the degree of access to the available informa-
tion related to a given image. Prospective methods are related to calibration and improvement of
image acquisition process, whereas retrospective methods are based exclusively on the informa-
tion present in the acquired image (an a priori is also available sometimes).

Various methods have been proposed in the field of retrospective shading correction methods
using a linear image formation model, consisting of additive and multiplicative shading compo-
nents in an acquired image [83, 115, 144, 147].

Retrospective methods can be simplified by using only one shading component i.e. additive.
Retrospective methods are further divided into several approaches such as filtering, surface fit-
ting, segmentation, histograms and others [147]. In retrospective method, it is assumed that
imaged objects are limited in size and smaller than the scale of background variations, in ad-
dition to background being either darker or lighter than the objects everywhere in the image.
Another retrospective method CIDRE (corrected intensity distributions using regularized energy
minimization) was proposed in [130] that uses both multiplicative and additive noise models in
order to achieve the quality of prospective methods.

In case of filtering, a reliable removal of a shading effect from true image data is only possible
in the case where the spectra of the shading component and true image data are not overlapping.
If this condition does not hold, then the true data is liable to be corrupted by the shading cor-
rection procedure. These techniques are more suited for small scale structured images [83]. On
the other hand, surface fitting methods are parametric methods approximating a smoothly vary-
ing image background by parametric surfaces such as polynomials etc. Background parameters
can be retrospectively estimated either by a manual or an automatic selection of control points
using a least-squares fitting. The optimal parameters can be ascertained by iterative searching in
parametric space and optimizing certain criterion such as squared error or other robust distance
measure between the parametric background and the acquired image [83].

Besides shading correction, several other image pre-processing techniques do exist [54] such as
distribution linearization, spatial digital filtering methods using Fast Fourier Transform (FFT)
or recursive partial differential equations, image subtraction, contrast enhancement etc. These
techniques are designed to improve the feature extraction from a given image and to eliminate
irrelevant intensity values disturbing the image [54]. Image restoration normally alludes to the
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problem of estimating the ideal image from its blurred and noisy rendition [124]. The ultimate
goal is to restore the image to a very usable form devoid of artifacts and noise inherited by
various image acquisition causes. Different approaches for image restoration include criterion-
based (e.g. minimum-norm least square), constraint-optimal (e.g. constraint least square) and
constraint-based (e.g. set theoretic). Additionally, there are other specialized techniques too
such as restoration of images degraded by space-variant blurs [124]. Moreover, there are various
methods used for image denoising (i.e. noise removal) for digital images and a short survey in
terms of comparison is given in [15].

Image deconvolution is the term used when reversing the effects of optical distortions present in
a image due to an imaging instrument is desired. The usual assumption is a perfect optical path
through an imaging instrument convolved with a point spread function (PSF), i.e., a mathematical
description of the distorted pathway of a theoretical point source of light when passed through the
instrument [22]. Practically, the PSF can only be approximated by theoretical calculations [95]
or based on some experimental estimation. Trying different PSFs systematically in order to
estimate it when PSF is not directly given is called blind deconvolution [22]. The most common
examples are Richardson-Lucy deconvolution (iterative algorithm) and the Wiener deconvolution
(non-iterative algorithm).

1.2.2 Image segmentation

Image segmentation is an integral part of image analysis that divides an input image into re-
gions [43]. According to objective evaluation of the segmentation outcome, an image segmenta-
tion procedure can be called as supervised or unsupervised, based on the presence of reference
a priori knowledge [156]. A priori knowledge can be explicit (i.e. based on known objects) or
implicit (i.e. using certain set of rules or examples).

Manual supervised image segmentation performed by humans delivers, in general, good results
as a human brain bridges information known about the image (e.g. noise) with the information
of segments (e.g. segment size and intensity etc.) to obtain a plausible outcome with respect
to the posed problem. However, human image segmentation is downright time-inefficient when
dealing with huge image datasets containing a variety of information.

Automatic supervised image segmentation techniques with manually tuned parameters (e.g.
threshold values etc.) suffer from restrictions in parameters: Basically, the manual tuning seeks
to optimize features like segment size, roundness etc. but the parameters only affect parameters
like brightness threshold, filter size etc. Therefore, the tuning does not directly affect the features
to be optimized.

Image segmentation can be classified based on approaches such as model-based (e.g. based on
spectral distribution etc.) or image-based (e.g. edge-based etc.) [28]. Core problems originating
from an image segmentation procedure are the objective and quantitative evaluation and the
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validity of the obtained results [159]. As opposed to visual perception (i.e. subjective evaluation
of image segmentation process), a supervised image segmentation technique generates results
that are based on an a priori knowledge whereas an unsupervised technique yields an objective
evaluation without using any reference [156].

Different techniques used for image segmentation are thresholding [103], histogram-based [128],
edge detection [17], region growing [126], clustering [105], compression-based, split-and-
merge [133], watershed [146], graph-partitioning [49], active contours [69], partial differential
equation based (i.e fast marching methods [123], active contours [19]), model-based [89], seg-
mentation using sparse pixel classification [25] and many more [101]. The evaluation methods
are given in [62, 145]. There has been a lot of work done too in terms of image segmentation
on biological structures such as cells in [161, 160, 153, 109, 61, 55, 84, 155, 154, 116, 92, 91,
85, 1, 4, 24, 64]. However, the main focus of this work will remain of robust automatic image
segmentation methods based on feedback concepts.

An image segmentation procedure is also affected by side effects of noise, inconsistent back-
ground illumination etc. This effect can be elucidated by a typical example from a biological
image showing numerous cells in different states shown in Fig. 1.2. The image suffers from an
inconsistent background illumination since the background in corners is darker than in the middle
of the image. Computer routines additionally suffer not only from restrictions in the parameters
but also from the combinatorial problem due to an increased number of parameters [7]. Thus, the
optimal parameter set may not be found manually, while the tuning is very time-intensive and
subject to repetitions on the arrival of a new dataset.

1.2.3 Feature extraction and image object classification

In machine learning, image object classification is contained in a broader domain of pattern
recognition (i.e. label assignment to a given input value). In image classification, this assign-
ment problem is exclusively limited to a given set of classes. Precisely speaking, it is the problem
of categorizing a new observation to known set of classes based on a training dataset contain-
ing observations of known class membership. A classifier refers to an algorithm or a concrete
implementation of classification mapping input data to a known category.

A detailed systematic categorization of image object classification methods is given in [86]. In
machine learning, two distinct categories in terms of the availability of a priori for classification
exist [67]:

• supervised : establishing a rule for classifying a new observation into one of the existing
classes given a set of observations

1. parametric
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– Linear Discriminant Analysis (LDA)
– Quadratic Discriminant Analysis (QDA)
– maximum entropy classifier (a.k.a. logistic regression)

2. nonparametric
– decision trees, decision lists
– kernel estimation and k-nearest-neighbor algorithms
– maximum entropy classifier (a.k.a. logistic regression)
– Bayes classifier and Naive Bayes classifier
– neural networks
– Support Vector Machines (SVM)

• unsupervised/clustering : establishing the existence of classes or clusters in the data given
a set of observations

– categorical mixture models
– hierarchical clustering
– k-means clustering
– correlation clustering
– kernel principal component analysis (kernel PCA)

Methods such as deep learning can be both supervised and unsupervised. Similarly, there are
many other existing methods and categories. In supervised methods, there are certain advan-
tages as in error detection by user and corresponding solution finding. Since expert knowledge
is required to train such classifiers, an accurate result is expected. However, such methods are
not useful for big datasets since a lot of input effort and time to train such classifiers is required.
Moreover, it is more laborious to use them for huge variety of different data classes. Conse-
quently, the validation process also becomes very hectic.

On the other hand, unsupervised methods save the time required to specify the data classes
and types looked after in the whole dataset but may require a larger effort and expert skills to
understand the classifier results on a particular dataset. An ad-hoc classifier in this regard is hard
to obtain.

Correctly parametrized pipelines deliver good results on the image dataset they were designed
for.

1.2.4 Goals and performance evaluation

Various tasks and algorithms are normally incorporated in the term ’Image processing’ such as
image normalization, image segmentation, image enhancement etc. Normally, the goal of an
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image processing algorithm is to achieve qualitative and quantitative success in one/all of the
steps described above. For instance, the goal of image segmentation algorithm when applied to
an image should be to deliver targeted segments (i.e. objects containing useful information). The
assumption of successfully extracting an object or region of interest from a particular background
in image processing applications has to be backed up by reasonably successful quantitative evalu-
ations. The rate of success can be assessed by different performance metrics. In order to decipher
meaningfulness out of achieved results, one should define the success rate. A reliable segmen-
tation outcome is hard to obtain without having any prior knowledge of the object or region of
interest that has to be extracted from the scene under consideration. In the presence of a priori
knowledge (i.e. knowledge about segments known or provided before hand in case of image
segmentation), the success rate is the minimization of error between segmentation outcome and
a priori knowledge reference. In the presence of such a reference knowledge, the algorithm is
called to supervised. In case of unsupervised image processing, evaluation of a segmented image
is based on its goodness to match a broad set of characteristics of segmented images as desired
by humans. Both methods described above are quantitative and objective.

Image processing and analysis could both be done in different ways. Image analysis that is done
manually by human observations without using statistical analysis or algorithmic intelligence
produces in general good results. Unfortunately, human is neither sensitive to fine differences in
color intensity nor effective to quantify and average brightness levels among different objects to
be found in an image e.g. manual quantification of cell intensity values in fluorescence micro-
scopic. Moreover, in modern era the amount of data to be handled and processed to extract useful
information is growing exponentially. In addition to that, the information extraction inherent to
an image is getting more and more challenging. Therefore, using such an image analysis is very
time consuming and inadequate in assessing and quantifying human vision capabilities. The time
effort required in large image datasets are not worth a shot. However, auto-quantification of cell
features never refers to straight-forward problems. Thus, automated quantification techniques
are needed to be devised.

Using statistical computing and its algorithmic efficiency, one can analyze images in a much
shorter and intuitive way. By the use of computer algorithms and automatic extraction of in-
formation present in images, the time effort could be reduced and statistically more handy and
appealing information extraction can be achieved. Therefore, a degree of autonomy (i.e. less
human intervention) is induced in the information extraction process. The aim of this algorith-
mic computation based on image processing is to produce automatically an image interpretation
close to the desired goals of information extraction from that particular image. Nonetheless, one
would need certain parameters by changing which the outcome of an image processing routine
is changed.

In order to evaluate the performance of new algorithms in comparison with standard meth-
ods, routines and parameter sets are validated by using benchmark datasets with a clear ground
truth about objects contained in all images. Therefore, numerous benchmark datasets exist (e.g.
datasets used in [44] for benchmarking and validation in biological image segmentation, [119]
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for cell image analysis by using simulated cell populations, [36] for semantic automatic image
annotations using complex scenes, [102] contains large scale benchmark for event recognition
in surveillance videos and many others). In one case, they contain highly complex objects or
background as in large datasets e.g. [27, 52] such as animals and vehicles against a complex
background. Benchmark databases for traffic signs [134], a street scene with pedestrians, a lion
sitting on grass, visual event recognition in videos etc. also exist. They may also include com-
plex rules of evaluation such as face or gesture recognition etc. In other cases, there are sets with
incomplete ground truth 1 such as images containing cells with only the total number of cells as
ground truth without any information of the type and shape of the objects to be segmented.

1.2.5 Applications to biological datasets

A lot of work has been done to date about application of image processing and analysis methods
in various fields. Currently, one of the more eye-catching domains is the application of automatic
image processing algorithms to the field of biology. It has been therefore nowadays, become a
norm to develop sophisticated algorithms for efficient and robust cell detection, segmentation,
classification algorithms for comforting the biologist to interpret different inherent information
usually got from images acquired using a microscope.

The use of machine learning in the analysis of huge microscopic image data has become norm.
A general pipeline used for cell image analysis is akin to one shown in Fig. 1.1. Machine learn-
ing techniques used in an image processing pipeline are now being optimized for large scale
bio-image applications. The long-term target in this regard is to replace many manual analysis
pipelines to help assay development while increasing the processing throughput, accuracy and
efficiency [131].

Different researches related to cell image segmentation, robust feature extraction, classification
of zebrafish embryos, small molecule microarray analysis etc. have already been conducted
and are being furthered to increase robustness and efficiency of new and old image processing
algorithms.

Robust feature extraction algorithms and classification of inhomogeneous datasets using these
algorithms in fields of biological image processing have been discussed in [114]. Side effects
for e.g. different experimenter or time difference etc. affect the outcome of an experiment.
An example of it is a high-throughput screening of zebrafish larvae using image processing by
employing gray scale values, morphological properties etc. Automated image feature extraction
is robust and performed using filter approaches and wrapper approaches for segmentation or for
optimizing extracted features. Wrapper approaches are used to optimize robustness w.r.t. side
effects and quantifies the side effects based on data mining routines. The parameters are then
optimized sequentially to minimize influence of side effects.

1http://www.broadinstitute.org/bbbc/
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Wrapper approaches use the classifier output for adaptation of the parameters to reduce the in-
fluence of side effect through feature extraction and feature selection. These approaches, akin
to feedback based automatic processing, deliver better results but are computationally inten-
sive. The scheme is given in Fig. 1.2. The normalization of the images was performed before
processing them further. Adaptation is done using different normalization procedures for e.g.
normalization based on statistical parameters or quantile values [114].

Figure 1.2: Intended and unintended properties in an image processing pipeline [114]

A similar work related to feature extraction and plausibility check was shown in [13] using small
molecule micro-array images. However, it dealt with image processing challenges based on
background normalization and smart feature extraction without iteratively adapting the image
processing parameters (i.e. filter approach).

1.2.6 Bio-image processing tools and softwares

The use of mathematical formulation and computational power to extract useful information
from image datasets is becoming necessary and challenging. This is achieved using algorithms
and methods developed in diverse fields such as computer vision, image processing, computer
science etc. [20]. Such methods are further developed in such a way that facilitates the develop-
ment of software for acquisition, analysis and visualization of the imaging data. Consideration
of each computational step that biologists face when dealing with images is done in addition to
the inherent challenges and the overall status of available software for bioimage informatics [35].
A vast number of image-analysis algorithms and software packages are recently seen that have
been developed for biological applications. The software packages are distinguishable based on
certain factors i.e. application domains, usability, copyrights, source code and cost and detailed
comparison is given in [148]. Since there are already a large number of open-source and com-
mercial solutions present currently, the choice of applying a proper tool appropriate for a given
task is always tricky [35].
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Currently, there are a number of image processing and data mining softwares available in the
field of cell biology. One way to broadly classify them is according to their free availability.
They can be dichotomized as:

1. Commercial softwares

2. Open-source softwares

Commercial softwares

These softwares are not freely available to be used. Although, there are numerous commercial
softwares available currently, the more widely used ones are given below:

• ACIS - Automated Cellular Image analysis System (ChromaVision Medical Systems, Inc.,
San Juan Capistrano, CA) [6]

• Definiens [26]

• Icy [20]

• Fluoview and ScanR (Olympus)

• Imaris (Bitplane)

• Volocity (PerkinElmer)

• ZEN Lite (Zeiss)

• MATLAB plus Image Processing Toolbox (MathWorks)

Open-source softwares

These softwares are freely available to be used. Some more commonly used open-source soft-
wares are mentioned below:

• BioImage Suite [104]

• BioImageXD [68]

• CellProfiler [18]

• Gait-CAD image processing extension [94, 136]
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• Interactive Learning and Segmentation Toolkit (ILASTIK) [132]

• ImageJ [120]

• Insight Segmentation and Registration Toolkit (ITK) [65]

• Konstanz Information Miner (KNIME) [8]

• Open Microsoft Environment (OME) [46] and OMERO (OME Remote Objects) [2] for
metadata, image storage and basic image processing

• Vaa3D (3D visualization-assisted analysis) [108]

• VisBio [118]

• XPIWIT-An XML Pipeline Wrapper for Insight Toolkit [5]

All the above mentioned softwares have their own advantages and disadvantages. The choice of
the software depends highly upon its usability, adaptability, extendability and efficiency. Combi-
nation of image acquisition and analysis is present in many commercial software packages such
as Metamorph (Molecular Devices), SlideBook (3i), Image-Pro (MediaCybernetics) and Voloc-
ity (Perkin-Elmer). Most of them were commercialized later. Moreover, major microscope com-
panies provide their own software packages, such as AxioVision (Zeiss), NIS-Elements (Nikon),
cellSens and ScanR (Olympus) and ACIS (ChromaVision Medical Systems, Inc.). The commer-
cial image-acquisition packages have an advantage of giving solution to standard image analysis
strategies (acquiring individual images, taking time-lapse series, collecting three-dimensional
(3D) stacks at multiple x-y positions and so on). However, it is nearly impossible for individual
researchers to improve and extend these packages significantly or to make substantial custom
hardware changes to the imaging system. This limits the scope of software usability to within
laboratories that strictly are using hardware from same inventors [35].

Against the backdrop of frequently changing needs and equipment, researchers opt to write their
own code. Software development is favorable in environments such as LabView (National Instru-
ments) and Matlab (Mathworks). They provide interfaces to a certain set of available equipments
and are viable for creating a graphical user interface (GUI). While toolkit environments provide
high flexibility and high suitability to coders, they are less favorable in terms of distribution since
infrastructure back-ends are costly and under-developed distribution channels.

Two open-source software projects, µManager [32] and ScanImage [113], which are developed
and sustained by researchers, are thought to provide tools having more flexibility and greater
usability than the toolkit environments in terms of microscope control. µManager mainly deals
with camera-based imaging in addition to being used for scanning systems. The inclusion of
easy-to-use interface in µManager running as an ImageJ plug-in enables researchers to design
and execute common microscopy functions as well as customized image-acquisition routines.



1 Motivation 20

The solutions are then efficiently distributed as scripts or plug-ins. µManager’s hardware ab-
straction layer can also be used without its ImageJ user interface in environments such as Icy,
Matlab, LabView and Python, in order to include new approaches and methods for the develop-
ment of the software [35].

Although there is no denying the importance of every step in the bioimaging pipeline, the heart
of bioimage informatics is, of course, the images themselves and methods for their analysis
and visualization. These two processes are inextricably linked, and image data derived from
different imaging modalities, applications and experimental designs require a rich diversity of
ever-evolving tools and techniques to extract biologically meaningful quantitative data from dif-
ferent types of microscopy images. A high-level overview of the tools available, related online
resources and cited papers for detailed information are given in [35].

Categorically, there are two types of image analysis tools: 1) Niche image-analysis tools 2) Gen-
eralist image-analysis tools [35]. Former are image-analysis software packages that have been
developed in academia and are formed to strictly accomplish problem-specific tasks e.g. the flu-
orescence association rules for multidimensional insight (FARSIGHT) toolkit, which grew out
of the need to map the glio-vascular substrate of brain tissue surrounding neuroprosthetic de-
vices. The latter type is those that can address more general problems. These software packages
offer greater flexibility to multiple applications due to being typically modular in nature. Some
examples of this category include MetaMorph, Amira (Visage Imaging), Volocity, Imaris (Bit-
plane Scientific Software), NISElements, SlideBook, ImagePro Plus (Media Cybernetics) and
ZEN (Zeiss); usually provided by microscopy companies sold together with imaging instrumen-
tation. There are many open-source image-analysis solutions originally developed to solve the
needs of a particular community but later used or expanded to other purposes, such as BioIm-
ageXD [68], Icy [20], Fiji [120], Vaa3D (see Fig. 1.3) [108], CellProfiler [18], Reconstruct [41],
FluoRender [149], ImageSurfer [40] (see Fig. 1.4(a)), OsiriX [117] and IMOD [78].

Even many generalist image-analysis tools are being developed and utilized for specific projects
although they are usable for most tasks, they still have more emphasis on aspects of image anal-
ysis that are more suitable according to the description of the project for which they were de-
signed for in the first place. For example, Fiji is currently more suitable for analysis of electron
microscopy data, Icy has unique features pertaining to behavioral analysis, cell segmentation,
tracking etc., and Vaa3D is strictly inclined to neurobiology applications (high dimensional im-
age data rendering and analysis) and, together with BioimageXD, offers the best facilities for 3D
visualization. ImageJ (originally called NIH Image) has a marked attribute for being used for
the longest time period and being free always (see Fig. 1.4(b)). Consequently, it is most popular
with hundreds of plug-ins later integrated into it.

CellProfiler is a flexible multipurpose open-source image-analysis tool that has a good track
record in terms of utility and success. It contains highly curated modules that can be arranged
and matched to create customized image analysis pipelines for a variety of biological systems
including cells. It is designed to accommodate high-throughput analysis and is used to address
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Figure 1.3: An example image for the software environment of Vaa3D for reading and displaying an
image stack.

(a) (b)

Figure 1.4: Example images for bio-image analysis software tools where Fig. 1.4 (a) ImageSurfer2 and
(b) ImageJ.

several application areas, including intensity and morphology measurements, phenotype scoring
by machine learning and object tracking.
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Automated biological cell image classification

Automated and robust image classification is indispensable when it comes to dealing with bio-
logical cells. Different manual and automated methods and techniques with respective software
implementation exist ([34], [39], [45], [79], [110], [121], [122], [129]). In the scope of human
cancer cells detection, one needs to put effort in automatically segmenting cells from diverse and
noise-polluted backgrounds in images in order to classify further different cell states as shown in
the Fig. 1.5.

The knowledge of different cell states (i.e. normal, living, dividing, dying cells etc.) would en-
able biologists to acquire useful information about patient status and future actions in a broader
picture. Therefore, the ultimate goal is to use such techniques in order to produce desirable re-
sults in challenging applications such as cell segmentation and cell state classification. Different
methods and their implementations in software tools discussed above perform different tasks on
cell images. Although they produce good results according to the task assigned to them, the
different subclasses of cell states in such a setting is quite eye-catching and a laborious task to
perform. Some commercial softwares are able to classify some cell states in samples containing
human cancer cells but they still are unable to classify certain desirable cell states such as mitotic
(dividing cells) and different subclasses of dying cells. To this date, it remains a challenging
task to have this functionality in a user-friendly software easy to be used by biologists. In the
process, potentially new cell states can also be discovered based on diverse features extracted
using automatic schemes.

A lot of work has also been done on analysis of living and dying (i.e. apoptotic, necrotic) cells
as given in [58, 59, 66, 71, 96, 112, 125]. The assessment of exercise-induced immune cell
apoptosis using morphological image processing was done in [96] using deformable models.
Automatic quantification of apoptosis in animal cell culture using grayscale images and multi-
channel information was done in [112]. The algorithm consisted of a number of morphological
image operators with carefully selected parameters. There has also been work available in the
direction of different cell types classification ([97]). This work employed a software for high-
throughput time-lapse cell imaging in order to detect different cell states i.e. interphase, mitosis,
apoptosis (several cell death phenotypes with supercompacted or fragmented nuclei including,
but not limited to, apoptosis), shape (nuclei of abnormal shape including but not limited to, a high
percentage of binucleated cell) and artifact (containing other objects). The classification was
reported to be 97 % accurate compared with manual annotation. Segmentation was done using
an optimized method of local adaptive thresholding and automatic classification was performed
by supervised machine learning using multiclass Support Vector Machines (SVMs).

In a similar work [98], a computational pipeline based on morphology recognition by supervised
machine learning was used. About 200 features were extracted from each nucleus and used for
classification into one of 16 morphological classes by SVM classifier trained on a set of 3000
manually annotated cells. The classifier, thereby obtained automatically recognized morphologi-
cal changes due to the cell cycle, cell death or other phenotypic changes with an overall accuracy
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Figure 1.5: Different cell types: challenging for an accurate classification

of 87 % [98]. The classes were extended to several subclasses having different morphologies
observed over time. An automated cellular analysis system was proposed in [77] where morpho-
logical changes occurring in transfected HeLa cells were detected and novel genes that induced
mitotic phenotypes were found.

Another work lately [107] presented a population-based modeling approach to quantify dynamic
phenotypes from time-lapse cell imaging assays. The temporal information helps to localize the
timing of events such as cell death, mitotic arrest or quiescence, and to estimate the duration
of processes such as mitosis. 16 nuclear morphologies were grouped into four cellular states
recapitulating the cell cycle: interphase, mitotic, polynucleated and dead. An ordinary differ-
ential equation (ODE) model was used to characterize the dynamic transitions between the four
populations (Fig. 1.6). Recently, large-scale tracking and classification for automatic analysis
of cell migration and proliferation, and experimental optimization of high-throughput screens of
neuroblastoma cells was done in [57] using four different cell classes i.e. interphase, mitosis,
apoptosis and artifact.

The main focus in this research work would be on cell image analysis, since it is quite chal-
lenging against the backdrops of varying image intensities, inherent acquisition noise, shading
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Figure 1.6: HeLa cells image having interphase cells outlined in white, mitotic cells in red caused by
prometaphase arrest, polynucleated in green and dead in blue [107]

phenomena, variety of cell types containing a high range of feature variations. A recent overview
on the advances of cell analysis in terms of cell morphology can be studied in [21]. In [29], anal-
ysis of infected blood cells using morphological operators in addition to watershed segmentation
algorithm was used to detect these cells. They aimed for an improvement on already existing
watershed segmentation seeking better cell separation. Therefore, dataset from human cancer
cells was chosen. The dataset consists of images showing human lung cells (A549) treated with
the anticancer drug cis-platin for 24 hours and representative images were acquired as described
previously in [30]. The dataset has a variety of different cell types to be classified and discussed
in later sections. Another method presented in [60] elucidates correction of segmentation errors
in the automated cell image analysis in time sequence images. It employed a variety of cell track-
ing and segmentation algorithms. Live tracking of dividing cells by use of image processing was
elaborated in [81].

1.3 Open problems

• Selection of parameters play important part in keeping the outcome of image processing
routines closer to desired goals. For the sake of simplicity, assumption of gray level thresh-
old t in a gray scale image that contains round objects in the foreground against a darker
background could be considered in case of image segmentation. The segmentation out-
come based on the selection of t in the presence of reference information would enable
the quantitative objective evaluation of the image processing routine. However, one never
knows the correct value of parameter that would produce the best results (i.e. minimal
error of outcome compared to reference). This is commonly referred to as feed-forward
automatic image processing technique, thereby requiring a new value of t and analyzing
the ensuing results. The optimal value of t may be found out after several iterations of an
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image processing algorithm. This effect is shown in Fig. 1.7.

(a) (b)

(c) (d)

Figure 1.7: Segmentation results using manual selection of parameters involved in an image segmentation
procedure, where Fig. 1.7 (a) Original grayscale image and (b), (c) and (d) show segmented binary images
resulting from different parameter vectors

There are different methods on the horizon using both supervised and unsupervised im-
age analysis techniques. The latter are however subject to interpretation which in turn is
hinged on the problem type and data points class and number to be found. This can be
problematic considering huge amount of data points with diverse classes in addition to
thick overlap of the feature space based on feature extraction. This can produce erroneous
results (e.g. unknown classes, class inseparable by the user etc.) even if the hyperplanes
in the feature space are carefully designed. On the other hand, supervised methods tend
to solve this by carefully feeding the segmentation and classification algorithms with ex-
amples of class types to be found. The supervised techniques that are available are mostly
feed-forward. They can cause problem when introduced to diverse datasets with lot of
background noise and artifacts. The available feedback-based supervised algorithms are
more suited for applications where robustness is of chief importance. However, they are
quite few (e.g. [114]) and also lack in exploiting fore-knowledge of available data points to
be found in a much more intuitive and efficient way. So, adaptation of image processing pa-
rameters is of paramount importance. Mainly, the usual image processing parameters don’t
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deliver robust results when using non-adaptive techniques. And in cases where adaptive
techniques are used, parameter tuning still has the room for refinement.

• Algorithms that are robust to noisy conditions and varying artifact levels (including very
high levels) should be devised. Additionally, they should deliver results automatically in
different datasets i.e. biological, other non-biological datasets with different object features
and classes.

• In order to evaluate the outcome produced by various algorithms using different parame-
ter selection methods, one needs to have a good benchmark dataset. This dataset should
contain ground truth in terms of both the segmentation and the class type of objects in the
scene. Moreover, such a dataset should also contain artifact levels in terms of both artificial
background noise and varying shading levels in order to evaluate the robustness of image
processing pipelines.

• In a challenging environment of cell image analysis, especially human cancer cells, a lot of
cell states are emerging based on the type of investigation which the cells are put under. In
addition to normal healthy and mitotic cells, there are different dying cells (early apoptotic
stage, late apoptotic stage, necrotic etc.). Moreover, the analysis is further complicated by
some cells contained partially condensed DNA or fragmented DNA. To devise a software
solution, that is not only user-interactive and efficient in analysis but also is able to classify
diverse and challenging cell states with acceptable accuracy, is currently becoming a need
of the hour in bio-cell imaging communities.

• A core problem remains to use efficient and completely automatic image processing and
analysis algorithms on challenging datasets (e.g. image containing different human cell
types with noisy background) using abstract a priori knowledge about segments to be
found. Hence, to supervise the image processing algorithms with a well-formulated ab-
stract knowledge, a comprehensive and efficient method is also required.

1.4 Proposals

The image processing algorithms and routines face restrictions in optimal parameter selection
with increasing number of parameters involved and the combinatorial problem lying therein [7].
Thus, the optimal parameter set may not be found manually, while the tuning is very time-
intensive and subject to repetitions on the arrival of a new dataset. In order to produce an optimal
supervised image processing result, optimal parameters set should be found out. In case of image
segmentation and simplistic description including only t, image processing routine should find
optimal value of t, such that no or minimal human intervention is involved. The algorithm only
requires a definition of search space to which the optimal value of t belongs and initializing
the algorithm with it in such a way that the algorithm automatically adapts t which yields best
segmentation outcome. This may require several iterations but no human intervention. Such
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image processing techniques are referred to as feedback automatic image processing technique.
This consequently saves a lot of time and ensures an optimal or close to optimal results. This is
a major aspect of research in this thesis, in order to improve the parameter tuning using feedback
methods whereas other methods available hardly deal with such room for parameter perfection.

The aim of this thesis is to device such feedback-based techniques in order to adapt parameters
related to different processing steps included in a typical image processing and analysis pipeline.
The proposed algorithm which would perform ultimate image object classification task is divided
into several steps. More straightforwardly, it contains a sequence of steps that such that results
from each step are propagated to next step. The work done in feed-back tuning of parameters in
image analysis and processing is limited and its applications to challenging tasks especially in the
field of biology are scarce. Therefore, this thesis tends to improve the deficiencies in the existing
methods and incorporate a well-formulated search space for optimal parameters adaptation.

The feedback technique can be used in variety of different operations in image processing
pipeline. For one, shading correction and background noise removal can be done in an itera-
tive manner. A brief overview of variety of retrospective methods for shading correction in term
of applicability and comparison are given in [83, 87, 144, 147, 162, 63]. However, these methods
are limited in terms of well-formulated search space for ascertaining optimal normalization pa-
rameters and integration of segmentation results in addition to internal consistency check for the
performance of normalization routines. The parameters should be adjusted automatically in an
iterative manner for improvement of subjective and quantitative results based on a priori knowl-
edge. The use of different computational intelligence techniques (such as neural networks, fuzzy
sets [16], genetic algorithms [23] etc.) in formulating and solving image processing tasks is get-
ting more common nowadays. Therefore, a new method for an automatic feedback-driven design
of normalization technique for tuning processing parameters using fuzzy a priori knowledge and
segmentation results based on adopted normalization technique is proposed. In contrast to fuzzy
formulations in [137, 138, 135], fuzzy sets are used here as an optimization criterion and not only
as an auxiliary measure for image operators. Feedback-driven automatic approaches for segmen-
tation have already been employed in [7, 38, 72, 114, 143] but application to normalization is yet
to be explored deeply.

The implementation of automatic image segmentation and image object classification in the do-
main of biological cell imaging in downright challenging. With emerging number of diverse cell
states, a user-interactive software that is able to differentiate different cell classes including more
intricate and peculiar ones like fragmented cells, necrotic cells in addition to partially condensed
and different stages of apoptosis has been proposed in this work. The proposed method would
not just only be able to adapt to different cell morphologies against a drifting background noise,
but would enable user to annotate the whole cell image dataset with different cell classes with
desirable accuracy.

In a nutshell, following proposals have been made in this doctoral research work:
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1. To use supervised feedback-based automatic parameter tuning at different stages in an im-
age processing pipeline and to integrate the results to improve image object classification

2. To use fuzzy formulation of a priori knowledge in conjunction with feedback-based auto-
matic parameter tuning with fuzzy evaluation criteria.

3. To tune parameters to make supervised feedback-driven design of normalization/segmen-
tation techniques more robust.

4. To segment challenging new cell classes in datasets containing human cancer cell using
devised feedback-based automatic image processing techniques.

5. To develop new benchmark dataset (with absolute ground truth using different object
classes) with progressive shading and artificial noise levels for performance evaluation
standard processing algorithms.

6. To devise a platform to compare feedback-based parameter adaptation of image processing
algorithms with standard feedforward algorithms.

7. Developing a GUI or enhancing existing ones for interactive and efficient implementation
of devised algorithms and comparison with standard market softwares.
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2 New methods for processing and analysis
of multidimensional image data using
feedback concepts

Feedback-based supervised automatic image analysis is proposed using fuzzy formulation of
given a priori knowledge in order to perform an optimal image object classification. The a priori
knowledge about the objects could be their shape and intensity features or this may also include
some information of background and foreground object distribution.

As a proof of principle and for better perception of the proposed scheme, only grayscale images
having adequate noise were used as to provide enough room for the algorithm and methods to
be robust. The idea is to find the optimal parameters that affect the outcome of individual image
processing steps. Therefore, it is necessary in the first step to define all the parameters involved in
image processing and analysis. These parameters can be selected manually through hit-and-trial,
heuristics or intelligent guesses to produce the optimal results. However, this process becomes
extremely time-consuming and hectic as the number of parameters increases. Automatic tuning
is the solution to avoid manual interruptions, minimize time-effort and to create a robust method-
ology of optimal parameters search. Parameters can be improved iteratively by looking into a
predefined search space and selecting the ones that increase overall quality and evaluation crite-
ria set for judging the outcome of these image processing routines. In this regard, the iteration
should continue insofar as to achieve a quality described in terms of either some internal consis-
tency checking criteria or some predefined knowledge i.e. a priori. This a priori is the reference
according to which the parameters are adapted. The image processing algorithms and techniques
used in such cases are supervised. Once the optimal parameters are found, they are used for final
image processing and analysis routines. Each step involved in an image processing chain can be
used in such a way i.e. adapt parameters for one step automatically and iteratively and pass on
the optimal result based on selected parameters to the next step and so on.
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Figure 2.1: Overall feedback-based supervised automatic image object classification scheme

2.1 General concept

A supervised and feedback-based automatic image processing technique using a classical image
processing and analysis chain has been proposed in this research work. The individual steps of
such a scheme are shown in Fig. 2.1. It is clear from Fig. 2.1 that the image pre-processing
and image segmentation steps are handled using feedback and parameter adaptation concepts
in the presence of a priori knowledge. Similarly, parameters for other steps can be adapted.
The scheme is proposed to be applied to real world applications e.g. human cells biological
image datasets obtained from microscope, irregular shaped objects against a varying background
etc. The proposed techniques are to be applied on challenging datasets such as biological cell
image since it is quite attractive and challenging, not to mention an increasing trend and high
commercial demand of such techniques and their translation to end-users. At the same time, it
should be applicable to other similar datasets containing different object types against a noisy
and shaded background. These nascent techniques are expected to produce more optimal results
by simply increasing the scope of a priori knowledge by using fuzzy logic and interpreting the
results in fuzzy sense in order to increase the intuition and scope of objective evaluation and
reference formulation.

The basic concept of this work is efficiently usable even if the routines involved are unsupervised
i.e minimizing the evaluation criteria based on how well the object classes/pixels are grouped to-
gether to adopt certain image segmentation parameters iteratively. It is also applicable to already
devised techniques and algorithms in order to obtain the optimal parameter set using these tech-
niques while integrating the quality and evaluation criteria in the same fashion.

In this research work, not only the specific task of image object segmentation dealt with but
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also the robust feature extraction and efficient object classification techniques. A great emphasis
has been put to generate a greater versatility of the techniques and methods by simply using
different image processing routines and optimizing them in terms of the parameters required for
the image processing steps under consideration. The incorporation of proposed methods into a
graphical user interface is targeted that not only helps end-user to create pipelines to conform
a specific problem but also to handle different image processing tasks. The intent is to develop
such an application using multipurpose open-source image-analysis platform such as MATLAB.
An open-source toolbox named Gait-CAD [136] used for image processing and data mining has
already been on horizon having different possibilities to conform the algorithms and method to
a particular problem such as the usage of macros, scripts, plug-ins etc.

2.2 Benchmark data

2.2.1 Pre-requisites

In order to evaluate the performance of automatic feedback-based algorithms in comparison with
standard methods, some clean benchmark images with clear ground truth are required. However,
the proof of principle demands benchmark images that are both universal in properties and use-
able with variety of other comparable image processing algorithms. Certain desired properties in
a dataset are sought after i.e.

• containing different object types (having different shapes, sizes, mean intensity values etc.)

• having distinguishable background with respect to the objects to be found

• having distinct number of total objects

However, in order to show robustness and adaptability of the algorithms, a dataset with images
containing challenging properties is required:

• background shading (using variety of illumination conditions)

• background noise (such as salt and pepper, Poisson etc.)

• overlapping objects (including different types)

• unknown objects (to be rejected by the algorithm)
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Different benchmark datasets were used to test algorithms (see Tab. 2.1 for comparison). One
dataset (i.e. Benchmark dataset 1) was created to ensure all these effects and artifacts. The
Benchmark dataset 2 1 was based on human lung cancer cells [30] and Benchmark dataset 3 [140]
was based on images of simulated cells resembling human cancer cells. All benchmark datasets
are described below:

Benchmark
number

Absolute
ground truth

Artifact
type

Labeling
effort

Number
of images

1
object boundary,

class type
gradual shading,
artificial noise moderate 728

2* not available
inherent

(acquisition noise)
high

(if done manually) 10

3
object boundary,
class types (few)

artificial noise
(salt and pepper etc.) low 30

4 cell count
inherent

(microscopic noise) not available 6

Table 2.1: Comparison of 4 benchmark datasets used for evaluation of image processing and analysis
algorithms. Here, asterisk sign shows that the dataset used here for Benchmark dataset 2 is a subset of a
bigger dataset (mainly application dataset) described later in Chapter 4.

The labeling effort in Benchmark dataset 2 is high due to size of the dataset and number of
segments with different class types involved. Therefore, only a part of dataset 2 is used as
Benchmark dataset 2. The rest is used as application dataset. The task is further complicated even
by an expert due to presence of different cell states having overlapping features and boundaries
touching each other. From here on, the collection of 10 images would be referred as Benchmark
dataset 2.

2.2.2 Benchmark dataset 1 - Irregular shaped solid hardware items

A major problem in image processing are alterations in image data sets due to shading, noise
etc. Therefore, not only the absolute quality of a segmentation algorithm is important, but also
robustness. To evaluate robustness, the segmentation quality in relation to the intensity of the
alteration is a good measure. To derive this measure for a new routine, the benchmark must not
only contain the ground truth for segments but also image variations of the mentioned effects.
The strength of these effects needs to be given for each sample.

Furthermore, if the subsequent outcome of a classifier is to be evaluated, not only a ground
truth in segmentation but also in object labels is required. For classifier validation, there are

1Benchmark dataset 2 contains only a part (10 images) of the biological dataset containing human cells. It
contains 314 images in total, and the rest 304 images are used as an application dataset later described in Chapter 4.
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plenty of benchmark datasets (IRIS [3] or WINE [42]), a combination of both has not yet been
published. As well, there are robustness and evaluation measures for image segmentation [139],
but no consistent methodology to evaluate both, the combination of image segmentation and
classification.

Therefore, a new benchmark data set was introduced for the validation of image processing
robustness and classification. It contains easy-to-find segments of different object types (having
different shapes, sizes, mean intensity values etc.) with given ground truth in segmentation
and classification. Furthermore, effects like shading, noise and overlapping objects are inserted.
Altogether, four datasets are introduced, each containing labeled segments of 5-9 object classes.
The datasets contain a series increasing shading intensity and noise level.

Furthermore, the aim is to provide a basic image processing routine and deliver initial results on
the dataset regarding accuracy and robustness. To give other developers the possibility to com-
pete with this routine, robustness measures evaluating the success of the image segmentation and
the classification are introduced. The sources for the image-processing routine, the robustness
measures and the dataset as well are freely available and downloadable under 2.

This dataset is specifically designed to conform to evaluation criteria that are most suitable for
the new methodology. It employs shadowing and shading created using the experimental setup.
The images were taken using 9 different objects (i.e. different size, shape and intensity). These
objects were used to create different datasets by introducing varying shadowing and shading
using lamp lights and sunlight controlled by a rolling curtain. The experimental setup is shown in
Fig. 2.2(a). Images were taken using a professional camera with a remote trigger (see Fig. 2.2(b))
in order to keep the object positions the same for all lighting conditions. Images were taken
under varying lighting and shadowing conditions. The shadowing conditions were created using
a paper documents folder on different sides of the experimental setup to constrict sunlight coming
from the window. Three different datasets were taken using different object types and different
object settings. Each dataset contained an image using full lighting conditions with camera flash
light ON (see Fig. 2.3). This image was used to label the objects semi-automatically (first using
Otsu segmentation and then manual correction in Windows Paint Application), both in terms of
their type and object boundaries (see Fig. 2.5). As an example, different lighting conditions for
Benchmark dataset 1 are shown in Fig. 2.7.

The benchmark consists of images I = ((Iij)) ∈ Nm×g with m = 1000, g = 1500, Iij ∈ [0, 255]
with variations in brightness/shading and noise. There are Ro = 4 datasets, each combining
B = 13 grades of shading andN = 14 grades of noise. Each dataset contains different individual
scenes. For example, one dataset contains scene that has more classes of objects present in the
foreground and are placed in such a way as to create an overlapping problem. Thus, altogether
B ·Ro ·N images are contained in the dataset (see Fig. 2.4). Images are saved as 8bit TIFF-Files,
the naming convention is ’benchdata_r_b_n.tif’, where r, b, n are numbering dataset, brightness

2https://sourceforge.net/projects/gait-cad/files/Benchmarks/hardware_
items/

https://sourceforge.net/projects/gait-cad/files/Benchmarks/hardware_items/
https://sourceforge.net/projects/gait-cad/files/Benchmarks/hardware_items/
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(a) (b) (c) (d)

Figure 2.2: Experimental setup consisting of a professional camera mounted on a tripod with different
objects placed on A3 white paper lying on the table (Fig. 2.2(a)), Remote camera trigger (Fig. 2.2(b)), use
of paper documents folder for shadow construction (Fig. 2.2(c)) and Rolling window curtain (Fig. 2.2(d))

Figure 2.3: Benchmark image example with full lighting conditions and camera FLASH ON i.e. almost
no shadowing

and noise level. Each number is given in two digits (e.g. ’benchdata_02_01_03.tif’).

Images were obtained using different grades of shading i.e. b = 1, ..., B = 13 lighting conditions
(b = 1: very bright, no shading; b = 13: dark, lot of shading).

To each taken image, artificial background noise in varying intensities was added. Altogether, 13
additional noise levels were generated using Gaussian-distributed random numbers with varying
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Figure 2.4: Benchmark dataset 1 - Overview of images [75]

standard deviations. Thus, the image I(r, b, n) denoting dataset r, brightness-level b and noise-
level n is given by

Iij(r, b, n) = fu(Iij(r, b, n) + Irnd,ij) (2.1)

where Irnd,ij is a realization of the Gaussian-distributed random variable Irnd,ij ∼ N(0, σ2
n) with

σ2
n = 125(n− 1). The function fu restricts possible values to [0, 255]:

fu(i) =


0 if i < 0

255 if i > 255.
i else

(2.2)

The maximum number O of objects in any dataset is 63 and maximum number of object types
is Kn = 9. Object types differ in size, shape, intensity and reflection properties. Objects are not
aligned and multiple viewing directions are possible. For example in Fig. 2.5, the object type
numbered as 4 (see image on right) has different possible views (see image on left). For each
dataset r, a ground truth in object classification and segmentation is given: Itruth = ((Iij,truth)) ∈
Nm×g with Iij,truth ∈ {0, ...Kn} (0: background, 1, ..., Kn: objects). An exemplary image is
depicted in Fig. 2.5.
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Figure 2.5: Left: Brightfield-image I of Benchmark dataset with marked object edges, right: Ground truth
image Itruth, with object types in numbers. Gray scales denote the value of Iij (0: black (background), 5:
white)

Artifact level: To quantify an algorithm’s robustness versus shading and noise, an artifact level
A(r, b, n) ∈ [0, 1] which aggregates the shading level and the noise level is introduced.

The quantification of shading and noise is done using an artifact function µ ∈ [0, 1] based depen-
dent on a quantifying parameter θ (e.g. mean brightness or deviation). The overall artifact level
A(r, b, n) is then calculated as:

A(r, b, n) = 1− (1− µ1)(1− µ2). (2.3)

The artifact function µ is monotonic with tunable higher and lower bounds α and β, to suppress
a tunable percentage of higher and lower outliers which should not change the function value

µ(θ; c, α, β) =


1, θ 6 α

1− 2c−1( θ−α
β−α)c, α < θ 6 α+β

2

2c−1( θ−β
β−α)c, α+β

2
< θ < β

0, θ > β

(2.4)

In this benchmark, two different artifact functions i.e. µ1 and µ2 for background shading and
Gaussian noise respectively as shown in Fig. 2.6 are included.

The parameter c defines the curvature: c = 1 is a trapezoidal function, 1 < c < ∞ is a spline-
based function, c→∞ delivers a step function.

To quantify the amount of shading and background present in I(r, b, n), the mean pixel value im
across the whole image as a parameter θ = im is used: Since the benchmark contains dark objects
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Figure 2.6: Spline based fuzzy artifact function showing the effect of parameter selection where dotted
line indicates the selection of β value if α is kept at zero. Left: µ1 with α = 0 and β = 255, right: µ2 with
α = 0 and β = 45

in front of a bright background, higher im values mean less shading and vice versa. Furthermore,
c = 2, α = 0 and β = 255 is set for shading. Thus,

µ1 = µ(im; 2, 0, 255). (2.5)

On the other hand, the Gaussian variance is given as σ2
n = (N −1) ·125. Thus, increasing values

of σn denote a higher level of artifacts. Therefore, c = 2, α = 0 and β = 45 is set for noise levels.
The value of β was selected so since values only in this range are obtained.

µ2 = 1− µ(σn; 2, 0, 45). (2.6)

Quality measures for segmentation : Here, fuzzy evaluation criteria derived from aforemen-
tioned measures were used since it is intuitively understandable. The evaluation criteria are
defined upon a segmented and classified image Iseg ∈ Nm×g with Iseg,ij ∈ {0, ..., Kn} (0: no
segment, 1,...,Ku: class label) and the given ground truth image Itruth ∈ Nm×g with Itruth,ij ∈
{0, ...,Kn}. δseg,ij and δtruth,ij represent binary pixel values of Iseg and Itruth respectively.

Quality criteria in accordance with the number of detected objects (Segmentation measure 1 q1 in
Eq. (2.36) of Section 2.6.1) and their respective areas (Segmentation measure 2 q2 in Eq. (2.38)
of Section 2.6.1) and the classification accuracy (Classification measure q3 in Eq. (2.44) of Sec-
tion 2.6.2) based on the number of misclassified objects are used. It is specifically designed
to incorporate further evaluation measures in addition to the necessary criteria for segmentation
evaluation. These quality criteria were chosen because the absolute ground truth in object num-
ber and class in pixels exists. Since both class labels and object pixels are given as ground truth
in Benchmark dataset 1, an overall criterion (2.46) was used for evaluation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.7: Benchmark dataset 1 using different lighting and shading conditions without using camera
flash mode, where Fig. 2.7(a) shows brightest image with all lamps and ceiling light ON and curtain full
UP, Fig. 2.7(b) shows image with ceiling light OFF, lamps ON and curtain full UP, Fig. 2.7(c) shows
image with ceiling and right lamp OFF and curtain full UP, Fig. 2.7(d) shows image with all lights OFF
and curtain full UP, Fig. 2.7(e) shows image with all lights OFF and curtain 25 % down, Fig. 2.7(f) shows
image with all lights OFF, curtain 25 % down and light blocking by a folder on right, Fig. 2.7(g) shows
image with all lights OFF, curtain 25 % down and light blocking by a folder on left, Fig. 2.7(h) shows
image with all lights OFF and curtain 50 % down, Fig. 2.7(i) shows image with all lights OFF, curtain 50
% down and light blocking by a folder on left, Fig. 2.7(j) shows image with all lights OFF, curtain 50 %
down and light blocking by a folder on right, Fig. 2.7(k) shows image with all lights OFF and curtain 75
% down and Fig. 2.7(l) shows image with all lights OFF and curtain 100 % down

2.2.3 Benchmark dataset 2 (10 nuclear staining channel images) - Human
A549 lung cancer 1 cells

This is not strictly a typical benchmark dataset for performance evaluation of image processing
algorithms. However, it does possess traits that makes it a very challenging dataset for object
classification. This was included as benchmark dataset since a number of different classes of
objects in the whole dataset were labeled manually by experts.

The aim of this dataset is to provide images of different challenging object types i.e. cells.
The images are taken by microscope and contain inherent additive and multiplicative acquisition
noise (see Fig. 2.8). Therefore, this dataset provides a challenging real-life application problem
for image processing routines in terms of segmentation and classification. This is the only mul-
tichannel dataset that has been used to evaluate the image processing routines. Only 10 nuclear
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staining channel images were taken: 4 images for normalization/segmentation evaluation pur-
poses and 6 images for correct segment assignment task. The later also included 6 images from
an additional channel that shows morphology of the object boundary.

(a) Original grayscale image (b) Contrast-stretched image using 5 % per-
centiles

Figure 2.8: Background noise present in microscopic images from Benchmark dataset 2
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2.2.4 Benchmark dataset 3 - Artificial biological cells

This benchmark dataset is included in order to have an easier cell segmentation platform intro-
duced in Benchmark dataset 2. In this dataset, no inherent microscopic noise is present, so only
systematic noise is added uniformly throughout an image. Moreover, only a few object types are
available. The aim is to have an easy benchmark to evaluate image segmentation for different
object types resembling those present in Benchmark dataset 2.

This dataset includes artificially simulated human cells and details of its synthesis technique are
given in [140, 141, 142]. It has been used in [135] and here a modification of that is used as
a benchmark. Using this dataset, different cell states can be artificially created resembling the
human cell state undergoing cancer (i.e. including various cell death states) as shown in Fig. 2.9.
For simplicity, a very lower number of cells with only two different cell states were selected. The
noise could be also be artificially added using different techniques such as using salt and pepper,
Gaussian, speckle and Poisson. With each noise type, 10 different images were created using
stepwise increments in their respective control parameters. Similarly, image blurring can also be
added stepwise using different filters such as Prewitt, Gaussian, disk, average, LoG, Laplacian,
Sobel etc. The idea is to muddle the image in a stepwise fashion and obtain a gradual trend by the
application of different algorithms. The images have 16-bit gray value resolution with available
ground truth. The simulated image has a background intensity of 0 and maximal foreground
object intensity 4.2 × 10−3. This dataset was created using three different noising techniques in
the following order:

• Gaussian

• speckle

• salt and pepper

A different combination and number of noising techniques could also be used. The aforemen-
tioned sequence and their respective parameters ensure that an adequate amount of noise was
induced not only in the background but also on the foreground information. The selected noising
techniques have following control parameters and their respective values (see Tab. 2.2):

The image series contained in this dataset has increasing noising level. The images created are
shown in Fig. 2.10 and the artifact level A(n1,n2,n3) is defined qualitatively between 0 and 1 by
using linearly spaced intervals defined the number of images present in the dataset.



2 New methods for processing and analysis of multidimensional image data using feedback
concepts 41

Figure 2.9: Artificially created benchmark image to match different cell states like that in Benchmark
dataset 2 using a clear background. Two cell states were included in this dataset i.e. normal and partially
condensed.

2.2.5 Benchmark dataset 4 - Human HT29 Colon Cancer

This dataset was published in Broad Bioimage Benchmark Collection available freely online3.
For this dataset, only the ground truth of the total cell count was available. It contains micro-
scopic images (showing cells) Bk where k = 1...6, shown in Fig. 3.8. The ground truth for Bk

was only the average total number nref of cells based on two observers. For cell detection and
counting, the benchmark has to be evaluated by:

σGD =
‖nc − nref‖

nref
. (2.7)

3
*http://www.broadinstitute.org/bbbc/

*
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Technique
used

Control
parameter

Minimum
value

Maximum
value

Interval
used

Gaussian
Variance with
mean at 0 (n1)

0.0002 0.002 0.0002

Speckle
Speckle

variance (n2) 0.02 0.2 0.02

Salt and pepper Noise density (n3) 0.05 0.5 0.05

Table 2.2: Noising techniques used with maximum, minimum and step sizes of their respective control
parameters

(a) (b) (c)

(d) (e) (f)

Figure 2.10: Benchmark Dataset 3 - images containing increasing noise level from Fig. 2.10(a) to
Fig. 2.10(f)
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2.3 Automatic feedback-based image normalization

2.3.1 Motivation

Since the real life image acquisition imparts different noise types to images, it is hard to extract
the desired image objects information, especially when the noise is spatially varying (additive and
multiplicative noise induced by acquisition through microscope etc.). Traditional methods are not
sufficient to remove such a noise when the conditions are drifting from image to image. The aim
here is to obtain noise-free image or at least a workable image with reduced background noise
such that it is easier to segment the objects in the foreground. It is hereby proposed to remove
background noise using an adaptive image normalization method. Feedback-based methods were
used here to iteratively find optimal parameters that fit an estimated background and then subtract
it from the real image background.

Since biological images acquired using a confocal microscope possess such a noise and currently
quite a challenge for image analysis, Benchmark dataset 2 containing living and dying cells for
the evaluation of the proposed normalization technique was chosen. The shading effect, in an
image having numerous cells in different states, is illustrated in Fig. 2.11(a). The image suffers
from an inconsistent background illumination since the background in corners is darker than in
the middle of the image as shown in Fig. 2.11(b) using high contrast by applying 5 % percentiles
following (4.2) with Ilow,a and Ihigh,b equal to 5 and 95 respectively. This was done by cutting-off
intensity values of 5% cells at lower and higher side of intensity histogram. Consequently, very
dark and very bright pixels were ignored and an image with increased background intensity was
obtained. Therefore, a shading correction is imperative in order to disentangle images from such
variations concealing the original intensity information in an image.

(a) Original grayscale image (b) Contrast-stretched image using 5 % per-
centiles

Figure 2.11: Shading effects present in microscopic images from Benchmark dataset 2

The main idea here is to formalize the knowledge about the desired objects in images using fuzzy
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sets. Image normalization is proposed to be done assuming a model for shading compensation.
Parameters involved in shading compensation are tuned to find an optimal parameter set. To
choose the optimal parameters, normalization evaluation measures are also described as fuzzy
sets. The final shading compensation is done with a model that fulfills these evaluation criteria
in the best manner. Using a normalized image, image segmentation is performed and the results
are expected to be improved due to the removal of shading. The outcome is in terms of object
delineation and boundaries giving an overall object count.

To quantify the outcome, fuzzy evaluation criteria were developed and an inference machine
was built to obtain a scalar output fed back to manipulate the normalization routine to obtain
an optimal parameter set. The employed scheme is introduced in Section 2.3.2 using some
motivating examples from Benchmark dataset 2 and results are presented in Section 3.3.1. Since
such a noise is only present in Benchmark dataset 2, this scheme only accounts for additive
microscopic noise. For other noise types such as Gaussian noise, salt and pepper and speckle
noise, another benchmark was introduced in Section 2.2.4. In both benchmarks 2 and 3, A priori
knowledge is given in terms of number and size of objects to be found. In benchmark dataset3,
also a class type of objects are given as ground truth.

2.3.2 Employed scheme

A surface fitting retrospective shading correction method with parametric fitting to a surface
described by a parabolic polynomial was employed. The relation between an acquired image
IA(x, y) and the true shading-free image ISF(x, y) is then described by:

IA(x, y) = ISF (x, y) · Sm(x, y) + Sa(x, y) (2.8)

where, Sa(x, y) and Sm(x, y) denote additive and multiplicative shading components respectively
as a function of spatial pixel locations in IA(x, y). The components Sm(x, y) and Sa(x, y) account
for the global contrast and brightness adjustment respectively in (2.8). In case of fluorescence
microscopy, the acquired images are always distorted with additive shading noise. For the sake
of simplicity, only Sa(x, y) was considered, accounting only for the brightness correction in the
normalization procedure, such that:

IA(x, y) = ISF (x, y) + Sa(x, y). (2.9)

The proposed scheme for the feedback-based normalization technique is shown in Fig. 2.12. It
includes the normalization of an input grayscale image by fitting the pixel values of IA(x, y) to
Sa(x, y). Image normalization is performed for different parameter combinations. Normalization
results are evaluated for internal consistency of normalization procedure iteratively to adopt an
optimal parameter set âopt. Automatic segmentation based on normalized image using âopt is
also done iteratively to adopt optimal segmentation parameter set popt. Optimal segmentation is
performed based on this popt obtained from optimally normalized image using âopt.
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Figure 2.12: Employed feedback-based automatic normalization segmentation scheme

With reference to very large amount of shading seen in Fig. 2.11 of benchmark dataset, the aim to
introduce automatic normalization was to improve the automatic feed-back based segmentation
results. A priori knowledge included area, intensity and roundness factor (i.e. ratio of major cell
axis to sum of major and minor axes) of normal cells in addition to the total number of cell count
within an image. The A priori segmentation reference was given based on manual labeling of the
cells in image dataset discussed in Section 3.3.2.

However, this is not the only noise present in images acquired with real equipments. Other types
of noise like Gaussian noise, speckle, salt and pepper etc. as shown in Benchmark dataset 3 are
also commonly observed. Nevertheless, such noise types could be removed using different 2-D
order-statistic filtering such as median, mean, averaging, minimum filter etc. It could also be re-
moved using morphological operations such as image opening with a structuring element having
a size comparable to the objects that have to be found in an image. The employed parameter
tuning scheme is given later in this Section and results are presented later in Section 3.4.3 by
applying it to Benchmark dataset 3.

Image normalization for shading correction: As an example, a free exponent polynomial was
used for the proposed feedback-based normalization routine. Since the intent here is just to
estimate the shading-free image denoted as ÎSF, the employed polynomial function denoted as
Ŝa(x, y) used for estimation is given as:

Ŝa(x, y) = â0 + â1x+ â2y + â3xy + â4x
â6 + â5y

â7 . (2.10)

In order to induce better clarity in mathematical representation, the polynomial function and the
acquired image denoted in matrix form as Ŝa and IA respectively, can be written in vectorized
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form as:
ŝ∗a = X · â, (2.11)

X =



1 1 1 1 1â6 1â7

1 2 1 2 2â6 1â7

. . . . . .

. . . . . .
1 m 1 m mâ6 1â7

1 1 2 2 1â6 2â7

. . . . . .

. . . . . .
1 m g mg mâ6 gâ7


, â =


â0
â1
â2
â3
â4
â5

 , i∗A =



IA(x1, y1)
.

IA(xm, y1)
IA(x1, y2)

.
IA(xm, y2)

.

.
IA(xm, yg)


, âtotal =



â0
â1
â2
â3
â4
â5
â6
â7


. (2.12)

In (2.11), ŝ∗a is the vectorized form of Ŝa. In (2.12), m and g refer to the number of rows and
columns of IA respectively. In (2.11), the dimensions of ŝ∗a are mg× 1 whereas the dimensions of
X and â are mg× 6 and 6× 1 respectively. The vector i∗A in (2.12) also has the dimensions of mg
× 1. Since the analytical solution of the problem including â6 and â7 is not possible, numerical
optimization in order to achieve parameters for best fit of IA(x, y) to Ŝa(x, y) was performed using
analytical least squares minimization for â. The normalization routine was divided into two
steps:

Step 1 - Initial estimate: Firstly, the least square regression problem is to find:

QS1 = min
â

1

2
||X · â− i∗A||

2 (2.13)

such that the optimization initially is only performed fixing the exponents â6 and â7 and finding
the optimal parameter values with respect to â to yield an initial estimate of the search space used
in the succeeding step of proposed feedback-based normalization routine.

Step 2 - Search space exploration: The feedback-based normalization is then continued by
varying â6 and â7 around initial estimates to find the optimal combination of â, â6 and â7. The
least squares problem for automatic tuning of normalization routine was to find:

QS2 = min
â6,â7

1

2
||QS1||2 . (2.14)

The calculation of criterion (2.14) was based on least square minimization in order to fit Ŝa(x, y)
to pixel values of IA(x, y). The pseudo inverse of the system matrix X was used to calculate â for
given values of â6 and â7 as:

â = (XTX)−1XT i∗A (2.15)

to find an optimal solution for the inner criterion QS1. Consequently, ÎSF is calculated using its
vectorized form îSF as:

îSF = i∗A − X · â (2.16)
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where the dimensions of î
∗
SF are same as that of both i∗A and X·â. The range for â6 and â7 was

kept closely around quadratic based on the initial estimate in order to find the best exponent for
optimal image normalization. Increasing the exponential powers of â6 and â7 more than cubic
does not improve the results obtained. However, higher exponential powers were not used in
order to avoid the suppression of useful intensity information about the objects to be found in the
image. The employed algorithm also has the possibility to enhance its running time efficiency.
This can be done by downscaling the resolution of IA by a certain factor f such that newer i∗A has
lesser overall elements by a factor f. This reduces the number of calculations and consequently
speeds up the automatic normalization routine.

Normalization evaluation: Generally, a normalization outcome is evaluated with respect to two
different criteria i.e. check of internal consistency of spatial image intensities and improvement
of image post-processing results based on the normalized image. A variety of metrics can be used
as a quality measure for the normalization procedure with respect to given a priori knowledge.
In this thesis, one criterion for the residual root mean square error Qnorm,1 of an acquired image
IA to the fitted function Ŝa(x, y) normalized by the range of given image intensities was used and
is defined as:

Qnorm,1 =

√
1

m×g
∑m

i=1

∑g
j=1(IA(xi, yj)− Ŝa(xi, yj))2

|max{IA} −min{IA}|
. (2.17)

The idea behind using criterion (2.17) is to calculate the deviation (i.e. residual shading after
fitting IA to Ŝa(x, y)) of IA from a uniform background which is intended to be obtained in nor-
malized ÎSF, given that the image has shading noise of the form given in Eq. (2.40). However,
background estimation is not done here, instead fitting is done based on both back- and fore-
ground intensity information. This can be dealt with by using a sliding filter to inhibit the effect
of high brightness spatially in any image. Nevertheless, an ideally normalized image would con-
sist of nearly a uniform background just containing the information about segments (e.g. cells
etc.) to be found. This would be indicated by smaller values (i.e. close to zero) of criterion (2.17).

Another criterion Qnorm,2, given in Eq. (2.18), based on the normalized sum of absolute difference
in median image intensity values i proposed. It is calculated over rows and columns of the
estimated shading-corrected image ÎSF by applying q % percentiles on pixel median values. It
is used to evaluate the decrease in spatial intensity value differences of rows and columns as
corrected by the shading correction algorithm.

In ideal case, for a fairly good segment distribution and shading trends having middle section
brighter than corners with no segment having area greater than 50 % of the pixels, such a criterion
should yield values closer to 0. The percentile operator using q is denoted as prq (·) for lower
qth percentile and pr100-q (·) for the upper (100-q) th percentile in Eq. (2.18).

Qnorm,2 =
|pr100−q(xmed)− prq(xmed)|+ |pr100−q(ymed)− prq(ymed)|

2×max{ | t | , 1}
, (2.18)

t = max{pr100−q(xmed), pr100−q(ymed)} −min{prq(xmed), prq(ymed)}, (2.19)
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xmed =


xmed,1
.
.

xmed,m

 , ymed =


ymed,1
.
.

ymed,g

 , (2.20)

xmed,i = med
j=1...g

{ÎSF (xi, yj)} ∀ i = 1...m, (2.21)

ymed,j = med
i=1...m

{ÎSF (xi, yj)} ∀ j = 1...g, (2.22)

where, med {·}, max {·} and min {·} in Eq. (2.18), (2.19), (2.20), (2.21) and (2.22) represent
median, maximum and minimum operators respectively. In criterion (2.18), the 2 in the denomi-
nator is used to average the effect of variations in percentile image intensity values along columns
and rows.

The criterion (2.18) will ideally yield values closer to 0 in case of minimum spatial intensity
variations along the row and columns, which would indicate median values along all row and
columns are closer to each other. This would tend to eliminate the high spatial variations in
intensity, imparting a uniform background which is the desired goal in shading correction. This
could be illustrated from a practical example. For instance, if one object in the foreground is
needed to be segmented in the presence of background shading. The image with high shading
and the image with a more uniform background (after the shading correction) are shown in
Fig. 2.13.

Figure 2.13: Expected output of the shading correction algorithm in a cell image with high
background noise. Left: original image of cell image with high background noise. Right:
image obtained after applying shading correction algorithm.

A fuzzy formulation of the error measures described in Eq. (2.17) and (2.18) to grasp the paramet-
ric effect in a more intuitive way is proposed. Spline-based (a.k.a z-shaped) fuzzy membership
functions were employed with two parameters i.e. α and β defining the maximum and minimum
x-values of criteria respectively. Fuzzy memberships for the criteria (2.17) and (2.18) are denoted
as µ1 and µ2 respectively. It is reasonable to calculate a criterion Qfuzz,norm based on a product
of µ1 and µ2 since fulfillment of both criteria (2.17) and (2.18) for each evaluation is essential
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and complete absence of any (i.e. µ1 = 0, µ2 = 0) should render Qfuzz,norm zero. Therefore, a
criterion:

Qfuzz,norm(âtotal) = µ1(âtotal) · µ2(âtotal) (2.23)

based on aforementioned logic is introduced to express the internal consistency of automatic
image normalization.

Parameters/Structure adaptation: The criterion (2.23) needs to be maximized in order to ob-
tain

âopt,fuzzy,norm = arg max
âtotal

Qfuzz,norm(âtotal). (2.24)

In this thesis, âopt,fuzzy,norm was computed based on exhaustive enumeration. However, more so-
phisticated optimum search methods such as genetic algorithms, constraint optimization etc.
could be used as well.

Image normalization for other noise types: Typical noise types present in images such as
Gaussian noise and salt and pepper noise should be adequately removed before processing an
image further. Any type of filter according to knowledge of noise present in image can be used.
A scheme to adapt the parameters of such denoising filters are presented here. For instance,
with the presence of salt and pepper and speckle noise, a median filter with a free parameter of
symmetric filtering window size w×w is used as 2-D order-statistic filter. Then an image opening
with disk of size s as a structuring element is applied to the resulting image. However, s is fixed
and w is tuned iteratively for the sake of simplicity and for the proof of principle. Therefore, the
resulting parameter set is: p = w. For evaluation of normalization outcome, quality measures are
provided in terms of:

• pixels of background noise detected in normalized image with respect to the background
of ground truth image (q1) according to Eq. (2.36)

• pixels of foreground objects detected in normalized image with respect to the objects of
ground truth image (q2) according to Eq. (2.38)

q1 and q2 are converted to fuzzy membership functions µ1 and µ2 using Eq. (2.37) and (2.39).
The overall evaluation criterion is given as:

Qnorm = 1− (1− µ1)(1− µ2). (2.25)

and the optimal parameter set p is adapted that maximizes the criterion (2.25)

popt = arg max
p
Qnorm(p). (2.26)

Normalized image Inorm is obtained based on popt. The result of this proposed strategy when
applied on Benchmark dataset 3 is presented in Section 3.4.3.
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2.4 Automatic feedback-based image segmentation

2.4.1 Motivation

Image segmentation is the pivotal part in any image analysis. There are many image segmen-
tation algorithms around that yield favorable results. Problems arise when the dataset is chal-
lenging with drifting image conditions. In such cases, the parameters of image segmentation
should be adjusted automatically in an iterative manner for improvement of segmentation results
based on a priori knowledge. There has been an adequate work on feedback-based automatic
image segmentation techniques such as [7, 10, 38, 51, 114, 132]. However, these techniques are
limited in terms of well-formulated reference knowledge about object characteristics and types.
Therefore, a new method for an automatic feedback-driven segmentation for tuning processing
parameters using fuzzy a priori knowledge is proposed. For quantifying the outcome, a fuzzy
evaluation criterion was introduced and an inference machine was built for the segmentation
routine to obtain the optimal parameter set.

The situation is even complex when the amount of information is huge and comes from more
than one channel. Therefore, to do segmentation in more than one channel and aggregate their
results is not trivial. In complex cases where the objects to be detected are touching each other
or are overlapping, an image segmentation algorithm should be robust enough. In biological
datasets, the scenario is quite like this and image processing is quite challenging. In order to
evaluate techniques that perform these complex tasks, evaluation examples should be there.

In Benchmark dataset 2, images containing living and dying cells from three different channels
are given for the evaluation of the proposed segmentation technique. This dataset is particularly
challenging in terms of correct object delineation because correct segmentation will enable the
targeted features extraction that will enable the right class annotation. Different cell areas and
structures against a noisy background, therefore, are hard to segment correctly posing appropriate
challenges to an image segmentation routine. Numerous class types and hard-to-segment cases
like overlapping cells (see Fig. 2.14) and cell fragments belonging to each other (see Fig. 2.15)
make this even harder task to perform. Image segmentation routines are proposed to perform the
task of segmentation in these different settings. The scheme used for correct fragments of same
nuclei is introduced in Section 2.4.3 using some motivation examples from Benchmark dataset 2
and results will be provided in Section 4.7.

Additionally, Benchmark dataset 3 was also used to validate the image segmentation routines
when systematic noise addition like Gaussian, salt and pepper etc. noise were added to very
few object types. It was used to make this demonstration more understandable since Benchmark
dataset 3 is less complex and does not contain inherent image acquisition noise.
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Figure 2.14: Benchmark dataset 2: Overlapping of two cells.

(a) Bright field channel image show-
ing cellular structure

(b) Nuclear staining channel show-
ing cellular fragmentation

Figure 2.15: Fragments belonging to same objects from Benchmark dataset 2 using multichannel infor-
mation

2.4.2 Employed scheme for automatic feedback-based image segmentation

The proposed scheme for feedback-based automatic image segmentation is shown in Fig. 2.16.
It includes segmentation of a grayscale image by transforming it into a binary image containing
so called binary large objects (BLOBs), which are the segments found by an image segmenta-
tion technique. An image pre-processing step such as image filtering using convolution etc. is
included before performing binary image segmentation. The image segmentation is performed
using different parameter combinations and the desired features of BLOBs are calculated. Seg-
mentation evaluation with respect to these features is performed accordingly using given a priori
reference features in an iterative fashion. For a user, a priori knowledge can be derived from
number and types of objects to be found in an image. This can be done using simple count-
ing operation manually and labeling the object types provided by experts. The size of the objects
could be also included in similar fashion by counting the number of pixels of smallest and biggest
objects to be found in the dataset. An optimal parameter set is adopted based on a quality crite-
rion and optimum segmentation is performed using this optimal parameter set.
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Figure 2.16: Employed feedback-based automatic image segmentation scheme

Image segmentation: To perform adaptation of parameters involved in image segmentation, a
generic pipeline is required to be designed. For a user, any kind of pipeline structure and any
number of processing steps can be involved. However, parameters involved in image segmenta-
tion should be carefully selected in order to affect the segmentation outcome positively. These
parameters are consequently adapted to yield the optimal parameter set based on a certain quality
criteria.

As an example, a basic sequential image processing routine consisting of a convolution filter,
a thresholding and an opening routine followed by an image filling (see [48]) were used. The
convolution is done using a symmetric w × w matrix having elements equal to 1

w2 , a threshold
value t is set and the opening routine uses a disc of size s as a structuring element. Therefore, the
image segmentation depends upon the parameter vector p = (w, s, t)T .

Features calculation: Object features are needed to formalize a priori knowledge about the
objects to be found in an image. Later, in the case of Benchmark dataset 1 object features are
needed again to be fed to the classifier in order to differentiate between different object types
(see Section 3.2.1). These features could be different from ones used here. With respect to
p, the objects delivered by the segmentation process not only differ in size, extent, etc. but in
the underlying pixel values as well. The setting of p, however, is crucial for the segmentation
process. To find optimal values for p, a criterion needs to be calculated based on the feature
vector fTi = (fi1, ..., fih), considering j = 1...h number of features for each segment i where
i = 1...nc, and the total number of segments found denoted as no. These features may be related
to geometry (area, sphericity, etc.), intensity distribution (brightness, noise, etc.), and/or the
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(a) (b) (c) (d)

Figure 2.17: Segmentation results using manual selection of p, where Fig. 2.17(a) Original grayscale
image Fig. 2.17(b) using p = (1, 1, 33700)T , Fig. 2.17(c) using p = (3, 3, 34000)T and Fig. 2.17(d) using
p = (5, 15, 34000)T in Benchmark dataset 2

content (e.g. number of sub-fragments etc.) of each segment.

Segmentation evaluation: Generally, a segmentation outcome is evaluated with respect to two
different criteria i.e. whole image and each single segment. A variety of metrics can be used as a
quality measure of features with respect to given a priori knowledge. For Benchmark dataset 2,
segmentation measures Qed and Qfuzz defined by (2.41) and (2.42) given in Section 2.6.1 were
used due to the presence of only abstract ground truth based on object features.

Parameters/Structure adaptation: The criterion given in (2.41) needs to be minimized with
respect to the parameter vector p in order to obtain the optimal parameter set popt,ed as shown
in (2.27). On the other hand, the criterion (2.42) needs to be maximized in order to obtain

popt,ed = arg min
p
Qed(p), (2.27)

popt,fuzzy = arg max
p
Qfuzz(p). (2.28)

Here, popt,fuzzy was computed based on exhaustive enumeration. However, more sophisticated
optimum search methods such as genetic algorithms, constraint optimization etc. could be used
as well.

2.4.3 Challenging multichannel image segmentation tasks

One challenging image processing task is to correctly find the objects or segments in an image
and group them properly if two or more segments belong to each other. Another challenge lies in
fusing information from different image channels to employ it for correct segment assignment.
As described in Section 2.4.1, object segmentation in multichannel images is quite challenging
when it contains certain morphologies that are potentially detected separately while belonging
to the same object. Therefore, a method to improve the segmentation process for fragmented
segments using edge detector and morphological operators is proposed. It includes information
from two channels namely Channel A (containing primary object information) and Channel B
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(containing supplementary information for objects reassignment) especially in cases where seg-
ments in Channel A cannot be infallibly assigned. The main idea is to use the segments in the
Channel B in order to combine the segments of Channel A.

For performing this task and evaluating the results, Benchmark dataset 2 was used ( 6 images for
each channel).

Employed methods: The image processing pipeline implemented for this task is shown in
Fig. 2.18. Channel B segment information is extracted by applying a Sobel edge detector to
the Channel B image. The extracted segments are further processed sequentially using mor-
phological operators i.e. image closing, hole-filling and image opening respectively (Fig. 2.19).

Figure 2.18: Complete image processing pipeline for assignment of Channel A segments to their Channel
B counterparts. Images shown here for Channel A and B are taken from Benchmark dataset 2
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Figure 2.19: Channel B segmentation (steps 1-2 from Fig. 2.18): Channel B (section of original Channel
B image taken from Benchmark dataset 2), 1 (edge detector), 2a (image closing), 2b (hole filling) and 2c
(image opening).

In the next step, binary large objects (BLOBs) detected by the above mentioned operations are
further checked for plausibility. Criteria based on irregular size i.e. too small/big segments are
implemented, whereby removing small objects and further segmenting big objects. A watershed
analysis seeking for gradients in brightness is known to perform well in cell separation [9, 111].
However, this separation cannot be achieved with desired results due to inconsistencies caused by
cellular fragmentation in both channels. Therefore, the distance map of each BLOB was used.
As a result all found BLOBs are within a given area-range and show convex properties (see
Fig. 2.20). Channel A segments are then annotated for reassignment. A correct reassignment of
the segments is done based on results obtained after step 4 in the pipeline shown in Fig. 2.18.

Figure 2.20: Watershed segmentation based on distance map: from left to right: BLOB, distance map and
separated objects. Algorithm was applied on Channel B image from Benchmark dataset 2

For DAPI segmentation, a segmentation routine described in [73, 72] is applied. As a result,
i = 1, ..., nb segments in the Channel B and j = 1, ..., nd segments in the Channel A are obtained.
The pixel positions (x, y) belonging to the segments are gathered in the sets Bi for Channel B
segments and Dj for Channel A segments. A set D defining all found segments in Channel A is
defined as:

D = {D1, . . . ,Dnd
}. (2.29)

where as, a set B defining all found segments in Channel B is defined as:
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B = {B1, . . . ,Bnb
}. (2.30)

If Channel A segments belong to the same Channel B segment, they are annotated the same
class4. Therefore, the portion of positive Channel B segment pixels in a Channel A segment j is
calculated and the most affecting Channel B segment is denoted as nj (see (2.31) and (2.32)).

pj = max
i

card(Dj
⋂
Bi)

cardDj
, nj = arg max

i

card(Dj
⋂
Bi)

cardDj
. (2.31)

If pj ≥ 0.1, segmentDj is removed from the Channel A segments and transferred to a set AposB
segments DB. The set AposB contains segments in Channel A which are also segmented in the
Channel B. All segment sets being affected by the same Channel B segment are merged:

D = {Dj|pj < 0.1}, (2.32)

DB = {DB1, ...,DBn} (2.33)

with

DBi =
⋃
nj=i
Dj>=0.1

Dj. (2.34)

Empty sets in DB are removed. All subsets in D denote BF-negative segments, all subsets in
DB denote Channel B-positive segments. In this way, segment reassignment can be done (see
step 5 in Fig. 2.18). The results for the application of this scheme using Benchmark dataset 2 are
presented in Section 4.7 as an application-specific extension.

2.5 Automatic feedback-based image object classification

In reference to Fig. 2.1, the concept of image object recognition and consequent identification
of objects found therein, image object classification is necessary. The techniques for performing
this operation are already described in Section 1.2.3. After image segmentation, the main task
is to select all useful object features that would enable us to perform an automatic image object
classification task.

4If more than one Channel B segment affects the Channel A segment, the most affecting Channel B segment
will be chosen.
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2.5.1 Possible tuning strategies

There are two possible tuning strategies (see Fig. 2.21):

1. Object classification can be internally tuned using a particular classifier by feeding it with
a different number and types of input features (see black feedback line between two yellow
blocks in Fig. 2.21).

2. Object classification can help in external tuning of image normalization and/or image
segmentation using classification results from a particular classifier as feedback to the
pipeline. See green feedback line to image segmentation block for tuning automatic image
segmentation in Fig. 2.21

Figure 2.21: Feedback automatic image object classification scheme

However, in order to perform automatic image classification, evaluation measures are required.

2.6 Quality measures

2.6.1 Segmentation measures

In this section, the aim is to provide some standard segmentation measures. The reason behind
this to give an idea about how to design and select evaluation measures based on the desired
segmentation/classification goals. These measures could be specific for some datasets but could
be adapted for more general use. Standard image segmentation algorithms such as Otsu thresh-
olding, edge detection, clustering etc. are quite useful for segmenting identifiable objects against
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a static non-complex background. Since the given reference images denote the ground truth, su-
pervised evaluation methods can be used. The supervised segmentation evaluation measures are
based on the degree of similarity between image segmentation resulting from an application of a
particular algorithm against a manually-segmented reference image. A variety of such measures
exist and are mostly based on the number of pixels that are misclassified when compared to the
image object pixels in the manually labeled image while penalizing pixels inversely proportional
to distance from correct ones [152, 80]. Many methods (i.e. [151, 90] etc.) now use the differ-
ence in the number of objects detected with the ground truth. Other methods based on object
features extraction etc. [158], edge-based image segmentation evaluation etc. [127], using Pareto
front [37] also exist.

Measures like Rand Index (RI), Jaccard Index (JI), Normalized Sum of Distances (NSD) and
Hausdorff Metric (HM) are quite useful when evaluating 2D image segmentation [139, 24].
However, they more or less tend to describe the same criteria described above. In RI based on
true positive and negative image pixels, the image must contain useful information in its negative
pixels too. In case under consideration, the background needs not to be segmented, so develop-
ment of a criterion based on positive pixel values is required since there are foreground objects
as ground truth against a background that contains no useful information. In such cases, RI tend
to deliver high values even if no foreground object is segmented because background constitutes
most of the pixels in images of the dataset. Moreover, false detections are to be penalized in such
criterion.

Here, the segmentation measures are presented in three distinct manners provided that ground
truth for these measures are given:

1. Based on total object count: Let S be the set of all the BLOBs (Binary Large Objects) found
in Iseg such that, S = {Su|u = 1, ..., U} and U is the total number of BLOBs found in Iseg. Su
is a set of Cu pixel values and is defined as: Su = {{Sux,1, Suy,1}, · · · , {Sux,Cu , Suy,Cu}}. Here,
x and y are representing image coordinates and u represents a given BLOB index. Altogether,
Sux,1 and Suy,1 represent the row and column pixel indices of a given BLOB Su.

Similarly, let T be the set of all the BLOBs present in Itruth such that, T = {Tv|v = 1, ..., V }
and V is the total number of BLOBs present in Itruth and is given. Here, Tv is defined as Tv =
{{Tvx,1, Tvy,1}, · · · , {Tvx,Cv , Tvy,Cv}} where, Cv denotes the number of pixels in BLOB Tv.

For each BLOB in Su the overlap with all ground truth BLOBs Tv is determined. If the maximum
overlap exceeds 1/3 of Tv, assuming that the BLOB Su being present in the ground truth as
well, it is added to the set of correct segmented objects Sc and deleted from the corresponding
overlapping ground truth element from the complete set of V ground truth elements such that for
a new Su , z = 1, ... , V - nv (number of Tv BLOBs affected by overlap) and z is new number of
remaining Tv elements. The formula for Sc in each iteration is given as:

Sc = {Su|max(card(Su ∩ T1), . . . , card(Su ∩ Tz)) >
1

3
Cu}. (2.35)
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Where, z indicates maximum number of elements left in Tz after overlap. Therefore, the criterion
is described as:

q1 =
|card(T )− card(Sc)|

card(T )
(2.36)

The a priori knowledge for this measure is handled using fuzzy membership functions in order
to describe it in the range of 0 - 1 according to (2.4) such that:

µ1 = 1− µ(q1; 2, 0, 1). (2.37)

From the logical point of view, such a criterion should engulf all the cases of true positive (TF),
true negative (TN), false positive (FP) and false negative (FN) detections. Since negative pixels
are not the part of required information, this criterion should be able to handle all possible case
of positive pixels such as:

• one Su overlaps one Tv i.e. TP (counted according to (2.4)).

• one Su overlaps no Tv but just the background i.e. FP. Such cases are not counted as
overlap according to (2.4).

• one Su overlaps two Tv BLOBs. As a result of overlap, both BLOBs of Tv will be deleted
in new set Tz to be checked for next iteration, so it will not increase the overall count. In
this way, (2.4) would not include the match twice but only once.

• two Su BLOBs against one Tv. So, for the first Su, the overlap will delete the corresponding
Tv and only this count will be taken into account. In next iteration for the second Su, no
corresponding BLOB will be present in Tz.

2. Based on pixel misclassification: It is same as RI and is described terms of segmented and
ground truth pixels as:

q2 =

∑
i,j |sign(δtruth,ij − δseg,ij)|∑
i,j sign(δtruth,ij + δseg,ij)

. (2.38)

The a priori knowledge for this measure is handled using fuzzy membership functions in order
to describe it in the range of 0 - 1 according to (2.4) such that:

µ2 = 1− µ(q2; 2, 0, 1). (2.39)

Using these criteria, the overall segmentation quality measure Qseg(r, b, n) for each image is then
given as:

Qseg(r, b, n) = µ1 · µ2. (2.40)
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This combination is valid when absolute ground truth about objects to be found in an image is
given in terms of binary pixels. This could also work, if class labels are also provided in ground
truth.

3. Based on abstract object features: If a priori knowledge of object features is given as ab-
stract information, then the resulting segmentation could also be evaluated based on Euclidean
distance measure of segmented objects with the reference objects. Alphanumeric feature refer-
ences fref

T = (f1,ref, ..., fh,ref) are given by a human expert. As features may be in different scales
or order of preference with respect to the segmentation task, a weighting vector ŵT = (ŵ1, ...,
ŵh) is introduced. A quality criterion Qed using each parameter set for segmentation evaluation
is then given in Eq. (2.41) by

Qed =
1

nc

nc∑
i=1

h∑
j=1

ŵi(fij − fj,ref )2. (2.41)

In this regard [72], fuzzy a priori formulation of reference features that are described by a set
of membership functions to encompass a considerable level of feature variations in the reference
set can be used. Trapezoidal membership functions µj(fj) with four parameters (i.e. aj, bj, cj, dj
defining fj-values of edges of a trapezoid) were used to formulate reference features. Similarly,
other forms to describe a priori appropriately could also be used according to the information
available. Fuzzy membership µ of each segment i for each feature j is denoted as µij . It is
reasonable to calculate a product of fuzzy membership µij of all h features when it is desirable
to classify each single segment separately. This refers to a single class problem where a special
object type is targeted in an image based on the presence of each feature (i.e. µij > 0 ∀ j )
necessary in its overall classification. Moreover, the total number of expected segments nc in
an image was also formulated as a feature of a single image segmentation process in such cases
to facilitate evaluation process using a trapezoidal fuzzy membership function denoted as µc.
Therefore, a criterion

Qfuzz(p) = µc(p) · 1

nc(p)

nc(p)∑
i=1

(
h∏
j=1

µij(p)), (2.42)

based on aforementioned logic, is introduced to express the quality of automatic image segmen-
tation when single class is to be handled based on its feature vector. A classifier is needed to be
designed for multiclass problem if object labels are given as absolute ground truth.

2.6.2 Classification measure

For each image Iseg, BLOBS are compared for class types using Itruth
5. As BLOBS do not per-

fectly match the reference, class assignment is needed to be synthesized. For each BLOB Su in

5This measure can only be used if ground truth image in terms of class labels is available
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Iseg, a class is assigned based on a certain feature set F and then compared to class type Kv of
corresponding BLOB Tv in Itruth.

Let Ku represent the class assignment for each Su and K̂u represent the class assignment by a
classifier (given by Iseg). Then,

Ku = argmax
k=0,··· ,Kn

(card
{
i ∈ {1, · · · , Cu}|Itruth,Sux,i,Suy,i

= k
}

) (2.43)

such that, the quality criterion could be written as:

q3 =
1

U

U∑
u=1

|sign(Ku − K̂u)| (2.44)

This criterion (2.44) was then accordingly converted to a fuzzy criterion using (2.4) such that:

µ3 = µ(q3; 2, 0, 1). (2.45)

2.6.3 Total quality measure

In terms of providing feedback to segmentation block, the total quality measure is given as:

Q(r, b, n) = µ1 · µ2 · µ3. (2.46)

where, µ1, µ2 and µ3 were described earlier in Eq. (2.37), (2.39) and (2.45). For a certain pa-
rameter set p that has to adapted in order to improve Q(r, b, n), quality measures for BLOBS
dependent on p can be represented as µ1(p), µ2(p) and µ3(p) and total quality measure is given
as:

Q(r, b, n,p) = µ1(p) · µ2(p) · µ3(p) (2.47)

The criterion (2.46) needs to be maximized with respect to the parameter vector p in order to
obtain the optimal parameter set popt as given below:

popt = arg max
p
Q(r, b, n,p) (2.48)

The optimal segmentation results are obtained using individual popt for each method.

For a quality measure dependent upon different types of noise such as n1,n2 and n3 based on
artifact function A(n1, n2, n3) mentioned in Section 2.2.4, a parameter set p can be tuned based
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on quality measures for BLOBS dependent on p represented as µ1(p), µ2(p) and µ3(p). Conse-
quently, and total quality measure Q(n1, n2, n3,p) is given as:

Q(n1, n2, n3,p) = µ1(p) · µ2(p) · µ3(p) (2.49)

The criterion (2.49) is maximized with respect to the parameter vector p in order to obtain the
optimal parameter set popt:

popt = arg max
p
Q(n1, n2, n3,p) (2.50)

popt is then used for final segmentation of image for each method.

2.6.4 Robustness measure

In order to evaluate the effect of selecting a specific segmentation/classification method selection
in presence of described artifact levels, a quality measure is required to be designed for robust-
ness. Such quality measures are usually based on calculation of area under the curve, adapting a
tansig-regression and finding second derivative etc. The images selected for performance evalua-
tion constituted an image series I(1, k, k+1) where k = 1,...,B. The resulting series has images in
such a way that each succeeding image has both increased shading and noise level in comparison
to the one preceding it. Here, a robustness measure for an algorithm based on increasing artifact
levels for a particular dataset r is described as:

R =

∑B
b=1Q(r, b, b+ 1)

B
. (2.51)

The performance of different algorithms will be compared based the robustness measure given
in (2.51) when classification results are fed back to tune automatic parameter adaptation in image
segmentation.
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3 Results

3.1 Overview

In this chapter, the results of new feedback-based methods for automatic parameter tuning are
discussed. The benchmark datasets described in Tab. 2.1 would be used in the following sections
for the application of new feedback-based methods. The comparison would be made between
feedforward and feedback implementations of standard image processing algorithms for each
benchmark dataset (excluding the natural biological cell Benchmark datasets 2 and 4).

The results for each benchmark dataset are summarized and discussed in the summary and dis-
cussion sections following each benchmark.

3.2 Benchmark dataset 1

This section describes the results of standard image segmentation algorithms when applied to
Benchmark dataset 1 in comparison with automatic feedback parametric tuning of the same al-
gorithms using fuzzy a priori knowledge. The a priori knowledge was based on the difference
between number of object counts relative to ground truth and the misclassification of those ob-
jects based on ground truth objects. Benchmark dataset 1 contained roughly from 20 to 70 objects
in different scenes. So, based on quality measures given in (2.36), (2.38) and (2.44), respective
membership functions for a priori were defined according to (2.37), (2.39) and (2.45).

Exemplary processing pipeline: An exemplary pipeline for standard algorithms given in
Fig. 3.1 is proposed to apply the aforementioned methods and thus to compare two or more
subroutines in an image processing pipeline. This pipeline was used for testing standard algo-
rithms by evaluation of their performance on the Benchmark dataset 1 (see solid lines in Fig. 3.1).
This pipeline is used to adapt parameters in the feedback fashion as shown by the dotted lines in
Fig. 3.1.
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Figure 3.1: Exemplary pipeline for the segmentation of images in Benchmark dataset 1. w is the
convolution filter size defined as symmetric w × w square matrix having elements equal to 1

w2 . t is the
image intensity threshold and s is the size of structuring element to be used for image opening operation.

3.2.1 Standard image segmentation/classification routines

Two standard and most famous segmentation methods i.e. Otsu thresholding and edge detection
were chosen to show the effect of increasing artifact level on segmentation outcome. Using
Benchmark dataset 1, as described earlier in Section 2.2.2, the results of segmentation from the
above mentioned non-adaptive algorithms were compared with their corresponding parameter
adaptation and the results were compared in terms of evaluation criteria developed based on
a priori knowledge about the objects to be found in the Benchmark dataset 1. This knowledge,
for simplicity, was based on error in terms of number of objects detected and difference in pixels
of the objects detected in comparison to the ground truth objects.

In the pipeline structure shown by solid lines (see Fig. 3.1), a grayscale image is first normalized
using 2% and 98% quantiles in the pre-processing step. The normalized image is then segmented
using standard image segmentation techniques. Here, the aim is to use the benchmark to compare
a standard Otsu operator to a Sobel edge detector using the threshold parameter t. This parameter
t is selected automatically by each individual algorithm for each artifact level based on the image
intensity map. In Otsu’s method application, the resulting binary image is then passed through
morphological operations such as image hole filling, image dilation (using 7× 7 pixels window
as a structuring element), image opening (using a structuring element of disk with radius 3) and
image border clearing in order to get reasonable objects. A large size of image dilation parameter
was selected in order to detect very small objects that may get occluded due to presence of arti-
facts. In Sobel edge detection, the resulting binary image was passed through the same sequence
of operators but the structuring element of image dilation was selected to be of size 3×3 pixels.
Each object is described by 8 features to design a Bayes classifier. Features are area, eccentricity,
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mean intensity, maximum intensity, minimum intensity, solidity, median intensity and standard
deviation of intensity values. This pipeline has been implemented as a macro in the Gait-CAD
software ([136]) developed in MATLAB and is provided with the implementation code.

The image processing pipeline given in Fig. 3.1 is used to compare the segmentation steps i.e.
Otsu operator versus a Sobel edge detector. For application, scene r = 1 of Benchmark dataset
1 was used. As a native edge detection does not directly seek for objects1, the edge detector
is expected to deliver worse results. The robustness of each method in a pipeline is quantified
using (2.51) and scene r = 12.

The performance of the pipeline, once using the Otsu operator and once using the Sobel edge
detector with respect to increasing artifact levels is given by dotted lines in Fig. 3.2. The seg-
mentation evaluation measures are integrated in the total quality measure Q(r, b, n).

Fig. 3.2 shows a decreasing performance (dashed lines) of the segmentation algorithms indicated
by Q(r, b, n) with increasing artifact levels A(r, b, n). To quantify the performance degradation,
the robustness measures Rotsu and Redge for Otsu thresholding and Sobel edge detection, respec-
tively are given according to (2.51). R is given on a scale between 0 and 1 where larger values
show high robustness. Both segmentation methods are found to be comparatively closer (see R
values in Fig. 3.2) to each other. At higher artifact levels, edge detection fails to find the adequate
number of objects as compared to Otsu thresholding but classification results are seen to be better
than those obtained with Otsu segmentation.

3.2.2 New feedback-based parametric tuning for standard image segmen-
tation/classification routines

In this section, both segmentation methods i.e. Otsu thresholding and edge detection were used
in such a way that parameters involved in the outcome of image segmentation were iteratively
adapted using a quality criterion to be fulfilled. The automatic feedback-based image segmen-
tation tuning is given with results in this section. Not only methods are compared with each
other, but the tendency for improvement in both methods by using the new feedback parameter
adaptation method was also shown. The deviation in quality at each artifact level for different
scenes are given in [76].

1However, the subsequent hole filling delivers objects in undistorted cases.
2Scene r = 1 was selected due to the lower number of foreground objects and less complex cases to make this

demonstration more understandable.
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Figure 3.2: Results of the adaptation of image segmentation parameter on Benchmark dataset 1,
r =1. Q(r, b, n) vs. A(r, b, n). In the first row, original images from dataset r = 1 are given. The second
row shows corresponding segmentation and classification results using parametric feedback tuning of
Otsu’s method. The third row shows corresponding segmentation and classification results using similar
tuning of edge detection method. Red and green colors represent correct and wrong classification of the
segmented BLOB respectively compared to ground truth. Robustness values for Otsu’s method and Sobel
edge detection are Rotsu = 0.50 and Redge = 0.48 respectively. Where as, robustness values for the new
automatic feedback parametric tuning of aforementioned methods are Ropt,otsu = 0.78 and Ropt,edge = 0.59
respectively.
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The optimization is done independently for each artifact level by adapting parameters 3. In case
of datasets containing images with unknown artifact levels, one can ascertain artifact level by
estimating the background of the image. If ground truth is available, then it becomes relatively
easy to estimate the background using the intensity values of pixels.

Parametric adaptation can be done using different pipeline structures and more parameters could
also be involved. Hereby, the parameter vector p was reduced just to one parameter for both seg-
mentation methods such that p = totsu for Otsu’s method and p = tsobel for Sobel edge detection.
For parameter tuning of p, (2.48) is adapted based on criterion (2.47).

Segmentation outcome for Benchmark dataset 1 was evaluated for r = 1. Using image processing
pipeline given by dotted line in Fig. 3.1, parameter adaptation of both Otsu’s method and Sobel
edge detection to scene r = 1 is applied. This was done to show the effect of image processing
parameter adaptation on the outcome of an image processing pipeline in order to compare the
segmentation steps i.e. Otsu operator versus a Sobel edge detector. For standard feedforward
application of both segmentation methods, the performance was indicated by robustness mea-
sure R (i.e. values for Otsu thresholding and Sobel edge detection are Rotsu = 0.50 and Redge
= 0.48 respectively). In order to show a better performance for feedback parameter adaptation,
robustness values should eclipse the former ones using (2.51).

The performance for parameter adaptation of the two methods, one using the Otsu operator and
the other using the Sobel edge detector with respect to increasing artifact levels in comparison to
their standard feedforward application is shown in Fig. 3.2.

From Fig. 3.2, it can be seen that using automatic feedback parameter adaptation method, the
performance of both methods can be improved especially at higher artifact levels. This is evident
by robustness values of both segmentation methods i.e. Ropt,otsu = 0.78 and Ropt,edge = 0.59.
Moreover, it is also observed that, using parameter adaptation, the value of Q(r, b, n) at any
artifact level for both methods cannot be worse than that of standard feedforward methods.

It is also clear that at higher artifact levels (i.e.greater than 0.6), Otsu’s method outperforms Sobel
edge detection. At lower artifact levels, Sobel edge detection has marginally better outcome
than Otsu’s method. This could be understood better by seeing individual segmentation and
corresponding classification outcomes at certain artifact levels. For instance, at A(r, b, n)≈ 0.75
the segmentation outcome of feedforward/feedback-based Otsu’s method and edge detection is
shown in the first row of Fig. 3.3.

3For Otsu’s method, the intensity threshold t was adapted over a parameter variation from 0 to 0.8 with the
resolution of 0.01. The limits of totsu can be chosen based on totsu values from the standard application of Otsu
shown in previous section. In case of edge detection, again only one parameter for Sobel edge detection was
adapted to provide a fair comparison with the non-feedback method. This parameter was again the threshold tsobel
for thresholding the calculated gradient magnitude of image intensity. This parameter is adapted between 0 and
0.2 using knowledge from the standard application of Sobel edge detection described in previous section. The step
size for iterative search was selected to be 0.005. For more information on fixed parameters and parameters to be
optimized, see Tab. 3.1 and 3.2.
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Figure 3.3: Segmentation outcome (shown by red outlines) for Otsu segmentation and Sobel edge
detection: feedforward vs. new feedback parameter adaptation method at artifact level A(r, b, n)
≈ 0.75 in the first row and A(r, b, n) ≈ 0.94 in the second row. First column: segmentation result for
feedforward Otsu segmentation. Second column: segmentation result for Otsu segmentation using feed-
back parameter adaptation. Third column: segmentation result for Sobel edge detection using standard
feedforward application. Fourth column: segmentation result for Sobel edge detection using feedback
parameter adaptation.

It can be seen in third image of first row in Fig. 3.3, that due to the presence of shadows, edges
are not fully detected and predefined image dilation parameter is not able to form all BLOBs
resulting in a low Q(r, b, n) value using standard feedforward application. Conversely, when
threshold to edge detection is adapted iteratively, comparatively better segmentation quality is
obtained at high artifact level (see fourth image in row 1 of Fig. 3.3).

Wrong classification assignments occur due to incorrectly segmented objects only at extremely
high artifact levels for Sobel edge detection (see third and fourth image in row 2 of Fig. 3.3),
whereas Otsu’s method is more efficient at higher artifact levels in comparison to Sobel edge
detector (see first and second image of row 2 in Fig. 3.3).
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Pipeline
structure

Segmentation
method

Fixed
parameters

Optimized
parameters

Robustness
values R

Result
links

Feedforward
(solid lines)

Fig. 3.1

Otsu w,s,totsu − 0.50
Red dashed line in
Fig. 3.2

Edge w,s,tsobel − 0.48
Blue dashed line in
Fig. 3.2

New feedback
(dashed lines)

Fig. 3.1

Otsu w,s totsu 0.78
Red solid line in
Fig. 3.2

Edge w,s tsobel 0.59
Red solid line in
Fig. 3.2

Table 3.1: Results showing robustness of feedforward vs. feedback pipeline structures (segmentation/-
classification) for two different image segmentation methods in Benchmark dataset 1.

3.2.3 Automatic image segmentation/classification using abstract ground
truth

To find objects based on user abstract information is also possible. The user has to define objects
to be found, e.g. he may want to find out an object class e.g. a set screw (encircled green in
Fig. 3.4) among all other objects in images of r = 1. By looking at an image, one can see that
such objects are medium-sized, greater in eccentricity and have higher solidity. The features
selected are area f1 (in pixels), eccentricity f2 and solidity f3. Based on trapezoidal fuzzy mem-
bership functions, these features are represented as µ1(f1) with (a1, b1, c1, d1) = (0, 5000, 7000,
8000), µ2(f2) with (a2, b2, c2, d2) = (0.6, 0.85, 0.95, 0.96) and θ3(f3) with (a3, b3, c3, d3) = (0.85,
0.95, 1, 1). Moreover, nc = 4 for set screws in r = 1. This can be formulated as well in the
evaluation criterion using µc(nc) with (σ, o) = (2, 4).

p = t was selected as shown in Fig. 3.1. The pipeline is first operated without classification
block. For each p, feasible objects are selected that maximize (2.28). For Otsu’s method and
Sobel edge detection, totsu and tsobel were adapted respectively. It is object based since each
detected object is compared against the reference features and objects that maximize (2.28) are
selected.

The results for detecting set screws in r = 1 are obtained throughout the graded dataset with
increasing artifact levels. An example of image segmentation/classification at a medium artifact
level (A(r, b, n) = 0.55) is given in Fig. 3.5. Firstly, both methods are applied in feedforward
fashion (see results in first column of Fig. 3.5). All fixed parameters remained same as in the
case of using absolute ground truth (see Tab. 3.1). Then, feedback adaptation of both methods is
done by adapting a single parameter i.e. t in both cases and the improvement in results can be
seen in the second column of Fig. 3.5.

Later, the classification block is introduced into the pipeline, and the results (feedforward vs.
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Algorithm
type

Parameter/Operator
name

Parameter
setting

Processing
step

Range of tuned
parameters

(min : step size : max)

1,2,3,4
image
filling ’holes’

morphological
operations

1,3
image

dilation SE: 7x7 ones
morphological

operations

2,4
image

dilation SE: 3x3 ones
morphological

operations

1,2,3,4
image

opening
SE: s = 3

’disk’
morphological

operations
1,3 totsu fixed for 1 thresholding 0 : 0.01 : 0.8
2,4 tsobel fixed for 2 edge detection 0 : 0.005 : 0.2

1,2,3,4
number of
features 8

feature
extraction

Table 3.2: Fixed and optimized parameters for each processing step in Benchmark dataset 1. Here,
1: StdOtsu, 2: StdEdge, 3: AutoOtsu, 4: AutoEdge

Figure 3.4: Using abstract ground truth information to find one targeted object in the scene. Set
screws encircled in green are to be found in r = 1

feedback) are shown in Fig. 3.6. As the artifact level is increased, it is hard to detect the targeted
objects based on user-defined knowledge. However, one can use the overall evaluation mea-
sure (2.48) (since it incorporates the classification outcome evaluation too) to adapt an optimal
parameter set popt based on objects selected by maximizing (2.28) at each p.

Feedback parameter adaptation results are shown in solid lines for both the methods in Fig. 3.6.
Marginal or mostly no improvement was observed in the case of Otsu segmentation even by
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Figure 3.5: Otsu segmentation and Sobel edge detection for abstract ground truth defined by a
user using only one object type at A(r, b, n) = 0.5553. First column: feedforward application of both
methods. Second column: feedback application of both methods. First row: segmentation result using
Sobel edge detection (using red colored delineation). Second row: result from Otsu segmentation results
using red colored delineation.

adapting totsu. For Sobel edge detection, there was a considerable improvement in results by
adapting tsobel. At A(r, b, n) ≥ 0.6, both methods perform poorly both in feedforward and feed-
back structures. This is due to the fact that feature extraction is greatly disturbed as noise is
detected because optimization is clearly looking for certain objects with user-defined input ref-
erence features.

In Fig. 3.7, the effect of segmented objects on classification accuracy is shown at different artifact
levels in case of both segmentation methods using feedback parameter adaptation. It is seen
in Fig. 3.7, that as A(r, b, n) increases, number of correctly classified objects decreases. The
robustness results according to each pipeline structure are given in Tab. 3.3.

3.2.4 Summary and discussion

The presented framework contains images of the same scenes under varying illumination con-
ditions and noise levels as well as the ground truth for segment detection and object type clas-
sification. Furthermore, measures to evaluate the artifact level, segmentation and classification
quality as described in Section 2.2.2 were used to evaluate illumination robustness of Benchmark
dataset 1. Thus, robustness evaluation of image processing and classification algorithms becomes
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Figure 3.6: Segmentation outcome for Otsu segmentation and Sobel edge detection for abstract
ground truth defined by end user using only one object type with increasingA(r, b, n). Dotted red and
blue lines show outcome of Otsu segmentation and Sobel edge detection respectively with fixed parameter
values respectively whereas solid red and blue lines show parameter adaptation using t.

possible and enables developers to compare image processing algorithms with respect to the ro-
bustness. To this end, the development of algorithms with a focus on robustness in distorted data
is accelerated. Parameters and structures can easily be evaluated and optimized.

Furthermore, not only the robustness of an image-processing pipeline can be evaluated but also
the segmentation quality. Parameters can be optimized with respect to the given data quality.
For example, if the quality of images is known to be bad, algorithms do not need to provide the
optimal results on good quality images if the parameter adaptation of the algorithms used is not
employed.

In addition, the outcome of an image processing pipeline can be fed back to optimize its param-
eters. Therefore, users have a means to tune the parameters in a pipeline not only to fit a special
set of images but could also be applied to a more general class of problems.

The possibility to describe an image set in a rather abstract fashion was also shown with results.
A user may define targeted objects in terms of estimated a priori knowledge, e.g. estimated size
and number of objects. Parameters are optimized to find these described properties. Furthermore,
in combination with a classifier, the method can also be used to extract a certain kind of object
out of all segmented objects and therefore build an image processing pipeline being capable
of picking object classes out of an image. This was also shown with pipeline feedback using
parameter adaptation against a pipeline using feedforward structure for standard segmentation
methods.
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Pipeline
structure

Segmentation
method

Fixed
parameters

Optimized
parameters

Robustness
values R

Result
links

Feedforward
(solid lines)

Fig. 3.1

Otsu w,s,totsu 0.41
Red dashed line in
Fig. 3.6

Edge w,s,tsobel 0.43
Blue dashed line in
Fig. 3.6

Feedback
(dashed lines)

Fig. 3.1

Otsu w,s totsu 0.41
Red solid line in
Fig. 3.6

Edge w,s tsobel 0.51
Red solid line in
Fig. 3.6

Table 3.3: Results using abstract ground truth for Benchmark dataset 1: Parameters and robustness of
feedforward vs. feedback pipeline structures (segmentation/classification) for two different image seg-
mentation methods.

Figure 3.7: Segmentation/classification outcome for Otsu segmentation and Sobel edge detection of
one object type using feedback method against increasing artifact levels along the columns from left
to right. First row: Otsu segmentation using feedforward application. Second row: Otsu segmentation
with feedback adaptation of parameter t. Third row: Sobel edge detection using feedforward application.
Fourth row: Sobel edge detection with feedback adaptation of parameter tsobel. Green color shows right
classification of segments and blue color shows the objects that are not classified as set screws.
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Basically each part of the framework (images, artifact level calculation, quality calculation, ro-
bustness) can individually be replaced, depending on the preferences of the developer. Even the
images may be replaced by arbitrary images as long as the calculation of the artifact level (de-
pending on the parameter to be used, here: mean pixel value) delivers reasonable results. Using
the proposed benchmark, the effect of increasing artifact levels on the image segmentation out-
come using standard algorithms is shown. The proposed quality measures may be used for other
object classification benchmark without a special robustness focus as well.

The presented new parameter adaptation method of image processing parameters was also shown
using benchmark dataset containing illumination and artificial Gaussian noise artifacts. A com-
parison was presented in terms of how much could a segmentation outcome be improved if the
targeted parameter/parameters are searched iteratively in a search space. These results were
shown to be robust at higher artifact levels where standard feedforward application fails to pro-
duce adequately desirable results.

The quality of the optimal image segmentation depends upon how well a certain targeted param-
eter is found. This, indirectly, refers to the step size or the resolution of search space contained
within its bounds. These results can be further improved by increasing the resolution or further
decreasing the step size of the parameter set to be optimized within the bounds. However, careful
bounds and step size should be chosen in order to avoid useless drifting in unwanted parameter
space. A nonlinear optimization could also be performed to search the optimal parameters more
efficiently.

Furthermore, the new feedback-based parameter adaptation method can be further fine-tuned
by making structural changes to an image processing pipeline. Image normalization has not
been done in this dataset since even without the background noise removal, image segmentation
quality has shown to be improved. Similarly, induced Gaussian noise and shading effects do not
impart too big a challenge for segmentation as in case microscopic images containing inherent
microscopic noise. Therefore, with this dataset, only parameter adaptation involved directly in
image segmentation is adapted.

3.3 Benchmark datasets 2 and 4

Thee benchmark datasets described in Sections 2.2.3 and 2.2.5 were used for both image nor-
malization and segmentation using feedback parameter adaptation. Section 3.3.1 shows normal-
ization using feedback parameter adaptation to discuss the improvement in automatic feedback
image segmentation. However, feedforward standard method for image segmentation is com-
pared to feedback parameter adaptation of image segmentation parameters in Section 3.3.2. The
overall improvement using both feedback-based image normalization/segmentation is discussed
in Section 3.3.3.
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3.3.1 Automatic feedback-based image normalization

Benchmark dataset 4: The details and reference evaluation of this dataset is given in Sec-
tion 2.2.5.

Since only a partial ground truth (only in terms of total number of cells to be found in an image)
is available, the mean size (x1,mean) of cells in pixels obtained from image segmentation step
should also be considered as a valid segmentation criterion. Due to background noise present
in images, image segmentation does not produce desired segments. Therefore, automatic image
normalization was performed and the degree of success is judged by seeing the improvement in
image segmentation results based on the evaluation criteria. The segmentation results obtained
from new feedback-based normalization can be seen from values of σGD and x1,mean in Tab. 3.4
later in Section 3.3.2.

popt was adopted by (2.7) based on (2.41). The images Bk, where k = 1...6, were used from
Benchmark dataset 4. The plausibility of visual results with respect to human observation was
slightly improved when using the new method. This is indicated in B2 by a fine delineation of
cells lying very close to each other. Since the shading effect around cells has been minimized
in the normalization technique, more cells were detected in the whole dataset Bk. This effect is
demonstrated in Fig. 3.8 (image on the right, section on middle top), where the outer boundaries
of detected cells were seen to be hardly touching each other. So, much clearer and separated
cell boundaries are found. It can be observed from Tab. 3.4 that by using automatic image
normalization, the results in terms of σGD and x1,mean were improved which are aggregated using
mean value µ in Tab. 3.4.

Figure 3.8: Comparison of visual results between image segmentation without normalization (left) with
one using normalization (right) with sectioned images in the middle

Benchmark dataset 2: Here, images Pl where l = 1...4 were used from Benchmark dataset
2 as shown in Fig. 3.9(a). The aim is to apply automatic image segmentation on this dataset.
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However, the shading effect has first to be removed to perform automatic image segmentation. As
an example of shading, P1 having numerous cells in different states, is illustrated in Fig. 3.9(a).
The image suffers from an inconsistent background illumination since the background in corners
is darker than in the middle of the image as shown in Fig. 3.9(b) using high contrast by applying
5 % percentiles using (4.2). Therefore, shading correction is imperative in order to disentangle
image from such variations concealing original intensity information in an image. This is done
to improve the image segmentation outcome.

(a) Original grayscale image (b) Contrast-stretched image us-
ing 5 % percentiles

(c) Contrast-stretched normalized
image using 5 % percentiles

Figure 3.9: Shading effect in original grayscale image P1 and its automatic correction using (2.41)

Normalization of P1 using âopt,fuzzy,norm is done and resulting image is shown in Fig. 3.9(c). It
is clear that shading effects are highly reduced. The spline-shaped fuzzy membership functions
were used (see Fig. 3.10) for the evaluation of the normalization criteria (2.17) and (2.18). The
results are presented in Tab. 3.5. It can be seen from Tab. 3.5 that segmentation criterion Qfuzz,seg
was improved in case of using normalization before image segmentation. It demonstrates the
beneficial effect of using a shading correction procedure. Uniform backgrounds were achieved
(see Qfuzz,norm in Tab. 3.5) using the new automatic normalization technique, whereas in original
images of Pl, criterion (2.18) yielded undesirably low values. All algorithms are implemented in
MATLAB using the Image Processing Toolbox and the open source Gait-CAD Toolbox [94] for
data mining.

3.3.2 Automatic feedback-based image segmentation

Benchmark dataset 4: Using the criterion (2.7), popt was adopted by (2.42). The results for
all images Bk are given in Tab. 3.4 in terms of deviation from ground truth. In addition, a feed-
forward automatic segmentation technique proposed by Otsu [103] was applied resulting in an
optimal threshold t. The results, however, are not directly comparable since nc could be indeci-
sive especially when Otsu’s method deliver such segments having size considerably smaller than
the normal segments. To solve this problem, an image opening was applied in case of Otsu’s
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(a) Qnorm,1 vs. µ1 with (a,b) = (0 1) (b) Qnorm,2 vs. µ2 with (a,b) = (0 1)

Figure 3.10: Fuzzy spline-shaped membership functions µ1 and µ2 for criteria (2.17) and (2.18).

method in order to remove erroneous small segments (opening filter size s = 3 and s = 5). With
the addition of an image opening operation, the parameter vector for Otsu’s method is described
as pOtsu = (s, t)T .

Images
New method (w/o norm.) New method (with norm.) Otsu’s method (s = 3)
σGD (%) f1,mean σGD (%) f1,mean σGD (%) f1,mean

B1 12 110 13 114 8 101
B2 15 129 12 108 16 97
B3 18 113 14 105 18 99
B4 15 99 15 112 12 94
B5 20 120 18 117 23 96
B6 11 121 11 128 14 96
µ 15 115 14 114 15 97

Table 3.4: Reference cells detection for all Bk images by applying feedback-based image segmentation,
first without automatic shading correction and then using it, in comparison to feedforward standard image
segmentation using Otsu’s method with s = 3

The results obtained from new feedback-based parameter adaptation technique were comparable
to original Otsu’s feed-forward method as can be seen from values of σGD and mean cell area
f1,mean in Tab. 3.4. The aggregated results using mean value µ in Tab. 3.4 show that the new
scheme was able to detect cell numbers closer to those detected by Otsu’s method but with larger
mean cell area, the direct relevance or comparison of which is not stated in a priori reference
of Bk. The µ of σGD was equal to 15 in case of the new method and Otsu’s method with s =
3. However, visual results with respect to human observation seem much more plausible when
using the new method. This is indicated by larger value of µ of f1,mean equal to 115 in case of the
new method as opposed to Otsu’s method with s = 3 having µ of f1,mean equal to 97. This effect
is demonstrated in Fig. 3.11, where the demarcation of detected cells were seen to be inside the
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cell boundaries yielding smaller cell areas in case of Otsu’s method with s = 3.

Therefore, it can be inferred that the new method not only detects and counts the cells comparable
in numbers to Otsu’s method that uses an image opening filter manually, but is also able to select
image opening filter size automatically. Moreover, it yields much better results from subjective
point of view.

Figure 3.11: Cell detection of B2 using the new feedback technique (left) in comparison to
Otsu’s method (s = 3) (right) with zoomed sections in the middle. It is visible through the
sectioned images in the middle that my using new normalization method, better cell boundary
demarcations are obtained.

Benchmark dataset 2: The parameter vector to be optimized in this case is p = (w, s, t)T ,
where w, s and t represent convolution square matrix size, image opening disc size and brightness
threshold respectively using (2.42) with h = 3 and (2.28). Three features namely, the area f1,
eccentricity (ratio between major axis and sum of major and minor axes) f2 and the mean of the
brightness f3 for each segment were selected. Since the intent is to find specific cell states within
an image, it is recommended to define a range of confidence over which the selected features
can vary. The segments for normal looking cells were labeled manually in image P1. A priori
knowledge was described using µj(fj) for fTref as shown in the Fig. 3.12. It can be seen from
Fig. 3.12(a), that for a normal cell, the area lies roughly between 330 to 600 pixels. Its roundness
factor (0.5 for perfectly round segments) is between 0.52 to 0.62 as shown in Fig. 3.12(b) and
its brightness can vary from 34000 to 34300 as shown in Fig. 3.12(c). Moreover, the number
of cells, that can be found in each image of the given dataset, can be between 60 to 190 as
represented by a fuzzy function in Fig. 3.12(d).

Furthermore, labeling of normal cells of all Pl images by adapting popt,fuzzy given in (2.28) using
fuzzy feature evaluation was also performed. The labeling of normal cells were obtained based
on abstract reference fuzzy features using (2.28) for optimal parameter set adaptation. Only P1

was labeled for normal looking cells (nref = 76) as a reference and additional normal cells nd
were sought after in the rest of images of Pl. The cells (apart from nref ) which fulfill the fuzzy



3 Results 79

(a) (b) (c) (d)

Figure 3.12: µj(fj) and µc for reference normal cells, where Fig. 3.12(a) µ1(f1) with (a1, b1, c1, d1) = (239,
330, 600, 878) represents area such that perfect normal cells are defined to be between 330 to 600 pixels,
Fig. 3.12(b) µ2(f2) with (a2, b2, c2, d2) = (0.49, 0.52, 0.62, 0.68) represent eccentricity of cells such that
perfect normal cells have eccentricity between 0.52 and 0.62, Fig. 3.12(c) µ3(f3) with (a3, b3, c3, d3) =
(33626, 34000, 34300, 34544) represents that intensity of perfect normal cells lies between 34000 and
34300 and Fig. 3.12(d) µc with (a4, b4, c4, d4) = (10, 60, 190, 220) represents the membership function
of number of normal cells to be found in an image. Mostly, it is assumed that 60 to 190 normal cells are
present in any image.

criteria Qfuzz of normal cells defined using (2.42) are nd. The results for all Pl images are given
in Tab. 3.5 in terms of nc (sum of both nref and nd), σGD and criterion value Qfuzz using (2.42).
The value of σGD was given only for P1 since only P1 was labeled for reference cells. The results
in Tab. 3.5 show that the new method was not only able to detect nref with good accuracy but
nd as well in the whole Pl. P4 with nd, given as an example in Fig. 3.13(b), shows that the new
algorithm was able to label nc automatically based on a priori knowledge. P1 in Fig. 3.13(a)
shows demarcation of nref by an outline and nd by colored dots. Among these nc, 73 nref were
found and are shown in Fig. 3.13(a) by segments having both an outline and a colored dot. On
the right side of both images in Fig. 3.13(a) and Fig. 3.13(b), a zoomed image was shown for a
selected section. It can be seen from Fig. 3.13(b) that nd are only normal cells while the dying
cell states with high mean brightness were not detected. Moreover, a very dull cell near the top
right corner of the zoomed image, indicated by an arrow in Fig. 3.13(b), was also not detected.
Similar trend can also be observed in Fig. 3.13(a).

Images
Original images Normalized images

Qfuzz,norm Qfuzz,seg nc σGD Qfuzz,norm Qfuzz,seg

P1 0.15 0.73 99 3.95 1 0.75
P2 0.07 0.76 104 - 1 0.76
P3 0.08 0.77 80 - 1 0.78
P4 0.11 0.69 19 - 1 0.73

Table 3.5: Comparison of segmentation results with/without automatic feedback normalization of
all Pl images. The results are shown for original images using automatic feedback image segmentation
showing Qfuzz,seg values for each image. Moreover, normal cell detection is shown using nc values for
each image. Only nref for P1 is given, therefore, its deviation from ground truth is given in terms of σGD.
In the last main column of normalized images, the results are shown to be improved marginally using
Qfuzz,seg values after applying automatic shading correction. Moreover, overall normalization criterion
values Qfuzz,norm are given for both in presence and absence of automatic shading correction.
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(a) P1 with nc = 99 (b) P4 with nc = 19

Figure 3.13: An example of automatic cell labeling using Pl. Fig. 3.13(a) shows P1 that includes
detection of both reference ground truth normal cells nref with σGD = 3.95. White demarcation shows
the presence of reference normal cells and central red spot shows the detection of normal cell according
to (2.42). Fig. 3.13(b) shows normal cells detection in P4. White arrow points to a certain cell that did not
fulfill the normal cell criteria and was rejected.

3.3.3 Summary and discussion

A framework was presented using partial ground truth to find good algorithmic parameters using
feedback structure for image processing steps such as image normalization and image segmen-
tation. When, only total number of cells is given as ground truth, parameters for image seg-
mentation can be adapted to reduce deviation from ground truth in case of Benchmark dataset 4.
Moreover, a user can define specific segments to be found in an image abstractly. These abstract
reference features were formulated using fuzzy functions to find normal cells in Benchmark
dataset 2.

Automatic image normalization was done to remove noise and shading from background. This
enables us to perform image segmentation step with the chance to improve results. It was shown
from results that feedback-oriented normalization algorithms using fuzzy criteria have the capa-
bility to improve image segmentation using a human reference. The results were not remark-
ably improved as in terms of improvement in image segmentation quality in case of Benchmark
dataset 4 but adequately big cells were obtained as required at least qualitatively and cells that
were obscured by shading were detected. In Benchmark dataset 2, improvement in segmentation
quality was observed as there was more additive microscopic noise.

Moreover, the proposed technique could be efficiently used for the fault detection in large
datasets. Based on the automatic feedback-based normalization evaluation criteria proposed,
a user can easily discern faulty images in a given image dataset after normalization procedure.

It was shown from results that feedback-oriented algorithms using a fuzzy criterion have the
capability to fulfill the goals of segment classification using a human reference. Moreover, the
automatic labeling of the whole dataset was performed. This saves a lot of time compared to
manual labeling.
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3.4 Benchmark dataset 3

This section describes the results of standard image segmentation algorithms when applied to
Benchmark dataset 3 in comparison with automatic feedback parametric tuning of same algo-
rithms using fuzzy a priori knowledge. Here, a priori comprised of same foreknowledge about
number and size of the objects to be found in the image as described in Section 3.2. However,
this time around the number of objects (i.e. cells) to be found in an image was smaller and fixed.
For this benchmark, three different processing steps were used for parametric adaptation namely
image normalization, image processing and image classification. Since, the new methodology
is based on the judging the segmentation outcome, the aim is first to show the results of image
segmentation/classification step using feedforward method in Section 3.4.1 followed by the pa-
rameter adaptation for image segmentation step shown in Section 3.4.2. Afterwards, it has been
claimed that results from automatic parametric tuning of image segmentation/classification step
can further be improved by introducing image normalization. Therefore, first the results from
feedforward normalization are shown in Section 3.4.3 in terms of improvement in the automatic
image segmentation. Later, the automatic feedback parameter tuning of image normalization
parameters is shown in Section 3.4.4.

3.4.1 Standard image segmentation/classification routines

Same segmentation methods (i.e. Otsu thresholding and edge detection used in Section 3.2.1)
were chosen to show the effect of increasing artifact level on segmentation outcome. Using
Benchmark dataset 3, the results of simulated human cell segmentation from above mentioned
non-adaptive algorithms were compared with their corresponding parameter adaptation. Evalua-
tion criteria were developed based on a priori knowledge about the objects (i.e. simulated human
cells) to be found in the Benchmark dataset 3. This knowledge, for simplicity, was based on error
in terms of total number of cells and types of cell states detected and all error metrics were same
as described in Section 3.2.1.

Exemplary processing pipeline: The processing pipeline given in Fig. 3.1 was used to apply
the aforementioned methods and thus to compare two or more standard subroutines in an image
processing pipeline. There were some changes made in the morphological operators used in
the pipeline. Although, the number of operators and their sequence remained unchanged, the
parameters of some operators were changed using both segmentation methods. In case of Otsu’s
method an image dilation with structuring element having a window size of 2×2 pixels was used
whereas the radius of disk used as a structuring element for image opening remained same with
the value of 3. For Sobel edge detection, image dilation was carried with same parameter setting
but for image opening disk of radius 9 was used. High disk radius was selected in order to attempt
to remove false BLOBs created due to dilation salt and pepper noise. Moreover, at the classifier
end, only the number of input features was changed. The only difference for this dataset was
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that only two features (i.e. maximum intensity and standard deviation of the detected cell nuclei)
were used to distinguish between two cell states. These features are selected qualitatively based
on expert knowledge without any quantitative abstract reference. The aforementioned parameters
are also shown in Tab. 3.6.

Segmentation outcome: The performance of the two pipelines (i.e. using Otsu’s method vs.
using Sobel edge detector) with respect to increasing artifact levels A(n1,n2,n3) are given
in Fig. 3.14. The segmentation evaluation measures are integrated in total quality measure
Q(n1,n2,n3) given in (2.49). As shown in Fig. 3.14, a gradual decrease in the quality of seg-
mentation outcome indicated by Q(n1,n2,n3) with increasing artifact levels (A(n1,n2,n3)) is ob-
served for both segmentation methods. To quantify the performance outcome, the robustness
measures Rotsu and Redge for Otsu thresholding and Sobel edge detection, respectively are given.
Otsu’s method outperforms Sobel edge detection in such a scenario. At higher A(n1,n2,n3), edge
detection fails to produce any meaningful results whereas Otsu’s thresholding method shows a
gradually decreasing trend in Q(n1,n2,n3) with the increase in A(n1,n2,n3). The robustness re-
sults of segmentation methods for this pipeline and the parameters involved are shown later in
Tab. 3.7.

3.4.2 Feedback-based parametric tuning for standard image segmenta-
tion/classification routines

In this section, same segmentation methods i.e. Otsu thresholding and edge detection that were
used in Section 3.4.1 were used. The parameters involved in both methods were adapted itera-
tively in a feedback fashion affecting the outcome of segmentation. The best parameters were
selected based on a set quality criterion (2.49) and segmentation based on these optimal param-
eters was selected for final segmentation. Here, not only both selected methods were compared
with each other using parameter adaptation, but also a comparison with their standard usage
when no feedback or parameter adaptation is given.

The exemplary pipeline for the application of automatic feedback parametric tuning is shown be-
fore in Fig. 3.1. Parameters for morphological operators and pre- and post-processing of images
remains nearly identical in both cases (i.e. with and without feedback). As for the parameter
adaptation of segmentation methods in Benchmark dataset 1, only one parameter was adapted
here in Benchmark dataset 3 for each method to show the proof of principle.

For Otsu’s method, intensity threshold totsu was adapted over a parameter variation from 0.2 to
0.3 with the resolution of 0.01. These limits of totsu can be chosen based on totsu values from
standard application of Otsu shown given in Section 3.4.1. Similarly, again only one parameter
(i.e. threshold tsobel for thresholding the calculated gradient magnitude of image intensity) for
Sobel edge detection was adapted for a fair comparison with non-feedback methods. tsobel was
adapted between 0 and 0.2 using knowledge from standard application of Sobel edge detection
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and step size for search was selected to be 0.01.

This procedure for parameter adaptation can be implemented using different pipeline structures
and more parameters could also be involved. Reduction of the parameter vector p just to one
parameter was done for both segmentation methods such that p = totsu for Otsu’s method and
p = tsobel for Sobel edge detection. Parameter adaptation was done according to (2.50) based
on (2.49). The difference in parameters involved and pipeline structure compared to feedforward
implementation is shown in Tab. 3.6. The routine for this has been developed as macro in the
Gait-CAD software ([136]).

Algorithm
type

Parameter/Operator
name

Parameter
setting

Processing
step

Range of tuned
parameters

(min : step size : max)

1,2,3,4
image
filling ’holes’

Morphological
operations

1,2,3,4
image

dilation SE: 2x2 ones
Morphological

operations

1,3
image

opening
SE: s = 3

’disk’
Morphological

operations

2,4
image

opening
SE: s = 9

’disk’
Morphological

operations
1,3 totsu fixed for 1 Thresholding 0.15 : 0.01 : 0.35
2,4 tsobel fixed for 2 Edge detection 0 : 0.01 : 0.2

1,2,3,4
number of
features 2

Feature
extraction

Table 3.6: Fixed and optimized parameters for each processing step in Benchmark dataset 3 without
using normalization step. Here, 1: StdOtsu, 2: StdEdge, 3: AutoOtsu, 4: AutoEdge. 3 and 4 are the new
feedback-based automatic parameter tuning methods.

Segmentation outcome: Using image processing pipeline given in Fig. 3.1, selected parameter
for each method was adapted iteratively using selected parameter space. This search for optimal
parameters can be further refined by decreasing the step size of parameter iteration. The stan-
dard feedforward application of both segmentation methods delivered robustness values of Rotsu
= 0.80 for Otsu’s method and Redge = 0.19 for Sobel edge detection respectively. This perfor-
mance can be improved by using feedback parameter adaptation and is evident if the robustness
values are better than aforementioned values of standard application. The performance using
parameter adaptation for both methods with respect to increasing artifact levels in comparison to
their standard feedforward application is shown in Fig. 3.14.

Fig. 3.14 shows a gradually decreasing trend for performances of the segmentation algorithms
indicated by Q(n1,n2,n3) with increasing artifact levels A(n1,n2,n3) in case of feedforward appli-
cation of both segmentation methods. The performance for algorithms using feedback parameter
adaptation is shown by robustness measures Ropt,otsu and Ropt,edge for Otsu thresholding and So-
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Figure 3.14: Results of parameter adaptation for image segmentation on Benchmark dataset 3.
Q(n1,n2,n3) vs. A(n1,n2,n3) . The first row indicates original images from Benchmark dataset 3. The
second row shows segmentation and classification results using parametric feedback tuning of Otsu’s
method. The third row shows segmentation and classification results using similar tuning of edge detection
method. Colors represent classification success where red is for correct outcome and green for incorrect.
Robustness values for Otsu thresholding and Sobel edge detection are Rotsu = 0.80 and Redge = 0.19
respectively. Where as, robustness values for automatic feedback parametric tuning of aforementioned
methods are Ropt,otsu = 0.88 and Ropt,edge = 0.28 respectively.

bel edge detection respectively. Larger R values correspond to high robustness of given methods.
It is observed that performances of both methods are improved as the area under the curve for
feedback application is greater than that of standard application of algorithms.
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Otsu’s method, which performed quite well in its standard application, can further be improved
using adaptation of its threshold parameter totsu. This is evident by its robustness value i.e.
Ropt,otsu = 0.88 showing a 10% improvement from its standard usage. Especially, at higher
noise levels, it still delivers many cells that are correctly segmented and classified. It may be
noted that noise level can further be increased to make even the parameter adaptation fail. The
concern here is not to show the limitations of feedback parameter adaptation but to emphasize
the fact that at artifact levels where standard Otsu’s method fails, threshold adaptation can deliver
very good results. Moreover, it is also observed that, using parameter adaptation, the result at
any noise level for Otsu’s method cannot be worse than that of its standard feedforward usage.
At low noise levels, both implementations are close to each other, whereby the new parameter
adaptation method edges slightly in terms of quality values as shown in first two images in first
row of Fig. 3.15. No drastic change can be observed. The difference in quality values are only
due to a slightly better delineation of cells in the case of feedback parameter adaptation. As noise
level is increased to about 0.8, a more identifiable improvement is observed as shown in first two
images in second row of Fig. 3.15. There is one misclassified cell in both cases as shown by
the decrease in Q(n1,n2,n3) values at A(n1,n2,n3) = 0.8. However, in terms of segmentation, the
cell in the middle of first two image in second row of Fig. 3.15 was delineated well in case of
feedback implementation of Otsu’s method.

Sobel edge detection, that performed poorly in its standard feedforward usage, can also be im-
proved using parameter adaptation of tsobel. The improvement in segmentation outcome was
increased by 47% indicated by robustness value Ropt,edge = 0.28. Due to certain restrictions in
parameters as described in Section 3.4.1 (results of edge detection cannot be constructively im-
proved when image dilation and hole filling is involved with high salt and pepper noise), the
feedback adaptation also fails to deliver any interpretable results at higher noise levels. Still, for
no image present in the whole dataset could the segmentation quality using new feedback-based
methods could be worse than what is achievable in the standard feedforward application. The
performance of edge detection in feedback parameter adaptation in comparison to its feedforward
usage can be seen in last two images of first row in Fig. 3.15.

It is clear from last two images of first row in Fig. 3.15, that two cells were not segmented that
could have been obtained at a different threshold value. However, both implementations of Sobel
edge detection fail at high noise levels since no meaningful objects are detected as shown in last
two images of second row in Fig. 3.15. Only a part of cell present at the bottom of last two
images in second row of Fig. 3.15 was detected due to which a certain value of Q(n1,n2,n3)
was obtained in feedback parameter adaptation. Wrong classification assignments occur only
at extremely high artifact level for Otsu’s method and is more efficient at higher artifact levels
in comparison to Sobel edge detector. High noise levels of different types make it difficult for
Sobel edge detection to produce any meaningful result because background noise is translated to
such a level by the usage of morphological operators that noise is also seen as BLOBs or more
accurately cells. The overall results for different pipeline structure for each segmentation method
is accumulated in Tab. 3.7.
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Figure 3.15: Segmentation outcome: Q(n1,n2,n3) vs A(n1,n2,n3) at 0.2 and 0.8. First row: segmen-
tation results at A(n1,n2,n3) = 0.2. Second row: segmentation results at A(n1,n2,n3) = 0.8. First and
second column: Otsu’s method using standard feedforward and feedback application respectively. Third
and fourth column: Sobel edge detection method using standard feedforward and feedback application
respectively. Red outlines in all images show the segmentation outcome.

3.4.3 Standard image normalization/segmentation/classification routines

The results given in Sections 3.4.1 and 3.4.2 for Benchmark dataset 3 were only based on the
automatic tuning of image segmentation parameters. Since the images contain increasing sys-
tematic noise, poor segmentation results are obtained at high artifact levels without tuning the
parameters. By tuning the parameters for image segmentation, improved results were observed
(see Fig. 3.14). Still, at higher artifact levels edge detection does not deliver meaningful results.

This can be overcome by removing noise from images. This was done (apart from normalization
with quantiles method described in Section 3.2.1) by applying image normalization method de-
scribed in Section 2.3.2. Here, the apriori knowledge was just based on the binary ground truth
image. This was done to improve the image segmentation/classification result. Therefore, the
resulting normalized image would be applied to feedback pipeline structure of image segmenta-
tion/classification.
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Pipeline
structure

Segmentation
method

Fixed
parameters

Optimized
parameters

Robustness
values R

Result
links

Feedforward
(solid lines)

Fig. 3.1

Otsu w,s,totsu - 0.80
Red dashed line in
Fig. 3.14

Edge w,s,tsobel - 0.19
Blue dashed line in
Fig. 3.14

Feedback
(dashed lines)

Fig. 3.1

Otsu w,s totsu 0.88
Red solid line in
Fig. 3.14

Edge w,s tsobel 0.28
Red solid line in
Fig. 3.14

Table 3.7: Results showing robustness of feedforward vs. feedback pipeline structures (segmentation/-
classification) for two different image segmentation methods in Benchmark dataset 3.

Exemplary processing pipeline: An exemplary pipeline for image normalization given in
Fig. 3.16 was implemented to apply the methods given in Section 2.3.2. This pipeline was first
used in feedforward structure shown by solid black lines in Fig. 3.16.

In this pipeline, a grayscale raw image is fed to a median filter with a symmetric window size
of w×w . The resulting image is treated with image opening with a fixed size s of the disk used
as a structuring element. Parameter s is fixed at the value of 3 and w is fixed at 3. The effect of
normalization on the image is shown by passing this normalized image to feedback structure of
image segmentation pipeline given in Fig. 3.1 and looking at the results. The parameters4 used
in pipeline are same as given in Tab. 3.6.

Segmentation outcome: Using feedforward image processing pipeline given in Fig. 3.16, image
normalization was performed. The results are given in terms of improvements found in image
segmentation outcome using normalized image for Sobel edge detection. This is shown by ro-
bustness values (see Fig. 3.17) of Sobel edge detection method (Redge,norm = 0.82) which is a
remarkable increase from robustness (Redge,norm = 0.28) obtained from using feedback segmen-
tation only. Robustness value of Rotsu,norm = 0.80 for Otsu’s method was seen to be a bit lower
than the value (Ropt,otsu = 0.88) obtained using only feedback segmentation. This is due to the
fact that at medium artifact levels median filter tends to produce some dull back ground objects
that are detected as objects using Otsu thresholding. However, the aim here is to show the dif-
ference between results produced by using fixed normalization parameters and parameter tuning.
The collective improvement by using image normalization step in the pipeline is shown later in
Section 3.4.4 for both methods.

4Only one parameter for this feedback-based pipeline was changed i.e. s = 3 instead of s = 2. Therefore, a
3×3 SE was used for image dilation.
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3.4.4 Feedback-based parametric tuning for image normalization/segmen-
tation/classification routines

The image noise removal done in Section 3.4.3 was based on fixed parameters. This can still
be improved by selecting parameters involved in image normalization which may deliver good
results with a different value when high noise is present. Therefore, main idea was to target these
parameters carefully and select an efficient range over which these parameters can be varied. The
best parameter set can then be selected based on the quality criteria. Criteria were defined based
on the difference of pixel values between the background and objects of ground truth image and
normalized image at same pixel positions.

Exemplary processing pipeline: A general example of a pipeline used for image normalization
in a feedback fashion shown by dashed lines in Fig. 3.16 was developed to show the application
of methods given in Section 2.3.2.

Figure 3.16: Exemplary pipeline for the parameter adaptation for normalization step for images of
Benchmark dataset 3.

In this feedback pipeline structure, a parameter set can be selected to be adapted iteratively based
on evaluation criterion of normalization. To keep it more simple and comprehensible, only one
parameter (i.e. w) was adapted to show the effect of parameter adaptation on normalization
outcome. Parameter s was fixed at the value of 3 as in feedforward case and w (which is now p)
is varied from 3 to 7 with a step of 15.

5w defines a filter window such that m × g = w × w. If w is even integer then the image pixel overlapping
the top-left pixel of filter window is affected. Conversely, if w is odd integer then the image pixel that overlaps the
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Consequently, popt is selected based on the evaluation measure given in (2.25). The optimal
normalized image Inorm is calculated based on popt. The normalization effect in the pipeline is
studied by using the resulting image in feedback structure of pipeline structures given in Fig. 3.1
and comparing the results.

Segmentation outcome: The search for optimal parameters can be performed using a different
or extended search space but careful selection of parameter range is required for user. Normalized
image is fed to feedback pipeline structure given in Fig. 3.1. The results are shown in terms of
improvements found in image segmentation outcome using normalized image. This is shown
by improvement in robustness values (see Fig. 3.17) using feedback normalization step for both
segmentation methods. Performances are seen to be improved by using feedback parameter
adaptation in Fig. 3.17. The automatic selection of p is illustrated by few examples in Fig. 3.18.

Figure 3.17: Results of parameter adaptation of image normalization for Benchmark dataset 3.
Q(n1,n2,n3) vs. A(n1,n2,n3). Robustness values for Otsu thresholding and Sobel edge detection are
Rotsu,norm = 0.80 and Redge = 0.82 respectively when feedforward image normalization is used shown
but dashed line in image. Where as, robustness values for segmentation methods using parametric tuning
of image normalization step are Ropt,otsu = 0.90 and Ropt,edge = 0.91. Feedback-based quality for both
methods are shown by solid lines.

Fig. 3.17 shows a notable increase in the performance of both new methods at very high artifact
levels (i.e. A(n1,n2,n3) > 0.8). This is also indicated by their corresponding robustness values
Ropt,otsu,norm and Ropt,edge,norm for Otsu thresholding and Sobel edge detection respectively using
the new feedback-based method. It is observed that outcomes of both methods are generally

middle pixel of filter window is affected.
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Figure 3.18: Examples for parameter adaptation for normalization step for images of Benchmark
dataset 3 at different artifact levels. First row: Results at A(n1,n2,n3) = 0.9. Second row: Results at
A(n1,n2,n3) = 0.4. First column: Original Benchmark image. Second column: Otsu segmentation result
after automatic normalization. Third column: Sobel edge detection result after automatic normalization.
Fourth column: Plot showing selection of popt = wopt against Qnorm indicated by upright black arrow.

improved in comparison to the absence of image normalization. It can be noted that with new
feedback application of normalization using only one parameter adaptation was better in terms
of Q(n1,n2,n3) for both segmentation methods compared to cases where only fixed values of
normalization parameters were used.

Fig. 3.18 shows that the new feedback technique was able to select w automatically at different
artifact levels. This helped in improving the Q(n1,n2,n3) at individual A(n1,n2,n3) levels.

3.4.5 Summary and discussion

The presented parameter adaptation of image processing algorithms was shown using a bench-
mark dataset containing systematic artificial noise and only two object types for simplicity and
the proof of principle. Results were presented for different image processing steps by using two
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Pipeline
structure

Segmentation
method

Fixed
normalization

parameters

Optimized
parameters

Robustness
values R

Result
links

Feedforward
(solid lines)

Fig. 3.16

AutoOtsu w = 3, s = 3 - 0.80
Red dashed line
in Fig. 3.17

AutoEdge w = 3, s = 3 - 0.82
Blue dashed line
in Fig. 3.17

Feedback
(dashed lines)

Fig. 3.16

AutoOtsu s = 3 w = 3:1:7 0.89
Red solid line
in Fig. 3.17

AutoEdge s = 3 w = 3:1:7 0.91
Red solid line
in Fig. 3.17

Table 3.8: Table showing normalization parameters and robustness of feedforward vs. feedback
pipeline structures of normalization step for Benchmark dataset 3. The pipelines used for application
are: a) feedforward normalization + feedback segmentation/classification b) feedback normalization +
feedback segmentation/classification using two separate image segmentation methods at the segmentation
step. Here, parameters are given just for the normalization step. Optimized normalization parameter is
written in such a way that s = min : stepsize : max. Parameter for segmentation methods remain same
as previous pipeline given in Fig. 3.1.

standard image segmentation algorithms for comparison.

At first, image segmentation step was used to show the difference between standard application
of algorithms and the new parameter adaptation method. It was shown that improvements can
be made if involved parameters for each step are adapted iteratively. These results were shown
to be robust at higher artifact levels where standard feedforward application fails to produce
adequately desirable results.

Secondly, a new method using parameter adaptation of image normalization was shown using
Benchmark dataset 3 containing high systematic noise such as Gaussian, salt and pepper and
speckle. A comparison was presented in terms of how much could a segmentation outcome be
improved if image normalization is used with fixed parameters and later adapting those automat-
ically. An improvement could be seen in segmentation results when feedforward normalization
was used. This was further improved by adapting a single parameter of image normalization.
The feedforward normalization may not improve the results obtained without using normaliza-
tion step. This is due to that fact that different pre- and post-processing parameters could dete-
riorate the result at a certain artifact level. To cope with this, local parameters for each artifact
level can be extracted.

Furthermore, the proposed method of feedback parameter adaptation for image normalization
can be further fine-tuned by involving more parameter or selection between different filter types.
Noise removal techniques can be made to adapt parameters in the presence of sequentially in-
creasing noise. The results could be improved if careful parameter selection and their range is



3 Results 92

selected by the user. The quality criteria were only given as an example here. More sophisticated
and tailor-made criteria can be defined by a user according to his needs.
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4 Applications - cell state analysis in
human cancer cells

4.1 Introduction

Image processing is a powerful analysis tool encompassing diverse application domains (e.g., in
industrial quality inspection, automobile industry, mobile robots, biomedical, toxicology etc.).
Nowadays, the focus of using image processing techniques and methods in order to develop
adequate comprehension of biological processes has indeed become quite alluring, both to cell
biologists and toxicologists. The acquired image datasets are challenging for analysis due to
varying background noise, amount of information and drifting acquisition conditions. Adaptive
image processing and feedback methods are useful concepts in tackling such kind of datasets.

In this chapter, the new feedback-based methods for image normalization and segmentation de-
scribed in Chapter 2 are applied to a real biological cells dataset (i.e. Application dataset1). This
is to show that the applied algorithms are able to perform on non-synthetic real image datasets.

This is essentially a heterogeneous biological dataset consisting of images showing human lung
cells (A549) treated with the anticancer drug cis-platin for 24 hours and representative images
were acquired as described in [30]. The image data is taken at a single time point whereas there
are four images for each of the well that contains the cells exhibiting these processes and there
are 96 wells in total. There are three channels for obtaining this data i.e., bright field (BF) which
allows the detection of morphological changes, Hoechst 33342 (that gives information about
nuclei or better to say DNA as it is a fluorescent dye binding to DNA) and Propidium Iodide (PI)
that gives subtle indication of whether a late apoptotic or necrotic cell has been detected.

Therefore, different object types are available that can be distinguished from each other using
diverse features from different channels. It also presents a dataset where information fusion and
robust feature selection is of great significance.

1The main part of the biological dataset - 304 images in one channel and consisting of 3 channels. The whole
dataset contains 314 images in one channel, out of which 10 images/channel are used as Benchmark dataset 2 and
the rest of images are used for application purposes as Application dataset.
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4.2 Biological background

4.2.1 Apoptosis

One such process that occurs in multicellular organisms is apoptosis and is currently a field
of enormous attention in biomedical research [50]. Apoptosis is described as a genetically regu-
lated form of cell death characterized by biochemical events leading to characteristic cell changes
such as blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation and DNA frag-
mentation [33]. It has its share in biological processes such as embryogenesis, physiological
involution, atrophy of various tissue and many other processes pertaining to diseases. Evasion
of apoptosis is the hallmark of cancer. Virtually all cancer cells contain mutations that enable
evasion of apoptosis through a variety of mechanisms [56]. In cell culture, apoptosis limits the
yield of economically and medically important products, and can result in synthesis of imperfect
molecules [112].

Mutation is one trigger for the apoptosis process. Nevertheless, the apoptosis is a normal com-
ponent of the health and development of multicellular organisms whereby cell death occurs in a
controlled and regulated fashion. It occurs during the normal development of multicellular or-
ganisms and is continued in later stages of life. In combination with cell proliferation, apoptosis
contributes for shaping tissues and organs in developing embryos. Apoptosis is also an important
part of regulation of the immune system [11].

4.2.2 Necrosis

In contrast, another type of cell death used in conjunction with the apoptosis is necrosis that
is considered almost always detrimental. It is a premature cell death having an inflammatory
response in an unplanned fashion. It is usually caused by the external circumstances such as
exposure to the toxic chemicals [47]. At the morphological level, necrosis is characterized by
cell swelling rather than cell shrinkage as seen in apoptosis [112].

4.2.3 Mitosis

Moreover, another noteworthy process here is mitosis, which is the cell division resulting into
two daughter cells that are genetically identical to their parent and to each other. It is of high
significance for a living organism since it enables cells to reproduce and regenerate tissues in the
body.
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4.3 Biological a priori knowledge and desired features for im-
age analysis

The aim of the project is to quantify the number of cells for each cell state in the whole dataset.
From a viewpoint of image processing and analysis, the image data collected from these observed
processes has an implicit potential as in the recovery of desired features enabling an efficient
quantitative analysis of these captured processes. However, in order to facilitate such an analysis
sufficient amount of valid data and pre-knowledge of judgment criteria for classification and
feature extraction is necessary.

The three processes described above have both explicit and subtle differences. In the case under
consideration, the image data is taken at a single time point whereas there are four images for
each of the wells that contains the cells exhibiting these processes and there are 96 wells in total.
There are three channels for obtaining this data i.e., bright field (BF) which allows the detection
of morphological changes, Hoechst 33342 (that gives information about nuclei or better to say
DNA as it is a fluorescent dye binding to DNA) and Propidium Iodide (PI) that gives subtle
indication of whether an apoptotic (later stage) or necrotic cell state has been detected. PI is
used to stain cells since it binds to nucleic acids giving them fluorescence. This is illustrated in
Fig. 4.1.

Figure 4.1: Description of different cell phenomena using different channels.

The morphological process of cell nuclei in the apoptosis can be described stepwise in a chrono-
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logical order as:

Figure 4.2: Different cell states using Hoechst channel.

• On the nuclear level in the first step at the beginning of the apoptosis, there occurs a partial
condensation (shown as 2 in Fig. 4.2) of the DNA in the nucleus (i.e. packaging of DNA)
that is followed by a homogeneous condensation (shown as 3 in Fig. 4.2) in the subsequent
step as shown in Fig. 4.2. The nucleus with partially condensed DNA is slightly bigger and
more oval and has bright distinguishable spots in contrast to the one with homogeneous
condensation which is round and show a homogeneous bright Hoechst signal. A partially
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condensed DNA is seen as high fluorescence distributed unevenly inside a normal nucleus
in the Hoechst channel as shown by number 2 in Fig. 4.2. A normal nucleus is almost
homogeneous and dull in terms of intensity with very low fluorescence in the Hoechst
channel (see number 1 in Fig. 4.2). It is difficult to recognize in the BF channel and has no
signal in PI channel.

• Next step shows early apoptosis indicated by homogeneous condensation of DNA as nu-
cleus is more bright, round and homogeneously condensed in the Hoechst channel as
shown in the Hoechst channel image (contained in blue rectangular box) of Fig. 4.1. In
the BF channel it is round as can be seen in BF channel (contained in blue rectangular
box) image in Fig. 4.1. It is probably lesser round in BF channel than cell states showing
mitosis phenomenon.

• Finally, in the last step, a late apoptotic nucleus or fragmentation of DNA (indicated by
number 4 in Fig. 4.2) may be detected based on the presence of signal from PI channel. A
fragmented cell is shown in the Hoechst channel by many small independently distinguish-
able highly fluorescent spots describing the fragmentation of the nucleus in encirclement
indicated by number 4 in Fig. 4.2. In the case of late apoptosis, a signal from PI channel is
present as can be seen from red box in Fig. 4.1.

The different states of nuclei in the Hoechst channel can be seen in Fig. 4.2, which shows nor-
mal healthy nucleus against the different states of nuclei during different processes whereby the
difference between their intensity values, areas and shapes can be visually observed. Moreover,
using separate channel information, these states are shown in Fig. 4.3.

During the earliest stage of mitosis, an elongated and bright nucleus is detected in the Hoechst
channel whereas in the BF channel it appears round. Ultimately, the division of nucleus into
two followed by the division of cell into two daughter cells are detected that are also bright in
the Hoechst channel which become less bright in later stages. Furthermore, it is also necessary
to detect necrotic cells in additions to the normal cells, apoptotic cells and cells produced by
mitosis. For that, presence of signal from PI channel can be used to indicate necrotic cells as
there is a loss of integrity of cell membrane since the signal acquired from Hoechst channel is
less bright than early apoptotic cells.

Moreover, the phenomenon of overlapping of cells and the number of apoptotic cells in their
neighborhood as shown in the Fig. 4.4, are also subject to further investigation using image
processing techniques. The overlapping may occur in the early or late apoptosis stage.

Some challenges in image processing involves the detection of fragmented nucleus as belonging
to one cell and clear demarcation of the boundaries of nuclei extremely close to each other.
Another problem is that in the late apoptosis the nucleus may not be completely fragmented into
distinguishable separate fragments rather it could be just one irregularly shaped object with high
fluorescence.
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Figure 4.3: Typical example of each cell state using different channels. Color code: Green -
normal cells, red - partially condensed DNA, blue - homogeneously condensed DNA, orange -
fragmented DNA and gray - overlapping cells.
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Figure 4.4: Overlapping of two cells.

4.4 Goals of image analysis

The aim here is to establish an image processing routine to classify apoptotic cell states in addi-
tion to other processes like mitosis and necrosis. The desired functionality of the proposed image
analysis scheme involves:

• Detection of total number of cells in each of the Hoechst channel images.

• Classification of cell types and DNA states:

1. Apoptotic

– Partially condensed
– Early apoptotic
– Late apoptotic
– Fragmented
– Fragmented late apoptotic

2. Necrotic

3. Mitotic

4. Normal

This is achieved using signals from BF and PI channels in addition to Hoechst channel.
Furthermore, early and late apoptosis can be distinguished using:

• Shape and intensity properties of individual cells using information from Hoechst channel.

• Number of fragments of each cell.
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4.5 Normalization of dataset

4.5.1 Types of normalization

Different well-known types of image normalization techniques are used ( [114]) depending upon
the type of application:

Normalization using minimum and maximum of given intensities:

For a given grayscale image with pixel values Iij (with g columns andm rows), normalization can
be performed by rescaling all pixel values using minimum (Iij,min) and maximum (Iij,max) pixel
values employing Eq.(4.1):

Iij,norm =
Iij − Iij,min

Iij,max − Iij,min
(4.1)

resulting in pixel values that are in the range of 0 and 1 with Iij,min < Iij < Iij,max. This normalization
is irrespective of the intensity scale of input grayscale image i.e. it does not matter whether the
image is 8-bits or 16-bits, and only depends upon the extreme intensity values of captured image.

Normalization using percentiles:

Percentiles can be introduced to saturate a certain percentage of pixels lying on either side of the
intensity distribution of pixel values. This procedure is more helpful when the intensity values
of a certain amount of pixels in a given image are already saturated. Two parameters i.e. a and
b could be defined to specify the cutoff percentage on the lower and upper side respectively of
the intensity histogram. For an image Iij, upper and lower percentiles i.e. Ilow,a and Ihigh,b, can be
defined to saturate the pixels that have values lower than Ilow,a assigning them a pixel value of 0
and vice versa. It can mathematically be written as:

Iij,norm =


Iij−Ilow,a

Ihigh,b−Ilow,a
if Ilow,a < Iij < Ihigh,b

0 if Iij ≤ Ilow,a

1 if Iij ≥ Ihigh,b

(4.2)

There is a liability in this method to produce erroneous results if the given image does not con-
tain saturated pixels but useful intensity information on the extreme ends of the distribution.
Therefore, upper and lower percentiles should be chosen with great care.

Normalization using statistical parameters:
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Normalization can also be performed on a given grayscale image with pixel values Iij by using
statistical parameters such as standard deviation (σ) of pixel values and mean pixel value (im). It
is done mathematically as:

Iij,norm =
Iij − im

σ
(4.3)

where,

im =
1

m · g
∑
ij

Iij (4.4)

and

σ =

√
1

m · g
∑
ij

(Iij − im)2 (4.5)

In case of a random dataset of images, the comparison of these methods in terms of usefulness
and efficiency requires to be done. This can be shown in the following subsection where different
normalization methods are considered using dataset of images of human cells to identify different
cell states acquired using a microscope.

4.5.2 Image dataset from apoptotic cells

The dataset taken in one biological assay consisted of three different channels. The Hoechst
channel was of paramount significance since the fluorescence readouts for these images were
considerably higher than other channels. There were 32 16-bits images for each channel in the
dataset considered. For the sake of brevity, four images were considered from Hoechst channel
for the evaluation of normalization. Since each image is of 16 bits, the gray levels range from 0 -
65535 (gmin - gmax) while size of each image is 1024 × 1344. The average lowest pixel value and
highest pixel value are 33211 and 36863 respectively for these four images.

The main objective is to detect all possible cells in each image and count them, and to extract
features of each segmented cell. The restriction is to do the segmentation based on pre-processed
and normalized images in order to alienate cells from background while retaining enough in-
tensity information to perform proper segmentation. Moreover, for features extraction, the pixel
values at critical levels defining each cell class shall be retained in the images used for features
extraction based on performed segmentation. However, outliers should be disregarded but they
should not be saturated close to critical intensity ranges.
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First of all, the images are normalized with respect to corresponding minimum (Imin) and max-
imum (Imax) pixel values of each image as shown in Fig. 4.5. For an individual image, it does
not matter if it is scaled between gmin - Imax, Imin - Imax, Imin - gmax or gmin - gmax , since it does
not affect the pixels distribution pattern. The histograms for each of these images are shown in
Fig. 4.5.

It is clear from Fig. 4.5, that the distribution of foreground pixels do not follow continuous loss of
number of pixels towards higher intensities. Moreover, the background is seen to occupy at least
50 % of pixels in all of these images. Secondly, the images are normalized using 5 % percentiles
and the resulting images using contrast stretching between the thresholds created by percentiles
and their histograms are shown in Fig. 4.5. The shortcoming of percentiles normalization is
readily evident as the background is mingled with the foreground pixels.

Arguably, percentile normalization saturating 5 % on each end can be first used for segmentation
whereas the image normalized with minimum and maximum intensity levels can be used for
feature extraction based on segmented image. Alternatively, the image can be normalized in the
full range of available gray levels on the available data i.e. in the range of gmin - gmax, in which
case no saturation is required since the assumption is that none of the pixels are saturated.

Additionally, assumption can be made on the lower and upper sides of intensity levels beyond
the minimum and maximum pixel values of the whole dataset and normalize the each image
with respect to these two control limits. Moreover, automatic parametric fitting to an estimated
background function could also be performed in order to correct background illumination from
each image. To find the optimal parameters of surface fitting, feedback-based method proposed
in Section 2.3.2 could be used.

In Fig. 4.5, it can be observed that a lot of inherent microscopic background noise is present.
This was removed by automatic feedback-based image normalization method described in Sec-
tion 2.3.2 and the results are presented in Section 3.3.1. The resulting image is then normalized
using 5% percentiles according to Eq.(4.2). This image is then used for image segmentation.
For feature extraction image obtained one step before was used and normalized according to
Eq.(4.1). The outcome after normalization and shading correction is evaluated and presented in
detail in Section 3.3.1 as this is the Benchmark dataset 2.

4.6 Cell segmentation

As mentioned earlier, the dataset consists of three channels. The main aim is to segment the infor-
mation present in different channels, fuse it and uses it to classify different cell states. Therefore,
first all three channels should be segmented separately. Then, features extraction and feature
selection is performed to classify different cell states. The employed image analysis scheme is
divided into three different processing stages. These stages include image normalization, seg-
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Figure 4.5: Images from Hoechst channel (in first column) normalized with 5 % percentiles with their
corresponding histograms (in second column) to show the effect of inherent shading. This shading is
removed using new automatic feedback-based image normalization method (in third column) described
in Section 2.3.2. Fourth, fifth and sixth columns are corresponding histograms of first, second and third
columns respectively.

mentation and feature extraction from:

1. Hoechst 33342 channel

2. PI channel

3. BF channel

4.6.1 Hoechst 33342 channel segmentation:

The image segmentation pipeline for Hoechst channel is shown in the Fig. 4.6. The foremost
functionality of the analysis scheme is to segment all the recognizable cells in the image from
Hoechst channel and count their number. The given pipeline performs two main steps: Nor-
malization and Segmentation. Furthermore, the image data is used to calculate the shape mea-
surement features and intensity features for each of these individual cells detected. The design
algorithms are supervised designed based on a priori knowledge about the shape and intensity
features of the cells to be found. For such tasks, a lot of manual steps are necessary based on
a priori knowledge. Feedback-based algorithms can support the parametrization of algorithms
by finding out the optimal parameters based only on this knowledge.



4 Applications - cell state analysis in human cancer cells 104

Figure 4.6: Image analysis scheme for cell segmentation (Hoechst 33342 channel). Green
arrows show the feedback-based adaptive image processing steps.

The scheme is implemented in MATLAB using both Gait-CAD and m-file environment. The
functionality of detection and counting of cells in a single image has already been implemented
in Gait-CAD.

Stepwise procedure

The image segmentation routine to detect and count the number of cells in a given grayscale
image from Hoechst channel is given in a stepwise fashion as follows:
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1. A raw input grayscale image is fed into the pipeline for normalization.

2. Pre-processing/image normalization is done through various steps and checks. Firstly,
automatic parametric shading correction is done using parameter adaptation technique (see
Fig. 4.7) described in Section 2.3.2 in Chapter 2. This is done to remove the background
noise. Then for further noise removal, image opening with a large structuring element is
done followed by contrast enhancement of image such that 1% data is saturated at low
and high intensities of input image. This is done to remove further background noise
and to make the foreground objects less obscure from the background. Finally, percentile
normalization is done using 2% and 98% quantiles in order to improve the contrast further.
The results are shown in Fig. 4.8.

Figure 4.7: Automatic parametric adaptation for additive background shading removal using
feedback-based normalization procedure described in Section 2.3.2.

Figure 4.8: From left to right: Background noise removal using procedure given in Sec-
tion 2.3.2, contrast adjustment and percentile normalization.

3. The resulting image is then fed to an adaptive scheme for Otsu’s thresholding method using
feedback mechanism described in Section 2.4.2. A priori fuzzy knowledge of area and
median intensity features of BLOBS are first extracted using standard Otsu’s application.
Then, this knowledge is used to design a criterion based on which segmentation result
is selected. The parameter to be adapted is the threshold for intensity in standard Otsu’s
method. The outcome that maximizes the fuzzy criteria is selected and the result is shown
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in Fig. 4.9. This would produce n BLOBs of cells. Based on the segmented image, a priori
knowledge is recalculated for further use.

Figure 4.9: Result of parameter adaptation for intensity thresholding in standard Otsu’s method
using feedback-based technique described in Section 2.4.2.

4. In order to separate the bigger BLOBs (i.e. they may be representing two overlapping cells
or cells having their boundaries in contact with each other), each BLOB is passed sequen-
tially for further segmentation separately through Sobel edge detection (Edge) and water-
shed algorithm (WS). Both of them are used to check whether which algorithm achieves
better cell separation. An evaluation criterion is placed to select the better outcome. Each
method is defined by variable segtype .Parameter adaptation is used in both implemen-
tations using proposed feedback-based method in Section 2.4.2. In case of watershed,
intensity threshold is adapted to compute regional maxima, which is then used as a map
in watershed algorithm. Results are based on criteria maximization ( (2.42) with h = 2)
using a priori knowledge about area and intensity features of the BLOBs created at the end
of previous step. Similarly, Sobel edge detection is also applied in a feedback mechanism
by varying image intensity producing a varying gradient magnitude. The evaluation crite-
rion is same based on a priori fuzzy features extracted in last step. For all criteria, abstract
ground truth for area and number of cells was used. Fuzzy formulation using trapezoidal
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functions was done to describe a priori features in the same fashion as described in Sec-
tion 3.3.1.

For each BLOB result, a selection criterion is put in place to decide between the segmen-
tation resulting from both aforementioned techniques. The aim here is to separate overlap-
ping or closely lying segments while also dealing with the issues of under-segmentation.
The criterion is based on more number of cells with larger areas. This is illustrated by
an example shown in Fig. 4.10. A higher number of cells with larger areas are expected
(in order to avoid small noisy BLOBs or over-segmentation). This may produce x cells
in addition, or x could be 0 in case where both algorithms fail to find additional cells.
Therefore, n+ x cells are forwarded to next step.

Figure 4.10: Result of parameter adaptation for using both watershed algorithm and Sobel
edge detection and corresponding criterion-based selection using (2.42) with a priori reference
features i.e. area and number. The result for the method (watershed selected in this case indi-
cated by segtype: WS) which maximizes this criterion for each segment considered for further
segmentation is selected.

5. Next step is to check if any detectable cell is left behind. Before this step, very small
segments that are below the predefined lower limit of area detection are removed. To
check missing segments, output image from automatic shading correction block is used in
conjunction with output from the previous step in order to segment only those areas that
are not covered by n + x BLOBs. The resulting image is shown in Fig. 4.11. It can be
seen that nearly all segments were detected except for the ones at borders (excluded inten-
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tionally). Therefore, the BLOBs smaller than specified minimum size threshold farea,min2

only correspond to parts of the segments detected in previous step. If they are not able
to recombine with their parent segments, they are deleted considering the size threshold.
Otherwise, missing segments are added if their area is large enough. Missing segments are
added to the segments coming out of previous step.

Figure 4.11: Missing segments detection.

6. Based on resulting binary image and intensity image coming out of automatic shading
correction, small bright segments are detected that may be the part of fragmented nuclei.
However, this step may produce some left out parts of the already detected cells and should
be therefore carefully parametrized. Additional small segments are then added to binary
image coming out of previous step.

7. In the last step, all small segments (farea,i < farea,min) are removed from binary image once
again to eliminate any redundant tiny BLOBs and final segmentation is obtained as shown
in Fig. 4.12.

Every cell in an image has its own label and all its shape and intensity features are stored in an
array with respect to its label. The intensity and shape features are the further used for the clas-
sifications of cell states of detected cells in the input image from Hoechst channel as described
above.

2 farea,min is based on a priori area features (i.e. done through manual inspection / expert labeling).
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Figure 4.12: Final cell segmentation in the nuclear staining channel.

Sub-structure segmentation

In order to distinguish between different cell states, it is advisable to extract more usable features
present in the sub-structures of cells. For example in partially condensed or early apoptotic cell
states, there are few bright spots that could be formulated as a feature of sub-structure. An
intensity threshold tin at each level n is adapted for an individual cell i on nmax = 5 different
levels in order to explore sub-structures such that:

tin =


ti,min if n = 1

ti,max if nmax > 1 & n = nmax
ti,max−ti,min

n−2 if nmax > 2 & n < nmax

(4.6)

where, tin is the vector containing local threshold level values from lowest image intensity level
ti,min to highest image intensity level ti,max. The result for such a cell state and corresponding
sub-structure segmentation is given in Fig. 4.13.
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Figure 4.13: Sub-structure segmentation using adaptive thresholding for each individual cell
using minimum and maximum of the given intensity. At level 5, at tin = 0.78, two segments
were observed. Number 6 in the subscript refers to the cell segment number of the original
Hoechst channel final segmentation.

4.6.2 Bright field (BF) channel segmentation:

In BF channel, morphological changes to cell structure can be observed. This channel can be used
in addition to Hoechst channel to extract certain new features that could help user to differentiate
between potentially different cell states. For e.g., mitotic cells have round boundaries (referring
to eccentricity as a possible feature) with clear membrane structure in BF channel. Therefore, it
is also essential to segment BF channel.

The challenge here is to extract the protruded structures correctly from the channel images such
that useful features could be extracted from them. Here, an important feature is also needed to
be defined that can differentiate between different cell states. The pipeline used for BF channel
segmentation is given in Fig. 4.14.

Stepwise procedure

The stepwise procedure to segment BF channel is given as follows:

1. A raw BF channel image is fed into the pipeline for segmentation (see image on left in
Fig. 4.15).

2. For noise removal, automatic background shading correction is done as with nuclear
staining channel using feedback-based parameter adaptation technique proposed in Sec-
tion 2.3.2 in Chapter 2. The results are given in the right image of Fig. 4.15.

3. Min-max normalization is applied and the image is scaled between 0 and 1.

4. Gradient magnitude recursive Gaussian image filter is then applied to the resulting image.
This filter computes the magnitude of the image gradient at each pixel location. This is
equivalent to an image smoothing process using convolution with a Gaussian kernel and



4 Applications - cell state analysis in human cancer cells 111

Figure 4.14: Image analysis scheme for cell segmentation (BF channel).

then applying a differential operator on the resulting image. The result is shown on left
in Fig. 4.16. Then, contrast stretching is done in order to make foreground objects more
visible (see right image in Fig. 4.16).

5. In the next step, the segmented image from Hoechst channel is used to extract information
from BF channel. Since most of the information about cell states is present in Hoechst
channel, it is quite reasonable to use its segmented cells for the extraction of segments
obtained by BF segmentation. For each Hoechst segment, BF information is extracted ex-
actly at the same pixel locations specified by a certain BLOB in the Hoechst channel. For
each BLOB in Hoechst, BF segmentation result is extracted in the same window. Intensity
histogram features are extracted in order to design a criterion that enables the algorithm
to choose between thresholding and edge detection operation. The purpose of this further
segmentation step is to ensure that the right structures from BF channels are extracted in
terms of their roundness factor. Based on histogram, it is seen that if the ratio between
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Figure 4.15: On left: Original complemented BF channel image. On right: result of automatic
shading removal in BF channel image.

Figure 4.16: Left: BF channel image segmentation using gradient magnitude recursive Gaus-
sian image filter. Right: contrast stretching

higher 20% intensity bins (i.e. number of pixels within a specific intensity level) and lower
20% intensity bins is larger than a certain boundary threshold px, then edge detection is
selected for that particular segment otherwise Otsu’s thresholding is used to deliver objects
for eccentricity calculation in the BF channel. Few examples of this criterion and corre-
sponding objects segmented are shown in Fig. 4.17 along with their eccentricity values.

6. The segments obtained from previous step form the new BF segmented image. Finally,
small irrelevant segments (i.e. farea,i < farea,min) are removed from it to get the final BF
channel segmentation as shown in Fig. 4.18

4.6.3 Propidium Iodide (PI) channel segmentation:

PI channel is used to detect signals in case of apoptotic and necrotic cell states. Therefore, it
is necessary to segment this channel to classify certain dying cell states. This channel does not
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Figure 4.17: First column: Original segments from BF channel image segmentation using
gradient magnitude recursive Gaussian image filter. Second column: Delivered objects with
their eccentricity values and the method chosen for segmentation. The threshold value (px = 5)
was selected.

contain a lot of information, so normalization and segmentation processes are relatively easier.
The pipeline used is shown in the Fig. 4.19.

Stepwise procedure

1. A raw PI image (on right in Fig. 4.20) is inputted to the PI channel segmentation pipeline.

2. Automatic background shading correction is done just like for the images of other chan-
nels. The resulting image is shown on left in Fig. 4.20.
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Figure 4.18: Final BF channel segmentation

Figure 4.19: Image analysis scheme for cell segmentation (PI channel).

3. Percentile normalization is then done using only the quantile (1%) at the lower side of
intensity. At higher side, outlier removal was avoided because the intensity information
contained in PI image is fairly scarce with very bright spots (i.e. signals are traced) that
might be removed if upper quantile is used.

4. Otsu’s thresholding is then done followed by an image dilation to get the required BLOBs.
The final segmentation result is shown in Fig. 4.21.
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Figure 4.20: On left: Original PI channel image. On right: result of automatic shading removal
in PI channel image.

Figure 4.21: Final PI channel segmentation

4.7 Segment assignment

The devised pipeline in Section 2.4.3 is applied to the segments obtained. The dataset contains
some images of fragmented nuclei from cells that also show some distinctive features in the BF
channel. Some images in this dataset contain 5 to 10 % of cells that are fragmented and the
fragments belong to the same nuclei. Therefore, room to improve the segmentation accuracy is
evident. The results are shown in Figs. 4.22 and 4.23.

The goal of this processing pipeline is to annotate all segments correctly and assign only one
label to all those nuclear segments that belong to one cell while giving each nucleus a unique
label. All such segments belonging to each other are assigned the same number and exact same
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color in the final annotated image (a section of such an image is shown in Fig. 4.22). Here,
the label 77 and specific red color tone is assigned to two segments that belong to each other.
Therefore, it is easier for users to instantly see which segments belong to each other and vice
versa.

Some critical cases using different channels separately and combined are shown in Fig. 4.23.
Critical cases are those that require immediate assignment but were not obtained by using only
Hoechst segments. The critical cases are a combination of:

1. Fragmented nuclei (as defined by manual inspection) which however were labeled differ-
ently from each other using Hoechst segmentation only.

2. Over-segmentation of the nuclei thus generating a number of Hoechst segments not corre-
sponding to the true number of nuclei.

In Fig. 4.23, each column belongs to one of the several critical cases. The first row shows critical
nuclear segments in the Hoechst channel and their corresponding appearance in the BF channel
is given in the second row. The overlaid images are displayed in the third row and show the
segments from Hoechst in red over the grayscale BF image. The resulting annotation shows
segments that belong to each other encircled together in the final row. From Fig. 4.23, it is clear
that with such a method critical cases can be resolved Tab. 4.1.

However, the improvement in segmentation results is highly dependent upon the number of
critical cases with respect to the total number of segments present in an image. If a higher
number of fragmented nuclei belonging to the same cell is present, such an algorithm can highly
improve the segmentation result Tab. 4.1.

The improvement in segmentation results by employing this method is given with respect to both
critical cases and per image. Percentage improvement (ψimage) in segmentation results using the
total number of correct segments with respect to the total number of segments detected originally
in a given image is given by :

ψimage = 100 · 1− (nt −∆)

nt
(4.7)

Here, nt is the total Hoechst segments without using BF channel and ∆ is the difference of
correct and incorrect number of segments after reassignment.

In terms of critical cases, percentage of segmentation success (ψcase) is given by:

ψcase = 100 · n+ − n−
nseg

(4.8)
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Here, n+ and n− are used for number of segments reassigned correctly and incorrectly respec-
tively whereas total number of reassigned segments per image is denoted by nseg.

Image name
nt Critical cases Reassigned Correction (%)

from Hoechst no. of cases no. of segments n+ n− ψimage ψcase
E1P2 266 11 24 9 4 1.88 69.2
H1P3 82 1 2 1 0 1.22 100
H3P4 40 7 16 8 1 17.5 88.89
H8P4 88 4 9 5 0 5.80 100
H9P1 104 7 17 7 3 3.85 70
H9P4 138 5 11 5 1 2.90 83.3

Table 4.1: Results of segment reassignment and segmentation improvement. The first column shows
names of images containing critical cases. Some of these cases could be seen in Fig. 4.23. The second
column shows the number of nuclear segments found in the Hoechst channel automatically as described
in Section 4.6.1. The third column shows the number of critical cases solved by using segmentation in
the BF channel in addition to the already available Hoechst segmentation (e.g. the three critical cases
shown in Fig. 4.23). Here, number of cases represents the total number of critical cases in a given image
and number of segments represents the total number of segments that are involved in critical cases. The
fourth column shows the total number of segments (belonging to critical cases) that are now assigned
correctly using this methodology e.g., in column 1 and row 4 of Fig. 4.23 the two lower segments are now
correctly assigned to the same cell shown within green encirclements. However, not in all critical cases the
improved algorithm could correctly assign the segments as manual inspection revealed (listed in Tab. 4.1
as incorrect reassignment). The last column shows the improvement in segmentation results using this
method. Here, the first sub-column is assigned to ψimage according to (4.7) and the second sub-column is
dedicated to ψcase according to (4.8 [74]).

Figure 4.22: Output image annotated with colors and cell numbers. The cell number and color code is
same for fragments which belong to each other and is used to distinguish between different cells.
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Figure 4.23: Solved critical cases from given dataset (1 case per column). The first row shows
critical cases in the Hoechst channel. The second row shows the same critical cases in BF channel. The
third row represents an overlay of the BF channel with the segments from the Hoechst channel (shown
in red color). The final row represents annotated images whereby segments belonging to each other are
encircled together (in green colored encirclements) [74]

4.8 Feature extraction and feature selection

After segmentation process, feature extraction is done based on segments obtained from Hoechst
channel. Corresponding features from BF and PI channels are also extracted for these segments.
The features are based on shape and intensity of the obtained segments. A total of 67 features
are extracted from all channels. More than 20 features are extracted from each channel for each
individual segment. The features in Hoechst channel are mean, maximum, median intensity, ec-
centricity, perimeter, standard deviation of intensity, major axis, minor axis etc. Similar features
are extracted in other two channels, too. Additionally, features from sub-structures are also ex-
tracted from Hoechst channels. Number of objects in different sublevels (obtained using 4.6) are
aggregated to give an average feature named total number of sublevel objects.

MANOVA was used to automatically select top 9 features for the classification purpose. The
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feature relevances are given in Tab. 4.2.

No. Feature Quality

1
Standard deviation in
intensity f3 (Hoechst) 0.735

2
Standard deviation in

intensity (PI) 0.888

3 Max intensity (Hoechst) 0.943

4
Min intensity f7

(Hoechst) 0.954

5
Number of sublevel
objects f8 (Hoechst) 0.962

6
Mean intensity
f1 (Hoechst) 0.966

7
Max intensity

(BF) 0.969

8
Mean intensity

(BF) 0.971

Table 4.2: MANOVA features relevance table using a forward selection. The quality value indicates
the quality of the previously selected features and the new feature.The features which were used for manual
selection later were f1, f3, f7 and f8.

Moreover, this could be done using more number of features using manual selection based on
statistical values of the features in different instances. This was done in Gait-CAD. The features
selected were:

1. Mean intensity f1 (Hoechst)

2. Mean intensity f2 (PI)

3. Standard deviation in intensity f3 (Hoechst)

4. Eccentricity f4 (BF)

5. Eccentricity f5 (Hoechst)

6. Area f6 (Hoechst)

7. Minimum intensity f7 (Hoechst)

8. Number of sublevel objects f8 (Hoechst)

9. Eccentricity criterion f9 (BF)
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4.9 Cell state classification

The main aim is to classify different cell states with good accuracy. The approach used here
is supervised, since some labeled examples for each type are desired. The information is this
dataset is multi-channel, so it is useful to combine information given in different channels into
one overlaid image as shown in the Fig. 4.24. This would efficiently and instantly enable an
expert to label cell states and/or see the differences in different class features manually. There
were different overlaid channel color schemes to be chosen by the user when analyzing dataset
in Gait-CAD (see Fig. 4.25).

Figure 4.24: Overlaid channel. Purple color in overlaid image shows the presence of PI signal.

Figure 4.25: Different color schemes in overlaid channel.

4.9.1 Labeling

All different cell states were labeled by biologists according to the features that need to be tar-
geted according to experts. However, only few labels were available since manual labeling is
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time consuming, hectic and individual expert-dependent. Two different experts were used to la-
bel cell states based on different channels. A rough estimate of total number of cells to be found
in the whole dataset is between 23 to 24 thousand. Around 350 cells were labeled. Some labeled
cell states are given in Fig. 4.26.

Figure 4.26: Different cell state labels shown in overlaid channel

4.9.2 Training

All examples were first tried with different classifiers like Bayes and SVM for the proof-of-
concept. However, required accuracy for many cell states was not achieved due to smaller
number of the labeled cells. The feedback-based optimization of image processing parameters
based on classification was discarded due to the same reason. The rule-based classifier was then
opted for. This classifier was based on expert rules developed on feature values obtained from
segmentation results. Expert rules for all cell states are given as follows:
if (f1 < 0.45) & (f2 < 0.05) & (f6 ≥ 300); cell state = Normal
if (f1 ≥ 0.45) & (f2 < 0.05) & (f3 < 0.25) & (f7 < 0.3); cell state = Partially condensed
if (f1 < 0.45) & (f3 ≥ 0.17) & ((f3 ≥ 0.25) | (f7 ≥ 0.3) | (f8 ≤ 1) | (f9 < 0.3)); cell state =
Early apoptotic
if (f2 ≥ 0.05) & (f2 < 0.05) & (f3 ≥ 0.17) & (f8 ≤ 1); cell state = Late apoptotic
if (f1 < 0.45) & (f2 < 0.05) & (f3 < 0.17); cell state = Necrotic
if (f2 < 0.05) & (f9 > 0.1) & (f5 > 0.6); cell state = Mitotic
if (f2 < 0.05) & (f8 > 1)& ((f3 ≥ 0.25) | (f7 ≥ 0.3)); cell state = Fragmented
if (f2 ≥ 0.05) & (f8 > 1)& (f3 ≥ 0.17); cell state = Fragmented late apoptotic
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The feature space used to distinguish between classes is higher dimensional. Therefore, only two
examples are shown in Fig. 4.27. Two cell states i.e. normal and partially condensed could be
differentiated based on features shown in Fig. 4.27. Two feature (i.e. f1 and f6) were selected
to show the distribution in the feature space formed by these features for each cell state. In the
case of normal cell state, it can be seen that the bounds chosen for these feature (i.e. 0.45 as an
upper bound for f1 and 300 as a lower bound for f5) are logical. This can be seen in the image on
the left hand side of Fig. 4.27. However, the same feature f1 can be used again with a different
bound to differentiate between normal and partially condensed cell states. This can be seen in the
image on the right hand side of Fig. 4.27. Therefore, two of the features (i.e. f1 and f3) forming
the feature space were also shown in Fig. 4.27 to demonstrate the difference in feature space of
different classes.

In such a fashion, feature spaces of all cell classes were thoroughly observed to design the rule
base for the classifier manually.

Figure 4.27: Examples of feature space used in expert rules for classifying normal and
partially condensed cell states. Left: feature space formed by f1 (mean intensity in Hoechst
channel) and f5 (cell area in pixels in Hoechst channel). Right: feature space formed by f1
(mean intensity in Hoechst channel) and f3 (standard deviation in cell intensity in Hoechst
channel).

The values present in the aforementioned rule are based on careful observation of features result-
ing from final segments in each channel. Similarly, rules for other cell states are defined and the
labeled dataset is used to train the classifier.
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4.9.3 Testing

The manually labeled examples are first used to train the classifier. The classification results for
different cell states are given in a table shown in Fig. 4.28. It could be seen that normal cell states
are accurately classified up to 90%. Partially condensed cell states have also a good accuracy in
detection using labels. Moreover, early and late apoptotic states could also be detected with
a good accuracy but for other states nothing conclusive could be said due to lesser number of
examples per cell state.

Classifier trained on labeled examples is then used to classify other cells in the whole dataset.
It is then compared to a commercial software Olympus ScanR results. In ScanR, the features
are chosen manually. The segmentation was done by selecting a region in a feature space of PI
intensity and Hoechst intensity, such that most of the nuclei could be detected. However, due to
the difference in segmentation of both softwares, number of cells detected could also be different
in addition to the class labels. The classification results from new feedback-based method and
ScanR in Gait-CAD are shown in the Fig. 4.29. Rejected class is the one containing cell features
that should definitely be excluded from the classification of the labeled cell states.

Due to different number of cells detected in both cases, a correspondence of cases is necessary
to be developed. The complete description of all possible cases is given in Fig. 4.30.

This enables us to instantly see the differences between the segmentation and classification re-
sults from both softwares. Since ScanR can only detect five classes as shown in Fig. 4.32, when-
ever a mitotic cell state is detected correctly, it always improves the classification result (see
Fig. 4.33). In Fig. 4.32,% represents the distribution of cell types along the rows and columns
respectively. The text highlighted yellow in the table is for the emphasis. Since 1 : 1 corre-
spondence is very important, it has been highlight. Similarly, there are additional necrotic cell
states detected in ScanR which are absent in Gait-CAD. In this regard, an improvement can be
further made because these cell states were rejected in new methodology (see Fig. 4.31). How-
ever, additionally more cell states were detected which was not possible in ScanR. In a nutshell,
the algorithms described here in Chapter 4 and implemented in Gait-CAD are much better in
detecting new classes and improves classification is some classes where as it could be a bit worse
some other classes compared to ScanR. Since there is no ground truth, so the results are validated
by experts.

Mitotic cell states are really important to be classified in the provided dataset. Therefore, in
Fig. 4.33, red encirclements show that an additional mitotic class has been detected. This is
also observed by the roundness in BF channel. Moreover, in Gait-CAD a successful comparison
between the classification results of both methods can be seen. In terms of a confusion matrix,
the comparison is given in Fig. 4.34.



4 Applications - cell state analysis in human cancer cells 124

Figure 4.28: Classification results from Gait-CAD for labeled examples using a classifier
trained on expert rules. Classifier results are along the rows and the expert labeling is along
columns. Green colored boxes show good results with high accuracy. Orange colored boxes
show high percentage of misclassified examples and yellow boxes show loss percentage of mis-
classified examples. The two percentages for each box show classification accuracy along rows
and columns.

4.10 Conclusions

In this chapter, methods for cell state analysis for human cancer cells were given. Normalization
and segmentation procedures were performed in different channels for improved cell segmen-
tation. Method for sub-structure analysis in nuclear staining channel was also done in order to
differentiate between classes that show sub-structures. Many features related to intensity and
geometry for each cell were extracted from three different channels. Automatic techniques were
applied to select top features without worsening the results. Few examples for each targeted cell
state were labeled by two experts. A rule-based classifier was designed on these examples and
applied consequently on the whole dataset.

By the virtue of this work, an interactive and efficient comparison of the new feedback-based
image classification method with commercial software was made possible. The new method was
implemented in Gait-CAD and results were compared to a commercial software named ScanR
by Olympus. The comparison using different cell correspondences and confusion matrices was
made possible. Detection of additional cell classes such as mitotic, fragmented and fragmented
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Figure 4.29: Different cell state labels shown in overlaid channel from the new methodology
(data points represented by big colored bounding boxes around cells) and ScanR (represented
by colored dots present at the center of cells).

late apoptotic was also made possible in Gait-CAD. It is also possible to introduce a rejection
class. Total cell count was found to be comparable to that of standard software. A reason-
able classification accuracy (> 80%) for normal and partially condensed cells was achieved.
Moreover, method for segments reassignment in case of fragmented nuclei using multi-channel
information was also proposed and result for cell count was seen to be improved.
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Figure 4.30: Different cell correspondences for software comparison using some examples
of the cases involved. In the table, 1:1 means that for each segment found in Gait-CAD, one
corresponding ScanR segment is found. Similarly, 1:0 indicates only Gait-CAD detection and
no corresponding ScanR detection. For one segment found in Gait-CAD, if there are more than
one segments found in ScanR, 1:n is used. If for more number of segments found in Gait-
CAD, there is only one corresponding ScanR segment, it is denoted as n:1. The red colored
correspondences describe the same relationship as above but starting for ScanR segments, e.g.
0:1 means for one ScanR segment no Gait-CAD segment was found and so on.
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Figure 4.31: Classification results from Gait-CAD for all cell correspondences found in ScanR
segmentation/classification results. The yellow color highlights the important results in the
table. 1 : 1 correspondence is important in comparing the detection in both ScanR and Gait-
CAD. 1 : 0 is here important as it shows the detection of cell states by Gait-CAD that were
missing in ScanR.

Figure 4.32: Classification results from ScanR for all cell correspondences. Some important
results are highlighted using yellow color in the table.
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Figure 4.33: Classification results from the new methodology and ScanR for all cell correspon-
dences. Detection of additional class i.e. mitotic by the new software (encircled red).

Figure 4.34: Classification results in terms of a confusion matrix between ScanR and Gait-
CAD classes. Green colored boxes are direct comparison for same cell states for both softwares.
Yellow colored boxes show areas where Gait-CAD needs improvements. Gray colored boxes
show areas where Gait-CAD was able to show improvements over ScanR software.
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5 Summary

The aim in this research was to present an automatic image analysis to solve and comprehend
technical and natural processes and challenging tasks associated to them. The efficiency and
usefulness of automatic image processing techniques are proposed to fine tune the already ex-
isting methods and providing different platforms to evaluate the standard algorithms. A new
methodology was hereby introduced that facilitates the automatic image analysis by using feed-
back concepts. Parameters associated to various algorithms of different image processing steps
were automatically tuned by using feedback through an evaluation mechanism based on the ex-
pected outcome. This helped to select good algorithmic parameters for each algorithm involved.
In an image processing/analysis pipeline, different steps were handled using the parameter adap-
tation to show an improvement in the overall outcome depicted according to the problem de-
scription. This was done mostly in terms of object type classification in an image or data set.
In order to show robustness of proposed methods, image benchmark datasets were developed
having progressive artifact levels with absolute ground truth about the segments boundaries and
classes. Standard image processing algorithms were first applied to these datasets and using
evaluation criteria, robustness was calculated. Later, the parameters involved in these algorithms
were adapted iteratively and optimal parameter sets were used to evaluate robustness on bench-
mark datasets with increasing artifact levels. It was found that, a user can tune parameters of
standard algorithms automatically using the feedback to improve the outcome in noisy images.

Moreover, a challenging biological dataset containing human cells was used to perform complex
image processing. It was shown that different image processing steps can be tuned to find bet-
ter parameters to solve complex tasks like overlapping/touching segments. Moreover, segments
reassignment using multichannel information and sub-structure segmentation for advanced fea-
ture extraction was also performed to fuse information to find potentially different cell states.
Furthermore, in the absence of explicit ground truth, abstract ground truth about segments to
be found in a dataset was formulated using fuzzy logic and it was shown that user can perform
object based segmentation and classification using parameter tuning.

In a nutshell, a new feedback-based automatic parameter tuning method was proposed, that made
the selection of optimal parameters for standard image processing algorithms possible. This
was never shown or performed before for standard image segmentation methods such as edge
detection and thresholding.
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The following claims have been made in this doctoral research work:

1. Supervised feedback-based automatic parameter tuning at different stages in an image pro-
cessing pipeline and integration of results to improve image object classification

2. Fuzzy formulation of a priori knowledge in conjunction with feedback-based automatic
parameter tuning in addition to the fuzzy evaluation criteria in cases for both image nor-
malization and image segmentation

3. Robust supervised feedback-driven design of normalization/segmentation techniques
through parameters tuning

4. Application of devised feedback-based automatic image processing techniques and algo-
rithms to challenging datasets containing human cancer cell images thereby segmenting
challenging new cell classes

5. Development of benchmark dataset (with absolute ground truth) containing hard items with
progressive shading and artificial noise levels to evaluate standard image segmentation
algorithms

6. Synthesis of benchmark dataset (with absolute ground truth) containing artificial cell types
to evaluate automatic feedback-based image classification and comparison with standard
feedforward methods

7. Classification of additional cell states in human cancer cells in comparison to standard
commercial software

8. Outperformance of feedback-based parameter adaptation of image processing algorithms
in comparison to standard feedforward algorithms using benchmark datasets with natural
shading and artificial noise

9. Implementation of devised supervised feedback-based automatic image analysis algo-
rithms and their integration into an open-sourced data mining and image analysis GUI,
namely Gait-CAD implemented in MATLAB was achieved

10. Upgradation and enhancement of Gait-CAD by importing the cell image analysis results
from standard state-of-the-art softwares into Gait-CAD environment thereby allowing in-
teractive and efficient comparison of our methods with standard market software

11. Cell image data labeling, faulty cells and/or faulty objects rejection was done automatically
with more than 90 % accuracy using robust automatic image analysis techniques

12. Multichannel cell image data processing for robust image analysis and identification of
potentially new cell types using robust feature extraction and intelligent feature selection
was also performed
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The proposed methods using feedback could be extended to any number of algorithms using
definite parameters affecting the outcome of the algorithm. Optimal parameter set can be selected
for any image processing algorithm based on the carefully designed evaluation criteria.

Since the new feedback-based parameter tuning method works for the image segmentation/clas-
sification against a backdrop of noisy data, this could very well be applied to data acquired under
real conditions with a lot of inherent noise.

Application of biological datasets for cell segmentation could also be improved using feedback-
based methods depending upon the defined evaluation criteria. In the future, the feedback-based
image segmentation algorithms would be applied to 3D data from microscope.

Altogether, this work paves the way for finding optimal parameters in image analysis using
different image processing algorithms for the noisy data as the parameter adaptation could work
better and is more robust to illumination and noise variations.
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A Important Symbols and Names

Symbol Description
A overall artifact level present in pixel value of Itruth at indices i and j an image
A(n1, n2, n3) overall artifact level as a function of n1, n2 and n3

a parameter set for normalization
â parameter vector of coefficients of polynomial function
ai parameter for normalization
âi optimal parameter for automatic feedback normalization
âopt optimal parameter set for automatic feedback normalization
âtotal parameter vector of coefficients and exponents of polynomial function
âopt,fuzzy,norm optimal parameter set based on fuzzy quality criterion for normalization
ANOVA (univariate) ANalysis Of VAriances
AutoEdge automatic feedback parameter adaptation of Sobel edge detection method
AutoOtsu automatic feedback parameter adaptation of Otsu’s method
B total grades of grayscale shading in an image
B set defining all segments found in bright field channel
BF Bright Field channel
Bi set containing pixel positions belonging to segments of bright field channel

image
b running index for grades of grayscale shading in an image
Cu total number of pixels in Su
Cv total number of pixels in Tv

c parameter defining the curvature (or exponential power of a function)
D set defining all segments found in nuclear staining channel
DB set containing all DBi
DBi set containing union of all Dj sets
DAPI nuclear staining channel
DAPIposBF a set containing segments in DAPI channel that are also segmented in BF

channel
Dj set containing pixel positions belonging to segments of nuclear staining

channel image
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Symbol Description
F feature set of image objects
f individual single feature of an image object
farea,i area of ith BLOB
farea,min specified minimum size threshold
fu self-defined mathematical function
g number of columns in a grayscale image
GUI Graphical User Interface
h total number of image object features
I grayscale image
IA acquired grayscale image
ISF shading-free grayscale image
Iseg segmented grayscale image
Itruth image with ground truth
i running index for image rows
i∗a vectorized form of IA
Iij pixel values for image I with indices i and j respectively
Iij,max maximum pixel value of an image I
Iij,min minimum pixel value of an image I
Iij,norm normalized pixel value of an image I
Ihigh,b upper intensity percentile of an image I
Ilow,a lower intensity percentile of an image I
Iij,truth pixel values of Itruth
im mean pixel value of an image I
Iseg,ij pixel value of Iseg at indices i and j
îSF vectorized form of ISF
j running index for image columns
Kn total number of object classes to be found in an image
Ku class label for uth ground truth object
K̂u class assignment for segmented object overlapping with u-th ground truth

object
m number of rows in a grayscale image
max{·} maximum operator
med{·} median operator
min{·} minimum operator
MANOVA (Multivariate) ANalysis Of VAriances
N total noise levels induced in an image
Nd total number of data points
n running index for noise levels induced in an image
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Symbol Description
n1 variance of Gaussian noise with zero mean
n2 variance of Speckle noise
n3 noise density of Salt and Pepper noise
nb total number of segments in bright field channel image
nc total number of segments detected in an image
nd total number of segments in nuclear staining channel image
nj criterion to select membership of segments belonging to both DAPI and BF

channel images
nref total number of reference segments in an image
nseg total number of reassigned segments per image
nt total number of segments detected in Hoechst channel
O maximum number of objects to be found in an image
n+ correctly reassigned segments
n− incorrectly reassigned segments
p parameters set to be tuned for image processing algorithm
popt optimal parameter set for segmentation based on segmentation quality crite-

rion
popt,ed optimal parameter set based on Qed

popt,fuzzy optimal parameter set based on Qfuzz

pj parameter assigning value to membership of segments that are present in
both DAPI and BF channel images

px a boundary threshold value for the selection between edge detection and
Otsu’s thresholding method

prq(·) percentile operator for lower q-th percentile
pr100−q(·) percentile operator for upper (100-q)-th percentile
Q overall quality measure of segmentation outcome of a certain segmentation

algorithm
Qed quality criterion for segmentation evaluation based on Euclidean distance

between reference and segmented features
Qfuzz fuzzy quality criterion for automatic image segmentation based on fuzzy

membership function features
Qfuzz,norm fuzzy quality criterion for normalization evaluation
Qfuzz,seg fuzzy quality criterion for segmentation evaluation
Qnorm quality criterion for normalization evaluation
Q(n1, n2, n3) quality measure for segmentation evaluation when n1, n2 and n3 are used
Q(n1, n2, n3,p) quality measure for segmentation evaluation obtained using a parameter set

p during parametric tuning
Qseg segmentation quality criterion using µ1 and µ2

QS1 least square minimization criterion containing parameters only as coeffi-
cients
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Symbol Description
QS2 least square minimization criterion containing parameters only as exponents
q percentile value
q1 segmentation criterion defining the difference in total number of objects de-

tected in comparison to ground truth
q2 segmentation quality criterion defining non-overlapping pixels of the de-

tected objects with the pixels of ground truth
q3 quality criterion describing the class match between ground truth and seg-

mented object
R robustness value of an algorithms
Ro maximum number of scenes in a benchmark image dataset
r scene number in a benchmark image dataset
rnd random number
S set containing all BLOBs of Iseg
Sa additive shading component in an image
Ŝa polynomial function for automatic feedback normalization
Ŝa vectorized form of polynomial function for automatic feedback normaliza-

tion
Sc set containing elements that fulfill a criterion based on the overlap of u-th

BLOB set with all BLOB sets of Tv
Sm multiplicative shading component in an image
Su u-th BLOB of Iseg defined by its pixel indices
Sux,i row pixel index of Su
Suy,i column pixel index of Su
s size of structuring element (predefined as a disc) in an image opening oper-

ation
ŝ∗a vectorized form of Ŝa
SE Structuring Element for morphological operations
StdEdge standard feedforward Edge detection method
StdOtsu standard feedforward Otsu segmentation method
T set containing all BLOBs of Itruth
Tv v-th BLOB of Itruth defined by its pixel indices
Tvx,i row pixel index of Tv

Tvy,i column pixel index of Tv

t image intensity threshold value
tin intensity threshold for ith BLOB at level n
ti,max highest image threshold level for ith BLOB
ti,min lowest image threshold level for ith BLOB
U total number of BLOBs found in Iseg
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Symbol Description
u running index for total number of BLOBs in Iseg
V total number of BLOBs found in Itruth
v running index for total number of BLOBs in Itruth
w convolution filter size defined as symmetric w × w square matrix having

elements equal to 1
w2

ŵ vector of weights for weighting features of a given segment
X data matrix for additive noising of an image
x index for x-coordinate of an image
xi features vector for each segmented object i in an image
xref vector of alpha numeric references for each segment j in an image
y index for y-coordinate of an image
α upper bound of a monotonic function defined by µ
β lower bound of a monotonic function defined by µ
δtruth,ij binary pixel values of Itruth at indices i and j
δseg,ij binary pixel values of Iseg at indices i and j
∆ difference of correct and incorrect number of segments after reassignment
θ parameter defining image property to be used in a fuzzy membership func-

tion
σ standard deviation for a normally distributed variable
σGD deviation from ground truth in terms of number of segments
µ fuzzy membership function
µc fuzzy membership function for total object count in an image
µj(xj) trapezoidal fuzzy membership function for each feature j of each segment
µ̂1 fuzzy membership function of segmentation quality criterion q1

µ̂2 fuzzy membership function of segmentation quality criterion q2

µ̂3 fuzzy membership function of segmentation quality criterion q3

µ̂1(p) fuzzy membership function of segmentation quality criterion q1 obtained
using a parameter set p during parametric tuning

µ̂1(p) fuzzy membership function of segmentation quality criterion q2 obtained
using a parameter set p during parametric tuning

µ̂1(p) fuzzy membership function of segmentation quality criterion q3 obtained
using a parameter set p during parametric tuning

ψimage percentage improvement in segmentation results with respect to the total
number of segments detected originally in a given image

ψcase percentage improvement in segmentation results with respect to
critical cases
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